Science.gov

Sample records for chromium alloy steel

  1. New alloys to conserve critical elements. [replacing chromium in steels

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  2. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis.

    PubMed

    Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2013-05-07

    Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.

  3. Corrosion-induced release of the main alloying constituents of manganese-chromium stainless steels in different media.

    PubMed

    Herting, Gunilla; Wallinder, Inger Odnevall; Leygraf, Christofer

    2008-09-01

    The main focus of this paper is the assessment of release rates of chromium, nickel, iron and manganese from manganese-chromium stainless steel grades of low nickel content. The manganese content varied between 9.7 and 1.5 wt% and the corresponding nickel content between 1 and 5 wt%. All grades were exposed to artificial rain and two were immersed in a synthetic body fluid of similar pH but of different composition and exposure conditions. Surface compositional studies were performed using X-ray photoelectron spectroscopy (XPS) in parallel to correlate the metal release process with changes in surface oxide properties. All grades, independent of media, revealed a time-dependent metal release process with a preferential low release of iron and manganese compared to nickel and chromium while the chromium content of the surface oxide increased slightly. Manganese was detected in the surface oxide of all grades, except the grade of the lowest manganese bulk content. No nickel was observed in the outermost surface oxide. Stainless steel grades of the lowest chromium content (approximately 16 wt%) and highest manganese content (approximately 7-9 wt%), released the highest quantity of alloy constituents in total, and vice versa. No correlation was observed between the release rate of manganese and the alloy composition. Released main alloy constituents were neither proportional to the bulk alloy composition nor to the surface oxide composition.

  4. The corrosion performance of high chromium stainless steels and titanium alloys at a reverse osmosis plant in Arabian Gulf seawater

    SciTech Connect

    Al-Odwani, A.; Al-Tabatabaei, M.; Carew, J.

    1997-08-01

    Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion performance of four high chromium stainless steels and Grade 2 titanium in flowing Arabian Gulf natural seawater. The EIS provided information concerning the changes to the interfacial impedance as a function of exposure time for these alloys. The impedance spectra for all the alloys showed slight changes at the low frequency region over the exposure period. The open-circuit potentials (OCP) of these alloys were also monitored as a function of exposure time. The stainless steel alloys exhibited slight fluctuation in potential around the initial exposure potential. However, Grade 2 titaniummore » initial potential was more active and then gradually shifted towards the noble direction. The linear polarization resistance (LPR) method indicated that Grade 2 titanium exhibited the lowest corrosion rate with respect to the stainless steel alloys. The results of the EIS analysis and OCP indicated that Grade 2 titanium performed better than the four high chromium stainless steel alloys.« less

  5. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    PubMed

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016. © 2016 Wiley Periodicals, Inc.

  6. Effect of Heat Treatment on the Impact Toughness of `High-Chromium Cast Iron - Low Alloy Steel' Bimetal Components

    NASA Astrophysics Data System (ADS)

    Özdemir, Z.

    2017-03-01

    A bimetallic `low-alloy steel - high-chromium cast iron' composite obtained by successive sand casting is studied and shown to have good cohesion on the interface and no casting defects. The hardness and the impact toughness of the bimetal increase simultaneously. The microstructure is more homogeneous after diffusion annealing at 1040°C, rapid cooling, and 3-h tempering at 270°C.

  7. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    NASA Technical Reports Server (NTRS)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  8. Welding of high chromium steels

    NASA Technical Reports Server (NTRS)

    Miller, W B

    1928-01-01

    A brief description is given of different groups of high chromium steels (rustless iron and stainless steels) according to their composition and more generally accepted names. The welding procedure for a given group will be much the same regardless of the slight variations in chemical composition which may exist within a certain group. Information is given for the tensile properties (yield point and ultimate strength) of metal sheets and welds before and after annealing on coupons one and one-half inches wide. Since welds in rustless iron containing 16 to 18 percent chromium and 7 to 12 percent nickel show the best combination of strength and ductility in the 'as welded' or annealed condition, it is considered the best alloy to use for welded construction.

  9. Mechanical properties and oxidation and corrosion resistance of reduced-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.

    1979-01-01

    An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.

  10. Oxidation and corrosion behavior of modified-composition, low-chromium 304 stainless steel alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Barrett, C. A.

    1977-01-01

    The effects of substituting less strategic elements than Cr on the oxidation and corrosion resistance of AISI 304 stainless steel were investigated. Cyclic oxidation resistance was evaluated at 870 C. Corrosion resistance was determined by exposure of specimens to a boiling copper-rich solution of copper sulfate and sulfuric acid. Alloy substitutes for Cr included Al, Mn, Mo, Si, Ti, V, Y, and misch metal. A level of about 12% Cr was the minimum amount of Cr required for adequate oxidation and corrosion resistance in the modified composition 304 stainless steels. This represents a Cr saving of at least 33%. Two alloys containing 12% Cr and 2% Al plus 2% Mo and 12% Cr plus 2.65% Si were identified as most promising for more detailed evaluation.

  11. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    PubMed

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  12. Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release.

    PubMed

    Summer, Burkhard; Fink, Ulrich; Zeller, Richard; Rueff, Franziska; Maier, Sonja; Roider, Gabriele; Thomas, Peter

    2007-07-01

    Nickel, chromium, and cobalt released from stainless steel and CoCrMo alloys have been postulated to trigger hypersensitivity reactions. The objective of this study was to assess the ion release from a CoCrMo alloy and stainless steel in vitro and the cutaneous reactivity to it by patch test. 52 metal-allergic patients and 48 non-allergic controls were patch tested to stainless steel and CoCrMo discs. In addition, using atomic absorption spectrometry, the release of nickel, cobalt, and chromium from both materials was assessed upon 2-day exposure to distilled water, artificial sweat (AS), and cell culture medium. There was low nickel ion release from stainless steel (0.3-0.46 microg/cm(2)/2 days) and CoCrMo discs (up to 0.33 microg/cm(2)/2 days) into the different elution media. Chromium release from the 2 materials was also very low (0.06-0.38 microg/cm(2)/2 days from stainless steel and 0.52-1.36 microg/cm(2)/2 days from CoCrMo alloy). In contrast, AS led to abundant cobalt release (maximally 18.94 microg/cm(2)/2 days) from the CoCrMo discs, with concomitant eczematous reaction upon patch testing: 0 of the 52 metal-allergic patients reacted to stainless steel discs and 5 of the 52 patients to CoCrMo discs (all 5 patients were cobalt allergic and 3 also nickel and chromium allergic). None of the controls reacted to the discs. Apart from nickel being a focus of allergological research, our results point to the possibly underestimated association of cobalt release and potential hyperreactivity to CoCrMo alloy.

  13. Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. F.; Teresov, A. D.; Petrikova, E. A.; Krysina, O. V.; Ivanova, O. V.; Shugurov, V. V.; Moskvin, P. V.

    2017-07-01

    The mechanisms of forming nanostructured, nanophase layers are revealed and analyzed in austenitic steel subjected to surface alloying using an electron-plasma process. Nanostructured, nanophase layers up to 30 μm in thickness were formed by melting of the film/substrate system with an electron beam generated by a SOLO facility (Institute of High Current Electronics, SB RAS), Tomsk), which ensured crystallization and subsequent quenching at the cooling rates within the range 105-108 K/s. The surface was modified with structural stainless steel specimens (SUS 321 steel). The film/substrate system (film thickness 0.5 μm) was formed by a plasma-assisted vacuum-arc process by evaporating a cathode made from a sintered pseudoalloy of the following composition: Zr - 6 at.% Ti - 6 at.% Cu. The film deposition was performed in a QUINTA facility equipped with a PINK hot-cathode plasma source and DI-100 arc evaporators with accelerated cooling of the process cathode, which allowed reducing the size and fraction of the droplet phase in the deposited film. It is found that melting of the film/substrate system (Zr-Ti-Cu)/(SUS 321 steel) using a high-intensity pulsed electron beam followed by the high-rate crystallization is accompanied by the formation of α-iron cellular crystallization structure and precipitation of Cr2Zr, Cr3C2 and TiC particles on the cell boundaries, which as a whole allowed increasing microhardness by a factor of 1.3, Young's modulus - by a factor of 1.2, wear resistance - by a factor of 2.7, while achieving a three-fold reduction in the friction coefficient.

  14. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  15. Automatic flow system for simultaneous determination of iron and chromium in steel alloys employing photometers based on LEDs as radiation source

    PubMed Central

    Fernandes, Ridvan N.; Campos, Luís Fernando P.

    2003-01-01

    A multicommutated flow system for simultaneous determination of iron and chromium in steel alloys by photometry is described. The flow network consisted of an automatic injector and four solenoid valves assembled to form two independent analytical pathways, each one comprising reaction coils and a flow cell. The light source (LED) and detector (photodiode) were attached to the flow cells to form a compact unit. The flow system was microcomputer controlled by Quick BASIC 4.5 software, which carried out all steps of the analytical procedure. The feasibility of the system was proved by the determination of iron and chromium in steel alloys and its accuracy was accessed by comparing results with those obtained by plasma atomic emission spectrometry (ICP-AES). No significant difference at the 95% confidence level was observed. Other profitable features such as low reagent consumption (0.33 mg 1,10-phenantroline and 0.03 mg 1,5-diphenylcarbazide per determination); relative standard deviations (n = 5) of 0.4% for iron and 1.2% for chromium; and an analytical throughput of 160 determinations per h were also achieved. PMID:18924884

  16. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  17. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.

    PubMed

    Midander, Klara; de Frutos, Alfredo; Hedberg, Yolanda; Darrie, Grant; Wallinder, Inger Odnevall

    2010-07-01

    research effort was therefore conducted to generate quantitative bioaccessibility data for particles of ferro-chromium alloys compared with particles of the pure metals and stainless steel exposed at in vitro conditions in synthetic biological media of relevance for particle inhalation and ingestion. All results are presented combining bioaccessibility data with aspects of particle characteristics, surface composition, and barrier properties of surface oxides. Iron and chromium were the main elements released from ferro-chromium alloys upon exposure in synthetic biological media. Both elements revealed time-dependent release processes. One week exposures resulted in very small released particle fractions being less than 0.3% of the particle mass at acidic conditions and less than 0.001% in near pH-neutral media. The extent of Fe released from ferro-chromium alloy particles was significantly lower compared with particles of pure Fe, whereas Cr was released to a very low and similar extent as from particles of pure Cr and stainless steel. Low release rates are a result of a surface oxide with passive properties predominantly composed of chromium(III)-rich oxides and silica and, to a lesser extent, of iron(II,III)oxides. Neither the relative bulk alloy composition nor the surface composition can be used to predict or assess the extent of metals released in different synthetic biological media. Ferro-chromium alloys cannot be assessed from the behavior of their pure metal constituents. (c) 2009 SETAC.

  18. Characterization of TiN, TiC and Ti(C,N) in titanium-alloyed ferritic chromium steels focusing on the significance of different particle morphologies

    SciTech Connect

    Michelic, S.K., E-mail: susanne.michelic@unileoben.ac.at; Loder, D.; Reip, T.

    2015-02-15

    Titanium-alloyed ferritic chromium steels are a competitive option to classical austenitic stainless steels owing to their similar corrosion resistance. The addition of titanium significantly influences their final steel cleanliness. The present contribution focuses on the detailed metallographic characterization of titanium nitrides, titanium carbides and titanium carbonitrides with regard to their size, morphology and composition. The methods used are manual and automated Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy as well as optical microscopy. Additional thermodynamic calculations are performed to explain the precipitation procedure of the analyzed titanium nitrides. The analyses showed that homogeneous nucleation is decisive at an earlymore » process stage after the addition of titanium. Heterogeneous nucleation gets crucial with ongoing process time and essentially influences the final inclusion size of titanium nitrides. A detailed investigation of the nuclei for heterogeneous nucleation with automated Scanning Electron Microscopy proved to be difficult due to their small size. Manual Scanning Electron Microscopy and optical microscopy have to be applied. Furthermore, it was found that during solidification an additional layer around an existing titanium nitride can be formed which changes the final inclusion morphology significantly. These layers are also characterized in detail. Based on these different inclusion morphologies, in combination with thermodynamic results, tendencies regarding the formation and modification time of titanium containing inclusions in ferritic chromium steels are derived. - Graphical abstract: Display Omitted - Highlights: • The formation and modification of TiN in the steel 1.4520 was examined. • Heterogeneous nucleation essentially influences the final steel cleanliness. • In most cases heterogeneous nuclei in TiN inclusions are magnesium based. • Particle morphology provides important

  19. Dispersion-strengthened chromium alloy

    NASA Technical Reports Server (NTRS)

    Blocker, J. M., Jr.; Veigel, N. D.

    1972-01-01

    Finely divided powder mixture produced by vapor deposition of CR on small ThO2 particles was hot pressed or pressure bonded. Resulting alloy has lower ductile-to-brittle transition temperature than pure chromium, and high strength and oxidation resistance at elevated temperatures, both in as-rolled condition and after annealing.

  20. Establishment of Wear Resistant HVOF Coatings for 50CrMo4 Chromium Molybdenum Alloy Steel as an Alternative for Hard Chrome Plating

    NASA Astrophysics Data System (ADS)

    Karuppasamy, S.; Sivan, V.; Natarajan, S.; Kumaresh Babu, S. P.; Duraiselvam, M.; Dhanuskodi, R.

    2018-05-01

    High cost imported components of seamless steel tube manufacturing plants wear frequently and need replacement to ensure the quality of the product. Hard chrome plating, which is time consuming and hazardous, is conventionally used to restore the original dimension of the worn-out surface of the machine components. High Velocity Oxy-Fuel (HVOF) thermal spray coatings with NiCrBSi super alloy powder and Cr3C2 NiCr75/25 alloy powder applied on a 50CrMo4 (DIN-1.7228) chromium molybdenum alloy steel, the material of the wear prone machine component, were evaluated for use as an alternative for hard chrome plating in this present work. The coating characteristics are evaluated using abrasive wear test, sliding wear test and microscopic analysis, hardness test, etc. The study results revealed that the HVOF based NiCrBSi and Cr3C2NiCr75/25 coatings have hardness in the range of 800-900 HV0.3, sliding wear rate in the range of 50-60 µm and surface finish around 5 microns. Cr3C2 NiCr75/25 coating is observed to be a better option out of the two coatings evaluated for the selected application.

  1. The crevice corrosion behavior of chromium stainless steel and nickel base alloys in a reverse osmosis plant utilizing seawater

    SciTech Connect

    Al-Odwani, A.; Carew, J.; Al-Hashem, A.

    1999-11-01

    The crevice corrosion tests were performed on UNS S31603, UNS S31703, UNS S31726, UNS S31254, UNS N08904, UNS N625, UNS N825 and UNS N276 was investigated in seawater and neutral brine solution using a multiple crevice washer assembly. PTFE multiple-crevice washers were bolted to both sides of the test specimens with PTFE bolts and nuts. The specimens were exposed to seawater flowing at a rate of 100 L/h for periods of 3,000 h and 6,000 h. Duplicate specimens were immersed in a plexiglass cell containing the flowing seawater at a temperature of 30 C. The results showed that all themore » tested coupons were susceptible to some degree of crevice corrosion attack. However, the stainless steels were the most severely affected. The degree of crevice corrosion attack for the nickel base alloys decreased as the percentage of molybdenum content in the alloys increased. Destruction of the passive layer by the concentration of chloride or acidity and reduction of hydrogen ions at the crevices is believed to be the cause of the crevice attack.« less

  2. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  3. Method for welding chromium molybdenum steels

    DOEpatents

    Sikka, Vinod K.

    1986-01-01

    Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

  4. Influence of Magnesium Ions in the Seawater Environment on the Improvement of the Corrosion Resistance of Low-Chromium-Alloy Steel

    PubMed Central

    Song, Sol-Ji; Kim, Jung-Gu

    2018-01-01

    This study examined the synergic effect of alloying the element Cr and the environmental element Mg2+ ions on the corrosion property of a low-alloy steel in seawater at 60 °C, by means of electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) tests and weight-loss tests. The Mg2+ ions in seawater played an important role in lowering the electron transfer of the rust layer in the Cr-containing steel. The corrosion resistance of the Cr-containing steel is superior to that of blank steel in Mg2+ ions containing seawater. XPS and XRD results indicated that the formation of MgFe2O4 and a mixed layer (Cr oxide + FeCr2O4 + MgCr2O4) improved the corrosion resistance of the low-alloy steel in the seawater. PMID:29361710

  5. Influence of Magnesium Ions in the Seawater Environment on the Improvement of the Corrosion Resistance of Low-Chromium-Alloy Steel.

    PubMed

    Song, Sol-Ji; Kim, Jung-Gu

    2018-01-20

    This study examined the synergic effect of alloying the element Cr and the environmental element Mg 2+ ions on the corrosion property of a low-alloy steel in seawater at 60 °C, by means of electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) tests and weight-loss tests. The Mg 2+ ions in seawater played an important role in lowering the electron transfer of the rust layer in the Cr-containing steel. The corrosion resistance of the Cr-containing steel is superior to that of blank steel in Mg 2+ ions containing seawater. XPS and XRD results indicated that the formation of MgFe₂O₄ and a mixed layer (Cr oxide + FeCr₂O₄ + MgCr₂O₄) improved the corrosion resistance of the low-alloy steel in the seawater.

  6. Increase of chromium yield by slag reduction during production of chromium steels

    NASA Astrophysics Data System (ADS)

    Bažan, J.; Socha, L.; Kurka, V.; Jonšta, P.; Sušovský, M.

    2017-02-01

    The paper is focused on the evaluation of the course of Cr2O3 reduction from slag to alloyed steel under laboratory conditions. The experiments were aimed at the evaluation of increase in the chromium content in the melt together with the studying the behaviour of Cr2O3 and the mechanism of reduction by means of three reducing agents. Anthracite, ferrosilicon and mixtures of anthracite and ferrosilicon belong among the selected reducing agents. The experimental melts were focused on the proposal of a theoretical calculation of the consumption of selected reducing agents, study of reduction under laboratory conditions at application of alloyed steel with content of chromium of 12.16 wt. %, temperatures of 1600 °C and 1650 °C, together with the change of amount of reducing agents and reduction time. The results indicated in the paper constitute basic information on the possibilities of Cr2O3 reduction from slag; they will be used for verification of results in the pilot plant and operation experiments which will simulate operating conditions in the electric arc furnace.

  7. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  8. Development of low-chromium, chromium-tungsten steels for fusion

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.; Kenik, E. A.

    1995-12-01

    High-chromium (9-12% Cr) CrMo and CrW ferritic steels are favored as candidates for fusion applications. In early work to develop reduced-activation steels, an Fe2.25Cr2W-0.25V-O.1C steel (designated 2.25Cr-2WV) had better strength than an Fe9Cr2W-0.25V-0.07Tra-0.1C (9Cr-2WVTa) steel (compositions are in weight percent). However, the 2.25Cr-2WV had poor impact properties, as determined by the ductile-brittle transition temperature and upper-shelf energy of subsize Charpy impact specimens. Because low-chromium steels have some advantages over high-chromium steels, a program to develop low-chromium steels is in progress. Microstructural analysis indicated that the reason for the inferior impact toughness of the 2.25Cr-2WV was the granular bainite obtained when the steel was normalized. Properties can be improved by developing an acicular bainite microstructure by increasing the cooling rate after austenitization. Alternatively, acicular bainite can be promoted by increasing the hardenability. Hardenability was changed by adding small amounts of boron and additional chromium to the 2.250-2WV composition. A combination of B, Cr, and Ta additions resulted in low-chromium reduced-activation steels with mechanical properties comparable to those of 9Cr-2WVTa.

  9. [Metallurgical differentiation of cobalt-chromium alloys for implants].

    PubMed

    Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A

    2005-10-01

    Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.

  10. Development of Chromium-Free Welding Consumables for Stainless Steels

    DTIC Science & Technology

    2009-02-01

    FINAL REPORT Development of Chromium -Free Welding Consumables for Stainless Steels SERDP Project WP-1415 FEBRUARY 2009 J.C. Lippold...NUMBER 4. TITLE AND SUBTITLE Development of Chromium -Free Welding Consumables for Stainless Steels 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Energy dispersive spectroscopy FGR Fume generation rate GMAW Gas metal arc welding GTAW Gas tungsten arc welding HAZ Heat affected zone LTE Long

  11. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  12. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  13. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.

    PubMed

    Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J

    2010-11-01

    Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk

  14. Stainless Steel Leaches Nickel and Chromium into Foods During Cooking

    PubMed Central

    Kamerud, Kristin L.; Hobbie, Kevin A.; Anderson, Kim A.

    2014-01-01

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage. PMID:23984718

  15. Stainless steel leaches nickel and chromium into foods during cooking.

    PubMed

    Kamerud, Kristin L; Hobbie, Kevin A; Anderson, Kim A

    2013-10-02

    Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan, cooking times of 2-20 h, 10 consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After 6 h of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold, respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34-fold and Cr increased approximately 35-fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, although significant metal contributions to foods were still observed. The tenth cooking cycle resulted in an average of 88 μg of Ni and 86 μg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

  16. Development of Protective Coatings for Chromium-Base Alloys

    NASA Technical Reports Server (NTRS)

    English, J. J.; MacMillan, C. A.; Williams, D. N.; Bartlett, E. S.

    1966-01-01

    Chromium alloy sheet was clad with 5 to 10-mil-thick oxidation-resistant nickel-base alloy foils. Specimens also contained 1/2 to 1-mil-thick intermediate layers of platinum, tungsten, and/or W-25Re. Cladding was done by the isostatic hot gas-pressure bonding,.process. The clad chromium-alloy specimens were cyclic oxidation tested at 2100 F and 2300 F for up to 200 hours to determine the effectiveness of these metal claddings in protecting the chromium alloy Cr-5W from oxidation and contamination. Cladding systems consisting of 5-mil-thick Ni-20Cr-20W modified with 3 to 5 weight percent aluminum and containing a 1 /2-mil tungsten diffusion barrier demonstrated potential for long-time service at temperatures as high as 2300 F.

  17. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  18. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  19. Chromium ion release from stainless steel pediatric scoliosis instrumentation.

    PubMed

    Cundy, Thomas P; Delaney, Christopher L; Rackham, Matthew D; Antoniou, Georgia; Oakley, Andrew P; Freeman, Brian J C; Sutherland, Leanne M; Cundy, Peter J

    2010-04-20

    Case-control study. To determine whether serum metal ion levels and erythrocyte chromium levels in adolescents with stainless steel spinal instrumentation are elevated when compared with 2 control groups. Instrumented spinal arthrodesis is a common procedure to correct scoliosis. The long-term consequences of retained implants are unclear. Possible toxic effects related to raised metal ion levels have been reported in the literature. Thirty patients who underwent posterior spinal arthrodesis with stainless steel instrumentation for scoliosis (group 1) were included. Minimum postoperative duration was 3 years. Serum chromium, molybdenum, iron, and ferritin levels were measured. Participants with elevated above normal serum chromium levels (n = 11) also underwent erythrocyte chromium analysis. Comparisons were made with 2 control groups; 10 individuals with scoliosis with no spinal surgery (group 2) and 10 volunteers without scoliosis (group 3). All control group participants underwent serum and erythrocyte analysis. Elevated above normal serum chromium levels were demonstrated in 11 of 30 (37%) group 1 participants. Elevated serum chromium levels were demonstrated in 0 of 10 participants (0%) in group 2 and 1 of 10 (10%) in group 3. There was a statistically significant elevation in serum chromium levels between group 1 and group 2 participants (P = 0.001). There was no significant association between groups 1, 2, and 3 for serum molybdenum, iron, and ferritin levels. Erythrocyte chromium measurements were considered within the normal range for all participants tested (n = 31). Raised serum chromium levels were detected in 37% of patients following instrumented spinal arthrodesis for correction of scoliosis. This new finding has relatively unknown health implications but potential mutagenic, teratogenic and carcinogenic sequelae. This is especially concerning with most scoliosis patients being adolescent females with their reproductive years ahead.

  20. Electrodeposition of Tantalum and Tantalum-Chromium Alloys

    DTIC Science & Technology

    1980-05-01

    Electrochem Soc, 112, 840 (1965). 7Ibid, 113,60 (1966). 8Ibid, 113.66 (1966). J. Wurm, "European Conference on the Development of Molten Salts Applica...Chem. 35, 161-3 (1887). 16. J. Wurm, "European Conference on the Development of Molten Salts Applica- tions," Extended Abstracts and Proceedings, pp...Metals Tantalum Tantalum-Chromium Alloys Chromium Coating Fused Salt Electrolyte Electrodeposition FLINAK 20. ABSTRACT (Continue on reverse

  1. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  2. Evaluation and Demonstration of Non-Hexavalent Chromium Pretreatments and Sealers for Steel Substrates

    DTIC Science & Technology

    2009-09-01

    Commercially available Alternative Technologies Steel Pretreatments – Non chromium – Henkel NT-1 – Trivalent chromium – Surtec 650 TCP – Non- chromium ...UNCLASSIFIED: Approved for public release; distribution unlimited. Evaluation and Demonstration of Non-Hexavalent Chromium Pretreatments and...Hexavalent Chromium Pretreatments and Sealers for Steel Substrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  3. Chromium boron surfaced nickel-iron base alloys

    NASA Technical Reports Server (NTRS)

    Rashid, James M. (Inventor); Friedrich, Leonard A. (Inventor); Freling, Melvin (Inventor)

    1984-01-01

    Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.

  4. Biocompatibility and characterization of a Kolsterised(®) medical grade cobalt-chromium-molybdenum alloy.

    PubMed

    Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph

    2014-01-01

    High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising(®) treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised(®) Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised(®) material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, "In-vitro" corrosion testing, and Biological testing conforming to BS EN ISO 10993-18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised(®) cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised(®) samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties.

  5. Biocompatibility and characterization of a Kolsterised® medical grade cobalt-chromium-molybdenum alloy

    PubMed Central

    Conti, Malcolm Caligari; Karl, Andreas; Wismayer, Pierre Schembri; Buhagiar, Joseph

    2014-01-01

    High failure rates of cobalt-chromium-molybdenum (Co-Cr-Mo) metal-on-metal hip prosthesis were reported by various authors, probably due to the alloy's limited hardness and tribological properties. This thus caused the popularity of the alloy in metal-on-metal hip replacements to decrease due to its poor wear properties when compared with other systems such as ceramic-on-ceramic. S-phase surface engineering has become an industry standard when citing surface hardening of austenitic stainless steels. This hardening process allows the austenitic stainless steel to retain its corrosion resistance, while at the same time also improving its hardness and wear resistance. By coupling S-phase surface engineering, using the proprietary Kolsterising® treatment from Bodycote Hardiff GmbH, that is currently being used mainly on stainless steel, with Co-Cr-Mo alloys, an improvement in hardness and tribological characteristics is predicted. The objective of this paper is to analyze the biocompatibility of a Kolsterised® Co-Cr-Mo alloy, and to characterize the material surface in order to show the advantages gained by using the Kolsterised® material relative to the original untreated alloy, and other materials. This work has been performed on 3 fronts including; Material characterization, “In-vitro” corrosion testing, and Biological testing conforming to BS EN ISO 10993–18:2009 - Biological evaluation of medical devices. Using these techniques, the Kolsterised® cobalt-chromium-molybdenum alloys were found to have good biocompatibility and an augmented corrosion resistance when compared with the untreated alloy. The Kolsterised® samples also showed a 150% increase in surface hardness over the untreated material thus predicting better wear properties. PMID:24451266

  6. Method for heat treating iron-nickel-chromium alloy

    DOEpatents

    Korenko, Michael K.

    1980-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime phase, the alloy consisting essentially of about 40 to 50% nickel, 7.5 to 14% chromium, 1.5 to 4% niobium, 0.3 to 0.75% silicon, 1 to 3% titanium, 0.1 to 0.5% aluminum, 0.02 to 1% carbon, 0.002 to 0.0015% boron and the remain substantially all iron. To obtain optimal results, the alloy is cold-worked 20 to 60% followed by heating at 1050.degree. C. for 1/2 hour with an air-cool plus heating at 800.degree. C. for 2 hours with a furnace cool to 625.degree. C. The alloy is then held at 625.degree. C. for 12 hours, followed by an air-cool.

  7. 77 FR 32998 - Tin- and Chromium-Coated Steel Sheet From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or... USITC Publication 4325 (May 2012), entitled Tin- and Chromium-Coated Steel Sheet from Japan...

  8. Oxidation resistant, thoria-dispersed nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Baranow, S.; Klingler, L. J.

    1973-01-01

    Modified thoria-dispersed nickel-chromium alloy has been developed that exhibits greatly improved resistance to high-temperature oxidation. Additions of aluminum have been made to change nature of protective oxide scale entirely and to essentially inhibit oxidation at temperatures up to 1260 C.

  9. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  10. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  11. Method for heat treating iron-nickel-chromium alloy

    DOEpatents

    Not Available

    1980-04-03

    A method is described for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a morphology of the gamma-double prime phase enveloping the gamma-prime, the alloy consisting essentially of about 25 to 45% nickel, 10 to 16% chromium, 1.5 to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025 to 1075/sup 0/C for 2 to 5 minutes, cold-worked about 20 to 60%, aged at a temperature of about 775/sup 0/C for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650 to 700/sup 0/C for 2 hours followed by an air-cool.

  12. Method for heat treating iron-nickel-chromium alloy

    DOEpatents

    Merrick, Howard F.; Korenko, Michael K.

    1982-01-01

    A method for heat treating an age-hardenable iron-nickel-chromium alloy to obtain a bimodal distribution of gamma prime phase within a network of dislocations, the alloy consisting essentially of about 25% to 45% nickel, 10% to 16% chromium, 1.5% to 3% of an element selected from the group consisting of molybdenum and niobium, about 2% titanium, about 3% aluminum, and the remainder substantially all iron. To obtain optimum results, the alloy is heated to a temperature of 1025.degree. C. to 1075.degree. C. for 2-5 minutes, cold-worked about 20% to 60%, aged at a temperature of about 775.degree. C. for 8 hours followed by an air-cool, and then heated to a temperature in the range of 650.degree. C. to 700.degree. C. for 2 hours followed by an air-cool.

  13. Identification, size classification and evolution of Laves phase precipitates in high chromium, fully ferritic steels.

    PubMed

    Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert

    2017-10-01

    To fulfil the new challenges of the German "Energiewende" more efficient, sustainable, flexible and cost-effective energy technologies are strongly needed. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Therefore advanced materials are needed. The present study focuses on a new concept of high chromium, fully ferritic steels. These steels, originally designed for solid oxide fuel cell applications, provide favourable steam oxidation resistance, creep and thermomechanical fatigue behaviour in comparison to conventional ferritic-martensitic steels. The strength of this type of steel is achieved by a combination of solid-solution hardening and precipitation strengthening by intermetallic Laves phase particles. The effect of alloy composition on particle composition was measured by energy dispersive X-ray spectroscopy and partly verified by thermodynamic modelling results. Generally the Laves phase particles demonstrated high thermodynamic stability during long-term annealing up to 40,000h at 600°C. Variations in chemical alloy composition influence Laves phase particle formation and consequently lead to significant changes in creep behaviour. For this reason particle size distribution evolution was analysed in detail and associated with the creep performance of several trial alloys. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Half life of chromium in serum and urine in a former plasma cutter of stainless steel

    PubMed Central

    Petersen, R.; Thomsen, J. F.; Jorgensen, N. K.; Mikkelsen, S.

    2000-01-01

    For 8 years chromium in serum and urine has been followed up in a former plasma cutter of stainless steel who was exposed to airborne dust and fumes containing chromium during this work. After the first examination for serum chromium the exposure ended. Serum chromium concentration has been measured seven times during the period and was initially very high and has subsequently dropped slowly. The half life was 40 months in serum. Urinary chromium has been measured five times. The half life was 129 months in urine. The study shows that exposure to airborne dust and fumes containing chromium may cause accumulation of chromium in the body, and that when exposure ends, elimination of chromium is very slow. Previous studies suggest that chromium mainly accumulates in the lungs.


