Science.gov

Sample records for chromiumv doping agents

  1. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    SciTech Connect

    Krumpolc, M. ); Hill, D. ); Struhrmann, H.B. , Hamburg . Hamburger Synchrotronstrahlungslabor)

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.

  2. Doping and musculoskeletal system: short-term and long-lasting effects of doping agents.

    PubMed

    Nikolopoulos, Dimitrios D; Spiliopoulou, Chara; Theocharis, Stamatios E

    2011-10-01

    Doping is a problem that has plagued the world of competition and sports for ages. Even before the dawn of Olympic history in ancient Greece, competitors have looked for artificial means to improve athletic performance. Since ancient times, athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A Prohibited List of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, β₂-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. Apart from the unethical aspect of doping, as it abrogates fair-play's principle, it is extremely important to consider the hazards it presents to the health and well-being of athletes. The referred negative effects for the athlete's health have to do, on the one hand, by the high doses of the performance-enhancing agents and on the other hand, by the relentless, superhuman strict training that the elite or amateur athletes put their muscles, bones, and joints. The purpose of this article is to highlight the early and the long-lasting consequences of the doping abuse on bone and muscle metabolism. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  3. Associated Polymers, Solvents and Doping Agents to Make Polyaniline Electrospinnable

    NASA Astrophysics Data System (ADS)

    Bertea, A.; Manea, L. R.; Bertea, A.; Hristian, L.

    2017-06-01

    Polyaniline (PANI) is a conductive polymer that has both metal (electrical, electronic, optical and magnetic properties) and polymer characteristics (low density, low-cost and resistance to chemicals). Polyaniline becomes a conductor by treatment with a dopant that acts by extracting electrons (oxidation) or by inserting electrons (reduction). The reduced solubility of PANI in all common solvents restricts its capacity to be electrospun into uniform fibers. The present paper reviews the methods to increase the solubility of PANI by blending it with other polymers and doping it with organic acids, highlighting the best polymer/solvent couples and doping agents.

  4. Lanthanide-doped hollow nanomaterials as theranostic agents.

    PubMed

    Kang, Xiaojiao; Li, Chunxia; Cheng, Ziyong; Ma, Ping'an; Hou, Zhiyao; Lin, Jun

    2014-01-01

    The field of theranostics has sprung up to achieve personalized medicine. The theranostics fuses diagnostic and therapeutic functions, empowering early diagnosis, targeted drug delivery, and real-time monitoring of treatment effect into one step. One particularly attractive class of nanomaterials for theranostic application is lanthanide-doped hollow nanomaterials (LDHNs). Because of the existence of lanthanide ions, LDHNs show outstanding fluorescent and paramagnetic properties, enabling them to be used as multimodal bioimaging agents. Synchronously, the huge interior cavities of LDHNs are able to be applied as efficacious tools for storage and delivery of therapeutic agents. The LDHNs can be divided into two types based on difference of component: single-phase lanthanide-doped hollow nanomaterials and lanthanide-doped hollow nanocomposites. We describe the synthesis of first kind of nanomaterials by use of hard template, soft template, template-free, and self-sacrificing template method. For lanthanide-doped hollow nanocomposites, we divide the preparation strategies into three kinds (one-step, two-step, and multistep method) according to the synthetic procedures. Furthermore, we also illustrate the potential bioapplications of these LDHNs, including biodetection, imaging (fluorescent imaging and magnetic resonance imaging), drug/gene delivery, and other therapeutic applications. © 2013 Wiley Periodicals, Inc.

  5. Analytical strategy for detecting doping agents in hair.

    PubMed

    Thieme, D; Grosse, J; Sachs, H; Mueller, R K

    2000-01-10

    Lists of banned classes of doping agents are released by the International Olympic Committee, adopted by other sports authorities and updated regularly, including the substance classes stimulants, narcotics, diuretics, anabolic agents, peptide hormones, beta-blockers etc. There are different classes of restriction: anabolic and masking agents (anabolic steroids, diuretics etc.) are always banned for athletes regardless of their topical activity (training or competition) several substances are permitted with certain restrictions (caffeine below a cut-off value, or inhalation of some beta 2 agonists) beta-blockers are prohibited in competitions of certain sports disciplines the majority of the substances (stimulants, narcotics etc.) is prohibited during competitions, so that they do not have to be analysed in out-of-competition samples. A differentiation between training and competition period is impossible by means of hair analysis due to the uncertainty of (especially short-term) kinetic considerations related to hair growth. Therefore, the analytical identification of doping relevant substances in hair is not always a sufficient criterion for a doping offence and the identification of stimulants, beta-blockers etc. in hair would be entirely irrelevant. The most interesting target substances are certainly the anabolic agents, because their desired action (enhanced muscle strength) lasts longer than the excretion, leading to sophisticated procedures to circumvent positive analytical results in competition control. Besides the analysis of out-of-competition control samples, the long term detection of steroids in hair could provide complementary information. An analytical approach to the identification of exogenous steroids in hair requires consideration of the presence of many other steroids in the hair matrix interfering the analysis at trace levels, and of a limited chemical stability. The analysis of endogenous steroids in hair appears to be even more complicated

  6. Chromium(V) complexes generated in Arthrobacter oxydans bysimulation analysis of EPR spectra

    SciTech Connect

    Codd, Rachel; Lay, Peter A.; Tsibakhashvili, Nelly Ya.; Kalabegishvili, Tamaz L.; Murusidze, Ivane G.; Holman, Hoi-Ying N.

    2006-04-01

    Chromium(V) is an intermediate formed during the reductionof Cr(VI) to Cr(III) compounds by various bacteria. However, little isknown about the nature, localization and reactivity of Cr(V) species inmicrobial systems. Electron paramagnetic resonance (EPR) spectroscopy wasused to study the nature of Cr(V) complexes generated inbasalt-inhabiting Gram-positive Arthrobacter oxydans bacteria afterexposure to high concentrations of Cr(VI). Numerical simulations of theEPR spectroscopic data provide strong evidence for at least two differentdiolato-type oxoCr(V) complexes (I, giso = 1.9801; II, giso = 1.9796)involving bacterial cell wall macromolecules in the Cr(VI) A. oxydanssystem. The relative concentrations of the two oxoCr(V) diolato speciesdiffer when Cr(VI) is incubated with either untreated A. oxydans cells(I:II ~; 50:50) or lyophilized cells (I:II ~; 10:90). Based upon themagnitudes of the proton superhyperfine coupling constants (1H aiso) forspecies I and II, the EPR simulation model is unable to distinguishunambiguously whether the oxoCr(V) diolato species are linear alkoxidesor cyclic diols (carbohydrates). The oxygen-containing functional groupsassociated with teichoic acids are the most likely candidates forcomplexation with the Cr(V) ion.

  7. EPR and DFT analysis of biologically relevant chromium(V) complexes with d-glucitol and d-glucose.

    PubMed

    Van Doorslaer, Sabine; Beirinckx, Quinten; Nys, Kevin; Mangiameli, María Florencia; Cuypers, Bert; Callens, Freddy; Vrielinck, Henk; González, Juan Carlos

    2016-09-01

    1,2-diolato ligands, such as carbohydrates and glycoproteins, tend to stabilize chromium(V), thus forming important intermediates that have been implicated in the genotoxicity of Cr(VI). Since many years, room-temperature continuous-wave electron paramagnetic resonance (EPR) at X-band microwave frequencies has been used as a standard characterization tool to study chromium(V) intermediates formed during the reduction of Cr(VI) in the presence of biomolecules. In this work, the added value is tested of using a combination of pulsed and high-field EPR techniques with density functional theory computations to unravel the nature of Cr(V) complexes with biologically relevant chelators, such as carbohydrates. The study focuses on the oxidochromium(V) complexes formed during reduction of potassium dichromate with glutathione in the presence of the monosaccharide d-glucose or the polyalcohol d-glucitol. It is shown that although the presence of a multitude of Cr(V) intermediates may hamper a complete structural determination, the combined EPR and DFT approach reveals unambiguously the effect of freezing on the location of the counterions, the gradual replacement of water ligands by the diols, and the preference of Cr(V) to bind certain conformers.

  8. Molecular effects of supraphysiological doses of doping agents on health.

    PubMed

    Imperlini, Esther; Mancini, Annamaria; Alfieri, Andreina; Martone, Domenico; Caterino, Marianna; Orrù, Stefania; Buono, Pasqualina

    2015-06-01

    Performance-enhancing drugs (PEDs) gained wide popularity not only among sportsmen but also among specific subsets of population, such as adolescents. Apart from their claimed effects on athletic performance, they are very appealing due to the body shaping effect exerted on fat mass and fat-free mass. Besides the "underestimated" massive misuse of PEDs, the short- as well as long-term consequences of such habits remain largely unrecognized. They have been strictly associated with serious adverse effects, but molecular mechanisms are yet to be elucidated. Here, we analyze the current understanding of the molecular effects of supraphysiological doses of doping agents in healthy biological systems, at genomic and proteomic levels, in order to define the molecular sensors of organ/tissue impairment, determined by their misuse. The focus is put on the anabolic androgenic steroids (AASs), specifically testosterone (T) and its most potent derivative dihydrotestosterone (DHT), and on the peptide hormones, specifically the growth hormone (GH) and the insulin-like growth factor-1 (IGF-1). A map of molecular targets is defined and the risk incidence for human health is taken into account.

  9. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  10. [Growth hormone and IGF-1 as doping agents in competitive sport].

    PubMed

    Jóźków, Paweł; Medraś, Marek

    2009-01-01

    Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are often used by athletes as doping agents. It is estimated that up to 25% of sportsmen using anabolic-androgenic steroids also take GH. Available data do not confirm the influence of GH or IGF-1 preparations on physical performance improvement. However, there is some evidences for many adverse effects in athletes using this form of doping. Blood tests to detect growth hormone abuse are available since several years. Surprisingly, no one has been proven to use illegal doping agents influencing GH/IGF-1 axis.

  11. Boron-doped nanodiamonds as possible agents for local hyperthermia

    NASA Astrophysics Data System (ADS)

    Vervald, A. M.; Burikov, S. A.; Vlasov, I. I.; Ekimov, E. A.; Shenderova, O. A.; Dolenko, T. A.

    2017-04-01

    In this work, the effective heating of surrounding water by heavily-boron-doped nanodiamonds (NDs) under laser irradiation of visible wavelength was found. Using Raman scattering spectroscopy of aqueous suspensions of boron-doped NDs, it was found that this abnormally high heating results in the weakening of hydrogen bonds much more so (2–5 times stronger) than for undoped NDs. The property of boron-doped NDs to heat a solvent under the influence of laser radiation (1–5 W cm‑2) opens broad prospects for their use to create nanoagents for medical oncology and local hyperthermia.

  12. Ge4+ doped TiO2 for stoichiometric degradation of warfare agents.

    PubMed

    Stengl, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2012-08-15

    Germanium doped TiO(2) was prepared by homogeneous hydrolysis of aqueous solutions of GeCl(4) and TiOSO(4) with urea. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, EDS analysis, specific surface area (BET) and porosity determination (BJH). Ge(4+) doping increases surface area and content of amorphous phase in prepared samples. These oxides were used in an experimental evaluation of their reactivity with chemical warfare agent, sulphur mustard, soman and agent VX. Ge(4+) doping worsens sulphur mustard degradation and improves soman and agent VX degradation. The best degree of removal (degradation), 100% of soman, 99% of agent VX and 95% of sulphur mustard, is achieved with sample with 2 wt.% of germanium.

  13. Anabolic agents: recent strategies for their detection and protection from inadvertent doping.

    PubMed

    Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2014-05-01

    According to the World Anti-Doping Agency (WADA) Prohibited List, anabolic agents consist of exogenous anabolic androgenic steroids (AAS), endogenous AAS and other anabolic agents such as clenbuterol and selective androgen receptor modulators (SARMs). Currently employed strategies for their improved detection include the prolongation of the detection windows for exogenous AAS, non-targeted and indirect analytical approaches for the detection of modified steroids (designer steroids), the athlete's biological passport and isotope ratio mass spectrometry for the detection of the misuse of endogenous AAS, as well as preventive doping research for the detection of SARMs. The recent use of these strategies led to 4-80-fold increases of adverse analytical findings for exogenous AAS, to the detection of the misuse of new designer steroids, to adverse analytical findings of different endogenous AAS and to the first adverse analytical findings of SARMs. The strategies of the antidoping research are not only focused on the development of methods to catch the cheating athlete but also to protect the clean athlete from inadvertent doping. Within the past few years several sources of inadvertent doping with anabolic agents have been identified. Among these are nutritional supplements adulterated with AAS, meat products contaminated with clenbuterol, mycotoxin (zearalenone) contamination leading to zeranol findings, and natural products containing endogenous AAS. The protection strategy consists of further investigations in case of reasonable suspicion of inadvertent doping, publication of the results, education of athletes and development of methods to differentiate between intentional and unintentional doping.

  14. Anabolic agents: recent strategies for their detection and protection from inadvertent doping

    PubMed Central

    Geyer, Hans; Schänzer, Wilhelm; Thevis, Mario

    2014-01-01

    According to the World Anti-Doping Agency (WADA) Prohibited List, anabolic agents consist of exogenous anabolic androgenic steroids (AAS), endogenous AAS and other anabolic agents such as clenbuterol and selective androgen receptor modulators (SARMs). Currently employed strategies for their improved detection include the prolongation of the detection windows for exogenous AAS, non-targeted and indirect analytical approaches for the detection of modified steroids (designer steroids), the athlete’s biological passport and isotope ratio mass spectrometry for the detection of the misuse of endogenous AAS, as well as preventive doping research for the detection of SARMs. The recent use of these strategies led to 4–80-fold increases of adverse analytical findings for exogenous AAS, to the detection of the misuse of new designer steroids, to adverse analytical findings of different endogenous AAS and to the first adverse analytical findings of SARMs. The strategies of the antidoping research are not only focused on the development of methods to catch the cheating athlete but also to protect the clean athlete from inadvertent doping. Within the past few years several sources of inadvertent doping with anabolic agents have been identified. Among these are nutritional supplements adulterated with AAS, meat products contaminated with clenbuterol, mycotoxin (zearalenone) contamination leading to zeranol findings, and natural products containing endogenous AAS. The protection strategy consists of further investigations in case of reasonable suspicion of inadvertent doping, publication of the results, education of athletes and development of methods to differentiate between intentional and unintentional doping. PMID:24632537

  15. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  16. Use of doping agents, particularly anabolic steroids, in sports and society.

    PubMed

    Sjöqvist, Folke; Garle, Mats; Rane, Anders

    2008-05-31

    The use of doping agents, particularly anabolic androgenic steroids (AAS), has changed from being a problem restricted to sports to one of public-health concern. We review the prevalence of misuse, the evidence that some drugs improve performance in sport, their side-effects, and the long-term consequences of AAS misuse for society at large. There is substantial under-reporting of the side-effects of AAS to health authorities. We describe neuropsychiatric side-effects of AAS and their possible neurobiological correlates, with particular emphasis on violent behaviour. Analytical methods and laboratories accredited by the World Anti-Doping Agency can detect the misuse of all doping agents; although the analysis of testosterone requires special techniques, and recently discovered interethnic differences in testosterone excretion should be taken into account. The prevention of misuse of doping agents should include random doping analyses, medical follow-ups, pedagogic interventions, tougher legislation against possession of AAS, and longer disqualifications of athletes who use AAS.

  17. Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control

    NASA Astrophysics Data System (ADS)

    Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.

    2016-02-01

    The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.

  18. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  19. Tin as reducing agent in ? doped alkali-earth fluorophosphates

    NASA Astrophysics Data System (ADS)

    Dafinova, R.; Caralampydu, A.

    1998-07-01

    The blue europium band in alkali-earth fluorophosphates, determining the 0953-8984/10/27/017/img2 allowed electric-dipole transitions in the 0953-8984/10/27/017/img3 ion, is studied. The simultaneous doping with 0953-8984/10/27/017/img4 provides a possibility of the realization of 0953-8984/10/27/017/img5 transitions and of formation of 0953-8984/10/27/017/img3 ions as blue emission centres of high intensity. The 0953-8984/10/27/017/img7 position is assumed for the 0953-8984/10/27/017/img3 ions in the apatite structure of the matrix.

  20. Identification of black market products and potential doping agents in Germany 2010-2013.

    PubMed

    Krug, Oliver; Thomas, Andreas; Walpurgis, Katja; Piper, Thomas; Sigmund, Gerd; Schänzer, Wilhelm; Laussmann, Tim; Thevis, Mario

    2014-11-01

    The desire to increase the athletic performance, to 'optimize' an individual's appearance, and to complement but also to arguably substitute exercise by means of drugs and drug candidates has generated a considerable (illicit) market for compounds such as anabolic-androgenic steroids, stimulants, growth promoting peptide hormones, and so on. Genuinely developed for therapeutic use, their abuse/misuse generates enormous health risks, which has necessitated comprehensive controls of compound trafficking by customs and anti-doping authorities. From 2012 to 2013, the Bureau of Customs Investigation confiscated products containing anabolic-androgenic steroids (AAS; 259 kg), stimulants (13 kg), selective estrogen receptor modulators (SERMs; 24 kg), and human growth hormone (hGH; 3500 ampules). In cooperation with the Bureau and under the umbrella of the European Monitoring Center for Emerging Doping Agents (EuMoCEDA), the Cologne Anti-Doping Laboratory analyzed an additional 337 (black market) products between 2010 and 2013, allowing to monitor developments in drug use and, hence, the anticipation of new challenges in sports drug testing. Main tools utilized in characterizing confiscated materials were liquid chromatography-high resolution mass spectrometry (LC-HRMS), gas chromatography-high resolution mass spectrometry (GC-HRMS), and polyacrylamide gel electrophoresis (PAGE) with subsequent bottom-up identification of peptidic compounds using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Among the 337 substances analyzed in the doping control laboratory in Cologne, 67 active ingredients were found, 49 of which being categorized as doping agents by the World Anti-Doping Agency (WADA). A total of 83.7 % accounted for steroidal substances (predominantly testosterone, trenbolone, and nandrolone and corresponding esters), 12.8 % accounted for peptide hormones and growth factors (predominantly hGH and growth hormone releasing peptides (GHRPs)), 3.2 % of

  1. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  2. Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents

    PubMed Central

    Vairapperumal, Tamilmani; Saraswathy, Ariya; Ramapurath, Jayasree S.; Kalarical Janardhanan, Sreeram; Balachandran Unni, Nair

    2016-01-01

    Tetragonal (t)-LaVO4 has turned out to be a potential host for luminescent materials. Synthesis of t-LaVO4 till date has been based on chelating effect of EDTA making it not ideal for bioimaging applications. An alternative was proposed by us through the use of catechin. In recent times there is interest for new MRI contrast agents that can through appropriate doping function both as MRI contrast and optical/upconversion materials. It is generally believed that under appropriate doping, t-LaVO4 would be a better upconversion material than monoclinic (m)-LaVO4. Based on these postulations, this work explores the use of gadolinium doped t-LaVO4 as an MRI contrast agent. From literature, gadolinium oxide is a good T1 contrast agent. Through this work, using catechin as a template for the synthesis of Gd doped t-LaVO4, we demonstrate the possible use as a T1 contrast agent. Interestingly, as the catechin concentration changes, morphology changes from nanorods to square nanoplates and spheres. In this process, a switch from T1 to T2 contrast agent was also observed. Under optimal concentration of catechin, with a rod shaped Gd doped t-LaVO4 an r2/r1 value of 21.30 was observed. Similarly, with a spherical shape had an r2/r1 value of 1.48 was observed. PMID:27752038

  3. Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents.

    PubMed

    Vairapperumal, Tamilmani; Saraswathy, Ariya; Ramapurath, Jayasree S; Kalarical Janardhanan, Sreeram; Balachandran Unni, Nair

    2016-10-18

    Tetragonal (t)-LaVO4 has turned out to be a potential host for luminescent materials. Synthesis of t-LaVO4 till date has been based on chelating effect of EDTA making it not ideal for bioimaging applications. An alternative was proposed by us through the use of catechin. In recent times there is interest for new MRI contrast agents that can through appropriate doping function both as MRI contrast and optical/upconversion materials. It is generally believed that under appropriate doping, t-LaVO4 would be a better upconversion material than monoclinic (m)-LaVO4. Based on these postulations, this work explores the use of gadolinium doped t-LaVO4 as an MRI contrast agent. From literature, gadolinium oxide is a good T1 contrast agent. Through this work, using catechin as a template for the synthesis of Gd doped t-LaVO4, we demonstrate the possible use as a T1 contrast agent. Interestingly, as the catechin concentration changes, morphology changes from nanorods to square nanoplates and spheres. In this process, a switch from T1 to T2 contrast agent was also observed. Under optimal concentration of catechin, with a rod shaped Gd doped t-LaVO4 an r2/r1 value of 21.30 was observed. Similarly, with a spherical shape had an r2/r1 value of 1.48 was observed.

  4. Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Vairapperumal, Tamilmani; Saraswathy, Ariya; Ramapurath, Jayasree S.; Kalarical Janardhanan, Sreeram; Balachandran Unni, Nair

    2016-10-01

    Tetragonal (t)-LaVO4 has turned out to be a potential host for luminescent materials. Synthesis of t-LaVO4 till date has been based on chelating effect of EDTA making it not ideal for bioimaging applications. An alternative was proposed by us through the use of catechin. In recent times there is interest for new MRI contrast agents that can through appropriate doping function both as MRI contrast and optical/upconversion materials. It is generally believed that under appropriate doping, t-LaVO4 would be a better upconversion material than monoclinic (m)-LaVO4. Based on these postulations, this work explores the use of gadolinium doped t-LaVO4 as an MRI contrast agent. From literature, gadolinium oxide is a good T1 contrast agent. Through this work, using catechin as a template for the synthesis of Gd doped t-LaVO4, we demonstrate the possible use as a T1 contrast agent. Interestingly, as the catechin concentration changes, morphology changes from nanorods to square nanoplates and spheres. In this process, a switch from T1 to T2 contrast agent was also observed. Under optimal concentration of catechin, with a rod shaped Gd doped t-LaVO4 an r2/r1 value of 21.30 was observed. Similarly, with a spherical shape had an r2/r1 value of 1.48 was observed.

  5. BDPA-Doped Polystyrene Beads as Polarization Agents for DNP-NMR.

    PubMed

    Zhang, Yunzhi; Baker, Phillip J; Casabianca, Leah B

    2016-01-14

    The aromatic free radical BDPA (α,γ-bisdiphenylene-β-phenylallyl), which has been widely used as a polarizing agent for Dynamic Nuclear Polarization (DNP) of hydrophobic analytes, has been incorporated into nanometer-scale polystyrene latex beads. We have shown that the resulting BDPA-doped beads can be used to hyperpolarize (13)C and (7)Li nuclei in aqueous environments, without the need for a glassing cosolvent. DNP enhancement factors of between 20 and 100 were achieved with overall BDPA concentrations of 2 mM or less. These Highly-Effective Polymer/Radical Beads (HYPR-beads) have potential use as an inexpensive polarizing agent for water-soluble analytes, and also have applications as model nanoparticles in DNP studies.

  6. The potential of mid-infrared photoacoustic spectroscopy for the detection of various doping agents used by athletes

    NASA Astrophysics Data System (ADS)

    Fischer, C.; Bartlome, R.; Sigrist, M. W.

    2006-11-01

    The feasibility of laser-photoacoustic measurements for the detection and the analysis of different isolated doping agents in the vapour phase is discussed. To the best of our knowledge, this is the first time that photoacoustic vapour-phase measurements of doping substances have been presented. Spectra of different doping classes (stimulants, anabolica, diuretica, and beta blockers) are shown and discussed in terms of their detection sensitivity and selectivity. The potential of laser spectroscopy for detecting the intake of prohibited substances by athletes is explored.

  7. Effect of capping agent concentration on thermoluminescence and photoluminescence of copper-doped zinc sulfide nanoparticles.

    PubMed

    Wanjari, Lata; Bisen, D P; Brahme, Namita; Sahu, Ishwar Prasad; Sharma, Ravi

    2015-08-01

    Copper-doped zinc sulfide (ZnS:Cu) nanoparticles with varying concentrations of capping agent were prepared using a chemical route technique. These particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy and X-ray diffraction (XRD). Optical absorption studies showed that the absorption edge shifted towards the blue region as the concentration of the capping agent increased. Using effective mass approximation, calculation of the nanoparticle size indicated that effective band gap energy increases with decreasing particle size. The thermoluminescence (TL) properties of sodium hexameta phosphate (SHMP)-passivated ZnS:Cu nanoparticles were investigated after UV irradiation at room temperature. The TL glow curve of capped ZnS:Cu showed variations in TL peak position and intensity with the change in capping agent concentration. The photoluminescence (PL) spectra of ZnS:Cu nanoparticles excited at 254 nm exhibited a broad green emission band peaking around 510 nm, which confirmed the characteristic feature of Zn(2+) as well as Cu(2+) ions as the luminescent centres in the lattice. The PL spectra of ZnS:Cu nanoparticles with increasing capping agent concentrations revealed that the emission becomes more intense and shifted towards shorter wavelengths as the sizes of the samples were reduced.

  8. The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Hsieh, B. T.

    2013-06-01

    Low toxicity of N-isopropylacrylamide (NIPAM) dosimeter was doped with clinical iodinated contrast medium agents(Iobitridol (Xenetix® 350) and organically bound iodine (Conray® 60) as radiation sensitizers; The suitable gel dosimeter preparation formula in this research was 5 w/w% gelatin, 5 w/w% N-isopropylacrylamide, 3 w/w% N,N-methylene-bis-acrylamide, and 5 mM Tetrakis phosphonium chloride. The spiral CT was irradiator, and 120 kVp was the operating tube voltage. The maximum radiation dose was 0.6 Gy, and optical CT was the gel measurement device used. The results showed SERs with the addition of radiosensitizers were 10.70 (Xenetix® 350) and 9.67 (Conray® 60), respectively. Thus, the polymerized gel dosimeter could be used in the efficacy evaluation of low-energy and low-radiation dose.

  9. Synthesis and characterization of Cu 2+ doped ZnS nanoparticles using TOPO and SHMP as capping agents

    NASA Astrophysics Data System (ADS)

    Kuppayee, M.; Vanathi Nachiyar, G. K.; Ramasamy, V.

    2011-05-01

    Undoped and Cu 2+ doped (0.2-0.8%) ZnS nanoparticles have been synthesized through chemical precipitation method. Tri-n-octylphosphine oxide (TOPO) and sodium hexametaphosphate (SHMP) were used as capping agents. The synthesized nanoparticles have been analyzed using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectrometer (FT-IR), UV-vis spectrometer, photoluminescence (PL) and thermo gravimetric-differential scanning calorimetry (TG-DTA) analysis. The size of the particles is found to be 4-6 nm range. Photoluminescence spectra were recorded for ZnS:Cu 2+ under the excitation wavelength of 320 nm. The prepared Cu 2+-doped sample shows efficient PL emission in 470-525 nm region. The capped ZnS:Cu emission intensity is enhanced than the uncapped particles. The doping ions were identified by electron spin resonance (ESR) spectrometer. The phase changes were observed in different temperatures.

  10. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent.

    PubMed

    Shi, Mengchao; Xia, Lunguo; Chen, Zetao; Lv, Fang; Zhu, Huiying; Wei, Fei; Han, Shengwei; Chang, Jiang; Xiao, Yin; Wu, Chengtie

    2017-11-01

    Although much research has gone into the design of nanomaterials, inflammatory response still impedes the capacity of nanomaterial-induced tissue regeneration. In-situ incorporation of nutrient elements in silica-based biomaterials has emerged as a new option to endow the nanomaterials modulating biological reactions. In this work, europium-doped mesoporous silica nanospheres (Eu-MSNs) were successfully synthesized via a one-pot method. The nanospheres (size of 280-300 nm) possess uniformly spherical morphology and mesoporous structure, and well distributed Eu elements. The nanospheres show distinct fluorescent property at 615 nm for potential bio-labeling. Noticeably, the Eu-MSNs stimulate pro-inflammatory response of macrophages and induce a modulated immune microenvironment, which further activates the osteogenic differentiation of bone marrow stromal cells (BMSCs) as well as angiogenic activity of human umbilical vein endothelial cells (HUVECs). During the process, osteogenesis-related genes (e.g. ALP, OCN, OPN and COL-I) of BMSCs, and angiogenesis-related genes (e.g. CD31, MMP9, VEGFR1/2, and PDGFRα/β) of HUVECs were significantly upregulated by Eu-MSNs modulating immune environment of macrophages. The in vivo study further demonstrated that the Eu-MSNs could not only stimulate osteogenesis by accelerating the new bone formation at critical-sized cranial defect site, but also support the blood vessel formation as well as collagen deposition and re-epithelialization at chronic skin wound sites, showing an improved angiogenesis activity when comparing with MSNs alone. Given the easy handling characteristics and extensive application potential, the results suggest that Eu-MSNs could be used as immunity-modulated osteogenesis/angiogenesis agent for skin and bone regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A simple and rapid ESI-LC-MS/MS method for simultaneous screening of doping agents in urine samples

    PubMed Central

    Reddy, I. Madhusudhana; Beotra, Alka; Jain, S.; Ahi, S.

    2009-01-01

    Objective: The use of performance enhancing substances is banned in sports by the World Anti-Doping Agency (WADA). Though most prohibited substances can be detected by GC/MS, inclusion of corticosteroids and designer drugs has made it essential to detect these critical doping agents on LC/MS/MS due to their better separation and detection. Materials and Methods: A common extraction procedure for the isolation of acidic, basic and neutral drugs from urine samples was developed. A total of 28 doping drugs were analyzed on API 3200 Triple quadrupole mass spectrometer using C18 column in atmospheric pressure electrospray ionization. The mobile phase composition was a mixture of 1% formic acid and acetonitrile with gradient time period. Results: The method developed was very sensitive for detection of 28 doping agents. The linearity was performed for each drug and the total recovery percentage ranged from 57 to 114. Limit of detection is found to be 0.5 ng/ml for carboxy finasteride and 1-5 ng/ml for other drugs. The method was successfully used to detect positive urine samples of 3-OH-stanozolol, methyl phenidate, mesocarb, clomiphene metabolite and carboxy finasteride. Conclusion: The method developed based on controlled pH extraction method and HPLC-mass spectrometry analysis allowed better identification and confirmation of glucocorticosteroids and a few other drugs in different categories. The validated method has been used successfully for testing of 1000 In-competition samples. The method helped in detection of chemically and pharmacologically different banned drugs in urine in a single short run at a minimum required performance limit set by WADA. PMID:20336223

  12. Detection of erythropoiesis-stimulating agents in human anti-doping control: past, present and future.

    PubMed

    Leuenberger, Nicolas; Reichel, Christian; Lasne, Françoise

    2012-07-01

    Stimulation of erythropoiesis is one of the most efficient ways of doping. This type of doping is advantageous for aerobic physical exercise and of particular interest to endurance athletes. Erythropoiesis, which takes place in bone marrow, is under the control of EPO, a hormone secreted primarily by the kidneys when the arterial oxygen tension decreases. In certain pathological disorders, such as chronic renal failure, the production of EPO is insufficient and results in anemia. The pharmaceutical industry has, thus, been very interested in developing drugs that stimulate erythropoiesis. With this aim, various strategies have been, and continue to be, envisaged, giving rise to an expanding range of drugs that are good candidates for doping. Anti-doping control has had to deal with this situation by developing appropriate methods for their detection. This article presents an overview of both the drugs and the corresponding methods of detection, and thus follows a roughly chronological order.

  13. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V).

    PubMed

    Soe, Cho Zin; Telfer, Thomas J; Levina, Aviva; Lay, Peter A; Codd, Rachel

    2016-09-01

    Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH2), avaroferrin (avH2) and bisucaberin (bsH2). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH2. The relative concentration of pbH2:avH2:bsH2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)](+), [Fe(av)](+) or [Fe(bs)](+), with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O)2(pb)], [Mo(O)2(av)] or [Mo(O)2(bs)]. Chromium(V) complexes of the form [CrO(pb)](+) were detected from solutions of Cr(VI) and pbH2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH2. The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Photoresponsive azo-doped aerosil/7CB nematic nanocomposites: the effect from concentration of the azobenzene photoactive agent

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Marinov, Y. G.; Petrov, A. G.; Prasad, S. K.

    2017-01-01

    We studied nanomaterials composed from 3 wt.% aerosil nanospheres and the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB), as doped with the photoactive liquid crystal 4-(4'-ethoxyphenylazo)phenyl hexanoate (EPH). The molecules of the azobenzene photoactive agent EPH were included at concentration ranging from 1 wt.% to 10 wt.%. The object of our interest is the effect of the EPH amount on the photosensitized electro-optical properties of thin films of aerosil/7CB/EPH nematic nanocomposites.

  15. Pharmacological criteria that can affect the detection of doping agents in hair.

    PubMed

    Kintz, P; Cirimele, V; Ludes, B

    2000-01-10

    When positive drug results are reported, a common interpretive question posed is whether or not it is possible to put a quantitative finding into context. A standard answer to this inquiry is that a positive hair testing result can be interpreted as meaning that the donor has chronically or repetitively used the drug identified in the hair, but that chronic or repetitive are not defined in the same way for all individuals. The Society of Hair Testing published on June 16, 1999, a consensus opinion on the use of hair in doping situations. However, although accepted in most courts of justice, hair analysis is not yet recognised by the International Olympic Committee. To be considered as a valid specimen for doping control, some issues still need to be addressed. The scientific community has demonstrated significant concern over the proper role that hair drug testing should serve in toxicological applications. Among the unanswered questions, five are of critical importance: (1) What is the minimal amount of drug detectable in hair after administration? (2) What is the relationship between the amount of the drug used and the concentration of the drug or its metabolites in hair? (3) What is the influence of hair color? (4) Is there any racial bias in hair testing? (5) What is the influence of cosmetic treatments? The present report documents scientific findings on these questions, with particular attention to the applications of hair in doping control.

  16. Cyclosarin nerve agent interaction with the pristine, Stone Wales defected, and Si-doped BN nanosheets: Theoretical study

    NASA Astrophysics Data System (ADS)

    Nejati, K.; Arshadi, S.; Vessally, E.; Bekhradnia, A.; Hosseinian, A.

    2017-06-01

    Never agent identification and disposal is vital for both civilian and military defense resources. Herein, using density functional theory calculations, the reactivity and electronic sensitivity of pristine, Stone Wales (SW) defected, and Si-doped BN (Si-BN) nanosheets toward cyclosarin nerve agent were investigated. It was found that the interaction of cyclosarin with the pristine BN sheet is very weak and also that is not energetically favorable with SW defected one. Unlike the SW defect, replacing a B atom by Si atom significantly makes the cyclosarin adsorption energetically favorable. Calculations show that the carbonyl and etheric oxygen atoms of cyclosarin attack the Si atom of Si-BN with the adsorption energies of -73.5 and -136.9 kJ/mol, respectively. The cyclosarin nerve agent can be decomposed by the Si-BN sheet which is thermodynamically highly favorable. Upon this process, the HOMO and LUMO levels are significantly unstabilized and the HOMO-LUMO gap significantly changed by about 24.2%. The cyclosarin presence and its decomposition by Si-BN sheet can be recognized because of the electrical conductivity change of the sheet.

  17. Luminescence Enhanced Eu(3+)/Gd(3+) Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo.

    PubMed

    Xie, Yunfei; He, Wangmei; Li, Fang; Perera, Thalagalage Shalika Harshani; Gan, Lin; Han, Yingchao; Wang, Xinyu; Li, Shipu; Dai, Honglian

    2016-04-27

    Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.

  18. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    NASA Astrophysics Data System (ADS)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  19. Buffering agents-assisted synthesis of nitrogen-doped graphene with oxygen-rich functional groups for enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yan, Qiuyun; Zhang, Shanshan; Lu, Luhua; Xie, Bingqiao; Xie, Ting; Zhang, Yong; Wu, Yucheng; Zhang, Yuxing; Liu, Dong

    2016-11-01

    In this work, designed growth of two type of N-doped graphene nanosheets has been investigated using NH4H2PO4 and (NH4)2HPO4 as buffering agents, respectively, in a mild hydrothermal process. X-ray photoelectron spectroscopy (XPS) characterization indicates that the graphene nanosheets grown using NH4H2PO4 (NGC) have lower nitrogen but higher oxygen content than those using (NH4)2HPO4 (NGL). Electrochemical measurements in three-electrode systems show that both type of the graphene products exhibit superior electrochemical performance (383 and 356 F g-1 at 1 A g-1). While the specific capacitance of NGC is steadily higher than that of NGL under all investigated current densities, the capacitance attenuation of NGL is 4.80% from 500 to 10000 cycles showing more durable in cyclicity than that of NGC (8.81%). The two-electrode supercapacitor devices for NGC and NGL exhibit high energy density of 12.21 Wh kg-1 and 9.28 Wh kg-1 at 0.25 A g-1. The difference in electrochemical behaviors between NGC and NGL electrodes can be attributed to the different contribution of nitrogen and oxygenic groups. The buffer agents assisted synthesis procedure coupled with the reasonable capacitance performance suggests an alternative way in the designed functionalization of graphene for developing high performance supercapacitors.

  20. PEG-capped, lanthanide doped GdF3 nanoparticles: luminescent and T2 contrast agents for optical and MRI multimodal imaging

    NASA Astrophysics Data System (ADS)

    Passuello, Tiziana; Pedroni, Marco; Piccinelli, Fabio; Polizzi, Stefano; Marzola, Pasquina; Tambalo, Stefano; Conti, Giamaica; Benati, Donatella; Vetrone, Fiorenzo; Bettinelli, Marco; Speghini, Adolfo

    2012-11-01

    A facile method for the synthesis of water dispersible Er3+/Yb3+ and Tm3+/Yb3+ doped upconverting GdF3 nanoparticles is reported. Strong upconversion emissions are observed in the red (for Er/Yb doped) and near-infrared (for Tm/Yb doped) regions upon laser excitation at 980 nm. The PEG coating ensures a good dispersion of the system in water and reduces the radiationless de-excitation of the excited states of the Er3+ and Tm3+ ions by water molecules. The r2 relaxivity values are quite high with respect to the common T2-relaxing agents (22.6 +/- 3.4 mM-1 s-1 and 15.8 +/- 3.4 mM-1 s-1 for the Tm/Yb and Er/Yb doped samples, respectively), suggesting that the present NPs can be interesting as T2 weighted contrast agents for proton MRI purpose. Preliminary experiments conducted in vitro, in stem cell cultures, and in vivo, after subcutaneous injection of the lanthanide-doped GdF3 NPs, indicate scarce toxic effects. After an intravenous injection in mice, the GdF3 NPs localize mainly in the liver. The present results indicate that the present Er3+/Yb3+ and Tm3+/Yb3+ doped GdF3 NPs are suitable candidates to be efficiently used as bimodal probes for both in vitro and in vivo optical and magnetic resonance imaging.A facile method for the synthesis of water dispersible Er3+/Yb3+ and Tm3+/Yb3+ doped upconverting GdF3 nanoparticles is reported. Strong upconversion emissions are observed in the red (for Er/Yb doped) and near-infrared (for Tm/Yb doped) regions upon laser excitation at 980 nm. The PEG coating ensures a good dispersion of the system in water and reduces the radiationless de-excitation of the excited states of the Er3+ and Tm3+ ions by water molecules. The r2 relaxivity values are quite high with respect to the common T2-relaxing agents (22.6 +/- 3.4 mM-1 s-1 and 15.8 +/- 3.4 mM-1 s-1 for the Tm/Yb and Er/Yb doped samples, respectively), suggesting that the present NPs can be interesting as T2 weighted contrast agents for proton MRI purpose. Preliminary

  1. A Study of the CO Sensing Responses of Cu-, Pt- and Pd-Activated SnO2 Sensors: Effect of Precipitation Agents, Dopants and Doping Methods

    PubMed Central

    Tangirala, Venkata Krishna Karthik; Gómez-Pozos, Heberto; Rodríguez-Lugo, Ventura; Olvera, María De La Luz

    2017-01-01

    In this work, we report the synthesis of Cu, Pt and Pd doped SnO2 powders and a comparative study of their CO gas sensing performance. Dopants were incorporated into SnO2 nanostructures using chemical and impregnation methods by using urea and ammonia as precipitation agents. The synthesized samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The presence of dopants within the SnO2 nanostructures was evidenced from the HR-TEM results. Powders doped utilizing chemical methods with urea as precipitation agent presented higher sensing responses compared to the other forms, which is due to the formation of uniform and homogeneous particles resulting from the temperature-assisted synthesis. The particle sizes of doped SnO2 nanostructures were in the range of 40–100 nm. An enhanced sensing response around 1783 was achieved with Cu-doped SnO2 when compared with two other dopants i.e., Pt (1200) and Pd:SnO2 (502). The high sensing response of Cu:SnO2 is due to formation of CuO and its excellent association and dissociation with adsorbed atmospheric oxygen in the presence of CO at the sensor operation temperature, which results in high conductance. Cu:SnO2 may thus be an alternative and cost effective sensor for industrial applications. PMID:28467372

  2. A Study of the CO Sensing Responses of Cu-, Pt- and Pd-Activated SnO₂ Sensors: Effect of Precipitation Agents, Dopants and Doping Methods.

    PubMed

    Tangirala, Venkata Krishna Karthik; Gómez-Pozos, Heberto; Rodríguez-Lugo, Ventura; Olvera, María De La Luz

    2017-05-03

    In this work, we report the synthesis of Cu, Pt and Pd doped SnO₂ powders and a comparative study of their CO gas sensing performance. Dopants were incorporated into SnO₂ nanostructures using chemical and impregnation methods by using urea and ammonia as precipitation agents. The synthesized samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The presence of dopants within the SnO₂ nanostructures was evidenced from the HR-TEM results. Powders doped utilizing chemical methods with urea as precipitation agent presented higher sensing responses compared to the other forms, which is due to the formation of uniform and homogeneous particles resulting from the temperature-assisted synthesis. The particle sizes of doped SnO₂ nanostructures were in the range of 40-100 nm. An enhanced sensing response around 1783 was achieved with Cu-doped SnO₂ when compared with two other dopants i.e., Pt (1200) and Pd:SnO₂ (502). The high sensing response of Cu:SnO₂ is due to formation of CuO and its excellent association and dissociation with adsorbed atmospheric oxygen in the presence of CO at the sensor operation temperature, which results in high conductance. Cu:SnO₂ may thus be an alternative and cost effective sensor for industrial applications.