Keywords: chromium half life; plasma cutting; stainless steel PMID:10711283

  15. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  16. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  17. Reaction of Unalloyed and Cr-Mo Alloyed Steels with Nitrogen from the Sintering Atmosphere

    NASA Astrophysics Data System (ADS)

    Dlapka, Magdalena; Gierl-Mayer, Christian; Calderon, Raquel de Oro; Danninger, Herbert; Bengtsson, Sven; Dudrova, Eva

    2016-12-01

    Nitrogen is usually regarded as an inert sintering atmosphere for PM steels; however, this cannot be taken for granted in particular for steels alloyed with nitride forming elements. Among those elements, chromium has become more and more important as an alloying element in sintered low alloy structural steels in the last decade due to the moderate alloying cost and the excellent mechanical properties obtainable, in particular when sinter hardening is applied. The high affinity of Cr to oxygen and the possible ways to overcome related problems have been the subject of numerous studies, while the fact that chromium is also a fairly strong nitride forming element has largely been neglected at least for low alloy steel grades, although frequently used materials like steels from Cr and Cr-Mo prealloyed powders are commonly sintered in atmospheres consisting mainly of nitrogen. In the present study, nitrogen pickup during sintering at different temperatures and for varying times has been studied for Cr-Mo prealloyed steel grades as well as for unalloyed carbon steel. Also the effect of the cooling rate and its influence on the properties, of the microstructure and the composition have been investigated. It showed that the main nitrogen uptake occurs not during isothermal sintering but rather during cooling. It could be demonstrated that a critical temperature range exists within which the investigated CrM-based steel is particularly sensitive to nitrogen pickup.

  18. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  19. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  20. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  1. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  2. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  3. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    NASA Astrophysics Data System (ADS)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  4. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  5. Erosion of iron-chromium alloys by glass particles

    NASA Technical Reports Server (NTRS)

    Salik, J.; Buckley, D. H.

    1984-01-01

    The material loss upon erosion was measured for several iron-chromium alloys. Two types of erodent material were used: spherical glass beads and sharp particles of crushed glass. For erosion with glass beads the erosion resistance (defined as the reciprocal of material loss rate) was linearly dependent on hardness. This is in accordance with the erosion behavior of pure metals, but contrary to the erosion behavior of alloys of constant composition that were subjected to different heat treatments. For erosion with crushed glass, however, no correlation existed between hardness and erosion resistance. Instead, the erosion resistance depended on alloy composition rather than on hardness and increased with the chromium content of the alloy. The difference in erosion behavior for the two types of erodent particles suggested that two different material removal mechanisms were involved. This was confirmed by SEM micrographs of the eroded surfaces, which showed that for erosion with glass beads the mechanism of material removal was deformation-induced flaking of surface layers, or peening, whereas for erosion with crushed glass it was cutting or chopping.

  6. Microstructural development during solidification of stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Elmer, J. W.; Allen, S. M.; Eagar, T. W.

    1989-10-01

    The microstructures that develop during the solidification of stainless steel alloys are related to the solidification conditions and the specific alloy composition. The solidification conditions are determined by the processing method, i.e., casting, welding, or rapid solidification, and by parametric variations within each of these techniques. One variable that has been used to characterize the effects of different processing conditions is the cooling rate. This factor and the chemical composition of the alloy both influence (1) the primary mode of solidification, (2) solute redistribution and second-phase formation during solidification, and (3) the nucleation and growth behavior of the ferrite-to-austenite phase transformation during cooling. Consequently, the residual ferrite content and the microstructural morphology depend on the cooling rate and are governed by the solidification process. This paper investigates the influence of cooling rate on the microstructure of stainless steel alloys and describes the conditions that lead to the many microstructural morphologies that develop during solidification. Experiments were performed on a series of seven high-purity Fe-Ni-Cr alloys that spanned the line of twofold saturation along the 59 wt pct Fe isopleth of the ternary alloy system. High-speed electron-beam surface-glazing was used to melt and resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were shown to vary from 7°C/s to 7.5×106°C/s, and the resolidified melts were analyzed by optical metallographic methods. Five primary modes of solidification and 12 microstructural morphologies were characterized in the resolidified alloys, and these features appear to be a complete “set” of the possible microstructures for 300-series stainless steel alloys. The results of this study were used to create electron-beam scan speed vs composition diagrams, which can be used to predict the primary mode of solidification and the

  7. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  8. Methods for the Identification of Aircraft Tubing of Plain Carbon Steel and Chromium-Molybdenum Steel

    NASA Technical Reports Server (NTRS)

    Mutchler, W H; Buzzard, R W

    1930-01-01

    The survey of the possibilities for distinguishing between plain carbon and chromium-molybdenum steel tubing included the Herbert pendulum hardness, magnetic, sparks, and chemical tests. The Herbert pendulum test has the disadvantages of all hardness tests in being limited to factory use and being applicable only to scale-free, normalized material. The small difference in the range of hardness values between plain carbon and chromium-molybdenum steels is likewise a disadvantage. The Rockwell hardness test, at present used in the industry for this purpose, is much more reliable. It may be concluded on the basis of the experiments performed that of all methods surveyed, spark testing appears to be, at present, the most suitable for factory use from the standpoint of speed, accuracy, nondestructiveness and reliability. It is also applicable for field use.

  9. Urinary levels of nickel and chromium associated with dental restoration by nickel–chromium based alloys

    PubMed Central

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel–chromium based alloy (Ni–Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni–Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of <1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of <1, 1 to <3 and 3 to <6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni–Cr alloy restoration need to be investigated. PMID:23579466

  10. Mechanical strength of laser-welded cobalt-chromium alloy.

    PubMed

    Baba, N; Watanabe, I; Liu, J; Atsuta, M

    2004-05-15

    The purpose of this study was to investigate the effect of the output energy of laser welding and welding methods on the joint strength of cobalt-chromium (Co-Cr) alloy. Two types of cast Co-Cr plates were prepared, and transverse sections were made at the center of the plate. The cut surfaces were butted against one another, and the joints welded with a laser-welding machine at several levels of output energy with the use of two methods. The fracture force required to break specimens was determined by means of tensile testing. For the 0.5-mm-thick specimens, the force required to break the 0.5-mm laser-welded specimens at currents of 270 and 300 A was not statistically different (p > 0.05) from the results for the nonwelded control specimens. The force required to break the 1.0-mm specimens double-welded at a current of 270 A was the highest value among the 1.0-mm laser-welded specimens. The results suggested that laser welding under the appropriate conditions improved the joint strength of cobalt- chromium alloy. Copyright 2004 Wiley Periodicals, Inc.

  11. New alloys to conserve critical elements

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  12. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    PubMed

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P < 0.001), a process effect (F = 22.2, P < 0.0001) but no metal-process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P < 0.0001), a process effect (F = 72, P < 0.0001) as well as a metal-process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values

  13. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1992-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  14. Reaction layer formation at the graphite/copper-chromium alloy interface

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.; Michal, Gary M.

    1993-01-01

    Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.

  15. Characterization and Evaluation of Aged Chromium Nickel Niobium Stainless Steels

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew

    20Cr-32Ni-1Nb stainless steel alloys are commonly used in hydrogen reformer manifolds for transporting hot hydrogen by-products at 750-950°C. After long periods of exposure, embrittling secondary carbides and intermetallic phases can precipitate at the grain boundaries which can drastically reduce the ductility, and the repair weldability of the alloy. The intermetallic silicide, G-phase, is commonly observed in 20Cr-32Ni-1Nb stainless steels, and is prone to liquation cracking during welding operations. G-phase is deleterious to the material, where a high degree of G-phase coarsening will render the material unweldable. The present work will investigate various methods in mitigating G-phase precipitation. Variations in casting methods, wall thickness, homogenization treatments, and alloy chemistry will be examined by evaluating their microstructure after periodically aging the samples. Thermodynamic equilibrium modeling using computational thermodynamic tools will be used to optimize the 20Cr-32Ni-1Nb chemistry following ASTM specifications.

  16. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is lookedmore » upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.« less

  17. Microstructural design in low alloy steels

    NASA Technical Reports Server (NTRS)

    Honeycombe, R. W. K.

    1982-01-01

    The evolution of microalloyed steels from plain carbon steels is examined with emphasis on grain size control by use of Nb, Ti and V additions and by the application of controlled rolling. The structural changes during controlled rolling are described as well as the influence of alloying elements on these changes, and on the final microstructure. The achievement of high strength and toughness is discussed including the role of inclusions.

  18. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  19. Contribution to chromium and nickel enrichment during cooking of foods in stainless steel utensils.

    PubMed

    Accominotti, M; Bost, M; Haudrechy, P; Mantout, B; Cunat, P J; Comet, F; Mouterde, C; Plantard, F; Chambon, P; Vallon, J J

    1998-06-01

    Nickel ingestion can cause exacerbation of dermatitis in patients who are already nickel-sensitive; Chromium (Cr VI) is the 2nd allergen, after nickel. However, stainless steel is widely used in home cookware. In this study, we determined nickel and chromium levels by atomic absorption spectrometry in 11 habitual menus cooked in different grades of stainless steel utensils. We noted a great difference in nickel and chromium intake depending on the menu, and a significant difference between the glass and stainless steel saucepans, but this was very low compared with the levels of nickel and chromium contained in the menus; mean intakes of these elements were under the tolerable daily intake (TDI) recommended by the World Health Organization. Hence, there is no advantage for nickel-sensitive patients in switching to materials other than stainless steel, provided that this is of good quality.

  20. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    PubMed Central

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  1. Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Verma, R. S.; Murty, G. M. D.

    2009-06-01

    An alloy with carbon and chromium in the range of 2.0 to 2.5% and 20 to 25%, respectively, with the addition of Mo and Ni in the range of 1.0 to 1.5% each when heat-treated at a quenching temperature of 1010 °C and tempering temperature of 550 °C produces a hardness in the range of 54 to 56 HRC and a microstructure that consists of discontinuous bands of high volume (35-40%) of wear resistant primary (eutectic) carbides in a tempered martensitic matrix with uniformly dispersed secondary precipitates. This alloy has been found to possess adequate impact toughness (5-6 J/cm2) with a wear resistance of the order of 3-4 times superior to Mn steel and 1.25 times superior to martensitic stainless steel with a reduction in cost-to-life ratio by a factor of 1.25 in both the cases.

  2. Cold resistant nickel-alloy steel

    SciTech Connect

    Legostaev, Yu.L.; Karchevskaya, N.I.; Karchevnikov, V.P.

    1988-05-01

    Low-alloy cold-resistant steel 10GNB was developed for the construction of ships and floating drill rigs. The optimal heat-treatment regime for the steel was refinement. Reducing the carbon content improved its weldability and toughness properties. Optical metallography and electron microscopy established that the optimal structure was a tempered martensitic-bainitic mixture with uniformly distributed particles of disperse special niobium carbides NbC. The substructure and the processes of carbide and carbonitride phase segregation were studied by transmission and extraction electron microscopy. In mechanical tests the steel exhibited high resistance to brittle failure. In terms of corrosion resistance the steel corresponds to the requirementsmore » set forth for shipbuilding steels.« less

  3. Development of a chromium-free consumable for joining stainless steels

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey William

    effective weld strengtheners. Varestraint testing revealed that weld deposits have a higher solidification cracking susceptibility than stainless steel consumables used to join Type 304. Higher cracking susceptibility was attributed to austenitic solidification of the weld metal resulting in increased weld segregation and stabilization of a TiC eutectic reaction at the end of solidification. No solidification cracks were observed in actual weld deposits. Evaluation of weld microsegregation patterns showed higher dilutions of Type 304 increased segregation of Ti, promoting a TiC eutectic reaction at the end of solidification. Thermodynamic modeling techniques were used to describe the solidification the Ni-Cu weld deposits as a function of dilution with Type 304. Solidification cracking susceptibility was shown to increase with dilution during evaluation with the Cast Pin Tear Test indicating high dilution welds should be avoided to minimize solidification cracking during welding. The Strain-to-fracture test was used to examine DDC cracking susceptibility, and revealed that this alloy has a higher susceptibility to solid-state weld cracking than austenitic stainless alloys such as 304. Threshold strain levels necessary to initiate cracking in the weld deposits were in the range of 2 to 3%. These values are comparable to other Ni-base alloys with a moderate to high susceptibility to DDC. Fume generation rates (FGR) of the new consumable were measured and bulk fume phases were analyzed with X-ray diffraction. FGR values were found to be similar to current SMAW and flux cored arc welding consumables. No chromium bearing compounds were observed during X-ray diffraction measurements, and the bulk fume consisted primarily of halides and metallic-oxides. Fume generated by the new consumable was subjected to colorimetric testing showing hexavalent Cr content (0.02 wt-%) was reduced by two orders of magnitude compared to E308-16 (2.6 wt-%). The source of this hexavalent chromium was

  4. Urine chromium as an estimator of air exposure to stainless steel welding fumes.

    PubMed

    Sjögren, B; Hedström, L; Ulfvarson, U

    1983-01-01

    Welding stainless steel with covered electrodes, also called manual metal arc welding, generates hexavalent airborne chromium. Chromium concentrations in air and post-shift urine samples, collected the same arbitrarily chosen working day, showed a linear relationship. Since post-shift urine samples reflect chromium concentrations of both current and previous stainless steel welding fume exposure, individual urine measurements are suggested as approximate although not exact estimators of current exposure. This study evaluates the practical importance of such measurements by means of confidence limits and tests of validity.

  5. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  6. Effect of Low Nickel Dopant on Torque Transducer Response Function in High-Chromium Content ESR Stainless Tool Steels

    NASA Astrophysics Data System (ADS)

    Wiewel, Joseph L.; Hecox, Bryan G.; Orris, Jason T.; Boley, Mark S.

    2007-03-01

    The change in magnetoelastic torque transducer response was investigated as a low nickel content (up to 0.2%) is alloyed into an ESR (Electro-Slag-Refining) stainless tool steel with a chromium content of around 13%, which our previous studies have proven to be the ideal level of chromium content for optimal transducer performance. Two separate hollow steel 3/4-inch diameter shafts were prepared from ESR 416 and ESR 420 steel, respectively, the first having no nickel content and the second having 0.2% nickel content. The heat treatment of these steels consisted of a hardening process conducted in a helium atmosphere at 1038^oC, followed by an annealing at 871^oC for 5h and a 15^oC cool down rate. Prior and subsequent to the heat treatment processes, the circumferential and axial magnetic hysteresis properties of the samples were measured and their external field signals were mapped over the magnetically polarized regions both with and without applied shear stress up to 2500 psi on the samples. It was found that the effect of the low nickel dopant was to improve torque transducer sensitivity and linearity, but heat treatment worsened the performance of both samples.

  7. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  8. Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis.

    PubMed

    Rackham, Matthew D; Cundy, Thomas P; Antoniou, Georgia; Freeman, Brian J C; Sutherland, Leanne M; Cundy, Peter J

    2010-04-20

    Prospective cohort study. To determine the predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Abnormally elevated serum chromium levels have been detected in patients with adolescent idiopathic scoliosis after stainless steel instrumentation. To date, the relationship among serum chromium levels, time of implantation, and implant characteristics (including surface area, rod length, numbers of hooks, screws, and cross connectors) has not been studied. Thirty patients with adolescent idiopathic scoliosis undergoing posterior instrumented spinal arthrodesis using stainless steel implants between 1998 and 2002 were prospectively studied. Serum chromium levels were measured between October 2006 and June 2007. Postoperative radiographs were used to measure rod lengths, number of hooks, screws, cross-connectors, and cables. The surface area of each component and the total surface area for each patient were calculated. Possible associations between serum chromium levels, time of implantation, and implant characteristics were investigated. Implant exposure, whether expressed in the form of total metal implant surface area, rod length, or number of metal interfaces, was found to be positively associated with serum chromium levels. Specifically, chromium levels increased by a multiplicative factor of 1.0060 for every additional square centimeter of total metal implant surface area (P = 0.02). In addition, the chromium level was found to decrease by a multiplicative factor of 0.7766 for every additional year since surgery (P = 0.02). After adjusting for the number of years since surgery, metal implant exposure is positively associated with elevated serum chromium levels in adolescent idiopathic scoliosis patients with stainless steel posterior spinal implants. This is the first study to identify statistically significant positive associations between specific spinal implant characteristics (other than

  9. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    PubMed

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p < 0.002). Chromium and nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  10. Active-passive corrosion of iron-chromium-nickel alloys in hot concentrated sulphuric acid solutions

    NASA Astrophysics Data System (ADS)

    Kish, Joseph R.

    1999-11-01

    In the manufacture of sulphuric acid more stringent environmental standards and operation economics have forced the industry to improve product utilization, energy efficiency and reliability. A key to improving both the thermal efficiency and reliability is the use and/or development of more corrosion resistance materials including stainless steels, especially in the parts of the plant that handle the condensed acid. Application of more corrosion resistant material requires a better understanding of the corrosion mechanism involved in concentrated H2SO4-H2O (>90 wt.%) solutions. While corrosion kinetics of carbon steel, the traditional material of construction, are relatively well understood, this is much less true in the case of the cyclic active-passive corrosion of stainless steels. Models proposed to explain the cyclic active-passive corrosion involve a periodic formation of either a protective metal sulphate film or an insoluble sulphur layer. To better understand the reactivity and/or passivity of stainless steel in concentrated H2SO4-H2O solutions a study employing immersion and electrochemical techniques, including rotating electrodes, was conducted in order to clarify the following: (1) The state of stainless steel passivity. (2) The conditions in which passivity is stable. (3) The role played by the major alloying elements in establishing and maintaining the passive state. The study involved evaluating the corrosion behaviour of stainless steels S30403 and S43000 along with iron, chromium and nickel in 93.5 wt.% H2SO4 at temperatures between 25--80°C. Major discoveries of the study include: (1) A content of 17--18 wt.% chromium is sufficient to anodically passivate S43000 as the potential is made more noble. Passivity is not stable and requires anodic polarization. (2) Alloyed nickel plays an active role in improving the corrosion resistance of stainless steel. A content of 8 wt.% nickel is sufficient promote a periodic passivation of the base Fe-(17

  11. Measurement of chromium VI and chromium III in stainless steel welding fumes with electrom spectroscopy for chemical analysis and neutron activation analysis.

    PubMed

    Lautner, G M; Carver, J C; Konzen, R B

    1978-08-01

    Electron Spectroscopy for Chemical Analysis (ESCA) was explored as a means of studying the oxidation state of chromium in SMAC (coated electrode) stainless steel welding fume collected on Nucleopore filters in the laboratory. Chromuim VI and III (as a percent of the total chromium) obtained from ESCA analysis was applied to results from Neutron Activation Analysis (NAA) to yield an average of 69 microgram chromium VI per sample. Diphenylcarbazide/atomic absorption (DPC/AA) results are reported for samples submitted to an industrial laboratory. Possible chemical species and solubility of chromium VI in stainless steel fumes is discussed in light of analogy between the SMAC process and the manufacturing process for chromates.

  12. Studies on copper alloys containing chromium on the copper side phase diagram

    NASA Technical Reports Server (NTRS)

    Doi, T.

    1984-01-01

    Specimens were prepared from vacuum melted alloys of high purity vacuum melted copper and electrolytic chromium. The liquidus and eutectic point were determined by thermal analysis. The eutectic temperature is 1974.8 F and its composition is 1.28 wt% of chromium. The determination of solid solubility of chromium in copper was made by microscopic observation and electrical resistivity measurement. The solubility of chromium in solid copper is 0.6 wt% at 1050 F, 0.4 wt% at 1000 F, 0.25 wt% at 950 F, 0.17 wt% at 900 F, and 0.30 wt% at 840 F.

  13. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    PubMed

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  14. Effect of Alloying Elements on Tensile Properties, Microstructure, and Corrosion Resistance of Reinforcing Bar Steel

    NASA Astrophysics Data System (ADS)

    Panigrahi, B. K.; Srikanth, S.; Sahoo, G.

    2009-11-01

    The effect of copper, phosphorus, and chromium present in a semikilled reinforcing bar steel produced by in-line quenching [thermomechanical treatment (TMT)] process on the tensile properties, microstructure, and corrosion resistance of steel in simulated chloride environment has been investigated. The results have been compared with that of a semikilled C-Mn reinforcing bar steel without these alloying elements produced by the same process route. Though the amount of phosphorus (0.11 wt.%) was higher than that specified by ASTM A 706 standard, the Cu-P-Cr steel exhibited a composite microstructure, and good balance of yield stress, tensile stress, elongation, and ultimate tensile to yield stress ratio. Two conventional test methods, namely, the salt fog, and potentiodynamic polarization tests, were used for the corrosion test. The rust formed on Cu-P-Cr steel was adherent, and was of multiple colors, while the corrosion products formed on the C-Mn steel were weakly adherent and relatively darker blue. Also, the free corrosion potential of the Cu-P-Cr steel was nobler, and the corrosion current was markedly lower than that of a C-Mn rebar. The Cu-P-Cr steel did not develop any pits/deep grooves on its surface even after the prolonged exposure to salt fog. The improved corrosion resistance of the Cu-P-Cr steel has been attributed to the presence of copper, phosphorus, and small amount of chromium in the dense, adherent rust layer on the surface of reinforcing steel bar. A schematic mechanism of charge transfer has been proposed to explain the improved corrosion resistance of the Cu-P-Cr alloyed TMT rebar.

  15. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  16. Microstructure and corrosion resistance of sputter-deposited titanium-chromium alloy coatings

    SciTech Connect

    Landolt, D.; Robyr, C.; Mettraux, P.

    1998-10-01

    Titanium, chromium, and titanium-chromium alloy coatings were sputter-deposited to study their corrosion behaviors in relation to microstructure and composition. Silicon substrates were used to study the effect of alloying on intrinsic corrosion resistance of the coating materials, and brass substrates were used to study the effect of alloying on the penetrating porosity of the coatings. Corrosion behavior was characterized using linear sweep voltammetry. The crystal structure of the coatings was examined by x-ray diffraction (XRD) and the microstructure by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to estimate the real surface area of the coatings. Results showedmore » alloying of titanium with chromium greatly influenced microstructure of the coatings. Alloying led to deposits of higher apparent density and, in some cases, to an x-ray amorphous structure. Alloy coatings showed significantly lower corrosion currents than the constituting metals. The effect was attributed to a smoother surface topography. When corrected of differences in real surface area, the intrinsic corrosion rate of the alloy coatings did not differ significantly from that of the constituting metals. Alloy coatings deposited on brass exhibited a lower porosity than titanium or chromium metal coatings produced under identical conditions.« less

  17. 76 FR 58536 - Tin- and Chromium-Coated Steel Sheet From Japan; Notice of Commission Determination To Conduct a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium... Concerning the Antidumping Duty Order on Tin- and Chromium-Coated Steel Sheet From Japan AGENCY: United.... 1675(c)(5)) to determine whether revocation of the antidumping duty order on tin- and chromium-coated...

  18. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    PubMed Central

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  19. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates (Briefing Charts)

    DTIC Science & Technology

    2011-02-01

    UNCLASSIFIED: Approved for public release; distribution unlimited. Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion...00-00-2011 4. TITLE AND SUBTITLE Laboratory Validation and Demonstrations of Non-Hexavalent Chromium Conversion Coatings for Steel Substrates 5a...Coatings for HHA • SurTec 650 - ChromitAL TCP - Trivalent Chrome Pretreatment Developed by NAVAIR for Aluminum. • Chemetall Oxsilan 9810/2 - Non-chrome

  20. Amorphous Alloy Surpasses Steel and Titanium

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the same way that the inventions of steel in the 1800s and plastic in the 1900s sparked revolutions for industry, a new class of amorphous alloys is poised to redefine materials science as we know it in the 21st century. Welcome to the 3rd Revolution, otherwise known as the era of Liquidmetal(R) alloys, where metals behave similar to plastics but possess more than twice the strength of high performance titanium. Liquidmetal alloys were conceived in 1992, as a result of a project funded by the California Institute of Technology (CalTech), NASA, and the U.S. Department of Energy, to study the fundamentals of metallic alloys in an undercooled liquid state, for the development of new aerospace materials. Furthermore, NASA's Marshall Space Flight Center contributed to the development of the alloys by subjecting the materials to testing in its Electrostatic Levitator, a special instrument that is capable of suspending an object in midair so that researchers can heat and cool it in a containerless environment free from contaminants that could otherwise spoil the experiment.

  1. Fume generation rates for stainless steel, nickel and aluminum alloys

    SciTech Connect

    Castner, H.R.

    1996-12-01

    This paper describes a study of the effects of pulsed welding current on fume produced during gas metal arc welding (GMAW) of stainless steel, nickel, and aluminum alloys. This is an extension of earlier studies of mild steel electrode wire. Reduction of welding fume is important because steady current GMAW of stainless steels and nickel alloys may produce fume that exceeds recommended worker exposure limits for some of the fume constituents. Fume generation from aluminum alloy ER5356 was studied because steady current welding with this alloy produces much higher fume generation rates than ER4043 alloy electrode wire. This work showsmore » that pulsed current can reduce GMAW fume generation rates for Er308L, ER310, and ER312 stainless steel, ERNiCr-3 nickel alloy, and ER5356 aluminum-magnesium alloy electrode wires.« less

  2. AMORPHOUS ALLOY SURFACE COATINGS FOR HARD CHROMIUM REPLACEMENT - PHASE I

    EPA Science Inventory

    Hard chromium coatings (0.25 to10 mil thick) are used extensively for imparting wear and erosion resistance to components in both industrial and military applications. The most common means of depositing hard chromium has been through the use of chromic acid baths containing ...

  3. Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network

    NASA Astrophysics Data System (ADS)

    Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.

    2017-02-01

    Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.

  4. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    NASA Astrophysics Data System (ADS)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  5. Cost and Performance Report: Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    DTIC Science & Technology

    2015-04-01

    hexavalent chromium in the welding fume of stainless steel . Welds of both Cr-free consumables met the performance objectives of 70,000 pounds per square...hexavalent chromium (Cr(VI)) in the welding fume of stainless steel . This project was developed in two stages: laboratory demonstration and field...consumables they are designed to replace. The measured Cr(VI) in the fume of the SMAW electrode when welding Type 304 stainless steel is virtually zero

  6. Iron-nickel-chromium alloy having improved swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.

    1986-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a delta or eta phase distributed at or near grain boundaries. The alloy consists essentially of about 33-39.5% nickel, 7.5-16% chromium, 1.5-4% niobium, 0.1-0.7% silicon, 0.01-0.2% zirconium, 1-3% titanium, 0.2-0.6% aluminum, and the remainder essentially all iron. Up to 0.4% manganese and up to 0.010% magnesium can be added to inhibit trace element effects.

  7. [Evaluation of bond strength between low fusing porcelain with goldplated cobalt-chromium alloys].

    PubMed

    Guo, Jing; Zhu, Jia; Zhu, Hong-shui

    2014-02-01

    To evaluate the bond strength of Vita OMEGA 900 low fusing porcelain fused with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Low fusing porcelain was fused with the cobalt-chromium alloy strips(group A) and the goldplated cobalt-chromium alloy strips(group B) respectively according to ISO9693 (A:8,B:10). 8 specimens of each group were submitted to three point bending test. Two more test pieces fused with gold plated cobalt-chromium alloys were made (group B'). One test piece of both group B and group B' were observed under scanning electron microscope (SEM) randomly. The data was analyzed with SPSS 16.0 software package. The bond strength (MPa) of group A and group B was 29.92±4.28 and 28.20±5.21, respectively (P>0.05), both higher than 25 MPa required by ISO9693. SEM showed that Vita OMEGA 900 low fusing porcelain and the goldplated Wirobond cobalt-chrome metalt ceramic alloy combined together closely without cracks. Much gold was fused to the cobalt-chrome alloy surface of breaking porcelain specimen after testing. Vita OMEGA 900 low fusing porcelain can match with the goldplated Wirobond cobalt-chrome metalt ceramic alloy. Supported by Foundation of Education Department of Jiangxi Province (GJJ10367).

  8. Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network

    NASA Astrophysics Data System (ADS)

    Jin, Huijin; Wu, Sujun; Peng, Yuncheng

    2013-12-01

    In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.

  9. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    PubMed

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.

  10. A Research Investigation of Possibilities for Obtaining Hot-Hard Electrodeposited Chromium or Chromium-Base Alloys for Cannon

    DTIC Science & Technology

    1951-09-15

    ended. O^J’’" ’•» >i- feud .**■ J ’. I’ /fi ’. . f ■ ^ Conclusions and Recommendations The work reported herein shows that...the chromium-iron alloy plating process is not yet ready for full-scale application to gun tubes. The need for additional beaker-scale work on the...additional work is needed to allow production of uniform good plates each plating trial. The firing-test results showed that adhesion of the plate is not

  11. Nitride alloy layer formation of duplex stainless steel using nitriding process

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  12. Investigation of Carbide Precipitation Process and Chromium Depletion during Thermal Treatment of Alloy 690

    NASA Astrophysics Data System (ADS)

    Jiao, S. Y.; Zhang, M. C.; Zheng, L.; Dong, J. X.

    2010-01-01

    For the purpose of studying the effect of heat treatment on carbide morphology and chromium concentration distribution, which are critical to the resistance of alloy 690 to stress corrosion cracking (SCC), a series of thermal treatments was performed. A model taking into account the intercorrelated dynamic process between the carbide precipitation and chemical diffusion of the chromium atom from matrix to grain boundary (GB) was constructed on the basis of classical nucleation theory, Kolmogorov-Johnson-Mehl-Avrami law, and diffusion theory. The validity of this model was evaluated by comparing the simulated results of the carbide average size and chromium concentration near the GB with the corresponding measured results. A discontinuous factor was introduced based on the relation linking the interdistance between the carbides and the carbide average size; thus, the carbide morphology and chromium concentration could be predicted by this model. According to the results of the experiments and simulations, a carbide discontinuous factor smaller than 2.2 together with the chromium concentration at the GB higher than a critical value (21 wt pct) were essential for the corrosion resistance ability of the alloy, and then some proper heat-treatment conditions were obtained through predicting the value of the two variables. In addition, the effects of the grain size and composition variation on the carbide discontinuous factor and chromium concentration profile were simulated. The results indicated that an intermediate grain size of approximately 31.8 to ~63.5 μm was beneficial for effectively improving the resistance of the alloy to SCC. Simultaneously, the carbon content should be adjusted near 0.02 pct, and the chromium content should be the highest possible in its chemical composition scale.

  13. Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys

    DOEpatents

    Kephart, Alan R.

    1991-01-01

    An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.

  14. Rolling contact fatigue life of chromium ion plated 440C bearing steel

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Davis, J. H.

    1985-01-01

    Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life.

  15. Hot hardness of nickel-rich nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1976-01-01

    Rockwell A hardness of cast nickel-chromium-aluminum (NiCrAl) alloys was examined from ambient to 1150 K and compared to cast NiAl and IN-100. Alloy constitution was either gamma, gamma prime + gamma or gamma + beta + alpha + gamma prime. Below 1000 K beta containing NiCrAl alloys have hardnesses comparable to IN-100; above 1000 K they soften faster than IN-100. At 1150 K the hardness of beta-containing NiCrAl alloys decreases with increasing beta-content. The beta-containing NiCrAl alloys were harder than beta-NiAl. The ultimate tensile strengths of the NiCrAl alloys were estimated. The effects of NiCrAl coatings on strength and fatigue life of cooled turbine components were deduced.

  16. Chromium

    MedlinePlus

    ... determined because the content of the mineral in foods is substantially affected by agricultural and manufacturing processes and perhaps by contamination with chromium when the foods are analyzed [ 10 , ...

  17. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  18. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  19. Microstructure of a Creep-Resistant 10 Pct Chromium Steel Containing 250 ppm Boron

    NASA Astrophysics Data System (ADS)

    Golpayegani, Ardeshir; Liu, Fang; Svensson, Henrik; Andersson, Marcus; Andrén, Hans-Olof

    2011-04-01

    The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.

  20. CHROMIUM PLATING FOR PROTECTION AGAINST STRESS CORROSION CRACKING OF HARDENED AISI 410 STEEL

    SciTech Connect

    Suss, H.

    1958-04-22

    Because of its high corrosion resistance properties, chromium electroplate should offer protection to AISI 419 steel against stress corrosion cracking. Tests have been made (KAPL and Bettis) on chromium plates on test specimens as deposited by two different sources in conformance with Bettis and USMC specifications. These deposits either offered protection to hardened (RC36- 42) AISI 410 against stress corrosion cracking, or caused accelerated stress corrosion cracking under conditions which did not crack unplated material. At present there is no significant data which could give definite clues for these extreme differences in the corrosive protective values. The results of testsmore » so far strongly question tbe value of chromium plate as a means to protect AISI 410 against stress corrosion cracking. (A.C.)« less

  1. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    NASA Astrophysics Data System (ADS)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  2. Round Heat-treated Chromium-molybdenum-steel Tubing Under Combined Loads

    NASA Technical Reports Server (NTRS)

    Osgood, William R

    1943-01-01

    The results of tests of round heat-treated chromium-molybdenum-steel tubing are presented. Tests were made on tubing under axial load, bending load, torsional load, combined bending and axial load, combined bending and torsional load, and combined axial, bending, and torsional load. Tensile and compressive tests were made to determine the properties of the material. Formulas are given for the evaluation of the maximum strength of this steel tubing under individual or combined loads. The solution of an example is included to show the procedure to be followed in designing a tubular cantilever member to carry combined loads.

  3. Positron and nanoindentation study of helium implanted high chromium ODS steels

    NASA Astrophysics Data System (ADS)

    Veternikova, Jana Simeg; Fides, Martin; Degmova, Jarmila; Sojak, Stanislav; Petriska, Martin; Slugen, Vladimir

    2017-12-01

    Three oxide dispersion strengthened (ODS) steels with different chromium content (MA 956, MA 957 and ODM 751) were studied as candidate materials for new nuclear reactors in term of their radiation stability. The radiation damage was experimentally simulated by helium ion implantation with energy of ions up to 500 keV. The study was focused on surface and sub-surface structural change due to the ion implantation observed by mostly non-destructive techniques: positron annihilation lifetime spectroscopy and nanoindentation. The applied techniques demonstrated the best radiation stability of the steel ODM 751. Blistering effect occurred due to high implantation dose (mostly in MA 956) was studied in details.

  4. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    NASA Astrophysics Data System (ADS)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the

  5. Corrosion behavior of ODS steels with several chromium contents in hot nitric acid solutions

    NASA Astrophysics Data System (ADS)

    Tanno, Takashi; Takeuchi, Masayuki; Ohtsuka, Satoshi; Kaito, Takeji

    2017-10-01

    Oxide dispersion strengthened (ODS) steel cladding tubes have been developed for fast reactors. Tempered martensitic ODS steels with 9 and 11 wt% of chromium (9Cr-, 11Cr-ODS steel) are the candidate material in research being carried out at JAEA. In this work, fundamental immersion tests and electrochemical tests of 9 to 12Cr-ODS steels were systematically conducted in various nitric acid solutions at 95 °C. The corrosion rate decreased exponentially with effective solute chromium concentration (Creff) and nitric acid concentration. Addition of vanadium (V) and ruthenium (Ru) also decreased the corrosion rate. The combination of low Creff and dilute nitric acid could not avoid the active mass dissolution during active domain at the beginning of immersion, and the corrosion rate was high. Higher Creff decreased the partial anodic current during the active domain and assisted the passivation of the surface of the steel. Concentrated nitric acid and addition of Ru and V increased partial cathodic current and shifted the corrosion potential to noble side. These effects should have prevented the active mass dissolution and decreased the corrosion rate.

  6. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  7. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  8. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  9. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  10. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  11. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  12. Chromium

    USDA-ARS?s Scientific Manuscript database

    The effects of chromium (Cr) on glucose and insulin metabolism are well documented. Normal dietary intake of Cr appears to be suboptimal because several studies have reported beneficial effects of Cr in people with elevated blood glucose or type 2 diabetes eating conventional diets. Stresses that ...

  13. Low-carbon martensitic steels. Alloying and properties

    NASA Astrophysics Data System (ADS)

    Kleiner, L. M.; Shatsov, A. A.; Larinin, D. M.

    2011-03-01

    Requirements on the structure of a steel with structural strength and a set of characteristics higher than those of medium-carbon steels with a structure of tempered sorbite are formulated. Principles for choosing compositions for process-adaptable low-carbon martensitic steels are presented. The combination of carbon and alloying elements providing high stability of austenite in the ranges of normal and intermediate transformations is determined, which makes it possible to obtain lath martensite in slow cooling.

  14. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  15. Local thermal expansions and lattice strains in Elinvar and stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Yokoyama, Toshihiko; Koide, Akihiro; Uemura, Yohei

    2018-02-01

    Local thermal expansions and lattice strains in the Elinvar alloy Fe49.66Ni42.38Cr5.49Ti2.47 (Ni Span C) and the stainless steel SUS304 Fe71.98Ni9.07Cr18.09Mn0.86 (AISI304) were investigated by the temperature-dependent Cr, Fe, and Ni K -edge extended x-ray absorption fine-structure (EXAFS) measurements, combined with the path-integral effective classical potential Monte Carlo (PIECP MC) theoretical simulations. From the EXAFS analysis of the Elinvar alloy, the local thermal expansion around Fe is found to be considerably smaller than the ones around Ni and Cr. This observation can be understood simply because Fe in the Elinvar alloy exhibit an incomplete Invar-like effect. Moreover, in both the Elinvar and SUS304 alloys, the local thermal expansions and the lattice strains around Cr are found to be larger than those around Fe and Ni. From the PIECP MC simulations of both the alloys, the first-nearest neighbor Cr-Fe pair shows extraordinarily large thermal expansion, while the Cr-Cr pair exhibits quite small or even negative thermal expansion. These findings consequently indicate that the lattice strains in both the Elinvar and SUS304 alloys are concentrated predominantly on the Cr atoms. Although the role of Cr in stainless steel has been known to inhibit corrosion by the formation of surface chromium oxide, the present investigation may interestingly suggest that the Cr atoms in the bulk play a hidden new role of absorbing inevitable lattice strains in the alloys.

  16. Frictional and structural characterization of ion-nitrided low and high chromium steels

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    Low Cr steels AISI 41410, AISI 4340, and high Cr austenitic stainless steels AISI 304, AISI 316 were ion nitrided in a dc glow discharge plasma consisting of a 75 percent H2 - 25 percent N2 mixture. Surface compound layer phases were identified, and compound layer microhardness and diffusion zone microhardness profiles were established. Distinct differences in surface compound layer hardness and diffusion zone profiles were determined between the low and high Cr alloy steels. The high Cr stainless steels after ion nitriding displayed a hard compound layer and an abrupt diffusion zone. The compound layers of the high Cr stainless steels had a columnar structure which accounts for brittleness when layers are exposed to contact stresses. The ion nitrided surfaces of high and low Cr steels displayed a low coefficient of friction with respect to the untreated surfaces when examined in a pin and disk tribotester.

  17. Simulation of Structural Transformations in Heating of Alloy Steel

    NASA Astrophysics Data System (ADS)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-07-01

    Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.

  18. Analysis of the thermal expansivity near the tricritical point in dilute chromium alloys

    SciTech Connect

    Yurtseven, H., E-mail: hamit@metu.edu.tr; Tari, Ö., E-mail: ozlemilgin@arel.edu.tr

    Chromium (Cr) undergoes a first order Neel transition as an antiferromagnetic material. When V, Mo and Mn atoms are substituted in the Cr lattice, a weak first order Neel transition in pure Cr changes toward a second order transition and a possible tricritical point in CrV occurs close to 0.2 at %V, as observed experimentally from the measurements of the thermal expansivity at various temperatures. In this study, we analyze the experimental data for the thermal expansivity from the literature as a function of temperature using the power - law formula for Cr alloys (Cr - 0.1V, 0.2V, 0.5V andmore » Cr - 0.1Mn, Cr - 0.2Mo, 0.3Mo, 0.4Mo). Our results are interpreted near the tricritical point in dilute chromium alloys.« less

  19. Precipitation hardenable iron-nickel-chromium alloy having good swelling resistance and low neutron absorbence

    DOEpatents

    Korenko, Michael K.; Merrick, Howard F.; Gibson, Robert C.

    1980-01-01

    An iron-nickel-chromium age-hardenable alloy suitable for use in fast breeder reactor ducts and cladding which utilizes the gamma-double prime strengthening phase and characterized in having a morphology of the gamma-double prime phase enveloping the gamma-prime phase and delta phase distributed at or near the grain boundaries. The alloy consists essentially of about 40-50% nickel, 7.5-14% chromium, 1.5-4% niobium, 0.25-0.75% silicon, 1-3% titanium, 0.1-0.5% aluminum, 0.02-0.1% carbon, 0.002-0.015% boron, and the balance iron. Up to 2% manganese and up to 0.01% magnesium may be added to inhibit trace element effects; up to 0.1% zirconium may be added to increase radiation swelling resistance; and up to 3% molybdenum may be added to increase strength.

  20. Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets.

    PubMed

    Sfondrini, Maria Francesca; Cacciafesta, Vittorio; Maffia, Elena; Massironi, Sarah; Scribante, Andrea; Alberti, Giancarla; Biesuz, Raffaela; Klersy, Catherine

    2009-03-01

    To test the hypothesis that there is no difference in the amounts of chromium released from new stainless steel brackets, recycled stainless steel brackets, and nickel-free (Ni-free) orthodontic brackets. This in vitro study was performed using a classic batch procedure by immersion of the samples in artificial saliva at various acidities (pH 4.2, 6.5, and 7.6) over an extended time interval (t(1) = 0.25 h, t(2) = 1 h, t(3) = 24 h, t(4) = 48 h, t(5) = 120 h). The amount of chromium release was determined using an atomic absorption spectrophotometer and an inductively coupled plasma atomic emission spectrometer. Statistical analysis included a linear regression model for repeated measures, with calculation of Huber-White robust standard errors to account for intrabracket correlation of data. For post hoc comparisons the Bonferroni correction was applied. The greatest amount of chromium was released from new stainless steel brackets (0.52 +/- 1.083 microg/g), whereas the recycled brackets released 0.27 +/- 0.38 microg/g. The smallest release was measured with Ni-free brackets (0.21 +/- 0.51 microg/g). The difference between recycled brackets and Ni-free brackets was not statistically significant (P = .13). For all brackets, the greatest release (P = .000) was measured at pH 4.2, and a significant increase was reported between all time intervals (P < .002). The hypothesis is rejected, but the amount of chromium released in all test solutions was well below the daily dietary intake level.

  1. Cobalt-chromium alloys in fixed prosthodontics in Sweden

    PubMed Central

    Kassapidou, Maria; Franke Stenport, Victoria; Hjalmarsson, Lars; Johansson, Carina B.

    2017-01-01

    Abstract Aim: The aim of this study was to compile the usage of Co-Cr alloys in fixed prosthodontics (FP) among dental laboratories in Sweden. Methods: From March to October 2015, questionnaires were sent to 542 registered dental laboratories in Sweden. The questionnaires were divided in two parts, one for fixed dental-supported prosthodontics (FDP) and one for fixed implant-supported prosthodontics (FIP). Reminders were sent three times. Results: In total of 542 dental laboratories, 55% answered the questionnaires. Most dental laboratories use Co-Cr in FP, 134 (74%) in FDP and 89(66%) in FIP. The laboratories used Co-Cr alloys of various compositions in the prostheses, 35 for FDP and 30 for FIP. The most commonly used Co-Cr alloys for tooth-supported FDPs were (a) Wirobond® 280, (b) Cara SLM and (c) Wirobond® C. For implant-supported frameworks the frequently used alloys were: (a) Cara SLM, (b) Cara Milled and (c) Wirobond® 280. Except for the difference in composition of these alloys, they were also manufactured with various techniques. In tooth-supported prostheses the dominating technique was the cast technique while newer techniques as laser-sintering and milling were more commonly reported for implant-supported constructions. A fourth technique; the ‘pre-state’ milling was reported in FDP. Conclusion: More than 30 different Co-Cr alloys were reported as being used in FP. Thus, there is a need for studies exploring the mechanical and physical behavior and the biological response to the most commonly used Co-Cr alloys. PMID:29242813

  2. On Heat-Treatable Copper-Chromium Alloy, 1

    NASA Technical Reports Server (NTRS)

    Koda, S.; Isono, E.

    1984-01-01

    A mother alloy of 10% Cr and 90% Cu was prepared by sintering. This was alloyed with the Cu melt and Cu-Cr alloys containing about 0.5% Cr was obtained. These alloys could be deformed easily in both the hot and cold states. By measuring the hardness change, age-hardening properties of cast alloys were studied, which were quenched from 950 deg and aged at 300 to 700 deg for 1 hour. The maximum hardness was obtained with the tempering temperature of 500 deg. For the temperature of solution-treatment, 950 deg was insufficient and that above 1000 deg necessary. For the tempering time, a treatment at 500 deg for 1 hr. or at 450 deg for 3 hrs. yielded the maximum hardness. As for the properties for electrical conductors, 3 kinds of wires (diam. 2 mm.) were made: (1) after cold-drawn to 2 mm., solution-treated, quenched, and then tempered (500 deg, 1 hr.); (2) after quenching, cold-drawn (75% reduction) to 2 mm. and tempered (500 deg, 1 hr.); and (3) after quenching, cold-drawn (81%) to intermediate diameter, tempered (500 deg, 1 hr.) and then cold-drawn (88%) again. Properties obtained for the 3 kinds, respectively, were as follows: conductivity 91, 90, and 86%. Tensile strength and strength for electrical conductivity are given.

  3. First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer

    NASA Astrophysics Data System (ADS)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2017-08-01

    Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.

  4. Nickel and chromium ion release from stainless steel bracket on immersion various types of mouthwashes

    NASA Astrophysics Data System (ADS)

    Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.

    2017-08-01

    The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.

  5. Oxidation of Palladium-Chromium Alloys for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Piltch, Nancy D.; Jih-Fen, Lei; Zeller, Mary V.

    1994-01-01

    An alloy consisting of Pd with 13 wt % Cr is a promising material for high temperature applications. High temperature performance is degraded by the oxidation of the material, which is more severe in the fine wires and thin films used for sensor applications than in the bulk. The present study was undertaken to improve our understanding of the physical and chemical changes occurring at these temperatures and to identify approaches to limit oxidation of the alloy. The alloy was studied in both ribbon and wire forms. Ribbon samples were chosen to examine the role of grain boundaries in the oxidation process because of the convenience of handling for the oxidation studies. Wire samples 25 microns in diameter which are used in resistance strain gages were studied to correlate chemical properties with observed electrical, physical, and structural properties. Overcoating the material with a metallic Cr film did prevent the segregation of Pd to the surface; however, it did not eliminate the oxidation of the alloy.

  6. Effect of chromium and phosphorus on the physical properties of iron and titanium-based amorphous metallic alloy films

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Rameshan, R.; Fitzgerald, D. J.

    1991-01-01

    Amorphous iron and titanium-based alloys containing various amounts of chromium, phosphorus, and boron exhibit high corrosion resistance. Some physical properties of Fe and Ti-based metallic alloy films deposited on a glass substrate by a dc-magnetron sputtering technique are reported. The films were characterized using differential scanning calorimetry, stress analysis, SEM, XRD, SIMS, electron microprobe, and potentiodynamic polarization techniques.

  7. Dermal exposure to chromium in the grinding of stainless and acid-proof steel.

    PubMed

    Mäkinen, Milja; Linnainmaa, Markku

    2004-04-01

    The aim of the study was to measure the dermal exposure levels of chromium dust during grinding of stainless and acid-proof steel parts. The potential dermal exposure of the body was measured with a patch sampling method and the actual exposure of hands with a hand-wash method. Simultaneously, personal air samples were also collected. The range of body and hand exposure to chromium dust was 4.04-3406 and 0.72-79.7 mg/h, respectively. Dust was distributed quite evenly to different body parts. Workers using hand-held grinding tools were more exposed than those using band grinders. It was judged that the sampling methods applied in this study gave a realistic estimation of exposure levels, because of the uniform distribution of contamination during grinding. Respiratory exposure was high compared to Finnish occupational exposure limit values.

  8. Initial aging phenomena in copper-chromium alloys

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Motohiro, K.

    1985-01-01

    The effects of quenching and aging temperatures on the initial aging curves of Cu-Cr alloy were examined mainly by means of electrical resistivity measurements. Three Cu-Cr alloy specimens having 0.24, 0.74, and 1.0% Cr were solution-treated at 950-1050 C, quenched into ice-water, and subsequently aged at 300-500 C. The results were as follows: (1) At the very early stage of aging (within about 30 sec), an abrupt decrease of resistivity with lowering aging tempratures. (T sub A) and rising solution temperatures (T sub S) was observed at (T sub A) up to about 400 C. In contrast, a transient increase of resistivity with rising T sub A and lowering T sub S was observed at T sub A from about 450 to 500 C. These phenomena seem to be caused by a rapid formation of solute clusters and the reversion of clusters formed during quenching, which are enhanced by quenched-in vacancies, respectively. (2) The amount of precipitation increased at the latter stage of aging with rising T sub S and T sub A as generally expected, where T sub S was not so high as to form secondary defects. (3) As a result, the initial aging phenomena in Cr-Cr alloy were revealed to be complicated against expectations. This was considered to be due to the migration energy of vacancies so larger in Cu-base.

  9. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    PubMed

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  10. Development of oxidation resistance in thoriated nickel-chromium base alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wilcox, B. A.; Jaffee, R. I.; Stringer, J.

    1971-01-01

    A pack process was developed which permits the introduction of nearly six weight percent aluminum into solid solution in the near-surface region of TDNiCr (Ni-20Cr-2ThO2. At this aluminum concentration an adherent alumina scale is produced on the alloy surface upon exposure to an environment of 1330 n/sq m (10 torr) or 101,000 n/sq m (760 torr) air at temperatures of 1093 C (2000 F) and 1204 C (2200 F). Room temperature mechanical properties of the aluminized alloys compare favorably with those of TDNiCr as received. While diffusivities for aluminum are a factor of three higher than those for chromium in TDNiCr or Ni-20Cr, the diffusion rates are similar for either of these elements in the thoriated or unthoriated alloy for a given temperature and grain size.

  11. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

    PubMed Central

    Kajihara, Yutaro; Takenouchi, Yoshihisa; Tanaka, Takuo; Suzuki, Shiro; Minami, Hiroyuki

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS Disk-shaped specimens (2.5×10.0 mm) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using 110 µm alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (α=.05). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys. PMID:26949481

  12. 76 FR 77013 - Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-860 (Second Review)] Tin- and Chromium-Coated Steel Sheet From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty... order on tin- and chromium-coated steel sheet from Japan would be likely to lead to continuation or...

  13. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  14. In vitro and in vivo corrosion evaluation of nickel-chromium- and copper-aluminum-based alloys.

    PubMed

    Benatti, O F; Miranda, W G; Muench, A

    2000-09-01

    The low resistance to corrosion is the major problem related to the use of copper-aluminum alloys. This in vitro and in vivo study evaluated the corrosion of 2 copper-aluminum alloys (Cu-Al and Cu-Al-Zn) compared with a nickel-chromium alloy. For the in vitro test, specimens were immersed in the following 3 corrosion solutions: artificial saliva, 0.9% sodium chloride, and 1.0% sodium sulfide. For the in vivo test, specimens were embedded in complete dentures, so that one surface was left exposed. The 3 testing sites were (1) close to the oral mucosa (partial self-cleaning site), (2) surface exposed to the oral cavity (self-cleaning site), and (3) specimen bottom surface exposed to the saliva by means of a tunnel-shaped perforation (non-self-cleaning site). Almost no corrosion occurred with the nickel-chromium alloy, for either the in vitro or in vivo test. On the other hand, the 2 copper-aluminum-based alloys exhibited high corrosion in the sulfide solution. These same alloys also underwent high corrosion in non-self-cleaning sites for the in vivo test, although minimal attack was observed in self-cleaning sites. The nickel-chromium alloy presented high resistance to corrosion. Both copper-aluminum alloys showed considerable corrosion in the sulfide solution and clinically in the non-self-cleaning site. However, in self-cleaning sites these 2 alloys did not show substantial corrosion.

  15. The fatigue life of a cobalt-chromium alloy after laser welding.

    PubMed

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p < 0.001). Consequently, the technique may not be appropriate for repairing cobalt chromium clasps on removable partial dentures. Scanning electron microscopy indicated the presence of cracks, pores and constriction of the outer surface in the welded specimens despite 70% penetration of the weld.

  16. Quantitative in vivo biocompatibility of new ultralow-nickel cobalt-chromium-molybdenum alloys.

    PubMed

    Sonofuchi, Kazuaki; Hagiwara, Yoshihiro; Koizumi, Yuichiro; Chiba, Akihiko; Kawano, Mitsuko; Nakayama, Masafumi; Ogasawara, Kouetsu; Yabe, Yutaka; Itoi, Eiji

    2016-09-01

    Nickel (Ni) eluted from metallic biomaterials is widely accepted as a major cause of allergies and inflammation. To improve the safety of cobalt-chromium-molybdenum (Co-Cr-Mo) alloy implants, new ultralow-Ni Co-Cr-Mo alloys with and without zirconium (Zr) have been developed, with Ni contents of less than 0.01%. In the present study, we investigated the biocompatibility of these new alloys in vivo by subcutaneously implanting pure Ni, conventional Co-Cr-Mo, ultralow-Ni Co-Cr-Mo, and ultralow-Ni Co-Cr-Mo with Zr wires into the dorsal sides of mice. After 3 and 7 days, tissues around the wire were excised, and inflammation; the expression of IL-1β, IL-6, and TNF-α; and Ni, Co, Cr, and Mo ion release were analyzed using histological analyses, qRT-PCR, and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Significantly larger amounts of Ni eluted from pure Ni wires than from the other wires, and the degree of inflammation depended on the amount of eluted Ni. Although no significant differences in inflammatory reactions were identified among new alloys and conventional Co-Cr-Mo alloys in histological and qRT-PCR analyses, ICP-MS analysis revealed that Ni ion elution from ultralow-Ni Co-Cr-Mo alloys with and without Zr was significantly lower than from conventional Co-Cr-Mo alloys. Our study, suggests that the present ultralow-Ni Co-Cr-Mo alloys with and without Zr have greater safety and utility than conventional Co-Cr-Mo alloys. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1505-1513, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  18. Laser welding of a cobalt-chromium removable partial denture alloy.

    PubMed

    NaBadalung, D P; Nicholls, J I

    1998-03-01

    The electric alloy brazed joints of removable partial denture alloys have failed frequently after routine usage. A technique providing higher joint strengths was investigated. This investigation compared the tensile strengths of electric-brazed and laser-welded joints for a cobalt-chromium removable partial denture alloy. Twenty-four cobalt-chromium standard tensile testing rods were prepared and divided into three groups of eight. All specimens in the control group (group 1) were left in the as-cast condition. Groups 2 and 3 were the test specimens, which were sectioned at the center of the rod. Eight specimens were joined by using electric brazing, and the remaining specimens were joined by using laser welding. After joining, each joint was ground to a uniform diameter, then tested to tensile failure on an Instron universal testing machine. Failure loads were recorded and fracture stress calculated. Statistical analysis was applied. The student-Newman-Keuls test showed a highly significant difference between the joint strengths of the as-cast control specimens, the electric-brazed and laser-welded joints. The tensile strengths of the as-cast joints were higher than those for the laser-welded joints, and both were higher than the electric-brazed joint strengths.

  19. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.

    PubMed

    Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara

    2011-09-01

    The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. 75 FR 20342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ...-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty Administrative Review and Rescission of...- alloy steel pipe from Mexico. See Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Preliminary... remaining three respondents. See Certain Circular Welded Non-Alloy Steel Pipe from Mexico: Notice of Partial...

  1. 78 FR 60316 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad... certain alloy steel wire rod from Brazil and antidumping duty orders on carbon and certain alloy steel... reviews of the antidumping duty order on carbon and certain alloy steel wire rod from Mexico. The...

  2. Low Mn alloy steel for cryogenic service

    DOEpatents

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  3. The Kinetics of Phase Transformations During Tempering in Laser Melted High Chromium Cast Steel

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Wang, Y.; Han, B.

    2012-06-01

    The precipitation of secondary carbides in the laser melted high chromium cast steels during tempering at 300-650 °C for 2 h in air furnace was characterized and the present phases was identified, by using transmission electron microscopy. Laser melted high chromium cast steel consists of austenitic dendrites and interdendritic M23C6 carbides. The austenite has such a strong tempering stability that it remains unchanged at temperature below 400 °C and the secondary hardening phenomenon starts from 450 °C to the maximum value of 672 HV at 560 °C. After tempering at 450 °C fine M23C6 carbides precipitate from the supersaturated austenite preferentially. In addition, the dislocation lines and slip bands still exist inside the austenite. While tempering at temperature below 560 °C, the secondary hardening simultaneously results from the martensite phase transformation and the precipitation of carbides as well as dislocation strengthening within a refined microstructure. Moreover, the formation of the ferrite matrix and large quality of coarse lamellar M3C carbides when the samples were tempered at 650 °C contributes to the decrease of hardness.

  4. Carburizing treatment of low alloy steels: Effect of technological parameters

    NASA Astrophysics Data System (ADS)

    Benarioua, Younes

    2018-05-01

    The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.

  5. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  6. Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr-La alloying layer by high-energy micro-arc alloying process

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.

  7. Performance assessment of femoral knee components made from cobalt-chromium alloy and oxidized zirconium.

    PubMed

    Brandt, J-M; Guenther, L; O'Brien, S; Vecherya, A; Turgeon, T R; Bohm, E R

    2013-12-01

    The surface characteristics of the femoral component affect polyethylene wear in modular total knee replacements. In the present retrieval study, the surface characteristics of cobalt-chromium (CoCr) alloy and oxidized zirconium (OxZr) femoral components were assessed and compared. Twenty-six retrieved CoCr alloy femoral components were matched with twenty-six retrieved OxZr femoral components for implantation period, body-mass index, patient gender, implant type, and polyethylene insert thickness. The surface damage on the retrieved femoral components was evaluated using a semi-quantitative assessment method, scanning electron microscopy, and contact profilometry. The retrieved CoCr alloy femoral components showed less posterior surface gouging than OxZr femoral components; however, at a higher magnification, the grooving damage features on the retrieved CoCr alloy femoral components confirmed an abrasive wear mechanism. The surface roughness values Rp, Rpm, and Rpk for the retrieved CoCr alloy femoral components were found to be significantly higher than those of the retrieved OxZr femoral components (p≤0.031). The surface roughness values were higher on the medial condyles than on the lateral condyles of the retrieved CoCr alloy femoral components; such a difference was not observed on the retrieved OxZr femoral components. The surface roughness of CoCr alloy femoral components increased while the surface roughness of the OxZr femoral components remained unchanged after in vivo service. Therefore, the OxZr femoral components' resistance to abrasive wear may enable lower polyethylene wear and ensure long-term durability in vivo. Level IV. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Delivery of paclitaxel from cobalt–chromium alloy surfaces without polymeric carriers

    PubMed Central

    Mani, Gopinath; Macias, Celia E.; Feldman, Marc D.; Marton, Denes; Oh, Sunho; Agrawal, C. Mauli

    2014-01-01

    Polymer-based carriers are commonly used to deliver drugs from stents. However, adverse responses to polymer coatings have raised serious concerns. This research is focused on delivering drugs from stents without using polymers or any carriers. Paclitaxel (PAT), an anti-restenotic drug, has strong adhesion towards a variety of material surfaces. In this study, we have utilized such natural adhesion property of PAT to attach these molecules directly to cobalt–chromium (Co–Cr) alloy, an ultra-thin stent strut material. Four different groups of drug coated specimens were prepared by directly adding PAT to Co–Cr alloy surfaces: Group-A (PAT coated, unheated, and ethanol cleaned); Group-B (PAT coated, heat treated, and ethanol cleaned); Group-C (PAT coated, unheated, and not ethanol cleaned); and Group-D (PAT coated, heat treated and not ethanol cleaned). In vitro drug release of these specimens was investigated using high performance liquid chromatography. Groups A and B showed sustained PAT release for up to 56 days. A simple ethanol cleaning procedure after PAT deposition can remove the loosely bound drug crystals from the alloy surfaces and thereby allowing the remaining strongly bound drug molecules to be released at a sustained rate. The heat treatment after PAT coating further improved the stability of PAT on Co–Cr alloy and allowed the drug to be delivered at a much slower rate, especially during the initial 7 days. The specimens which were not cleaned in ethanol, Groups C and D, showed burst release. PAT coated Co–Cr alloy specimens were thoroughly characterized using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. These techniques were collectively useful in studying the morphology, distribution, and attachment of PAT molecules on Co–Cr alloy surfaces. Thus, this study suggests the potential for delivering paclitaxel from Co–Cr alloy surfaces without using any carriers. PMID:20398928

  9. The three dimensional distribution of chromium and nickel alloy welding fumes.

    PubMed

    Mori, T; Matsuda, A; Akashi, S; Ogata, M; Takeoka, K; Yoshinaka, M

    1991-08-01

    In the present study, the fumes generated from manual metal arc (MMA) and submerged metal arc (SMA) welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  10. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots.

    PubMed

    Guarneri, Fabrizio; Costa, Chiara; Cannavò, Serafinella P; Catania, Stefania; Bua, Giuseppe D; Fenga, Concettina; Dugo, Giacomo

    2017-01-01

    Literature data on the release of nickel and chromium from stainless steel cookware during food preparation are contrasting, have often been obtained with uncommon foods and/or procedures, and are thus not widely applicable. To assess the release of nickel and chromium from 18/10 (grade 316) stainless steel pots in cooking conditions that are common in an urban lifestyle. Tomato sauce and lemon marmalade were cooked for 1 h, alone or with added EDTA, in used or unused stainless steel pots from different manufacturers. Additionally, aqueous solutions at pH 2.3, 7.7 and 9 were boiled for 1 h in the same pots. Metal release was assessed with inductively coupled plasma mass spectrometry. The release of nickel and chromium increased with cooking/boiling time, was higher with unused pots, at low pH or with EDTA, and was sometimes remarkably different between manufacturers. In all experiments, the amounts released were below known allergy-triggering thresholds. Under common conditions, the use of 18/10 stainless steel pots is considered to be safe for the majority of nickel-allergic and/or chromium-allergic subjects. However, the total amount of nickel contained in foods and released from pots may exceed the individual threshold for triggering allergy, potentially causing problems for highly sensitive patients, or, conversely, contribute to induction of immunotolerance by oral low-dose exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Trunnion Failure of the Recalled Low Friction Ion Treatment Cobalt Chromium Alloy Femoral Head.

    PubMed

    Urish, Kenneth L; Hamlin, Brian R; Plakseychuk, Anton Y; Levison, Timothy J; Higgs, Genymphas B; Kurtz, Steven M; DiGioia, Anthony M

    2017-09-01

    Gross trunnion failure (GTF) is a rare complication in total hip arthroplasty (THA) reported across a range of manufacturers. Specific lots of the Stryker low friction ion treatment (LFIT) anatomic cobalt chromium alloy (CoCr) V40 femoral head were recalled in August 2016. In part, the recall was based out of concerns for disassociation of the femoral head from the stem and GTF. We report on 28 patients (30 implants) with either GTF (n = 18) or head-neck taper corrosion (n = 12) of the LFIT CoCr femoral head and the Accolade titanium-molybdenum-zirconium-iron alloy femoral stems. All these cases were associated with adverse local tissue reactions requiring revision of the THA. In our series, a conservative estimate of the incidence of failure was 4.7% (n = 636 total implanted) at 8.0 ± 1.4 years from the index procedure. Failures were associated with a high-offset 127° femoral stem neck angle and increased neck lengths; 43.3% (13 of 30) of the observed failures included implant sizes outside the voluntary recall (27.8% [5 of 18] of the GTF and 75.0% [8 of 12] of the taper corrosion cases). Serum cobalt and chromium levels were elevated (cobalt: 8.4 ± 7.0 μg/mL; chromium: 3.4 ± 3.3 μ/L; cobalt/chromium ratio: 3.7). The metal artifact reduction sequence magnetic resonance imaging demonstrated large cystic fluid collections typical with adverse local tissue reactions. During revision, a pseudotumor was observed in all cases. Pathology suggested a chronic inflammatory response. Impending GTF could be diagnosed based on aspiration of black synovial fluid and an oblique femoral head as compared with the neck taper on radiographs. In our series of the recalled LFIT CoCr femoral head, the risk of impending GTF or head-neck taper corrosion should be considered as a potential diagnosis in a painful LFIT femoral head and Accolade titanium-molybdenum-zirconium-iron alloy THA with unknown etiology. Almost half of the failures we observed included sizes outside of the

  12. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  13. Bond Strength of Gold Alloys Laser Welded to Cobalt-Chromium Alloy

    PubMed Central

    Watanabe, Ikuya; Wallace, Cameron

    2008-01-01

    The objective of this study was to investigate the joint properties between cast gold alloys and Co-Cr alloy laser-welded by Nd:YAG laser. Cast plates were fabricated from three types of gold alloys (Type IV, Type II and low-gold) and a Co-Cr alloy. Each gold alloy was laser-welded to Co-Cr using a dental laser-welding machine. Homogeneously-welded and non-welded control specimens were also prepared. Tensile testing was conducted and data were statistically analyzed using ANOVA. The homogeneously-welded groups showed inferior fracture load compared to corresponding control groups, except for Co-Cr. In the specimens welded heterogeneously to Co-Cr, Type IV was the greatest, followed by low-gold and Type II. There was no statistical difference (P<0.05) in fracture load between Type II control and that welded to Co-Cr. Higher elongations were obtained for Type II in all conditions, whereas the lowest elongation occurred for low-gold welded to Co-Cr. This study indicated that, of the three gold alloys tested, the Type IV gold alloy was the most suitable alloy for laser-welding to Co-Cr. PMID:19088892

  14. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  15. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  16. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  17. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  18. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  19. Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys

    NASA Astrophysics Data System (ADS)

    Jain, Swati

    Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes. To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions. A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical

  20. Avoiding chromium transport from stainless steel interconnects into contact layers and oxygen electrodes in intermediate temperature solid oxide electrolysis stacks

    NASA Astrophysics Data System (ADS)

    Schlupp, Meike V. F.; Kim, Ji Woo; Brevet, Aude; Rado, Cyril; Couturier, Karine; Vogt, Ulrich F.; Lefebvre-Joud, Florence; Züttel, Andreas

    2014-12-01

    We investigated the ability of (La0.8Sr0.2)(Mn0.5Co0.5)O3-δ (LSMC) and La(Ni0.6Fe0.4)O3-δ (LNF) contact coatings to avoid the transport of Cr from steel interconnects to solid oxide electrolysis electrodes, especially to the anode. The transport of chromium from commercial Crofer 22 APU (ThyssenKrupp) and K41X (AISI441, Aperam Isbergues) steels through LSMC and LNF contact coatings into adjacent (La0.8Sr0.2)MnO3-δ (LSM) oxygen electrodes was investigated in an oxygen atmosphere at 700 °C. Chromium concentrations of up to 4 atom% were detected in the contact coatings after thermal treatments for 3000 h, which also lead to the presence of chromium in adjacent LSM electrodes. Introduction of a dense (Co,Mn)3O4 coating between steel and contact coating was necessary to prevent the diffusion of chromium into contact coatings and electrodes and should lead to extended stack performance and lifetime.