  3. Structural, optical and electronic characteristics of N-doped graphene nanosheets synthesized using urea as reducing agent and nitrogen precursor

    NASA Astrophysics Data System (ADS)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2017-01-01

    In the present study, nitrogen (N)-doped graphene nanosheets (NGns) have been synthesized by solvothermal method using urea both as the green precursor of N and as the reducing agent for graphene oxide (GO). As synthesized NGns have been characterized by x-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy, field emission scanning electron microscopy (FESEM) and x-ray photon spectroscopy (XPS). The Raman D to G band intensity ratio (I D /I G ), being a measure of defects in the honeycomb lattice, is used as an indicator for the formation of NGns. For GO:urea weight ratio of 1:5, high C to O atomic ratio (C/O) of ~8.75 with an N-content as high as ~8.3 at.% and high I D /I G ratio of 1.55 have been observed, which confirm the removal of oxygen functionalities from GO to form NGns. Further, transparent conducting films (TCFs) of the synthesized NGns have been fabricated by spray coating. Thermal graphitization of the TCFs has been performed to enhance their optical and electrical properties. When annealed at 900 °C for 1 h in vacuum, the film shows a best performance in terms of sheet resistance and transmittance values of ~1.63 kΩ □‑1 and ~68.21%, respectively.

  4. Agents.

    PubMed

    Chambers, David W

    2002-01-01

    Although health care is inherently an economic activity, it is inadequately described as a market process. An alternative, grounded in organizational economic theory, is to view professionals and many others as agents, contracted to advance the best interests of their principals (patients). This view untangles some of the ethical conflicts in dentistry. It also helps identify major controllable costs in dentistry and suggests that dentists can act as a group to increase or decrease agency costs, primarily by controlling the bad actors who damage the value of all dentists.

  5. Analysis of sulfate metabolites of the doping agents oxandrolone and danazol using high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Rzeppa, S; Viet, L

    2016-09-01

    The direct detection of sulfate conjugates of anabolic androgenic steroids (AAS) can be a powerful tool in doping control analysis. By skipping the solvolysis step analysis time can be reduced, and due to long term sulfate metabolites the detection time can be significantly extended as demonstrated for some AAS. This study presents the successful identification of sulfate metabolites of the doping agents oxandrolone and danazol in excretion urines by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The sulfate conjugate of 17β-hydroxymethyl-17α-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one could be identified as a new metabolite of oxandrolone. Sulfate conjugates of the danazol metabolites ethisterone and 2α-hydroxymethylethisterone were identified in an excretion urine for the first time. In addition, these sulfate conjugates were synthesized successfully. For a confirmation analysis, the number of analytes can be increased by additional sulfate conjugates of danazol metabolites (2-hydroxymethyl-1,2-dehydroethisterone and 6β-hydroxy-2-hydroxymethylethisterone), which were also identified for the first time. The presented validation data underline the suitability of the identified sulfate conjugates for doping analysis with regard to the criteria given by the technical documents of the World Anti-Doping Agency (WADA).

  6. Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent.

    PubMed

    Chen, Fei; Chen, Min; Yang, Chuan; Liu, Jun; Luo, Ningqi; Yang, Guowei; Chen, Dihu; Li, Li

    2015-01-14

    Dual-modal lanthanide-doped gadolinium nanoparticles (NPs), which exhibit an excellent magnetic resonance imaging (MRI) spatial resolution and high fluorescence imaging (FI) sensitivity, have attracted tremendous attention in biotechnology and nanomedicine applications. In this paper, terbium (Tb) ion doped gadolinium oxide (Gd2O3:Tb) NPs with varied Tb concentrations were synthesized by a laser ablation in liquid (LAL) method. The characterization of the structure, morphology, and composition shows that these NPs are spherical with excellent crystallinity. The effects of Tb ion concentration on the visible green fluorescence and longitudinal relaxivity were investigated, indicating that the fluorescence properties were significantly influenced by the Tb ion concentration, but all samples were still efficient T1-weighted contrast agents. Furthermore, the optimum Tb doping concentration was determined to be 1%. The cell viability, cellular fluorescence imaging and in vivo MRI of this dual-modal nano-probe were studied, with the results revealing that the Gd2O3:Tb NPs did not have a significant cytotoxic effect, making them good candidates for use as a dual-modal contrast agent for MRI and fluorescence imaging.

  7. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    NASA Astrophysics Data System (ADS)

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-01

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn2+ interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  8. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    SciTech Connect

    Jan, Tariq; Iqbal, Javed; Ismail, Muhammad; Mahmood, Arshad

    2014-04-21

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects in ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.

  9. High-throughput and sensitive screening by ultra-performance liquid chromatography tandem mass spectrometry of diuretics and other doping agents.

    PubMed

    Ventura, Rosa; Roig, M; Montfort, N; Sáez, P; Bergés, Rosa; Segura, Jordi

    2008-01-01

    The reliability of ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC- MS/MS) for high throughput screening in anti-doping control has been tested. A method to screen for the presence of diuretics and other doping agents in urine has been optimised and validated. The extraction procedure consisted of an alkaline extraction (pH 9.5) with ethyl acetate and salting-out effect (sodium chloride). The extracts were analysed by UPLC-MS/MS. Analysis of 34 forbidden drugs and metabolites was achieved in a total run time of 5 min, using a C18 column (100 mm x 2.1 mm i.d., 1.7 microm particle size) and a mobile phase containing deionised water and acetonitrile with formic acid, with gradient elution at a flow-rate of 0.6 mL min(-1). Identification of the compounds was performed by multiple reaction monitoring, using electrospray ionisation in positive- or negative-ion mode. Precursor and product ions were studied for each compound and cone voltage and collision energy were optimised. Due to the different chemical structure of the compounds under study, extraction recoveries varied from less than 10% to 100% depending on the analyte. The limits of detection ranged from 50 ng mL(-1) to 200 ng mL(-1), and all the compounds comply with the requirements of quality established by the World Anti-doping Agency. Intra-assay precision was evaluated at two concentrations for each compound and, in most cases, a relative standard deviation of the signal ratio lower than 20% was obtained. The method has demonstrated to be reliable when analysing routine samples and the short analysis time resulting from a simple sample preparation and a rapid instrumental analysis allow a fast turn-around time and makes it of great interest for routine anti-doping control purposes.

  10. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

    PubMed

    Görgens, Christian; Guddat, Sven; Thomas, Andreas; Wachsmuth, Philipp; Orlovius, Anne-Katrin; Sigmund, Gerd; Thevis, Mario; Schänzer, Wilhelm

    2016-11-30

    So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β2-agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (<2kDa) and are commonly determined by laborious and time-consuming stand-alone assays. The assay was fully validated for qualitative purposes considering the parameters specificity, robustness (rRT: <2%), intra- (CV: 1.7-18.4 %) and inter-day precision (CV: 2.3-18.3%) at three concentration levels, linearity (R(2)>0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects.

  11. Fast and sensitive supercritical fluid chromatography - tandem mass spectrometry multi-class screening method for the determination of doping agents in urine.

    PubMed

    Nováková, Lucie; Desfontaine, Vincent; Ponzetto, Federico; Nicoli, Raul; Saugy, Martial; Veuthey, Jean-Luc; Guillarme, Davy

    2016-04-07

    This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.

  12. Determination of designer doping agent--2-ethylamino-1-phenylbutane--in dietary supplements and excretion study following single oral supplement dose.

    PubMed

    Wójtowicz, Marzena; Jarek, Anna; Chajewska, Katarzyna; Turek-Lepa, Ewa; Kwiatkowska, Dorota

    2015-11-10

    The quantitative analysis of a new designer doping agent, 2-ethylamino-1-phenylbutane (EAPB) and its metabolite, 2-amino-1-phenylbutane (APB) in urine samples, and the determination of EAPB in dietary supplement samples, have been presented. The main purpose of the present study was to develop simple and reliable gas chromatography-mass spectrometry method (GC-MS) for excretion study following a single oral administration of dietary supplements containing EAPB. Three analytical methods for the determination of EAPB in urine and supplement samples, and APB in urine samples using the GC-MS system, have been validated. The method of the determination of EAPB in supplement samples was applied to analyze seventeen dietary supplements, CRAZE and DETONATE. Two other methods were used to determine the urinary excretion profile of EAPB and APB in the case of three healthy volunteers and, on further investigation, it was applied to the anti-doping control in sport. Quantification was obtained on the basis of the ions at m/z 86, 58 and 169, monitored for EAPB, APB and diphenylamine (used as an internal standard), respectively. The limits of detection and quantification were 2.4 and 7.3μg/g for EAPB in the case of supplement analysis, 2.9 and 8.8ng/mL for EAPB in the case of urine analysis, and 3.2 and 9.7ng/mL for APB. The other validation parameters as linearity, precision and trueness have been also investigated with the acceptable results. The extraction yield of all presented methods was above 69%. EAPB was detected in fourteen analyzed supplements (not included EAPB in their labels) and its content varied between 1.8 and 16.1mg/g. Following oral administration of three supplements with EAPB to one male and two female volunteers, the parent compound of EAPB and its metabolite were monitored and the excretion parameters as the maximum concentration of the analyte in urine (2.2-4.2μg/mL for EAPB; 1.1-5.1μg/mL for APB) and the time for the maximum height of the excretion

  13. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis

    PubMed Central

    Cadwallader, Amy B; de la Torre, Xavier; Tieri, Alessandra; Botrè, Francesco

    2010-01-01

    Diuretics are drugs that increase the rate of urine flow and sodium excretion to adjust the volume and composition of body fluids. There are several major categories of this drug class and the compounds vary greatly in structure, physicochemical properties, effects on urinary composition and renal haemodynamics, and site and mechanism of action. Diuretics are often abused by athletes to excrete water for rapid weight loss and to mask the presence of other banned substances. Because of their abuse by athletes, diuretics have been included on The World Anti-Doping Agency's (WADA) list of prohibited substances; the use of diuretics is banned both in competition and out of competition and diuretics are routinely screened for by anti-doping laboratories. This review provides an overview of the pharmacology and toxicology of diuretics and discusses their application in sports. The most common analytical strategies currently followed by the anti-doping laboratories accredited by the WADA are discussed along with the challenges laboratories face for the analysis of this diverse class of drugs. PMID:20718736

  14. The abuse of diuretics as performance-enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis.

    PubMed

    Cadwallader, Amy B; de la Torre, Xavier; Tieri, Alessandra; Botrè, Francesco

    2010-09-01

    Diuretics are drugs that increase the rate of urine flow and sodium excretion to adjust the volume and composition of body fluids. There are several major categories of this drug class and the compounds vary greatly in structure, physicochemical properties, effects on urinary composition and renal haemodynamics, and site and mechanism of action. Diuretics are often abused by athletes to excrete water for rapid weight loss and to mask the presence of other banned substances. Because of their abuse by athletes, diuretics have been included on The World Anti-Doping Agency's (WADA) list of prohibited substances; the use of diuretics is banned both in competition and out of competition and diuretics are routinely screened for by anti-doping laboratories. This review provides an overview of the pharmacology and toxicology of diuretics and discusses their application in sports. The most common analytical strategies currently followed by the anti-doping laboratories accredited by the WADA are discussed along with the challenges laboratories face for the analysis of this diverse class of drugs.

  15. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    PubMed Central

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-01-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities. PMID:25297843

  16. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-10-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.

  17. Rare-Earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging.

    PubMed

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-10-09

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.

  18. High potential of Mn-doped ZnS nanoparticles with different dopant concentrations as novel MRI contrast agents: synthesis and in vitro relaxivity studies

    NASA Astrophysics Data System (ADS)

    Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar

    2015-06-01

    Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.

  19. Examples of doping control analysis by liquid chromatography-tandem mass spectrometry: ephedrines, beta-receptor blocking agents, diuretics, sympathomimetics, and cross-linked hemoglobins.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2005-01-01

    The application of modern and powerful analytical instruments consisting of liquid chromatographs (LCs), sophisticated atmospheric pressure ion sources, and sensitive mass analyzers has improved quality as well as speed of doping control analyses markedly during the last 5 years. Numerous compounds such as beta-receptor blocking agents or diuretics require derivatization prior to gas chromatographic (GC) and mass spectrometric (MS) measurement, which is the reason for extended sample preparation periods. In addition, several substances demonstrate poor GC-MS properties even after chemical modification, and peptide hormones such as cross-linked hemoglobins cannot be analyzed at all by means of GC-MS. With the availability of electrospray ionization and robust tandem MSs (e.g., triple-stage quadrupole or ion trap instruments) many new or complementary screening and confirmation assays have been developed, providing detailed qualitative and quantitative information on prohibited drugs. With selected categories of compounds (ephedrines, beta-blockers, b2-agonists, diuretics, and bovine hemoglobin-based oxygen therapeutics) that are banned according to the rules of the World Anti-Doping Agency and International Olympic Committee, the advantages of LC-MS-MS procedures over conventional GC-MS assays are demonstrated, such as enhanced separation of analytes, shorter sample pretreatment, and identification of substances that are not identified by GC-MS.

  20. Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging.

    PubMed

    Jung, Jongjin; Kim, Mi Ae; Cho, Jee-Hyun; Lee, Seung Jae; Yang, Ilseung; Cho, Janggeun; Kim, Seong Keun; Lee, Chulhyun; Park, Joung Kyu

    2012-08-01

    We present a facile synthesis of europium-doped gadolinium sulfide (GdS:Eu(3+)) opto-magnetic nanoparticles (NPs) via sonochemistry. Their photoluminescence and strong paramagnetic properties enable these NPs to be utilized as an in vitro cell imaging and in vivo T(1)-weighted MR imaging probe. The GdS:Eu(3+) NPs have a prominent longitudinal (r(1)) relaxivity value, which is a critical parameter for T(1)-weighted MR imaging. Here, we showed not only their strong positive contrast effect to blood vessels and organs of mice, but also blood half-life and biodistribution including clearance from organs, in order to assess the GdS:Eu(3+) NPs as a competent nanocrystal-based T(1) contrast agent. We further showed confocal images of breast cancer cells containing GdS:Eu(3+) NPs to evaluate as a photoluminescence probe. Dual-mode imaging capability obtained from the GdS:Eu(3+) NPs will allow target-oriented cellular imaging as well as the resulting disease-specific MR imaging.

  1. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    PubMed

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  2. Qualitative detection of diuretics and acidic metabolites of other doping agents in human urine by high-performance liquid chromatography-tandem mass spectrometry: comparison between liquid-liquid extraction and direct injection.

    PubMed

    Deventer, K; Pozo, O J; Van Eenoo, P; Delbeke, F T

    2009-07-31

    Direct injection of urine has gained interest in the field of analytical toxicology, including doping control analysis. However, implementation of a direct urinalysis method for the LC-MS/MS detection of 34 diuretics and 9 other doping agents yielded several analytical problems, which were not observed using a traditional liquid-liquid extraction. Therefore a comparative study was made between liquid-liquid extraction and direct injection. Comparison of validation results showed that the liquid-liquid extraction at pH 7 allows to analyze samples without major drawbacks regarding matrix effects. Hence, good sensitivity was observed and detection limits ranged between 1 and 250 ng/mL for all compounds. In the direct injection approach shifted retention times were observed for several acidic and basic compounds due to unwanted matrix effects. This shift was reduced by a 25-fold dilution of the urine samples. Besides the improved retention time stability the diluted samples also exhibited lower ion suppression than the undiluted ones. After 25-fold dilution, detection limits ranged between 10 and 250 ng/mL for all compounds. Since these detection limits are at or below the minimum required performance level, imposed by the World Anti-Doping Agency, the method could be applied to routine anti-doping analysis. Samples, previously declared positive, were reanalysed using both the liquid-liquid extraction and direct injection. With both techniques all 26 samples were found to be positive, showing the applicability of direct injection for the analysis of diuretics.

  3. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials.

    PubMed

    Yang, He; Wang, Yuzheng; Xue, Xiangxin

    2014-10-01

    In this study, highly effective boron acid and glycerol co-doped TiO2 nano-materials were directly synthesized via a sol-gel method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron (PL) spectroscopy. The results indicate that boron dopant is partially embedded into the interstitial TiO2 structure or incorporated into the TiO2 lattice through occupying the position of the oxygen atom, and others is present in the form of B2O3. Boron acid and glycerol co-doping TiO2 materials show obvious red shift in their absorption edges and efficient electron-hole separation because of the glycerol doping. The study on the antibacterial activities demonstrate that co-doped TiO2 nano-materials could effectively inactivate the bacteria under visible light irradiation. Co-doped TiO2 nano-materials exhibit more excellent antibacterial performance than B-doped TiO2 nano-materials.

  4. [Doping and sports].

    PubMed

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods.

  5. Double-doped TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light

    NASA Astrophysics Data System (ADS)

    Ashkarran, Ali Akbar; Hamidinezhad, Habib; Haddadi, Hedayat; Mahmoudi, Morteza

    2014-05-01

    Silver and nitrogen doped TiO2 nanoparticles (NPs) were synthesized via sol-gel method. The physicochemical properties of the achieved NPs were characterized by various methods including X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultra violet-visible absorption spectroscopy (UV-vis). Both visible-light photocatalytic activity and antimicrobial properties were successfully demonstrated for the degradation of Rhodamine B (Rh. B.), as a model dye, and inactivation of Escherichia coli (E. coli), as a representative of microorganisms. The concentration of the employed dopant was optimized and the results revealed that the silver and nitrogen doped TiO2 NPs extended the light absorption spectrum toward the visible region and significantly enhanced the photodegradation of model dye and inactivation of bacteria under visible-light irradiation while double-doped TiO2 NPs exhibited highest photocatalytic and antibacterial activity compared with single doping. The significant enhancement in the photocatalytic activity and antibacterial properties of the double doped TiO2 NPs, under visible-light irradiation, can be attributed to the generation of two different electronic states acting as electron traps in TiO2 and responsible for narrowing the band gap of TiO2 and shifting its optical response from UV to the visible-light region.

  6. Detection by LC-MS/MS of HIF stabilizer FG-4592 used as a new doping agent: Investigation on a positive case.

    PubMed

    Buisson, C; Marchand, A; Bailloux, I; Lahaussois, A; Martin, L; Molina, A

    2016-03-20

    Stabilizing the labile factor HIF (hypoxia inducible factor) for therapeutic use has led to the development of various molecules by pharmaceutical companies. These HIF stabilizers show promising erythropoiesis stimulating capacities and are of great interest for patients with chronical kidney disease and anemia. Amongst them FG-4592 from FibroGen is now under phase 3 of clinical studies. While this drug is still under investigation, a parallel market already allows to buy this product, which could be tempting for some athletes willing to increase their performances. To avoid such a use for doping purpose, WADA has listed HIF stabilizers and FG-4592 in particular as prohibited substances since 2011 and some anti-doping laboratories have developed a technique of identification of FG-4592 in urine. Here, we described the first case ever identified by an anti-doping laboratory of an athlete using FG-4592. Detection and confirmation in urinary samples was performed by LC-MS/MS. In addition, potential indirect markers erythropoietin (EPO) and hematological parameters followed in the Athlete Biological Passport (ABP) were analyzed during and after the period of use but showed no profound alterations. Only ABPS (abnormal blood profile score) reached (but did not exceed) the upper limit proposed by the ABP adaptive model just after the period of use of FG-4592. Altogether this case sends a warning for anti-doping laboratories which now must strengthen surveillance on HIF stabilizers and develop sensitive methods of detection for this new class of drugs.

  7. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection.

  8. [Medication, athletes and doping regulations].

    PubMed

    Hartgens, F

    2008-08-16

    Doping is defined as an offence of the antidopingcode of the World Anti-Doping Agency (WADA). To uphold the code WADA has composed a list of prohibited substances and methods. The composition of the list is based on three mainstays: fair play, health risks and spirit of the sport. Among the prohibited substances are anabolic agents, erythropoietin, beta2-sympathicomimetics, growth hormone and masking agents. For some medications athletes may receive a therapeutic use exemption. Enforcement of the antidoping-code is performed by doping controls. For this purpose, blood and urine samples of athletes are collected and analysed. In 2006 approximately 200,000 samples were analysed worldwide, with 1.96% being tested positive. All physicians should be aware of the possibility that athletes use medication subjected to the doping regulations. There are guidelines for physicians on doping-related issues in medical practice.

  9. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries.

    PubMed

    Niu, Shuzhang; Lv, Wei; Zhou, Guangmin; He, Yanbing; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-12-28

    Nitrogen and sulfur co-doped porous carbon spheres (NS-PCSs) were prepared using L-cysteine to control the structure and functionalization during the hydrothermal reaction of glucose and the subsequent activation process. As the sulfur hosts in Li-S batteries, NS-PCSs combine strong physical confinement and surface chemical interaction to improve the affinity of polysulfides to the carbon matrix.

  10. Trafficking of drug candidates relevant for sports drug testing: detection of non-approved therapeutics categorized as anabolic and gene doping agents in products distributed via the Internet.

    PubMed

    Thevis, Mario; Geyer, Hans; Thomas, Andreas; Schänzer, Wilhelm

    2011-05-01

    Identifying the use of non-approved drugs by cheating athletes has been a great challenge for doping control laboratories. This is due to the additional complexities associated with identifying relatively unknown and uncharacterized compounds and their metabolites as opposed to known and well-studied therapeutics. In 2010, the prohibited drug candidates and gene doping substances AICAR and GW1516, together with the selective androgen receptor modulator (SARM) MK-2866 were obtained by the Cologne Doping Control Laboratory from Internet suppliers and their structure, quantity, and formulation elucidated. All three compounds proved authentic as determined by liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry and comparison to reference material. While AICAR was provided as a colourless powder in 100 mg aliquots, GW1516 was obtained as an orange/yellow suspension in water/glycerol (150 mg/ml), and MK-2866 (25 mg/ml) was shipped dissolved in polyethylene glycol (PEG) 300. In all cases, the quantified amounts were considerably lower than indicated on the label. The substances were delivered via courier, with packaging identifying them as containing 'amino acids' and 'green tea extract', arguably to circumvent customs control. Although all of the substances were declared 'for research only', their potential misuse in illicit performance-enhancement cannot be excluded; moreover sports drug testing authorities should be aware of the facile availability of black market copies of these drug candidates.

  11. [Doping in sports].

    PubMed

    Jeschke, J; Nekola, J; Chlumský, J

    1999-05-10

    The first organized doping controls were carried out in the 1970s. In 1993, the Czech Antidoping Charter was signed and the Antidoping Committee was established. The medical commission of International Olympic Committee decides, which substances and methods are prohibited. The current classification is as follows: I. prohibited classes of substances--stimulants, narcotics, anabolic agents, diuretics and some hormones. II. prohibited methods--blood doping and pharmaceutical, chemical or physical manipulation. III. classes of drugs subject to certain restrictions--alcohol, marijuana, local anesthetics, corticosteroids and beta blockers. All substances are characterized from the ergogenic viewpoint and health risks are particularly emphasized. In practice, doping control starts by drawing the athletes and ends by urine sample analysis in a special laboratory. In case of positive results, the sportsman is banned from sports activity for 3 months, 2 years or for the rest of his life. In 24 worldwide laboratories in 1995 93,938 urine samples were analyzed. 1516 (1.61%) proved to be positive, including 986 anabolic steroid use. In 1997, the Czech laboratory carried out 843 checks, of which 15 (1.7%) were positive. The largest positive doping group were body builders. Doping poses a major risk among junior sportsmen. Prevalence worldwide is estimated at 2-10% of the male population. In the future a severe antidoping attitude, as well as antidoping enlightenment, are certain to continue. By these standards the activity of the Czech Antidoping Committee is on a very high level.

  12. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  13. Production of Eu-doped BaAl2O4 at low temperature via an alternative sol-gel method using PVA as complexing agent

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Andrade, Adriano B.; Rezende, Marcos V. dos S.; Valerio, Mário E. G.

    2017-03-01

    Europium-doped barium aluminate (BaAl2O4:Eu) was successfully produced using an alternative PVA (Polyvinyl Alcohol) assisted sol-gel route at low temperature. To find the best conditions of calcination, DTA/TG (Differential Thermal Analysis/ Thermogravimetric Analysis) techniques were used. X-ray powder diffraction and Rietveld refinement were used to identify the crystalline phases, as well as to confirm the BaAl2O4 phase formation at 600 °C, a much lower temperature than previously reported in the literature. The crystallite size was estimated using the Scherrer's formalism showing that the prepared samples are in the nanometric scale. XANES (X-ray absorption near edge structure) measurements showed that only Eu3+ species are present in the matrix after calcinations. Optical characterization was performed by photoluminescence (PL) and radioluminescence (RL) spectra. PL studies showed exciton emissions and the characteristic Eu3+ spectrum. Samples irradiated by X-ray showed emissions associated to the exciton and Eu3+ and Eu2+ transitions. This study showed that calcination temperature greatly influenced the luminescent properties. The reproducibility of the samples was successfully tested.

  14. Synergism of activated carbon and undoped and nitrogen-doped TiO2 in the photocatalytic degradation of the chemical warfare agents soman, VX, and yperite.

    PubMed

    Cojocaru, Bogdan; Neaţu, Stefan; Pârvulescu, Vasile I; Somoghi, Vasile; Petrea, Nicoleta; Epure, Gabriel; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-01-01

    Efficient photocatalytic decomposition of chemical warfare agents is a process that may find application in emergency situations or for the controlled destruction of chemical warfare stockpiles. A series of heterogeneous photocatalysts comprising TiO2-activated carbon or N-TiO2-activated carbon composites exhibit excellent photocatalytic activity to effect the complete decomposition of yperite, soman, and VX in high concentrations. The remarkable photocatalytic activity arises from the synergism between adsorption on active carbon and photoactivity by titania. Nitridation makes the composite also active under visible-light irradiation.

  15. High-throughput screening for various classes of doping agents using a new 'dilute-and-shoot' liquid chromatography-tandem mass spectrometry multi-target approach.

    PubMed

    Guddat, S; Solymos, E; Orlovius, A; Thomas, A; Sigmund, G; Geyer, H; Thevis, M; Schänzer, W

    2011-01-01

    A new multi-target approach based on liquid chromatography--electrospray ionization tandem mass spectrometry (LC-(ESI)-MS/MS) is presented to screen for various classes of prohibited substances using direct injection of urine specimens. With a highly sensitive new generation hybrid mass spectrometer classic groups of drugs--for example, diuretics, beta2-agonists--stimulants and narcotics are detectable at concentration levels far below the required limits. Additionally, more challenging and various new target compounds could be implemented. Model compounds of stimulant conjugates were studied to investigate a possible screening without complex sample preparation. As a main achievement, the integration of the plasma volume expanders dextran and hydroxyethyl starch (HES), commonly analyzed in time-consuming, stand-alone procedures, is accomplished. To screen for relatively new prohibited compounds, a common metabolite of the selective androgen receptor modulator (SARMs) andarine, a metabolite of growth hormone releasing peptide (GHRP-2), and 5-amino-4-imidazolecarboxyamide ribonucleoside (AICAR) are analyzed. Following a completely new approach, conjugates of di(2-ethylhexyl) phthalate (DEHP) metabolites are monitored to detect abnormally high levels of plasticizers indicating for illicit blood transfusion. The assay was fully validated for qualitative purposes considering the parameters specificity, intra- (3.2-16.6%) and inter-day precision (0.4-19.9%) at low, medium and high concentration, robustness, limit of detection (1-70 ng/ml, dextran: 30 µg/ml, HES: 10 µg/ml) and ion suppression/enhancement effects. The analyses of post-administration and routine doping control samples demonstrates the applicability of the method for sports drug testing. This straightforward and reliable approach accomplishes the combination of different screening procedures resulting in a high-throughput method that increases the efficiency of the labs daily work.

  16. [Doping and urologic tumors].

    PubMed

    Pinto, F; Sacco, E; Volpe, A; Gardi, M; Totaro, A; Calarco, A; Racioppi, M; Gulino, G; D'Addessi, A; Bassi, P F

    2010-01-01

    Several substances such as growth hormone (GH), erythropoietin (Epo), and anabolic steroids (AS) are improperly utilized to increase the performance of athletes. Evaluating the potential cancer risk associated with doping agents is difficult since these drugs are often used at very high doses and in combination with other licit or illicit drugs. The GH, via its mediator, the insulin-like growth factor 1 (IGF-1), is involved in the development and progression of cancer. Animal studies suggested that high levels of GH/IGF-1 increase progression of androgen-independent prostate cancer. Clinical data regarding prostate cancer are mostly based on epidemiological studies or indirect data such as IGF-1 high levels in patients with prostate cancer. Even if experimental studies showed a correlation between Epo and cancer, no clinical data are currently available on cancer development related to Epo as a doping agent. Androgens are involved in prostate carcinogenesis modulating genes that regulate cell proliferation, apoptosis and angiogenesis. Most information on AS is anecdotal (case reports on prostate, kidney and testicular cancers). Prospective epidemiologic studies failed to support the hypothesis that circulating androgens are positively associated with prostate cancer risk. Currently, clinical and epidemiological studies supporting association between doping and urological neoplasias are not available. Nowadays, exposure to doping agents starts more prematurely with a consequent longer exposition period; drugs are often used at very high doses and in combination with other licit or illicit drugs. Due to all these elements it is impossible to predict all the side effects, including cancer; more detailed studies are therefore necessary.

  17. Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents.

    PubMed

    Segura, J; Ventura, R; Jurado, C

    1998-08-21

    The development of low cost MS detectors in recent years has promoted an important increase in the applicability of GC-MS system to analyze for the presence of foreign substances in the human body. Drugs and toxic agents are in vivo metabolized in such a way that more polar compounds are usually formed. Derivatization of these metabolites is often an unavoidable requirement for gas chromatographic analysis. Application of derivatization methods in recent years has been relevant, especially for silylation, acylation, alkylation and the formation of cyclic or diastereomeric derivatives. Given the relevance of drug of abuse testing in modern toxicology, main derivatization procedures for opiates, cocaine, cannabis, amphetamines, benzodiazepines and LSD have been reviewed. Papers describing the analyses of drugs of abuse in matrixes other than blood, such as hair or sweat, have received special attention. Advances in derivatization for sports drug testing have been particularly relevant for anabolic steroids, diuretics and corticosteroids. Among the several methodologies applied, the formation of trimethylsilyl, perfluoroacyl or methylated derivatives have proved to be both versatile and extensively used. Further advances in derivatization for GC-MS applications in clinical and forensic toxicology will depend on the one hand on the degree of further use of GC-MS for routine applications and, on the other hand, on the alternative progress made for developments in LC-MS or CE-MS. Last but not least, the appearance of comprehensive libraries in which reference spectra for different derivatives of many drugs and their metabolites are collected will have an important impact on the expansion of derivatization in GC-MS for toxicological applications.

  18. Doping and thrombosis in sports.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe

    2011-11-01

    Historically, humans have long sought to enhance their "athletic" performance to increase body weight, aggressiveness, mental concentration and physical strength, contextually reducing fatigue, pain, and improving recovery. Although regular training is the mainstay for achieving these targets, the ancillary use of ergogenic aids has become commonplace in all sports. The demarcation between ergogenic aids and doping substances or practices is continuously challenging and mostly based on perceptions regarding the corruption of the fairness of competition and the potential side effects or adverse events arising from the use of otherwise unnecessary ergogenic substances. A kaleidoscope of side effects has been associated with the use of doping agents, including behavioral, skeletal, endocrinologic, metabolic, hemodynamic, and cardiovascular imbalances. Among the various doping substances, the most striking association with thrombotic complications has been reported for androgenic anabolic steroids (i.e., cardiomyopathy, fatal and nonfatal arrhythmias, myocardial infarction [MI], intracardiac thrombosis, stroke, venous thromboembolism [VTE], limb arterial thrombosis, branch retinal vein occlusion, cerebral venous sinus thrombosis) and blood boosting (i.e., VTE and MI, especially for epoetin and analogs). The potential thrombotic complication arising from misuse of other doping agents such as the administration of cortisol, growth hormone, prolactin, cocaine, and platelet-derived preparations is instead speculative or anecdotal at best. The present article provides an overview on the epidemiological association as well as the underlying biochemical and biological mechanisms linking the practice of doping in sports with the development of thrombosis.

  19. Gene doping: possibilities and practicalities.

    PubMed

    Wells, Dominic J

    2009-01-01

    Our ever-increasing understanding of the genetic control of cardiovascular and musculoskeletal function together with recent technical improvements in genetic manipulation generates mounting concern over the possibility of such technology being abused by athletes in their quest for improved performance. Genetic manipulation in the context of athletic performance is commonly referred to as gene doping. A review of the literature was performed to identify the genes and methodologies most likely to be used for gene doping and the technologies that might be used to identify such doping. A large number of candidate performance-enhancing genes have been identified from animal studies, many of them using transgenic mice. Only a limited number have been shown to be effective following gene transfer into adults. Those that seem most likely to be abused are genes that exert their effects locally and leave little, if any, trace in blood or urine. There is currently no evidence that gene doping has yet been undertaken in competitive athletes but the anti-doping authorities will need to remain vigilant in reviewing this rapidly emerging technology. The detection of gene doping involves some different challenges from other agents and a number of promising approaches are currently being explored. 2009 S. Karger AG, Basel

  20. Current Status of Doping in Japan Based on Japan Anti-Doping Disciplinary Panels of the Japan Anti-Doping Agency (JADA): A Suggestion on Anti-Doping Activities by Pharmacists in Japan.

    PubMed

    Imanishi, Takashi; Kawabata, Takayoshi; Takayama, Akira

    2017-01-01

     In 2009, the Japan Anti-Doping Agency (JADA) established the "Sports Pharmacist Accreditation Program" to prevent doping in sports. Since then, anti-doping activities in Japan have been attracting attention. In this study, we investigated research about the current status of doping from 2007 to 2014 in Japan to make anti-doping activities more concrete, and we also discussed future anti-doping activities by pharmacists. In Japan, bodybuilding was the sporting event with the highest number and rate of doping from 2007 to 2014. Many of the positive doping cases were detected for class S1 (anabolic agents), S5 (diuretics and masking agents), and S6 (stimulants). Within class S1, supplements were the main cause of positive doping. Within class S5, medicines prescribed by medical doctors were the main cause of positive doping. Within class S6, non-prescription medicines (e.g., OTC) were the main cause of positive doping. When we looked at the global statistics on doping, many of the positive doping cases were detected for class S1. On comparing the Japanese statistics with the global statistics, the rate of positive doping caused by class S1 was significantly lower, but that caused by classes S5 and S6 was significantly higher in Japan than in the world. In conclusion, pharmacists in Japan should pay attention to class S1, S5, and S6 prohibited substances and to the sport events of bodybuilding. Based on this study, sports pharmacists as well as common pharmacists should suggest new anti-doping activities to prevent doping in the future.

  1. [Doping, sport and addiction--any links?].

    PubMed

    Foucart, J; Verbanck, P; Lebrun, P

    2015-01-01

    Sport is widely encouraged as it is beneficial for health. However, high-performance sport is more and more associated to rather suspicious practices; doping is one of the best example. From a physician point of view, the use of doping agents is obviously a major concern because taking such products often induce serious adverse effects on health. The present manuscript aims to inform physicians about the most frequent doping practices. It also points out that intensive sport can generate an "addictive" behavior sharing with "common"addictions a loss of practice control, a lack of interest in other activities and even a sport's practice detrimental to athlete's health. Analysis of the doping issue needs to take this reality into account as some doping products display an established " addictive" effect.

  2. The psychology of doping.

    PubMed

    Elbe, Anne-Marie; Barkoukis, Vassilis

    2017-08-01

    Doping is increasingly becoming a problem in both elite and recreational sports. It is therefore important to understand the psychological factors which can explain doping behavior in order to prevent it. The present paper briefly presents evidence on the prevalence of doping use in competitive sports and the measurement approaches to assess doping behavior and doping-related variables. Furthermore, the integrative theoretical approaches used to describe the psychological processes underlying doping use are discussed. Finally, the paper provides suggestions for appropriate measurement of doping behavior and doping-related variables, key preventive efforts against doping as well as avenues for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Doping in sport: effects, harm and misconceptions.

    PubMed

    Birzniece, V

    2015-03-01

    Doping in sport is a widespread problem not just among elite athletes, but even more so in recreational sports. In scientific literature, major emphasis is placed on doping detection, whereas detrimental effects of doping agents on athletes' health are seldom discussed. Androgenic anabolic steroids are well known for their positive effects on muscle mass and strength. Human growth hormone also increases muscle mass, although the majority of that is an increase in extracellular fluid and not the functional muscle mass. In recreational athletes, growth hormone does not have major effect on muscle strength, power or aerobic capacity, but stimulates anaerobic exercise capacity. Erythropoietin administration increases oxygen-carrying capacity of blood improving endurance measures, whereas systemic administration of beta-adrenergic agonists may have positive effect on sprint capacity, and beta-adrenergic antagonists reduce muscle tremor. Thus, there are certain drugs that can improve selective aspects of physical performance. However, most of the doping agents exert serious side-effects, especially when used in combination, at high doses and for a long duration. The extent of long-term health consequences is difficult to predict, but likely to be substantial, especially when gene doping is considered. This review summarises the main groups of doping agents used by athletes, with the main focus on their effects on athletic performance and adverse effects.

  4. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  5. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    PubMed

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH4OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH4OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (ID/IG < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  6. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  7. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  8. Doping use among tertiary education students in six developed countries.

    PubMed

    Papadopoulos, Fotios C; Skalkidis, Ilias; Parkkari, Jari; Petridou, Eleni

    2006-01-01

    Data on doping among young non-professional athletes are scarce. In order to estimate the prevalence and predictors of doping use, a standardized, anonymous questionnaire was self-administered by 2650 tertiary education students from five European Union countries (Finland, France, Germany, Greece, Italy) and Israel. The reported usage rate of a doping agent (at least once) was 2.6%, with no significant variation in the frequency of doping reporting among the participating countries. Doping was, however, less common among students of biomedical schools (OR: 0.49, 95% CI: 0.27-0.89) and was higher among males (OR: 2.16, 95% CI: 1.25-3.74). Students, who use to drink coffee or recall frequent occasions of involvement in drunkenness episodes, were more likely (twice and three times, respectively) to report doping, and students using nutritional supplements or having participated in a major athletic event were more likely (four times and twice, respectively) to report doping in comparison with students who do not. Of note is the high odds ratio for reporting individual doping when having a friend who uses doping (OR: 8.61, 95% CI: 4.49-16.53). Given the large size of the physically active young individuals in the population and the small number of professional athletes, doping in the general population may be, in absolute terms, as sizeable problem as it is among the professional athletes. There was evidence that high-risk behaviour and supplement use increased the risk of doping.

  9. Blood doping: risks to athletes' health and strategies for detection.

    PubMed

    Oliveira, Carolina Dizioli Rodrigues de; Bairros, André Valle de; Yonamine, Mauricio

    2014-07-01

    Blood doping has been defined as the misuse of substances or certain techniques to optimize oxygen delivery to muscles with the aim to increase performance in sports activities. It includes blood transfusion, administration of erythropoiesis-stimulating agents or blood substitutes, and gene manipulations. The main reasons for the widespread use of blood doping include: its availability for athletes (erythropoiesis-stimulating agents and blood transfusions), its efficiency in improving performance, and its difficult detection. This article reviews and discusses the blood doping substances and methods used for in sports, the adverse effects related to this practice, and current strategies for its detection.

  10. Agent Orange

    MedlinePlus

    ... Index Agent Orange Agent Orange Home Facts about Herbicides Veterans' Diseases Birth Defects Benefits Exposure Locations Provider ... Orange Parkinson’s Awareness Month Were you exposed to herbicides during service and have Parkinson’s disease? You may ...

  11. Blood doping at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2017-11-01

    The objective of this paper was to review our knowledge of athletes who have, are believed to have or have attempted to engage in blood doping to enhance their performance at an Olympic Games. The paper focused on the Games from Munich 1972 to London 2012 and the author had a medical role at each of the Olympics that is discussed. The study revealed that Olympic athletes have benefitted from manipulating their blood by re-infusion of autologous or infusion of homologous blood and by administering erythropoiesis stimulating agents, notably the three generations of erythropoietins. Fifty seven athletes have been sanctioned with 12 athletes forfeiting 17 Olympic medals including 12 gold medals because of blood doping. Until 1986, the infusion of blood was not prohibited in sport but considered unethical. Erythropoietin was prohibited by the International Olympic Committee's Medical Commission in 1990. There has been a change as to how Olympic athletes have enhanced performance by blood doping, commencing with blood infusion and later administering erythropoiesis stimulating agents and significant advances have occurred in detecting such misuse. Currently, the hematological component of World Anti-Doping Agency's athlete biological passport is an important but not infallible mechanism to identify athletes who cheat by blood doping.