  1. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to

  2. Respiratory health of workers exposed to low levels of chromium in stainless steel production.

    PubMed Central

    Huvinen, M; Uitti, J; Zitting, A; Roto, P; Virkola, K; Kuikka, P; Laippala, P; Aitio, A

    1996-01-01

    OBJECTIVES: To determine whether occupational exposure to chromite, trivalent chromium, or hexavalent chromium causes respiratory diseases, an excess of respiratory symptoms, a decrease in pulmonary function, or signs of pneumoconiosis among workers in an integrated chain of stainless steel production. METHODS: This cross sectional study was carried out in 1993 and the inclusion criterion was a minimum of eight years of employment in the same production department. A self administered questionnaire was collected, and spirometry, measurement of diffusing capacity, chest radiography, and laboratory tests were carried out by a mobile research unit. RESULTS: There were 221 workers in the exposure groups and 95 in the control group. The average duration of employment was 18 years. No significant differences in the odds ratios (ORs) of the symptoms were found between the exposure and the control groups. In a logistic regression analysis age and smoking significantly explained the occurrence of most of the respiratory symptoms. The smokers in the chromite group had significantly lower forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and diffusing capacity than the corresponding values of the control group. The analysis of variance between study groups, smoking, and exposure time, without modelling for interactions, showed that the chromite group had lower values for FVC, FEV1, and diffusing capacity than the other groups. The occurrence of small opacities was more frequent on the chest radiographs of the workers in the chromite group. CONCLUSIONS: An average exposure time of 18 years in ferrochromium and stainless steel production and exposure to dusts containing low concentrations of hexavalent or trivalent chromium do not lead to any respiratory changes detectable by lung function tests or radiography nor to any increase in symptoms of respiratory diseases. The lung function values were lower and the occurrence of radiological findings was

  3. Respiratory health effects of long-term exposure to different chromium species in stainless steel production.

    PubMed

    Huvinen, M; Uitti, J; Oksa, P; Palmroos, P; Laippala, P

    2002-06-01

    The aim of this study was to determine whether occupational exposure to chromite, trivalent chromium (Cr(3+)) or hexavalent chromium (Cr(6+)) causes respiratory diseases, an excess of respiratory symptoms, a decrease in pulmonary function or signs of pneumoconiosis among workers in stainless steel production. Altogether, 203 exposed workers and 81 referents with an average employment of 23 years were investigated for indicators of respiratory health on two occasions, in 1993 and in 1998. Data collection with a self-administered questionnaire, flow volume spirometry, measurement of diffusing capacity, chest radiography and laboratory tests were carried out by a mobile research unit. Exposure to different chromium species and other metals was monitored regularly and studied separately. No adverse respiratory health effects were observed in the group exposed to Cr(6+), either in comparison with the control group in the first cross-sectional study or during the additional 5 year follow-up. Among the Cr (3+) exposed people, the production of phlegm, shortness of breath and breathlessness on exertion were significantly more frequent than in the control group, but the frequency of the symptoms did not increase during the follow-up; no differences were observed in the lung function tests and the radiographic findings did not progress. In the chromite group, the prevalence of breathlessness on exertion was higher than in the control group. However, in the follow-up, the occurrence of symptoms did not differ from 1993 to 1998. In the first study, most parameters of lung function were lower among the smokers in the chromite group than among the smoking controls, but in 1998 the difference was less marked. An average exposure time of 23 years in modern ferrochromium and stainless steel production and low exposure to dusts and fumes containing Cr(6+), Cr(3+), nickel and molybdenum do not lead to respiratory changes detectable by lung function tests or radiography. The workers

  4. TAZ-8A Alloy Increases The Thermal Endurance Of Steel

    NASA Technical Reports Server (NTRS)

    Waters, William J.

    1990-01-01

    TAZ-8A exhibits high strength at temperatures as high as 1,400 degrees F (760 degrees C) and resistance to oxidation; also exhibits excellent cyclic shock resistance between 600 and 2,000 degrees F (316 and 1,093 degrees C) and superplasticity at 1,800 degrees F (982 degrees C). Converts into fine powder and then flame-, plasma-, arc-, or wire-sprayed onto inexpensive steel substrate. Surface treatment with this alloy prolongs service life and reduces costs.

  5. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  6. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  7. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  8. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    PubMed

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  9. Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Viroulaud, Rémi; Światowska, Jolanta; Seyeux, Antoine; Zanna, Sandrine; Tardelli, Joffrey; Marcus, Philippe

    2017-11-01

    The effects of surface pretreatments (degreasing and pickling) on the characteristics of the Trivalent Chromium Process (TCP) coating on pure aluminum and on AA2024-T351 aluminum alloy were investigated here by means of surface sensitive techniques: X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The XPS and ToF-SIMS results evidence that the TCP coating homogeneity is strongly dependent on the pretreatment process used. The TCP coverage factor, calculated from XPS results, is significantly lower, on both pure aluminum and AA2024-T351 alloy surface, when a pickling step is applied. One of the main effects of pickling pretreatment is strong metallic copper enrichment at the surface of the 2024 alloy, associated with chemical dissolution of Al-Cu intermetallic particles. However, it is evidenced here, that the copper enrichment is not detrimental for the quality of the TCP coating. The coating failure, observed when the pickling step is applied, can be assigned to a faster kinetics of the coating growth leading to formation of thicker conversion coating more susceptible to cracking or to the localized presence of aluminum fluoride species leading to the appearance of coating defects or detachment.

  10. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    PubMed

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690

    NASA Astrophysics Data System (ADS)

    Kai, J. J.; Yu, G. P.; Tsai, C. H.; Liu, M. N.; Yao, S. C.

    1989-10-01

    A series of heat treatments were performed to study the sensitization and the stress corrosion cracking (SCC) behavior of INCONEL Alloy 690. The microstructural evaluation and the chromium depletion near grain boundaries were carefully studied using analytical electron microscopy (AEM). The measured chromium depletion profiles were matched well to the calculated results from a thermodynamic/kinetic model. The constant extension rate test (CERT) was performed in the solution containing 0.001 M sodium thiosulfate (Na2S2O3) to study the SCC resistance of this alloy. The Huey test was also performed in a boiling 65 pct HNO3 solution for 48 hours to study the intergranular attack (IGA) resistance of this alloy. Both tests showed that INCONEL 690 has very good corrosion resistance. It is believed that the superior IGA and SCC resistances of this alloy are due to the high chromium concentration (≈30 wt pct). It is concluded in this study that INCONEL 690 may be a better alloy than INCONEL 600 for use as the steam generator (S/G) tubing material for pressurized water reactors (PWR's)

  12. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.

    PubMed

    Ohno, Hajime; Matsubae, Kazuyo; Nakajima, Kenichi; Kondo, Yasushi; Nakamura, Shinichiro; Fukushima, Yasuhiro; Nagasaka, Tetsuya

    2017-11-21

    Importance of end-of-life vehicles (ELVs) as an urban mine is expected to grow, as more people in developing countries are experiencing increased standards of living, while the automobiles are increasingly made using high-quality materials to meet stricter environmental and safety requirements. While most materials in ELVs, particularly steel, have been recycled at high rates, quality issues have not been adequately addressed due to the complex use of automobile materials, leading to considerable losses of valuable alloying elements. This study highlights the maximal potential of quality-oriented recycling of ELV steel, by exploring the utilization methods of scrap, sorted by parts, to produce electric-arc-furnace-based crude alloy steel with minimal losses of alloying elements. Using linear programming on the case of Japanese economy in 2005, we found that adoption of parts-based scrap sorting could result in the recovery of around 94-98% of the alloying elements occurring in parts scrap (manganese, chromium, nickel, and molybdenum), which may replace 10% of the virgin sources in electric arc furnace-based crude alloy steel production.

  13. Influence of temperature and the role of chromium on the kinetics of sulfidation of 310 stainless steel

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Nelson, H. G.

    1977-01-01

    The sulfidation of 310 stainless steel was studied over the temperature range from 910 K to 1285 K. By adjusting the ratio of hydrogen sulfide, variations in sulfur potential were obtained. The effect of temperature on sulfidation was determined at three different sulfur potentials: 39/sqNm, 0.014/sqNm, and 0.00015/sqNm. All sulfide scales contained one or two surface layers in addition to a subscale. The second outer layer (OL-II), furthest from the alloy, contained primarily Fe-Ni-S. The first outer layer (OL-I), nearest the subscale, contained FE-Cr-S. The subscale consisted of sulfide inclusions in the metal matrix. At a given temperature and sulfur potential, the weight gain data obeyed the parabolic rate law after an initial transient period. The parabolic rate constants obtained at the sulfur potential of 39/sqNm did not show a break when the logarithm of the rate constant was plotted as a function of the inverse of absolute temperature. Sulfidation carried out at sulfur potentials below 0.02/sqNm, however, did show a break at 1145 K, which is termed as the transition temperature. This break was found to be associated with the changes which had occurred in the Fe:Cr ratio of OL-I. Below the transition temperature the activation energy was found to be approximately 125 kj/mole. Above the transition temperature the rate of sulfidation decreased with temperature but dependent on the Fe:Cr ratio in the iron-chromium-sulfide layers of the OL-I. A reaction mechanism consistent with the experimental results has been proposed.

  14. Estimation of Atmospheric Corrosion of High-Strength, Low-Alloy Steels

    DOT National Transportation Integrated Search

    1997-05-01

    This data analysis was undertaken to investigate the weatherability of steels whose compositions do not fall in the range of ASTM Standard G101, Estimating the Atmospheric Corrosion Resistance of Low-Alloy Steels.

  15. Improved adhesion of ultra-hard carbon films on cobalt–chromium orthopaedic implant alloy

    PubMed Central

    Vaid, Rishi; Diggins, Patrick; Weimer, Jeffrey J.; Koopman, M.; Vohra, Yogesh K.

    2010-01-01

    While interfacial graphite formation and subsequent poor film adhesion is commonly reported for chemical vapor deposited hard carbon films on cobalt-based materials, we find the presence of O2 in the feedgas mixture to be useful in achieving adhesion on a CoCrMo alloy. Nucleation studies of surface structure before formation of fully coalesced hard carbon films reveal that O2 feedgas helps mask the catalytic effect of cobalt with carbon through early formation of chromium oxides and carbides. The chromium oxides, in particular, act as a diffusion barrier to cobalt, minimizing its migration to the surface where it would otherwise interact deleteriously with carbon to form graphite. When O2 is not used, graphitic soot forms and films delaminate readily upon cooling to room temperature. Continuous 1 μm-thick nanostructured carbon films grown with O2 remain adhered with measured hardness of 60 GPa and show stable, non-catastrophic circumferential micro-cracks near the edges of indent craters made using Rockwell indentation. PMID:21221739

  16. Preparation of Trivalent Chromium and Rare Earth Composite Conversion Coating on Aluminum Alloy Surface

    NASA Astrophysics Data System (ADS)

    Huang, Jianzhen

    2018-01-01

    In this paper, the surface conversion film on 6063 aluminum alloy was prepared by chemical plating process with chromium sulfate, lanthanum sulfate and sodium phosphate as film forming agent. The corrosion resistance and surface morphology of the conversion film were analyzed by pitting corrosion test of copper sulfate and SEM. The results show that when Cr2(SO4)3 is 10 g/L, La2(SO4)3 is 2 g/L, Na3PO4 is 8 g/L, pH value is 3, temperature is 40 °C, reaction time is 10 min, the corrosion resistance of the surface conversion film is the best. The conversion coating is light green, composed of Cr, La, P, Al, O and other elements.

  17. Occurrences, uses, and properties of chromium.

    PubMed

    Barnhart, J

    1997-08-01

    Chromium is the 21st most abundant element in the Earth's crust with a mean concentration in United States soils of about 40 mg/kg. Although it exists in several oxidation states, the zero, trivalent, and hexavalent states are the most important in commercial products and the environment. Nearly all naturally occurring chromium is in the trivalent state, usually in combination with iron or other metal oxides. Although only about 15% of the chromium mined is used in the manufacture of chemicals, most applications of chromium utilize the chemistry of chromium. For instance, the "stainless" nature of stainless steel is due to the chemical properties of the chromium oxides which form on the surface of the alloy. Similarly, the protective properties of chrome plating of metals, chromated copper arsenate (CCA) treatment of wood, and chrome tanning of leather are all dependent on chromium chemistry. The key to these uses is that under typical environmental and biological conditions of pH and oxidation-reduction potential, the most stable form of chromium is the trivalent oxide. This form has very low solubility and low reactivity resulting in low mobility in the environment and low toxicity in living organisms. In this paper the chemical properties of chromium are discussed for the major commercial products in the context of the Eh-pH diagram for chromium. Copyright 1997 Academic Press.

  18. Computational Design of a Novel Medium-Carbon, Low-Alloy Steel Microalloyed with Niobium

    NASA Astrophysics Data System (ADS)

    Javaheri, Vahid; Nyyssönen, Tuomo; Grande, Bjørnar; Porter, David

    2018-04-01

    The design of a new steel with specific properties is always challenging owing to the complex interactions of many variables. In this work, this challenge is dealt with by combining metallurgical principles with computational thermodynamics and kinetics to design a novel steel composition suitable for thermomechanical processing and induction heat treatment to achieve a hardness level in excess of 600 HV with the potential for good fracture toughness. CALPHAD-based packages for the thermodynamics and kinetics of phase transformations and diffusion, namely Thermo-Calc® and JMatPro®, have been combined with an interdendritic segregation tool (IDS) to optimize the contents of chromium, molybdenum and niobium in a proposed medium-carbon low-manganese steel composition. Important factors taken into account in the modeling and optimization were hardenability and as-quenched hardness, grain refinement and alloying cost. For further investigations and verification, the designed composition, i.e., in wt.% 0.40C, 0.20Si, 0.25Mn, 0.90Cr, 0.50Mo, was cast with two nominal levels of Nb: 0 and 0.012 wt.%. The results showed that an addition of Nb decreases the austenite grain size during casting and after slab reheating prior to hot rolling. Validation experiments showed that the predicted properties, i.e., hardness, hardenability and level of segregation, for the designed composition were realistic. It is also demonstrated that the applied procedure could be useful in reducing the number of experiments required for developing compositions for other new steels.

  19. A comparison of MRI and CT imaging clarity of titanium alloy and titanium alloy with cobalt-chromium-alloy pedicle screw and rod implants in the lumbar spine.

    PubMed

    Trammell, Terry R; Flint, Kathy; Ramsey, Curtis J

    2012-08-15

    Magnetic resonance imaging (MRI) and computed tomography (CT) imaging are important postoperative diagnostic and evaluation tools, particularly in patients who have undergone spinal fusions. Advancements in materials and imaging techniques have lessened artifact and improved overall imaging results. Systems that combine titanium alloy and cobalt-chromium components have been introduced to reduce implant profile while maintaining strength. The objective of this study was to determine if there were any differences in the clarity of imaging between two types of implant materials in a lumbar spine construct model. One of two lumbar spine stabilization implant systems, titanium alloy (titanium) or titanium alloy with cobalt-chromium alloy (titanium-cobalt), was placed to simulate a four-level fusion construct in two human cadaveric spine segments, followed by MRI and CT imaging. The implant systems were then removed from each cadaver and implanted in the other cadaver. Nine physician graders from three subspecialties scored the images using a 5-point scale, with higher imaging scores indicating greater clarity of the region of interest. Physician-rated scores were compared across systems and between physician groups. There were no significant differences in the overall mean total scores on the basis of construct material. Overall mean scores were 18.16 for titanium and 17.45 for titanium-cobalt (p = 0.275). Among images of the titanium-cobalt constructs, no significant differences in mean scores were found between specimens with use of MRI (p = 0.883) or with use of CT only (p = 0.274). Among images of the titanium system, a slightly significant difference was found between specimens with use of MRI (p = 0.044) but not with CT imaging (p = 0.837). Overall image clarity scores were not significantly different between titanium and titanium-cobalt implant systems in the lumbar spine. Observation of pertinent anatomy in the regions of interest was not degraded by the

  20. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  1. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  2. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  3. Application experience of grade 10Kh9MFB chromium steel for steam shutoff and control valve bodies

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Schenkova, I. A.; Danyushevskiy, I. A.; Grin', E. A.; Levkov, L. Ya.; Prudnikov, D. A.; Zhuravlev, D. N.; Bazhenov, A. M.

    2017-04-01

    In 2014-2015, the engineers of JSC "NPO "TsNIITMash", in cooperation with JSC "Energomash (Chekhov)—ChZEM", developed a technology for manufacturing D u = 250 mm valve bodies from 10Kh9MFB chromium steel by electroslag melting (ESM) and produced their pilot copies within the frame of import substitution program. This article provides results of research into determining the design values of metal characteristics, including short-term mechanical properties at working temperatures and impact and long-term strength. The test specimens have been sampled from the following four zones: bottom, central, branch-pipe, and head. Tensile short-term rupture testing has been performed at temperatures of 350, 450, 500, 550, 600, and 650°C. Testing for long-term strength has been carried out at temperatures of 550, 575, 600, and 625°C and stresses of 156.8, 137.2, 117.6, and 98 MPa. To estimate brittle fracture resistance, impact-strength tests have been run at temperatures of-20 and-10°C; 20 and 50°C. The specimens have been sampled from the middle of the blank section. All short-term mechanical properties and impact strength are in agreement with the requirements imposed on the metal of hot-deformed steam piping made of 10Kh9MFB steel as per TU (Technical Conditions) 14-3R-55-2001. The absence of microliquation of alloying elements and the high homogeneity of chemical composition (as demonstrated with nine specimens) have also been experimentally confirmed. Metallographic analysis has shown that the structure of the tested metal is that of tempered martensite with local areas of tempered bainite. Overall, the microscopic structure of metal is practically the same in all the studied zones. Service-life calculation of pilot valve bodies has proved conformity with the safety-margin regulations. Such properties of electroslag melting blank as long-term strength and allowable stress correspond to the level of deformed metal and to regulations.

  4. Effect of mechanical pre-loadings on corrosion resistance of chromium-electroplated steel rods in marine environment

    NASA Astrophysics Data System (ADS)

    Shubina Helbert, Varvara; Dhondt, Matthieu; Homette, Remi; Arbab Chirani, Shabnam; Calloch, Sylvain

    2018-03-01

    Providing high hardness, low friction coefficient, as well as, relatively good corrosion resistance, chromium-plated coatings (∼20 μm) are widely used for steel cylinder rods in marine environment. However, the standardized corrosion test method (ISO 9227, NSS) used to evaluate efficiency of this type of coatings does not take into account in-service mechanical loadings on cylinder rods. Nevertheless, the uniform initial network of microcracks in chromium coating is changing under mechanical loadings. Propagation of these microcracks explains premature corrosion of the steel substrate. The aim of the study was to evaluate relationship between mechanical loadings, propagation of microcracks network and corrosion resistance of chromium coatings. After monotonic pre-loading tests, it was demonstrated by microscopic observations that the microcracks propagation started at stress levels higher than the substrate yield stress (520 MPa). The microcracks become effective, i.e. they have instantly undergone through the whole coating thickness to reach the steel substrate. The density of effective microcracks increases with the total macroscopic level, i.e. the intercrack distance goes from 60 ± 5 μm at 1% of total strain to approximately 27 ± 2 μm at 10%. Electrochemical measurements have shown that the higher the plastic strain level applied during mechanical loading, the more the corrosion potential of the sample decreased until reaching the steel substrate value of approximately ‑0.65 V/SCE after 2 h of immersion. The polarization curves have also highligthed an increase in the corrosion current density with the strain level. Therefore, electrochemical measurements could be used to realize quick and comprehensive assesment of the effect of monotonic pre-loadings on corrosion properties of the chromium coating.

  5. Bond strength of poly(methyl methacrylate) denture base material to cast titanium and cobalt-chromium alloy.

    PubMed

    Matsuda, Yasuhiro; Yanagida, Hiroaki; Ide, Takako; Matsumura, Hideo; Tanoue, Naomi

    2010-06-01

    The shear bond strength of an auto-polymerizing poly(methyl methacrylate) denture base resin material to cast titanium and cobalt-chromium alloy treated with six conditioning methods was investigated. Disk specimens (10 mm in diameter and 2.5 mm in thickness) were cast from pure titanium and cobalt-chromium alloy. The specimens were wet ground to a final surface finish of 600 grit, air dried, and treated with the following bonding systems: 1) air abraded with 50-70-microm-grain alumina (SAN); 2) air abraded with 50-70-microm-grain alumina + conditioned with Alloy Primer (ALP); 3) air abraded with 50-70-microm-grain alumina + conditioned with AZ Primer (AZP); 4) air abraded with 50-70-microm-grain alumina + conditioned with Estenia Opaque Primer (EOP); 5) air abraded with 50-70-microm-grain alumina + conditioned with Metal Link Primer (MLP), and 6) treated with ROCATEC system (ROC). A denture base material (Palapress Vario) was then applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. The strengths decreased after thermocycling in all combinations. Among the treatment methods assessed, groups 2 and 4 showed significantly (p < 0.05) enhanced shear bond strengths for both metals. In group 4, the strength in MPa (n = 7) after thermocycling for cobalt-chromium alloy was 38.3, which was statistically (p < 0.05) higher than that for cast titanium (34.7). Air abrasion followed by the application of two primers containing a hydrophobic phosphate monomer (MDP) effectively improved the strength of the bond of denture base material to cast titanium and cobalt-chromium alloy.

  6. Mechanical alloying of lanthana-bearing nanostructured ferritic steels

    SciTech Connect

    Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu

    2013-09-01

    A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomographymore » revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.« less

  7. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth.

    PubMed

    Poh, Chye Khoon; Shi, Zhilong; Tan, Xiao Wei; Liang, Zhen Chang; Foo, Xue Mei; Tan, Hark Chuan; Neoh, Koon Gee; Wang, Wilson

    2011-09-01

    Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications. Copyright © 2011 Orthopaedic Research Society.

  8. 75 FR 69050 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ...''), the Department is issuing a countervailing duty order on certain seamless carbon and alloy steel... circumstances do not exist. See Certain Seamless Carbon and Alloy Steel Standard, Line, [[Page 69051

  9. Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys.

    PubMed

    Eliades, Theodore; Pratsinis, Harris; Kletsas, Dimitris; Eliades, George; Makou, Margarita

    2004-01-01

    The purpose of this study was to qualitatively and quantitatively characterize the substances released from orthodontic brackets and nickel-titanium wires and to comparatively assess the cytotoxicity of the ions released from these orthodontic alloys. Two full sets of stainless steel brackets of 20 brackets each (weight 2.1 g) and 2 groups of 0.018 x 0.025 Ni-Ti archwires of 10 wires each (weight 2.0 g) were immersed in 0.9% saline solution for a month. The immersion media were analyzed with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the ionic content was statistically analyzed with 1-way analysis of variance (ANOVA). Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to various concentrations of the 2 immersion media; nickel chloride was used as a positive control for comparison purposes. The cytotoxic or cytostatic activity of the media was investigated with the MTT and the DNA synthesis assays. The results of the cytotoxicity assay were analyzed with 2-way ANOVA and the Tukey test with solution and concentration variants as discriminating variables (alpha=0.05). The results indicated no ionic release for the nickel-titanium alloy aging solution, whereas measurable nickel and traces of chromium were found in the stainless steel bracket-aging medium. Concentrations of the nickel chloride solution greater then 2 mM were found to reduce by more than 50% the viability and DNA synthesis of fibroblasts; however, neither orthodontic materials-derived media had any effect on the survival and DNA synthesis of either cells.

  10. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  11. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    PubMed

    McGinley, Emma Louise; Coleman, David C; Moran, Gary P; Fleming, Garry J P

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers. Discs of d.Sign®10 were cast, alumina particle air abraded and half were polished before surface roughness was determined by profilometry. Biocompatibility was assessed by placing the discs directly or indirectly (with immersion solutions) into contact with TR146 monolayers. Metal ion release was determined by ICP-MS. Cell viability was assessed by trypan blue dye exclusion, metabolic activity by XTT and cellular toxicity by LDH. Inflammatory cytokine analysis was performed using sandwich ELISAs. The mean polished Ra value was significantly reduced (P<0.001) compared with the alumina particle air abraded discs but metal ion release was significantly increased for the polished discs. Significant reductions in cell density of polished compared with alumina particle air abraded discs was observed following direct or indirect exposure. A significant reduction in metabolic activity, increase in cellular toxicity and an increase in the presence of inflammatory cytokine markers was highlighted for the polished relative to the alumina particle air abraded discs at 24h. Finishing condition of the Ni-Cr dental alloy investigated has important clinical implications. The approach of employing cell density and morphology, metabolic activity, cellular toxicity levels and inflammatory marker responses to TR146 epithelial cells combined with ICP-MS afforded the authors an increased insight into the complex processes dental alloys undergo in the oral environment. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    NASA Astrophysics Data System (ADS)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  13. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting.

    PubMed

    Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan

    2014-01-01

    Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P<.05). The porcelain bond strength of the SLM alloy was 55.78 ± 3.02 MPa, which was similar to that of the cast alloy, 54.17 ± 4.96 MPa (P>.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the

  14. Copper modified austenitic stainless steel alloys with improved high temperature creep resistance

    DOEpatents

    Swindeman, R.W.; Maziasz, P.J.

    1987-04-28

    An improved austenitic stainless steel that incorporates copper into a base Fe-Ni-Cr alloy having minor alloying substituents of Mo, Mn, Si, T, Nb, V, C, N, P, B which exhibits significant improvement in high temperature creep resistance over previous steels. 3 figs.

  15. 75 FR 21658 - Carbon and Certain Alloy Steel Wire Rod From Trinidad and Tobago

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Certain Alloy Steel Wire Rod From Trinidad and Tobago AGENCY: United States International Trade Commission... Investigation No. 731-TA-961 concerning carbon and certain alloy steel wire rod (``wire rod'') from Trinidad and... of imports of wire rod from Trinidad and Tobago that were sold in the United States at less than fair...

  16. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  17. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  18. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  19. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  20. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  1. Chromium in stainless steel welding fume suppresses lung defense responses against bacterial infection in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R

    2007-04-01

    Pulmonary infections have been reported to be increased in welders. Previous animal studies have indicated that manual metal arc, stainless steel welding fume (MMA-SS) increased susceptibility to lung infections. MMA-SS is composed of a complex of metals (e.g., iron, chromium, nickel). The objective was to determine which metal component of MMA-SS welding fume alters lung defense responses. At Day 0, rats were intratracheally instilled one time with saline or MMA-SS at a concentration of 2 mg/rat. Additional rats were treated with the metal constituents, Fe(2)O(3), NiO, or Cr(2)Na(2)O(7) alone or in combination, at concentrations that are present in the dose used for MMA-SS treatment. At Day 3, rats were intratracheally inoculated with 5 x 10(3) Listeria monocytogenes. At Days 6, 8 and 10, homogenized left lungs were cultured, and colony-forming units were counted after an overnight incubation to assess pulmonary bacterial clearance. At Day 3 (prior to infection) and at Days 6, 8 and 10, right lungs were lavaged to recover cells and fluid from the airspaces to measure lung injury, inflammation, and cytokine secretion. The production of reactive oxygen species by phagocytes recovered from the lungs was measured. Exposure to MMA-SS, soluble Cr, or the mixture of all three metals before infection significantly increased bacterial lung burden and tissue damage when compared to control. Animals treated with NiO or Fe(2)O(3) did not differ from control. Animals pre-treated with soluble Cr had alterations in inflammation and in the production of different cytokines (TNFalpha, IL-6, IL-2, and IL-12) involved in lung immune responses. This study indicates that soluble Cr present in MMA-SS is likely the primary component responsible for the suppression of lung defense responses associated with stainless steel welding fumes.

  2. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    PubMed

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions.

  3. Dependence of magnetic permeability on residual stresses in alloyed steels

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Ktena, A.; Vourna, P.; Argiris, K.

    2018-04-01

    A method for the monitoring of residual stress distribution in steels has been developed based on non-destructive surface magnetic permeability measurements. In order to investigate the potential utilization of the magnetic method in evaluating residual stresses, the magnetic calibration curves of various ferromagnetic alloyed steels' grade (AISI 4140, TRIP and Duplex) were examined. X-Ray diffraction technique was used for determining surface residual stress values. The overall measurement results have shown that the residual stress determined by the magnetic method was in good agreement with the diffraction results. Further experimental investigations are required to validate the preliminary results and to verify the presence of a unique normalized magnetic stress calibration curve.

  4. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  5. 75 FR 13255 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... seamless carbon and alloy steel standard, line, and pressure pipe (``seamless pipe'') from the People's... countervailing duty investigations of seamless pipe from the PRC. See Certain Seamless Carbon and Alloy Steel... Investigation, 74 FR 52744 (October 14, 2009) and Certain Seamless Carbon and Alloy Steel Standard, Line, and...

  6. 75 FR 69052 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... seamless carbon and alloy steel standard, line, and pressure pipe (``seamless pipe'') from the People's... seamless pipe from the PRC. See Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe..., and its negative determination of critical circumstances. See Certain Seamless Carbon and Alloy Steel...

  7. 78 FR 76653 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... 962 (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova... orders on carbon and certain alloy steel wire rod from Brazil, Indonesia, Mexico, Moldova, Trinidad and... carbon and certain alloy steel wire rod from Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and...

  8. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  9. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  10. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  11. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  12. 46 CFR 54.25-15 - Low temperature operation-high alloy steels (modifies UHA-23(b) and UHA-51).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Low temperature operation-high alloy steels (modifies... (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-15 Low temperature operation—high alloy steels (modifies UHA-23(b) and UHA-51). (a) Toughness...

  13. Absorption of nickel, chromium, and iron by the root surface of primary molars covered with stainless steel crowns.

    PubMed

    Keinan, David; Mass, Eliyahu; Zilberman, Uri

    2010-01-01

    Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ), was analyzed. An energy dispersive X-ray spectrometer (EDS) was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times) were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (P < .001). Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  14. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    DTIC Science & Technology

    2015-07-15

    EROSION OF ELECTRO SPARK DEPOSITED NITINOL VS. STELLITE® ALLOY ON STAINLESS STEEL SUBSTRATE Theresa A. Hoffard Lean-Miguel San Pedro Mikhail...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  15. Stress Corrosion Cracking and Hydrogen Embrittlement of Thick Section High Strength Low Alloy Steel

    DTIC Science & Technology

    1986-06-01

    copper and especially molybdenum. Dual phase HSLA steels are comprised of islands of martensite or bainite in a ferrite matrix. The... Copper Steels", TransactionN AIME, Volume 105, pp. 133-166, 1933. 60. Creswick, W. E., "Commercial Development of a Rimmed Low Alloy Precipitation ... precipitates all serve to minimize the aggregate effects of hydrogen. 82 - ------- ------ - 3. MATERIAL 3.1 bSLA STEELS High strength low alloy

  16. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2000-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  17. Phase transformation and long-term service of high-temperature martensitic chromium steels

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. S.; Tarasenko, L.; Acselrad, O.; Pereira, L. C.; Shalkevich, A.; Soboleva, G.