  12. Alternative medicine and doping in sports.

    PubMed

    Koh, Benjamin; Freeman, Lynne; Zaslawski, Christopher

    2012-01-01

    Athletes are high achievers who may seek creative or unconventional methods to improve performance. The literature indicates that athletes are among the heaviest users of complementary and alternative medicine (CAM) and thus may pioneer population trends in CAM use. Unlike non-athletes, athletes may use CAM not just for prevention, treatment or rehabilitation from illness or injuries, but also for performance enhancement. Assuming that athletes' creative use of anything unconventional is aimed at "legally" improving performance, CAM may be used because it is perceived as more "natural" and erroneously assumed as not potentially doping. This failure to recognise CAMs as pharmacological agents puts athletes at risk of inadvertent doping.The general position of the World Anti-Doping Authority (WADA) is one of strict liability, an application of the legal proposition that ignorance is no excuse and the ultimate responsibility is on the athlete to ensure at all times whatever is swallowed, injected or applied to the athlete is both safe and legal for use. This means that a violation occurs whether or not the athlete intentionally or unintentionally, knowingly or unknowingly, used a prohibited substance/method or was negligent or otherwise at fault. Athletes are therefore expected to understand not only what is prohibited, but also what might potentially cause an inadvertent doping violation. Yet, as will be discussed, athlete knowledge on doping is deficient and WADA itself sometimes changes its position on prohibited methods or substances. The situation is further confounded by the conflicting stance of anti-doping experts in the media. These highly publicised disagreements may further portray inconsistencies in anti-doping guidelines and suggest to athletes that what is considered doping is dependent on the dominant political zeitgeist. Taken together, athletes may believe that unless a specific and explicit ruling is made, guidelines are open to interpretation

  13. Doping in sport and exercise: anabolic, ergogenic, health and clinical issues.

    PubMed

    Bird, Stephen R; Goebel, Catrin; Burke, Louise M; Greaves, Ronda F

    2016-03-01

    The use of doping agents is evident within competitive sport in senior and junior age groups, where they are taken by non-elite as well as elite participants. They are also taken in non-sporting contexts by individuals seeking to 'improve' their physique through an increase in muscle and/or decrease in fat mass. While attaining accurate data on the prevalence of their use has limitations, studies suggest the illicit use of doping agents by athletes and non-athletes may be 1-5% in the population and greater than 50% in some groups; with the prevalence being higher in males. There is conclusive evidence that some doping agents are anabolic and ergogenic. There is also evidence that the use of doping agents such as anabolic androgenic steroids, growth hormone and other anabolic agents, erythropoietin and stimulants conveys considerable health risks that include, but are not limited to: cardiovascular disease, diabetes, cancer, mental health issues, virilisation in females and the suppression of naturally produced androgens in males. This review will outline the anabolic, ergogenic and health impacts of selected doping agents and methods that may be used in both the sporting and physique development contexts. It also provides a brief tabulated overview of the history of doping and how doping agents may impact upon the analyses of clinical samples.

  14. Drugs, recreational drug use and attitudes towards doping of high school athletes.

    PubMed

    Laure, P; Lecerf, T; Friser, A; Binsinger, C

    2004-02-01

    The purpose of this investigation was to determine the substances used, and the attitudes towards doping of high school athletes. A four-page, self-completed questionnaire was designed to determine the drugs used (licit, illicit and doping substances) along with beliefs about doping and the psychosociological factors associated with their consumption. The questionnaire was distributed to all the high school students enrolled in a school sports association in the Lorraine region in Eastern France. The completed forms were received from 1459 athletes: 4 % stated that they had used doping agents at least once in their life (their main source of supply being peers and health professionals). Thirty-four percent of the sample smoked some tobacco, 66 % used alcohol, 19 % cannabis, 4 % ecstasy, 10 % tranquillizers, 9 % hypnotics, 4 % creatine and 41 % used vitamins against fatigue. Beliefs about doping did not differ among doping agent users and non-users, except for the associated health risks which were minimized by users. Users of doping agents stated that the quality of the relations that they maintain with their parents is sharply degraded, and they reported that they are susceptible to influence and difficult to live with. More often than non-doping agent users, these adolescents are neither happy, nor healthy, while paradoxically, they seem less anxious and they are more self-confident. Our findings suggest that doping prevention among young athletes cannot be limited uniquely to the list of banned drugs.

  15. Epidemiological analysis of doping offences in the professional tennis circuit

    PubMed Central

    2010-01-01

    Introduction Tennis is a professional sport under a strict anti-doping control. However, since the first violation of the code, the positive cases have not been statistically studied. The objective of this study was to analyze doping offences in the international professional tennis circuit. Methods All offences to the Doping Code committed by tennis players during 2003-2009 were collected from the ITF official webpage, registered and analyzed. Results An average of 1905.7 (±174.5) samples was obtained per year. Fifty-two doping offences were reported and the overall incidence of positive doping samples accounted for 0.38% and 7.4 (±4.1) cases/year. Male players showed higher incidence doping offences than females (p = 0.0004). The incidence in wheelchair players was higher than in non-handicapped subjects (p = 0.0001) Banned substance distribution showed: stimulants 32.69%, cannabis 23.07%; anabolic 11.53%, diuretics and masking agents 11.53, β2-agonists 9.61%; corticosteroids 3.84%, others 3.84%. The overall incidence of 'social drugs' (cocaine, cannabis) was 36.53%. All EPO and blood samples were normal, while the incidence of 'out-of-competition' offences was 0.12%. The lower incidence of doping was found in Grand Slams tournaments. Conclusions The incidence of positive doping samples among professional tennis players is quite low supporting the assumption that there is no evidence of systematic doping in Tennis. "Social drugs" misuse constitutes the main problem of doping in tennis. Male and wheelchair tennis players showed higher risk of infringing the doping code than their females and non-handicapped counterparts. Findings of this study should help to determine the direction of the ongoing strategy in the fight against doping in Tennis. PMID:21159201

  16. Detecting doping use: more than an analytical problem.

    PubMed

    Delanghe, J R; Maenhout, T M; Speeckaert, M M; De Buyzere, M L

    2014-01-01

    The recent Armstrong case, where more than 250 negative doping tests are confronted with the athlete's confession of erythropoietin use, blood doping, steroid, and growth hormone abuse, illustrates the limitations of current laboratory tests in detecting doping in sport. Despite numerous doping controls and simultaneous indications of common doping abuse among professional athletes in the last two decades, the number of positive urine tests for recombinant human erythropoietin (rHuEPO) remains remarkably low. Athletes are using various masking strategies, among them protease inhibitors, intravenous injections of rHuEPO and alternative erythropoiesis stimulating agents. As one of the countermeasures, the Athlete's Biological Passport has been introduced. The sensitivity of the Athlete's Biological Passport is limited if the effect of a low-dose doping remains within the intra-individual reference range. A possible solution could be the use of a novel Epo test (MAIIA Diagnostics). Another performance-enhancing strategy is the return to 'old' doping techniques, such as autologous blood transfusions. Several indirect methods to detect autologous blood transfusions have been proposed with the majority relying on changes in erythropoiesis-sensitive blood markers. Currently, an algorithm based on the haemoglobin (Hb) level concentration and the percentage of reticulocytes (OFF-hr model; Hb(g/l)-60·√%ret) is approved by the World Anti-Doping Agency. Genetic factors have been identified which may interfere with test interpretation. A large inter- and intra-ethnic variation in testosterone glucuronidation and excretion has been described. Consideration of genetic variation should improve performance of the testosterone doping test. Taking into account the pre-analytical care and better tailoring of the threshold values could increase test sensitivity. Anti-doping laboratories should routinely adjust for multiple testing as failure of doping control to detect cheaters

  17. Biological Agents

    MedlinePlus

    ... is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. Murphy/CDC OSHA's Ebola webpage provides ... OSHA offers, visit OSHA's Workers' page. In Focus: Ebola Frederick A. Murphy/CDC OSHA's Ebola webpage provides ...

  18. Doping in competition or doping in sport?

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2008-01-01

    Since ancient times, competitive athletes have been familiar with the use of ergogenic aids and they will probably continue to use unfair and harmful substances in future, because their inclination to victory, along with the mirage of glory and money, will probably overcome health and legal risks. We searched PubMed using the term doping over the period 1990 to the present day. We also included non-English journals. By literature searching, it emerges that the phenomenon of doping is complex and multifaceted. It involves a number of causes and factors that do not originate solely in the athletic field, making universality its main feature. It is in fact observed in all ages and levels of competition, and it concerns all sports, even the most unpredictable. The high number of athletes testing positive for anti-doping controls attests that the current strategy might be analytically adequate to unmask most (but not all) doping practices, but it is probably ineffective to prevent athletes to dope and modify this upsetting trend. Growing points As doping parallels the use of medications, food supplements, alcohol and social drugs, a reinforced preventive policy is advisable. The current anti-doping policy should be replaced with a more efficient and practical strategy to identify and monitor abnormal and harmful deviations of the biochemical and haematological profiles.

  19. Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system

    NASA Astrophysics Data System (ADS)

    Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin

    2017-09-01

    We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.

  20. General practitioners and doping in sport: attitudes and experience

    PubMed Central

    Laure, P; Binsinger, C; Lecerf, T; Ayotte, C

    2003-01-01

    Objectives: To examine the attitudes to, and knowledge of, doping in sport of French general practitioners (GPs), and their contact with drug taking athletes on an everyday basis. Methods: A total of 402 GPs were randomly selected from all over France and interviewed by telephone, using a prepared script. Results: The response rate was 50.5% (153 men and 49 women; mean (SD) age 45.6 (5.6) years). Of the respondents, 73% confirmed that they had the list of banned products, and only 34.5% stated that they were aware of the latest French law, brought into effect in March 1999, concerning the fight against doping. Some 11% had directly encountered a request for prescription of doping agents over the preceding 12 months (the requested substances were mainly anabolic steroids, stimulants, and corticosteroids), and 10% had been consulted by an athlete who was using doping drugs and was frightened of the health risks (the substances used were mainly anabolic steroids). Over half (52%) of the GPs favoured the prescription of drug substitutions to athletes who used doping agents. According to 87.5% of respondents, doping is a public health problem, and 80% stated that doping is a form of drug addiction. Most (89%) said that a GP has a role to play in doping prevention, but 77% considered themselves poorly prepared to participate in its prevention. Conclusion: The results suggest that (a) GPs have limited knowledge of doping and (b) are confronted with doping in their daily practice, at least occasionally. PMID:12893720

  1. Investigation of electrochemical behavior of lipid lowering agent atorvastatin calcium in aqueous media and its determination from pharmaceutical dosage forms and biological fluids using boron-doped diamond and glassy carbon electrodes.

    PubMed

    Dogan-Topal, Burcu; Uslu, Bengi; Ozkan, Sibel A

    2007-08-01

    The electrochemical behavior of atorvastatin calcium at glassy carbon and boron-doped diamond electrodes has been studied using voltammetric techniques. The possible mechanism of oxidation was discussed with model compounds. The dependence of the peak current and potentials on pH, concentration, scan rate and nature of the buffer were investigated for both electrodes. The oxidation of atorvastatin was irreversible and exhibited a diffusion-controlled fashion on the diamond electrode. A linear response was obtained within the range of 9.65 x 10(-7) - 3.86 x 10(-5) M in 0.1 M H(2)SO(4) solution for both electrodes. The detection limits of a standard solution are estimated to be 2.11 x 10(-7) M with differential pulse voltammetry (DPV) and 2.05 x 10(-7)M with square wave voltammetry (SWV) for glassy carbon electrode, and 2.27 x 10(-7) M with DPV and 1.31 x 10(-7)M with SWV for diamond electrodes in 0.1 M H(2)SO(4) solution. The repeatability of the methods was found good for both electrodes. The methods were fully validated and successfully applied to the high-throughput determination of the drug in tablets, human serum and human urine with good recoveries.

  2. [Interdisciplinary strategies versus doping].

    PubMed

    Vitzthum, Karin; Mache, Stefanie; Quarcoo, David; Groneberg, David A; Schöffel, Norman

    2010-06-01

    Doping is a phenomenon which in the past years through the various incidences in professional cycling has come more and more into the focus of the public interest. Whilst in the young past the problems were to define the term "doping" exactly, today's problem is to prevent adolescents and children of doping. This shall be achieved by carrying out controls and serious sanctions for doping violations. Scientific research proved that doping usage can be avoided by broad specific prevention measures. In general, the earlier the athletes dope the higher the risk to become addicted later on in life to other legal or illegal drugs. The aim of this review is to analyse the prevalence of doping regarding youth-, competitive-, high performance and recreational sports and to examine further aspects of doping abuse, risks of addiction, the legal situation, current strategies in the fight against doping and to enhance chances of further doping prevention opportunities. By means of this data an all-embracing view should be given over the current situation, problems and prospects in German-speaking countries.

  3. Sunscreening Agents

    PubMed Central

    Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B.R.

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents. PMID:23320122

  4. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes.

  5. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    PubMed

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects.

  6. Polarization induced doped transistor

    SciTech Connect

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  7. Enhanced dual contrast agent, Co(2+)-doped NaYF4:Yb(3+),Tm(3+) nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging.

    PubMed

    Xia, Ao; Zhang, Xiaofeng; Zhang, Jun; Deng, Yunyun; Chen, Qiang; Wu, Shishan; Huang, Xiaohua; Shen, Jian

    2014-11-01

    Dual-modality imaging with magnetic resonance (MR) and upconversion luminescence (UCL) is a promising technique for molecular imaging in biomedical research. Multifunctional lanthanide-based nanoparticles have been widely investigated as agents for contrast enhanced MR and fluorescence imaging. However, the use of rare earth fluoride nanoparticles for dual-modality imaging of T2-weighted MR and UCL is rarely reported. We find that NaYF4:Yb(3+),Tm(3+),Co(2+) (MUC) nanorods can be applied as a high-performance dual contrast agent for both T2-weighted MR and UCL dual-modality imaging. After modification with 6-O-carboxymethyl chitosan (OCC), MUC nanorods can be endocytosed by cells without showing signs of cytotoxicity. High-quality UCL images of living cells incubated with MUC-OCC nanorods were acquired on a near-infrared (NIR) confocal microscopy under the excitation at 980 nm. Moreover, MUC-OCC nanorods display high transverse (r2) relaxivities in vitro. The application of low-dose MUC-OCC nanorods for NIR-to-NIR UCL and MR dual-modality in vivo imaging was also carried out successfully. In addition, the toxicity of MUC-OCC nanorods was evaluated by MTT assay, serological tests and histological analysis of visceral organs.

  8. Self-doped molecular composite battery electrolytes

    DOEpatents

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  9. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  10. Antidiabetic Agents.

    ERIC Educational Resources Information Center

    Plummer, Nancy; Michael, Nancy, Ed.

    This module on antidiabetic agents is intended for use in inservice or continuing education programs for persons who administer medications in long-term care facilities. Instructor information, including teaching suggestions, and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then…

  11. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  12. [Cardiovascular alterations associated with doping].

    PubMed

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations.

  13. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  14. True Dopers or Negligent Athletes? An Analysis of Anti-Doping Rule Violations Reported to the World Anti-Doping Agency 2010-2012.

    PubMed

    de Hon, Olivier; van Bottenburg, Maarten

    2017-07-25

    The sanction that an athlete receives when an anti-doping rule violation has been committed depends on the specific circumstances of the case. Anti-doping tribunals decide on the final sanction, following the rules of the World Anti-Doping Code. To assess the athletes' degree of fault based on the length of sanctions imposed on them to feed policy-related discussions. Analysing data from the results management database of the World Anti-Doping Agency for anonymous information of anti-doping rule violations in eight selected sports covering the years 2010-2012. Four out of ten athletes who committed an anti-doping rule violation received a suspension that was lower than the standard. This is an indication that tribunals in many instances are not convinced that the athletes concerned were completely at fault, that mitigating circumstances were applicable, or that full responsibility of the suspected violation should not be held against them. Anabolic agents, peptide hormones, and hormone modulators lead to higher sanctions, as do combinations of several anti-doping rule violations. This first analysis of information from the World Anti-Doping Agency's results management database indicates that a large proportion of the athletes who commit anti-doping rule violations may have done this unintentionally. Anti-doping professionals should strive to improve this situation in various ways.

  15. Detection of EPO doping and blood doping: the haematological module of the Athlete Biological Passport.

    PubMed

    Schumacher, Yorck Olaf; Saugy, Martial; Pottgiesser, Torben; Robinson, Neil

    2012-11-01

    The increase of the body's capacity to transport oxygen is a prime target for doping athletes in all endurance sports. For this pupose, blood transfusions or erythropoiesis stimulating agents (ESA), such as erythropoietin, NESP, and CERA are used. As direct detection of such manipulations is difficult, biomarkers that are connected to the haematopoietic system (haemoglobin concentration, reticulocytes) are monitored over time (Athlete Biological Passport (ABP)) and analyzed using mathematical models to identify patterns suspicious of doping. With this information, athletes can either be sanctioned directly based on their profile or targeted with conventional doping tests. Key issues for the appropriate use of the ABP are correct targeting and use of all available information (e.g. whereabouts, cross sectional population data) in a forensic manner. Future developments of the passport include the correction of all concentration-based variables for shifts in plasma volume, which might considerably increase sensitivity. New passport markers from the genomic, proteomic, and metabolomic level might add further information, but need to be validated before integration into the passport procedure. A first assessment of blood data of federations that have implemented the passport show encouraging signs of a decreased blood-doping prevalence in their athletes, which adds scientific credibility to this innovative concept in the fight against ESA- and blood doping. Copyright © 2012 John Wiley & Sons, Ltd.

  16. KGB agents

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    A short story is reported in which the activity of Communist Party of the USSR and secret KGB agents, which were payed by the State, in view of controlling of the conscience of population. The story reffers to the Physics Department of the Moscow University, Planing Institute of the Gosplan of Moldavian S.S.R. and Chishinau Technical University (actually: Technical University of Moldova), where the author has worked during Soviet times. Almost every 6-th citizen in the USSR was engaged in this activity, while actually the former communists rule in the Republic of Moldova.

  17. Human genetic variation: new challenges and opportunities for doping control.

    PubMed

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  18. Recent developments in doping testing for erythropoietin.

    PubMed

    Reichel, Christian

    2011-08-01

    The constant development of new erythropoiesis-stimulating agents (ESAs), since the first introduction of recombinant erythropoietin (rhEpo) for clinical use, has also necessitated constant development of methods for detecting the abuse of these substances. Doping with ESAs is prohibited according to the World Anti-Doping Code and its prohibited list of substances and methods. Since the first publication of a direct and urine-based detection method in 2000, which uses changes in the Epo isoform profile as detected by isoelectric focusing in polyacrylamide slab gels (IEF-PAGE), the method has been constantly adapted to the appearance of new ESAs (e.g., Dynepo, Mircera). Blood had to be introduced as an additional matrix, because Mircera (a PEGylated Epo) is best confirmed in serum or plasma after immunoaffinity purification. A Mircera ELISA was developed for fast screening of sera. With the appearance of Dynepo and copy epoetins, the additional application of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE or equivalent) became necessary. The haematological module of the Athlete Biological Passport is the latest development in multivariable indirect testing for ESA doping. The article summarizes the main strategies currently used in Epo anti-doping testing with special focus on new developments made between 2009 and 2010.

  19. Non-intentional doping in sports.

    PubMed

    Yonamine, Mauricio; Garcia, Paula Rodrigues; de Moraes Moreau, Regina Lúcia

    2004-01-01

    Compulsory drug testing was introduced in 1968 by the International Olympic Committee. Since then, several doping cases have been reported in sports competition world wide. Positive results are based on the detection of prohibited substances, their metabolites and markers in biological (mainly urine) samples supplied by athletes. In some cases, the evidences were not contested and athletes admitted the use of banned substances. However, in other cases, athletes denied the use of doping to enhance performance and claimed to have inadvertently or passively absorbed the drug. Unfortunately, no current accepted analytical method is capable of distinguishing between a sample from a cheater and one from an athlete who was passively exposed to a doping agent. Athletes' allegations have included the passive inhalation of drug smoke (e.g. marijuana) or the ingestion of food or products sold as nutritional supplements that contained prohibited substances. In the scientific literature, several studies have been performed to investigate the possibility of an accidental exposure being the reason for the appearance of detectable quantities of banned substances in urine samples. Based on these studies, this article discusses those cases where the athlete's claims could be possible in generating a positive result in doping control and in which circumstances it would be improbable to happen.

  20. Doping knowledge, attitudes, and practices of Ugandan athletes': a cross-sectional study.

    PubMed

    Muwonge, Haruna; Zavuga, Robert; Kabenge, Peninnah Aligawesa

    2015-09-22

    Despite the development of advanced drug testing systems, both deliberate and inadvertent doping in sports is increasing in elite, amateur and school sports. As a result, alternative approaches that seek to influence an athlete's attitudes are needed to address the growing doping concerns that threaten both the health and well being of the athlete as well as the legitimacy of the sport. Therefore, the current study set out to establish the doping attitudes, knowledge and practices of professional Ugandan athletes, gathering information that may guide the design of more efficient doping prevention programs. This was a cross-sectional study of 384 professional Ugandan athletes from four contact team sports (basketball, football, handball and rugby) and two individual sports (athletics and cycling). An Interviewer administered questionnaire used contained; questions about the doping behavior, the performance enhancement attitude scale (PEAS), and doping use belief (DUB) statements. Approximately 60 % of the athletes reported familiarity with information on doping and that most of this information came from fellow colleagues (41.9 %), individual or team coaches (29.7 %) or the media (15.6 %). However, nearly 80 % of these athletes could not correctly define doping. The overall mean PEAS score, a measure of doping attitudes, for all study participants was 39.8 ± 14.8. Female athletes (PEAS: 41.1 ± 15.1), athletes with a prior doping history (PEAS: 44.1 ± 15.6) and athletes from the sport of athletics (PEAS: 56.6 ± 17.4) had higher mean PEAS scores than their respective counterparts. Regarding doping behaviors/practices, 9.3 % of the study participants had been offered a doping agent at some point, although only 3.9 % of the athletes acknowledged recent use. The confessed use of doping agents in this study was low, which may suggest that fewer athletes use doping agents in Uganda. However, there is still an urgent need for educational anti-doping

  1. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  2. Medicolegal aspects of doping in football

    PubMed Central

    Graf‐Baumann, T

    2006-01-01

    This article describes the historical background of the medicolegal aspects of doping in sports and especially in football. The definitions of legal terms are explained and the procedure of individual case management as part of FIFA's approach to doping is presented. Finally, three medicolegal problems awaiting urgent solution are outlined: firstly, the difficulties in decision making arising from the decrease of the T/E ratio from 6 to 4; secondly, the therapeutic application of α‐reductase inhibitors for male pattern baldness in the face of the classification of finasteride as a forbidden masking agent; and lastly, the increasing use of recreational drugs and its social and legal implications in positive cases. PMID:16799105

  3. [The heart and doping].

    PubMed

    Gauthier, J

    2006-11-01

    Doping is becoming an everyday problem in sports medicine. Its main feature is its universality: it concerns all sports, even the most unexpected, from cycling to billiards; all countries are affected with certain continental preferences with regards to the substances used; it is seen in all levels of competition, both in amateurs and professionals. Doping is observed early on, even in childhood. Many substances are used and they are increasingly available: all bodily functions are targeted: cerebral, metabolic, cardiovascular, respiratory, haematological and, in the near future, genetic. Detection of doping is difficult and unpredictable in a legislative environment which is gradually improving. The different modes of action of the doping substances often target the cardiovascular system, especially with regards to their potential complications: hypertension, arrhythmias, thrombosis, coronary artery and peripheral artery diseases and also cardiomyopathies. Every cardiologist should therefore be aware of the problem, even outside the context of sport, as it may impact on daily cardiological practice.

  4. [Doping: effectiveness, consequences, prevention].

    PubMed

    Guezennec, C Y

    2001-02-01

    The use of doping is linked with the history of sports. Doping abuse escalated until the mid sixties when government and sports authorities responded with antidoping laws and drug testing. Today, the details of substances detected in controls give a good indication on the importance of doping use. Three classes of pharmaceuticals account for most of the positive controls. They are anabolic steroids, stimulants and narcotics. Their use can be related with the goal of the athletes. Anabolic steroids are mainly used in sports such as bodybuilding or weight lifting in order to develop strength. Stimulants are used in sports were speed favors performance. All the products that enhance blood oxygen transportation are used in endurance sports, their efficacy is not scientifically demonstrated, but their use does result in real risks. Several studies have evidenced the medical problems resulting from prolonged doping. Doping control is impaired by the fact that many products now used, e.g. EPO or rhGH, are not detectable. Regular medical examination of athletes could help prevent use of doping.

  5. Health care agents

    MedlinePlus

    Durable power of attorney for health care; Health care proxy; End-of-life - health care agent; Life support treatment - ... Respirator - health care agent; Ventilator - health care agent; Power of attorney - health care agent; POA - health care ...

  6. Detecting agents.

    PubMed Central

    Johnson, Susan C

    2003-01-01

    This paper reviews a recent set of behavioural studies that examine the scope and nature of the representational system underlying theory-of-mind development. Studies with typically developing infants, adults and children with autism all converge on the claim that there is a specialized input system that uses not only morphological cues, but also behavioural cues to categorize novel objects as agents. Evidence is reviewed in which 12- to 15-month-old infants treat certain non-human objects as if they have perceptual/attentional abilities, communicative abilities and goal-directed behaviour. They will follow the attentional orientation of an amorphously shaped novel object if it interacts contingently with them or with another person. They also seem to use a novel object's environmentally directed behaviour to determine its perceptual/attentional orientation and object-oriented goals. Results from adults and children with autism are strikingly similar, despite adults' contradictory beliefs about the objects in question and the failure of children with autism to ultimately develop more advanced theory-of-mind reasoning. The implications for a general theory-of-mind development are discussed. PMID:12689380

  7. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  8. Androgens and doping tests: genetic variation and pit-falls

    PubMed Central

    Rane, Anders; Ekström, Lena

    2012-01-01

    The large variation in disposition known for most drugs is also true for anabolic androgenic steroids. Genetic factors are probably the single most important cause of this variation. Further, there are reasons to believe that there is a corresponding variation in efficacy of doping agents. Doped individuals employ a large variety of doping strategies in respect of choice of substance, dose, dose interval, duration of treatment and use of other drugs for enforcement of effects or correction of side effects. Metabolic steps up-stream and down-stream of testosterone are genetically variable and contribute substantially to the variation in disposition of testosterone, the most common doping agent in sports and in society. Large inter- and intra-ethnic variation in testosterone glucuronidation and excretion is described as well as the pit-falls in evaluation of testosterone doping test results. The hydrolysis and bioactivation of testosterone enanthate is also genetically variable yielding a 2–3 fold variation in excretion rate and serum concentration, thereby implicating a substantial variation in ‘efficacy’ of testosterone. Given this situation it is logical to adopt the new findings in the doping control programme. The population based cut-off level for the testosterone : epitestosterone ratio should be replaced by a Bayesian interpretation of consecutive tests in the same individual. When combined with the above genetic information the sensitivity of the test is considerably improved. The combination of the three approaches should reduce the rate of falsely negative or positive results and the number of expensive follow-up tests, stipulated by the World Anti-Doping Agency. PMID:22506612

  9. Doping in Zinc Selenide

    NASA Astrophysics Data System (ADS)

    Wheeler, Edward Dean

    An experimental technique ensuring the incorporation of substitutional arsenic and copper doping in ZnSe is presented. Two techniques are investigated. In each, neutron transmutation doping is employed to introduce arsenic and copper dopants in ZnSe. In the first technique, as-grown crystals of ZnSe are exposed to thermal neutrons. The crystals are thermally annealed after irradiation in order to repair the neutron induced lattice damage. The thermal annealing schedules employed in this work, however, do not fully repair the ZnSe lattice. In the second technique, homoepitaxial layers of ZnSe are deposited with irradiated zinc and selenium as source materials. High quality layers of ZnSe, characterized by x-ray diffraction and low temperature photoluminescence, are produced. The long half lives of As^ {75} and Zn^{65} allow the epitaxial layers to be formed prior to nuclear decay. Since the nuclear recoil associated with the decays are not sufficient to displace the dopant nuclei from their substitutional lattice sites, the technique results in isolated As_{Se } or isolated Cu_{Zn } being introduced in layers of ZnSe after crystal growth. Since the dopants are introduced in the bulk crystal after crystal growth, the doping process is decoupled from any interactions present during crystal growth. A technique in which crystal doping is decoupled from crystal growth provides several unique probes for arsenic and copper doping in ZnSe.

  10. Nanocrystal diffusion doping.

    PubMed

    Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R

    2013-09-25

    A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.

  11. Recruitment to doping and help-seeking behavior of eight female AAS users.

    PubMed

    Börjesson, Annica; Gårevik, Nina; Dahl, Marja-Liisa; Rane, Anders; Ekström, Lena

    2016-03-05

    Doping with anabolic androgenic steroids in sports has now developed to a widespread use of these agents among young people outside the sport. This is of major concern to the society. The purpose of the use is mainly for aesthetic reasons and is seen as a male phenomenon. But use also occurs in women where the knowledge is scarce. Our aim was to identify the pattern of doping agents in eight female cases and compare them with similar data from men. Eight female users were recruited through Anti-Doping Hot-Line, a national telephone counseling service on doping issues during the years 1998-2004. The use was confirmed with urine doping analysis at the Doping Laboratory. The characteristic of use, co-use of narcotics/other doping agents, exercise pattern, adverse-side effects, family history and reason to begin was evaluated. The women used on average 1.9 different anabolic androgenic steroids and clenbuterol preparations. Ephedrine and growth hormone were co-used in five and one of the women, respectively. Three women reported co-use of narcotics (cannabis and cocaine). The average duration of anabolic agent use before contacting health care was 58 weeks (range 7-104). Side effects for anabolic androgenic steroids (n = 5) included voice changes, clitoral enlargement, body hair growth, whereas women using clenbuterol (n = 2) reported tachycardia and depression. All women except one had a man in close relationship encouraging them to begin with the doping agents. The use of doping agents in our eight women was different from that in male users. The women used less doping agents and were more prone to contact the health care, at an earlier stage, probably due to the adverse effects. The co-use with ephedrine, growth hormone and cannabis appeared to be in the same range as in men. This is the first study showing that a man in close relationship may motivate a woman to use anabolic agents.

  12. Stability studies of selected doping agents in urine: caffeine.

    PubMed

    Ventura, R; Jiménez, C; Closas, N; Segura, J; De la Torre, R

    2003-10-05

    The stability of caffeine in urine samples has been studied. A high-performance liquid chromatography (HPLC) method for the quantification of caffeine in urine samples was validated for that purpose. The method consists of a liquid-liquid extraction at alkaline pH with chloroform-2-propanol (9:1, v/v) with a salting out effect. 7-Ethyltheophylline was used as internal standard (ISTD). Analyses were performed with an Ultrasphere ODS C18 column using water/acetonitrile (90:10, v/v) as a mobile phase at a flow rate of 1 ml/min. Ultraviolet absorption at 280 nm was monitored. Extraction recoveries for caffeine and 7-ethyltheophylline were 81.4+/-6.0 and 87.3+/-5.7%, respectively. The calibration curves were demonstrated to be linear in the working range of 6-30 microg/ml (r2>0.990). The limit of detection and the limit of quantitation were estimated as 0.7 and 2.0 microg/ml, respectively. Precisions in the range of 1.5-9.2 and 4.1-5.8% were obtained in intra- and inter-assay studies, respectively, using control samples containing 10, 14 and 26 microg/ml of caffeine. Accuracies ranging from 2.9 to 7.4% for intra-assay experiments, and from 3.9 to 5.4% in inter-assay studies were obtained. Stability of caffeine in urine samples was evaluated after long- and short-term storage at different temperature conditions. The batches of spiked urine were submitted to sterilization by filtration. No adsorption of the analyte on filters was observed. Before starting stability studies, batches of reference materials were tested for homogeneity. For long-term stability testing, caffeine concentration in freeze-dried urine stored at 4 degrees C and in liquid urine samples stored at 4, -20, -40 and -80 degrees C was determined at several time intervals for 18 months. For short-term stability testing, caffeine concentration was evaluated in liquid urine stored at 37 degrees C for 7 days. The effect of repeated freezing (at -20 degrees C) and thawing was also studied for up to three cycles. The stability of caffeine was also evaluated in non-sterile samples stored at -20 degrees C for 18 months. No significant loss of the compound was observed at any of the investigated conditions.

  13. Evaluation of West-Austrian junior athletes' knowledge regarding doping in sports.

    PubMed

    Fürhapter, Christina; Blank, Cornelia; Leichtfried, Veronika; Mair-Raggautz, Maria; Müller, David; Schobersberger, Wolfgang

    2013-01-01

    An important factor while developing efficient doping prevention strategies is to identify relevant target groups, to evaluate the state of knowledge about this topic as well as to evaluate motivations behind using prohibited substances. Measures to prevent doping substances abuse have to be supported in early stages of childhood. The aim of this prospective study was to evaluate the knowledge of Tyrolean junior athletes about doping in sport. Next to the knowledge, their attitudes in regard to doping practices have also been a focus of this project. Within a prospective cross-sectional study, Tyrolean junior athletes aged between 14 and 19 years (n = 408) were anonymously questioned by distributing questionnaires in three Tyrolean sport schools as well as two Tyrolean sport-training centers. To collect the data, an anonymous questionnaire with close-ended questions was used. Next to sociodemographic data, questions also evaluated the knowledge about prohibited substances as well as attitudes and behaviors towards doping. The concept was set up based on contents of comparable studies and publications. The knowledge about doping among junior athletes was moderate. The consumer behavior of the young athletes on the other hand has turned out to be satisfactory. Nevertheless, the overall knowledge especially regarding potential negative side effects of doping agents is poor. To incorporate an effective doping-prevention strategy, improved education, particularly in terms of side effects, is clearly needed. To achieve sustainable doping-prevention effects, focus has to be generally set on education within the frame of junior competitive sport.

  14. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  15. Preparing Change Agents for Change Agent Roles.

    ERIC Educational Resources Information Center

    Sedlacek, James R.

    Seventy-seven Spanish- and Portuguese-speaking agricultural change agents from developing Central and South American countries responded to a questionnaire which sought perceptions of the roles in which the change agents felt they were involved and the roles for which they felt they were being trained. The agents were participating in training…

  16. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  17. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  18. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  19. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  20. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  1. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  2. P-type nitrogen-doped ZnO nanostructures with controlled shape and doping level by facile microwave synthesis.

    PubMed

    Herring, Natalie P; Panchakarla, Leela S; El-Shall, M Samy

    2014-03-04

    We report herein the development of a facile microwave irradiation (MWI) method for the synthesis of high-quality N-doped ZnO nanostructures with controlled morphology and doping level. We present two different approaches for the MWI-assisted synthesis of N-doped ZnO nanostructures. In the first approach, N-doping of Zn-poor ZnO prepared using zinc peroxide (ZnO2) as a precursor is carried out under MWI in the presence of urea as a nitrogen source and oleylamine (OAm) as a capping agent for the shape control of the resulting N-doped ZnO nanostructures. Our approach utilizes the MWI process for the decomposition of ZnO2, where the rapid transfer of energy directly to ZnO2 can cause an instantaneous internal temperature rise and, thus, the activation energy for the ZnO2 decomposition is essentially decreased as compared to the decomposition under conductive heating. In the second synthesis method, a one-step synthesis of N-doped ZnO nanostructures is achieved by the rapid decomposition of zinc acetate in a mixture of urea and OAm under MWI. We demonstrate, for the first time, that MWI decomposition of zinc acetate in a mixture of OAm and urea results in the formation of N-doped nanostructures with controlled shape and N-doping level. We report a direct correlation between the intensity of the Raman scattering bands in N-doped ZnO and the concentration of urea used in the synthesis. Electrochemical measurements demonstrate the successful synthesis of stable p-type N-doped ZnO nanostructures using the one-step MWI synthesis and, therefore, allow us to investigate, for the first time, the relationship between the doping level and morphology of the ZnO nanostructures. The results provide strong evidence for the control of the electrical behavior and the nanostructured shapes of ZnO nanoparticles using the facile MWI synthesis method developed in this work.

  3. Detection of SARMs in doping control analysis.

    PubMed

    Thevis, Mario; Schänzer, Wilhelm

    2017-01-27

    The class of selective androgen receptor modulators (SARMs) has been the subject of intense and dedicated clinical research over the past two decades. Potential therapeutic applications of SARMs are manifold and focus particularly on the treatment of conditions manifesting in muscle loss such as general sarcopenia, cancer-associated cachexia, muscular dystrophy, etc. Consequently, based on the substantial muscle- and bone-anabolic properties of SARMs, these agents constitute substances with significant potential for misuse in sport and have therefore been added to the Word Anti-Doping Agency's (WADA's) Prohibited List in 2008. Since then, numerous adverse analytical findings have been reported for various different SARMs, which has underlined the importance of proactive and preventive anti-doping measures concerning emerging drugs such as these anabolic agents, which have evidently been misused in sport despite the fact that none of these SARMs has yet received full clinical approval. In this review, analytical data on SARMs generated in the context of research conducted for sports drug testing purposes are summarized and state-of-the-art test methods aiming at intact drugs as well as diagnostic urinary metabolites are discussed. Doping control analytical approaches predominantly rely on chromatography hyphenated to mass spectrometry, which have allowed for appropriately covering the considerable variety of pharmacophores present in SARMs such as the non-steroidal representatives ACP-105, BMS-564929, GLPG0492 (DT-200), LG-121071, LGD-2226, LGD-4033/VK 5211, ostarine/enobosarm, RAD-140, S-40503, etc. as well as steroidal compounds such as MK-0773 and YK-11.

  4. Doping prevalence among preadolescent athletes: a 4-year follow-up.

    PubMed

    Laure, P; Binsinger, C

    2007-10-01

    To describe the prevalence of doping and its progression in a cohort of preadolescent athletes during a 4-year follow-up. Prospective cohort study. Self-questionnaire survey. All of the pupils entering the first year of secondary school (sixth grade) in the Vosges Département (east France) and followed for 4 years. Drug use (prohibited substances, tobacco, alcohol, cannabis), intention to use, reported health hazards, perceived drug effectiveness, self-esteem, trait anxiety. At the beginning of the study, 1.2% (95% CI 0.8 to 1.6) stated that they had taken doping agents at least once in the preceding 6 months, and this had risen to 3.0% (95% CI 2.3-3.7) 4 years later (p<0.001). Of those who had used doping agents, 4% reported that they had experienced a health problem related to doping, and 44% reported that they had won at least one sports event as a result of using the drug. Use of doping agents is linked to the number of hours of practice per week, intention to use, use of other drugs, self-esteem and trait anxiety. The results show that doping does exist in preadolescent athletes who train every day. This fact should to be taken into account in preventive actions.

  5. Doping prevalence among preadolescent athletes: a 4‐year follow‐up

    PubMed Central

    Laure, P; Binsinger, C

    2007-01-01

    Objective To describe the prevalence of doping and its progression in a cohort of preadolescent athletes during a 4‐year follow‐up. Design and settings Prospective cohort study. Self‐questionnaire survey. Participants All of the pupils entering the first year of secondary school (sixth grade) in the Vosges Département (east France) and followed for 4 years. Main outcome measurements Drug use (prohibited substances, tobacco, alcohol, cannabis), intention to use, reported health hazards, perceived drug effectiveness, self‐esteem, trait anxiety. Results At the beginning of the study, 1.2% (95% CI 0.8 to 1.6) stated that they had taken doping agents at least once in the preceding 6 months, and this had risen to 3.0% (95% CI 2.3–3.7) 4 years later (p<0.001). Of those who had used doping agents, 4% reported that they had experienced a health problem related to doping, and 44% reported that they had won at least one sports event as a result of using the drug. Use of doping agents is linked to the number of hours of practice per week, intention to use, use of other drugs, self‐esteem and trait anxiety. Conclusions The results show that doping does exist in preadolescent athletes who train every day. This fact should to be taken into account in preventive actions. PMID:17473000

  6. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  7. Blood doping: the flip side of transfusion and transfusion alternatives.

    PubMed

    Cacic, Daniel Limi; Hervig, Tor; Seghatchian, Jerard

    2013-08-01

    Blood doping in sports has been a hot topic of present. Longitudinal follow up of hematological parameters in different endurance sports, during the 1990s and early 2000s, has provided considerable suspicions about extensive blood manipulation, with performance enhancing effects. Recent doping revelations in the media also prove that blood doping is not an anticipated myth but it is, in fact, real. Erythropoiesis stimulating agents and autologous blood transfusions are used in synergy with substantial effect on the maximum oxygen uptake and delivery to muscles. Whilst both methods of blood manipulation represent a potential health hazard, in the context of an elevated hematocrit, nevertheless despite a number of suspicious deaths amongst athletes, this has not yet been fully documented. A reliable test for detection of recombinant human erythropoietin was implemented in 2000, but this is probably circumvented by microdose regimens. The Athlete's Biological Passport represents the progeny of the idea of an indirect approach based on long term monitoring of hematological parameters, thus making it possible to detect autologous blood doping and erythropoietin use after the substance is excreted. Nevertheless with advances in anti-doping measures it is possible that the levels of excretion of substances used can be masked. Clearly more sensitive and specific diagnostic tools and research/development in these areas of major concern are warranted, which, combined with changes in the athlete's attitude, will help in reaching the vision of fair play.

  8. Interaction between Nitrogen and Sulfur in Co-Doped Graphene and Synergetic Effect in Supercapacitor

    PubMed Central

    Wang, Tao; Wang, Lu-Xiang; Wu, Dong-Ling; Xia, Wei; Jia, Dian-Zeng

    2015-01-01

    The co-doping of graphene with nitrogen and sulfur was investigated aiming at understanding their interactions with the presence of oxygen in graphene. The co-doped graphene (NS-G) was synthesized via a one-pot hydrothermal route using graphene oxide as starting material and L-cysteine, an amino acid containing both N and S, as the doping agent. The obtained NS-G with a three-dimensional hierarchical structure containing both macropores and mesopores exhibited excellent mechanical stabilities under both wet and dry conditions. As compared to N or S singly doped graphene, the co-doped sample contains significantly higher concentrations of N and S species especially pyrollic N groups. The co-doped sample considerably outperformed the singly doped samples when used as free-standing electrode in supercapacitors due to enhanced pseudocapacitance. The simultaneous incorporation of S and N species with the presence of oxygen significantly modified the surface chemistry of carbon leading to considerably higher doping levels, although directly bonding between N and S is neither likely nor detected. Hence, the synergetic effect between N and S occurred through carbon atoms in neighboring hexagonal rings in a graphene sheet. PMID:25880811

  9. Ion track doping

    NASA Astrophysics Data System (ADS)

    Fink, D.; Chadderton, L. T.; Cruz, S. A.; Fahrner, W. R.; Hnatowicz, V.; Te Kaat, E. H.; Melnikov, A. A.; Varichenko, V. S.; Zaitsev, A. M.