    2001-02-01

    Martensitic high Cr (10 - 16%) steels alloyed with Ni (Co), Mo, W, V, and N are widely used in constructions subjected to cyclic loads at temperatures up to 600 degrees Celsius, in general after quenching from 1100 - 1150 degrees Celsius followed by tempering at 650 - 690 degrees Celsius. Due to long term service exposure at high temperatures, different microstructural changes take place, such as second-phases precipitation, formation of low-angle grain boundaries, as well as internal damage caused by cyclic loads and creep. Specific phase diagrams are presented that can be used to define time periods for reliable operation of parts with given composition, based on the time required for the appearance of second phase particles known to be detrimental to mechanical strength and performance. Restoring thermal treatments to be applied after long time exposure at service conditions, aiming at increasing service life, are also presented and discussed. The combined use of the diagrams and the restoring treatment ensures prediction of a reliable service-life period for components made of these steels.

  18. Frictional conditions between alloy AA6060 aluminium and tool steel

    SciTech Connect

    Wideroee, Fredrik; Welo, Torgeir

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less

  19. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through

  20. Cytotoxicity and oxidative mechanisms of different forms of chromium.

    PubMed

    Bagchi, Debasis; Stohs, Sidney J; Downs, Bernard W; Bagchi, Manashi; Preuss, Harry G

    2002-10-30

    Chromium exists mostly in two valence states in nature: hexavalent chromium [chromium(VI)] and trivalent chromium [chromium(III)]. Chromium(VI) is commonly used in industrial chrome plating, welding, painting, metal finishes, steel manufacturing, alloy, cast iron and wood treatment, and is a proven toxin, mutagen and carcinogen. The mechanistic cytotoxicity of chromium(VI) is not completely understood, however, a large number of studies demonstrated that chromium(VI) induces oxidative stress, DNA damage, apoptotic cell death and altered gene expression. Conversely, chromium(III) is essential for proper insulin function and is required for normal protein, fat and carbohydrate metabolism, and is acknowledged as a dietary supplement. In this paper, comparative concentration- and time-dependent effects of chromium(VI) and chromium(III) were demonstrated on increased production of reactive oxygen species (ROS) and lipid peroxidation, enhanced excretion of urinary lipid metabolites, DNA fragmentation and apoptotic cell death in both in vitro and in vivo models. Chromium(VI) demonstrated significantly higher toxicity as compared with chromium(III). To evaluate the role of p53 gene, the dose-dependent effects of chromium(VI) were assessed in female C57BL/6Ntac and p53-deficient C57BL/6TSG p53 mice on enhanced production of ROS, lipid peroxidation and DNA fragmentation in hepatic and brain tissues. Chromium(VI) induced more pronounced oxidative damage in multiple target organs in p53 deficient mice. Comparative studies of chromium(III) picolinate and niacin-bound chromium(III), two popular dietary supplements, reveal that chromium(III) picolinate produces significantly more oxidative stress and DNA damage. Studies have implicated the toxicity of chromium picolinate in renal impairment, skin blisters and pustules, anemia, hemolysis, tissue edema, liver dysfunction; neuronal cell injury, impaired cognitive, perceptual and motor activity; enhanced production of hydroxyl

  1. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects

    NASA Astrophysics Data System (ADS)

    Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing

    Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.

  2. Corrosion behaviour and biocompatibility of a novel Ni-free intermetallic coating growth on austenitic steel by hot dipping in an Al-12.6%Si alloy.

    PubMed

    Arenas, M A; Frutos, E; Saldaña, L; Conde, A; Labajos-Broncano, L; González-Martín, M L; González-Carrasco, J L; Vilaboa, N

    2011-04-01

    Commercial 316 LVM austenitic stainless steel samples have been coated by immersion in a bath of molten Al-12.6%Si alloy for 120 s. The coating consists of the Al(12)(Fe,Cr)(3)Si(2) intermetallic. In vitro corrosion behaviour has been evaluated in the Ringer's solution by means of potentiodynamic curves and electrochemical impedance spectroscopy. The results reveal that the coated specimens exhibit lower susceptibility to localised corrosion with respect to the substrate. XPS analysis suggests that the ennoblement of the pitting potential is due to the formation of a chromium oxyhydroxide containing passive layer. The intermetallic coating shows a good biocompatibility, as demonstrated by culturing human mesenchymal stem cells isolated from bone marrow which attached, grew and differentiated to the osteoblastic lineage to a similar extent on coated and bare steels. In summary, this study proposes a method that generates Ni-free coatings of the stainless steel with useful properties for biomedical applications.

  3. Microstructure and properties of thermomechanically strengthened reinforcement bars: A comparative assessment of plain-carbon and low-alloy steel grades

    SciTech Connect

    Ray, A.; Mukerjee, D.; Sen, S.K.

    1997-06-01

    An extensive investigation has been carried out to study structure-property characteristics and corrosion behavior in three varieties of thermomechanically treated (TMT) reinforcement bars (rebars) produced in an integrated steel plant under the Steel Authority of India Limited. Three experimental steel heats--one of plain-carbon and two of low-alloy chemistry--were chosen for the study. Of the two low-alloy heats, one was copper-bearing and the other contained both copper and chromium for improved corrosion resistance. Hot-rolled bars for each specific chemistry were subjected to in-line thermomechanical treatment, where quenching parameters were altered to achieve different yield strength levels. All the TMT rebars, regardlessmore » of chemistry and strength level, exhibited a composite microstructure consisting of ferrite-pearlite at the core and tempered martensite at the rim. Although a tendency toward formation of Widmanstaetten ferrite was evident in bars of 500 and 550 MPa yield strength levels, no adverse effect on their strength and ductility was observed. From the standpoint of mechanical properties, the rebars not only conformed to minimum yield strength requirements, but also exhibited high elongation values (21 to 28%) and excellent bendability. Corrosion studies of both TMT and cold-twisted and deformed (CTD) rebars subjected to different laboratory tests indicated that corrosion resistance increased in this order: CTD, plain-carbon TMT, copper-bearing TMT, and copper/chromium-bearing TMT.« less

  4. Selective rear side ablation of thin nickel-chromium-alloy films using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Pabst, Linda; Ullmann, Frank; Ebert, Robby; Exner, Horst

    2018-03-01

    In recent years, the selective laser structuring from the transparent substrate side plays an increased role in thin film processing. The rear side ablation is a highly effective ablation method for thin film structuring and revels a high structuring quality. Therefore, the rear side ablation of nickel-chromium-alloy thin films on glass substrate was investigated using femtosecond laser irradiation. Single and multiple pulses ablation thresholds as well as the incubation coefficient were determined. By irradiation from the transparent substrate side at low fluences a cracking or a partly delamination of the film could be observed. By increasing the fluence the most part of the film was ablated, however, a very thin film remained at the interface of the glass substrate. This thin remaining layer could be completely ablated by two pulses. A further increase of the pulse number had no influence on the ablation morphology. The ablated film was still intact and an entire disc or fragments could be collected near the ablation area. The fragments showed no morphology change and were still in solid state.

  5. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    NASA Astrophysics Data System (ADS)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  6. 4-META opaque resin--a new resin strongly adhesive to nickel-chromium alloy.

    PubMed

    Tanaka, T; Nagata, K; Takeyama, M; Atsuta, M; Nakabayashi, N; Masuhara, E

    1981-09-01

    1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.

  7. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    PubMed

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  8. STRESS CORROSION CRACKING OF ALLOY 152 WELD BUTTER NEAR THE LOW ALLOY STEEL INTERFACE

    SciTech Connect

    Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken

    2015-01-01

    The objective of this work was to obtain SCC growth data in Alloy 152 weld butter near the interface with Low Alloy Steel (LAS), which is a region where some dilution of Cr was expected to have occurred, thus presumably exhibiting an increased SCC-susceptibility vs. the bulk of the weld. The LAS piece used in this application was Alloy 533-Gr B from the Midland reactor lower head, and the Alloy 152 weld butter received a prototypical Post Weld Heat Treatment (PWHT) prior to joining by Alloy 152 to an Alloy 690 piece according to a procedure qualified to ASME IX.more » The compact tension specimens for SCC testing were aligned in the first layer of the Alloy 152 butter. The experimental approach based on tracking environmental enhancement vs. location was successful in identifying SCC-susceptible locations, and SCC rates ranging from 10-12 m/s to as high as 10-10 m/s were measured. The post-test examination of the specimens found that the fracture had the intergranular/interdendritic appearance typical of welds, and that the propagation was arrested wherever an intersection with the LAS occurred. The large range of SCC rates measured does not appear to correlate well with the local concentration of Cr (approx. 25% at the SCC locations), and, in fact, low Cr (20%) – high Fe “streaks” seemed to slow/arrest crack propagation. In short, simple “Cr dilution” does not seem to fully account for the “SCC-susceptible” microstructure that yielded the 10-10 m/s growth rate in this weld.« less

  9. Dental implant suprastructures using cobalt-chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years.

    PubMed

    Teigen, Kyrre; Jokstad, Asbjørn

    2012-07-01

    An association between the long-term success and survival of implant-supported prostheses as a function of biomaterial combinations has not been established. The use of cast cobalt-chromium for the suprastructure framework may be an alternative to the conventional approach of using type 3 gold alloys. A retrospective chart audit of all patients who had received implant-supported fixed dental prostheses (FDP) before 1996 was identified in a private practice clinic. Data were recorded for FDPs made from four combinations of alloy frameworks and veneering material, i.e. type 3 gold and cobalt-chromium with ceramic or prefabricated acrylic teeth. The extracted data from the charts were subjected to explorative statistical tests including Kaplan-Meier survival analyses. Patients (n=198) with 270 short and extensive FDPs supported entirely by 1117 implants were identified. The average follow-up observation periods varied between 4 and 220 months, with an average of 120 months. The success and survival, as well as event rates and types of biological and technical complications, were similar for implant-supported FDPs using cobalt-chromium and type 3 gold alloy frameworks veneered with ceramics or prefabricated acrylic teeth. An influence of the suprastructure biomaterial combination on the clinical performance of the individual supporting implants could not be established. Implant-supported FDPs made from type 3 gold or cobalt-chromium frameworks and veneered with ceramic or prefabricated acrylic teeth demonstrate comparable clinical performance. The biomaterial combinations do not appear to influence the success or survival of the individual implants. © 2011 John Wiley & Sons A/S.

  10. Development of Low Alloy Ti-B Steels for High Temperature Service Applications

    DTIC Science & Technology

    1952-04-01

    Ti-B steels . Ordinarily, martensite or a hardened acicular ferrite structure in steel is associated with extremely low creep strength. However, the...12000 F. The ability of the Ti-B sheet steels to suppress the ferrite transformation to the martensite or lower bainite temperature range upon air...APPROVED FOR PUBLIC mEESX_ DISTRIBUTION UNjfljarT, • WJADC TECHNICAL REPORT 52-77 DEVELOPMENT OF LOW ALLOY Ti-B STEELS FOR HIGH TEMPERATURE SERVICE

  11. Creep modeling for life evaluation and strengthening mechanism of tungsten alloyed 9-12% Cr steels

    NASA Astrophysics Data System (ADS)

    Park, Kyu-Seop; Bae, Dong-Sik; Lee, Sung-Keun; Lee, Goo-Hyun; Kim, Jung-Ho; Endo, Takao

    2006-10-01

    Recently, high strength tungsten (W) alloyed steels have been developed for use in power plants with higher steam conditions for environmental reasons as well as the improvement of thermal efficiency resulting in lower fuel costs. In order to establish a creep modeling of high strength martensitic steel and to understand the basic role of W in tungsten alloyed 9-12Cr steels, conventional martensitic steels (X20CrMoV121, X20CrMoWV121, and Mod9Cr-1Mo) and tungsten alloyed steels (NF616 and HCM12A) were employed for creep tests and creep behavior analyses by the Ω method. The proposed creep model, which takes into account both primary and tertiary creep, satisfactorily described the creep curves and accurately predicted creep life, as martensitic steel undergoes a relatively large amount of primary creep, up to nearly 30%, over its normal life. The tungsten alloyed steels exhibited a smaller minimum creep rate and a larger stress exponent compared to the conventional steels. In addition, in tungsten alloyed steel, the Ω value features strong stress dependence such that creep life is prolonged at lower stresses due to high Ω values. The importance of the Ω value from the standpoint of creep strengthening in primary and tertiary creep is discussed.

  12. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    NASA Astrophysics Data System (ADS)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  13. Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel

    NASA Astrophysics Data System (ADS)

    Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.

    2017-12-01

    Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.

  14. Comparative analysis of the fit of 3-unit implant-supported frameworks cast in nickel-chromium and cobalt-chromium alloys and commercially pure titanium after casting, laser welding, and simulated porcelain firings.

    PubMed

    Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria

    2008-01-01

    This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.

  15. Effect of stresses on the structural changes in high-chromium steel upon creep

    NASA Astrophysics Data System (ADS)

    Fedoseeva, A. E.; Dudova, N. R.; Kaibyshev, R. O.

    2017-06-01

    The effect of stresses on the microstructure and dispersed particles in a heating-performance Fe‒0.12C-0.06Si-0.04Ni-0.2Mn-9.5Cr-3.2Co-0.45Mo-3.1W-0.2V-0.06Nb-0.005B-0.05N (wt %) steel has been studied under long-term strength tests at T = 650°C under initial applied stresses ranging from 220 to 100 MPa with a step of 20 MPa. Under an applied stress of 160 MPa, which corresponds to a time to fracture of 1703 h, a transfer from short- to long-term creep takes place. It has been shown that alloying with 3% Co and an increase in W content to 3% significantly increase the short-term creep resistance and slightly increase the long-term strength upon tests by more than 104 h. The transfer from short- to the long-term creep is accompanied by substantial changes in the microstructure of the steel. Under long-term creep, the solid solution became depleted of tungsten and of molybdenum down to the thermodynamically equilibrium content of these elements in the solid solution, which leads to the precipitation of a large amount of fine particles of the Laves phase at the boundaries of laths and prior austenitic grains. At a time to fracture of more than 4 × 103 h, the coalescence of the M23C6 carbides and Laves-phase particles occurs, which causes the transformation of the structure of fine tempered martensite lath structure into a subgrained structure.

  16. Stability of Phosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co-Cr) Alloy under Oxidative conditions

    PubMed Central

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-01-01

    Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration PMID:21603056

  17. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    PubMed

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  18. Hybrid framework with cobalt-chromium alloy and gold cylinder for implant superstructure: Bond strength and corrosion resistance.

    PubMed

    Yoshinari, Masao; Uzawa, Shinobu; Komiyama, Yataro

    2016-10-01

    The aim of this in vitro study was to evaluate tensile bond strengths and corrosion resistance of CoCr alloys joined with gold cylinder by a soldering system in comparison with the conventional cast-joining system. CoCr alloys joined with gold cylinder by a soldering system using a high-fusing gold solder (CoCr/Solder/Gold cylinder), gold alloy joined with gold cylinder by a cast joining system (Gold alloy/Gold cylinder) and CoCr castings were fabricated. The tensile bond strength and corrosion resistance in 0.9% NaCl solution (pH 7.4 and pH 2.3) were evaluated. Scanning electron microscopy (SEM) of the fractured surface and electron probe microanalysis (EPMA) of the joined interfaces were also performed. The tensile bond strengths of the CoCr/Solder/Gold cylinder specimens showed similar values as the Gold alloy/Gold cylinder specimens. SEM observation and EPMA analyses suggested firm bonding between the CoCr alloy and gold cylinder. The released elements from the CoCr/Solder/Gold cylinder specimens were similar to ones from CoCr castings. Results showed that superstructures made of CoCr alloys joined with the gold cylinder using a high-fusing gold solder had sufficient bond strength and high corrosion resistance. These hybrid frameworks with cobalt-chromium alloy and gold cylinder are promising prosthesis for implant superstructures with the low cost and favorable mechanical properties instead of conventional high-gold alloys. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  20. Effect of oxidation heat treatment on the bond strength between a ceramic and cast and milled cobalt-chromium alloys.

    PubMed

    Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao

    2015-08-01

    There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.

  1. Monitoring of chromium and nickel in biological fluids of grinders grinding stainless steel.

    PubMed

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2007-04-01

    Stainless steel (SS) welders usually spend some of their working time grinding, to finish and smoothen the welding groove. The aim of this study was to investigate possible relations between the concentrations of nickel (Ni) and chromium (Cr) in the work atmosphere generated by grinders grinding SS, and to compare the air levels to the levels of Cr and Ni in their biological fluids. Hereby, it might be possible to identify the contribution of grinding to the levels of Cr and Ni in biological fluids in SS welders. Also the airborne levels of Cr and Ni in SS grinders were compared to corresponding levels in SS welders. The subjects examined in this study were selected among SS grinders not performing welding. Nine grinders were monitored for 1 workweek, measuring Cr and Ni in air, blood and urine. They were questioned about their exposure to Cr and Ni during their working careers. Air levels of total Cr up to 95 microg/m(3) and Ni levels up to 25 microg/m(3) were measured. Chromium(VI) (Cr(VI)) was detectable only in five air samples; the levels in the remaining samples were below the detection limit. The levels of Cr in blood and urine were also low. The levels of Ni in urine were close to those for MMA and MIG/MAG SS welders. In spite of high levels of total Cr and Ni observed in air, the levels found in biological fluids were low. The Cr levels in more than 50% of the whole blood and red cell samples and about 1/3 of the Cr-plasma levels were below the detection limits. The mean blood levels for Cr were 0.43, 0.60 and 0.35 microg/l, in whole blood, plasma and red cells, respectively. The mean levels for Cr in the urine was 1.6, 1.4 and 1.4 microg/g creatinine for the first void, just before and just after work. For Ni the mean blood levels were 0.87 microg/l in whole blood and 0.68 microg/l in plasma. The mean levels and ranges of Ni from the first void, just before and after work in urine were 3.79 microg/g creatinine, 3.39 and 4.56, respectively. The Cr

  2. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    SciTech Connect

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment,more » through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.« less

  3. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    PubMed

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  4. 75 FR 26273 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... certain seamless carbon and alloy steel standard, line, and pressure pipe (``seamless SLP pipe... China of seamless SLP pipe, and that such products are being sold in the United States at less than fair...

  5. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study.

    PubMed

    Kararia, Vandana; Jain, Pradeep; Chaudhary, Seema; Kararia, Nitin

    2015-01-01

    The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi) and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM) study of surface changes and complexometric titration to study compositional change was performed. Ten archwires each of group 1-3 M 0.016" NiTi, group 2-JJ 0.016" NiTi, group 3-3 M 0.019" *0.025" SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at ×2000, ×4000 and ×6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0). Extensive and stringent trials are required before certifying any product to be used in Orthodontics.

  6. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-11-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  7. 78 FR 33809 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... review of the antidumping duty order on seamless carbon and alloy steel standard, line, and pressure pipe... seamless carbon and alloy steel standard, line, and pressure pipe from the People's Republic of China... DEPARTMENT OF COMMERCE International Trade Administration [A-570-956] Seamless Carbon and Alloy...

  8. 77 FR 43806 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's... the antidumping duty order on seamless carbon and alloy steel standard, line, and pressure pipe from... Making Co., Ltd.; Wuxi Seamless Special Pipe Co., Ltd.; Wuxi Sifang Steel Tube Co., Ltd.; Wuxi Zhenda...

  9. 77 FR 21968 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... countervailing duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's... administrative review of the countervailing duty order on seamless carbon and alloy steel standard, line, and... Making Co., Ltd., Wuxi Seamless Special Pipe Co., Ltd., Wuxi Sifang Steel Tube Co., Ltd., Wuxi Zhenda...

  10. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... review of the antidumping duty order on circular welded non-alloy steel pipe from Taiwan. The period of... review of the antidumping duty order on circular welded non-alloy steel pipe from Taiwan. See Antidumping...

  11. Correlations between mechanical properties and cavitation erosion resistance for stainless steels with 12% Chromium and variable contents of Nickel

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Ghiban, B.; Ghiban, N.; Sava, M.; Duma, S. T.; Badarau, R.

    2014-03-01

    The running time of hydraulic machineries in cavitation conditions, especially blades and runners, depend on both chemical composition and mechanical properties of the used steels. The researches of the present paper have as goal to obtain new materials with improved behavior and reduced costs. There are given cavitation erosion results upon eight cast steels with martensite as principal structural constituent. The chromium content was maintained constant at approximate 12% but the nickel content was largely modified. The change of chemical content resulted in various proportions of austenite, martensite and ferrite and also in different cavitation erosion behavior. From the eight tested steels four have greater carbon content (approximately 0.1%) and the other four less carbon content (approximate 0.036%). All steels were tested separately in two laboratory facilities: T1 with magnetostrictive nickel tube (vibration amplitude 94 μm, vibration frequency 7000 ± 3% Hz, specimen diameter 14 mm and generator power 500 W) and T2 is respecting the ASTM G32-2010 Standard (vibration amplitude 50μm, vibration frequency 20000 ± 1% Hz, specimen diameter 15.8 mm and generator power 500 W). Analyzing the results it can be seen that the cavitation erosion is correlated with the mechanical properties in the way shown in 1960 by Hammitt and Garcia but is influenced by the structural constituents.

  12. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    NASA Astrophysics Data System (ADS)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.

    2013-10-01

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  13. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  14. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  15. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  16. Use of Nitrocarburizing for Strengthening Threaded Joints of Drill Pipes from Medium-Carbon Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.

    2015-05-01

    Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.

  17. 76 FR 78882 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Steel Wire Rod From Mexico: Affirmative Preliminary Determination of Circumvention of the Antidumping.... SUMMARY: We preliminarily determine that carbon and certain alloy steel wire rod (wire rod) with an actual.... de C.V. (Deacero) is circumventing the antidumping duty order on wire rod from Mexico (Wire Rod Order...

  18. 78 FR 2658 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Steel Wire Rod From Mexico: Rescission of Antidumping Duty Administrative Review; 2011-2012 AGENCY... order on carbon and certain alloy steel wire rod (``wire rod'') from Mexico for the period October 1... order on wire rod from Mexico for the period of review, October 1, 2011, through September 30, 2012.\\1...

  19. Improvement of corrosion resistance of low-alloy steels by resurfacing using multifunction cavitation in water

    NASA Astrophysics Data System (ADS)

    Ijiri, Masataka; Yoshimura, Toshihiko

    2018-02-01

    Low-alloy steels are based on carbon steel in combination with several percent or less (in many cases, 1 mass%) alloying elements, and they offer improved resistance to corrosion at a cost slightly higher than that of carbon steel. However, these materials do not exhibit the same corrosion resistance as stainless steel. The authors have previously developed a novel multifunction cavitation (MFC) technique, which combines ultrasonic cavitation with water jet cavitation. In this study, MFC was used to modify the surface of Cr-Mo steel (SCM435) and Ni-Cr-Mo steel (SNCM630). MFC was found to improve the residual stress value of the material as the result of surface modification while also imparting high strength and superior corrosion resistance.

  20. Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt-chromium alloy particles.

    PubMed

    Hallab, Nadim James; Chan, Frank W; Harper, Megan L

    2012-12-01

    We evaluated the consequences of cobalt-chromium alloy (CoCr) wear debris challenge in the peri-spine region to determine the inflammation and toxicity associated with submicron particulates of CoCr-alloy and nickel on the peri-spine. The lumbar epidural spaces of (n = 50) New Zealand white rabbits were challenged with: 2.5 mg CoCr, 5.0 mg CoCr, 10.0 mg CoCr, a positive control (20.0 mg of nickel) and a negative control (ISOVUE-M-300). The CoCr-alloy and Ni particles had a mean diameter of 0.2 and 0.6 μm, respectively. Five rabbits per dose group were studied at 12 and 24 weeks. Local and distant tissues were analyzed histologically and quantitatively analyzed immunohistochemically (TNF-α and IL-6). Histologically, wear particles were observed in all animals. There was no evidence of toxicity or local irritation noted during macroscopic observations in any CoCr-dosed animals. However, Ni-treated control animals experienced bilateral hind leg paralysis and were euthanized at Day 2. Histopathology of the Ni particle-treated group revealed severe neuropathy. Quantitative immunohistochemistry demonstrated a CoCr-alloy dose-dependent increase in cytokines (IL-6, TNF-α, p < 0.05) at 12 and 24 weeks. Subtle peri-spine inflammation associated with CoCr-alloy implant particles was dose dependent and persistent. Neuropathy can be induced by highly reactive Ni particles. This suggests peri-spine challenge with CoCr-alloy implant debris (e.g., TDA) is consistent with past reports using titanium alloy particles, i.e., mild persistent inflammation.

  1. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  2. Errors in measurements by ultrasonic thickness gauges caused by the variation in ultrasonic velocity in constructional steels and metal alloys

    SciTech Connect

    Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.

    1988-09-01

    Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.

  3. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    PubMed

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  4. Effect of Sn Micro-alloying on Recrystallization Nucleation and Growth Processes of Ferritic Stainless Steels

    NASA Astrophysics Data System (ADS)

    He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong

    2018-04-01

    We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.

  5. Microstructure and Properties of a New Cr - Mn Steel without Boron Additions for Use in Hot Stamping

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Zhu, G.; Li, Q.; Chen, Q.

    2015-09-01

    Anew hot-stamping steel that is alloyed with chromium and manganese and does not contain boron additions has been developed. The effect of reheating temperature and cooling rates on the mechanical properties and structure of the steel is determined. Atreatment regime that increases the ductility of the steel without a noticeable decrease in its strength is proposed.

  6. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for amore » large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.« less

  7. Deformation Characteristics and Recrystallization Response of a 9310 Steel Alloy

    NASA Astrophysics Data System (ADS)

    Snyder, David; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2013-01-01

    The flow behavior and recrystallization response of a 9310 steel alloy deformed in the ferrite temperature range were studied in this work. Samples were compressed under various conditions of strain (0.6, 0.8 and multi-axial), strain rate (10-4 seconds-1 to 10-1 seconds-1) and temperature [811 K to 1033 K (538 °C to 760 °C)] using a Gleeble thermo-mechanical simulator. Deformation was characterized by both qualitative and quantitative means, using standard microscopy, electron backscatter diffraction (EBSD) analysis and flow stress modeling. The results indicate that deformation is primarily accommodated through dynamic recovery in sub-grain formation. EBSD analysis shows a continuous increase in sub-grain boundary misorientation with increasing strain, ultimately producing recrystallized grains from the sub-grains at high strains. This suggests that a sub-grain rotation recrystallization mechanism predominates in this temperature range. Analyses of the results reveal a decreasing mean dynamically recrystallized grain size with increasing Zener-Hollomon parameter, and an increasing recrystallized fraction with increasing strain.

  8. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  9. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    NASA Technical Reports Server (NTRS)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  10. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings

    NASA Astrophysics Data System (ADS)

    Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali

    2015-07-01

    Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.

  12. Improvement of chemical composition, structure and mechanical properties of heat-resistant chromium-nickel alloy

    NASA Astrophysics Data System (ADS)

    Varlamova, S.; Trushnikova, A.; Rumyantsev, B.; Butrim, V.; Simonov, V.

    2018-04-01

    A thermodynamic analysis of a multicomponent system of the Cr-Ni alloy (Cr-32Ni-1,5W-0,25V-0,5Ti) with small additions of refractory metals was carried out. The microstructure and phase composition of the base alloy (I) and alloy with additional alloying (II) were studied. The effect of additives on the mechanical properties of the Cr-Ni alloy at 20, 900 and 1080 °C was shown. The microstructure of alloys I and II was studied in the fracture zone of samples after tensile tests at different temperatures. We studied the effect of small additives on the microstructure of alloys and changes in the morphology of the structural components (phases) as a function of temperature and degree of deformation.

  13. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    PubMed

    Tulga, Ayca

    2018-04-01

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Intergranular stress corrosion cracking and selective internal oxidation of nickel-chromium-iron alloys in hydrogenated steam

    NASA Astrophysics Data System (ADS)

    Capell, Brent M.

    2005-07-01

    Selective internal oxidation (SIO) is a mechanism of grain boundary embrittlement through the formation of intergranular oxides of Cr2O3. SIO is proposed as a mechanism to explain intergranular stress corrosion cracking (IGSCC) of Ni-base alloys in pressurized water reactor environments. The purpose of this work is to investigate SIO through a series of experiments using controlled-purity alloys in a controlled, low-pressure steam environment in which the oxygen potential is varied. Five alloys; Ni-9Fe, Ni-5Cr, LCr (Ni-5Cr-9Fe), CD85 (Ni-16Cr-9Fe) and HCr (Ni-30Cr-9Fe), were used in corrosion coupon exposure tests and constant extension rate tensile (CERT) tests at 550°C and 400°C in an environment consisting of a controlled mixture of hydrogen, water vapor and argon. The hydrogen-to-water vapor partial pressure ratio (PPR) was varied between 0.001 and 0.9 to control the oxygen partial pressure. The Ni-9Fe, Ni-5Cr and LCr alloys formed a uniform Ni(OH)2 film at PPR values less than 0.09 while CD85 and HCr formed Cr2O 3 oxide films over the entire PPR range. Corrosion coupon results also show the formation of highly localized oxide particles at grain boundaries. Focused ion beam analysis revealed that intergranular oxides were observed at significant depths (>150 nm) down grain boundaries and the oxide morphology depended on the alloy composition and PPR value. Diffusion of oxygen along the grain boundary accounted for the growth of intergranular oxides. CERT test results showed that intergranular cracking was caused by creep-induced microvoid coalescence only at 550°C and did not depend on PPR. At 400°C, the cracking behavior depended on the PPR and resulted in a mixture of creep-induced microvoid coalescence and brittle intergranular failure. The cracked boundary fraction was higher at a PPR value where a Ni(OH)2 surface film formed. Alloy composition influenced cracking and the cracked boundary fraction decreased as the alloy chromium content increased. The

  15. Thermal Linear Expansion of Nine Selected AISI Stainless Steels

    DTIC Science & Technology

    1978-04-01

    D. Desai and C. Y. Ho CINDAS REPORT 51 April 1978i! Prepared for AMERICAN IRON AND STEEL INSTITUTE d 1000 Sixteenth Street N.W. Washington, D.C...WORDS (Continue on reverse side it necessary and Identify by~ block number) *Thermal linear expansion ---*Stainless steels --- Iron -Nickel alloys... Iron -Chromium alloys 20fIStACT (Continue on reverse side it neceearyediett b lc ubr Thstechnical report reviews the available experimental data and

  16. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ...-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary Results of Antidumping Duty... review of the antidumping duty order on certain circular welded non- alloy steel pipe from Mexico. We... preliminary results of this review within the original time frame because we require additional time with...

  17. 75 FR 9163 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Preliminary... the People's Republic of China. For information on the estimated subsidy rates, see the ``Suspension... Carbon and Alloy Steel Standard, Line, and Pressure Pipe from the People's Republic of China: Initiation...

  18. 75 FR 6183 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... antidumping duty investigation on certain seamless carbon and alloy steel standard, line, and pressure pipe from the People's Republic of China. See Certain Seamless Carbon and Alloy Steel Standard, Line, and... DEPARTMENT OF COMMERCE INTERNATIONAL TRADE ADMINISTRATION (A-570-956) Certain Seamless Carbon and...

  19. 78 FR 25253 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... administrative review of the countervailing duty order on certain seamless carbon and alloy steel standard, line... DEPARTMENT OF COMMERCE International Trade Administration [C-570-957] Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People's Republic of China: Rescission of Countervailing...

  20. 76 FR 34044 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-830] Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary Results of Fifth Antidumping... carbon and certain alloy steel wire rod from Mexico, covering the period October 1, 2009, through...

  1. 78 FR 63450 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...-805, A-274-804, A-823-812] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico... on carbon and certain alloy steel wire rod (``wire rod'') from Brazil, Indonesia, Mexico, Moldova... published the notice of initiation of the sunset reviews of the antidumping duty orders on wire rod from...

  2. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study

    PubMed Central

    Kararia, Vandana; Jain, Pradeep; Chaudhary, Seema; Kararia, Nitin

    2015-01-01

    Introduction: The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi) and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM) study of surface changes and complexometric titration to study compositional change was performed. Materials and Methods: Ten archwires each of group 1–3 M 0.016” NiTi, group 2-JJ 0.016” NiTi, group 3–3 M 0.019” *0.025” SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at ×2000, ×4000 and ×6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. Observations and Results: The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0). Conclusion: Extensive and stringent trials are required before certifying any product to be used in Orthodontics. PMID:25684911

  3. Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante

    Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.