    1994-10-01

    Longitudinal dopant distribution along ion tracks in soft (polymers [1?5]) and hard (diamond [6,7]) condensed carbonaceous matter have been studied by neutron depth profiling and cathodoluminesence. Both in-diffusion from the aqueous phase and energetic ion implantation were used in primary track doping. In-situ self-decoration of tracks and post-implantation with a secondary ion species were used in the specific case of ion implantation. Radial dopant distributions were also studied by means of a modified tomographic procedure. Decorative doping of ion bombarded solids is useful in probing track structure, and especially in pointing the way to potential development of nanometric-sized electronic devices.

  10. [Cardiovascular effects of doping].

    PubMed

    Gauthier, J

    2001-09-01

    Cardiovascular effects of doping drugs are numerous, with different mechanisms: vasoconstriction of amphetamines, erythropoietin and cocaine; sodium water retention of anabolic steroids and corticosteroids; elevation in blood viscosity of erythropoietin, perflurocarbon emulsion, recombinant hemoglobin and anabolic steroids; sympathetic nervous system activation of amphetamines, beta 2 agonists and clenbuterol; lipids profile disorder of anabolic steroids. Physical activity consequences, particularly bradycardia and dehydration, are worsening. Thrombosis and arrythmogenic effects, with possibility of sudden death, are the severe immediate events. Hypertension and coronary diseases are medium-term effects; acute myocardial infarction is frequent. Heart failure can be secondary to cardiac muscle direct fibrosis, like with anabolic steroids. These cardiovascular effects are serious and it is necessary to early detect the doping drugs use in sporstmen; all prescribing physician should be aware of existing drugs and their clinical events.

  11. Erythropoietin and blood doping

    PubMed Central

    Robinson, N; Giraud, S; Saudan, C; Baume, N; Avois, L; Mangin, P; Saugy, M

    2006-01-01

    Objective and method To outline the direct and indirect approaches in the fight against blood doping in sports, the different strategies that have been used and are currently being used to fight efficiently against blood doping are presented and discussed. Results and conclusions The paper outlines the different approaches and diagnostic tools that some federations have to identify and target sportspeople demonstrating abnormal blood profiles. Originally blood tests were introduced for medical reasons and for limiting misuse of recombinant human erythropoietin (rHuEPO). In this way it became possible to prevent athletes with haematocrit levels well above normal, and potentially dangerous for their health, competing in sport. Today, with nearly a decade of blood testing experience, sports authorities should be familiar with some of the limitations and specially the ability of blood tests performed prior to competitions to fight efficiently against the misuse of rHuEPO, blood transfusion, and artificial haemoglobin. PMID:16799100

  12. Biological warfare agents.

    PubMed

    Pohanka, Miroslav; Kuca, Kamil

    2010-01-01

    Biological warfare agents are a group of pathogens and toxins of biological origin that can be potentially misused for military or criminal purposes. The present review attempts to summarize necessary knowledge about biological warfare agents. The historical aspects, examples of applications of these agents such as anthrax letters, biological weapons impact, a summary of biological warfare agents and epidemiology of infections are described. The last section tries to estimate future trends in research on biological warfare agents.

  13. Spacecraft sanitation agent development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of an effective sanitizing agent that is compatible with the spacecraft environment and the human occupant is discussed. Experimental results show that two sanitation agents must be used to satisfy mission requirements: one agent for personal hygiene and one for equipment maintenance. It was also recommended that a water rinse be used with the agents for best results, and that consideration be given to using the agents pressure packed or in aerosol formulations.

  14. [Doping in sports].

    PubMed

    Seĭfulla, R D; Rozhkova, E A; Rodchenkov, G M; Appolonova, S A; Kulikova, E V

    2006-01-01

    Drugs used by athletes for the improvement of results are described and classified with respect to chemical structure and pharmacological action. The main groups of drugs treated as doping are considered and the WADA requirements to prohibited preparations are formulated. The main effects produced by drugs on the athletes and animals (race horses, fight dogs, etc ) are described and the measures of therapy against side effects are outlined.

  15. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  16. Chemical warfare agents.

    PubMed

    Kuca, Kamil; Pohanka, Miroslav

    2010-01-01

    Chemical warfare agents are compounds of different chemical structures. Simple molecules such as chlorine as well as complex structures such as ricin belong to this group. Nerve agents, vesicants, incapacitating agents, blood agents, lung-damaging agents, riot-control agents and several toxins are among chemical warfare agents. Although the use of these compounds is strictly prohibited, the possible misuse by terrorist groups is a reality nowadays. Owing to this fact, knowledge of the basic properties of these substances is of a high importance. This chapter briefly introduces the separate groups of chemical warfare agents together with their members and the potential therapy that should be applied in case someone is intoxicated by these agents.

  17. Neutron transmutation doped Ge bolometers

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  18. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  19. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  20. Antimony-doped graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-05-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts.

  1. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  2. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  3. Intelligent Agents: A Primer.

    ERIC Educational Resources Information Center

    Yu, Edmund; Feldman, Susan

    1999-01-01

    Provides an in-depth introduction to the various technologies that are bringing intelligent agents into the forefront of information technology, explaining how such agents work, the standards involved, and how agent-based applications can be developed. (Author/AEF)

  4. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  5. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  6. Standard Agent Framework 1

    SciTech Connect

    Goldsmith, Steven Y.

    1999-04-06

    The Standard Agent framework provides an extensible object-oriented development environment suitable for use in both research and applications projects. The SAF provides a means for constructing and customizing multi-agent systems through specialization of standard base classes (architecture-driven framework) and by composition of component classes (data driven framework). The standard agent system is implemented as an extensible object-centerd framework. Four concrete base classes are developed: (1) Standard Agency; (2) Standard Agent; (3) Human Factor, and (4) Resources. The object-centered framework developed and utilized provides the best comprimise between generality and flexibility available in agent development systems today.

  7. Case studies on ESA-doping as revealed by the Biological Passport.

    PubMed

    Zorzoli, Mario; Rossi, Francesca

    2012-11-01

    Blood doping, through the increase of red cells, induces changes of hematological parameters. The aim of the Biological Passport is first to analyse individual longitudinal profiles in order to identify, through variations of the specific parameters, doping manipulations. Additionally, on the basis of abnormal values or profiles, athletes can be targeted for traditional anti-doping tests in order to detect forbidden substances or methods. We report the experience of the International Cycling Union in applying the Biological Passport to target athletes for the presence of erythropoiesis stimulating agents. All positive results which have been reported between 2008 and 2010 concerning athletes enrolled in the Biological Passport program are presented. Four cases are discussed more in details. To conclude, we propose possible ways of using the Biological Passport in order to better understand athletes' doping modalities, so that testing programs efficiency can be improved. Copyright © 2012 John Wiley & Sons, Ltd.

  8. A facile one-step process for 3D N-doped noncovalent functionalization PS/rGO composites

    NASA Astrophysics Data System (ADS)

    Huang, Weiqi; Wang, Hua; Su, Zheng; Tian, Konghu; Ye, Xianzhu; Bao, Chao; Guo, Yulan; He, Jing; Tian, Xingyou

    2017-03-01

    This work reports a simple, versatile and facile one-step process to prepare the three-dimensional (3D) N-doped noncovalent functionalization polystyrene/reduced graphene oxide (PS/rGO) composites. In this, N, N-dimethylformamide (DMF) acts as the solvent, reducing agent, and more importantly, the N-doping agent. Various measurements have been carried out to characterize the structure and morphology of PS/rGO composites, in particular for the excellent electrical conductivity of PS/rGO composites compared with virgin PS, which was attributed to the 3D pores structure and the N-doping. With regards to the unique properties of graphene, the 3D framework structure and the N-doping, this composite material has great potential properties such as electro-magnetic interference shielding effectiveness (EMI) to be explored.

  9. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders.

    PubMed

    Aswani, T; Babu, B; Manjari, V Pushpa; Stella, R Joyce; Rao, G Thirumala; Krishna, Ch Rama; Ravikumar, R V S S N

    2014-01-01

    Trivalent transition metal ions (Cr(3+), Fe(3+)) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr(3+) and Fe(3+) ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr(3+) doped CdO nanopowders as Dq=1540, B=619 and C=3327 cm(-1) and for Fe(3+) doped CdO nanopowders Dq=920, B=690, C=2750 cm(-1). EPR spectra of the Cr(3+) and Fe(3+) doped CdO nanopowders exhibited resonances at g=1.973 and g=2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr(3+) doped CdO, ultraviolet and blue emissions for Fe(3+) doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders

    NASA Astrophysics Data System (ADS)

    Aswani, T.; Babu, B.; Pushpa Manjari, V.; Joyce Stella, R.; Thirumala Rao, G.; Rama Krishna, Ch.; Ravikumar, R. V. S. S. N.

    2014-03-01

    Trivalent transition metal ions (Cr3+, Fe3+) doped CdO nanopowders via sonication in the presence of Sodium lauryl sulfate as stabilizing agent were synthesized and characterized. Powder XRD studies indicate that the obtained CdO has a cubic phase and concluded that the trivalent ions doping induced the lattice constants to change some extent. Optical absorption spectra exhibited the characteristic bands of Cr3+ and Fe3+ ions in octahedral site symmetry. Crystal field (Dq) and inter-electronic repulsion (B and C) parameters are evaluated for Cr3+ doped CdO nanopowders as Dq = 1540, B = 619 and C = 3327 cm-1 and for Fe3+ doped CdO nanopowders Dq = 920, B = 690, C = 2750 cm-1. EPR spectra of the Cr3+ and Fe3+ doped CdO nanopowders exhibited resonances at g = 1.973 and g = 2 respectively which indicate distorted octahedral site for both ions with the host. Photoluminescence spectra shows the emission bands in violet and bluish green regions for Cr3+ doped CdO, ultraviolet and blue emissions for Fe3+ doped CdO nanopowders. The CIE chromaticity coordinates were also evaluated from the emission spectrum. FT-IR spectra indicate the presence of various functional groups of host lattice.

  11. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  12. Impact of physical activity and doping on epigenetic gene regulation.

    PubMed

    Schwarzenbach, Heidi

    2011-10-01

    To achieve success in sports, many athletes consume doping substances, such as anabolic androgenic steroids and growth hormones, and ignore the negative influence of these drugs on their health. Apart from the unethical aspect of doping in sports, it is essential to consider the tremendous risk it represents to their physical condition. The abuse of pharmaceuticals which improve athletic performance may alter the expression of specific genes involved in muscle and bone metabolism by epigenetic mechanisms, such as DNA methylation and histone modifications. Moreover, excessive and relentless training to increase the muscle mass, may also have an influence on the health of the athletes. This stress releases neurotransmitters and growth factors, and may affect the expression of endogenous genes by DNA methylation, too. This paper focuses on the relationship between epigenetic mechanisms and sports, highlights the potential consequences of abuse of doping drugs on gene expression, and describes methods to molecularly detect epigenetic changes of gene markers reflecting the physiological or metabolic effects of doping agents.

  13. Structural, optical and photocatalytic activity of cerium doped zinc aluminate

    NASA Astrophysics Data System (ADS)

    Sumathi, Shanmugam; Kavipriya, A.

    2017-03-01

    Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.

  14. Rare earth doped upconverting particles for different photonic applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Gangadharan, Ajith Kumar; Sardar, Dhiraj Kumar

    2013-03-01

    Trivalent rare earth ions especially erbium (Er3+) and ytterbium (Yb3+) co-doped in various host nanoparticles are known for their extraordinary spectroscopic properties. A thorough optical characterization including the absolute upconversion quantum yield (QY) measurement is of critical importance in evaluating their potential for various photonic applications. In this paper, we will be presenting a measured absolute upconversion QYs for Yb3+ and Er3+ doped in La2O2S under 980 and 1550 nm excitation at various power densities. Comparison of absolute QYs for different concentrations of Yb3+ and Er3+ doped in La2O2S will be made for all the upconversion emissions with respect to reported most efficient upconverting phosphor NaYF4 doped with 20% Yb3+ and 2% Er3+. Furthermore, applications of these phosphors in different areas such as bio-imaging, solar cell, security, etc. will be explored depending on the measured absolute upconversion quantum yields. In addition, preliminary results on in vitro imaging using upconverting nanoparticles as a contrast agent will be reported. This work was supported by the National Science Foundation Partnerships for Research and Education in Materials (PREM) Grant No. DMR-0934218.

  15. Sulphur mustard degradation on zirconium doped Ti-Fe oxides.

    PubMed

    Štengla, Václav; Grygar, Tomáš Matys; Opluštil, František; Němec, Tomáš

    2011-09-15

    Zirconium doped mixed nanodispersive oxides of Ti and Fe were prepared by homogeneous hydrolysis of sulphate salts with urea in aqueous solutions. Synthesized nanodispersive metal oxide hydroxides were characterised as the Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) microanalysis, and acid-base titration. These oxides were taken for an experimental evaluation of their reactivity with sulphur mustard (chemical warfare agent HD or bis(2-chloroethyl)sulphide). The presence of Zr(4+) dopant tends to increase both the surface area and the surface hydroxylation of the resulting doped oxides in such a manner that it can contribute to enabling the substrate adsorption at the oxide surface and thus accelerate the rate of degradation of warfare agents. The addition of Zr(4+) to the hydrolysis of ferric sulphate with urea shifts the reaction route and promotes formation of goethite at the expense of ferrihydrite. We discovered that Zr(4+) doped oxo-hydroxides of Ti and Fe exhibit a higher degradation activity towards sulphur mustard than any other yet reported reactive sorbents. The reaction rate constant of the slower parallel reaction of the most efficient reactive sorbents is increased with the increasing amount of surface base sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Electron spin resonance study of chromium(V) formation and decomposition by basalt-inhabiting bacteria.

    PubMed

    Kalabegishvili, Tamaz L; Tsibakhashvili, Nelly Y; Holman, Hoi-Ying N

    2003-10-15

    Bacterial reduction of Cr(VI) to Cr(III) compounds may produce reactive intermediates Cr(V) and Cr(IV), which can affect the mobility and toxicity of chromium in environments. To address this important subject, we conducted an electron spin resonance (ESR) study to understand the kinetics of the formation and decomposition of Cr(V) during Cr(VI) reduction by different gram-positive Cr(VI)-tolerant bacteria, which were isolated from polluted basalts from the United States of America and the Republic of Georgia. Results from our batch experiments show that during Cr(VI) reduction, the macromolecules at the cell wall of these bacteria could act as an electron donor to Cr(VI) to form a stable square-pyramidal Cr(V) complexes, which were reduced further probably via a one-electron transfer pathway to form Cr(IV) and Cr(III) compounds. The Cr(V) peak at the ESR spectrum possessed superhyperfine splitting characteristic of the Cr(V) complexes with diol-containing molecules. It appears that the kinetics of Cr(V) formation and decomposition depended on the bacterial growth phase and on the species. Both formation and decomposition of Cr(V) occurred more quickly when Cr(VI) was added at the exponential phase. In comparison with other gram-positive bacteria from the republic of Georgia, the formation and decomposition of Cr(V) in Arthrobacter species from the Unites States was significantly slower.

  17. Moral actor, selfish agent.

    PubMed

    Frimer, Jeremy A; Schaefer, Nicola K; Oakes, Harrison

    2014-05-01

    People are motivated to behave selfishly while appearing moral. This tension gives rise to 2 divergently motivated selves. The actor-the watched self-tends to be moral; the agent-the self as executor-tends to be selfish. Three studies present direct evidence of the actor's and agent's distinct motives. To recruit the self-as-actor, we asked people to rate the importance of various goals. To recruit the self-as-agent, we asked people to describe their goals verbally. In Study 1, actors claimed their goals were equally about helping the self and others (viz., moral); agents claimed their goals were primarily about helping the self (viz., selfish). This disparity was evident in both individualist and collectivist cultures, attesting to the universality of the selfish agent. Study 2 compared actors' and agents' motives to those of people role-playing highly prosocial or selfish exemplars. In content (Study 2a) and in the impressions they made on an outside observer (Study 2b), actors' motives were similar to those of the prosocial role-players, whereas agents' motives were similar to those of the selfish role-players. Study 3 accounted for the difference between the actor and agent: Participants claimed that their agent's motives were the more realistic and that their actor's motives were the more idealistic. The selfish agent/moral actor duality may account for why implicit and explicit measures of the same construct diverge, and why feeling watched brings out the better angels of human nature.

  18. Chemical warfare agents.

    PubMed

    Chauhan, S; Chauhan, S; D'Cruz, R; Faruqi, S; Singh, K K; Varma, S; Singh, M; Karthik, V

    2008-09-01

    Chemical warfare agents (CWA's) are defined as any chemical substance whose toxic properties are utilised to kill, injure or incapacitate an enemy in warfare and associated military operations. Chemical agents have been used in war since times immemorial, but their use reached a peak during World War I. During World War II only the Germans used them in the infamous gas chambers. Since then these have been intermittently used both in war and acts of terrorisms. Many countries have stockpiles of these agents. There has been a legislative effort worldwide to ban the use of CWA's under the chemical weapons convention which came into force in 1997. However the manufacture of these agents cannot be completely prohibited as some of them have potential industrial uses. Moreover despite the remedial measures taken so far and worldwide condemnation, the ease of manufacturing these agents and effectiveness during combat or small scale terrorist operations still make them a powerful weapon to reckon with. These agents are classified according to mechanism of toxicity in humans into blister agents, nerve agents, asphyxiants, choking agents and incapacitating/behavior altering agents. Some of these agents can be as devastating as a nuclear bomb. In addition to immediate injuries caused by chemical agents, some of them are associated with long term morbidities and psychological problems. In this review we will discuss briefly about the historical background, properties, manufacture techniques and industrial uses, mechanism of toxicity, clinical features of exposure and pharmacological management of casualties caused by chemical agents. Copyright © 2008 Elsevier B.V. All rights reserved.

  19. Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping

    NASA Astrophysics Data System (ADS)

    Chiolerio, Alessandro; Bocchini, Sergio; Scaravaggi, Francesco; Porro, Samuele; Perrone, Denis; Beretta, Davide; Caironi, Mario; Fabrizio Pirri, Candido

    2015-10-01

    Engineering applications for printed electronics demand solution processable electrically conductive materials, in the form of inks, to realize interconnections, piezoresistive pressure sensors, thermoresistive temperature sensors, and many other devices. Polyaniline is an intrinsically conductive polymer with modest electrical properties but clear advantages in terms of solubility and stability with temperature and in time. A comprehensive study, starting from its synthesis, primary doping, inkjet printing and secondary doping is presented, with the aim of elucidating the doping agent effects on its morphology, printability and electronic performance.

  20. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  1. Agent Architectures for Compliance

    NASA Astrophysics Data System (ADS)

    Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua

    A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.

  2. Procedures for monitoring recombinant erythropoietin and analogues in doping control.

    PubMed

    Segura, Jordi; Pascual, José A; Gutiérrez-Gallego, Ricardo

    2007-08-01

    The present report summarizes the main analytical strategies developed to identify the presence of recombinant erythropoietin (EPO) administered as a doping agent. Indirect evidence is based on the analysis of blood parameters (haemoglobin, haematocrit, reticulocytes, macrocytes, etc.) and serum markers (concentration of EPO and serum transferrin receptors, etc.). The problem of intertechnique comparison for reliable results evaluation is emphasized, especially for serum markers. Charge differences between isoforms of recombinant EPO and native urinary EPO are the grounds for the isoelectric focusing-double blotting-chemiluminescence detection method presently approved for doping control. Works addressing its advantages and limitations are presented and commented on. The chemical bases of the differential detection are highlighted and some future approaches for detection are also presented. The appearance and detectability of EPO analogues and mimetics susceptible for abuse are also addressed.

  3. Decontamination Data - Blister Agents

    EPA Pesticide Factsheets

    Decontamination efficacy data for blister agents on various building materials using various decontamination solutionsThis dataset is associated with the following publication:Stone, H., D. See, A. Smiley, A. Ellingson, J. Schimmoeller, and L. Oudejans. Surface Decontamination of Blister Agents Lewisite, Sulfur Mustard and Agent Yellow, a Lewisite and Sulfur Mustard Mixture. JOURNAL OF HAZARDOUS MATERIALS. Elsevier Science Ltd, New York, NY, USA, 1-5, (2015).

  4. Engineered doped and codoped polyaniline gas sensors synthesized in N,N,dimethylformamide media

    NASA Astrophysics Data System (ADS)

    Arenas, M. C.; Sánchez, Gabriela; Nicho, M. E.; Elizalde-Torres, Josefina; Castaño, V. M.

    2012-03-01

    Conducting Polyaniline films (Pani) on Corning glass substrates, produced using either an in-situ doping process or a co-doping process, were prepared by the oxidative polymerization of aniline in N,N,dimethylformamide. Bicyclic aliphatic camphorsulfonic acid (CSA), aromatic toluenesulfonic acid (TSA) and carboxylic trifluoroacetic acid (TFA) were employed as doping agents, and CSA mixed with TSA and CSA mixed with TFA were employed as the co-doping materials. The topography of the Pani films was analyzed by atomic-force microscopy (AFM), and their doping and oxidizing states were characterized by Fourier-transform infrared (FT-IR) spectroscopy and optical (UV-Vis) spectroscopy. Flower-like clusters, microfibers, and nanofibers were obtained by doping with CSA, TSA, and the mix of both (CSATSA), respectively. The flower-like morphology limits the conductivity of the film while the microfiber morphology leads to a highly conductive film. The conductivity of the films increases with the doping level, coil-like conformation of the chain and the protonation of the imine in quinoid units. The codoped process reduces the roughness of the CSA-doped films by 50%, but the conductivity depends on the acid type used for this process (TSA or TFA). The optical gas sensor response of the films is related to both the morphology and the degree of protonation. In this study, Pani with a microfiber morphology obtained from TSA-doping is the most sensitive to ammonia gas sensing, and Pani with flower-like morphology is the least sensitive.

  5. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  6. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  7. Genetic Doping and Health Damages

    PubMed Central

    Fallahi, AA; Ravasi, AA; Farhud, DD

    2011-01-01

    Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049

  8. Substitutional doping in nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.; Wong, Eric; Datta, Bianca; Damodhar, Divij; Doan-Nguyen, Vicky V. T.; Herzing, Andrew A.; Kagan, Cherie R.; Murray, Christopher B.

    2015-08-01

    Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

  9. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods.

    PubMed

    Chen, Feng; Huang, Peng; Zhu, Ying-Jie; Wu, Jin; Zhang, Chun-Lei; Cui, Da-Xiang

    2011-12-01

    The design and synthesis of multifunctional systems with high biocompatibility are very significant for the future of clinical applications. Herein, we report a microwave-assisted rapid synthesis of multifunctional Eu(3+)/Gd(3+) dual-doped hydroxyapatite (HAp) nanorods, and the photoluminescence (PL), drug delivery and in vivo imaging of as-prepared Eu(3+)/Gd(3+) doped HAp nanorods. The photoluminescent and magnetic multifunctions of HAp nanorods are realized by the dual-doping with Eu(3+) and Gd(3+). The PL intensity of doped HAp nanorods can be adjusted by varying Eu(3+) and Gd(3+) concentrations. The magnetization of doped HAp nanorods increases with the concentration of doped Gd(3+). The as-prepared Eu(3+)/Gd(3+)-doped HAp nanorods exhibit inappreciable toxicity to the cells in vitro. More importantly, the Eu(3+)/Gd(3+)-doped HAp nanorods show a high drug adsorption capacity and sustained drug release using ibuprofen as a model drug, and the drug release is governed by a diffusion process. Furthermore, the noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-doped HAp nanorods with the photoluminescent function are suitable for in vivo imaging. In vitro and in vivo imaging tests indicate that Eu(3+)/Gd(3+)-doped HAp nanorods have a potential in applications such as a multiple-model imaging agent for magnetic resonance (MR) imaging, photoluminescence imaging and computed tomography (CT) imaging. The Eu(3+)/Gd(3+) dual-doped HAp nanorods are promising for applications in the biomedical fields such as multifunctional drug delivery systems with imaging guidance.

  10. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  11. Etiological agents of diarrhoea.

    PubMed

    Ghosh, A R; Paul, M; Pal, S C; Sen, D

    1990-01-01

    Two decades of research have established newer pathogens and techniques in establishing several organisms of diarrhoeal diseases as aetiological agents. It is now possible to detect an agent in 80% of the situation of diarrhoea in a standard laboratory. The brief review describes the list of pathogens, their diagnostic techniques with short description on clinical and epidemiological status.

  12. Detecting biological warfare agents.

    PubMed

    Song, Linan; Ahn, Soohyoun; Walt, David R

    2005-10-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array.

  13. Change Agent Survival Guide

    ERIC Educational Resources Information Center

    Dunbar, Folwell L.

    2011-01-01

    Consulting is a rough racket. Only a tarantula hair above IRS agents, meter maids and used car sales people, the profession is a prickly burr for slings and arrows. Throw in education, focus on dysfunctional schools and call oneself a "change agent," and this bad rap all but disappears. Unfortunately, though, consulting/coaching/mentoring in…

  14. Travel Agent Course Outline.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria.

    Written for college entry-level travel agent training courses, this course outline can also be used for inservice training programs offered by travel agencies. The outline provides information on the work of a travel agent and gives clear statements on what learners must be able to do by the end of their training. Material is divided into eight…

  15. Differences among immunosuppressive agents.

    PubMed Central

    Hitchings, G H

    1982-01-01

    Immunosuppressive agents have diverse (although often multiple) sites of action in the cell sequences that are involved in immune responses. New routes to selectivity are apparent at both the cellular and the biochemical level. Meanwhile, clinical work is finding new uses and more selective employment of the currently available agents. PMID:6802083

  16. Detecting Biological Warfare Agents

    PubMed Central

    Song, Linan; Ahn, Soohyoun

    2005-01-01

    We developed a fiber-optic, microsphere-based, high-density array composed of 18 species-specific probe microsensors to identify biological warfare agents. We simultaneously identified multiple biological warfare agents in environmental samples by looking at specific probe responses after hybridization and response patterns of the multiplexed array. PMID:16318712

  17. Ferrimagnetic susceptibility contrast agents.

    PubMed

    Bach-Gansmo, T

    1993-01-01

    Contrast agents based on superparamagnetic particles have been in clinical development for more than 5 years, and the complexity of their effects is still not elucidated. The relaxivities are frequently used to give an idea of their efficacy, but these parameters can only be used if they are concentration independent. For large superparamagnetic systems, the evolution of the transverse magnetization is biexponential, after an initial loss of magnetization. Both these characteristics of large superparamagnetic systems should lead to prudence in using the relaxivities as indicators of contrast medium efficacy. Susceptibility induced artefacts have been associated with the use of superparamagnetic contrast agents since the first imaging evaluation took place. The range of concentrations where good contrast effect was achieved without inducing artefacts, as well as blurring and metal artefacts were evaluated. The influence of motion on the induction of artefacts was studied, and compared to the artefacts induced by a paramagnetic agent subject to motion. With a suitable concentration of a negative contrast agent, a signal void could be achieved in the region prone to motion, and no artefacts were induced. If the concentration was too high, a displacement of the region close to the contrast agent was observed. The artefacts occurred in a volume surrounding the contrast agent, i.e., also outside the imaging plane. In comparison a positive, paramagnetic contrast agent induced heavy artefacts in the phase encoding direction, appearing as both high intensity regions and black holes, in a mosaic pattern. Clinical trials of the oral contrast agent OMP for abdominal MR imaging showed this agent to be safe and efficacious. OMP increased the diagnostic efficacy of abdominal MR imaging in 2 of 3 cases examined, with a significant decrease in motion artefacts. Susceptibility contrast agents may also be of use in the evaluation of small lesions in the liver. Particulate material

  18. How do agents represent?

    NASA Astrophysics Data System (ADS)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  19. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  20. Influence of different ions doping on the antibacterial properties of MgO nanopowders

    NASA Astrophysics Data System (ADS)

    Rao, Yuanyuan; Wang, Wei; Tan, Fatang; Cai, Yuncheng; Lu, Junwen; Qiao, Xueliang

    2013-11-01

    Compared with other inorganic antibacterial agents, magnesium oxide (MgO) nanopowders exhibit a unique antibacterial mechanism and various advantages in applications, having attracted extensive attention. In this study, MgO nanopowders doped with different ions (Li+, Zn2+ and Ti4+) were synthesized by a sol-gel method, respectively. The structures and morphologies of the as-obtained precursors and nanopowders were characterized and confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The influence of three metal ions doping on the antibacterial properties of MgO nanopowders was also investigated by their bactericidal activity against Escherichia coli (E. coli, ATCC 25922) using the broth microdilution method and the agar method. The results show that Li-doped MgO exhibits better antibacterial activity, Zn-doped and Ti-doped MgO display poorer antibacterial activity than pure MgO. It can be concluded that the influence of different ions doping on the antibacterial properties of MgO mainly lies on oxygen vacancies and basicity of nanopowders.

  1. Structural, optical, magnetic and photocatalytic properties of Co doped CuS diluted magnetic semiconductor nanoparticles

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Ramu, S.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-08-01

    Pristine and Co doped covellite CuS nanoparticles were synthesized in aqueous solution by facile chemical co-precipitation method with Ethylene Diamine Tetra Acetic Acid (EDTA) as a stabilizing agent. EDAX measurements confirmed the presence of Co in the CuS host lattice. Hexagonal crystal structure of pure and Co doped CuS nanoparticles were authenticated by XRD patterns. TEM images indicated that sphere-shape of nanoparticles through a size ranging from 5 to 8 nm. The optical absorption edge moved to higher energies with increase in Co concentration as indicated by UV-vis spectroscopy. Magnetic measurements revealed that bare CuS sample show sign of diamagnetic character where as in Co doped nanoparticles augmentation of room temperature ferromagnetism was observed with increasing doping precursor concentrations. Photocatalytic performance of the pure and Co doped CuS nanoparticles were assessed by evaluating the degradation rate of rhodamine B solution under sun light irradiation. The 5% Co doped CuS nanoparticles provide evidence for high-quality photocatalytic activity.

  2. Doping-Induced Defects in P-Doped Photo-CVD a-Si:H

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuhiko; Kominato, Toshimi; Takeuchi, Hiroshi; Kuroiwa, Koichi; Tarui, Yasuo

    1987-06-01

    Doping-induced defect creation of photo-CVD amorphous silicon is investigated by photoluminescence and the isothermal capacitance transient spectroscopy technique. The defects induced by phosphorus doping increase as the square root of the gas phase doping ratio, indicating Street’s doping mechanism is basically valid for the Hg-sensitized photo-CVD a-Si:H.

  3. Development of spacecraft toxic gas removal agents

    NASA Technical Reports Server (NTRS)

    Moore, R. S.

    1974-01-01

    The development of agents suitable for removal of CO, NH3, NO2 SO2, and other spacecraft contaminants was approached. An extensive technology review was conducted, yielding a large number of potentially useful materials and/or concepts. Because the two toxic gases of greatest interest, CO and NH3, suggested the use of catalysis principles emphasis was placed on the intestigation of transition metals on various supports. Forty-three materials were prepared or obtained and 25 were tested. Gas chromatographic techniques were used to find seven candidates that effectively managed various combinations of the four toxic gases: none managed all. These candidates included six transition metal-containing preparations and a supported LiOH material. Three commercial charcoals showed some efficiency for the toxic gases and may constitute candidates for enhancement by doping with transition metals.

  4. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  5. Biological warfare agents.

    PubMed

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-07-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  6. Biological warfare agents

    PubMed Central

    Thavaselvam, Duraipandian; Vijayaraghavan, Rajagopalan

    2010-01-01

    The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies. PMID:21829313

  7. Raman studies on Ag-ion doped CdZnS luminescent alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Sethi, Ruchi; Sharma, Prashant K.; Pandey, A. C.; Kumar, Lokendra

    2010-07-01

    Un-doped and Ag-ion doped CdZnS alloy nanocrystals were synthesized using methaacrylic acid (MAA) as a capping agent. A continuous higher frequency shift in optical phonon modes was observed in the Raman spectra of the samples with increasing Zn composition demonstrating a typical 'one-mode' type behavior of the alloy material. Furthermore, the influence of MAA concentration on the optical and vibrational properties was also investigated. Transmission electron micrograph (TEM) of the samples shows that the CdZnS nanocrystals were embedded in the matrix of MAA. In addition, tremendous attention was paid towards the power induced Raman shift in the alloy nanocrystals.

  8. Superconductivity in doped cubic silicon

    NASA Astrophysics Data System (ADS)

    Bustarret, E.; Marcenat, C.; Achatz, P.; Kačmarčik, J.; Lévy, F.; Huxley, A.; Ortéga, L.; Bourgeois, E.; Blase, X.; Débarre, D.; Boulmer, J.

    2006-11-01

    Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature Tc~0.35K, with a critical field of about 0.4T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.

  9. Possibility of analytical finding of glycerol caused by self-catheterization in doping control.

    PubMed

    Okano, Masato; Nishitani, Yasunori; Kageyama, Shinji

    2014-01-01

    Glycerol is listed on the World Anti-Doping Agency (WADA) prohibited list as a masking agent principally because the administration of glycerol increases plasma volume and decreases the concentration of haemoglobin and the value of haematocrit in blood. Glycerol is a naturally occurring substance; therefore, the threshold is set as 1.0 mg/mL in the WADA technical document (WADA TD2013DL). In a WADA-accredited doping control laboratory, three doping control urine specimens collected from impaired athletes were determined to contain a high concentration of glycerol (>1.0 mg/mL); two of these specimens were considered adverse analytical findings (AAFs). Self-catheterization is necessary for athletes with neurological disorders such as neurogenic bladder dysfunction. We conducted a simple simulation of self-catheterization as an experimental test using urethral catheters with an antiseptic agent containing glycerol to confirm the influence of this antiseptic agent on the quantitative value of glycerol in doping control analysis. Some users employ a catheter with glycerol solution (ca. 1 mL) to avoid pain during use. The urine sample passed through such a catheter exhibited a glycerol concentration (4.94 mg/mL) greater than the threshold level. In September 2014, the threshold for glycerol will change from 1.0 to 4.3 mg/mL (WADA TD2014DL); however, a possibility exists for the quantitative value of glycerol in doping control analysis to exceed the threshold because of the use of an antiseptic agent containing glycerol for self-catheterization. The AAF for glycerol for impaired athletes, particularly those who participate in Paralympic sports, should account for the use of a catheter with glycerol.

  10. Topical hemostatic agents: a review.

    PubMed

    Palm, Melanie D; Altman, Jeffrey S

    2008-04-01

    Topical hemostatic agents play an important role in both common and specialized dermatologic procedures. These agents can be classified based on their mechanism of action and include physical or mechanical agents, caustic agents, biologic physical agents, and physiologic agents. Some agents induce protein coagulation and precipitation resulting in occlusion of small cutaneous vessels, while others take advantage of latter stages in the coagulation cascade, activating biologic responses to bleeding. Traditional and newer topical hemostatic agents are discussed in this review, and the benefits and costs of each agent will be provided.

  11. Developing strategies for detection of gene doping.

    PubMed

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology.

  12. Incubational domain characterization in lightly doped ceria

    SciTech Connect

    Li Zhipeng; Mori, Toshiyuki; John Auchterlonie, Graeme; Zou Jin; Drennan, John

    2012-08-15

    Microstructures of both Gd- and Y-doped ceria with different doping level (i.e., 10 at% and 25 at%) have been comprehensively characterized by means of high resolution transmission electron microscopy and selected area electron diffraction. Coherent nano-sized domains can be widely observed in heavily doped ceria. Nevertheless, it was found that a large amount of dislocations actually exist in lightly doped ceria instead of heavily doped ones. Furthermore, incubational domains can be detected in lightly doped ceria, with dislocations located at the interfaces. The interactions between such linear dislocations and dopant defects have been simulated accordingly. As a consequence, the formation mechanism of incubational domains is rationalized in terms of the interaction between intrinsic dislocations of doped ceria and dopant defects. This study offers the insights into the initial state and related mechanism of the formation of nano-sized domains, which have been widely observed in heavily rare-earth-doped ceria in recent years. - Graphical abstract: Interactions between dislocations and dopants lead to incubational domain formation in lightly doped ceria. Highlights: Black-Right-Pointing-Pointer Microstructures were characterized in both heavily and light Gd-/Y-doped ceria. Black-Right-Pointing-Pointer Dislocations are existed in lightly doped ceria rather than heavily doped one. Black-Right-Pointing-Pointer Interactions between dislocations and dopant defects were simulated. Black-Right-Pointing-Pointer Formation of dislocation associated incubational domain is rationalized.

  13. The Antibacterial Activity of Ta-doped ZnO Nanoparticles.

    PubMed

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-12-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta(5+) ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta(5+) ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  14. The Antibacterial Activity of Ta-doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-08-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis ( B. subtilis) and Staphylococcus aureus ( S. aureus) and Gram-negative Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  15. Drug Hepatotoxicity: Newer Agents.

    PubMed

    Bunchorntavakul, Chalermrat; Reddy, K Rajender

    2017-02-01

    Idiosyncratic hepatotoxicity is one of the most common reasons for an approved drug being restricted. This article focuses on hepatotoxicity of selected and recently introduced agents, such as, tyrosine kinase inhibitors, monoclonal antibodies, novel oral anticoagulants, newer antiplatelets, antibiotics, anti-diabetics, anti-epileptics, anti-depressants, anti-psychotics and anti-retrovirals. Overall, the incidence of clinically relevant hepatotoxicity from newer agents seems to be lower than that of the older agents. Nevertheless, cases of severe hepatotoxicity have been reported due to some of these newer agents, including, trastuzumab, ipilimumab, infliximab, imatinib, bosutinib, dasatinib, gefitinib, erlotinib, sunitinib, ponatinib, lapatinib, vemurafenib, dabigatran, rivaroxaban, felbamate, lamotrigine, levetiracetam, venlafaxine, duloxetine, darunavir, and maraviroc. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  17. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Hepatitis D (Delta agent) To use the sharing features on this page, please enable JavaScript. Hepatitis D is a viral infection caused by the ...

  18. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  19. Agent oriented programming

    NASA Technical Reports Server (NTRS)

    Shoham, Yoav

    1994-01-01

    The goal of our research is a methodology for creating robust software in distributed and dynamic environments. The approach taken is to endow software objects with explicit information about one another, to have them interact through a commitment mechanism, and to equip them with a speech-acty communication language. System-level applications include software interoperation and compositionality. A government application of specific interest is an infrastructure for coordination among multiple planners. Daily activity applications include personal software assistants, such as programmable email, scheduling, and new group agents. Research topics include definition of mental state of agents, design of agent languages as well as interpreters for those languages, and mechanisms for coordination within agent societies such as artificial social laws and conventions.

  20. Boron doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  1. Boron doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  2. Surface chemical structure and doping characteristics of boron-doped Si nanowires fabricated by plasma doping

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Hoon; Ma, Jin-Won; Bae, Jung Min; Kang, Yu-seon; Ahn, Jae-Pyung; Kang, Hang-Kyu; Chae, Jimin; Suh, Dongchan; Song, Woobin; Kim, Sunjung; Cho, Mann-Ho

    2017-10-01

    We investigated the conduction characteristics of plasma-doped Si nanowires (NWs) after various rapid thermal annealing (RTA) times. The plasma doping (PD) process developed a highly-deposited B layer at the NW surface. RTA process controls electrical conductivity by mediating the dopant diffusion from the surface layer. The surface chemical and substitutional states of the B plasma-doped Si NWs were analyzed by x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. To elucidate the detailed structure of the NWs, we analyzed the change in the optical phonon mode caused by the incorporated B atoms. For this purpose, we examined Fano resonance by the investigation of the asymmetry, line-width, and phonon wavenumber in Raman spectra. The changes in symmetry level of the Raman peak, phonon lifetime, and internal strain were closely related to the number of electrically activated borons, which was drastically increased with RTA time. The change in electrical and optical characterizations related to the doping characteristics of the NWs was investigated using a 4-point probe and terahertz time-domain spectroscopy (THz-TDS). The resistivity of the NWs was 3000 times lower after the annealing process compared to that before the annealing process, which is well consistent with the optical conductivity data. The data provide the potential utility of PD in conformal doping for three-dimensional nanodevices.

  3. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rice, Katherine P.; Russek, Stephen E.; Geiss, Roy H.; Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-01

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  4. Temperature-dependent structure of Tb-doped magnetite nanoparticles

    SciTech Connect

    Rice, Katherine P.; Russek, Stephen E. Shaw, Justin M.; Usselman, Robert J.; Evarts, Eric R.; Silva, Thomas J.; Nembach, Hans T.; Geiss, Roy H.; Arenholz, Elke; Idzerda, Yves U.

    2015-02-09

    High quality 5 nm cubic Tb-doped magnetite nanoparticles have been synthesized by a wet-chemical method to investigate tailoring of magnetic properties for imaging and biomedical applications. We show that the Tb is incorporated into the octahedral 3+ sites. High-angle annular dark-field microscopy shows that the dopant is well-distributed throughout the particle, and x-ray diffraction measurements show a small lattice parameter shift with the inclusion of a rare-earth dopant. Magnetization and x-ray magnetic circular dichroism data indicate that the Tb spins are unpolarized and weakly coupled to the iron spin lattice at room temperature, and begin to polarize and couple to the iron oxide lattice at temperatures below 50 K. Broadband ferromagnetic resonance measurements show no increase in magnetic damping at room temperature for Tb-doped nanoparticles relative to undoped nanoparticles, further confirming weak coupling between Fe and Tb spins at room temperature. The Gilbert damping constant, α, is remarkably low for the Tb-doped nanoparticles, with α = 0.024 ± 0.003. These nanoparticles, which have a large fixed moment, a large fluctuating moment and optically active rare-earth elements, are potential high-relaxivity T1 and T2 MRI agents with integrated optical signatures.

  5. Properties of doped semiconducting materials

    NASA Astrophysics Data System (ADS)

    Zemskov, V. S.

    The papers contained in this volume focus on the physicochemical principles of the doping of semiconductor materials. Topics discussed include impurity atoms and atomic levels, phase diagrams of the semiconductor-dopant system, distribution coefficients, dopant diffusion, and macro- and microsegregation of doping components. Attention is also given to the interaction between dopant atoms and lattice defects and the structure and decomposition of semiconductor-dopant solid solutions. Experimental data are presented for single crystals and epitaxial films of III-V, IV-VI, and II-VI semiconductors.

  6. Sulphur-doped silica fibres

    SciTech Connect

    Gerasimova, V I; Rybaltovskii, A O; Chernov, P V; Mashinsky, V M; Sazhin, O D; Medvedkov, O I; Rybaltovsky, A A; Khrapko, R R

    2003-01-31

    An optical fibre with low optical losses is manufactured from a sulphur-doped quartz glass. Optical absorption spectra are measured for various parts of the fibre core. Most of the bands of these spectra are assigned to oxygen-deficient centres and colour centres containing sulphur atoms. The photosensitivity of glasses exposed to laser radiation at wavelengths of 193 and 244 nm is investigated to estimate the possibility of their application for producing photorefracting devices. A Bragg grating of the refractive index with {Delta}n = 7.8 x 10{sup -4} is written in a sulphur-doped silica fibre. (fibre optics)

  7. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  8. Room temperature synthesis of Mn{sup 2+} doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination

    SciTech Connect

    Kole, A. K.; Kumbhakar, P.; Tiwary, C. S.

    2013-03-21

    Mn{sup 2+} doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn{sup 2+} doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be {approx}1.10 (at. %) corresponding to 40.0 (molar %) of Mn{sup 2+} doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn{sup 2+} doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn{sup 2+} doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn{sup 2+} doped sample shows an enhancement of 33% in PL emission intensity.

  9. PULSION® HP: Tunable, High Productivity Plasma Doping

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  10. Sports doping in the adolescent: the Faustian conundrum of Hors de Combat.

    PubMed

    Greydanus, Donald E; Patel, Dilip R

    2010-06-01

    The drive toward success in sports and the need for a cosmetically acceptable appearance have driven many adolescents to take a wide variety of so-called doping substances. The consumption of these chemicals in the hope and hype of improved sports performance, fueled by the easing of government restrictions on their proof of safety and efficacy, has resulted in an explosion of so-called ergogenic products available to our youth. Agents that have been used include anabolic steroids, anabolic-like agents, designer steroids, creatine, protein and amino acid supplements, minerals, antioxidants, stimulants, blood doping, erythropoietin, beta-blockers, and others. The use of these agents has considerable potential to cause physical and psychological damage. Use and misuse of drugs in this sports doping process should be discouraged. This discussion reviews some of the agents that are currently being used. Clinicians providing sports medicine care to youth, whether through anticipatory guidance or direct sports medicine management, should educate their young patients about the hype and hyperbole of these products that may keep them out instead of in the game at considerable financial cost to the unwary consumer.

  11. Doping effect of Ag+, Mn2+ ions on Structural and Optical Properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sankara Reddy, B.; Venkatramana Reddy, S.; Venkateswara Reddy, P.; Koteeswara Reddy, N.; Vijayalakshmi, R. P.

    2015-02-01

    Pure ZnO and co-doped (Mn, Ag) ZnO nanoparticles have been successfully prepared by chemical co-precipitation method without using a capping agent. X-ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to undoped ZnO, suggesting that doped Mn, Ag ions are substituted to the regular Zn sites. The morphology of the samples were studied by scanning electron microscopy (SEM). The chemical composition of pure and co-doped ZnO nanoparticles were characterized by energy dispersive X-ray analysis spectroscopy (EDAX). Optical absorption properties were determined by UV-vis Diffuse Reflectance Spectrophotometer. The incorporation of Ag+, Mn2+ in the place of Zn2+ provoked to decrease the size of nanocrystals as compared to pure ZnO. Optical absorption measurements indicates blue shift in the absorption band edge upon Ag, Mn ions doped ZnO nanoparticles.

  12. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    PubMed

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  13. Anabolic steroid use: patterns of use and detection of doping.

    PubMed

    Graham, Michael R; Davies, Bruce; Grace, Fergal M; Kicman, Andrew; Baker, Julien S

    2008-01-01

    Anabolic-androgenic steroids (AAS) were the first identified doping agents that have ergogenic effects and are being used to increase muscle mass and strength in adult males. Consequently, athletes are still using them to increase physical performance and bodybuilders are using them to improve size and cosmetic appearance. The prevalence of AAS use has risen dramatically over the last two decades and filtered into all aspects of society. Support for AAS users has increased, but not by the medical profession, who will not accept that AAS use dependency is a psychiatric condition. The adverse effects and potential dangers of AAS use have been well documented. AAS are used in sport by individuals who have acquired knowledge of the half-lives of specific drugs and the dosages and cycles required to avoid detection. Conversely, they are used by bodybuilders in extreme dosages with the intention of gaining muscle mass and size, with little or no regard for the consequences. Polypharmacy by self-prescription is prevalent in this sector. Most recently, AAS use has filtered through to 'recreational street drug' users and is the largest growth of drugs in this subdivision. They are taken to counteract the anorexic and cachectic effects of the illegal psychotropic street drugs. Screening procedures for AAS in World Anti-Doping Agency accredited laboratories are comprehensive and sensitive and are based mainly on gas chromatography-mass spectrometry, although liquid chromatography-mass spectrometry is becoming increasingly more valuable. The use of carbon isotope mass spectrometry is also of increasing importance in the detection of natural androgen administration, particularly to detect testosterone administration. There is a degree of contentiousness in the scenario of AAS drug use, both within and outside sport. AAS and associated doping agents are not illegal per se. Possession is not an offence, despite contravening sporting regulations and moral codes. Until AAS are

  14. Study of structural and optical properties of Fe doped CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Gupta, Ankita; Kaur, Sarabjeet; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Iron doped Copper oxide nanoparticles were synthesized by the co-precipitation method at different concentration (3%, 6%, 9%) at 300-400° C with Copper Acetate and Ferric Chloride as precursors in presence of Polyethylene Glycol and Sodium Hydroxide as stabilizing agent. Effect of doping on the structural and optical properties is studied. The obtained nanoparticles were characterized by X-Ray Diffraction and UV-Visible Spectroscopy for examining the size and the band gap respectively. The X-Ray Diffraction plots confirmed the monoclinic structure of Copper oxide suggesting the Cu atoms replaced by Fe atoms and no secondary phase was detected. The indirect band gap of Fe doped CuO nanoparticles is 2.4eV and increases to 3.4eV as the concentration of dopant increases. The majority of particle size is in range 8 nm to 35.55 nm investigated by X-ray diffractometer.

  15. Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation.

    PubMed

    Hammami, Mohammed Amen; Croissant, Jonas G; Francis, Lijo; Alsaiari, Shahad K; Anjum, Dalaver H; Ghaffour, Noreddine; Khashab, Niveen M

    2017-01-18

    Engineering and scaling-up new materials for better water desalination are imperative to find alternative fresh water sources to meet future demands. Herein, the fabrication of hydrophobic poly(ether imide) composite nanofiber membranes doped with novel ethylene-pentafluorophenylene-based periodic mesoporous organosilica nanoparticles is reported for enhanced and fouling resistant membrane distillation. Novel organosilica nanoparticles were homogeneously incorporated into electrospun nanofiber membranes depicting a proportional increase of hydrophobicity to the particle contents. Direct contact membrane distillation experiments on the organosilica-doped membrane with only 5% doping showed an increase of flux of 140% compared to commercial membranes. The high porosity of organosilica nanoparticles was further utilized to load the eugenol antimicrobial agent which produced a dramatic enhancement of the antibiofouling properties of the membrane of 70% after 24 h.

  16. Proscribed drugs at the Olympic Games: permitted use and misuse (doping) by athletes.

    PubMed

    Fitch, Ken

    2012-06-01

    Athletes have always sought to outperform their competitors and regrettably some have resorted to misuse of drugs or doping to achieve this. Stimulants were taken by the first Olympic athletes to be disqualified in 1972. Although undetectable until 1975, from the 1950s androgenic anabolic steroids were administered for increased strength and power followed in the 1990s by erythropoietin for enhanced endurance. Both are highly effective doping agents. As analytical science validated improved techniques to identify these drugs, Olympic athletes, including many medallists were caught and disqualified. When the International Olympic Committee (IOC) prohibited beta blockers (beneficial in shooting), diuretics (assist weight classified athletes) and glucocorticosteroids, some athletes with genuine medical conditions were denied legitimate medical therapy. To overcome this, in 1992 the IOC introduced a system known now as Therapeutic Use Exemption (TUE). This paper discusses Olympic athletes who have been known to dope at past Games and some medical indications and pitfalls in the TUE process.

  17. Electronic Structure of Halogen Doped CuCr2Se4

    SciTech Connect

    Arenholz, Elke; Liberati, M.; Neulinger, J. R.; Chopdekar, R.V.; Bettinger, J.S.; Arenholz, E.; Butler, W.; Stacy, A.M.; Idzerda, Y.I.; Suzuki, Y.

    2008-09-13

    We have employed element and chemically sensitive X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) in order to address a long standing controversy regarding the electronic and magnetic state of CuCr{sub 2}Se{sub 4} via halogen doping of the Se anion site in CuCr{sub 2}Se{sub 4-x}Y{sub x} (Y=Cl and Br). Long range magnetic order is observed above room temperature for all samples. The Cr L{sub 2,3} XAS spectra show a prevalent 3+ valence for the Cr ions independent of doping concentration and doping agent. The Cu L{sub 2,3} XAS spectra show a combination of 1+ and 2+ valence states for all samples. XMCD spectra indicate the presence of a magnetic moment associated with the Cu ions that is aligned antiparallel to the Cr moment.

  18. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  19. Sunscreening agents: a review.

    PubMed

    Latha, M S; Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; Naveen Kumar, B R

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food and Drug Administration and European Union have incorporated changes in their guidelines to help consumers select products based on their sun protection factor and protection against ultraviolet radiation, whereas the Indian regulatory agency has not yet issued any special guidance on sunscreening agents, as they are classified under cosmetics. In this article, the authors discuss the pharmacological actions of sunscreening agents as well as the available formulations, their benefits, possible health hazards, safety, challenges, and proper application technique. New technologies and scope for the development of sunscreening agents are also discussed as well as the role of the physician in patient education about the use of these agents.

  20. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Naz, Shagufta; Lei, Jianping; Kanwal, Shamsa

    2013-11-05

    Current research efforts have demonstrated the facile hydrothermal oxidative synthetic route to develop highly fluorescent boron/nitrogen co-doped carbon nanodots (CNDs). During this process, N-(4-hydroxyphenyl)glycine served as a source of N doping and a carbon precursor as well, while boric acid H3BO3 is used as an oxidizing agent in the N2 environment. Surface passivation through ultrasonic treatment of CNDs was performed to induce modifications by using various surface passivating agents. Polyethyleneimine (PEI) remarkably enhanced the fluorescence performance and monodispersity of polymerized carbon nanodots (P-CNDs) in aqueous phase with an enhanced quantum yield of 23.71%, along with an increase in size from ~3 nm to ~200 nm. For characterization of CNDs and P-CNDs, UV, infrared, photoluminescence, transmission electron microscopy, x-ray photoelectron spectra, and atomic force microscopy techniques were utilized. Application potentials of synthesized P-CNDs were developed via introduction of protoporphyrin (PPD, a photosensitizer) which has great doping affinity with polymer PEI to switch-off the fluorescence of P-CNDs, leading to the production of dye-doped nanoprobes. Fluorescence resonance energy transfer (FRET) was also observed during dye-doping, and PPD was detected with a limit of detection (LOD, 3σ) of 15 pM. The fluorescence recovery of this switched-off nanoprobe was made possible by using Sudan red III (carcinogenic dye), which was oxidized by PPD doped in P-CNDs. Sudan red III was detected in the concentration range of 9.9 pM-0.37 nM. Meanwhile, it was also confirmed that the dye-doped nanoprobe is highly selective and exceptionally sensitive to detect this carcinogenic agent in commercial products with a LOD (3σ) of 90 fM.

  1. Chromium-doped chalcogenide lasers

    NASA Astrophysics Data System (ADS)

    Carrig, Timothy J.; Wagner, Gregory J.; Alford, William J.; Zakel, Andrew

    2004-09-01

    Broadly tunable near- and mid-infrared lasers are of interest for a variety of applications including high-resolution spectroscopy, metrology, pumping of nonlinear optical frequency converters such as optical parametric oscillators (OPOs) and standoff chemical sensing. Tunable laser sources in the 2-3 um region include Cr2+ doped chalcogenide lasers; cryogenic systems, such as color center lasers; limited tunability devices, such as Tm and Ho lasers, gas or chemical lasers, and diode lasers; and nonlinear optical devices such as OPOs. Transition-metal-doped chalcogenide lasers are of high interest because of their high versatility, broad room-temperature wavelength tunability, high optical efficiencies, and their potential to be scaled to high powers via direct diode or fiber laser pumping. To date, continuous-wave, gain-switched, Q-switched and mode-locked laser operation has been demonstrated. Material advantages include broad absorption and emission bands, high fluorescence quantum efficiencies at room temperature, high gain cross-sections, and minimal loss mechanisms such as excited-state absorption or upconversion. Additionally, the materials can be produced by a variety of methods, including several direct growth techniques and diffusion doping. The principal material disadvantages include a relatively large change in refractive index with temperature (large dn/dT), which can induce thermal lensing, and a short, microseconds, energy storage time. In this paper we review fundamental material properties, the current state-of-the-art of continuous-wave and pulsed Cr2+ doped chalcogenide lasers, and recent research results.

  2. (Magnetic properties of doped semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Research continued on the transport behavior of doped semiconductors on both sides of the metal-insulator transition, and the approach to the transition from both the insulating and the metallic side. Work is described on magneto resistance of a series of metallic Si:B samples and CdSe. (CBS)

  3. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  4. Method of doping organic semiconductors

    DOEpatents

    Kloc, Christian Leo [Constance, DE; Ramirez, Arthur Penn [Summit, NJ; So, Woo-Young [New Providence, NJ

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  5. Hormones as doping in sports.

    PubMed

    Duntas, Leonidas H; Popovic, Vera

    2013-04-01

    Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.

  6. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  7. Genes in sport and doping.

    PubMed

    Pokrywka, A; Kaliszewski, P; Majorczyk, E; Zembroń-Łacny, A

    2013-09-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes' genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes' genotyping and gene doping possibilities, including their development and detection techniques.

  8. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states

    NASA Astrophysics Data System (ADS)

    Xu, Minghan; He, Guili; Li, Zhaohui; He, Fengjiao; Gao, Feng; Su, Yanjie; Zhang, Liying; Yang, Zhi; Zhang, Yafei

    2014-08-01

    Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools.Compared with traditional semiconductor quantum dots (QDs) and organic dyes, photoluminescent carbon dots (CDs) are superior because of their high aqueous solubility, robust chemical inertness, facile functionalization, high resistance to photobleaching, low toxicity and good biocompatibility. Herein, a green, large-scale and high-output heterogeneous synthesis of N-doped CDs was developed by reacting calcium citrate and urea under microwave irradiation without the use of any capping agents. The obtained N-doped CDs with a uniform size distribution exhibit good aqueous solubility and yellowish-green fluorescence in the solid and aqueous states. These unique luminescence properties of N-doped CDs inspire new thoughts for applications as fluorescent powders, fluorescent inks, the growth of fluorescent bean sprouts, and fingerprint detection tools. Electronic supplementary information (ESI) available: The photos of different precursors under daylight and 365 nm UV beam; 1H-NMR and Raman spectrum of N-doped CDs; toxicity study of bean sprouts; the correlation between length of bean sprouts and the concentration of N-doped CDs

  9. Ecdysteroids: A novel class of anabolic agents?

    PubMed

    Parr, M K; Botrè, F; Naß, A; Hengevoss, J; Diel, P; Wolber, G

    2015-06-01

    Increasing numbers of dietary supplements with ecdysteroids are marketed as "natural anabolic agents". Results of recent studies suggested that their anabolic effect is mediated by estrogen receptor (ER) binding. Within this study the anabolic potency of ecdysterone was compared to well characterized anabolic substances. Effects on the fiber sizes of the soleus muscle in rats as well the diameter of C2C12 derived myotubes were used as biological readouts. Ecdysterone exhibited a strong hypertrophic effect on the fiber size of rat soleus muscle that was found even stronger compared to the test compounds metandienone (dianabol), estradienedione (trenbolox), and SARM S 1, all administered in the same dose (5 mg/kg body weight, for 21 days). In C2C12 myotubes ecdysterone (1 µM) induced a significant increase of the diameter comparable to dihydrotestosterone (1 µM) and IGF 1 (1.3 nM). Molecular docking experiments supported the ERβ mediated action of ecdysterone. To clarify its status in sports, ecdysterone should be considered to be included in the class "S1.2 Other Anabolic Agents" of the list of prohibited substances of the World Anti-Doping Agency.

  10. [Preparation of antineoplastic agents].

    PubMed

    Descoutures, J-M

    2006-01-01

    In the last fifteen years, the preparation of antineoplastic agents has tended to be centralized in the hospital pharmacy for two main reasons: to enable better protection for the staff, to enable better safety for the patient. The consequences of this organization have led to standardization of techniques, implementation of a quality system and also a better use of antineoplastic agents. After protocols have been standardized by the physician and validated by the pharmacist, four main steps are necessary: phamaceutical validation of the prescription, preparation of IV admixtures according to a production file, control of the final product, dispatching of the preparation to the patient. Computer-controlled processes guarantee the safety of these different steps. The centralized preparations are made either with a vertical laminar flow hood or with an isolator. With the implementation of the National Cancer Plan, antineoplastic agents for patients on home treatments will also be prepared in centralized hospital pharmacies.

  11. Polyphenols as antimicrobial agents.

    PubMed

    Daglia, Maria

    2012-04-01

    Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.

  12. MpcAgent

    SciTech Connect

    Nutaro, James

    2013-11-29

    MpcAgent software is a module for the VolltronLite platform from PNNL that regulates the operation of rooftop air conditioning units in small to medium commercial buildings for the purpose of reducing peak power consumption. The MpcAgent accomplishes this by restricting the number of units that may operate simultaneously and using a model predictive control strategy to select which units to operate in each control period. The outcome of this control is effective control of the building air temperature at the user specified set point while avoiding expensive peak demand charges that result from running all HVAC units simultaneously.

  13. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.

    PubMed

    Ma, Guofu; Yang, Qian; Sun, Kanjun; Peng, Hui; Ran, Feitian; Zhao, Xiaolong; Lei, Ziqiang

    2015-12-01

    High capacitance property and low cost are the pivotal requirements for practical application of supercapacitor. In this paper, a low cost and high capacitance property nitrogen-doped porous carbon with high specific capacitance is prepared. The as-prepared nitrogen-doped porous carbon employing potato waste residue (PWR) as the carbon source, zinc chloride (ZnCl2) as the activating agent and melamine as nitrogen doping agent. The morphology and structure of the carbon materials are studied by scanning electron microscopy (SEM), N2 adsorption/desorption, X-ray diffraction (XRD) and Raman spectra. The surface area of the nitrogen-doped carbon which prepared under 700°C is found to be 1052m(2)/g, and the specific capacitance as high as 255Fg(-1) in 2M KOH electrolyte is obtained utilize the carbon as electrode materials. The electrode materials also show excellent cyclability with 93.7% coulombic efficiency at 5Ag(-1) current density of for 5000cycles.

  14. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhu, Hong

    2012-10-01

    A thin layer of nano-scaled Fe-doped TiO2 particles prepared by hydrothermal method is immobilized on the surface of polyamide 6 (PA6) fiber using tetrabutyl titanate as the precursor, ferric trichloride as the doping agent and chitosan as the dispersant agent. The morphology, crystal structure, thermal behavior, composition and chemical structure of PA6 fabric before and after treatments are characterized by means of scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, differential scanning calorimetry and thermal gravimetric analysis techniques. The properties of diffuse reflectance spectrum, tensile, air permeability, whiteness, yellowness and photocatalytic activity are also analyzed. It is found that the anatase phase Fe-doped TiO2 nanoparticles with crystal size of 12 nm or so are synthesized, and simultaneously grafted onto the fiber surface during the processing. Compared with the TiO2-coated fabric, the thermal stability of the Fe-doped TiO2-coated fabric changes a little. The absorption ability to ultraviolet (UV) rays and visible light is greatly improved. The breaking force and breaking elongation increase to some extent because of the shrinkage of fabric. The air permeability decreases distinctly. The color of PA6 fabric changes from white to light brownish because of the introduction of ferric trichloride. The photocatalytic activity of methylene blue decolorization is enhanced under sunlight and UV irradiation.

  15. Agent Persuasion Mechanism of Acquaintance

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    Agent persuasion can improve negotiation efficiency in dynamic environment based on its initiative and autonomy, and etc., which is being affected much more by acquaintance. Classification of acquaintance on agent persuasion is illustrated, and the agent persuasion model of acquaintance is also illustrated. Then the concept of agent persuasion degree of acquaintance is given. Finally, relative interactive mechanism is elaborated.

  16. Forest Service special agents, assistant special agents in charge, senior special agents, and supervisory special agents report: nationwide study

    Treesearch

    Deborah J. Chavez; Joanne F. Tynon

    2007-01-01

    This is the fourth in a series of studies to evaluate perceptions of U.S. Department of Agriculture Forest Service law enforcement personnel of the roles, responsibilities, and issues related to their jobs. An e-mail survey was administered to the 89 Forest Service special agents, assistant special agents in charge, senior special agents, and supervisory special agents...

  17. Model Checking Normative Agent Organisations

    NASA Astrophysics Data System (ADS)

    Dennis, Louise; Tinnemeier, Nick; Meyer, John-Jules

    We present the integration of a normative programming language in the MCAPL framework for model checking multi-agent systems. The result is a framework facilitating the implementation and verification of multi-agent systems coordinated via a normative organisation. The organisation can be programmed in the normative language while the constituent agents may be implemented in a number of (BDI) agent programming languages.

  18. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    NASA Astrophysics Data System (ADS)

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W. H.; Löbenberg, R.; Moussa, W.

    2006-03-01

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  19. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    SciTech Connect

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W.H.; Loebenberg, R.; Moussa, W.

    2006-03-20

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  20. Thrombolytic agents in development.

    PubMed

    Verstraete, M; Lijnen, H R; Collen, D

    1995-07-01

    The quest continues for thrombolytic agents with a higher thrombolytic potency, specific thrombolytic activity and/or a better fibrin selectivity. Several lines of research towards improvement of thrombolytic agents are being explored, including the construction of mutants and variants of plasminogen activators (PAs), chimaeric PAs, conjugates of PAs with monoclonal antibodies, and PAs from animal or bacterial origin. Some of these new thrombolytic agents have shown promise in animal models of venous or arterial thrombosis and in pilot clinical studies. Such molecules include numerous mutants of tissue-type PA (t-PA) with prolonged in vivo half-life and/or resistance to protease inhibitors, and chimaeric PAs consisting of different regions of t-PA and of urokinase-type PA (u-PA). Several molecular forms of the thrombolytic substance in the saliva of the vampire bat have been characterised and cloned. Vampire bat PA exhibits 85% homology to human t-PA but lacks kringle 2 and the plasmin-sensitive cleavage site. A thrombolytic enzyme of 203 amino acids is present in the venom of a southern copperhead snake. This polypeptide, termed fibrolase, is now produced by recombinant technology. Fibrolase does not activate plasminogen or protein C, but directly degrades the alpha and beta chains of fibrin and fibrinogen. Recombinant staphylokinase is not an enzyme, but it forms a 1:1 stoichiometric complex with plasminogen, which becomes active after conversion of plasminogen to plasmin. It is a potent and highly fibrin specific thrombolytic agent in animals and patients.

  1. Hair regrowth. Therapeutic agents.

    PubMed

    Shapiro, J; Price, V H

    1998-04-01

    Today there are new classes of hair growth promotors with proven efficacy. This article reviews the current state of the art agents for treatment of two of the most common forms of hair loss encountered in clinical practice, androgenetic alopecia and alopecia areata. Current therapeutic strategies are based on recent advances in the understanding of disordered hair growth. Practical treatment protocols are presented.

  2. E-Learning Agents

    ERIC Educational Resources Information Center

    Gregg, Dawn G.

    2007-01-01

    Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…

  3. Can Subscription Agents Survive?

    ERIC Educational Resources Information Center

    Tuttle, Marcia

    1985-01-01

    With the saturation of traditional markets for their services, subscription agents have evolved from orders and invoices to serving customers by communicating with librarians and publishers and making automated and paper products available. Magazine fulfillment centers, publisher discounts, and electronic publishing will influence the subscription…

  4. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; Norvig, Peter (Technical Monitor)

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  5. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.

    2016-05-01

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  6. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  7. Fe Doped CdTeS Magnetic Quantum Dots for Bioimaging†

    PubMed Central

    Saha, Ajoy K.; Sharma, Parvesh; Sohn, Han-Byul; Ghosh, Siddhartha; Das, Ritesh. K.; Hebard, Arthur F.; Zeng, Huadong; Baligand, Celine; Walter, Glenn A.

    2013-01-01

    A facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved in situ using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion. The optical and magnetic properties of the Fe doped MQDs were characterized using several techniques. The synthesized MQDs are tuned to emit in the Vis-NIR (530-738 nm) wavelength regime and have high quantum yields (67.5-10%). NIR emitting (738 nm) MQDs having 5.6 atomic% Fe content exhibited saturation magnetization of 85 emu/gm[Fe] at room temperature. Proton transverse relaxivity of the Fe doped MQDs (738 nm) at 4.7 T was determined to be 3.6 mM−1s−1. The functional evaluation of NIR MQDs has been demonstrated using phantom and in vitro studies. These water dispersible, NIR emitting and MR contrast producing Fe doped CdTeS MQDs, in unagglomerated form, have the potential to act as multimodal contrast agents for tracking live cells. PMID:24634776

  8. Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application.

    PubMed

    Khataee, Alireza; Karimi, Atefeh; Zarei, Mahmoud; Joo, Sang Woo

    2015-03-30

    Undoped and europium (III)-doped ZnO nanoparticles were prepared by a sonochemical method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analysis. The crystalline sizes of undoped and 3% Eu-doped ZnO were found to be 16.04 and 8.22nm, respectively. The particle size of Eu-doped ZnO nanoparticles was much smaller than that of pure ZnO. The synthesized nanocatalysts were used for the sonocatalytic degradation of Acid Red 17. Among the Eu-doped ZnO catalysts, 3% Eu-doped ZnO nanoparticles showed the highest sonocatalytic activity. The effects of various parameters such as catalyst loading, initial dye concentration, pH, ultrasonic power, the effect of oxidizing agents, and the presence of anions were investigated. The produced intermediates of the sonocatalytic process were monitored by GC-Mass (GC-MS) spectrometry.

  9. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    SciTech Connect

    Deshpande, M. P. Patel, Kamakshi Gujarati, Vivek P.; Chaki, S. H.

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  10. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  11. Doping in sports.

    PubMed

    Baron, D A; Foley, T

    2009-10-01

    Regardless of one's stance on the topic, drugs are an important issue in sports. Sports pages in newspapers around the globe routinely report on athletes at every level ofcompetition using performance enhancing substances to gain an unfair advantage over their competitors. The level of sophistication in beating drug testing, and developing "next-generation" agents continues to raise. The relative paucity of well designed research has been an additional factor impeding attempts to adequately address the problem. Very limited funds are currently available to conduct the necessary research. Without credible data, athletes are more vulnerable to the claims made by those benefiting from the sales of these compounds. Many younger fans and those dreaming of a similar future admire highly successful professional athletes. A strong, consistent statement admonishing drug use is needed. Actions speak louder than words. Every time a successful athlete is caught using PE drugs, every effort to diminish drug use is negatively impacted. The "win at all cost" and "second place is the first loser" mentality needs to be continually challenged by words and actions in youth sports at every level of competition. Finally, the war on drugs in sports needs to be a coordinated, well organized international undertaking as sports play an important role in virtually every culture. If we are to maintain the integrity of competition and protect the health of the athletes, we must dramatically increase our efforts to eliminate performance enhancing drugs as an acceptable option for any athlete. Sports science professionals and sports psychiatrists need to work with coaches, trainers, athletes, and national governing bodies to educating athletes on the effects of performance enhancing drug use. To achieve this important goal everyone involved in sports needs to be knowledgeable on the negative impact this has on all aspects of organized sports. It is a difficult challenge, but one that must be

  12. Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2014-04-01

    Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.

  13. Role of capillary electrophoresis in the fight against doping in sports.

    PubMed

    Harrison, Christopher R

    2013-08-06

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  14. Doping of polyaniline by corona discharge

    SciTech Connect

    Job, A.E.; Giacometti, J.A.; Mattoso, L.H.C.

    1998-07-01

    It is well known that conductive polyaniline (PANI) films are usually doped by immersing dedoped PANI films in HCl solution. This paper shows that a corona discharge can be successfully employed to dope thin films of polyaniline coated on poly (ethylene terephthalate) films. Similarly to the conventional doping with aqueous HCl the process is accompanied by a color change from blue to green and the conductivity can be tuned in the range from 10{sup {minus}10} up to 0.3 Scm{sup {minus}1}. Such new doping method presents several advantages over the conventional one namely, dry process, use of no chemicals, rapidity and no dopant migration. Measurements also showed that the conductivity persists for a long time as observed for films prepared in chemical solution doping. It is believed that this novel technique could be employed in a continuous doping process aiming to produce films with large area for anti electrostatic packing applications.

  15. A brief review of co-doping

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Tse, Kinfai; Wong, Manhoi; Zhang, Yiou; Zhu, Junyi

    2016-12-01

    Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.

  16. DFT study of Al doped armchair SWCNTs

    SciTech Connect

    Dhiman, Shobhna; Rani, Anita; Kumar, Ranjan; Dharamvir, Keya

    2016-05-23

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab–initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).

  17. Biomarker monitoring in sports doping control.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  18. Reversible optical doping of graphene

    PubMed Central

    Tiberj, A.; Rubio-Roy, M.; Paillet, M.; Huntzinger, J. -R.; Landois, P.; Mikolasek, M.; Contreras, S.; Sauvajol, J. -L.; Dujardin, E.; Zahab, A. -A.

    2013-01-01

    The ultimate surface exposure provided by graphene monolayer makes it the ideal sensor platform but also exposes its intrinsic properties to any environmental perturbations. In this work, we demonstrate that the charge carrier density of graphene exfoliated on a SiO2/Si substrate can be finely and reversibly tuned between hole and electron doping with visible photons. This photo-induced doping happens under moderate laser power conditions but is significantly affected by the substrate cleaning method. In particular, it requires hydrophilic substrates and vanishes for suspended graphene. These findings suggest that optically gated graphene devices operating with a sub-second time scale can be envisioned and that Raman spectroscopy is not always as non-invasive as generally assumed. PMID:23912707

  19. Cationic Nitrogen Doped Helical Nanographenes.

    PubMed

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  1. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  2. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  3. Prevalence of legal and illegal stimulating agents in sports.

    PubMed

    Deventer, K; Roels, K; Delbeke, F T; Van Eenoo, P

    2011-08-01

    This paper reviews the prevalence of legal and illegal stimulants in relation to doping-control analysis. Stimulants are among the oldest classes of doping agents, having been used since ancient times. Despite the ease with which they can be detected and the availability of sensitive detection methods, stimulants are still popular among athletes. Indeed, they remain one of the top three most popular classes of prohibited substances. Because the list of legal and illegal stimulants is extensive only a selection is discussed in detail. The compounds selected are caffeine, ephedrines, amphetamine and related compounds, methylphenidate, cocaine, strychnine, modafinil, adrafinil, 4-methyl-2-hexaneamine, and sibutramine. These compounds are mainly prevalent in sport or are of therapeutic importance. Because stimulants are the oldest doping class the first detection methods were for this group. Several early detection techniques including GC-NPD, GC-ECD, and TLC are highlighted. The more novel detection techniques GC-MS and LC-MS are also discussed in detail. In particular, the last technique has been shown to enable successful detection of stimulants difficult to detect by GC-MS or for stimulants previously undetectable. Because stimulants are also regularly detected in nutritional (food) supplements a section on this topic is also included.

  4. Validating the Autonomous Science Agent

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Cichy, Benjamin; Schaffer, Steve; Tran, Danny; Rabideau, Gregg; Sherwood, Rob; Bote, Robert; Mandl, Dan; Frye, Stu; Shulman, Seth; hide

    2003-01-01

    This paper describes the validation process for the Autonomous Science Agent, a software agent that will fly onboard the EO-1 spacecraft from 2003-2004. This agent will recognize science events, retarget the spacecraft to respond to the science events, and reduce data downlink to only the highest value science data. The autonomous science agent has been designed using a layered architectural approach with specific redundant safeguards to reduce the risk of an agent malfunction to the EO-1 spacecraft. This 'safe' design is also in the process of being thoroughly validated by informal validation methods and extensive testing. This paper describes the analysis used to define agent safety, elements of the design that increase the safety of the agent, and the process being used to validate agent safety prior to the agent software controlling the spacecraft.

  5. Blood doping and its detection.

    PubMed

    Jelkmann, Wolfgang; Lundby, Carsten

    2011-09-01

    Hemoglobin mass is a key factor for maximal exercise capacity. Some athletes apply prohibited techniques and substances with intent to increase hemoglobin mass and physical performance, and this is often difficult to prove directly. Autologous red blood cell transfusion cannot be traced on reinfusion, and also recombinant erythropoietic proteins are detectable only within a certain timeframe. Novel erythropoietic substances, such as mimetics of erythropoietin (Epo) and activators of the Epo gene, may soon enter the sports scene. In addition, Epo gene transfer maneuvers are imaginable. Effective since December 2009, the World Anti-Doping Agency has therefore implemented "Athlete Biologic Passport Operating Guidelines," which are based on the monitoring of several parameters for mature red blood cells and reticulocytes. Blood doping may be assumed, when these parameters change in a nonphysiologic way. Hematologists should be familiar with blood doping practices as they may play an important role in evaluating blood profiles of athletes with respect to manipulations, as contrasted with the established diagnosis of clinical disorders and genetic variations.

  6. Pharmacology of antiplatelet agents.

    PubMed

    Kalra, Kiran; Franzese, Christopher J; Gesheff, Martin G; Lev, Eli I; Pandya, Shachi; Bliden, Kevin P; Tantry, Udaya S; Gurbel, Paul A

    2013-12-01

    Pharmacotherapies with agents that inhibit platelet function have proven to be effective in the treatment of acute coronary syndromes, and in the prevention of complications during and after percutaneous coronary intervention. Because of multiple synergetic pathways of platelet activation and their close interplay with coagulation, current treatment strategies are based not only on platelet inhibition, but also on the attenuation of procoagulant activity, inhibition of thrombin generation, and enhancement of clot dissolution. Current strategies can be broadly categorized as anticoagulants, antiplatelet agents, and fibrinolytics. This review focuses on the pharmacology of current antiplatelet therapy primarily targeting the inhibition of the enzyme cyclooxygenase 1, the P2Y12 receptor, the glycoprotein IIb/IIIa receptor, and protease-activated receptor 1.

  7. [The antiretroviral agent Fullevir].

    PubMed

    Nosik, D N; Lialina, I K; Kalnina, L B; Lobach, O A; Chataeva, M S; Rasnetsov, L D

    2009-01-01

    The antiretroviral properties of Fullevir (sodium salt of fullerenepolyhydropolyaminocaproic acid) manufactured by IntelFarm Co.) were studied in the human cell culture infected with human immunodeficiency virus (HIV). The agent was ascertained to be able to protect the cell from the cytopathic action of HIV. The 90% effective concentration (EF90) was 5 microg/ml. The 50% average toxic concentration was 400 microg/ml. Testing of different (preventive and therapeutic) Fullevir dosage regimens has shown that the drug is effective when used both an hour before and an hour after infection and when administered simultaneously with cell infection. The longer contact time for the agent with the cells increased the degree of antiviral defense. Co-administration of Fullevir and the HIV reverse transcriptase inhibitor Retrovir (azidothymidine) showed a synergistic antiretroviral effect. Thus, Fullevir may be regarded as a new promising antiretroviral drug for the treatment of HIV infection.

  8. Chemical approaches for doping nanodevice architectures

    NASA Astrophysics Data System (ADS)

    O'Connell, John; Biswas, Subhajit; Duffy, Ray; Holmes, Justin D.

    2016-08-01

    Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

  9. FEIBA: a prohemostatic agent.

    PubMed

    Cromwell, Caroline; Aledort, Louis M

    2012-04-01

    Factor eight inhibitor bypassing activity (FEIBA), Anti-Inhibitor Coagulation Complex has been used for over 30 years in hemophiliac patients with inhibitors. The history of its use is reviewed here, including issues related to thrombosis, efficacy, and comparison to alternative bypassing agents. The need for surrogate assays to monitor effective hemostasis with the use of FEIBA remains. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Intelligent Agent Integration Technology

    DTIC Science & Technology

    1998-04-01

    and Manipulation Language (KQML) specification under the DARPA-sponsored Knowledge Sharing Initiative and the developing of a scaleable and an... Shared Communication Ontology ’$" 10.3 IMPLEMENTATION 151 10.3.1 Intelligent Resource Agent Architecture ^ 10.3.2 Application to K-12 Education 153...DARPA-sponsored Knowledge Sharing Initiative, the developing a scaleable and an efficient implementation of information system components for

  11. Agents Technology Research

    DTIC Science & Technology

    2010-02-01

    62702F 6. AUTHOR(S) Robert Wright, Jeffrey Hudack, Nathaniel Gemelli, Steven Loscalzo, and Tsu Kong Lue 5d. PROJECT NUMBER 558S 5e. TASK...NAME OF RESPONSIBLE PERSON Robert Wright a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) N/A...avoided by the other agents removing the incentive to lie or free-load. This phenomenon is termed as the shadow of the future and was shown in Robert

  12. Vaporizing Fire Extinguishing Agents

    DTIC Science & Technology

    1950-08-18

    the pro- ject under contract included: Dr. Earl T. McBee, Head, Chemistry Department; Dr. Zara D. Welch, Researbh Supervisor; and Dr’s T. R. Santelli...Aeronautics Authority kxperimental Station, Indianapolis, Indiana, which has supplied test data for inclusion in this report. The Medical Division of the...Development of sources of supply for agent anAL con- tainers. f. Service testing. This report oovers technical phases a, b, and a to 1 April 1950, and

  13. Deals Among Rational Agents,

    DTIC Science & Technology

    1985-03-01

    8217.--..- .--. ..... .. ......-..- . .-- .. : .. ., . . . - .. .. ....-. . . . Theorem 2 will not hold under minimal deal rationality. Imagine that a perverse opponent chooses his offer group as follows: 1. If you include in your...agents’ behavior (citing the similarity with [25]): (A3). If a game has a single Pareto equilibrium, the players will choose the strategy which...prominent solution. [A Taxonomy of 2 x 2 Games] In short, game theory has been willing to take for granted certain types of behavior without

  14. Animal Capture Agents

    DTIC Science & Technology

    1990-01-01

    Vetalartm) a. Composition: Ketamine hydrochloride is a rapid-acting non-narcotic, nonbarbiturate agent for anesthetic use in cats and for restraint in...mean that the animal cannot feel pain. Ketamine has been aduinistered principally to cats and man, although its use in mice, rats, dogs, primates...minutes after administration to cats . Can cause convulsions and barking fits in dogs, which do not occur when it is added to other psychotropic drugs

  15. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  16. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  17. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  18. [Antimicrobial agents in eyedrops].

    PubMed

    Sklubalová, Z

    2004-05-01

    Microbial contamination of ophthalmic drops means a risk of serious injury to the eye. Ophthalmic drops must therefore comply with sterility requirements. Protection of multiple-dose drops against secondary contamination is ensured by an addition of an antimicrobial agent. Selection of a suitable antimicrobial agent is conditioned by many factors, such as the spectrum of effect, properties of the preparation, compatibility with the components of the preparation and the container, and the technology of manufacture. Although the added antimicrobial substance ensures the safety of the preparation, on the other hand it can produce a number of negative effects in the eye tissue. The present paper summarizes pharmacopoeial requirements for microbial quality of ophthalmic drops, outlining the properties and efficacy of antimicrobial substances commonly used in ophthalmic drops (benzalkonium chloride BAC, cetrimide CTM, phenyl mercuric salts PHg, thiomersal TM, chlorobutanol ChB, benzyl alcohol BA, phenyl ethyl alcohol PEA, chlorohexidin ChX, parabens PB), their typical concentrations and combinations, including the parameters of formulation and the interactions which affect their activity. It deals with the toxicity of these antimicrobial substances, side effects on the eye tissue, and alternatives to the use of antimicrobial agents.

  19. Advanced scale conditioning agents

    SciTech Connect

    Davis, Jeff; Battaglia, Philip J.

    2004-06-01

    A technical description of Advanced Scale Conditioning Agents (ASCA) technology was published in the May-June 2003 edition of the Nuclear Plant Journal. That article described the development of programs of advanced scale conditioning agents and specific types to maintain the secondary side of steam generators within a pressurized water reactor free of deposited corrosion products and corrosion-inducing contaminants to ensure their long-term operation. This article describes the first two plant applications of advanced scale conditioning agents implemented at Southern Nuclear Operating Company's Vogtle Units 1 and 2 during their 2002 scheduled outages to minimize tube degradation and maintain full power operation using the most effective techniques while minimizing outage costs. The goal was to remove three to four fuel cycles of deposits from each steam generator so that after future chemical cleaning activities, ASCAs could be used to maintain the cleanliness of the steam generators without the need for additional chemical cleaning efforts. The goal was achieved as well as several other benefits that resulted in cost savings to the plant.

  20. Newer antifungal agents.

    PubMed

    Türel, Ozden

    2011-03-01

    The frequency and spectrum of fungal infections have been increasing steadily over the last several decades. The reason for this increase may be explained by the increase in the number of immunocompromised patients due to malignancies, AIDS, invasive surgical procedures and transplantation. In parallel with this increase, several therapeutic options have become available but problems such as intrinsic or acquired antifungal resistance have led researchers to develop new antifungal drugs with expanded effectiveness. Reduced toxicity, enhancement of bioavailability and counteraction of resistance are features desired by clinicians. The aim of this article is to summarize the studies involving isavuconazole, ravuconazole, albaconazole, aminocandin and some other investigational antifungal agents. Most data on the clinical use of ravuconazole, isavuconazole and albaconazole are mainly available as meeting abstracts or limited to animal studies or Phase I/II studies in humans. These new antifungal agents in development offer extended half-lives, possibly reduced drug interaction profiles and good tolerance. In addition to activity against Candida and Aspergillus spp., they have a broad spectrum of activity including activity against resistant and emerging pathogens. The real possibilities of these agents will only be fully understood after adequate randomized clinical trials.