  4. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  5. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  6. Comparison and evaluation of marginal and internal gaps in cobalt-chromium alloy copings fabricated using subtractive and additive manufacturing.

    PubMed

    Kim, Dong-Yeon; Kim, Ji-Hwan; Kim, Hae-Young; Kim, Woong-Chul

    2018-01-01

    To evaluate the marginal and internal gaps of cobalt-chromium (Co-Cr) alloy copings fabricated using subtractive and additive manufacturing. A study model of an abutment tooth 46 was prepared by a 2-step silicone impression with dental stone. Fifteen stereolithography files for Co-Cr alloy copings were compiled using a model scanner and dental CAD software. Using the lost wax (LW), wax block (WB), soft metal block (SMB), microstereolithography (μ-SLA), and selected laser melting (SLM) techniques, 15 Co-Cr alloy copings were fabricated per group. The marginal and internal gaps of these Co-Cr alloy copings were measured using a digital microscope (160×), and the data obtained were analyzed using the non-parametric Kruskal-Wallis H-test and post-hoc Mann-Whitney U-test with Bonferroni correction. The mean values of the marginal, axial wall, and occlusal gaps were 91.8, 83.4, and 163μm in the LW group; 94.2, 77.5, and 122μm in the WB group; 60.0, 79.4, and 90.8μm in the SMB group; 154, 72.4, and 258μm in the μ-SLA group; and 239, 73.6, and 384μm in the SLM group, respectively. The differences in the marginal and occlusal gaps between the 5 groups were statistically significant (P<.05). The marginal gaps of the LW, WB, and SMB groups were within the clinically acceptable limit, but further improvements in the μ-SLA and SLM approaches may be required prior to clinical implementation. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    SciTech Connect

    Rodriguez, J.; University of Campinas; Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showedmore » a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.« less

  8. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    NASA Astrophysics Data System (ADS)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  9. Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.

    2018-01-01

    Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.

  10. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    NASA Astrophysics Data System (ADS)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  11. Resistance of nickel-chromium-aluminum alloys to cyclic oxidation at 1100 C and 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1976-01-01

    Nickel-rich alloys in the Ni-Cr-Al system were evaluated for cyclic oxidation resistance in still air at 1,100 and 1,200 C. A first approximation oxidation attack parameter Ka was derived from specific weight change data involving both a scaling growth constant and a spalling constant. An estimating equation was derived with Ka as a function of the Cr and Al content by multiple linear regression and translated into countour ternary diagrams showing regions of minimum attack. An additional factor inferred from the regression analysis was that alloys melted in zirconia crucibles had significantly greater oxidation resistance than comparable alloys melted otherwise.

  12. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  13. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    NASA Astrophysics Data System (ADS)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  14. Fabrication, microstructure, properties and deformation mechanisms of a nanocrystalline aluminum-iron-chromium-titanium alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Luo, Hong

    A multi-phase nanocrystalline Al93Fe3Cr2Ti 2 alloy containing 30 vol.% intermetallic particles was prepared via mechanical alloying starting from elemental powders, followed by hot extrusion. The grain size of 6-45 nm can be achieved after 30-hours of milling. Thermal stability of nanostructured Al93Fe3Ti2Cr 2 alloys was investigated using a variety of analytical techniques including modulated differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The MA-processed Al93Fe 3Ti2Cr2 alloy in the as-milled condition was composed of an Al-based supersaturated solid solution with high internal strains. Release of internal strains, intermetallic precipitation and grain growth occurred upon heating of the MA-processed Al alloy. Nevertheless, grain growth in the MA-processed Al alloy was very limited and fcc-Al grains with sizes in the range of 20 nm were still present in the alloys after exposure to 450°C (0.77 Tm). Systematic compressive tests and modulus measurements were performed as a function of temperature and strain rate to investigate the deformation behavior and mechanisms of the nc Al-Fe-Cr-Ti alloys. High strengths and moduli at both ambient and elevated temperatures have been demonstrated. The ductility of the nc Al93Fe3Cr2Ti2 alloy depends strongly on whether the oxide film at the prior powder particle boundary has been broken down or not. The MA-processed Al93Fe3Cr 2Ti2 alloy is brittle when the oxide film is continuous at PPB, and is ductile when the oxide film is broken down into discontinuous particles during extrusion. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. Since the stress for dislocation propagation into nc fcc-Al grains increases with decreasing the grain size, the smaller

  15. Fracture Toughness and Strength in a New Class of Bainitic Chromium-Tungsten Steels

    SciTech Connect

    Mao, S. X.; Sikka, V. K.

    This project dealt with developing an understanding of the toughening and stengthening mechanisms for a new class of Fe-3Cr-W(V) steels developed at Oak Ridge National Laboratory (ORNL) in collaboration with Nooter Corporation and other industrial partners. The new steele had 50% higher tensile strength up to 650 degrees Celsius than currently used steels and the potential for not requiring any postweld heat treatment (PWHT) and for reducing equipment weight by 25%. This project was closely related to the Nooter project described in the report Development of a New Class of Fe-3Cr-W(V) Ferritic steels for Industrial Process Applications (ORNL/TM-2005/82). The projectmore » was carried out jointly by the University of Pittsburgh and ORNL. The University of Pittsburgh carried out fracture toughness measurements and microstructural analysis on base metal and welded plates prepared at ORNL. The project focused on three areas. The first dealt with detailed microstructural analysis of base compositions of 3Cr-3WV and 3Cr-3WBV(Ta) in both normalized (N) and normalized and tempered (NT) conditions. The second aspect of the prject dealt with determining tensile properties and fracture toughness values of K{subIC} at room temperature for both 3Cr-3Wv and 3Cr-3WV(Ta) compositions. The third focus of the project was to measure the fracture toughness values of the base metal and the heat-affectged zone (HAZ) of a plate of Fe-3Cr-W(Mo)V steel plate welded by the gas tungsten are (GTA) process. The HAZ toughness was measured in both the as-welded and the PWHT condition.« less

  16. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  17. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  18. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  19. Corrosion behavior of high-nickel and chromium alloys in natural Baltic seawater

    SciTech Connect

    Birn, J.; Janik-Czachor, M.; Wolowik, A.

    Effect of Cl{sup {minus}} ion concentration (O M sodium chloride [NaCl] to 2 M NaCl) and temperature (25 C to 75 C) on stability of the passive state of high-Ni and Cr alloys: NI-1 ({approximately} 16% Mo), CR-2 ({approximately} 6.2% Mo), and NI-3 (3.5% Mo) were investigated in acidic and neutral electrolytes in strictly controlled electrochemical conditions. The anodic behavior of the alloys appeared to depend mostly upon Mo content in the alloy. Thus, the NI-1 was the most stable alloy under the applied experimental conditions. The other alloys were also quite resistant, undergoing pitting only at elevated temperatures, atmore » high anodic potentials, and at a chloride concentration not lower than 1 M. In natural Baltic seawater, these alloys did not exhibit any tendency to pitting, in qualitative agreement with the accelerated electrochemical tests. Complementary microscopic and surface analytical (AES) investigations were carried out to correlate the anodic and corrosion behavior of these materials with their composition and structure, and the composition of the passivating films formed at their surfaces.« less

  20. 77 FR 54926 - Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-709 (Third Review)] Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany Determination On the basis of the record \\1\\ developed in the subject five-year review, the United States International Trade Commission...

  1. Study made of corrosion resistance of stainless steel and nickel alloys in nuclear reactor superheaters

    NASA Technical Reports Server (NTRS)

    Greenberg, S.; Hart, R. K.; Lee, R. H.; Ruther, W. E.; Schlueter, R. R.

    1967-01-01

    Experiments performed under conditions found in nuclear reactor superheaters determine the corrosion rate of stainless steel and nickel alloys used in them. Electropolishing was the primary surface treatment before the corrosion test. Corrosion is determined by weight loss of specimens after defilming.

  2. Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    NASA Technical Reports Server (NTRS)

    Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.

    1966-01-01

    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.

  3. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  4. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    NASA Astrophysics Data System (ADS)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  5. Investigations of structural transformation within metal (austenite chromium-manganese steel) at the external surface of steam superheating tubes

    NASA Astrophysics Data System (ADS)

    Bogachev, V. A.; Pshechenkova, T. P.; Shumovskaya, M. A.

    2016-04-01

    The elemental composition of an altered layer at the external surface of a steam superheating tube of grade DI59 steel is investigated after long-term operation. It is shown that the layer is located between a scale and a matrix and depleted by silicon, manganese, copper, and chromium with the maximum oxidizer affinity, enriched by iron and nickel to 90%, and mainly composed of the α-Fe phase (ferrite) with the ferromagnetic properties. The layer formed as a result of selective oxidation and diffusion from the matrix into the metal scale with the less standard free energy of the formation of sulfides and oxides. A magnetic ferrite meter is used in the experimental investigation of the layer evolution by testing grade DI59 steel for heat resistance in air environment at temperatures of 585, 650, and 700°C for 15 × 103 h; creep at a temperature of 750°C and a stress of 60 MPa; and long-term strength at temperatures of 700 and 750°C and stresses of from 30 to 80 MPa. Specimens for tests are made of tubes under as-received conditions. The relationship between the ferrite phase content in the surface metal layer and the temperature and time of test is determined. The dependence is developed to evaluate the equivalent temperature for operation of the external surface of steam superheating tubes using data of magnetic ferritometry. It is shown that operation temperatures that are determined by the ferrite phase content and the σ phase concentration in the metal structure of steam superheating tubes with the significant operating time are close. It is proposed to use magnetic ferritometry for revelation of thermal nonuniformity and worst tubes of steam superheaters of HPP boilers.

  6. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  7. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.

    PubMed

    Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert

    2018-05-01

    In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-Th-O2) sheet for space shuttle vehicles, part 1

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1971-01-01

    A dispersion-strengthened alloy, TD nickel chromium (TDNiCr) is being developed for use on the thermal protection system of the space shuttle at temperatures up to 1204 C(2200 F). Manufacturing processes were developed for the fabrication of sheet and foil to specifications. The addition of aluminum to the basic TDNiCr composition provides outstanding oxidation resistance up to 1260 C(2300 F); aluminum levels of 2 to 4% are considered optimum for space shuttle application.

  9. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys

    SciTech Connect

    Moore, D.G.; Sorensen, N.R.

    1998-02-01

    This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into themore » Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.« less

  10. Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.

    2018-04-01

    Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.

  11. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  12. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  13. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems.

    PubMed

    Kim, Eun-Ha; Lee, Du-Hyeong; Kwon, Sung-Min; Kwon, Tae-Yub

    2017-03-01

    Although new digital manufacturing techniques are attracting interest in dentistry, few studies have comprehensively investigated the marginal fit of fixed dental prostheses fabricated with such techniques. The purpose of this in vitro microcomputed tomography (μCT) study was to evaluate the marginal fit of cobalt-chromium (Co-Cr) alloy copings fabricated by casting and 3 different computer-aided design and computer-aided manufacturing (CAD-CAM)-based processing techniques and alloy systems. Single Co-Cr metal crowns were fabricated using 4 different manufacturing techniques: casting (control), milling, selective laser melting, and milling/sintering. Two different commercial alloy systems were used for each fabrication technique (a total of 8 groups; n=10 for each group). The marginal discrepancy and absolute marginal discrepancy of the crowns were determined with μCT. For each specimen, the values were determined from 4 different regions (sagittal buccal, sagittal lingual, coronal mesial, and coronal distal) by using imaging software and recorded as the average of the 4 readings. For each parameter, the results were statistically compared with 2-way analysis of variance and appropriate post hoc analysis (using Tukey or Student t test) (α=.05). The milling and selective laser melting groups showed significantly larger marginal discrepancies than the control groups (70.4 ±12.0 and 65.3 ±10.1 μm, respectively; P<.001), whereas the milling/sintering groups exhibited significantly smaller values than the controls (P=.004). The milling groups showed significantly larger absolute marginal discrepancy than the control groups (137.4 ±29.0 and 139.2 ±18.9 μm, respectively; P<.05). In the selective laser melting and milling/sintering groups, the absolute marginal discrepancy values were material-specific (P<.05). Nonetheless, the milling/sintering groups yielded statistically comparable (P=.935) or smaller (P<.001) absolute marginal discrepancies to the control

  14. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    NASA Astrophysics Data System (ADS)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  15. Performance Testing of Twist Drills on AISI 4140 Alloy Steel

    DTIC Science & Technology

    1979-07-01

    AISI 4140 Annealed, RPM: 110, Feed Rate: 0.005 Ipr 2^ vi 1 LIST OF FIGURES (cont.) Figure Page 20. Maximum Height of Built-up Edge at Various...period. This investigation was conducted using only one kind of work material, AISI 4140 steel, annealed. The drill used for this investigation was a...HSS (M7), 0.5 inch diameter regular point, taper shank. AISI 4140 steel, annealed, belongs to a group of high strength materials relatively hard to

  16. Short Time Elevated Temperature Tensile Properties and Notch Toughness of Some Chromium-Iron Alloys

    DTIC Science & Technology

    1957-06-07

    toughness of matcrials A, B, and C was determined by using subsize V-notch Charpy Specimens, 1 inch long by 0.197 inch square prepared with their...elevated temperature tensile tests and V-notch Charpy imapact tests of som recently developed alloys with 4O,’a and 50,,1 ohromiuma are presented in this...lengths parallel to the longitudinal uxis of the alloy bars. In addition, some standard size V-notch Charpy specimens waro mach-ined from material B, for

  17. A Directionally Solidified Iron-chromium-aluminum-tantalum Carbide Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1977-01-01

    A eutectic alloy, Fe-13.6CR-3.7Al+9TaC, was directionally solidified in a high gradient furnace, producing a microstructure of alined TaC fibers in an oxidation resistant alpha-iron matrix. Tensile and stress rupture properties, thermal cycling resistance, and microstructures were evaluated. The alloy displays at 1000 C an ultimate tensile strength of 58 MPa and a 100-hour rupture life at a stress of 21 MPa. Thermal cycling to 1100 C induces faceting in the TaC fibers.

  18. Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcadam, D J; Mebs, R W

    1939-01-01

    The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.

  19. [Influence of cobalt-chromium alloy ceramics crown on aspartate transaminase and alkaline phosphatase of gingival crevicular fluid].

    PubMed

    Miao, Yu; Liu, Ling-Jun; Zhang, Xiao-Min; Li, Li

    2010-12-01

    The purpose of this article was to evaluate the influence of cobalt-chromium (Co-Cr) alloy as the material of inner crown on periodontal tissue through detecting the weight of diseased teeth and the concentration of aspartate transaminase (AST) and alkaline phosphatase (ALP) of the gingival crevicular fluid (GCF) after Co-Cr alloy ceramics repairing. In this study, thirty cases of clinical diseased teeth were chosen from thirty patients based on patients' consent. Each tooth conformed to the inclusion criteria. All of the thirty teeth were repaired with Co-Cr alloy ceramics according to the indications. Then GCF of each diseased tooth was collected and weighed at the time of the day before prosthesis, the first and third month after repairing respectively in order to detect the concentration of AST and ALP. Furthermore, comparative analysis for different periods was performed after the data statistics. To the weight of GCF and the concentration of AST after the respective comparison of three indexes which was of different periods, numerous of each index increased in accordance with the rule of preoperation, postoperative first month, and postoperative third month (P < 0.05). To the concentration of ALP at three time points, the compared results showed that the preoperative numerous was less than that of third month after operation and there was significant difference between them (P < 0.05). To the weight of GCF and the concentration of AST and ALP, after the respective comparison of three indexes which was the diseased teeth and the contralateral teeth with the same name in the periods of pre-operation, all the differences had no statistical significance (P > 0.05), but all the differences had statistical significance in the periods of postoperative third month (P < 0.05). During the next three months after operation, GCF weight, concentration of AST and ALP of diseased teeth was gradually increased after their Co-Cr alloy ceramics crown repairing. This increase

  20. Nitrogen in chromium-manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics.

    PubMed

    Mosecker, Linda; Saeed-Akbari, Alireza

    2013-06-01

    Nitrogen in austenitic stainless steels and its effect on the stacking fault energy (SFE) has been the subject of intense discussions in the literature. Until today, no generally accepted method for the SFE calculation exists that can be applied to a wide range of chemical compositions in these systems. Besides different types of models that are used from first-principle to thermodynamics-based approaches, one main reason is the general lack of experimentally measured SFE values for these steels. Moreover, in the respective studies, not only different alloying systems but also different domains of nitrogen contents were analyzed resulting in contrary conclusions on the effect of nitrogen on the SFE. This work gives a review on the current state of SFE calculation by computational thermodynamics for the Fe-Cr-Mn-N system. An assessment of the thermodynamic effective Gibbs free energy, [Formula: see text], model for the [Formula: see text] phase transformation considering existing data from different literature and commercial databases is given. Furthermore, we introduce the application of a non-constant composition-dependent interfacial energy, б γ / ε , required to consider the effect of nitrogen on SFE in these systems.

  1. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  2. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace

    PubMed Central

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T.

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr6+). Elemental manganese, nickel, chromium, iron emissions per unit length of weld and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered and analyzed by inductively-coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr6+. GMAW processes used were Surface Tension Transfer™, Regulated Metal Deposition™, Cold Metal Transfer™, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr6+ ranged from 50 to 7800 μg/min, and Cr6+ generation rates per g electrode ranged from 1 to 270μg/g. Elemental Cr generation rates spanned 13 to 330μg/g. Manganese emission rates ranged from 50 to 300μg/g. Nickel emission rates ranged from 4 to140 μg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as 5 times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes

  3. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    PubMed

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  4. The Mechanical Property of Batch Annealed High Strength Low Alloy Steel HC260LA

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojiang; Xia, Mingsheng; Zhang, Hongbo; Han, Bin; Li, Guilan

    Cold rolled high strength low alloy steel is widely applied in the automotive parts due to its excellent formability and weldability. In this paper, the steel grade HC260LA according to European Norm was developed with batch annealing process. With commercial C-Mn mild steel as a benchmark, three different groups of chemistry namely C-Mn-Si, C-Mn-Nb-Ti and C-Mn-Nb were compared in terms of yield-tensile strength (Y/T) ratio. Microstructure and mechanical properties were characterized as well. Based on industrial production results, chemistry and detailed process parameters for batch annealing were identified. In the end the optimal Y/T ratio was proposed for this steel grade under batch annealing process.

  5. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  6. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    PubMed

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr 6+ ) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr 6+ fractions were measured in the fumes; fume generation rates, Cr 6+ generation rates, and Cr 6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr 6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr 6+ ranged from 69 to 7800 μg/min, and Cr 6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr 6+ (ppm) in the fume did not necessarily correlate with the Cr 6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr 6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  7. Replacement of steel parts with extruded aluminum alloys in an automobile

    NASA Astrophysics Data System (ADS)

    Daggula, Manikantha Reddy

    Over the past years, vehicle emissions have shown a negative impact on environment and human health. A new strategy has been used by automakers to reduce a vehicle's weight which significantly reduce fuel consumption and C02 emissions. A very light car consumes very less fuel as it needs to overcome less inertia, decreasing the required power to movie the vehicle. Reducing weight is the easiest way to increase fuel economy and making it by just 10% can increase its efficiency 6 to 8 percent. For a normal scale 80% of vehicles weight is shared among chassis, power train and other exterior components. Almost 60% of the vehicles weight is comprised of steel and the remaining is with cast and extruded aluminum and magnesium alloys. Our main aim is to look for the parts like Fuel tank holder, Fuel filler neck, Turbo inlet assembly, and Brake lines, Dash board frame which are made from steel and replace them with extruded aluminum alloys, to analyze a conventional rear wheel aluminum drive shaft and replace it with a new design and with a new aluminum alloy. The current project involves dismantling an automobile and looking for feasible steel parts and making samples, analyzing the hardness of the samples. These parts are optimally analyzed using Ansys Finite element analysis tool, these parts are subjected to the constraints such as three-point bending, tensile testing, hydrostatic pressure and also torsional stress action on the drive shaft, the deformation and stress are observed in these parts. The results show the current steel parts can be replaced with 3000 series aluminum alloy and the drive shaft can be replaced with new design with 6061-T6 Al-alloy which decreases 25% of the shaft weight.

  8. Advances in Low Carbon, High Strength Ferrous Alloys

    DTIC Science & Technology

    1993-04-01

    35 TABLES 1. Specified chemical compositions and mechanical properties for GMAW/SAW/ GTAW wire electrodes, MIL-XXXS type, for welding...minimum service temperature of +300 F. The chromium and molybdenum additions improved hardenability and promoted the formation of mar- tensite in thick...alloying ele- ments ( chromium , nickel and molybdenum) are required, especially for thick sections. Production of high strength steel plate for military

  9. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach.

    PubMed

    Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito

    2012-01-01

    To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation.

  10. Early Fixation of Cobalt-Chromium Based Alloy Surgical Implants to Bone Using a Tissue-engineering Approach

    PubMed Central

    Ogawa, Munehiro; Tohma, Yasuaki; Ohgushi, Hajime; Takakura, Yoshinori; Tanaka, Yasuhito

    2012-01-01

    To establish the methods of demonstrating early fixation of metal implants to bone, one side of a Cobalt-Chromium (CoCr) based alloy implant surface was seeded with rabbit marrow mesenchymal cells and the other side was left unseeded. The mesenchymal cells were further cultured in the presence of ascorbic acid, β-glycerophosphate and dexamethasone, resulting in the appearance of osteoblasts and bone matrix on the implant surface. Thus, we succeeded in generating tissue-engineered bone on one side of the CoCr implant. The CoCr implants were then implanted in rabbit bone defects. Three weeks after the implantation, evaluations of mechanical test, undecalcified histological section and electron microscope analysis were performed. Histological and electron microscope images of the tissue engineered surface exhibited abundant new bone formation. However, newly formed bone tissue was difficult to detect on the side without cell seeding. In the mechanical test, the mean values of pull-out forces were 77.15 N and 44.94 N for the tissue-engineered and non-cell-seeded surfaces, respectively. These findings indicate early bone fixation of the tissue-engineered CoCr surface just three weeks after implantation. PMID:22754313

  11. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    PubMed Central

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  12. The diffusivity and solubility of deuterium in a high chromium martensitic steel

    NASA Astrophysics Data System (ADS)

    Forcey, K. S.; Iordanova, I.; Yaneva, M.

    1997-01-01

    The permeability, diffusivity and solubility of deuterium in the martensitic stainless steel MANET II have been studied in the temperature range 194-465°C by applying a time dependent gas-phase permeation technique. It was found that the temperature dependence of diffusivity and solubility could not be described by a simple Arrhenius expression over the entire temperature range investigated. At lower temperatures (below about 330°C) the diffusivity was found to be greatly reduced by the effects of trapping. Oriani's model has been applied to obtain the trapping energy and number density of the traps as well as the relative amounts of deuterium dissolved at lattice and trap sites. It is suggested that the most likely sites for trapping are at interfaces between the martensitic laths and between second phase particles and the surrounding metal matrix.

  13. Electrical conductivity and phase diagram of binary alloys. 21: The system palladium-chromium

    NASA Technical Reports Server (NTRS)

    Grube, G.; Knabe, R.

    1985-01-01

    Pd-Cr alloys were investigated by thermal analysis, hardness measurements, X-ray analysis, microscopic examination of etched pieces, and temperature-resistance curves of the solid alloys. Only one compound, Pd2Cr3, m, 1389 deg, is formed. It possesses a cubic face centered lattice and forms with excess Pd a series of solid solutions with a minimum m.p. at 45 atoms% Pd. Hardness maximum appears at the Pd2Cr3 point. Pd2Cr3 forms no solid solutions with Cr but eutectic point appears at 25 atoms% Pd, m. 1320 deg. The sp. resistance of pure Cr in an atom of H, indicates no allotropic forms. Cr2O3 is solid in molten Cr. Pure Cr melts at 1890 plus or minus 10 deg but Cr contg. Cr2O3 starts to melt at 1770 to 1790 deg.

  14. Diffusion in thoriated and nonthoriated nickel and nickel-chromium alloys at 1260 C

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Various solid-solid diffusion couples were assembled from thoriated and nonthoriated nickel-base alloys, welded, and diffusion annealed at 1260 C. Concentration profiles indicated that a thoria dispersion does not affect diffusion in Cr(alloy):Ni and Ni-4.8Al:Ni types of couples unless a fine grain structure is retained by the thoria particles. Metallography revealed the presence of thoria-free bands in the thoriated-Ni side of the diffusion zone. The bands contained grain boundaries and, in some cases, non-Kirkendall porosity. A mechanism based on the operation of vacancy sources is proposed to explain the thoria-free bands. In addition, a particular DS-NiCr:Ni couple had negligible Kirkendall porosity. This behavior was related to the grain structure of the particular lot of DS-NiCr.

  15. 75 FR 78216 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... Non-Alloy Steel Pipe from Brazil, the Republic of Korea (Korea), Mexico, and Venezuela and Amendment..., Director, Office 7 to Michael Walsh, Director, AD/CVD Revenue Policy & Programs, U.S. Customs and Border...

  16. Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy

    NASA Astrophysics Data System (ADS)

    Cojocaru, Vasile Dănuţ; Răducanu, Doina; Angelescu, Mariana Lucia; Vintilă, Adrian Nicolae; Şerban, Nicolae; Dan, Ioan; Cojocaru, Elisabeta Mirela; Cinca, Ion

    2017-08-01

    The microstructural changes induced by solution treatment of an industrial forged F53 Super Duplex Stainless Steel alloy were studied, in order to emphasize how component phases are influenced by heat treatment temperature and duration. The solution treatment was done at a temperature of 1100°C, with variable holding times: 0.6 ks (10 min), 3.6 ks (60 min) and 10.8 ks (180 min). Scanning electron microscopy-electron backscattered diffraction was used as main characterization technique, to obtain and analyse data referring to microstructural features, such as: nature and morphology of constituent phases, average grain-size and grain misorientation. It was shown that in all studied cases the microstructure consisted of a mixture of about 45% δ-Fe (ferrite) and 55% γ-Fe (austenite). Besides δ-Fe and γ-Fe phases, other phases were also identified, such as τ-phase (chromium-iron carbide), σ-phase (chromium-iron) and δ-(Cr-Fe) (ferrite).

  17. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    NASA Astrophysics Data System (ADS)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  18. Role of alloy additions on strengthening in 17-4 PH stainless steel

    NASA Astrophysics Data System (ADS)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  19. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  20. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  1. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    NASA Technical Reports Server (NTRS)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  2. Standard specification for carbon and alloy steel nuts. ASTM standard

    SciTech Connect

    NONE

    This specification is under the jurisdiction of ASTM Committee F-16 on Fasteners and is the responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers. Current edition approved Dec. 10, 1997. Published July 1998. Originally published as A 563-66. Last previous edition A 563-96.

  3. Modeling the Gas Nitriding Process of Low Alloy Steels

    NASA Astrophysics Data System (ADS)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  4. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  5. Effect of Different Chromium Additions on the Microstructure and Mechanical Properties of Multipass Weld Joint of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hoon; Lee, Hae Woo

    2012-12-01

    The correlation between the mechanical properties and ferrite volume fraction (approximately 40, 50, and 60 Ferrite Number [FN]) in duplex stainless steel weld metals were investigated by changing the Cr content in filler wires with a flux-cored arc-welding (FCAW) process. The interpass temperature was thoroughly maintained under a maximum of 423 K (150 °C), and the heat input was also sustained at a level under 15 KJ/cm in order to minimize defects. The microstructure examination demonstrated that the δ-ferrite volume fraction in the deposited metals increased as the Cr/Ni equivalent ratio increased, and consequently, chromium nitride (Cr2N) precipitation was prone to occur in the ferrite domains due to low solubility of nitrogen in this phase. Thus, more dislocations are pinned by the precipitates, thereby lowering the mobility of the dislocations. Not only can this lead to the strength improvement, but also it can accentuate embrittlement of the weld metal at subzero temperature. Additionally, the solid-solution strengthening by an increase of Cr and Mo content in austenite phase depending on the reduction of austenite proportion also made an impact on the increase of the tensile and yield strength. On the other hand, the impact test (at 293 K, 223 K, and 173 K [20 °C, -50 °C, and -100 °C]) showed that the specimen containing about 40 to 50 FN had the best result. The absorbed energy of about 40 to 50 J sufficiently satisfied the requirements for industrial applications at 223 K (-50 °C), while the ductile-to-brittle transition behavior exhibited in weldment containing 60 FN. As the test temperature decreased under 223 K (-50 °C), a narrow and deep dimple was transformed into a wide and shallow dimple, and a significant portion of the fracture surface was occupied by a flat cleavage facet with river patterns.

  6. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding.

    PubMed

    Matczak, W; Chmielnicka, J

    1993-03-01

    For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes.

  7. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding.

    PubMed Central

    Matczak, W; Chmielnicka, J

    1993-01-01

    For the years 1987-1990 160 individual samples of manual metal arc stainless steel (MMA/SS) welding fumes from the breathing zone of welders in four industrial plants were collected. Concentrations of soluble and insoluble chromium (Cr) III and Cr VI compounds as well as of some other welding fume elements (Fe, Mn, Ni, F) were determined. Concentration of welding fumes in the breathing zone ranged from 0.2 to 23.4 mg/m3. Total Cr amounted to 0.005-0.991 mg/m3 (including 0.005-0.842 mg/m3 Cr VI). Total Cr content of fumes varied from 0.1 to 7.4%. The distribution of particular Cr compounds was: 52.6% soluble Cr (including 50.7% Cr VI), 65.5% total Cr VI, and 11.4% insoluble Cr VI. The results obtained indicate that MMA/SS welding is a process that could be highly hazardous to human health. Evaluation of occupational exposure has shown that MMA/SS welders may exceed the admissible concentrations of soluble and insoluble Cr VI forms as well as of Mn and Ni. In the plants investigated the sum of the ratios of concentrations of particular welding fumes in the breathing zone of welders exceeded corresponding maximum allowable concentration values by 24 times (including 17 times for total Cr VI). Due to the variety and changeability of particular parameters occurring in the working environment, the composition of MMA/SS welding fumes (in the welder's breathing zone) is so variable that it is not possible to assess the exposure by means of one universal exposure indicator (maximum additive hygienic limit value). The evaluation should be based on the results of measurements of concentrations of particular elements in welding fumes. PMID:8457491

  8. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  9. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    SciTech Connect

    Perevalova, Olga; Konovalova, Elena, E-mail: knv123@yandex.ru; Koneva, Nina

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determinedmore » by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.« less

  10. Effect of heat treatment on the crystal structure of deformed samples of chromium-manganese steel

    NASA Astrophysics Data System (ADS)

    Chezganov, D. S.; Chikova, O. A.; Borovykh, M. A.

    2017-09-01

    Results of studying microstructures and the crystal structure of samples of 35KhGF steel (0.31-0.38 wt % C, 0.17-0.37 wt % Si, 0.95-1.25 wt % Mn, 1.0-1.3 wt % Cr, 0.06-0.12 wt % V, and the remainder was Fe) have been presented. The samples have been selected from hot-rolled pipes subjected to different heat treatments. A study has been carried out in order to explain the choice of the heat-treatment regime based on determining the structure-properties relationship that provides an increase in the corrosion resistance of pipes to the effect of hydrocarbons. Methods of the energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) have been used. In the microstructure of samples, oxide inclusions and discontinuities with sizes of 1-50 μm that presumably consist of the scale were detected. The ferrite grain size and the orientations of crystals were determined; the data on the local mechanical stresses in the Taylor orientation- factor maps were obtained. The grain refinement; the increase in the fraction of the low-angle boundaries; and the decrease in the local mechanical stresses and, therefore, the highest corrosion resistance to the effect of hydrocarbons is achieved by normalizing at 910°C.

  11. Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system

    NASA Astrophysics Data System (ADS)

    Li, Hua-bing; Jiang, Zhou-hua; Feng, Hao; Zhu, Hong-chun; Sun, Bin-han; Li, Zhen

    2013-09-01

    The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400-900°C. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.