  1. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite

    PubMed Central

    Xing, Mingyang; Li, Xiao; Zhang, Jinlong

    2014-01-01

    TiO2/graphene (TiO2-x/GR) composites, which are Ti3+ self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti3+ self-doping on TiO2 nanorods and boron doping on graphene. PMID:24974890

  2. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite.

    PubMed

    Xing, Mingyang; Li, Xiao; Zhang, Jinlong

    2014-06-30

    TiO2/graphene (TiO2-x/GR) composites, which are Ti(3+) self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti(3+) self-doping on TiO2 nanorods and boron doping on graphene.

  3. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    SciTech Connect

    Liepins, R.; Aldissi, M.

    1988-07-05

    The electrically conductive material is described comprising a polymer with a conjugated backbone selected from the group consisting of polyacetylene, polypyrrone, and polyphenylquinoxaline, the polymer being electron-donor doped to a controlled degree with an agent derived from an electride dopant or a dopant derived from an alkalide both of which contain a trapping agent being selected from the group consisting of: a crown ether, 1,4,7,10,13,16-hexaoxacyclooctadecane, cryptand, methyl ether cyclodextrin, spherand, methyl ether calixarene, podand, and an octopus molecule, the agent being made in the presence of lithium.

  4. Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.

    2017-04-01

    Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.

  5. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    SciTech Connect

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui Zhuo, Shuping

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  6. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  7. Ferromagnetism in doped or undoped spintronics nanomaterials

    NASA Astrophysics Data System (ADS)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  8. Development of Multifunctional Luminomagnetic Nanoparticles as Bioimaging Contrast Agents

    NASA Astrophysics Data System (ADS)

    Mimun, Lawrence C.; Rightsell, Chris; Kumar, G. A.; Pedraza, Francisco; Montelongo, Sergio A.; Guda, Teja; Dravid, Vinayak P.; Sardar, Dhiraj K.

    2015-03-01

    Trivalent rare earth doped nanocrystalline materials with multiple functionalities have drawn special attention in biomedical industry. Current research is focused on the use of various materials with dual functionality for potential multifunctional applications. In this project, we are developing near infrared(NIR) based nanocrystals (NCs) as contrast agents with multimodal features comprising of strong NIR fluorescence, X-ray fluorescence and magnetic properties by utilizing the superparamagnetic features of Gd3+, the high X-ray excitation cross section of Lu3+, and the NIR fluorescence of Nd3+. Halides, such as MGdLuF4 (M=K,Na), were doped with NIR active rare earth ions, Nd3+, where synthesis conditions have been optimized to obtain the brightest phosphor with a size of sub-50 nm. Characterization of the NCs were performed to explore the excitation and emission properties, crystal structure, morphology, magnetization properties, and X-ray fluorescence properties. The potential use of these NCs can be utilized as contrast agents for medical imaging application such as optical imaging, magnetic resonance (MRI) and X-ray imaging. This research was, in part, funded by NIGMS MBRS-RISE GM060655 and from the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM) Grant N0-DMR-0934218.

  9. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  10. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  11. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  12. Preparation and application of L-cysteine-doped Keggin polyoxometalate microtubes

    SciTech Connect

    Shen Yan; Peng Jun; Zhang Huanqiu; Meng Cuili; Zhang Fang

    2012-01-15

    L-cysteine-doped tungstosilicate (Lcys-SiW{sub 12}) microtubes are prepared, and the amount of L-cysteine doped in the microtubes can be tuned to some extent. The as-prepared Lcys-SiW{sub 12} microtubes are sensitive to ammonia gas exhibited through the distinct color change of the microtubes from light purple to dark blue after exposing to ammonia gas. A possible mechanism of the coloration is that the adsorbed ammonia molecules increase the basicity of the Lcys-SiW{sub 12} microtubes and promote the redox reaction between L-cysteine and polyoxometalate. This is a pH-dependent solid-solid redox reaction, which is triggered by proton capture agent. The Lcys-SiW{sub 12} microtubes show application in chemical sensors for alkaline gases. - Graphical abstract: The Lcys-SiW{sub 12} microtubes were formed during transformation of the monolacunary Keggin-type [{alpha}-SiW{sub 11}O{sub 39}]{sup 8-} to the saturated Keggin-type [{alpha}-SiW{sub 12}O{sub 40}]{sup 4-}, meanwhile L-cysteine molecules were doped during the growth of the microtubes. Highlights: Black-Right-Pointing-Pointer L-cysteine-doped polyoxometalate microtubes are prepared. Black-Right-Pointing-Pointer Amount of L-cysteine doped in the microtubes can be tuned to some extent. Black-Right-Pointing-Pointer Lcys-SiW{sub 12} microtubes can be applied as a sensor for detecting alkaline gases. Black-Right-Pointing-Pointer This is a proton capture agent-triggered solid-solid redox reaction.

  13. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  14. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Zou, Rui; Zhang, Jie; Li, Wang; Zhang, Liqun; Yue, Dongmei

    2016-02-01

    An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors.An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors. Electronic

  15. Chemical warfare agents

    PubMed Central

    Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.

    2010-01-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312

  16. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  17. Chemical warfare agents.

    PubMed

    Ganesan, K; Raza, S K; Vijayaraghavan, R

    2010-07-01

    Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided.

  18. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  19. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  20. 13 CFR 108.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM SBA Financial... financial markets to determine those factors that will minimize or reduce the cost of funding Debentures...) Agents. SBA may appoint or cause to be appointed agent(s) to perform functions necessary to market...

  1. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for... will appoint or cause to be appointed agent(s) to perform functions necessary to market and service... Fiscal Agent to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the...

  2. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  3. Antineoplastic agents and thrombotic microangiopathy.

    PubMed

    Garcia, Gwenalyn; Atallah, Jean Paul

    2017-03-01

    Thrombotic microangiopathy is an uncommon but reported adverse effect of a variety of antineoplastic drugs, including chemotherapy agents such as mitomycin C and gemcitabine, and newer targeted agents such as the vascular endothelial growth factor inhibitors. We present a review of thrombotic microangiopathy associated with antineoplastic agents and its implications in current cancer therapy.

  4. Knowledge of pharmacy students about doping, and the need for doping education: a questionnaire survey.

    PubMed

    Shibata, Keita; Ichikawa, Koichi; Kurata, Naomi

    2017-08-11

    Anti-doping activities are carried out on a global scale. Based on these activities, the specialty of "sports pharmacist," which entails a deeper comprehension of doping, use of supplements, and appropriate drug use for athletes, was established in 2009 in Japan. It is difficult to say whether the education on doping is adequate for pharmacy students who will be eligible to become sports pharmacists. It is also unclear how well these students understand doping. Therefore, the aim of this study was to investigate pharmacy students' current knowledge of appropriate drug use, doping and use of supplements, and to explore the need for further education on these topics. A questionnaire survey was conducted from July 3rd to August 2nd in 2014 at Showa University in Japan. A total of 406 respondents (2nd- to 6th-year students) were assessed as eligible. Group comparison was used to compare those who had attended a lecture about doping and those who had not. Most of the students only knew the word doping and had not attended a lecture on the subject, but 72% of them expressed a desire to attend one. Over half did not know that the most common doping violation in Japan is unintentional doping, and were unfamiliar with certain past cases of doping. In addition, 41% did not know that over-the-counter medicines and dietary supplements might contain prohibited substances, and 87% were unaware that names of prohibited substances might not appear on the ingredient labels of dietary supplements. In contrast, attending a lecture on doping was effective in facilitating the acquisition of all these types of knowledge. It is important to provide more opportunities for appropriate education of pharmacy students on the topic of doping, given that interest exists and attending a lecture on the topic appears to be useful. More education about doping for pharmacy students would be as effective for anti-doping activities as is education of athletes.

  5. Doping explosive materials for neutron radiographic enhancement.

    NASA Technical Reports Server (NTRS)

    Golliher, K. G.

    1971-01-01

    Discussion of studies relating to the selection of doping materials of high neutron absorption usable for enhancing the neutron radiographic imaging of explosive mixtures, without interfering with the proper chemical reaction of the explosives. The results of the studies show that gadolinium oxide is an excellent material for doping explosive mixtures to enhance the neutron radiographic image.

  6. Doping explosive materials for neutron radiographic enhancement.

    NASA Technical Reports Server (NTRS)

    Golliher, K. G.

    1971-01-01

    Discussion of studies relating to the selection of doping materials of high neutron absorption usable for enhancing the neutron radiographic imaging of explosive mixtures, without interfering with the proper chemical reaction of the explosives. The results of the studies show that gadolinium oxide is an excellent material for doping explosive mixtures to enhance the neutron radiographic image.

  7. Cobalt-doped cadmium selenide colloidal nanowires.

    PubMed

    Li, Zhen; Du, Ai Jun; Sun, Qiao; Aljada, Muhsen; Cheng, Li Na; Riley, Mark J; Zhu, Zhong Hua; Cheng, Zhen Xiang; Wang, Xiao Lin; Hall, Jeremy; Krausz, Elmars; Qiao, Shi Zhang; Smith, Sean C; Lu, Gao Qing Max

    2011-11-21

    Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.

  8. Structural change from doping the gold cluster.

    PubMed

    Tang, Yiji; Wang, Shu-Guang; Li, Jia

    2011-05-01

    Doping gold clusters with a transition metal (M@Au(n)) causes structural change. To determine the mechanism by which these changes occur, the central gold atom of Au(5) was doped with its same row transition metals Pt, Ir, Os, Re, and W. Based on theoretical calculations, a similar trend was found in other gold clusters.

  9. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  10. Doping silicon nanocrystals and quantum dots

    NASA Astrophysics Data System (ADS)

    Oliva-Chatelain, Brittany L.; Ticich, Thomas M.; Barron, Andrew R.

    2016-01-01

    The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level. Methods that have been applied to the characterization of doped NCs and QDs are summarized with regard to the information that is obtained, in particular to provide researchers with a guide to the suitable techniques for determining dopant concentration and location, as well as electronic and photonic effectiveness of the dopant.

  11. Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence.

    PubMed

    Du, Qijun; Huang, Zhongbing; Wu, Zhi; Meng, Xianwei; Yin, Guangfu; Gao, Fabao; Wang, Lei

    2015-03-07

    The biocompatibility of multifunctional nanomaterials is very important for their clinical applications. Herein, the hexagonal crystal Eu-doped GdPO4 nanorods (NRs) in the template of silk fibroin (SF) peptides are successfully synthesized via a mineralization process. The sizes of the Eu-doped GdPO4 NRs with SF peptides (SF-NRs) are ∼150 nm in length and ∼10 nm in diameter. The Eu-doped SF-NRs have strong pink luminescence and a mass magnetic susceptibility value of 1.27 emu g(-1) in 20,000 G of magnetic field due to Eu ion doping. The cell test indicates that the Eu-doped SF-NRs obviously promote the viability of cells at an NR concentration of 25-200 μg mL(-1). A growth mechanism of Eu-doped GdPO4 SF-NRs is proposed to explain their strong cellular luminescence, magnetic resonance (MR) imaging and good cyto-compatibility. Compared to NRs without SF, the Eu-doped SF-NRs not only exhibit a higher effective positive signal-enhancement ability (the longitudinal relaxivity r1 value is 1.38 (Gd mM s)(-1)) and in vivo T1 weighted MR imaging enhancement under a 7.0 T MRI system, but also show the better luminescence imaging of living cells under the fluorescence microscope. This indicates that the Eu-doped SF-NRs have potential as T1 MRI contrast agents and optical imaging probes.

  12. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Growth hormone doping in sports: a critical review of use and detection strategies.

    PubMed

    Baumann, Gerhard P

    2012-04-01

    GH is believed to be widely employed in sports as a performance-enhancing substance. Its use in athletic competition is banned by the World Anti-Doping Agency, and athletes are required to submit to testing for GH exposure. Detection of GH doping is challenging for several reasons including identity/similarity of exogenous to endogenous GH, short half-life, complex and fluctuating secretory dynamics of GH, and a very low urinary excretion rate. The detection test currently in use (GH isoform test) exploits the difference between recombinant GH (pure 22K-GH) and the heterogeneous nature of endogenous GH (several isoforms). Its main limitation is the short window of opportunity for detection (~12-24 h after the last GH dose). A second test to be implemented soon (the biomarker test) is based on stimulation of IGF-I and collagen III synthesis by GH. It has a longer window of opportunity (1-2 wk) but is less specific and presents a variety of technical challenges. GH doping in a larger sense also includes doping with GH secretagogues and IGF-I and its analogs. The scientific evidence for the ergogenicity of GH is weak, a fact that is not widely appreciated in athletic circles or by the general public. Also insufficiently appreciated is the risk of serious health consequences associated with high-dose, prolonged GH use. This review discusses the GH biology relevant to GH doping; the virtues and limitations of detection tests in blood, urine, and saliva; secretagogue efficacy; IGF-I doping; and information about the effectiveness of GH as a performance-enhancing agent.

  14. Marijuana as doping in sports.

    PubMed

    Campos, Daniel R; Yonamine, Mauricio; de Moraes Moreau, Regina L

    2003-01-01

    A high incidence of positive cases for cannabinoids, in analyses for doping control in sports, has been observed since the International Olympic Committee (IOC) included them in the 1989 list of prohibited drugs under the title of classes of prohibited substances in certain circumstances. Where the rules of sports federations so provide, tests are conducted for marijuana, hashish or any other cannabis product exposure by means of urinalysis of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (carboxy-THC) the main metabolite of delta-9-tetrahydrocannabinol (THC). Concentrations >15 ng/mL (cut-off value) in confirmatory analytical procedures are considered doping. Cannabis is an illicit drug in several countries and has received much attention in the media for its potential therapeutic uses and the efforts to legalise its use. Studies have demonstrated that the use of cannabinoids can reduce anxiety, but it does not have ergogenic potential in sports activities. An increase in heart rate and blood pressure, decline of cardiac output and reduced psychomotor activity are some of the pharmacological effects of THC that will determine a decrease in athletic performance. An ergolytic activity of cannabis products has been observed in athletes of several different sport categories. In Brazil, analyses for doping control in sports, performed in our laboratories, have detected positive cases for carboxy-THC in urine samples of soccer, volleyball, cycling and other athletes. It is our intention to discuss in this article some points that may discourage individuals from using cannabis products during sports activities, even in the so-called permitted circumstances defined by the IOC and some sports federations.

  15. Holograms as Teaching Agents

    NASA Astrophysics Data System (ADS)

    Walker, Robin A.

    2013-02-01

    Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.

  16. Model Checking Agent Communication

    NASA Astrophysics Data System (ADS)

    Bentahar, J.; Meyer, J.-J. Ch.; Wan, W.

    Model checking is a formal and automatic technique used to verify computational systems (e.g. communication protocols) against given properties. The purpose of this chapter is to describe a model checking algorithm to verify communication protocols used by autonomous agents interacting using dialogue games, which are governed by a set of logical rules. We use a variant of Extended Computation Tree Logic CTL* for specifying these dialogue games and the properties to be checked. This logic, called ACTL*, extends CTL* by allowing formulae to constrain actions as well as states. The verification method uses an on-the-fly efficient algorithm. It is based on translating formulae into a variant of alternating tree automata called Alternating Büchi Tableau Automata (ABTA). We present a tableau-based version of this algorithm and provide the soundness, completeness, termination and complexity results. Two case studies are discussed along with their respective implementations to illustrate the proposed approach. The first one is about an agent-based negotiation protocol and the second one considers a modified version of the NetBill protocol.

  17. [Bacteriophages as antibacterial agents].

    PubMed

    Shasha, Shaul M; Sharon, Nehama; Inbar, Michael

    2004-02-01

    Bacteriophages are viruses that only infect bacteria. They have played an important role in the development of molecular biology and have been used as anti-bacterial agents. Since their independent discovery by Twort and d'Herelle, they have been extensively used to prevent and treat bacterial infections, mainly in Eastern Europe and the former Soviet Union. In western countries this method has been sporadically employed on humans and domesticated animals. However, the discovery and widespread use of antibiotics, coupled with doubts about the efficacy of phage therapy, led to an eclipse in the use of phage in medicine. The emergence of antibiotic resistant bacteria, especially strains that are multiply resistant, has resulted in a renewed interest in alternatives to conventional drugs. One of the possible replacements for antibiotics is the use of bacteriophages as antimicrobial agents. This brief review aims to describe the history of bacteriophage and early clinical studies on their use in bacterial disease prophylaxis and therapy, and discuss the advantages and disadvantages of bacteriophage in this regard.

  18. [New agents for hypercholesterolemia].

    PubMed

    Pintó, Xavier; García Gómez, María Carmen

    2016-02-19

    An elevated proportion of high cardiovascular risk patients do not achieve the therapeutic c-LDL goals. This owes to physicians' inappropriate or insufficient use of cholesterol lowering medications or to patients' bad tolerance or therapeutic compliance. Another cause is an insufficient efficacy of current cholesterol lowering drugs including statins and ezetimibe. In addition, proprotein convertase subtilisin kexin type 9 inhibitors are a new cholesterol lowering medications showing safety and high efficacy to reduce c-LDL in numerous already performed or underway clinical trials, potentially allowing an optimal control of hypercholesterolemia in most patients. Agents inhibiting apolipoprotein B synthesis and microsomal transfer protein are also providing a new potential to decrease cholesterol in patients with severe hypercholesterolemia and in particular in homozygote familial hypercholesterolemia. Last, cholesteryl ester transfer protein inhibitors have shown powerful effects on c-HDL and c-LDL, although their efficacy in cardiovascular prevention and safety has not been demonstrated yet. We provide in this article an overview of the main characteristics of therapeutic agents for hypercholesterolemia, which have been recently approved or in an advanced research stage. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  19. Cleaning agents and asthma.

    PubMed

    Quirce, S; Barranco, P

    2010-01-01

    Although cleaners represent a significant part of the working population worldwide, they remain a relatively understudied occupational group. Epidemiological studies have shown an association between cleaning work and asthma, but the risk factors are uncertain. Cleaning workers are exposed to a large variety of cleaning products containing both irritants and sensitizers, as well as to common indoor allergens and pollutants. Thus, the onset or aggravation of asthma in this group could be related to an irritant-induced mechanism or to specific sensitization. The main sensitizers contained in cleaning products are disinfectants, quaternary ammonium compounds (such as benzalkonium chloride), amine compounds, and fragrances.The strongest airway irritants in cleaning products are bleach (sodium hypochlorite), hydrochloric acid, and alkaline agents (ammonia and sodium hydroxide), which are commonly mixed together. Exposure to the ingredients of cleaning products may give rise to both new-onset asthma, with or without a latency period, and work-exacerbated asthma. High-level exposure to irritants may induce reactive airways dysfunction syndrome. Cleaning workers may also have a greater relative risk of developing asthma due to prolonged low-to-moderate exposure to respiratory irritants. In addition, asthma-like symptoms without confirmed asthma are also common after exposure to cleaning agents. In many cleaners, airway symptoms induced by chemicals and odors cannot be explained by allergic or asthmatic reactions. These patients may have increased sensitivity to inhaled capsaicin, which is known to reflect sensory reactivity, and this condition is termed airway sensory hyperreactivity.

  20. Doped liquid nitrobenzene is ferroelectric.

    PubMed

    Shelton, David P; Quine, Zachary

    2007-11-28

    The high resolution hyper-Rayleigh light scattering spectrum for liquid nitrobenzene doped with triflic acid (CF(3)SO(3)H) shows a narrow spike at zero frequency shift which has the polarization signature of a polar longitudinal collective mode. This spectral spike disappears for pure nitrobenzene. The spectral spike is interpreted as due to ferroelectric domains in the liquid. The dopant molecules appear to induce ferroelectric organization of the nitrobenzene molecules which is otherwise absent in the pure liquid. Estimated domain size is 34 nm and relaxation time is 50 ns.

  1. Bismuth-ring-doped fibres

    SciTech Connect

    Zlenko, Aleksandr S; Dvoirin, Vladislav V; Bogatyrev, Vladimir A; Firstov, Sergei V; Akhmetshin, Ural G

    2009-11-30

    A new process for bismuth doping of optical fibres is proposed in which the dopant is introduced into a thin layer surrounding the fibre core. This enables bismuth stabilisation in the silica glass, with no limitations on the core composition. In particular, the GeO{sub 2} content of the fibre core in this study is 16 mol %. Spectroscopic characterisation of such fibres and optical gain measurements suggest that the proposed approach has considerable potential for laser applications. (optical fibres and fibreoptic sensors)

  2. Agent-Based Automated Algorithm Generator

    DTIC Science & Technology

    2010-01-12

    Detection and Isolation Agent (FDIA), Prognostic Agent (PA), Fusion Agent (FA), and Maintenance Mining Agent (MMA). FDI agents perform diagnostics...manner and loosely coupled). The library of D/P algorithms will be hosted in server-side agents, consisting of four types of major agents: Fault

  3. Blood manipulation: current challenges from an anti-doping perspective.

    PubMed

    Mørkeberg, Jakob

    2013-01-01

    The delivery of oxygen is the limiting factor during whole-body endurance exercise in well-trained individuals, so manipulating the amount of hemoglobin in the blood results in changes in endurance exercise capacity. Athletes began using novel erythropoiesis-stimulating agents well before they were approved for medical use. Older manipulation practices, such as autologous blood transfusions or the administration of first-generation recombinant human erythropoietins, are still widely abused due to challenges in their detection. More recent performance enhancement maneuvers include efforts to mask doping and to induce increased endogenous erythropoietin expression. Confessions by athletes have revealed an ongoing yet extremely sophisticated modus operandi when manipulating the blood. In this review, weaknesses in detection methods and sample collection procedures are scrutinized and strategies developed to circumvent the test system discussed.

  4. Learning models of intelligent agents

    SciTech Connect

    Carmel, D.; Markovitch, S.

    1996-12-31

    Agents that operate in a multi-agent system need an efficient strategy to handle their encounters with other agents involved. Searching for an optimal interactive strategy is a hard problem because it depends mostly on the behavior of the others. In this work, interaction among agents is represented as a repeated two-player game, where the agents` objective is to look for a strategy that maximizes their expected sum of rewards in the game. We assume that agents` strategies can be modeled as finite automata. A model-based approach is presented as a possible method for learning an effective interactive strategy. First, we describe how an agent should find an optimal strategy against a given model. Second, we present an unsupervised algorithm that infers a model of the opponent`s automaton from its input/output behavior. A set of experiments that show the potential merit of the algorithm is reported as well.

  5. Flexible, secure agent development framework

    DOEpatents

    Goldsmith,; Steven, Y [Rochester, MN

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  6. GaAs MESFET with lateral non-uniform doping

    NASA Technical Reports Server (NTRS)

    Wang, Y. C.; Bahrami, M.

    1983-01-01

    An analytical model of the GaAs MESFET with arbitrary non-uniform doping is presented. Numerical results for linear lateral doping profile are given as a special case. Theoretical considerations predict that better device linearity and improved F(T) can be obtained by using linear lateral doping when doping density increases from source to drain.

  7. Fluoroquinolone antimicrobial agents.

    PubMed Central

    Wolfson, J S; Hooper, D C

    1989-01-01

    The fluoroquinolones, a new class of potent orally absorbed antimicrobial agents, are reviewed, considering structure, mechanisms of action and resistance, spectrum, variables affecting activity in vitro, pharmacokinetic properties, clinical efficacy, emergence of resistance, and tolerability. The primary bacterial target is the enzyme deoxyribonucleic acid gyrase. Bacterial resistance occurs by chromosomal mutations altering deoxyribonucleic acid gyrase and decreasing drug permeation. The drugs are bactericidal and potent in vitro against members of the family Enterobacteriaceae, Haemophilus spp., and Neisseria spp., have good activity against Pseudomonas aeruginosa and staphylococci, and (with several exceptions) are less potent against streptococci and have fair to poor activity against anaerobic species. Potency in vitro decreases in the presence of low pH, magnesium ions, or urine but is little affected by different media, increased inoculum, or serum. The effects of the drugs in combination with a beta-lactam or aminoglycoside are often additive, occasionally synergistic, and rarely antagonistic. The agents are orally absorbed, require at most twice-daily dosing, and achieve high concentrations in urine, feces, and kidney and good concentrations in lung, bone, prostate, and other tissues. The drugs are efficacious in treatment of a variety of bacterial infections, including uncomplicated and complicated urinary tract infections, bacterial gastroenteritis, and gonorrhea, and show promise for therapy of prostatitis, respiratory tract infections, osteomyelitis, and cutaneous infections, particularly when caused by aerobic gram-negative bacilli. Fluoroquinolones have also proved to be efficacious for prophylaxis against travelers' diarrhea and infection with gram-negative bacilli in neutropenic patients. The drugs are effective in eliminating carriage of Neisseria meningitidis. Patient tolerability appears acceptable, with gastrointestinal or central nervous

  8. Blue emission of Eu2+-doped translucent alumina

    DOE PAGES

    Yang, Yan; Zhang, Lihua; Kisslinger, Kim; ...

    2015-08-21

    Inorganic scintillators are very important in medical and industrial measuring systems in the detection and measurement of ionizing radiation. In addition to Ce3+, a widely used dopant ion in oxide scintillators, divalent Europium (Eu2+) has shown promise as a high-luminescence, fast-response luminescence center useful in the detection of ionizing radiation. In this research, aluminum oxide (Al2O3) was studied as a host material for the divalent europium ion. Polycrystalline samples of Eu2+-doped translucent Al2O3 were fabricated, and room temperature luminescence behavior was observed. Al2O3 ceramics doped with 0.1 at% Eu2+ were fabricated with a relative density of 99.75% theoretical density andmore » in-line transmittance of 22% at a wavelength of 800 nm. The ceramics were processed by a gel-casting method, followed by sintering under high vacuum. The gelling agent, a copolymer of isobutylene and maleic anhydride, is marketed under the commercial name ISOBAM, and has the advantage of simultaneously acting as both a gelling agent and as a dispersant. The microstructure and composition of the vacuum-sintered Eu2+:Al2O3 were characterized by Scanning Electric Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The phase composition was determined by X-ray diffraction measurements (XRD) combined with Rietveld analysis. The photoluminescence behavior of the Eu2+:Al2O3 was characterized using UV light as the excitation source, which emitted blue emission at 440 nm. The radio-luminescence of Eu2+:Al2O3 was investigated by illumination with X-ray radiation, showing three emission bands at 376 nm, 575 nm and 698 nm. Furthermore, multiple level traps at different depths were detected in the Eu2+:Al2O3 by employing thermoluminescence measurements.« less

  9. Carbon doping of GaAs NWs

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Nanowires (NWs) have been proposed and demonstrated as the building blocks for nanoscale electronic and photonic devices such as NW field effect transistors and NW solar cells which rely on doping and trap-free carrier transport. Controlled doping of NWs and a high degree of structure and morphology control are required for device applications. However, doping of III-V nanowires such as GaAs nanowires has not been reported extensively in the literature. Carbon is a well known p-type dopant in planar GaAs due to its low diffusivity and high solubility in bulk GaAs; however its use as an intentional dopant in NW growth has not yet been investigated. In this work we studied the carbon doping of GaAs nanowires using CBr4 as the dopant source. Gold nanoparticles (NP) at the tip ofthe NWs have been used to drive the NW growth. We show that carbon doping suppresses the migration ofthe gold NPs from the tip of the NWs. In addition, we show that the carbon doping of GaAs NWs is accompanied by an increase of the axial growth rate and decrease of the lateral growth rate ofthe NWs. Carbon-doped GaAs NWs, unlike the undoped ones which are highly tapered, are rod-like. The origin of the observed morphological changes is attributed to the carbon adsorbates on the sidewalls ofthe nanowires which suppress the lateral growth of the nanowires and increase the diffusion length of the gallium adatoms on the sidewalls. Stacking fault formation consisting of alternating regIOns of zincblende and wurtzite structures has been commonly observed in NWs grown along the (111) direction. In this work, based on transmission electron microscopy (TEM) analysis, we show that carbon doping ofGaAs NWs eliminates the stacking fault formation. Raman spectroscopy was used to investigate the effects of carbon doping on the vibrational properties of the carbon-doped GaAs nanowires. Carbon doping shows a strong impact on the intrinsic longitudinal and transverse optical (La and TO) modes of the Ga

  10. Detonation nanodiamonds for doping Kevlar.

    PubMed

    Comet, Marc; Pichot, Vincent; Siegert, Benny; Britz, Fabienne; Spitzer, Denis

    2010-07-01

    This paper reports on the first attempt to enclose diamond nanoparticles--produced by detonation--into a Kevlar matrix. A nanocomposite material (40 wt% diamond) was prepared by precipitation from an acidic solution of Kevlar containing dispersed nanodiamonds. In this material, the diamond nanoparticles (Ø = 4 nm) are entirely wrapped in a Kevlar layer about 1 nm thick. In order to understand the interactions between the nanodiamond surface and the polymer, the oxygenated surface functional groups of nanodiamond were identified and titrated by Boehm's method which revealed the exclusive presence of carboxyl groups (0.85 sites per nm2). The hydrogen interactions between these groups and the amide groups of Kevlar destroy the "rod-like" structure and the classical three-dimensional organization of this polymer. The distortion of Kevlar macromolecules allows the wrapping of nanodiamonds and leads to submicrometric assemblies, giving a cauliflower structure reminding a fractal object. Due to this structure, the macroscopic hardness of Kevlar doped by nanodiamonds (1.03 GPa) is smaller than the one of pure Kevlar (2.31 GPa). To our knowledge, this result is the first illustration of the change of the mechanical properties induced by doping the Kevlar with nanoparticles.

  11. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  12. Does water dope carbon nanotubes?

    SciTech Connect

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  13. Ultrasound contrast agents

    PubMed Central

    Ignee, Andre; Atkinson, Nathan S. S.; Schuessler, Gudrun; Dietrich, Christoph F.

    2016-01-01

    Endoscopic ultrasound (EUS) plays an important role in imaging of the mediastinum and abdominal organs. Since the introduction of US contrast agents (UCA) for transabdominal US, attempts have been made to apply contrast-enhanced US techniques also to EUS. Since 2003, specific contrast-enhanced imaging was possible using EUS. Important studies have been published regarding contrast-enhanced EUS and the characterization of focal pancreatic lesions, lymph nodes, and subepithelial tumors. In this manuscript, we describe the relevant UCA, their application, and specific image acquisition as well as the principles of image tissue characterization using contrast-enhanced EUS. Safety issues, potential future developments, and EUS-specific issues are reviewed. PMID:27824024

  14. [Chemotherapeutic agents under study].

    PubMed

    Kawahara, S

    1998-12-01

    The development of new drugs with strong antituberculous activity and fewer side effects which are not cross-resistant to conventional antituberculosis drugs is urgently desired now. The chemotherapeutic agents under study which are considered a candidate for a new antituberculosis drug are listed below. 1) Rifamycin derivatives: rifabutin, rifapentin, KRM-1648, FCE-22250, 22807, CGP-7040, 27557, 29035, 29861, P-DEA, SPA-S-565, R-76-1. 2) New quinolones: ofloxacin, ciprofloxacin, levofloxacin, sparfloxacin, gatifloxacin, CS-940, Du-6859a. 3) Phenazines: clofazimine, B746, B4101, B4154, B4157. 4) Pyrazinamide derivatives: N-hydroxy pyrazinamide, N-hydroxy pyrazinamide-4-oxide. 5) Nitroimidazole derivatives: metronidazole et al.

  15. Infectious agents and neurodegeneration.

    PubMed

    De Chiara, Giovanna; Marcocci, Maria Elena; Sgarbanti, Rossella; Civitelli, Livia; Ripoli, Cristian; Piacentini, Roberto; Garaci, Enrico; Grassi, Claudio; Palamara, Anna Teresa

    2012-12-01

    A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host's specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.

  16. Peptide Antimicrobial Agents

    PubMed Central

    Jenssen, Håvard; Hamill, Pamela; Hancock, Robert E. W.

    2006-01-01

    Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides with antifungal and antiparasitic activities are discussed in less detail, although the broad-spectrum activities of such peptides indicate that they are important host defense molecules. Knowledge regarding the relationship between peptide structure and function as well as their mechanism of action is being applied in the design of antimicrobial peptide variants as potential novel therapeutic agents. PMID:16847082

  17. [Unconventional antidiabetic agents].

    PubMed

    Rustenbeck, Ingo

    2007-04-01

    The current pharmacological therapy of type 2 diabetes reduces the risk of diabetic complications, but is not able to achieve a long-lasting normalization of the metabolic disorder. Thus diabetic patients in increasing numbers are taking dietary supplements and herbs from which they expect additional health benefits. These unconventional antidiabetic agents consist mainly in trace metals like chromium, vanadium and zinc and a heterogeneous group of traditionally used antidiabetic herbs (e. g. Momordica charantia, Gymnema sylvestre, Trigonella foenum-graecum) often derived from the ayurvedic medicine. In this overview the current evidence for the antidiabetic effect is presented. The trace elements chromium and vanadium have a number of potentially antidiabetic actions in vitro, however, the results obtained with diabetic patients are not convincing so far. Similarly, the available data on the therapeutic use of herbs suggest that in principle a number of them possess a blood glucose-lowering effect, but at present no firm conclusions as to their efficacy and safety can be made. To set up reliable dose-effect relationships requires the identification of the relevant antidiabetic molecules as was apparently achieved by isolating 4-hydroxyisoleucine from the seeds of T. foenum-graecum. This requirement is also valid in the case of the antidiabetic action of cinnamon. Coffee and a moderate alcohol consumption were found to be surprisingly effective in lowering the risk of type 2 diabetes manifestation, their effect being roughly equal to that of conventional drugs used in diabetes prevention trials. Diabetic patients should inform their physician about the use of unconventional agents and should be warned against uncontrolled starting or stopping their use.

  18. Thin layer of ordered boron-doped TiO2 nanotubes fabricated in a novel type of electrolyte and characterized by remarkably improved photoactivity

    NASA Astrophysics Data System (ADS)

    Siuzdak, Katarzyna; Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Karczewski, Jakub; Ryl, Jacek

    2015-12-01

    This paper reports a novel method of boron doped titania nanotube arrays preparation by electrochemical anodization in electrolyte containing boron precursor - boron trifluoride diethyl etherate (BF3 C4H10O), simultaneously acting as an anodizing agent. A pure, ordered TiO2 nanotubes array, as a reference sample, was also prepared in solution containing a standard etching compound: ammonium fluoride. The doped and pure titania were characterized by scanning electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, photoluminescence emission spectroscopy and by means of electrochemical methods. The B-doping decidedly shifts the absorption edge of TiO2 nanotubes towards the visible light region and significantly inhibits the radiative recombination processes. Despite the fact that the doped sample is characterized by 4.6 lower real surface area when compared to pure titania, it leads to the decomposition of methylene blue in 93%, that is over 2.3 times higher than the degradation efficiency exhibited by the undoped material. The formation rate of hydroxyl radicals (rad OH) upon illumination significantly favours boron doped titania as a photocatalytic material. Moreover, the simple doping of TiO2 nanotubes array results in the enhancement of generated photocurrent from 120 μA/cm2 to 350 μA/cm2 registered for undoped and doped electrode, respectively.

  19. Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters.

    PubMed

    Polyviou, Thelma P; Easton, Chris; Beis, Lukas; Malkova, Dalia; Takas, Pantazis; Hambly, Catherine; Speakman, John R; Koehler, Karsten; Pitsiladis, Yannis P

    2012-09-01

    Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a "masking agent" remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g·kg(-1) body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P < 0.01; TBW, P <0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters.

  20. Effect of Er doping on the structural and magnetic properties of cobalt-ferrite

    SciTech Connect

    Prathapani, Sateesh; Vinitha, M.; Das, D.; Jayaraman, T. V.

    2014-05-07

    Nanocrystalline particulates of Er doped cobalt-ferrites CoFe{sub (2−x)}Er{sub x}O{sub 4} (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400–600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite. The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er{sup +3} compared to Fe{sup +3}. Greater than two-fold increase in coercivity (∼66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe{sub 2}O{sub 4} (∼29 kA/m)

  1. Preparation and Characterization of Fe-Doped TiO2 Films Covered on Silicagel

    NASA Astrophysics Data System (ADS)

    Nghia, Nguyen Manh; Hue, Nguyen Thi; Thu, Ma Thi Anh; Len, Phung Thi; Thu, Vu Thi; Lam, Tran Dai

    2016-07-01

    This study describes sol-gel preparation of (TiO2:Fe x )/SiO2 ( x = 0-0.8%) on silicagel grains using titanium tetraisopropoxide and iron (III) chloride as titanium precursor and doping agent, respectively. The structural properties, morphology, and chemical composition of the samples were thoroughly studied using x-ray diffraction, field emission scanning electron microscopy, and energy-dispersive x-ray spectroscopy, respectively. The results demonstrated the formation of highly pure anatase TiO2:Fe x crystals with diameters of several tens of nanometers. With increasing doping level, no significant change in porosity of TiO2 material was observed, whereas the decrease in crystalline size was easily recorded. In addition, the bandgap (observed by UV-Vis) was dramatically shifted from 2.9 eV to 1.7 eV as doping with TiO2 with Fe at doping content as low as 0.8%. The use of silicagel as a solid support to carry photocatalytic crystals enables recycling of the material. These findings represent a simple pathway to design reusable catalyst for highly effective water detoxification under visible illumination.

  2. Synthesis of p -and n-type Gels Doped with Ionic Charge Carriers

    NASA Astrophysics Data System (ADS)

    Alveroglu, E.; Yilmaz, Y.

    2010-03-01

    In this study, we synthesized the new kinds of semiconducting polymeric gels having negative ( n-type) and positive ( p-type) counter ions as charge carriers. The polyacrylamide gel was doped with pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt), having {text{SO}}3^{ - } ions as side groups and Na+ as counter ions, so-called p-type semiconducting gel. The doping process was performed during the polymerization where the pyranine binds to the polymer strands over OH group chemically via radical addition. In a similar way, N-isopropylacrylamide (NIPA) gel was doped with methacrylamidopropyltrimethyl ammonium chloride (MAPTAC), having Cl- as counter ions, so-called n-type semiconducting gel. Here MAPTAC was embedded by copolymerization within the polymer network (NIPA). These semiconducting gels can show different electrical properties by changing the concentration of the doping agents, swelling ratio etc. We have shown that the pn junction, formed by combining p-type and n-type gels together in close contact, rectifies the current similar to the conventional Si and Ge diodes.

  3. Bottom-Up Synthesis of Metal-Ion-Doped WS₂ Nanoflakes for Cancer Theranostics.

    PubMed

    Cheng, Liang; Yuan, Chao; Shen, Sida; Yi, Xuan; Gong, Hua; Yang, Kai; Liu, Zhuang

    2015-11-24

    Recently, two-dimensional transition metal dichalcogenides (TMDCs) have received tremendous attention in many fields including biomedicine. Herein, we develop a general method to dope different types of metal ions into WS2 nanoflakes, a typical class of TMDCs, and choose Gd(3+)-doped WS2 (WS2:Gd(3+)) with polyethylene glycol (PEG) modification as a multifunctional agent for imaging-guided combination cancer treatment. While WS2 with strong near-infrared (NIR) absorbance and X-ray attenuation ability enables contrasts in photoacoustic (PA) imaging and computed tomography (CT), Gd(3+) doping offers the nanostructure a paramagnetic property for magnetic resonance (MR) imaging. As revealed by trimodal PA/CT/MR imaging, WS2:Gd(3+)-PEG nanoflakes showed efficient tumor homing after intravenous injection. In vivo cancer treatment study further uncovered that WS2:Gd(3+)-PEG could not only convert NIR light into heat for photothermal therapy (PTT) but also enhance the ionizing irradiation-induced tumor damage to boost radiation therapy (RT). Owing to the improved tumor oxygenation after the mild PTT, the combination of PTT and RT induced by WS2:Gd(3+)-PEG resulted in a remarkable synergistic effect to destroy cancer. Our work highlights the promise of utilizing inherent physical properties of TMDC-based nanostructures, whose functions could be further enriched by elementary doping, for applications in multimodal bioimaging and synergistic cancer therapy.

  4. Effect of Er doping on the structural and magnetic properties of cobalt-ferrite

    NASA Astrophysics Data System (ADS)

    Prathapani, Sateesh; Vinitha, M.; Jayaraman, T. V.; Das, D.

    2014-05-01

    Nanocrystalline particulates of Er doped cobalt-ferrites CoFe(2-x)ErxO4 (0 ≤ x ≤ 0.04), were synthesized, using sol-gel assisted autocombustion method. Co-, Fe-, and Er- nitrates were the oxidizers, and malic acid served as a fuel and chelating agent. Calcination (400-600 °C for 4 h) of the precursor powders was followed by sintering (1000 °C for 4 h) and structural and magnetic characterization. X-ray diffraction confirmed the formation of single phase of spinel for the compositions x = 0, 0.01, and 0.02; and for higher compositions an additional orthoferrite phase formed along with the spinel phase. Lattice parameter of the doped cobalt-ferrites was higher than that of pure cobalt-ferrite. The observed red shift in the doped cobalt-ferrites indicates the presence of induced strain in the cobalt-ferrite matrix due to large size of the Er+3 compared to Fe+3. Greater than two-fold increase in coercivity (˜66 kA/m for x = 0.02) was observed in doped cobalt-ferrites compared to CoFe2O4 (˜29 kA/m).

  5. Novel microwave assisted synthesis of highly doped phase pure Nd:YAG nanopowder

    NASA Astrophysics Data System (ADS)

    Kiranmala, L.; Rekha, M.; Neelam, M.