  12. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  13. Alloying effect of copper on the corrosion properties of low-alloy steel for flue gas desulfurization system

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Park, Sun-Ah; Kim, Jung-Gu; Shin, Kee-Sam; He, Yinsheng

    2015-03-01

    The alloying effect of Cu for a flue gas desulfurization materials was investigated using the electrochemical methods in the modified green death solution and the surface analyses. The test results demonstrated that the densely formed rust layer with high metallic Cu content improves the corrosion resistance of Cu-containing steel in the flue gas desulfurization (FGD) environment. The rust layer on the surface of the 0.02 wt% Cu steel, which has an insufficient Cu content, was less protective than others. The 0.05 wt% Cu steel represented the highest corrosion resistance due to the formation of the densely formed rust layer with optimum Cu content. Because the free standing Cu2S precipitates had the insoluble characteristic in highly acidic solution, it produced the relatively porous Cu-enriched layer on the 0.08 wt% Cu steel surface. From these phenomena, the corrosion resistance of specimen decreased as the Cu content of specimen increased from 0.05 wt% to 0.08 wt%.

  14. Corrosion Fatigue Characteristics of 12Cr Alloy Steel in Na2SO4 Solution

    NASA Astrophysics Data System (ADS)

    Bae, D. H.; Cho, S. Y.

    In order to estimate reliability of 12Cr alloy steel using as the turbine blade material of the steam power plant, its corrosion fatigue characteristics in Na2SO4 solution considering its percentage and temperature that were determined from the polarization test results were investigated, and compared with the results in air. The corrosion characteristic of 12Cr alloy steel was remarkably susceptible in 12.7wt.% (IM) Na2SO4 solution, and its susceptibility increased with the solution temperature increase. The corrosion fatigue characteristics in 12.7wt.% Na2SO4 solution were similar to that of in air at 25°C. The crack growth rate was however increased with the temperature of solution increase. The reasons showing such results are due to the difference of the crack growth mechanism according to the electro-chemical activity of the corrosion factors.

  15. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  16. Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.

    PubMed

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy

    2009-05-30

    The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.

  17. Investigation of attenuation coefficients of some stainless steel and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Caner, Zafer; Tufan, Mustafa ćaǧatay

    2018-02-01

    In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.

  18. The development of ultrahigh strength low alloy cast steels with increased toughness

    NASA Astrophysics Data System (ADS)

    Lynch, Paul C.

    This work describes the initial work on the development of the next generation of ultrahigh strength low alloy (UHSLA) cast steels. These UHSLA cast steels have both ultrahigh strength levels and good impact toughness. The influence of heat treatment, secondary processing using hot isostatic processing (HIP), and chemical composition on the microstructure and properties of UHSLA cast steels have been evaluated. The extent of microsegregation reduction expected during the heat treatment of UHSLA cast steels has also been estimated by diffusion modeling. This new family of UHSLA cast steels is similar in composition and properties to UHSLA wrought steels. However, the heat treatment and secondary processing of the UHSLA cast steels is used to develop microstructures and properties typically developed through thermomechanical processing and heat treatment for wrought UHSLA steels. Two martensitic UHSLA steels, 4340+ (silicon modified 4340) and ES-1 were investigated for this study. For the 4340+ alloy, heat treatment variables evaluated include homogenization temperature and time, tempering temperature, and austempering temperature and time. For the ES-1 alloy, heat treatment variables evaluated include homogenization temperature and time, austenization temperature, cryogenic treatment, and tempering temperature. The effect of high temperature hot isostatic processing (HIP) on the 4340+ and ES- 1 alloys was also investigated. Tensile properties, charpy v-notch impact toughness (CVN), microstructures, and fractographs have all been characterized after heat treatment. The effects of HIP on microporosity reduction in the ES-1 alloy were also investigated. The experiments carried out on the investment cast 4340+ alloy have shown that increasing the homogenization temperature can increase CVN without changing the ultimate tensile strength (UTS) or yield strength (YS) of the cast material. By replacing the homogenization step in the conventional heat treatment process with

  19. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  20. Steel selection for UBC steel bridge

    NASA Astrophysics Data System (ADS)

    Liu, Haoyu

    2018-03-01

    This report conducts a material selection of different types of steel for UBC Steel Bridge Team. I am a third-year material engineering student, so the result from this material selection can only be taken into consideration but not fully adopted. As part of my academic journey, it is possible for technical mistakes in this material selection process. The mechanic properties are the most effective category of properties, making it necessary to be justified from the steel bridge design and chosen in accordance with the objective of the team. An introduction for currently-used steel properties and the expected steel properties is provided. The examination focus on how different alloy compositions of steel changes its properties. The properties of the steel are examined in three main aspects: hardness, strength, and toughness. The results suggest that more nickel, manganese, and chromium in the steel provide better steel for the team to use. Further research is needed if a more precise material selection is required.

  1. Microstructural development at weld interface between Zr-based glassy alloy and stainless steel by resistance microwelding

    NASA Astrophysics Data System (ADS)

    Fukumoto, S.; Minami, M.; Soeda, A.; Matsushima, M.; Takahashi, M.; Yokoyama, Y.; Fujimoto, K.

    2012-08-01

    Zr-based bulk metallic glasses are expected to be welded to conventional structural alloys. Dissimilar welding of metallic glasses to stainless steel was carried out by resistance microwelding. The metallurgical analysis of the weld interface revealed the welding mechanism. A thin reaction layer was formed between the two liquid materials. The melting of stainless steel should be limited to obtain sound joints.

  2. 78 FR 28190 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Steel Wire Rod From Mexico: Final Results of Antidumping Duty Administrative Review; 2010-2011 AGENCY... results of the administrative review of the antidumping duty order on carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review (POR) is October 1, 2010, through September 30, 2011...

  3. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of Antidumping Duty Order AGENCY..., under 19 CFR 351.225(k)(2) to determine whether wire rod with an actual diameter between 4.75 and 5.00 millimeters (mm) is within the scope of the antidumping (AD) order on carbon and certain alloy steel wire rod...

  4. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty Administrative Review; 2010-2011... conducting an administrative review of the antidumping duty order on carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review is October 1, 2010, through September 30, 2011, and the...

  5. 78 FR 60850 - Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset Review of the Countervailing... of the countervailing duty (CVD) order on carbon and certain alloy steel wire rod (wire rod) from...: Background On June 3, 2013, the Department initiated the second sunset review of the CVD order \\1\\ on wire...

  6. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty Administrative Review AGENCY... results of the administrative review of the antidumping duty order on carbon and certain alloy steel wire rod (wire rod) from Mexico.\\1\\ This review covers imports of wire rod from ArcelorMittal Las Truchas...

  7. Effects of alloying on aging and hardening processes of steel with 20% nickel

    NASA Technical Reports Server (NTRS)

    Bogachev, I. N.; Zvigintsev, N. V.; Maslakova, T. M.

    1981-01-01

    Measurements of hardness, thermal emf, and electrical resistance were used to study the effects of Co, Mo, Ti and Al contents on aging and hardening processes in Fe 20%Ni steel. It is shown that the effects of these alloying elements differ substantially. Anomalies which arise in the temperature dependence of physical properties due to the presence of cobalt and molybdenum are reduced by the inclusion of titanium and aluminum (and vice versa).

  8. Fracture Characteristics of Two High-Strength, Low-Alloy and Two Stainless Steels

    DTIC Science & Technology

    1977-01-01

    conditions. The effects of hydrogen. and temper. embrittlement on the materials’ behavior when fractured under tensile and fatigue fonditions were... effects of hydrogen- and tomper-embrittlement have a bet, crystal structure, this plane has the type on the materials’ behavior when fractured under...A. Troiano, "The Role of lydrogen and Other Intersiftials high-strength, low-alloy structural steels generally used in the Mechanical Behavior ot

  9. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  10. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  11. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  12. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    DOE PAGES

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; ...

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation andmore » symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.« less

  13. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    PubMed Central

    Matsushita, Masafumi

    2011-01-01

    Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144

  14. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  15. Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Suh, Dong Woo; Ryu, Joo Hyun; Joo, Min Sung; Yang, Hong Seok; Lee, Kyooyoung; Bhadeshia, H. K. D. H.

    2013-01-01

    The manganese concentration of steels which rely on transformation-induced plasticity is generally less than 2 wt pct. Recent work has highlighted the potential for strong and ductile alloys containing some 6 wt pct of manganese, but with aluminum additions in order to permit heat treatments which are amenable to rapid production. However, large concentrations of aluminum also cause difficulties during continuous casting. Alloy design calculations have been carried out in an effort to balance these conflicting requirements, while maintaining the amount of retained austenite and transformation kinetics. The results indicate that it is possible by adjusting the carbon and manganese concentrations to reduce the aluminum concentration, without compromising the mechanical properties or transformation kinetics. The deformation-induced transformation of retained austenite is explained quantitatively, for a range of alloys, in terms of a driving force which takes into account the very fine state of the retained austenite.

  16. Characterization of the Interface of an Alloy 625 Overlay on Steels Using Nanoindentation

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Lippold, John

    2018-06-01

    Industry standards require postweld heat treatment (PWHT) to reduce the heat-affected zone hardness of steels such as F22 (2.25Cr-1Mo) and AISI 8630 overlaid (clad) with Alloy 625 weld metal. PWHT results in carbon diffusion and accumulation at the interface between the steel and overlay. The accumulation of carbon in a planar solidification growth zone adjacent to the fusion boundary results in high hardness and the potential for hydrogen-assisted cracking. The planar growth zone (PGZ) is so narrow that normal Vickers hardness testing cannot fully reveal the hardness distribution in this zone. This study focused on the application of nanoindentation to characterize the hardness in the narrow microstructural regions adjacent to the fusion boundary. The development of nanohardness maps revealed that the PGZ is not necessarily the region that exhibits peak hardness after PWHT. The highest hardness values were associated with clusters of M7C3 carbides in specific subregions in the PGZ and also in the partially-mixed zone adjacent to the fusion boundary or in steel "swirl" structures. It was also confirmed in this study that nanohardness has a linear correlation with Vickers hardness values. The results presented here provide new insight into the role of carbon diffusion during PWHT and its effect on interface embrittlement associated with Alloy 625 overlays on steel.

  17. Stress corrosion cracking behavior of irradiated model austenitic stainless steel alloys.

    SciTech Connect

    Chung, H. M.; Karlsen, T. M.; Ruther, W. E.

    Slow-strain-rate tensile tests (SSRTs) and posttest fractographic analyses by scanning electron microscopy were conducted on 16 austenitic stainless steel (SS) alloys that were irradiated at 289 C in He. After irradiation to {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} and {approx}0.9 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E >1 MeV), significant heat-to-heat variations in the degree of intergranular and transgranular stress corrosion cracking (IGSCC and TGSCC) were observed. Following irradiation to a fluence of {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2}, a high-purity laboratory heat of Type 316L SS (Si {approx} 0.024 wt%) exhibited the highest susceptibility to IGSCC. The other 15 alloysmore » exhibited negligible susceptibility to IGSCC at this low fluence. The percentage of TGSCC on the fracture surfaces of SSRT specimens of the 16 alloys at {approx}0.3 x 10{sup 21} n{center_dot}cm{sup {minus}2} (E > 1 MeV) could be correlated well with N and Si concentrations; all alloys that contained <0.01 wt.% N and <1.0 wt. % Si were susceptible, whereas all alloys that contained >0.01 wt.% N or >1.0 wt.% Si were relatively resistant. High concentrations of Cr were beneficial. Alloys that contain <15.5 wt.% Cr exhibited greater percentages of TGSCC and IGSCC than those alloys with {approx}18 wt.% Cr, whereas an alloy that contains >21 wt.% Cr exhibited less susceptibility than the lower-Cr alloys under similar conditions.« less

  18. Comparison of the effect of different surface treatments on the bond strength of different cements with nickel chromium metal alloy: An in vitro study

    PubMed Central

    Kapoor, Saumya; Balakrishnan, Dhanasekar

    2017-01-01

    Background For success of any indirect metal restoration, a strong bond between cement and the intaglio surface of metal is imperative. The aim of this study is to evaluate and compare the effect of different surface treatment on the tensile and shear bond strength of different cements with nickel–chromium alloy. Material and Methods 120 premolars were sectioned horizontally parallel to the occlusal surface to expose the dentin. Wax patterns were fabricated for individual tooth followed by casting them in nickel chromium alloy. 60 samples were tested for tensile bond strength, and the remaining 60 for shear bond strength. The samples were divided into three groups (of 20 samples each) as per the following surface treatment: oxidation only, oxidation and sandblasting, or oxidation, sandblasting followed by application of alloy primer. Each group was subdivided into 2 subgroups of 10 samples each, according to the bonding cement i.e RM-GIC and resin cement. Samples were subjected to thermocycling procedure followed by evaluation of bond strength. Results Two-way analyses of variance (ANOVA) was performed to compare the means of tensile and shear bond strength across type of surface treatment and cement, followed by post hoc parametric analysis. For all tests ‘p’ value of less than 0.05 was considered statistically significant. Conclusions The surface treatment of oxidation and sandblasting followed by application of alloy primer offered the maximum tensile and shear bond strength for both RM GIC and resin cement. Resin cement exhibited greater tensile and shear bond strength than RM-GIC for all the three surface treatment methods. Key words:Resin cement, resin modified glass ionomer cement, oxidation, sandblasting, alloy primer, tensile bond strength, shear bond strength, universal testing machine. PMID:28828160

  19. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    NASA Astrophysics Data System (ADS)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  20. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  1. Cold-workability limits for carbon and alloy steels

    NASA Astrophysics Data System (ADS)

    El-Domiaty, A.

    1999-04-01

    In metalforming, the success in accomplishing the required deformation without failure of the forming tools or cracking of the work material represents the major concern for manufacture and design engineers. The degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition is defined as workability. In the present work, an experimental investigation was carried out to determine the cold-workability limits for five different types of steel: AISI 1018, 1045, 1078, 4140, and 4340. The upset (compression) test was used to determine the workability limit for each type. The upset dies and specimen geometries were designed to give different strain paths covering the range from homogeneous deformation (ɛz/ɛθ=-2.0) to close to plane-strain condition (ɛz/ɛθ=0.0). Grid pattern was printed on the specimen surface in order to measure the axial and hoop strain components during deformation. Specific elements were selected on the specimen surface, and their strain paths were determined. Each strain path was terminated once surface cracking had been observed. The ends of the strain paths, at which macrocracks were observed, were connected to obtain the workability limit on the forming-limit diagram. The workability limit of AISI 1018 is the highest among the other types of steel.

  2. Vacuum Brazing TC4 Titanium Alloy to 304 Stainless Steel with Cu-Ti-Ni-Zr-V Amorphous Alloy Foil

    NASA Astrophysics Data System (ADS)

    Dong, Honggang; Yang, Zhonglin; Wang, Zengrui; Deng, Dewei; Dong, Chuang

    2014-10-01

    Dissimilar metal vacuum brazing between TC4 titanium alloy and 304 stainless steel was conducted with newly designed Cu-Ti-Ni-Zr-V amorphous alloy foils as filler metals. Solid joints were obtained due to excellent compatibility between the filler metal and stainless steel substrate. Partial dissolution of stainless steel substrate occurred during brazing. The shear strength of the joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil was 105 MPa and that with Cu37.5Ti25Ni12.5Zr12.5V12.5 was 116 MPa. All the joints fractured through the gray layer in the brazed seam, revealing brittle fracture features. Cr4Ti, Cu0.8FeTi, Fe8TiZr3 and Al2NiTi3C compounds were found in the fractured joint brazed with Cu43.75Ti37.5Ni6.25Zr6.25V6.25 foil, and Fe2Ti, TiCu, Fe8TiZr3 and NiTi0.8Zr0.3 compounds were detected in the joint brazed with Cu37.5Ti25Ni12.5Zr12.5V12.5 foil. The existence of Cr-Ti, Fe-Ti, Cu-Fe-Ti, and Fe-Ti-V intermetallic compounds in the brazed seam caused fracture of the resultant joints.

  3. Bainitic stabilization of austenite in low alloy sheet steels

    NASA Astrophysics Data System (ADS)

    Brandt, Mitchell L.

    The stabilization of retained austenite in 'triple phase' ferrite/bainite/austenite sheet steels by isothermal bainite transformation after intercritical annealing has been studied in 0.27C-1.5Si steels with 0.8 to 2.4Mn. Dilatometric studies show that cooling rates comparable to CAPL processing result in approximately 30% conversion of austenite to epitaxial ferrite, but the reaction can be suppressed by the faster cooling rate of salt bath quenching. Measured isothermal transformation kinetics at 350 to 450sp°C shows a maximum overall rate near 400sp°C. X-ray diffraction shows that the amount of austenite retained from 400sp°C treatment peaks at 3 minutes but the carbon content increases monotonically to a saturation level. The stability of austenite in this type of steel has been quantified for the first time by direct measurement of the characteristic Msbsps{sigma} temperature. With variations in processing conditions and test temperatures, the tensile uniform ductility has been correlated with the amount and stability of retained austenite, while maintaining a constant 3% flow of 83 ksi. Consistent with previous transformations plasticity studies an optimal austenite stability is found at approximately 10 K above the Msbsps{sigma} temperature, demonstrating a maximum uniform ductility of 44% for an austenite content of 16%. Correlations indicate that desired uniform ductility levels of 20 to 25% could be achieved with only approximately 5% austenite if stability is optimized by placing Msbsps{sigma} 10 K below ambient temperature. Measured uniform ductility in plane strain tension shows similar trends with processing conditions, but models predict that stress state effects will shift the Msbsps{sigma} temperature approximately 5 K higher than that for uniaxial tension. The measured dependence of Msbsps{sigma} on austenite composition and particle size has been modeled via heterogeneous nucleation theory. The composition dependence is consistent with

  4. Microstructures and Hardness of the High Chromium Oxide Dispersion Strengthened Alloy Fe-25Cr-Y2O3Sintered by the Arc Plasma Sintering (APS)

    NASA Astrophysics Data System (ADS)

    Bandriyana; Dimyati, Arbi; Sujatno, Agus; Salam, Rohmad; Sumaryo; Untoro, Pudji; Suharno, Bambang

    2018-03-01

    High chromium ODS alloy has been developed for application as structural material in high temperature nuclear reactor. In the present study, Fe-25Cr-Y2O3 with dispersed 0.5 wt.% Ytria (Y2O3) were synthesized and characterized by means of various techniques as a function of milling time 1, 2 and 3 hours. The alloy synthesis was carried out by the Mechanical Alloying (MA) process and subsequent sintering by means the new plasma technique using the APS apparatus. Scaning Electron Microscopy (SEM) and X-ray diffraction (XRD) were conducted for morphology and phase analysis. Evaluation of the mechanical properties was studied based on the Vickers hardness measurement. SEM examination revealed that the sample after sintering by APS method at different milling duration exhibited some particle aglomeration and homogenized oxide dispersion that obviously strengthened the alloy. The XRD test, however, proved the formation of the main phase Fe-Cr. The alloy showed exceptionally high hardness of 193 VHR which is mainly due to the grain refining that increase by the increasing of the milling time.

  5. Wrought Cr--W--V bainitic/ferritic steel compositions

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.; Sikka, Vinod Kumar; Santella, Michael L.; Babu, Sudarsanam Suresh; Jawad, Maan H.

    2006-07-11

    A high-strength, high-toughness steel alloy includes, generally, about 2.5% to about 4% chromium, about 1.5% to about 3.5% tungsten, about 0.1% to about 0.5% vanadium, and about 0.05% to 0.25% carbon with the balance iron, wherein the percentages are by total weight of the composition, wherein the alloy is heated to an austenitizing temperature and then cooled to produce an austenite transformation product.

  6. Alloying of steel and graphite by hydrogen in nuclear reactor

    NASA Astrophysics Data System (ADS)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  7. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels.

    PubMed

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-12

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening.

  8. Effects of Zr Addition on Strengthening Mechanisms of Al-Alloyed High-Cr ODS Steels

    PubMed Central

    Ren, Jian; Yu, Liming; Liu, Yongchang; Liu, Chenxi; Li, Huijun; Wu, Jiefeng

    2018-01-01

    Oxide dispersion strengthened (ODS) steels with different contents of zirconium (denoted as 16Cr ODS, 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS) were fabricated to investigate the effects of Zr on strengthening mechanism of Al-alloyed 16Cr ODS steel. Electron backscatter diffraction (EBSD) results show that the mean grain size of ODS steels could be decreased by Zr addition. Transmission electron microscope (TEM) results indicate that Zr addition could increase the number density but decrease the mean diameter and inter-particle spacing of oxide particles. Furthermore, it is also found that in addition to Y-Al-O nanoparticles, Y-Zr-O oxides with finer size were observed in 16Cr-0.3Zr ODS and 16Cr-0.6Zr ODS steels. These changes in microstructure significantly increase the yield strength (YS) and ultimate tensile strength (UTS) of ODS steels through mechanisms of grain boundary strengthening and dispersion strengthening. PMID:29329260

  9. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  10. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    NASA Technical Reports Server (NTRS)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  11. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  12. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  13. Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties

    NASA Astrophysics Data System (ADS)

    Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.

    2016-10-01

    Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.

  14. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  15. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    SciTech Connect

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acidmore » or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).« less

  16. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  17. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  18. Microstructure design of low alloy transformation-induced plasticity assisted steels

    NASA Astrophysics Data System (ADS)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  19. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...- rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead (``terne plate''), or both chromium and chromium oxides (``tin-free steel''), whether or not...

  20. [Study on content of nickel in saliva released from the nickel-chromium and the nickel-chromium-titanium porcelain alloy].

    PubMed

    Wang, Wen-Jie; Zhang, Tai-Qiang; Wei, Hong

    2010-02-01

    The purpose of the study was to investigate the content of nickel (Ni) ion in patients' saliva after wearing the porcelain-fused-to nickel-chromium (Ni-Cr) crown or the porcelain-fused-to nickel-chromium-titanium(Ni-Cr-Ti) crown. 50 patients who had one molar or premolar needed repairing were selected and divided into two groups randomly. Patients in one group were fabricated with porcelain-fused-to Ni-Cr crown and the patients in the other group were fabricated with porcelain-fused-to Ni-Cr-Ti crown. Collect the patients' saliva before wearing, 1 week, 3 months, and 6 months after wearing. The content of Ni ion in saliva was detected by inductively coupled plasma mass spectrometry (ICP-MS). The content of Ni ion in both groups increased at the first week, and go back after 6 months. There were no significant differences before wearing, 1 week, 3 months, and 6 months after wearing. There were no significant differences between the two groups. Wearing the porcelain-fused-to Ni-Cr crown or the porcelain-fused-to Ni-Cr-Ti crown has no significant influence on the content of Ni ion in saliva.

  1. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact.

    PubMed

    Hedberg, Yolanda; Midander, Klara; Wallinder, Inger Odnevall

    2010-07-01

    Ferrochromium alloys are manufactured in large quantities and placed on the global market for use as master alloys (secondary raw materials), primarily for stainless steel production. Any potential human exposure to ferrochromium alloy particles is related to occupational activities during production and use, with 2 main exposure routes, dermal contact and inhalation and subsequent digestion. Alloy and reference particles exposed in vitro in synthetic biological fluids relevant for these main exposure routes have been investigated in a large research effort combining bioaccessibility; chemical speciation; and material, surface, and particle characteristics. In this paper, data for the dermal exposure route, including skin and eye contact, will be presented and discussed. Bioaccessibility data have been generated for particles of a ferrochromium alloy, stainless steel grade AISI 316L, pure Fe, pure Cr, iron(II,III)oxide, and chromium(III)oxide, upon immersion in artificial sweat (pH 6.5) and artificial tear (pH 8.0) fluids for various time periods. Measured released amounts of Fe, Cr, and Ni are presented in terms of average Fe and Cr release rates and amounts released per amount of particles loaded. The results are discussed in relation to bulk and surface composition of the particles. Additional information, essential to assess the bioavailability of Cr released, was generated by determining its chemical speciation and by providing information on its complexation and oxidation states in both media investigated. The effect of differences in experimental temperature, 30 degrees C and 37 degrees C, on the extent of metal release in artificial sweat is demonstrated. Iron was the preferentially released element in all test media and for all time periods and iron-containing particles investigated. The extent of metal release was highly pH dependent and was also dependent on the medium composition. Released amounts of Cr and Fe were very low (close to the limit of

  2. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  3. Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium

    NASA Astrophysics Data System (ADS)

    Ershov, N. V.; Fedorov, V. I.; Chernenkov, Yu. P.; Lukshina, V. A.; Shishkin, D. A.

    2017-09-01

    The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.

  4. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  5. Role of copper in precipitation hardening of high-alloy Cr-Ni cast steels

    NASA Astrophysics Data System (ADS)

    Gajewski, Mirosław

    2006-02-01

    The mechanism of strengthening with second-phase particles that results from heat treatment, i.e., precipitate hardening, plays an important role in modern alloys. The strengthening effect of such particles can result from their coherence with the matrix, inhibition of dislocation slip, inhibition of grain boundary slip, as well as hampering recovery processes due to dislocation network pinning. The results of investigations into high-alloy Cr-Ni-Cu cast steels precipitate hardened with highly dispersed ɛ phase particles are presented within. The influence of heat treatment on changes in microstructure, mechanical properties, and morphology of fracture surfaces obtained under loading have been analyzed. It has been demonstrated that, with the appropriate selection of heat treatment parameters, it is possible to control the precipitation of the hardening ɛ phase and, thus, to change the final mechanical and functional properties.

  6. Influence of laser radiation on structure and properties of steels and alloys

    NASA Astrophysics Data System (ADS)

    Tarasova, T.; Popova, E.

    2013-03-01

    In present study, and laser alloying of different steels and laser cladding of Ti and SiC powders mixtures was carried out, and microstructure, as well as microhardness profile and wear properties were examined. Research of the influence of lasers alloying modes on the elastic and plastic characteristics of the surface was conducted. As a result of chemical reactions in the cladded layer, a new phase (TiC) was synthesized during cladding process. The results showed that, in the clad layer, TiC was solidified to form dendrites in the clad zone. Produced coatings have high microhardness values in the upper and middle clad areas, about two time higher than clad matrix microhardness.

  7. Microstructural and Mechanical Properties of Hot Roll Bonded Titanium Alloy/Low Carbon Steel Plate

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Qi, Zi-chen; Yu, Hui; Xu, Cheng; Xiao, Hong

    2018-03-01

    In this paper, a titanium alloy and low carbon steel were bonded via hot rolling in a vacuum, and the effect of roll bonding temperature and reduction ratio on the microstructural and mechanical properties of the plate was studied. When the bonding temperature was between 850 and 1050 °C, the shear strength of the interface increased with an increasing reduction ratio from 18 to 70%. At a bonding temperature of 950 °C and at a rolling reduction ratio of 70%, the best bonding strength was obtained, and a shear fracture occurred on the low carbon steel matrix. At 1050 °C, brittle compounds, i.e., TiC, FeTi, and Fe2Ti, formed at the interface, which decreased the bonding strength. The large reduction ratio can break up compounds at the interface and extrude fresh metal for bonding, thereby increasing the bonding strength.

  8. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  9. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  10. Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Ho; Ha, Heon-Young; Kim, Sung-Joon

    2011-12-01

    The precipitation reaction of an austenitic stainless steel containing N + C was investigated using transmission electron microscopy. The main precipitate formed during isothermal aging at 1123 K (850 °C) was M23C6 carbide, and its morphology gradually changed in a sequence of intergranular (along grain boundary) → cellular (or discontinuous) → intragranular (within grain interior) form with aging time. Irrespective of different morphologies, the M23C6 was consistently related to austenite matrix in accordance with the cube-on-cube orientation relationship. Based on the analysis of electron diffraction, two variants of intragranular M23C6 were identified, and they were related to each other by twin relation. Prolonged aging produced other types of precipitates—the rod-shaped Cr2N and the coarse irregular intermetallic sigma phase. The similarities and differences in precipitation behavior between N only and N + C alloyed austenitic stainless steels are briefly discussed.

  11. Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Thiele, Sebastian; Matlack, Kathryn H.; Kim, Jin-Yeon; Qu, Jianmin; Wall, James J.; Jacobs, Laurence J.

    2014-02-01

    Nonlinear ultrasonic waves have shown to be sensitive to various microstructural changes in metals including coherent precipitates; these precipitates introduce a strain field in the lattice structure. The thermal aging of certain alloy steels leads to the formation of coherent precipitates, which pin dislocations and contribute to the generation of a second harmonic component. A precipitate hardenable material namely 17-4 PH stainless steel is thermally treated in this research to obtain different precipitation stages, and then the influence of precipitates on the acoustic nonlinearity parameter is assessed. Conclusions about the microstrucutural changes in the material are drawn based on the results from a nonlinear Rayleigh surface wave measurement and complementary thermo-electric power, hardness and ultrasonic velocity measurements. The results show that the nonlinear parameter is sensitive to coherent precipitates in the material and moreover that precipitation characteristics can be characterized based on the obtained experimental data.

  12. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    NASA Astrophysics Data System (ADS)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2018-03-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  13. Hot cracking susceptibility of Alloy 52M weld overlays onto CF8 stainless steel

    NASA Astrophysics Data System (ADS)

    Chu, H. A.; Young, M. C.; Chu, H. C.; Tsay, L. W.; Chen, C.

    2013-02-01

    In this study, weld overlays of Alloy 52M (a nickel-based filler metal) onto CF8 stainless steel (SS) were performed using the gas tungsten arc welding process. Hot cracking in the weld overlays was observed particularly near the interfacial region of the Alloy 52M/CF8 weld overlay. In general, the hot cracks were most likely to occur at the sites with high dilution rates, e.g., at the weld start/end locations of a single pass or in the first and second passes in multi-pass overlays. The region near the weld interface between Alloy 52M and the CF8 SS had a higher hot cracking tendency than the other regions. It was found that the dilution rate and the formation of eutectic-type constituents (i.e., γ/NbC) both played significant roles in the determination of the hot cracking susceptibility of these weld overlays. Nevertheless, hot cracks were entirely eliminated by proper deposition of a SS buffer layer prior to overlaying with Alloy 52M.

  14. Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.

    PubMed

    Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie

    2017-10-19

    This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.

  15. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    SciTech Connect

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less

  16. Alloy Shrinkage Factors for the Investment Casting of 17-4PH Stainless Steel Parts

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Porter, Wallace D.

    2008-04-01

    In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted.

  17. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    NASA Astrophysics Data System (ADS)

    Park, Joonam; Choi, Eunsoo; Park, Kyoungsoo; Kim, Hong-Taek

    2011-09-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel.

  18. [Experimental study on the retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use].

    PubMed

    Yan, Hai-xin; Zhao, Yan-bo; Qin, Li-mei; Zhu, Hai-ting; Wu, Lin

    2015-12-01

    To investigate the changes of retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use. Fifteen metal abutment crowns made of No.QT800-2 nodular cast iron were used in the test. Five clasps from each of the following alloys: cobalt-chromium alloy, pure titanium and vitallium were fabricated. The undercut depth was 0.25 mm. A masticatory simulator was used to cycle the clasp on and off the metal abutment crown 5000 times, simulating 3-year clinical use. Retentive force was measured 11 times during this process. SPSS13.0 software package was used to analyze the results. Casting defects were observed using X-ray non destructive testing (X-ray NDT) before cyclic test. Surface characteristics were qualitatively evaluated using scanning electron microscope (SEM) before and after cyclic test. The results indicated that there were significant differences (P=0.000) in the retentive force of the 3 groups before and after the cyclic test. The highest retentive force was recorded in the vitallium clasps, and the lowest retentive force was measured in the pure titanium clasps. The results of X-ray NDT depicted the typical casting defect seen at the end of the connector. SEM examination revealed that no evidence of pores and cracks in the inner surfaces of the 3 groups was found before cyclic test. Wear was evident in the inner surfaces of the 3 groups but none of the clasps exhibited any evidence of cracks after cyclic test through SEM examination. In this in vitro test, vitallium clasps show the best retentive force in the 3 groups before and after 5000 cycles at 0.25 mm undercut depth. Cobalt-chromium alloy and vitallium clasps can maintain ideal retentive force at 0.25mm undercut depth in the long-term use. Wear may be one of the reasons for the loss of retentive force of clasps in the cyclic test.

  19. The effect of alloying elements and microstructure on the strength and fracture resistance of pearlitic steel

    NASA Astrophysics Data System (ADS)

    Nakase, K.; Bernstein, I. M.