    2011-09-01

    For the first time, the studies on 2 to 10 at.% neodymium (Nd3+) ion doped Yttrium Aluminum Garnet (Nd:YAG) nanopowders obtained by microwave assisted citrate nitrate gel combustion synthesis is described in this work. This paper reports on high doping of Nd3+ ions with retaining the cubic garnet structure of YAG as evidenced from XRD, except the case of 8 at.% doped Nd:YAG. Phase pure YAG formation with 8 at.% Nd3+ doping was explored by using urea and alanine as alternative to citric acid complexing agents. Complete crystallization of YAG as a result of 2 hour thermal treatment at 900 °C under oxygen supply was studied by using Fourier Transform Infra-Red Spectroscopy (FTIR) and X-Ray Diffraction (XRD) techniques. With an increase in the dopant concentration a red shift in the FTIR peaks was observed. Using the XRD data, the cell parameter of Nd3+ (2 to 6 and 10 at.%) YAG was found to increase with an increase in the dopant concentration. The average primary particle size calculated using Scherrer's equation was ˜25 nm which was additionally supported by Transmission Electron Microscopy (TEM) results yielding particle sizes in the range of ˜25 to 30 nm for all the cases.

  6. Detection of β-methylphenethylamine, a novel doping substance, by means of UPLC/MS/MS.

    PubMed

    Chołbiński, Piotr; Wicka, Mariola; Kowalczyk, Katarzyna; Jarek, Anna; Kaliszewski, Paweł; Pokrywka, Andrzej; Bulska, Ewa; Kwiatkowska, Dorota

    2014-06-01

    Novel substances of expected doping activity are constantly introduced to the market. β-Methylphenethylamine (BMPEA) is classified as a doping agent by the World Anti-Doping Agency as it is a positional isomer of amphetamine. In this work, the development and application of a simple and rapid analytical procedure that enables discrimination between both isomers is described. The analytes of interest were extracted from urine by a two-step liquid-liquid extraction and then analyzed by UPLC/MS/MS under isocratic conditions. The entire analytical procedure was validated by evaluating its selectivity, discrimination capabilities, carry-over, sensitivity, and influence of matrix effects on its performance. Application of the method resulted in detection of BMPEA in eight anti-doping samples, including the first report of adverse analytical finding regarding its use. Further analysis showed that BMPEA may be eliminated unchanged along with its phase II conjugates, the hydrolysis of which may considerably improve detection capabilities of the method. Omission of the hydrolysis step may therefore, produce false-negative results. Testing laboratories should also carefully examine their LC/MS/MS-based amphetamine and BMPEA findings as both isomers fragment yielding comparable collision-induced dissociation spectra and their insufficient chromatographic separation may result in misidentification. This is of great importance in case of forensic analyses as BMPEA is not controlled by the public law, and its manufacturing, distribution, and use are legal.

  7. Structural and photoluminescence properties of terbium-doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ningthoujam Surajkumar, Singh; Shougaijam Dorendrajit, Singh; Sanoujam Dhiren, Meetei

    2014-05-01

    We present in this paper a study of the structural and photoluminescence (PL) properties of terbium (Tb) doped zinc oxide (ZnO) nanoparticles synthesized by a simple low temperature chemical precipitation method, using zinc acetate and terbium nitrate in an isopropanol medium with diethanolamine (DEA) as the capping agent at 60 °C. The as-prepared samples were heat treated and the PL of the annealed samples were studied. The prepared nanoparticles were characterized with X-ray diffraction (XRD). The XRD patterns show the pattern of typical ZnO nanoparticles and correspond with the standard XRD pattern given by JCPDS card No. 36-1451, showing the hexagonal phase structure. The PL intensity was enhanced due to Tb3+ doping, and it decreased at higher concentrations of Tb3+ doping after reaching a certain optimum concentration. The PL spectra of Tb3+ doped samples exhibited blue, bluish green, and green emissions at 460 nm (5D3 - 7F3), 484 nm (5D4 - 7F6), and 530 nm (5D4 - 7F5), respectively, which were more intense than the emissions for the undoped ZnO sample. Based on the results, an energy level schematic diagram was proposed to explain the possible electron transition processes.

  8. Formulation of radiographically detectable gastrointestinal contrast agents for magnetic resonance imaging: effects of a barium sulfate additive on MR contrast agent effectiveness.

    PubMed

    Rubin, D L; Muller, H H; Young, S W

    1992-01-01

    Complete and homogeneous distribution of gastrointestinal (GI) contrast media are important factors for their effective use in computed tomography as well as in magnetic resonance (MR) imaging. A radiographic method (using fluoroscopy or spot films) could be effective for monitoring intestinal filling with GI contrast agents for MR imaging (GICMR), but it would require the addition of a radiopaque agent to most GICMR. This study was conducted to determine the minimum amount of barium additive necessary to be radiographically visible and to evaluate whether this additive influences the signal characteristics of the GICMR. A variety of barium sulfate preparations (3-12% wt/vol) were tested in dogs to determine the minimum quantity needed to make the administered agent visible during fluoroscopy and on abdominal radiographs. Solutions of 10 different potential GI contrast agents (Gd-DTPA, ferric ammonium citrate, Mn-DPDP, chromium-EDTA, gadolinium-oxalate, ferrite particles, water, mineral oil, lipid emulsion, and methylcellulose) were prepared without ("nondoped") and with ("doped") the barium sulfate additive. MR images of the solutions in tubes were obtained at 0.38 T using 10 different spin-echo pulse sequences. Region of interest (ROI) measurements of contrast agent signal intensity (SI) were made. In addition, for the paramagnetic contrast media, the longitudinal and transverse relaxivity (R1 and R2) were measured. A 6% wt/vol suspension of barium was the smallest concentration yielding adequate radiopacity in the GI tract. Except for gadolinium-oxalate, there was no statistically significant difference in SI for doped and non-doped solutions with most pulse sequences used. In addition, the doped and nondoped solutions yielded R1 and R2 values which were comparable. We conclude that barium sulfate 6% wt/vol added to MR contrast agents produces a suspension with sufficient radiodensity to be viewed radiographically, and it does not cause significant alteration in

  9. Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles.

    PubMed

    Qazi, Inamur Rahman; Lee, Woo-Jin; Lee, Hyun-Cheol; Hassan, Mallick Shamshi; Yang, O-Bong

    2010-05-01

    Strontium titanate (SrTiO3) and chromium doped SrTiO3 (Cr/SrTiO3) were prepared by modified sol-gel method with the citric acid as a chelating agent in the ethylene glycol solution for the effective photodegradation of methylene blue dye under visible light irradiation. The synthesized doped and un-doped SrTiO3 nanoparticles were structurally characterized and their photoresponse performances for the efficient degradation of methylene blue dye have been demonstrated. After introducing the Cr on SrTiO3, UV-Vis absorption was appeared the red-shift at 566 nm from 392 nm as compare with bare SrTiO3. The photocatalytic degradation activity of Cr/SrTiO3 was significantly improved to 60% degradation of methylene blue in 3 h under visible light, which is approximately 5 times higher than that of the bare SrTiO3.

  10. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect.

  11. Fe-doped CeO2 solid solutions: Substituting-site doping versus interstitial-site doping, bulk doping versus surface doping

    NASA Astrophysics Data System (ADS)

    Bao, Huizhi; Qian, Kun; Fang, Jun; Huang, Weixin

    2017-08-01

    Doping CeO2 cubic fluorite with transitional metal ions can effectively improve its redox behavior, oxygen storage capacity and catalytic performance, but the relevant fundamental understanding of the promotion effect is still insufficient due to the difficulty on determining the distribution of dopant. We herein demonstrate an effective approach to determine this dopant distribution by combining X-ray absorption spectroscopy and selective chemisorption. Cubic CexFe1-xO2 fluorite solid solutions (x ≥ 0.70) were prepared by co-precipitation method. With the increasing of Fe molar ratio in CexFe1-xO2, Fe3+ initially substitutes Ce4+ and/or occupy intersitial sites with x ≥ 0.80, and then transfers to form sub-Fe2O3 structure in fluorite lattice as more Fe3+ are present; meanwhile, the Fe3+ doping initially occurs only in the bulk with x ≥ 0.96 and then extends to the surface with 0.87 ≤ x < 0.96. Low calcinations temperature facilitates the doping of Fe3+ in the bulk of cubic CexFe1-xO2 solid solutions. These results reveal the structures of CexFe1-xO2 fluorite solid solutions at the molecular level that are of great importance for the fundamental understanding of their properties.

  12. IR-doped ruthenium oxide catalyst for oxygen evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2012-01-01

    A method for preparing a metal-doped ruthenium oxide material by heating a mixture of a doping metal and a source of ruthenium under an inert atmosphere. In some embodiments, the doping metal is in the form of iridium black or lead powder, and the source of ruthenium is a powdered ruthenium oxide. An iridium-doped or lead-doped ruthenium oxide material can perform as an oxygen evolution catalyst and can be fabricated into electrodes for electrolysis cells.

  13. Empathic and Self-Regulatory Processes Governing Doping Behavior

    PubMed Central

    Boardley, Ian D.; Smith, Alan L.; Mills, John P.; Grix, Jonathan; Wynne, Ceri

    2017-01-01

    Evidence associating doping behavior with moral disengagement (MD) has accumulated over recent years. However, to date, research examining links between MD and doping has not considered key theoretically grounded influences and outcomes of MD. As such, there is a need for quantitative research in relevant populations that purposefully examines the explanatory pathways through which MD is thought to operate. Toward this end, the current study examined a conceptually grounded model of doping behavior that incorporated empathy, doping self-regulatory efficacy (SRE), doping MD, anticipated guilt and self-reported doping/doping susceptibility. Participants were specifically recruited to represent four key physical-activity contexts and consisted of team- (n = 195) and individual- (n = 169) sport athletes and hardcore- (n = 125) and corporate- (n = 121) gym exercisers representing both genders (nmale = 371; nfemale = 239); self-reported lifetime prevalence of doping across the sample was 13.6%. Each participant completed questionnaires assessing the aforementioned variables. Structural equation modeling indicated strong support for all study hypotheses. Specifically, we established: (a) empathy and doping SRE negatively predicted reported doping; (b) the predictive effects of empathy and doping SRE on reported doping were mediated by doping MD and anticipated guilt; (c) doping MD positively predicted reported doping; (d) the predictive effects of doping MD on reported doping were partially mediated by anticipated guilt. Substituting self-reported doping for doping susceptibility, multisample analyses then demonstrated these predictive effects were largely invariant between males and females and across the four physical-activity contexts represented. These findings extend current knowledge on a number of levels, and in doing so aid our understanding of key psychosocial processes that may govern doping behavior across key physical-activity contexts.

  14. A high-throughput test to detect C.E.R.A. doping in blood.

    PubMed

    Lamon, Séverine; Giraud, Sylvain; Egli, Léonie; Smolander, Jessica; Jarsch, Michael; Stubenrauch, Kay-Gunnar; Hellwig, Alice; Saugy, Martial; Robinson, Neil

    2009-12-05

    C.E.R.A., a continuous erythropoietin receptor activator, is a new third-generation erythropoiesis-stimulating agent (ESA) that has recently been linked with abuse in endurance sports. In order to combat this new form of doping, we examined an enzyme-linked immunosorbent assay (ELISA) designed to detect the presence of C.E.R.A. in serum samples. The performance of the assay was evaluated using a pilot excretion study that involved six subjects receiving C.E.R.A. Validation data demonstrated an excellent reproducibility and ensured the applicability of the assay for anti-doping purposes. To maximize the chances of detecting the drug in serum samples, we propose the use of this specific ELISA test as a high-throughput screening method, combined with a classic isoelectric focusing test as a confirmatory assay. This strategy should make C.E.R.A. abuse relatively easy to detect, thereby preventing the future use of this drug as a doping agent.

  15. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.

    PubMed

    Wang, Dewei; Min, Yonggang; Yu, Youhai; Peng, Bo

    2014-03-01

    In this paper, a general and efficient strategy has been developed to produce nitrogen-doped graphene sheets (NGs) based on hard and soft acids and bases (HSAB) theory. Under hydrothermal conditions, any salt with amphiprotic character have a strong tendency to hydrolysis, it is possible to provide reducing agent and nitrogen source simultaneously. It is worth noting that, NGs can be prepared under hydrothermal conditions by using some common ammonium salts with hard acid-soft base pairs as nitrogen-doping agents. The morphology, structure and composition of the as-prepared NGs were studied in detail. The results demonstrated that large amount of nitrogen was incorporated into the nanocarbon frameworks at the same time as the graphene oxide (GO) sheets were reduced. The electrochemical behavior of the synthesized NGs as supercapacitor electrodes was evaluated in a symmetric two-electrode cell configuration with 1M H2SO4 as the electrolytes. It was found that the nitrogen groups making the as-prepared NGs exhibited remarkably enhanced electrochemical performance when used as electrode materials in supercapacitors. The supercapacitor based on the NGs exhibited a high specific capacitance of 242 F g(-1) at a current density of 1 A g(-1), and remains a relatively high capacitance even at a high current density. This work will put forward to understand and optimize heteroatom-doped graphene in energy storage systems.

  16. FIFA's approach to doping in football

    PubMed Central

    Dvorak, J; Graf‐Baumann, T; D'Hooghe, M; Kirkendall, D; Taennler, H; Saugy, M

    2006-01-01

    Background and objectives FIFA's anti‐doping strategy relies on education and prevention. A worldwide network of physicians guarantees doping control procedures that are straightforward and leave no place for cheating. FIFA actively acknowledges its responsibility to protect players from harm and ensure equal chances for all competitors by stringent doping control regulations, data collection of positive samples, support of research, and collaboration with other organisations. This article aims to outline FIFA's approach to doping in football. Method Description of FIFA's doping control regulations and procedures, statistical analysis of FIFA database on doping control, and comparison with data obtained by WADA accredited laboratories as for 2004. Results Data on positive doping samples per substance and confederation/nation documented at the FIFA medical office from 1994 to 2005 are provided. According to the FIFA database, the incidence of positive cases over the past 11 years was 0.12%, with about 0.42% in 2004 (based on the assumption of 20 750 samples per year) and 0.37% in 2005. Especially important in this regard is the extremely low incidence of the true performance enhancing drugs such as anabolic steroids and stimulants. However, there is a need for more consistent data collection and cross checks among international anti‐doping agencies as well as for further studies on specific substances, methods, and procedures. With regard to general health impairments in players, FIFA suggests that principles of occupational medicine should be considered and treatment with banned substances for purely medical reasons should be permitted to enable players to carry out their profession. At the same time, a firm stand has to be taken against suppression of symptoms by medication with the aim of meeting the ever increasing demands on football players. Conclusion Incidence of doping in football seems to be low, but much closer collaboration and further

  17. Ce-doped titania nanoparticles: The effects of doped amount and calcination temperature on photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Shi, Jianwen; Zou, Yajun; Ma, Dandan

    2017-01-01

    A series of Ce-doped TiO2 nanoparticles with different doped amount and calcination temperature were prepared by sol-gel method. These obtained samples were characterized with X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet-visible diffuse reflectance spectra (DRS), and their photocatalytic activities were evaluated by the photocatalytic degradation of methyl orange. Results showed that Ce doping inhibits the growth of crystal size and the phase transformation from anatase to rutile, leads to lattice distortion and expansion of TiO2. Furthermore, Ce doping brings the red-shift of absorption profile and the increase of photons absorption in the range of 400-600 nm. Photocatalytic degradation of methyl orange shows that Ce doping improves the photocatalytic activity of TiO2. The optimal doped amount is 0.05 mol% and the optimal calcined temperature is 600 °C for the maximum photocatalytic degradation efficiency in our experiment.

  18. Phase transformations upon doping in WO3

    NASA Astrophysics Data System (ADS)

    Wang, Wennie; Janotti, Anderson; Van de Walle, Chris G.

    2017-06-01

    High levels of doping in WO3 have been experimentally observed to lead to structural transformation towards higher symmetry phases. We explore the structural phase diagram with charge doping through first-principles methods based on hybrid density functional theory, as a function of doping the room-temperature monoclinic phase transitions to the orthorhombic, tetragonal, and finally cubic phase. Based on a decomposition of energies into electronic and strain contributions, we attribute the transformation to a gain in energy resulting from a lowering of the conduction band on an absolute energy scale.

  19. All the dope on nanotube films.

    PubMed

    Rinzler, Andrew G; Donoghue, Evan P

    2011-05-24

    Transparent, conducting, nanotube thin films have shown promise in a number of applications, the range of which has just been increased significantly. Scientists at the National Renewable Energy Laboratory have done much in recent years to advance the understanding and application of these films. In this issue of ACS Nano, Blackburn and colleagues report their study of the doping power of n-type charge transfer donor dopants, finding that hydrazine effects n-type doping approximately comparable in strength to the p-type doping induced by nitric acid. This expands the potential range of applications for such films to electron injection and collection.

  20. Ultraviolet Lasers Realized via Electrostatic Doping Method

    PubMed Central

    Liu, X. Y.; Shan, C. X.; Zhu, H.; Li, B. H.; Jiang, M. M.; Yu, S. F.; Shen, D. Z.

    2015-01-01

    P-type doping of wide-bandgap semiconductors has long been a challenging issue for the relatively large activation energy and strong compensation of acceptor states in these materials, which hinders their applications in ultraviolet (UV) optoelectronic devices drastically. Here we show that by employing electrostatic doping method, hole-dominant region can be formed in wide bandgap semiconductors, and UV lasing has been achieved through the external injection of electrons into the hole-dominant region, confirming the applicability of the p-type wide bandgap semiconductors realized via the electrostatic doping method in optoelectronic devices. PMID:26324054

  1. Doping of graphene during chemical exfoliation

    NASA Astrophysics Data System (ADS)

    Srivastava, Pawan Kumar; Yadav, Premlata; Ghosh, Subhasis

    2013-02-01

    Graphene provides a perfect platform to explore the unique electronic properties in two-dimensions. However, most electronic applications are handicapped by the absence of a semiconducting gap in pristine graphene. To control the semiconducting properties of graphene, doping is regarded as one of the most feasible methods. Here we demonstrate that graphene can be effectively doped during chemical exfoliation of highly ordered pyrolitic graphite in organic solvents. Layered structure of graphene sheets was confirmed by confocal Raman spectroscopy and doping was probed by analyzing shift in Raman peak positions and transistor transfer (IDS-VGS) characteristics.

  2. Magnetoelectric effect in doped magnetic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Beloborodov, I. S.

    2017-07-01

    We propose a model of magnetoelectric effect in doped magnetic ferroelectrics. This magnetoelectric effect does not involve the spin-orbit coupling and is based purely on the Coulomb interaction. We calculate magnetic phase diagram of doped magnetic ferroelectrics. We show that magnetoelectric coupling is pronounced only for ferroelectrics with low dielectric constant. We find that magnetoelectric coupling leads to modification of magnetization temperature dependence in the vicinity of the ferroelectric phase transition. A peak of magnetization appears. We find that magnetization of doped magnetic ferroelectrics strongly depends on the applied electric field.

  3. Doping monolayer graphene with single atom substitutions.

    PubMed

    Wang, Hongtao; Wang, Qingxiao; Cheng, Yingchun; Li, Kun; Yao, Yingbang; Zhang, Qiang; Dong, Cezhou; Wang, Peng; Schwingenschlögl, Udo; Yang, Wei; Zhang, X X

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope.

  4. Phase separation in doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou; Balents, Leon

    2014-03-01

    Motivated by the commonplace observation of Mott insulators away from integer filling, we construct a simple thermodynamic argument for phase separation in first-order doping-driven Mott transitions. The theory predicts the transition is percolative and should exhibit Coulomb frustration. As an application, we consider the titanate family of perovskites, an ideal test case since both the doping and correlation strength can be tuned. We compute the critical dopings required to drive the Mott transition using first-principles methods combined with dynamical mean-field theory, finding good agreement with experiment.

  5. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  6. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  7. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1998-12-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. The enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of the effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses the planned future work.

  8. Agent-based enterprise integration

    SciTech Connect

    N. M. Berry; C. M. Pancerella

    1999-05-01

    The authors are developing and deploying software agents in an enterprise information architecture such that the agents manage enterprise resources and facilitate user interaction with these resources. Their enterprise agents are built on top of a robust software architecture for data exchange and tool integration across heterogeneous hardware and software. The resulting distributed multi-agent system serves as a method of enhancing enterprises in the following ways: providing users with knowledge about enterprise resources and applications; accessing the dynamically changing enterprise; intelligently locating enterprise applications and services; and improving search capabilities for applications and data. Furthermore, agents can access non-agents (i.e., databases and tools) through the enterprise framework. The ultimate target of their effort is the user; they are attempting to increase user productivity in the enterprise. This paper describes their design and early implementation and discusses their planned future work.

  9. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  10. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  11. Polymeric gastrointestinal MR contrast agents.

    PubMed

    Tilcock, C; Unger, E C; Ahkong, Q F; Fritz, T; Koenig, S H; Brown, R D

    1991-01-01

    Combining either paramagnetic (gadolinium chelates) or superparamagnetic (ferrite) contrast agents with polymers such as polyethylene glycol or cellulose, or with simple sugars such as dextrose, results in mixtures that exhibit improved T1 and/or T2 relaxivity compared with that of the contrast agent alone. It is suggested that the addition of such inexpensive and nontoxic polymers or saccharides may improve the effectiveness and decrease the cost of enteric contrast agents.

  12. Antithrombotic agents: implications in dentistry.

    PubMed

    Little, James W; Miller, Craig S; Henry, Robert G; McIntosh, Bruce A

    2002-05-01

    Thrombosis and the complicating emboli that can result are important causes of illness and death. Thrombosis is of greater overall clinical importance in terms of morbidity and mortality than all of the hemorrhagic disorders combined. Agents such as heparin, low-molecular weight heparin, warfarin, aspirin, ticlopidine, clopidogrel, and tirofiban are used to prevent venous or arterial thrombosis. Patients taking these antithrombotic agents may be at risk for excessive bleeding after invasive dental procedures. The current antithrombotic agents used in medicine are reviewed, and the dental management of patients taking these agents is discussed.

  13. Broad-spectrum antiviral agents

    PubMed Central

    Zhu, Jun-Da; Meng, Wen; Wang, Xiao-Jia; Wang, Hwa-Chain R.

    2015-01-01

    Development of highly effective, broad-spectrum antiviral agents is the major objective shared by the fields of virology and pharmaceutics. Antiviral drug development has focused on targeting viral entry and replication, as well as modulating cellular defense system. High throughput screening of molecules, genetic engineering of peptides, and functional screening of agents have identified promising candidates for development of optimal broad-spectrum antiviral agents to intervene in viral infection and control viral epidemics. This review discusses current knowledge, prospective applications, opportunities, and challenges in the development of broad-spectrum antiviral agents. PMID:26052325

  14. The Agent of Change: The Agent of Conflict.

    ERIC Educational Resources Information Center

    Hatfield, C. R., Jr.

    This speech examines the role of change agents in third world societies and indicates that the change agent must, to some extent, manipulate the social situation, even if his view of society is a more optimistic one than he finds in reality. If he considers strains and stresses to be the lubricants of change, then his focus on conflict as a…

  15. Incorporating BDI Agents into Human-Agent Decision Making Research

    NASA Astrophysics Data System (ADS)

    Kamphorst, Bart; van Wissen, Arlette; Dignum, Virginia

    Artificial agents, people, institutes and societies all have the ability to make decisions. Decision making as a research area therefore involves a broad spectrum of sciences, ranging from Artificial Intelligence to economics to psychology. The Colored Trails (CT) framework is designed to aid researchers in all fields in examining decision making processes. It is developed both to study interaction between multiple actors (humans or software agents) in a dynamic environment, and to study and model the decision making of these actors. However, agents in the current implementation of CT lack the explanatory power to help understand the reasoning processes involved in decision making. The BDI paradigm that has been proposed in the agent research area to describe rational agents, enables the specification of agents that reason in abstract concepts such as beliefs, goals, plans and events. In this paper, we present CTAPL: an extension to CT that allows BDI software agents that are written in the practical agent programming language 2APL to reason about and interact with a CT environment.

  16. Clients as conversational agents.

    PubMed

    Massfeller, Helen F; Strong, Tom

    2012-08-01

    Conversational agency is our invented term that orients us to ways in which clients participate in therapeutic dialogues. In this study we examined how clients' conversational correctives and initiatives influenced collaborative therapeutic consultations. Thirty-five single-session lifestyle consultations were videotaped in which adult clients volunteered to discuss concerns of non-clinical severity with a counselor. We discursively microanalyzed excerpts where clients initiated topic shifts or corrected counselor misunderstandings and how counselors responded to them. Clients were actively involved in co-managing conversational developments during the consultations. They influenced the content and course of the conversations with the counselors by correcting, interrupting, or speaking from positions contrary or unrelated to those of the counselors. Clients observably influenced the conversational agenda through their correctives and initiatives if counselors were responsive during face-to-face consultations. Clinicians should demonstrate increased sensitivity and relational responsivity by intentionally engaging with clients' agentive contributions to consultative dialogues. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  18. Contrast agents for MRI.

    PubMed

    Shokrollahi, H

    2013-12-01

    Contrast agents are divided into two categories. The first one is paramagnetic compounds, including lanthanides like gadolinium, which mainly reduce the longitudinal (T1) relaxation property and result in a brighter signal. The second class consists of super-paramagnetic magnetic nanoparticles (SPMNPs) such as iron oxides, which have a strong effect on the transversal (T2) relaxation properties. SPMNPs have the potential to be utilized as excellent probes for magnetic resonance imaging (MRI). For instance, clinically benign iron oxide and engineered ferrite nanoparticles provide a good MRI probing capability for clinical applications. Furthermore, the limited magnetic property and inability to escape from the reticuloendothelial system (RES) of the used nanoparticles impede their further advancement. Therefore, it is necessary to develop the engineered magnetic nanoparticle probes for the next-generation molecular MRI. Considering the importance of MRI in diagnosing diseases, this paper presents an overview of recent scientific achievements in the development of new synthetic SPMNP probes whereby the sensitive and target-specific observation of biological events at the molecular and cellular levels is feasible.

  19. Phytonutrients as therapeutic agents.

    PubMed

    Gupta, Charu; Prakash, Dhan

    2014-09-01

    Nutrients present in various foods plays an important role in maintaining the normal functions of the human body. The major nutrients present in foods include carbohydrates, proteins, lipids, vitamins, and minerals. Besides these, there are some bioactive food components known as "phytonutrients" that play an important role in human health. They have tremendous impact on the health care system and may provide medical health benefits including the prevention and/or treatment of disease and various physiological disorders. Phytonutrients play a positive role by maintaining and modulating immune function to prevent specific diseases. Being natural products, they hold a great promise in clinical therapy as they possess no side effects that are usually associated with chemotherapy or radiotherapy. They are also comparatively cheap and thus significantly reduce health care cost. Phytonutrients are the plant nutrients with specific biological activities that support human health. Some of the important bioactive phytonutrients include polyphenols, terpenoids, resveratrol, flavonoids, isoflavonoids, carotenoids, limonoids, glucosinolates, phytoestrogens, phytosterols, anthocyanins, ω-3 fatty acids, and probiotics. They play specific pharmacological effects in human health such as anti-microbial, anti-oxidants, anti-inflammatory, antiallergic, anti-spasmodic, anti-cancer, anti-aging, hepatoprotective, hypolipidemic, neuroprotective, hypotensive, diabetes, osteoporosis, CNS stimulant, analgesic, protection from UVB-induced carcinogenesis, immuno-modulator, and carminative. This mini-review attempts to summarize the major important types of phytonutrients and their role in promoting human health and as therapeutic agents along with the current market trend and commercialization.

  20. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  1. Piezoresistive boron doped diamond nanowire

    DOEpatents

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  2. Erbium Doped Fiber Optic Gravimeter

    NASA Astrophysics Data System (ADS)

    Pérez-Sánchez, G. G.; Pérez-Torres, J. R.; Flores-Bravo, J. A.; Álvarez-Chávez, J. A.; Martínez-Piñón, F.

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor.

  3. Ion Doped Quantum Well Lasers

    DTIC Science & Technology

    1993-04-01

    5 3 TGA analysis of {N[Si(CH3)312)3Er ................................. 5 4 Spectroscopic analysis of {N[Si(CH3)3]2)3Er...40o 56o 6oo TEMPERATURE (-C) Figure 3 TGA analysis of Er{NISi(CH3)3J]J 3 . CHEMICAL VAPOR DEPOSITION As the objective of this work is to dope A1GaAs...laO0 23633 47.870C 99.37% 1,14.84*C s00, • 95.212 173.75C 90.622 EI 800.77C 20- 60- 2o256. tC 0 i9o 360 460 560 600 TEMPERATURE (’C) Figure 3 TGA

  4. Low temperature boron doped diamond

    NASA Astrophysics Data System (ADS)

    Zeng, Hongjun; Arumugam, Prabhu U.; Siddiqui, Shabnam; Carlisle, John A.

    2013-06-01

    Low temperature boron doped diamond (LT-BDD) film deposited under 600 °C (460 °C minimum) has been reported. Study reveals that the deposition temperature and boron dopant cause nanocrystalline diamond (NCD) instead of ultrananocrystalline diamond (UNCD®). Unlike conventional NCD, LT-BDD has faster renucleation rate, which ensures a low surface roughness (approximately 10 nm at 0.6 μm thickness). The overall characteristics of LT-BDD are mixed with the characteristics of conventional NCD and UNCD. Raman spectrum and electrochemical characterization prove that the quality of LT-BDD is similar to those grown under 650-900 °C. LT-BDD enables diamond applications on microelectromechanical systems, bio- and optical technologies.

  5. TACtic- A Multi Behavioral Agent for Trading Agent Competition

    NASA Astrophysics Data System (ADS)

    Khosravi, Hassan; Shiri, Mohammad E.; Khosravi, Hamid; Iranmanesh, Ehsan; Davoodi, Alireza

    Software agents are increasingly being used to represent humans in online auctions. Such agents have the advantages of being able to systematically monitor a wide variety of auctions and then make rapid decisions about what bids to place in what auctions. They can do this continuously and repetitively without losing concentration. To provide a means of evaluating and comparing (benchmarking) research methods in this area the trading agent competition (TAC) was established. This paper describes the design, of TACtic. Our agent uses multi behavioral techniques at the heart of its decision making to make bidding decisions in the face of uncertainty, to make predictions about the likely outcomes of auctions, and to alter the agent's bidding strategy in response to the prevailing market conditions.

  6. Screening dynamics in doped titanates

    SciTech Connect

    Rubensson, J.E.; Luening, J.; Eisebitt, S.

    1997-04-01

    The time scale for carrier relaxation in semiconductors is on the same order of magnitude as the life time of shallow core hole states (a few femtoseconds). Resonant Inelastic soft X-ray scattering (RIXS) which involves (virtual) excitations of core levels consequently contains information about the time development of the electronic structure on this time scale. In many cases one can treat the scattering in an absorption (SXA) followed-by-emission (SXE) picture, where simply the rates for various processes can be compared with the intermediate core hole state decay rate as an internal {open_quotes}clock{close_quotes}. By variation of x (0 < x < 1) in La{sub x}Sr{sub 1{minus}x}TiO{sub 3}, the amount of Ti d electrons in the system can be controlled. SrTiO{sub 3} (x=0) is an insulator with an empty Ti d band. With increasing x, electrons are doped into the Ti d-band, and LaTiO{sub 3} (x=1) is a Mott Hubbard insulator with a Ti 3d{sup 1} configuration. In this work the authors demonstrate that the rate for Ti 2p core hole screening in La{sub x}Sr{sub 1{minus}x}TiO{sub 3} is doping dependent. The screening rate increases with the availability of Ti 3d electrons, and they estimate it to be 3.8 x 10{sup 13}/sec in La{sub 0.05}Sr{sub 0.95}TiO{sub 3}.

  7. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Rasmussen, H K; Bang, O; Webb, D J

    2013-10-01

    In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2×10(-4) has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent.

  8. Bio-green synthesis of Fe doped SnO2 nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.

    2017-05-01

    Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.

  9. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    PubMed Central

    Min, Yuanzeng; Li, Jinming; Liu, Fang; Padmanabhan, Parasuraman; Yeow, Edwin K. L.; Xing, Bengang

    2014-01-01

    Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs), which can be excited by near-infrared (NIR) laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  10. Divalent europium doped CaF2 and BaF2 nanocrystals from ionic liquids

    DOE PAGES

    Anghel, Sergiu; Golbert, Sebastian; Meijerink, Andries; ...

    2016-10-11

    A new, facile and quick synthesis method for Eu2+ doped the alkaline earth fluorides was developed using ionic liquids as solvent, precursor and capping agent. Reductive atmosphere and very high temperatures were avoided, while still attaining the desired structure, small particle sizes and divalent oxidation state of the lanthanide. Here, this opens the door for the development of new Ln2+ doped nanomaterials. Here, the successful Eu2+ incorporation was proven by optical spectroscopic measurements which showed the spin and parity allowed f-d transitions of Eu2+ in CaF2:Eu2+/BaF2:Eu2+. 4f7-4f7 transitions could be observed at low temperatures (7 K).

  11. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    SciTech Connect

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G.

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PL studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.

  12. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  13. Design, synthesis, and characterization of materials for controlled line deposition, environmental remediation, and doping of porous manganese oxide material

    NASA Astrophysics Data System (ADS)

    Calvert, Craig A.

    This thesis covers three topics: (1) coatings formed from sol-gel phases, (2) environmental remediation, and (3) doping of a porous manganese oxide. Synthesis, characterization, and application were investigated for each topic. Line-formations were formed spontaneously by self-assembly from vanadium sol-gels and other metal containing solutions on glass substrates. The solutions were prepared by the dissolution of metal oxide or salt in water. A more straightforward method is proposed than used in previous work. Analyses using optical microscopy, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and infrared spectroscopy showed discreet lines whose deposition could be controlled by varying the concentration. A mechanism was developed from the observed results. Microwave heating, the addition of graphite rods, and oxidants, can enhance HCB remediation from soil. To achieve remediation, a TeflonRTM vessel open to the atmosphere along with an oxidant, potassium persulfate (PerS) or potassium hydroxide, along with uncoated or aluminum oxide coated, graphite rods were heated in a research grade microwave oven. Microwave heating was used to decrease the heating time, and graphite rods were used to increase the absorption of the microwave energy by providing thermal centers. The results showed that the percent HCB removed was increased by adding graphite rods and oxidants. Tungsten, silver, and sulfur were investigated as doping agents for K--OMS-2. The synthesis of these materials was carried out with a reflux method. The doping of K--OMS-2 led to changes in the properties of a tungsten doped K--OMS-2 had an increased resistivity, the silver doped material showed improved epoxidation of trans-stilbene, and the addition of sulfur produced a paper-like material. Rietveld refinement of the tungsten doped K--OMS-2 showed that the tungsten was doped into the framework.

  14. Electron transport in pure and doped hematite.

    PubMed

    Liao, Peilin; Toroker, Maytal Caspary; Carter, Emily A

    2011-04-13

    Hematite (α-Fe(2)O(3)) is a promising candidate for photoelectrochemical splitting of water. However, its intrinsically poor conductivity is a major drawback. Doping hematite to make it either p-type or n-type enhances its measured conductivity. We use quantum mechanics to understand how titanium, zirconium, silicon, or germanium n-type doping affects the electron transport mechanism in hematite. Our results suggest that zirconium, silicon, or germanium doping is superior to titanium doping because the former dopants do not act as electron trapping sites due to the higher instability of Zr(III) compared to Ti(III) and the more covalent interactions between silicon (germanium) and oxygen. This suggests that use of n-type dopants that easily ionize completely or promote covalent bonds to oxygen can provide more charge carriers while not inhibiting transport.

  15. Superconductivity in carrier-doped silicon carbide

    PubMed Central

    Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun

    2008-01-01

    We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al) shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm−3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors. PMID:27878021

  16. Doping Scheme of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.

  17. Controlled doping of graphene using ultraviolet irradiation

    SciTech Connect

    Luo Zhengtang; Pinto, Nicholas J.; Davila, Yarely; Charlie Johnson, A. T.

    2012-06-18

    The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at {approx}2 Multiplication-Sign 10{sup 12} cm{sup -2} and the quantum yield is {approx}10{sup -5} e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications.

  18. Erbium-doped aluminophosphosilicate optical fibres

    SciTech Connect

    Likhachev, M E; Bubnov, M M; Zotov, K V; Medvedkov, O I; Lipatov, D S; Yashkov, M V; Gur'yanov, Aleksei N

    2010-09-10

    We have studied the active properties of erbium-doped aluminophosphosilicate (APS) core fibres in wide ranges of erbia, alumina and phosphorus pentoxide concentrations. The absorption and luminescence spectra of the P{sub 2}O{sub 5}- or Al{sub 2}O{sub 3}-enriched erbium-doped APS fibres are shown to be similar to those of the erbium-doped fibres singly doped with phosphorus pentoxide or alumina, respectively. The formation of AlPO{sub 4} in APS fibres leads not only to a reduction in the refractive index of the glass but also to a marked increase in Er{sub 2}O{sub 3} solubility in silica. (optical fibres)

  19. Sprayed lanthanum doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  20. Doping Profiles for Indium Antimonide Magnetoresistors

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-03-01

    Indium antimonide is of interest for magnetoresistors in position sensors. These sensors are fabricated as thin film elements in order to increase the device impedance. The InSb is doped n-type to stabilize the electron density against temperature changes. This involves tradeoffs, since ionized donors scatter electrons, reducing their mobility and hence reducing the device sensitivity to a magnetic field. Optimizing the sensitivity involved three steps. The InSb is undoped for the first 10 to 20 percent of the film thickness, forming a buffer from the lattice mismatched substrate. The doping in the middle layer of the film has a doping gradient. Finally, a thin contact layer is more heavily doped to reduce contact resistance.

  1. Stabilization of boron carbide via silicon doping.

    PubMed

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  2. Stabilization of boron carbide via silicon doping

    NASA Astrophysics Data System (ADS)

    Proctor, J. E.; Bhakhri, V.; Hao, R.; Prior, T. J.; Scheler, T.; Gregoryanz, E.; Chhowalla, M.; Giulani, F.

    2015-01-01

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  3. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  4. Microstrutured fibers with germanium doped core components

    NASA Astrophysics Data System (ADS)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Wang, Y.; Brückner, S.; Becker, M.; Rothhardt, M.; Kirchhof, J.; Ecke, W.; Willsch, R.; Bartelt, H.

    2009-05-01

    The paper reports preparation and applicative aspects of two types of index guiding microstructured fibers (MOFs) with germanium doped cores. The first fiber type has a solid core with graded germanium profile. It shows a high photosensitivity compared to pure silica MOFs. We inscribed high-quality Bragg gratings with a reflectivity of 73% without hydrogen loading. The solid core germanium doped MOF was spliced with standard silica fiber. The minimum splice loss was about 1 dB at 1550 μm wavelength. A more complex MOF type was prepared with germanium doped holey core in a silica holey cladding. The germanium doped core area includes seven holes in hexagonal arrangement with equal diameter and pitch sizes. The holey core propagates a large area annulus mode. We show the suitability of this MOF for chemical gas sensing by filling the core cavities with hydrocarbon analytes.

  5. Flowerlike C-doped BiOCl nanostructures: Facile wet chemical fabrication and enhanced UV photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Yu, Jiahui; Wei, Bo; Zhu, Lin; Gao, Hong; Sun, Wenjun; Xu, Lingling

    2013-11-01

    3D-flowerlike C-doped bismuth oxychloride (BiOCl) hierarchical structures have been synthesized through a facile, low temperature wet-chemical method using polyacrylamide (PAM) as both chelating and doping agents. The flowerlike products are composed of nanosheets, as verified by the scanning electron microscopy (SEM). The crystal structure and compositional characteristics were investigated by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of C-doped BiOCl samples with different amounts of PAM adding were investigated by the degradation of methyl orange (MO) dye and colorless phonel contaminant under ultra-violet light irradiation. The as-prepared C-doped BiOCl exhibited much higher photocatalytic activity than the pure one. Moreover, the best performance of the photo-degradation was observed on the sample synthesized by 0.4 g PAM adding. The results show that C-doped BiOCl can be used as a promising candidate for water-purification.

  6. Photoluminescence on cerium-doped ZnO nanorods produced under sequential atomic layer deposition-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Cervantes-López, J. L.; Rangel, R.; Espino, J.; Martínez, E.; García-Gutiérrez, R.; Bartolo-Pérez, P.; Alvarado-Gil, J. J.; Contreras, O. E.

    2017-01-01

    Doped and undoped ZnO nanorod arrays were produced combining atomic layer deposition and hydrothermal processes. First, a ZnO layer with preferential orientation normal to the c-axis was grown on the substrate by means of the decomposition of diethylzinc; subsequently, the nanorod arrays were produced through solvothermal process using a solution of Zn(NO3)2 as precursor. Doped ZnO nanorods were produced using Ce(C2H3O2)3·H2O as dopant agent precursor. Undoped and Ce-doped ZnO nanorod arrays showed high-intensity photoluminescence. The doping concentration of x = 0.04 (Zn1- x Ce x O) displayed the highest photoluminescence. Undoped ZnO showed an intense UV peak centered at 382 nm with a narrow full wide half maximum of 33 nm. Ce-doped ZnO PL spectra contain three bands, one signal in the UV region centered at 382 nm, other centered at 467 nm in the near-green region and other one emission centered at 560 nm. The results herein exposed demonstrate the capability to produce high-quality ZnO and Zn1- x Ce x O films.

  7. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine.

    PubMed

    Chen, Xianlan; Zhang, Guowei; Shi, Ling; Pan, Shanqing; Liu, Wei; Pan, Hiabo

    2016-08-01

    The formation of nitrogen-doped (N-doped) graphene uses hydrothermal method with urea as reducing agent and nitrogen source. The surface elemental composition of the catalyst was analyzed through XPS, which showed a high content of a total N species (7.12at.%), indicative of the effective N-doping, present in the form of pyridinic N, pyrrolic N and graphitic N groups. Moreover, Au nanoparticles deposited on ZnO nanocrystals surface, forming Au/ZnO hybrid nanocatalysts, undergo a super-hydrophobic to super-hydrophilic conversion. Herein, we present Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene sheets through sonication technique of the Au/ZnO/N-doped graphene hybrid nanostructures. The as-prepared Au/ZnO/N-doped graphene hybrid nanostructure modified glassy carbon electrode (Au/ZnO/N-doped graphene/GCE) was first employed for the simultaneous determination of ascorbic acid (AA), dopamine (DA) and acetaminophen (AC). The oxidation over-potentials of AA, DA and AC decreased dramatically, and their oxidation peak currents increased significantly at Au/ZnO/N-doped graphene/GCE compared to those obtained at the N-doped graphene/GCE and bare CCE. The peak separations between AA and DA, DA and AC, and AC and AA are large up to 195, 198 and 393mV, respectively. The calibration curves for AA, DA and AC were obtained in the range of 30.00-13.00×10(3), 2.00-0.18×10(3) and 5.00-3.10×10(3)μM, respectively. The detection limits (S/N=3) were 5.00, 0.40 and 0.80μM for AA, DA and AC, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Preparation of nitrogen-doped carbon tubes

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  9. Porous allograft bone scaffolds: doping with strontium.

    PubMed

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  10. Novel Fiber Preforms: Rare Earth Doping.

    DTIC Science & Technology

    1987-03-31

    proposed by the group at Southampton, and future experiments with axial laser heating of terbium metal are planned. As noted, much of the effort during...been doped with terbium , in our learning to control the doping concentration, we have observed bands of undesired microcrystailinity in some terbium ...preforms with terbium (not yet pulled into fibers), and rare earth glasses formed by sol-gel tech- niques. Future efforts will be to prepare fibers

  11. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  12. Graphene doping methods and device applications.

    PubMed

    Oh, Jong Sik; Kim, Kyong Nam; Yeom, Geun Young

    2014-02-01

    Graphene has recently been studied as a promising material to replace and enhance conventional electronic materials in various fields such as electronics, photovoltaics, sensors, etc. However, for the electronic applications of graphene prepared by various techniques such as chemical vapor deposition, chemical exfoliation, mechanical exfoliation, etc., critical limitations are found due to the defects in the graphene in addition to the absence of a semiconducting band gap. For that, many researchers have investigated the doped graphene which is effective to tailor its electronic property and chemical reactivity. This work presents a review of the various graphene doping methods and their device applications. As doping methods, direct synthesis method and post treatment method could be categorized. Because the latter case has been widely investigated and used in various electronic applications, we will focus on the post treatment method. Post treatment method could be further classified into wet and dry doping methods. In the case of wet doping, acid treatment, metal chloride, and organic material coating are the methods used to functionalize graphene by using dip-coating, spin coating, etc. Electron charge transfer achieved from graphene to dopants or from dopants to graphene makes p-type or n-type graphenes, respectively, with sheet resistance reduction effect. In the case of dry doping, it can be further categorized into electrostatic field method, evaporation method, thermal treatment method, plasma treatment method, etc. These doping techniques modify Fermi energy level of graphene and functionalize the property of graphene. Finally, some perspectives and device applications of doped graphene are also briefly discussed.

  13. Charge neutrality in heavily doped emitters

    SciTech Connect

    del Alamo, J.A.

    1981-09-01

    The applicability of the quasineutrality approximation to modern emitters of solar cells is analytically reviewed. It is shown that this approximation is fulfilled in more than 80% of the depth of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface where most of the heavy doping effects arise. Our conclusions are in conflict with Redfield's recent affirmations.

  14. Porous Allograft Bone Scaffolds: Doping with Strontium

    PubMed Central

    Zhao, Yantao; Guo, Dagang; Hou, Shuxun; Zhong, Hongbin; Yan, Jun; Zhang, Chunli; Zhou, Ying

    2013-01-01

    Strontium (Sr) can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS) were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDS). Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF) assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca)] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28±0.23 µm/day vs. 2.60±0.20 µm/day; p<0.05). Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes. PMID:23922703

  15. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  16. Sulfur Doping of InAs

    DTIC Science & Technology

    2015-06-04

    SECURITY CLASSIFICATION OF: We investigated the sulfur doping limits of InAs using ion implantation and rapid thermal annealing for plasmonic...applications. Previous studies suggested that higher electron concentrations would be possible using sulfur doping than silicon, which represents the...current state-of-the-art dopant. While we achieved near record active electron concentrations with sulfur , we found that dopant diffusion ultimately

  17. Oral contraceptive agents.

    PubMed

    Shearman, R P

    1986-02-17

    The history of the development of oral contraceptives (OCs) has been a progressive reduction in dosage to what is now probably the lowest does that is compatible with the desired therapeutic effect -- to inhibit ovluation. Yet, controversy and argument continue. A table lists the OCs that are available in Australia. Many of these preparations, although having different trade names, have an identical composition. Since the withdrawal of sequential OCs from the Australian market, there are only 2 generic types. These are the progestogen only (mini) OCs, which consist of either 30 mcg of levonorgestrel or 350 mcg of norethisterone given at the same time every day; and the combined OCs, which contain an estrogen and a progestogen. In the last 12 months, some of the older high-dose OCs have been withdrawn, and it seems likely that further withdrawals will follow. Only 2 estrogens are used in the formulation of the OC, but there is a greater variety of progestogens. Ethinyl estradiol is used in most preparations. A small minority of OCs contain mestranol, the 3-methyl ether of ethinyl estradiol. Currently, there are only 4 OC agents that are available in Australia that contain mestranol and 2 of these contain the high doses of 100 mcg. Fundamentally, there are 2 types of progestogens -- those that contain, or are metabolized to, norethisterone and those that contain norgestrel or its close relative, desogestrel. With the exception of the norgestrel group and desogestrel, all other progestins, including norethisterone itself, are effective in vivo after they have been metablized to norethisterone. Mestranol is effective in humans after demethylation to ethinyl estradiol. In the norgesterel group, since d-norgestrel is inert endocrinologically, 250 mcg of levonorgestrel and 500 mcg of dl-norgestrel are equivalent. Levonorgestrel and desogestrel are of approximately equal potency. With the combined OC agents, the overwhelming mechanism of action is by the inhibition of the

  18. Hypersensitivity to antineoplastic agents.

    PubMed

    Castells, M C

    2008-01-01

    The need to offer first line therapy for primary and recurrent cancers has spurred the clinical development of rapid desensitizations for chemotherapy and monoclonal antibodies. Rapid desensitizations allow patients to be treated with medications to which they have presented with hypersensitivity reactions (HSRs), including anaphylaxis. Rapid desensitization achieves temporary tolerization to full therapeutic doses by slow administration of incremental doses of the drug inducing the HSR. Protocols are available for most chemotherapy agents, including taxanes, platins, doxorubicin, monoclonal antibodies, and others. Candidate patients include those who present with type I HSRs, mast cell/IgE dependent, including anaphylaxis, and non-IgE mediated HSRs, during the chemotherapy infusion or shortly after. Idiosyncratic reactions, erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis are not amenable to rapid desensitization. The recommendation for rapid desensitization can only be made by allergy and immunology specialists and can only be performed in settings with one-to-one nurse-patient care and where resuscitation personnel and resources are readily available. Repeated desensitizations can be safely performed in outpatient settings with similar conditions, which allow cancer patients to remain in clinical studies. We have generated a universal 12-step protocol that was applied to 413 cases of intravenous and intraperitoneal rapid desensitizations using taxanes, platins, liposomal doxorubicin, doxorubicin, rituximab, and other chemotherapy drugs. Under this protocol all patients were able to complete their target dose, and 94% of the patients had limited or no reactions. No deaths or codes were reported, indicating that the procedure was safe and effective in delivering first line chemotherapy drugs.

  19. Targeting prohibited substances in doping control blood samples by means of chromatographic-mass spectrometric methods.

    PubMed

    Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm

    2013-12-01

    Urine samples have been the predominant matrix for doping controls for several decades. However, owing to the complementary information provided by blood (as well as serum or plasma and dried blood spots (DBS)), the benefits of its analysis have resulted in continuously increasing appreciation by anti-doping authorities. On the one hand, blood samples allow for the detection of various different methods of blood doping and the abuse of erythropoiesis-stimulating agents (ESAs) via the Athlete Biological Passport; on the other hand, targeted and non-targeted drug detection by means of chromatographic-mass spectrometric methods represents an important tool to increase doping control frequencies out-of-competition and to determine drug concentrations particularly in in-competition scenarios. Moreover, blood analysis seldom requires in-depth knowledge of drug metabolism, and the intact substance rather than potentially unknown or assumed metabolic products can be targeted. In this review, the recent developments in human sports drug testing concerning mass spectrometry-based techniques for qualitative and quantitative analyses of therapeutics and emerging drug candidates are summarized and reviewed. The analytical methods include both low and high molecular mass compounds (e.g., anabolic agents, stimulants, metabolic modulators, peptide hormones, and small interfering RNA (siRNA)) determined from serum, plasma, and DBS using state-of-the-art instrumentation such as liquid chromatography (LC)-high resolution/high accuracy (tandem) mass spectrometry (LC-HRMS), LC-low resolution tandem mass spectrometry (LC-MS/MS), and gas chromatography-mass spectrometry (GC-MS).

  20. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  1. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  2. 7 CFR 4290.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to: (i) Establish performance criteria for Poolers. (ii) Monitor and evaluate the financial markets..., DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financial Assistance for RBICs... or cause to be appointed agent(s) to perform functions necessary to market and service Debentures...

  3. Multimodal nanoparticulate bioimaging contrast agents.

    PubMed

    Sharma, Parvesh; Singh, Amit; Brown, Scott C; Bengtsson, Niclas; Walter, Glenn A; Grobmyer, Stephen R; Iwakuma, Nobutaka; Santra, Swadeshmukul; Scott, Edward W; Moudgil, Brij M

    2010-01-01

    A wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research. While all of these methods use a characteristic "energy-matter" interaction to provide specific details about biological processes, each modality differs from another in terms of spatial and temporal resolution, anatomical and molecular details, imaging depth, as well as the desirable material properties of contrast agents needed for augmented imaging. On many occasions, it is advantageous to apply multiple complimentary imaging modalities for faster and more accurate prognosis. Since most imaging modalities employ exogenous contrast agents to improve the signal-to-noise ratio, the development and use of multimodal contrast agents is considered to be highly advantageous for obtaining improved imagery from sought-after imaging modalities. Multimodal contrast agents offer improvements in patient care, and at the same time can reduce costs and enhance safety by limiting the number of contrast agent administrations required for imaging purposes. Herein, we describe the synthesis and characterization of nanoparticulate-based multimodal contrast agent for noninvasive bioimaging using MRI, optical, and photoacoustic tomography (PAT)-imaging modalities. The synthesis of these agents is described using microemulsions, which enable facile integration of the desired diversity of contrast agents and material components into a single entity.

  4. Gelled Anti-icing Agents

    NASA Technical Reports Server (NTRS)

    Markles, O. F.; Sperber, H. H.

    1983-01-01

    Pectin added to antifreeze/water mixture. Formulations include water with dimethyl sulfoxide (DMSO) as deicer and pectin as gel former. Without gelling agent, deicer runs off vertical surfaces. Without pectin solution will completely evaporate in far less time. Agents developed have wide potential for ice prevention on runways, highways, bridges and sidewalks.

  5. Field Agent Activities: Level 1.

    ERIC Educational Resources Information Center

    Gussett, James

    One of a series of monographs providing information about the Delaware Model: A Systems Approach to Science Education (Del Mod System), this monograph describes the role of field agents. These agents are responsible for individual teachers who express a desire for involvement in improving teacher effectiveness and to be involved in the teaching of…

  6. Detection of EPO gene doping in blood.

    PubMed

    Neuberger, Elmo W I; Jurkiewicz, Magdalena; Moser, Dirk A; Simon, Perikles

    2012-11-01

    Gene doping--or the abuse of gene therapy--will continue to threaten the sports world. History has shown that progress in medical research is likely to be abused in order to enhance human performance. In this review, we critically discuss the progress and the risks associated with the field of erythropoietin (EPO) gene therapy and its applicability to EPO gene doping. We present typical vector systems that are employed in ex vivo and in vivo gene therapy trials. Due to associated risks, gene doping is not a feasible alternative to conventional EPO or blood doping at this time. Nevertheless, it is well described that about half of the elite athlete population is in principle willing to risk its health to gain a competitive advantage. This includes the use of technologies that lack safety approval. Sophisticated detection approaches are a prerequisite for prevention of unapproved and uncontrolled use of gene therapy technology. In this review, we present current detection approaches for EPO gene doping, with a focus on blood-based direct and indirect approaches. Gene doping is detectable in principle, and recent DNA-based detection strategies enable long-term detection of transgenic DNA (tDNA) following in vivo gene transfer.

  7. Current strategies of blood doping detection.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2013-12-01

    During the last 30 years, the artificial increase of red blood cell volume ("blood doping") has changed the level of performance in all endurance sports. Many doping scandals have shown the extent of the problem. The detection of blood doping relies on two different approaches: the direct detection of exogenous manipulating substances (erythropoietic stimulants) or red cells (homologous transfusion) and the indirect detection, where not the doping substance or technique itself, but its effect on certain biomarkers is measured. Whereas direct detection using standard laboratory procedures such as isoelectric focusing can identify erythropoietic stimulants, homologous blood transfusion is identified through mismatches in minor blood group antigens by flow cytometry. Indirect methods such as the athlete biological passport are the only means to detect autologous transfusion and may also be used for the detection of erythropoietic stimulants or homologous transfusion. New techniques to unmask blood doping include the use of high-throughput 'omics' technologies (proteomics/metabolomics) and the combination of different biomarkers with the help of mathematical approaches. Future strategies should aim at improving the use of the available data and resources by applying pattern recognition algorithms to recognize suspicious athletes and, on the basis of these findings, use the appropriate testing method. Different types of information should be combined in the quest for a forensic approach to anti-doping.

  8. Goal orientations and attitudes toward doping.

    PubMed

    Sas-Nowosielski, K; Swiatkowska, L

    2008-07-01

    The aim of the study was to determine if there is a relationship between attitudes toward doping and achievement goal orientations of athletes. Questionnaires from 830 athletes (including 263 females) were obtained. Athletes declared moderately positive attitudes, with attitude toward anti-doping controls as the strongest and attitude toward sanctions as the weakest. Females declared significantly more favourable attitudes than males. With respect to the relationship between goal orientations and attitudes toward doping, it was found that athletes who were high task/low ego oriented declared the most favourable attitudes, while athletes who were low task/high ego oriented declared the least favourable attitudes. Multiple regression analyses confirmed that ego orientation was significantly negatively related to, and task orientation was significantly positively related to attitudes toward doping. It means that with the increase in task orientation, attitudes toward doping became more favourable. The opposite can be said about the increase in ego orientation. It could be argued then, that creating a motivational climate which promotes task orientation (mastery climate) may aid anti-doping efforts.

  9. Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of Chromium(III) triglycine, tetraglycine and pentaglycine complexes.

    PubMed

    Headlam, Henrietta A; Lay, Peter A

    2016-09-01

    Evidence is growing that metabolites of Cr(III) dietary supplements are partially oxidized to carcinogenic Cr(VI) and Cr(V) in vivo. Hence, we examined oxidations of Cr(III) peptide (triglycine, tetraglycine and pentaglycine) complexes to Cr(VI) and Cr(V) by PbO2 at 37°C and physiological pH values between 3.85 and 7.4. The products were characterized by EPR and UV/Vis spectroscopies and electrospray mass spectrometry. At pH3.85, the monomeric Cr(V) complexes produced were relatively unstable and degraded over min to hr under the acidic conditions. The triglycine and tetraglycine Cr(V) complexes had five-line (14)N-superhyperfine-coupled EPR signals; giso, (AN) values 1.9824 (2.44×10(-4)cm(-1)) and 1.9825 (2.43×10(-4)cm(-1)), respectively. The pentaglycine Cr(V) complex had a seven-line (14)N-superhyperfine-coupled EPR signal: giso=1.9844; AN=2.27×10(-4)cm(-1). In phosphate buffer (pH7.4 and 5.85), several Cr(V) intermediates were produced, but Cr(VI) was the end product. For the triglycine, tetraglycine and pentaglycine Cr(V) complexes, the giso (AN, 10(-4)cm(-1)) values were 1.9831 (2.17), 1.9843 (2.27) and 1.9844 (2.30), respectively. A second EPR signal with unresolved superhyperfine structure was observed at giso~1.966. At 1min, the tetraglycine and pentaglycine Cr(V) complexes, had another signal at giso~1.978, which decayed relative to the other signals with time. This chemistry has relevance to: (i) certain types of DNA damage produced by Cr carcinogens; (ii) the intracellular oxidation of Cr(III) to Cr(VI); and (iii) redox recycling of Cr(III) metabolites formed from both the intracellular reduction of carcinogenic Cr(VI) and from Cr(III) supplements.

  10. Guanine and 7,8-dihydro-8-oxo-guanine-specific oxidation in DNA by chromium(V).

    PubMed

    Sugden, Kent D; Martin, Brooke D

    2002-10-01

    The hexavalent oxidation state of chromium [Cr(VI)] is a well-established human carcinogen, although the mechanism of cancer induction is currently unknown. Intracellular reduction of Cr(VI) forms Cr(V), which is thought to play a fundamental role in the mechanism of DNA damage by this carcinogen. Two separate pathways of DNA damage, an oxidative pathway and a metal-binding pathway, have been proposed to account for the lesions observed in cell systems. We have used a model Cr(V) complex, N,N-ethylenebis(salicylidene-animato)oxochromium(V) [Cr(V)-Salen], to investigate the oxidative pathway of DNA damage and to elucidate the lesions generated from this oxidation process. Reaction of Cr(V)-Salen with synthetic oligonucleotides produced guanine-specific lesions that were not 8-oxo-2'-deoxyguanosine, based on the inability of iridium(IV) to further oxidize these sites. Oxidation products were identified using a 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-G) containing oligonucleotide to increase the yields of product for identification by electrospray ionization mass spectrometry. The guanine-based lesions observed by mass spectrometry corresponded to the lesions guanidinohydantoin and spiroiminodihydantoin. The effects of these Cr(V)-Salen-induced lesions on DNA replication fidelity was assayed using a polymerase-based misincorporation assay. These lesions produced G --> T transversion mutations and polymerase stops at levels greater than those observed for 8-oxo-G. These data suggest a model by which chromate can cause DNA damage leading to mutations and cancer.

  11. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  12. Dialogue Games for Agent Argumentation

    NASA Astrophysics Data System (ADS)

    McBurney, Peter; Parsons, Simon

    The rise of the Internet and the growth of distributed computing have led to a major paradigm shift in software engineering and computer science. Until recently, the notion of computation has been variously construed as numerical calculation, as information processing, or as intelligent symbol analysis, but increasingly, it is now viewed as distributed cognition and interaction between intelligent entities [60]. This new view has major implications for the conceptualization, design, engineering and control of software systems, most profoundly expressed in the concept of systems of intelligent software agents, or multi-agent systems [99]. Agents are software entities with control over their own execution; the design of such agents, and of multi-agent systems of them, presents major research and software engineering challenges to computer scientists.

  13. Markov Tracking for Agent Coordination

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.

  14. Intelligent Agents in Physics Education

    NASA Astrophysics Data System (ADS)

    Sánchez-Guzmán, D.; Mora, César

    2010-07-01

    Intelligent Agents are being applied in a wide range of processes and everyday applications. Their development is not new, in recent years they have had an increased attention and design; like learning and mentoring tools. In this work we discuss the definition of what an intelligent agent is; how they are applied; how they look like; recent implementations of agents; agents as support in the learning process, more precisely intelligent tutors; their state in Latin-American countries and future developments and trends that will permit a better communication between people and agents. Also we present an Intelligent Tutor applied as a tool for improving high-school students' skills and reasoning for the first five topics of Mechanics curricula.

  15. Transdermal delivery of therapeutic agent

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)

    2008-01-01

    A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.

  16. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity.

  17. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  18. Doping with artificial oxygen carriers: an update.

    PubMed

    Schumacher, Yorck Olaf; Ashenden, Michael

    2004-01-01

    traumatic blood loss, oxygen therapeutic applications in radiography (oxygenation of tumour cells is beneficial to the effect of certain chemotherapeutic agents), other medical applications such as organ preservation, and finally to meet the requirements of patients who cannot receive donor blood because of religious beliefs. Given the elite athlete's historical propensity to experiment with novel doping strategies, it is likely that the burgeoning field of artificial oxygen carriers has already attracted their attention. Scientific data concerning the performance benefits associated with blood substitutes are virtually nonexistent; however, international sporting federations have been commendably proactive in adding this category to their banned substance lists. The current situation is vulnerable to exploitation by immoral athletes since there is still no accepted methodology to test for the presence of artificial oxygen carriers.

  19. Field Evaporation of Grounded Arsenic Doped Silicon Clusters

    NASA Astrophysics Data System (ADS)

    Deng, Zexiang; She, Juncong; Li, Zhibing; Wang, Weiliang; Chen, Qiang

    2015-08-01

    We have investigated the field evaporation of grounded arsenic (As) doped silicon (Si) clusters composed of 52 atoms with density functional theory (DFT) to mimic Si nano structures of hundreds of nanometers long standing on a substrate. Six cluster structures with different As doping concentrations and dopant locations are studied. The critical evaporation electric fields are found to be lower for clusters with higher doping concentrations and doping sites closer to the surface. We attribute the difference to the difference in binding energies corresponding to the different As-doping concentrations and to the doping locations. Our theoretical study could shed light on the stability of nano apexes under high electric field.

  20. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  1. The worldwide fight against doping: from the beginning to the World Anti-Doping Agency.

    PubMed

    Kamber, Matthias; Mullis, Primus-E

    2010-03-01

    This article describes the worldwide endeavor to combat doping in sports. It describes the historical reasons the movement began and outlines the current status of this effort by international sports groups, governments, and the World Anti-Doping Agency. The purposes, strengths, and limitations of the various entities are illustrated; and recommendations for improvements are made. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Reporting doping in sport: national level athletes' perceptions of their role in doping prevention.

    PubMed

    Whitaker, L; Backhouse, S H; Long, J

    2014-12-01

    This paper qualitatively explores national level athletes' willingness to report doping in sport. Following ethical approval, semi-structured interviews were conducted with nine national level athletes from rugby league (n = 5) and track and field athletics (n = 4). Thematic analysis established the main themes within the data. Contextual differences existed around the role that athletes perceived they would play if they became aware of doping. Specifically, track and field athletes would adopt the role of a whistle-blower and report individuals who were doping in their sport. In comparison, the rugby league players highlighted a moral dilemma. Despite disagreeing with their teammates' actions, the players would adhere to a code of silence and refrain from reporting doping. Taking these findings into account, prevention programs might focus on changing broader group and community norms around doping. In doing so, community members' receptivity to prevention messages may increase. Moreover, developing skills to intervene (e.g., speaking out against social norms that support doping behavior) or increasing awareness of reporting lines could enhance community responsibility for doping prevention. In sum, the findings highlight the need to consider the context of sport and emphasize that a one-size-fits-all approach to anti-doping is problematic.

  3. Knowledge focus via software agents

    NASA Astrophysics Data System (ADS)

    Henager, Donald E.

    2001-09-01

    The essence of military Command and Control (C2) is making knowledge intensive decisions in a limited amount of time using uncertain, incorrect, or outdated information. It is essential to provide tools to decision-makers that provide: * Management of friendly forces by treating the "friendly resources as a system". * Rapid assessment of effects of military actions againt the "enemy as a system". * Assessment of how an enemy should, can, and could react to friendly military activities. Software agents in the form of mission agents, target agents, maintenance agents, and logistics agents can meet this information challenge. The role of each agent is to know all the details about its assigned mission, target, maintenance, or logistics entity. The Mission Agent would fight for mission resources based on the mission priority and analyze the effect that a proposed mission's results would have on the enemy. The Target Agent (TA) communicates with other targets to determine its role in the system of targets. A system of TAs would be able to inform a planner or analyst of the status of a system of targets, the effect of that status, adn the effect of attacks on that system. The system of TAs would also be able to analyze possible enemy reactions to attack by determining ways to minimize the effect of attack, such as rerouting traffic or using deception. The Maintenance Agent would scheudle maintenance events and notify the maintenance unit. The Logistics Agent would manage shipment and delivery of supplies to maintain appropriate levels of weapons, fuel and spare parts. The central idea underlying this case of software agents is knowledge focus. Software agents are createad automatically to focus their attention on individual real-world entities (e.g., missions, targets) and view the world from that entities perspective. The agent autonomously monitors the entity, identifies problems/opportunities, formulates solutions, and informs the decision-maker. The agent must be

  4. Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene.

    PubMed

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Botrè, Francesco

    2014-05-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results.

  5. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    SciTech Connect

    Liu, Wenjiang; Deng, Xiaoqing E-mail: caish@mail.gufe.edu.cn; Cai, Shaohong E-mail: caish@mail.gufe.edu.cn

    2016-07-15

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  6. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Deng, Xiaoqing; Cai, Shaohong

    2016-07-01

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  7. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Contrast agents for cardiac angiography: effects of a nonionic agent vs. a standard ionic agent

    SciTech Connect

    Bettmann, M.A.; Bourdillon, P.D.; Barry, W.H.; Brush, K.A.; Levin, D.C.

    1984-12-01

    The effects on cardiac hemodynamics and of a standard contrast agent, sodium methylglucamine diatrizoate (Renografin 76) were compared with the effects of a new nonionic agent (iohexol) in a double-blind study in 51 patietns undergoing coronary angiography and left ventriculography. No significant alteration in measured blood parameters occurred with either contrast agent. Hemodynamic changes occurred with both, but were significantly greater with the standard renografin than with the low-osmolality, nonionic iohexol. After left ventriculography, heart rate increased and peripheral arterial pressure fell with both agents, but less with iohexol. It is concluded that iohexol causes less alteration in cardiac function than does the agent currently most widely used. Nonionic contrast material is likely to improve the safety of coronary angiography, particularly in those patients at greatest risk.

  9. Agent Communications using Distributed Metaobjects

    SciTech Connect

    Goldsmith, Steven Y.; Spires, Shannon V.

    1999-06-10

    There are currently two proposed standards for agent communication languages, namely, KQML (Finin, Lobrou, and Mayfield 1994) and the FIPA ACL. Neither standard has yet achieved primacy, and neither has been evaluated extensively in an open environment such as the Internet. It seems prudent therefore to design a general-purpose agent communications facility for new agent architectures that is flexible yet provides an architecture that accepts many different specializations. In this paper we exhibit the salient features of an agent communications architecture based on distributed metaobjects. This architecture captures design commitments at a metaobject level, leaving the base-level design and implementation up to the agent developer. The scope of the metamodel is broad enough to accommodate many different communication protocols, interaction protocols, and knowledge sharing regimes through extensions to the metaobject framework. We conclude that with a powerful distributed object substrate that supports metaobject communications, a general framework can be developed that will effectively enable different approaches to agent communications in the same agent system. We have implemented a KQML-based communications protocol and have several special-purpose interaction protocols under development.

  10. Attitudes towards Doping and Related Experience in Spanish National Cycling Teams According to Different Olympic Disciplines

    PubMed Central

    Morente-Sánchez, Jaime; Mateo-March, Manuel; Zabala, Mikel

    2013-01-01

    Attitudes towards doping are considered an influence of doping intentions. The aims of the present study were 1) to discover and compare the attitudes towards doping among Spanish national team cyclists from different Olympic disciplines, as well as 2) to get some complementary information that could better explain the context. The sample was comprised of seventy-two cyclists: mean age 19.67±4.72 years; 70.8% males (n = 51); from the different Olympic disciplines of Mountain bike -MTB- (n = 18), Bicycle Moto Cross -BMX- (n = 12), Track -TRA- (n = 9) and Road -ROA- (n = 33). Descriptive design was carried out using a validated scale (PEAS). To complement this, a qualitative open-ended questionnaire was used. Overall mean score (17–102) was 36.12±9.39. For different groups, the data were: MTB: 30.28±6.92; BMX: 42.46±10.74; TRA: 43.22±12.00; ROA: 34.91±6.62, respectively. In relation to overall score, significant differences were observed between MTB and BMX (p = 0.002) and between MTB and TRA (p = 0.003). For the open-ended qualitative questionnaire, the most mentioned word associated with “doping” was “cheating” (48.83% of total sample), with “responsible agents of doping” the word “doctor” (52,77%), and with the “main reason for the initiation in doping” the words “sport achievement” (45.83%). The major proposed solution was “doing more doping controls” (43.05%). Moreover, 48.67% stated that there was “a different treatment between cycling and other sports”. This study shows that Spanish national team cyclists from Olympic cycling disciplines, in general, are not tolerant in relation to doping. BMX and Track riders are a little more permissive towards the use of banned substances than MTB and Road. Results from the qualitative open-ended questionnaire showed interesting data in specific questions. These results empower the idea that, apart from maintaining doping controls and making them more

  11. Clean Olympians? Doping and anti-doping: the views of talented young British athletes.

    PubMed

    Bloodworth, Andrew; McNamee, Michael

    2010-07-01

    Review articles suggest a small but significant proportion (between 3 and 12%) of male adolescents have used anabolic-androgenic steroids (AAS) at some point (Yesalis and Bahrke, 2000; Calfee and Fadale, 2006). In sport, the use of prohibited substances or processes to enhance performance, collectively referred to as 'doping', is banned by both sports' National and International Governing Bodies, and by the World Anti-Doping Agency (WADA) who run an extensive testing programme and educational initiatives designed to foster anti-doping attitudes. A total of 40 talented male and female athletes (mean average age 19.6 years) from 13 different sports attended 12 focus groups held over the UK intended to investigate athletes' attitudes toward doping. Focus group transcriptions were analysed and coded with the use of QSR NVivo 8. Athletes in general did not report a significant national doping problem in their sport, but exhibited sporting xenophobia with regard to both doping practices and the stringency of testing procedures outside of the UK. Athletes often viewed doping as 'unnatural' and considered the shame associated with doping to be a significant deterrent. Athletes perceived no external pressure to use performance enhancing drugs. In response to hypothetical questions, however, various factors were acknowledged as potential 'pressure' points: most notably injury recovery and the economic pressures of elite sport. Finally, a significant minority of athletes entertained the possibility of taking a banned hypothetical performance enhancing drug under conditions of guaranteed success and undetectability. The athletes in this study generally embraced those values promoted in anti-doping educational programmes, although there were some notable exceptions. That the social emotion of shame was considered a significant deterrent suggests anti-doping efforts that cultivate a shared sense of responsibility to remain 'clean' and emphasise the social sanctions associated

  12. Doping with growth hormone/IGF-1, anabolic steroids or erythropoietin: is there a cancer risk?

    PubMed

    Tentori, Lucio; Graziani, Grazia

    2007-05-01

    Anabolic steroid and peptide hormones or growth factors are utilized to increase the performance of athletes of professional or amateur sports. Despite their well-documented adverse effects, the use of some of these agents has significantly grown and has been extended also to non-athletes with the aim to improve appearance or to counteract ageing. Pre-clinical studies and epidemiological observations in patients with an excess of hormone production or in patients chronically treated with hormones/growth factors for various pathologies have warned about the potential risk of cancer development and progression which may be also associated to the use of certain doping agents. Anabolic steroids have been described to provoke liver tumours; growth hormone or high levels of its mediator insulin-like growth factor-1 (IGF-1) have been associated with colon, breast, and prostate cancers. Actually, IGF-1 promotes cell cycle progression and inhibits apoptosis either by triggering other growth factors or by interacting with pathways which have an established role in carcinogenesis and cancer promotion. More recently, the finding that erythropoietin (Epo) may promote angiogenesis and inhibit apoptosis or modulate chemo- or radiosensitivity in cancer cells expressing the Epo receptor, raised the concern that the use of recombinant Epo to increase tissue oxygenation might favour tumour survival and aggressiveness. Cancer risk associated to doping might be higher than that of patients using hormones/growth factors as replacement therapy, since enormous doses are taken by the athletes often for a long period of time. Moreover, these substances are often used in combination with other licit or illicit drugs and this renders almost unpredictable all the possible adverse effects including cancer. Anyway, athletes should be made aware that long-term treatment with doping agents might increase the risk of developing cancer.

  13. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  14. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  15. Requirements Modeling with Agent Programming

    NASA Astrophysics Data System (ADS)

    Dasgupta, Aniruddha; Krishna, Aneesh; Ghose, Aditya K.

    Agent-oriented conceptual modeling notations are highly effective in representing requirements from an intentional stance and answering questions such as what goals exist, how key actors depend on each other, and what alternatives must be considered. In this chapter, we review an approach to executing i* models by translating these into set of interacting agents implemented in the CASO language and suggest how we can perform reasoning with requirements modeled (both functional and non-functional) using i* models. In this chapter we particularly incorporate deliberation into the agent design. This allows us to benefit from the complementary representational capabilities of the two frameworks.

  16. Polyaniline/poly(ɛ-caprolactone) composite electrospun nanofiber-based gas sensors: optimization of sensing properties by dopants and doping concentration

    NASA Astrophysics Data System (ADS)

    Low, Karen; Chartuprayoon, Nicha; Echeverria, Cristina; Li, Changling; Bosze, Wayne; Myung, Nosang V.; Nam, Jin

    2014-03-01

    Electrospinning was utilized to synthesize a polyaniline (PANI)/poly(ɛ-caprolactone) (PCL) composite in the form of nanofibers to examine its gas sensing performance. Electrical conductivity of the composite nanofibers was tailored by secondary doping with protonic acids including hydrochloride (HCl) or camphorsulfonic acid (HCSA). FT-IR and diffuse reflectance UV-vis spectroscopy were utilized to examine doping-dependent changes in the chemical structure and the protonation state of the nanofibers, respectively. The oxidation and protonation state of the composite nanofibers were shown to strongly depend on the doping agent and duration, demonstrating a simple way of controlling the electrical conductivity of the composite. PANI/PCL electrospun nanofibers having various electrical conductivities via varying dopants and doping concentrations, were configured to chemiresistors for sensing various analytes, including water vapor, NH3, and NO2. Secondary doping with Cl- and CSA differentially affected sensing behaviors by having distinctive optimal sensitivities. Biphasic sensitivity with respect to electrical conductivity was observed, demonstrating a facile method to enhance gas sensitivity by optimizing secondary doping. A balance between Debye length of the nanofibers and overall charge conduction may play an important role for modulating such an optimal sensitivity.

  17. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.

  18. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  19. Nanofabrication of Doped, Complex Oxides

    SciTech Connect

    Stein, A.; Waller, G.H.; Abiade, J.T.

    2012-01-01

    Complex oxides have many promising attributes, including wide band gaps for high temperature semiconductors, ion conducting electrolytes in fuel cells, ferroelectricity and ferromagnetism. Bulk and thin film oxides can be readily manufactured and tested however these physically hard and chemically inert materials cannot be nanofabricated by direct application of conventional methods. In order to study these materials at the nanoscale there must first be a simple and effective means to achieve the desired structures. Here we discuss the use of pulsed laser deposition at room temperature onto electron beam lithography defined templates of poly methyl methacrylate photoresist. Following a resist liftoff in organic solvents, a heat treatment was used to crystallize the nanostructures. The morphology of these structures was studied using scanning electron microscopy and atomic force microscopy. Crystallinity and composition as determined by x ray diffraction and photo-electron spectroscopy respectively is reported for thin film analogues of the nanostructured oxide. The oxide studied in this report is Nb doped SrTiO{sub 3}, which has been investigated for use as a high temperature thermoelectric material; however the approach used is not materials-dependent.

  20. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  1. Small animal imaging platform for quantitative assessment of short-wave infrared-emitting contrast agents

    NASA Astrophysics Data System (ADS)

    Hu, Philip; Mingozzi, Marco; Higgins, Laura M.; Ganapathy, Vidya; Zevon, Margot; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-03-01

    We report the design, calibration, and testing of a pre-clinical small animal imaging platform for use with short-wave infrared (SWIR) emitting contrast agents. Unlike materials emitting at visible or near-infrared wavelengths, SWIR-emitting agents require detection systems with sensitivity in the 1-2 μm wavelength region, beyond the range of commercially available small animal imagers. We used a collimated 980 nm laser beam to excite rare-earth-doped NaYF4:Er,Yb nanocomposites, as an example of a SWIR emitting material under development for biomedical imaging applications. This beam was raster scanned across the animal, with fluorescence in the 1550 nm wavelength region detected by an InGaAs area camera. Background adjustment and intensity non-uniformity corrections were applied in software. The final SWIR fluorescence image was overlaid onto a standard white-light image for registration of contrast agent uptake with respect to anatomical features.

  2. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    SciTech Connect

    Sharma, Swati Kashyap, Jyoti; Kapoor, A.; Gupta, Shubhra; Natasha

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  3. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  4. Anti-Clotting Agents Explained

    MedlinePlus

    ... becomes potentially life-threatening. Anti platelet agents, including aspirin , clopidogrel, dipyridamole and ticlopidine, work by inhibiting the production of thromboxane. Aspirin is highly recommended for preventing a first stroke, ...

  5. Agent-based forward analysis

    SciTech Connect

    Kerekes, Ryan A.; Jiao, Yu; Shankar, Mallikarjun; Potok, Thomas E.; Lusk, Rick M.

    2008-01-01

    We propose software agent-based "forward analysis" for efficient information retrieval in a network of sensing devices. In our approach, processing is pushed to the data at the edge of the network via intelligent software agents rather than pulling data to a central facility for processing. The agents are deployed with a specific query and perform varying levels of analysis of the data, communicating with each other and sending only relevant information back across the network. We demonstrate our concept in the context of face recognition using a wireless test bed comprised of PDA cell phones and laptops. We show that agent-based forward analysis can provide a significant increase in retrieval speed while decreasing bandwidth usage and information overload at the central facility. n

  6. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  7. AL Amyloidosis and Agent Orange

    MedlinePlus

    ... for survivors' benefits . Research on AL amyloidosis and herbicides The Health and Medicine Division (formally known as ... to the compounds of interest found in the herbicide Agent Orange and AL amyloidosis." VA made a ...

  8. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  9. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  10. Peripheral Neuropathy and Agent Orange

    MedlinePlus

    ... ZIP code here Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset ... percent disabling by VA's rating regulations. About peripheral neuropathy Peripheral neuropathy is a condition of the peripheral ...

  11. Family as Economic Socialization Agent.

    ERIC Educational Resources Information Center

    Rettig, Kathryn Dalbey

    1983-01-01

    The family operates as an economic socialization agent through the provision of (1) economic information networks, (2) grants and exchanges of resources, (3) economic role models, and (4) an environment for the development of individual human resource attributes. (SK)

  12. Bulking agents in sludge composting

    SciTech Connect

    De Bertoldi, M.; Citernesi, U.; Griselli, M.

    1980-01-01

    Composting is one of the most effective ways of disposing of sludge in agriculture. Three bulking agents were studied: (1) the organic fraction of solid wastes, (2) solid agricultural and forestry waste (straw, maize cobs, sawdust, cork, pine cones, etc.), and (3) recyclable inert substrates (polystyrene or polyethylene balls, porous clay balls, etc.). The sole purpose of the inert bulking agent is to aid in the aeration and drying of the composting material.

  13. Handling of injectable antineoplastic agents.

    PubMed Central

    Knowles, R S; Virden, J E

    1980-01-01

    Although the clinical toxicity of antineoplastic drugs has been well documented there is little or no information on the problems that may arise on the handling and mishandling of such agents. This paper attempts to highlight the importance of taking precautions to prevent adverse effects resulting from contact with cytotoxic drugs during handling and to suggest a practical guide for the handling of such agents. PMID:7427382

  14. Clinically Approved Nanoparticle Imaging Agents

    PubMed Central

    Thakor, Avnesh S.; Jokerst, Jesse V.; Ghanouni, Pejman; Campbell, Jos L.; Mittra, Erik

    2016-01-01

    Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses. PMID:27738007

  15. Electrospark doping of steel with tungsten

    SciTech Connect

    Denisova, Yulia Shugurov, Vladimir; Seksenalina, Malika; Ivanova, Olga Ikonnikova, Irina; Kunitsyna, Tatyana Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  16. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  17. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  18. Doping To Reduce Base Resistances Of Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.

  19. Charge transport of lithium-salt-doped polyaniline

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Kim, B. H.; Moon, B. W.; Joo, J.; Chang, S. H.; Ryu, K. S.

    2001-07-01

    Charge transport properties, including temperature-dependent dc conductivity and thermoelectric power are reported for Li-salt (LiPF6, LiBF4, LiAsF6, LiCF3SO3, or LiClO4) -doped polyaniline (PAN) samples. The experiments of electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) are performed for the systems. The electrical and magnetic properties and the doping mechanism of various Li-salt-doped PAN samples are compared with those of hydrochloric-acid (HCl) -doped PAN samples. The PAN materials doped with LiPF6 have the highest dc conductivity (σdc~1 S/cm, at room temperature) in the Li-salt-doped PAN systems studied here. The temperature dependence of σdc of the systems follows a quasi-one-dimensional variable range hopping model, which is similar to that of HCl-doped PAN samples. As the molar concentration increases from ~10-4M to ~1M, the system is transformed from an insulating to conducting (non-metallic) state. From EPR experiments, we measure the temperature dependence of magnetic susceptibility, and obtain the density of states for various Li-salt-doped PANs with different doping levels. We observe the increase of the density of states as the molar concentration increases. From the analysis of nitrogen 1s peak obtained from XPS experiments, we estimate the doping level of the systems. We compare the effective doping thickness between HCl-doped PAN samples and Li-salt-doped PAN ones, based upon the results of XPS argon (Ar) ion sputtering experiments. The diffusion rate of Li+ or counterions and the dissociation constants of Li salt in doping solution play an important role for the effective doping and transport properties of the Li-salt-doped PAN samples.

  20. Doping To Reduce Base Resistances Of Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1991-01-01

    Modified doping profile proposed to reduce base resistance of bipolar transistors. A p/p+ base-doping profile reduces base resistance without reducing current gain. Proposed low/high base-doping profile realized by such low-temperature deposition techniques as molecular-beam epitaxy, ultra-high-vacuum chemical-vapor deposition, and limited-reaction epitaxy. Produces desired doping profiles without excessive diffusion of dopant.