    1988-11-01

    The processes of ductile and brittle fracture in fully pearlitic steel and their relation to both the scale of the microstructure and the presence of substitutional alloy elements have been investigated at room temperature using smooth tensile and over a range of temperatures using V-notched Charpy impact specimens. The results show that the early stages of cracking, revealed in both types of specimen, are largely the result of shear cracking of the pearlite lamellae. These cracks grow and can reach a size when they impinge upon the prior austenite boundary; afterward the character of fracture can be either microvoid coalescence or cleavage, depending on test conditions and metallurgical variables. Further, the carbide plates of the pearlite lamellae can act as barriers to the movement of dislocations as is the case normally with grain boundaries. For pearlite an optimum spacing of approximately 0.2 μm resulting from a balance between carbide plate thickness and interlamellar spacing was found to enhance toughness, although such changes are much smaller than corresponding changes due to varying alloy elements. Specific alloy elements used herein strengthened the lamellar ferrite in pearlite, inhibiting the movement of dislocations while also usually decreasing the lamellar cementite plate thickness for the same spacing. This dual behavior results in enhanced resistance to the initiation and propagation of microcracks leading to an improvement in strength, ductility, and toughness. The most effective alloy elements for the composition ranges studied in fully pearlitic steels are Si and Ni for strength improvement, and Ni and Mn for toughness.

  20. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Schönecker, Stephan; Chen, Dengfu; Li, Wei; Long, Mujun; Vitos, Levente

    2017-11-01

    We propose a first-principles framework for longitudinal spin fluctuations (LSFs) in disordered paramagnetic (PM) multicomponent alloy systems and apply it to investigate the influence of LSFs on the temperature dependence of two elastic constants of PM austenitic stainless steel Fe15Cr15Ni. The magnetic model considers individual fluctuating moments in a static PM medium with first-principles-derived LSF energetics in conjunction with describing chemical disorder and randomness of the transverse magnetic component in the single-site alloy formalism and disordered local moment (DLM) picture. A temperature-sensitive mean magnetic moment is adopted to accurately represent the LSF state in the elastic-constant calculations. We make evident that magnetic interactions between an LSF impurity and the PM medium are weak in the present steel alloy. This allows gaining accurate LSF energetics and mean magnetic moments already through a perturbation from the static DLM moments instead of a tedious self-consistent procedure. We find that LSFs systematically lower the cubic shear elastic constants c' and c44 by ˜6 GPa in the temperature interval 300-1600 K, whereas the predominant mechanism for the softening of both elastic constants with temperature is the magneto-volume coupling due to thermal lattice expansion. We find that non-negligible local magnetic moments of Cr and Ni are thermally induced by LSFs, but they exert only a small influence on the elastic properties. The proposed framework exhibits high flexibility in accurately accounting for finite-temperature magnetism and its impact on the mechanical properties of PM multicomponent alloys.

  1. Biomechanical comparison of the strength of adhesion of polymethylmethacrylate cement to zirconia ceramic and cobalt-chromium alloy components in a total knee arthroplasty.

    PubMed

    Kumahashi, Nobuyuki; Uchio, Yuji; Kitamura, Nobuto; Satake, Shigeru; Iwamoto, Mikio; Yasuda, Kazunori

    2014-11-01

    The purpose of this study was to clarify the biomechanical characteristics of cement-material interfaces for the zirconia ceramic and cobalt-chromium (Co-Cr) alloy femoral components used for total knee arthroplasty. In the first sub-study, we compared the strength of adhesion of the cement to flat plates, by tensile testing under dry and moistened conditions. In the second sub-study, we compared the maximum load of the cement-component complex by tensile testing. In the third sub-study, we compared the fatigue characteristics of the cement-component complex by use of a dynamic tensile testing machine. Under dry conditions, the maximum strength of adhesion to the zirconia ceramic plate was the same as that to the Co-Cr alloy plate. Under moistened conditions, however, the strength of adhesion to the zirconia ceramic plate was significantly lower (p = 0.0017) whereas the strength of adhesion to the Co-Cr alloy plate was not reduced. Maximum load for the cement-component complexes for zirconia ceramic and Co-Cr alloy was no different under both dry and moistened conditions. Fatigue testing showed that cement-zirconia adhesion was stronger than cement-Co-Cr alloy adhesion (p = 0.0161). The strength of adhesion of cement to zirconia ceramic is substantially weaker under wet conditions than under dry conditions. The mechanical properties of cement-zirconia ceramic component complexes and cement-Co-Cr alloy component complexes are equivalent.

  2. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  3. Influence of alloying elements in rust formed on low alloyed steels. A study by x-ray diffraction and Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Haces, C.; Furet, N. R.; Muleshkova, L.

    1991-11-01

    In this research, three Bulgarian steels were employed, one carbon (08KP) and other two low alloyed (KBC) and (KORAT). These three steels were exposed on a test site affected with industrial pollution in the Cuban climate, for a period of one, two and three years. The phase composition obtained by means of XRD and Mössbauer spectroscopy is mainly a mixture of Goethite (α-FeOOH) and Lepidocrocite (γ-FEOOH) in the three steels. The mean width of the Goethite reflexions, as determined in the diffractograms, is increased in the case of the low alloyed steels, while in Mössbauer spectra two types of magnetic arrangement for Goethite appear, one antiferromagnetic (sextet) and the other superparamagnetic (doublet). This behaviour is due to the effect of the small particle size and the presence of alloying elements in the structure. In this paper, the values of the areas of both effects are discussed from the greater formation of superparamagnetic Goethite in the KORAT steel which exibits the lowest corrosion rate.

  4. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy.

    PubMed

    Nakamura, Shinichiro; Kondo, Yasushi; Nakajima, Kenichi; Ohno, Hajime; Pauliuk, Stefan

    2017-09-05

    Alloying metals are indispensable ingredients of high quality alloy steel such as austenitic stainless steel, the cyclical use of which is vital for sustainable resource management. Under the current practice of recycling, however, different metals are likely to be mixed in an uncontrolled manner, resulting in function losses and dissipation of metals with distinctive functions, and in the contamination of recycled steels. The latter could result in dilution loss, if metal scrap needed dilution with virgin iron to reduce the contamination below critical levels. Management of these losses resulting from mixing in repeated recycling of metals requires tracking of metals over multiple life cycles of products with compositional details. A new model (MaTrace-alloy) was developed that tracks the fate of metals embodied in each of products over multiple life cycles of products, involving accumulation, discard, and recycling, with compositional details at the level of both alloys and products. The model was implemented for the flow of Cr and Ni in the Japanese steel cycle involving 27 steel species and 115 final products. It was found that, under a high level of scrap sorting, greater than 70% of the initial functionality of Cr and Ni could be retained over a period of 100 years, whereas under a poor level of sorting, it could plunge to less than 30%, demonstrating the relevance of waste management technology in circular economy policies.

  5. Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping

    2018-03-01

    As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.

  6. Crack Resistance of Welded Joints of Pipe Steels of Strength Class K60 of Different Alloying Systems

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.

    2018-03-01

    The crack resistance of welded joints of pipe steels of strength class K60 and different alloying systems is studied. The parameter of the crack tip opening displacement (CTOD) is shown to be dependent on the size of the austenite grains and on the morphology of bainite in the superheated region of the heat-affected zone of the weld. The crack resistance is shown to be controllable due to optimization of the alloying system.

  7. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  8. Heavy Metal Resistances and Chromium Removal of a Novel Cr(VI)-Reducing Pseudomonad Strain Isolated from Circulating Cooling Water of Iron and Steel Plant.

    PubMed

    Zhang, Jian-Kun; Wang, Zhen-Hua; Ye, Yun

    2016-12-01

    Three bacterial isolates, GT2, GT3, and GT7, were isolated from the sludge and water of a circulating cooling system of iron and steel plant by screening on Cr(VI)-containing plates. Three isolates were characterized as the members of the genus Pseudomonas on the basis of phenotypic characteristics and 16S rRNA sequence analysis. All isolates were capable of resisting multiple antibiotics and heavy metals. GT7 was most resistant to Cr(VI), with a minimum inhibitory concentration (MIC) of 6.5 mmol L -1 . GT7 displayed varied rates of Cr(VI) reduction in M2 broth, which was dependent on pH, initial Cr(VI) concentration, and inoculating dose. Total chromium analysis revealed that GT7 could remove a part of chromium from the media, and the maximum rate of chromium removal was up to 40.8 %. The Cr(VI) reductase activity of GT7 was mainly associated with the soluble fraction of cell-free extracts and reached optimum at pH 6.0∼8.0. The reductase activity was apparently enhanced by external electron donors and Cu(II), whereas it was seriously inhibited by Hg(II), Cd(II), and Zn(II). The reductase showed a K m of 74 μmol L -1 of Cr(VI) and a V max of 0.86 μmol of Cr(VI) min -1  mg -1 of protein. The results suggested that GT7 could be a promising candidate for in situ bioremediation of Cr(VI).

  9. Effect of Shear Strain on the Structure and Properties of Chromium-Nickel Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Rybal'chenko, O. V.; Kliauga, A.; Tokar', A. A.

    2015-07-01

    The structure and properties of metastable austenitic steel 08Kh18N10T and stable austenitic steel ASTM F138 under shear deformation implemented by torsion under hydrostatic pressure (THP) at T = 300 and 450°C and by equichannel angular pressing (ECAP) at T = 400°C are studied. The THP yields an ultrafine-grain structure in a fully austenitic matrix with grain size 45 - 70 nm in steel ASTM F138 and 87 - 123 nm in steel 08Kh1810T. The ECAP at 400°C yields a grain-subgrain structure with structural elements 100 - 300 nm in size in steel 08Kh18N10T and 200 - 400 nm in size in steel ASTM F138.

  10. Characterization of High Damping Fe-Cr-Mo and Fe-Cr-Al Alloys for Naval Ships Application.

    DTIC Science & Technology

    1988-03-01

    austenitic , and martensitic. The high damping Fe-Cr-based alloys are closely related to ferritic stainless steels . Ferritic stainless steel consists of an Fe...cm reveme it Prectiaq #no ’uenf r oy o.o(a tflrowf U S9GO..P Damping; Ship Silencing; Ferritic Stainless Steels ; Ti-Ni 7 LhV I,. Cintunue on roere .r...decreased. E. METALLURGY OF THE IRON-CHROMIUM ALLOY SYSTEM 1. Physical Properties Stainless steels are divided into three main classes: ferritic

  11. The structure and properties of the modified nitrogenated high-chromium steel for welding the parts of oil and gas equipment

    NASA Astrophysics Data System (ADS)

    Sokolov, G. N.; Artem'ev, A. A.; Dubcov, Yu. N.; Eremin, E. N.; Litvinenko-Ar'kov, V. B.

    2017-08-01

    The influence of nitrogen and titanium carbonitride particles on the structure and properties of high-chromium steel, deposited by flux cored wire, has been studied. It has been shown that the quality formation of the weld metal and pore absence in it are achieved with nitrogen concentration in wire filler no more than 0.32 mass%. It has been found that in adding titanium carbonitride particles from 0.2 to 0.6 mass% to wire filler the effect of weld Fe-C-Cr-Mo-Ni-N system metal modification is implemented and its operational properties increase. The developed flux cored wire has been recommended for oil and gas equipment welding.

  12. The Quantitative Microstructural Characterization of Multipass TIG Ultra Low Carbon Bainitic Steel Weldments and Correlation with Mechanical Properties

    DTIC Science & Technology

    1993-09-01

    in TIG weldments. The alloying elements used in ULCB steels are; Carbon (C), Manganese (Mn), Molybdenum (Mo), Nickel (Ni), Niobium (Nb), Chromium (Cr...process. 7 C. WELDING PROCESSES 1. Tungsten Inert Gas (TIG) Welding Tungsten Inert Gas (TIG) Welding (or Gas Tungsten Arc Welding ( GTAW )), produces... chromium (Cr), molybdenum (Mo), and sometimes vanadium (V). Reheat cracking occurs in the HAZ during postweld stress relieving, especially in thick

  13. Pitting corrosion resistant austenite stainless steel

    DOEpatents

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  14. Novel Dissimilar Joints Between Alloy 800H and 2.25%Cr and 1%Mo Steel

    SciTech Connect

    DebRoy, Tarasankar

    Dissimilar metal joints between ferritic steels and nickel base alloys are currently fabricated using conventional arc welding processes with selected filler metal combinations. The dissimilar metal joints contain abrupt changes in composition over a relatively small distance. Many years of service at elevated temperatures has shown that these welds are susceptible to creep and creep fatigue failures. The primary mechanism for these creep failures involves carbon diffusion from the ferritic steel to the nickel base alloy. As a result, a carbon depleted zone is created that contains very few stable carbides. This work used additive manufacturing (AM) technologies as amore » highly controllable means for reducing carbon migration through theoretically designed, compositionally graded transition joints guided by appropriate thermodynamic, kinetic and heat transfer and fluid flow modeling. The contents of the report include the objectives and tasks set forth by the PI and collaborators, major technical accomplishments throughout the research and additional details in the form of technical publications resulting from the NEUP grant and reports from the collaborating university and national laboratory.« less

  15. Effect of solute concentration on grain boundary migration with segregation in stainless steel and model alloys

    NASA Astrophysics Data System (ADS)

    Kanda, H.; Hashimoto, N.; Takahashi, H.

    The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.

  16. Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring

    NASA Astrophysics Data System (ADS)

    Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.

    2017-05-01

    The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.

  17. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  18. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  19. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    NASA Astrophysics Data System (ADS)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  20. Predicting the impact of chromium on flow-accelerated corrosion

    SciTech Connect

    Chexal, B.; Goyette, L.F.; Horowitz, J.S.

    1996-12-01

    Flow-Accelerated Corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Many experiments have been performed to understand the mechanism of FAC. For approximately twenty years, it has ben widely recognized that the presence of small amounts of chromium will reduce the rate of FAC. This effect was quantified in the eighties by research performed in France, Germany and the Netherlands. The results of this research has been incorporated into the computer-based tools used by utility engineers to deal with this issue. For some time, plant data from Diablo Canyon has suggested that the existing correlations relating themore » concentration of chromium to the rate of FAC are conservative. Laboratory examinations have supported this observation. It appears that the existing correlations fail to capture a change in mechanism from a FAC process with linear kinetics to a general corrosion process with parabolic kinetics. This change in mechanism occurs at a chromium level of approximately 0.1%, within the allowable alloy range of typical carbon steel (ASTM/ASME A106 Grade B) used in power piping in most domestic plants. It has been difficult to obtain plant data that has sufficient chromium to develop a new correlation. Data from Diablo Canyon and the Dukovany Power Plant in the Czech Republic will be used to develop a new chromium correlation for predicting FAC rate.« less

  1. Zirconium vanadium chromium alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1980-10-14

    A ternary intermetallic compound having the formula Zr(V/sub 1-x/Cr/sub x/)/sub 2/ where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200/sup 0/C, at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  2. Peculiarities of steel and alloy electrochemical and corrosion behavior after laser processing

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Tat'yana G.; Kosyrev, Feliks K.; Rodin, Anatoly V.; Sayapin, V. P.

    1997-04-01

    Different types of laser processing can significantly increase the corrosion resistance of constructive materials, secure higher levels of metal properties in comparison with standard protection from corrosion and can be successfully used for industrial application. The research carried out in TRINITI during the last 10 years allowed us to create a data base about corrosion behavior in different chemical media of various metals, alloys and steels after welding, melting, surface alloying, etc. on technological continuous-wave carbon-dioxide-laser with average power up to 5 kilowatt. The investigated materials were subdivided into two groups: (1) without changes of phases composition after laser processing (pure metals, stainless steels); and (2) exposed to structural and phase changes under laser-matter interaction (carbon steels with different carbon content). It has allowed us to investigate the peculiarities of corrosion process mechanism depending on matter surface structure and phase composition both on laser irradiation regimes. Our research was based on the high sensitive electrochemical analysis combined with other corrosion and physical methods. The essential principles of electrochemical analysis are next. There are two main processes on metal under the interaction with electrolyte solution: anodic reaction -- which means the metal oxidation or transition of metal kations into solution; cathodic reaction -- the reoxidation of the ions or molecular of the solution. They are characterizing by the values of current densities and the rates of these reactions are dependent upon the potential arising on the metal-solution frontier. The electrochemical reactions kinetic investigations gives a unique possibility for the research of metal structure and corrosion behavior even in the case of small thickness of laser processed layers.

  3. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    NASA Astrophysics Data System (ADS)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  4. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  5. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  6. Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel

    PubMed Central

    Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie

    2017-01-01

    This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379

  7. Surface laser alloying of 17-4PH stainless steel steam turbine blades

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Wang, Liang; Zhang, Qunli; Kong, Fanzhi; Lou, Chenghua; Chen, Zhijun

    2008-09-01

    As a known high-quality precipitation hardening stainless steel with high strength, high antifatigue, excellent corrosion resistance and good weldability, 17-4PH has been widely used to produce steam turbine blades. However, under the impact of high-speed steam and water droplets, the blades are prone to cavitation, which could lead to lower efficiency, shorter life time, and even accidents. In this article, the 17-4PH blade's surface was alloyed using a high power CO 2 laser. The microstructure and microhardness of hardened 17-4PH were tested by scanning electronic microscope (SEM), X-ray diffraction (XRD), energy disperse spectroscopy (EDS) and a microhardness tester. After laser alloying, the surface layer was denser and the grain refined, while the microhardness of the surface (average 610HV 0.2) was about one times higher than that of the substrate material (330HV 0.2). The friction coefficient of the laser-alloyed 17-4PH layer was much lower than that of the substrate.

  8. Microstructure and Mechanical Properties of a Low Alloyed MnB Cast Steel

    NASA Astrophysics Data System (ADS)

    Luo, Kaishuang; Bai, Bingzhe

    2010-08-01

    The microstructure and mechanical properties of a low alloyed MnB cast steel designed for coupler castings of trucks were studied. The results show that the microstructure of the MnB cast steel after water quenching is lath martensite and a small amount of massive islands in the matrix of lath martensite. The average size of the martensite packets is about 10 μm in length. Carbides precipitated dispersively at the tempering temperature of 450 °C. The carbides are slender and fibrous, of which the microstructure was θ-phase (Fe, Mn)3C characterized by TEM. The MnB cast steel has good hardenability and tempering stability. Excellent combination of strength, ductility and low-temperature toughness were obtained after water-quenching and 450 °C tempering: Rm = 960-1040 MPa, ReL = 880-900 MPa, A = 19-21%, Z = 56-58%. Especially, the impact energy of the Charpy V-Notch (CVN) specimens reached 70-88 J at -40 °C. The fracture mechanism is transcrystalline fracture both for ambient temperature uniaxial tensile test specimens and for CVN impact test specimens broken at -40 °C, where the whole surfaces were manifested as voids and dimples.

  9. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    NASA Astrophysics Data System (ADS)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  10. Effect of microstructure on transformation-induced plasticity of silicon-containing low-alloy steel

    SciTech Connect

    Tomita, Yoshiyuki; Morioka, Kojiro

    1997-04-01

    Fe-0.6C-1.5Si-0.8Mn steel was studied to determine the effect of the microstructure on transformation-induced plasticity (TRIP) of silicon-containing low-alloy steel. A remarkable increase in elongation through TRIP can develop in the steel subjected to the following heat treatments: (1) austemper combined with subcritical annealing (SA Aus-T): subcritical annealing at 993K followed by austempering at 673K and then light tempering (after austenitization at 1173K); (2) austemper coupled with interrupted quenching (IQ Aus-T): interrupted quenching at 533K followed by austempering at 673K and light tempering (after austenization at 1,173K). The SA Aus-T treatment produced the triple structures of carbide-free upper bainite, retained austenitemore » ({gamma}R), and free ferrite. As a result of the IQ Aus-T treatment, the triple structures of carbide-free upper bainite, {gamma}R, and tempered martensite appeared. The results are described and microstructural factors in TRIP are discussed.« less

  11. Finite element method analysis of cold forging for deformation and densification of Mo alloyed sintered steel

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.

    2017-10-01

    In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.

  12. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    SciTech Connect

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.

    2010-01-21

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steelmore » substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.« less

  13. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  14. Alloy steel nuts for bolting for high-pressure and high-temperature service (ASME SA-194 with additional requirements)

    SciTech Connect

    Not Available

    This standard covers alloy steel nuts for bolting for high-pressure and high-temperature service in nuclear and associated applications. This standard does not cover bar or other starting materials. The only implied special considerations for starting materials are that they be capable of passing the required tests when processed into finished products in accordance with this standard.

  15. Flight Planning for the International Space Station-Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Matson, D. M.; Loser, W.; Hyers, R. W.; Rogers, J. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper is an overview of the status and science for the LODESTARS (Levitation Observation of Dendrite Evolution in Steel Ternary Alloy Rapid Solidification) research project. The program is aimed at understanding how melt convection influences phase selection and the evolution of rapid solidification microstructures.

  16. 75 FR 22372 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Preliminary..., line, and pressure pipe from the People's Republic of China (``PRC'') is being, or is likely to be...'s Republic of China, dated September 16, 2009 (``Petition''). On September 28, 2009, TMK IPSCO and...

  17. 76 FR 77770 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ...-Alloy Steel Pipe From Mexico: Final Results of Antidumping Duty Administrative Review AGENCY: Import... Department of Commerce (the Department) published the preliminary results of the administrative review of the...: Preliminary Results of Antidumping Duty Administrative Review, 76 FR 49437 (August 10, 2011) (Preliminary...

  18. Influence of carbon on the formation of the surface layer in the process of electroerosion alloying of steel with tungsten

    NASA Astrophysics Data System (ADS)

    Vasil'eva, E. V.; Bochkov, V. E.; Mikheev, É. A.; Lyakishev, V. A.; Afanas'eva, T. N.

    1983-10-01

    With an increase in carbon content in the steel being treated, the thickness of the alloyed layer increases and its microhardness also increases. The carbon exerts a deoxidizing action on the layer being formed and promotes a reduction in the threshold of deerosion and also additional strengthening of the layer as the result of the formation of binary η-carbides.

  19. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  20. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Non-Alloy Steel Pipe from Brazil, the Republic of Korea (Korea), Mexico, and Venezuela and Amendment... 23954 (May 6, 2003) (Assessment Policy Notice). Because ``as entered'' liquidation instructions do not... assessment'' regulation on May 6, 2003. See Assessment Policy Notice. This clarification will apply to POR...

  1. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Welded Non-Alloy Steel Pipe from Brazil, the Republic of Korea (Korea), Mexico, and Venezuela and... Proceedings: Assessment of Antidumping Duties, 68 FR 23954 (May 6, 2003) (reseller policy). This clarification... antidumping duties in accordance with the reseller policy. Cash Deposit Requirements The following cash...

  2. Effect of alloying elements and coiling temperature on the recrystallization behavior and the bainitic transformation in TRIP steels

    NASA Astrophysics Data System (ADS)

    Han, Seongho; Seong, Hwangoo; Ahn, Yeonsang; Garcia, C. I.; DeArdo, A. J.; Kim, Inbae

    2009-08-01

    The effects of alloying elements and coiling temperature on recrystallization behavior and bainitic transformation were investigated based on 0.07C-Mn-Cr-Nb steel with a low carbon equivalent. Based on the ferrite recrystallization behavior, the proper intercritical annealing temperature of all studied steels was suggested to produce TRIP steel with good strength and elongation balance. All steels coiled at 550 °C showed much faster ferrite recrystallization behavior than steels coiled at 700 °C. In addition to the coiling temperature, the effect of increasing carbon content on the ferrite recrystallization was minor at a coiling temperature of 550 °C, but much more prominent at a coiling temperature of 700 °C. The highest Mo added steel showed the best strength and elongation balance, and the highest carbon and Mo added steel showed the highest tensile strength at a coiling temperature of 550 °C. The steel containing a higher amount of elemental Al (0.7 wt.% Al) exhibited much better elongation than the lower Al added steel (0.04 wt.% Al) in TS 780 MPa grade, about 24 % and 19 %, respectively.

  3. Launcher Roadmap for the CrVI Substitution of Surface Treatments. Screening of Trivalent-Chromium Conversion Solutions and First Promising Results for Repair Applications on Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Debout, Vincent; Pettier, Sophie

    2014-06-01

    Airbus Defence and Space, Space System is involved in a global roadmap for launchers in order to substitute hexavalent chromium (CrVI) and Cadmium in the current surface treatments on metallic structures.Within this framework, a screening of trivalent chromium (CrIII) conversion solutions for touch-up applications has been carried out since this step is crucial to perform local application or to repair minor damages on launcher structures but it leads to higher risks of exposure for the workers.Three commercial CrIII conversion solutions have been evaluated on high performance aluminum alloys such as AA2024 T3 and AA7175 T7351 that are often used as structural materials.This preliminary investigation highlights the effect of surface preparation, rinsing and conversion process on the final corrosion performance of conversion coatings (CCs). The results are also discussed in terms of visual aspect and adhesion with new Cr-free primers.Two operating sets of parameters are identified with promising results that represent the first steps towards the development of a new Cr-free touch-up process.

  4. [The industrial environment in the electric-furnace steel smelting, converter and open-hearth furnace methods of manufacturing manganese-alloyed steels].

    PubMed

    Karnaukh, N G; Petrov, G A; Gapon, V A; Poslednichenko, I P; Shmidt, S E

    1992-01-01

    Inspection of the environment in manganese-alloyed steel production showed inadequate hygienic conditions of the technological processes employed. Air was more polluted by manganese oxides during the oxygen-converter process though their highest concentrations, 38 times exceeding the MAS, appeared during the casting of steel. An electric furnace coated by dust-noise-proof material and gas cleaning is preferable from a hygienic point of view. The influence of unfavourable microclimate, intensive infrared irradiation and loud noise on workers necessitates automation and mechanization of the process in order to improve the working conditions.

  5. Influence of melting and casting methods and finish line design on the marginal discrepancy of nickel-chromium-titanium alloy crowns.

    PubMed

    Cogolludo, Pablo G; Suarez, María J; Peláez, Jesús; Lozano, José F L

    2010-01-01

    The aim of this study was to analyze the influence of melting and casting procedures and the cervical finish line design on the marginal fit of nickel-chromium-titanium alloy crowns. Sixty standardized specimens were prepared to receive metal-ceramic crowns and were divided into two groups according to the cervical finish line: chamfer or rounded shoulder. Three melting and casting procedures were analyzed: (1) induction-centrifuge (IC), (2) gas oxygen torch-centrifuge (TC), and (3) induction-vacuum/pressure (IP). The marginal fit was measured with an image analysis system. Significant differences (P =.005) were observed among the groups, with TC showing the lowest discrepancies (45.87 μm). No significant differences were observed between the two finish lines. The accuracy of fit achieved for the groups analyzed may be regarded as within the range of clinical acceptance.

  6. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    SciTech Connect

    Chen, Z.R., E-mail: raymix@aliyun.com

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB regionmore » had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.« less

  7. [Studies on the recovery of pharmaceutical drug substances from surfaces made of defined stainless-steel alloys].

    PubMed

    Kloss, S; Müller, U; Oelschläger, H

    2005-09-01

    Facilities for the manufacturing of pharmaceutical drug substances on the pilot-plant and the industrial scale as well as chemical reactors and vessels used for chemical work-up mainly consist of alloyed stainless steel. The influence of the alloy composition and the surface condition, i.e. of the roughness of the stainless-steel materials, on the adsorption of structurally diverse steroidal substances and, hence, on the quality of the products was studied. In general, stainless-steel alloys with smooth, not so rough surfaces are to be favored as reactor material. However, it was demonstrated in this study that, on account of the weak interaction between active substances and steel materials, mechanically polished materials of a medium roughness up to approx. 0.4 microm can be employed instead of the considerably more cost-intensive electrochemically polished stainless-steel surfaces. The type of surface finishing up to a defined roughness, then, has no influence on the quality of these pharmaceutical products. Substances that, because of their molecular structure, can function as "anions" in the presence of polar solvents, are adsorbed on very smooth surfaces prepared by electrochemical methods, forming an amorphous surface film. For substances with this structural characteristics, the lower-cost mechanically polished reactor materials of a medium roughness up to approx. 0.5 microm should be used exclusively.

  8. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Hyoung; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-08-01

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T0 determination for the tempered martensitic SA508 Gr.4N steels.

  9. Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for Protective Finishes for Steel Parts of Aircraft

    DTIC Science & Technology

    1949-09-01

    ON LOAN FROM 7k a. **+dU fefeÄtüiÄ: .<*-#=« Investigation of Electrodeposited Alloys and Pure Metals as Substitutes for Zinc and Cadmium for...graphs Eight alloys, selected as being superior to pure zinc or cadmium for protecting steel, were evaluated on the basis of static and dynamic... zinc -silver alloy of 25% silver. A tabulated summary of the testing program on all cast and electrodeposited alloys tested is included. * and

  10. Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1. [environmental tests of aluminum alloys, stainless steels, and titanium alloys

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Shumaker, M. B.; Walsh, J. D.; Coursen, J. W.

    1973-01-01

    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy.

  11. Radiation damage studies of ion-irradiated low-activation developmental martensitic steel alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Mazey, D. J.; Hanks, W.; Lurcook, O. K.

    1990-09-01

    Five martensitic, nominally 9 and 11% Cr-W-V-Mn-Ta stainless steels which have been developed as low-activation alloys for fusion-reactor structural applications have been irradiated with 52 MeV Cr 6+ ions to 20 dpa at 475°C in the Harwell Variable Energy Cyclotron (VEC). Four of the alloys contained additions of 0.1 wt% Ta and these had been shown in prior tests to have mechanical properties comparable with the conventional FV 448 alloy. Examinations by TEM showed that irradiation-induced precipitates were present on a fine-scale in all of the alloys. These comprised Cr-rich lath-like defects in the 9Cr, Ta-free alloy; small Cr-rich particles in the 9Cr-3W-0.1Ta alloy and Cr-rich planar precipitates in the remaining alloys. Little or no irradiation-induced cavitation was observed. The other important irradiation-induced response was in the dislocation structure in the Ta-containing alloys which comprised an extensive rafted array of elongated a <100> type dislocation loops having major axes aligned in <100> directions. A significant fraction of the presumed a <100> loops contained stacking-fault fringes and analysis suggested that these were Cr 2N or Fe 4N nitride phase which it is known can form on {001} habit planes. Such nitrides are observed frequently under thermal-annealing conditions in ferritic steels, but less frequently under irradiation. Their formation in relation to the void swelling resistance of ferritic-martensitic alloys is discussed.

  12. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  13. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene.

    PubMed

    Bagchi, D; Bagchi, M; Stohs, S J

    2001-06-01

    Chromium (VI) is a widely used industrial chemical, extensively used in paints, metal finishes, steel including stainless steel manufacturing, alloy cast irons, chrome, and wood treatment. On the contrary, chromium (III) salts such as chromium polynicotinate, chromium chloride and chromium picolinate, are used as micronutrients and nutritional supplements, and have been demonstrated to exhibit a significant number of health benefits in rodents and humans. However, the cause for the hexavalent chromium to induce cytotoxicity is not entirely understood. A series of in vitro and in vivo studies have demonstrated that chromium (VI) induces an oxidative stress through enhanced production of reactive oxygen species (ROS) leading to genomic DNA damage and oxidative deterioration of lipids and proteins. A cascade of cellular events occur following chromium (VI)-induced oxidative stress including enhanced production of superoxide anion and hydroxyl radicals, increased lipid peroxidation and genomic DNA fragmentation, modulation of intracellular oxidized states, activation of protein kinase C, apoptotic cell death and altered gene expression. In this paper, we have demonstrated concentration- and time-dependent effects of sodium dichromate (chromium (VI) or Cr (VI)) on enhanced production of superoxide anion and hydroxyl radicals, changes in intracellular oxidized states as determined by laser scanning confocal microscopy, DNA fragmentation and apoptotic cell death (by flow cytometry) in human peripheral blood mononuclear cells. These results were compared with the concentration-dependent effects of chromium (VI) on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Chromium (VI)-induced enhanced production of ROS, as well as oxidative tissue and DNA damage were observed in these cells. More pronounced effect was observed on chronic myelogenous leukemic K562 cells and J774A.1 murine macrophage cells. Furthermore, we have assessed the effect of a

  14. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    PubMed

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker.

  15. Effect of Pipe Body Alloy on Weldability of X80 Steel

    NASA Astrophysics Data System (ADS)

    Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui

    Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.

  16. The improvement of the surface hardness of stainless steel and aluminium alloy by ultrasonic cavitation peening

    NASA Astrophysics Data System (ADS)

    Janka, Styková; Miloš, Müller; Jan, Hujer

    This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.

  17. Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Cui, Xixi; Yang, Chen

    2018-05-01

    A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.

  18. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

    NASA Astrophysics Data System (ADS)

    Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.

    2017-10-01

    Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

  19. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  20. Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation

    NASA Astrophysics Data System (ADS)

    Imran, M. Khalid; Masood, S. H.; Brandt, Milan

    2015-12-01

    Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.