Sample records for chromosome region 11p

  1. Erratum: Letter to the Editor: Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This {open_quotes}Letter to the Editor{close_quotes} is the reprint of a corrected table from a previous paper about the exclusion of primary congenital glaucoma from two candidate regions of chromosome arm 6p and chromosome 11.

  2. Isolation of Breast Tumor Suppressor Genes from Chromosome 11p

    DTIC Science & Technology

    2001-09-01

    M, Yeger H and Williams BRG. Loss of heterozygosity at chromosome l1 p 15 in Wilms tumor : identification of two independent regions. Oncogene 17: 237...D11S1338-D11S1323 (-336 kb) at 11p15.5-p15.4, that is mesoblastic nephroma (11) and Wilms ’ tumors (WT) (12). lost in -55-60% of breast tumors ...R. and Cavenee, W.K. (1996) A common loss of heterozygosity in Wilms tumor and embryonal rhabdomyo- Feinberg, A.P (1993) Tumor cell growth arrest

  3. Unusual X-chromosome inactivation pattern in patients with Xp11.23-p11.22 duplication: Report and review.

    PubMed

    Di-Battista, Adriana; Meloni, Vera Ayres; da Silva, Magnus Dias; Moysés-Oliveira, Mariana; Melaragno, Maria Isabel

    2016-12-01

    In females carrying structural rearrangements of an X-chromosome, cells with the best dosage balance are preferentially selected, frequently resulting in a skewed inactivation pattern and amelioration of the phenotype. The Xp11.23-p11.22 region is involved in a recently described microduplication syndrome associated with severe clinical consequences in males and females, causing intellectual disability, behavior problems, epilepsy with electroencephalogram anomalies, minor facial anomalies, and early onset of puberty. Female carriers usually present an unusual X-chromosome inactivation pattern in favor of the aberrant chromosome, resulting in functional disomy of the duplicated segment. Here, we describe a girl carrying a de novo ∼9.7 Mb Xp11.3-p11.22 duplication of paternal origin and skewed X-chromosome inactivation pattern of the normal X-chromosome. We reviewed other cases previously reported and determined the minimal critical region possibly responsible for this unusual inactivation pattern. The critical region encompasses 36 RefSeq genes, including at least 10 oncogenes and/or genes related to the cell cycle control. We discuss the molecular mechanisms that underlie the positive selection of the cells with the active duplicated chromosome. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Deletion and duplication within the p11.2 region of chromosome 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorquodale, D.J.; McCorquodale, M.; Bereziouk, O.

    1994-09-01

    A 7 1/2-year-old male patient presented with mild mental retardation, speech delay, hyperactivity, behavioral problems, mild facial hypoplasia, short broad hands, digital anomalies, and self-injurious behavior. Chromosomes obtained from peripheral blood cells revealed a deletion of 17p11.2 in about 40% of the metaphases examined, suggesting that the patient had Smith-Magenis Syndrome. A similar pattern of mosaicism in peripheral blood cells, but not in fibroblasts in which all cells displayed the deletion, has been previously reported. Since some cases of Smith-Magenis Syndrome have a deletion that extends into the region associated with Charcot-Marie-Tooth (CMT) Syndrome, we examined interphase cells with amore » CMT1A-specific probe by the method of fluorescence in situ hybridization. The CMT1A region was not deleted, but about 40% of the cells gave signals indicating a duplication of the CMT1A region. The patient has not presented neuropathies associated with CMT at this time. Future tracking of the patient should be informative.« less

  5. Maternal Gametic Transmission of Translocations or Inversions of Human Chromosome 11p15.5 Results in Regional DNA Hypermethylation and Downregulation of CDKN1C Expression

    PubMed Central

    Smith, Adam C.; Suzuki, Masako; Thompson, Reid; Choufani, Sanaa; Higgins, Michael J.; Chiu, Idy W.; Squire, Jeremy A.; Greally, John M.; Weksberg, Rosanna

    2015-01-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome associated with genetic or epigenetic alterations in one of two imprinted domains on chromosome 11p15.5. Rarely, chromosomal translocations or inversions of chromosome 11p15.5 are associated with BWS but the molecular pathophysiology in such cases is not understood. In our series of 3 translocation and 2 inversion patients with BWS, the chromosome 11p15.5 breakpoints map within the centromeric imprinted domain, 2. We hypothesized that either microdeletions/microduplications adjacent to the breakpoints could disrupt genomic sequences important for imprinted gene regulation. An alternate hypothesis was that epigenetic alterations of as yet unknown regulatory DNA sequences, result in the BWS phenotype. A high resolution Nimblegen custom microarray was designed representing all non-repetitive sequences in the telomeric 33 MB of the short arm of human chromosome 11. For the BWS-associated chromosome 11p15.5 translocations and inversions, we found no evidence of microdeletions/microduplications. DNA methylation was also tested on this microarray using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. This high-resolution DNA methylation microarray analysis revealed a gain of DNA methylation in the translocation/inversion patients affecting the p-ter segment of chromosome 11p15, including both imprinted domains. BWS patients that inherited a maternal translocation or inversion also demonstrated reduced expression of the growth suppressing imprinted gene, CDKN1C in Domain 2. In summary, our data demonstrate that translocations and inversions involving imprinted domain 2 on chromosome 11p15.5, alter regional DNA methylation patterns and imprinted gene expression in cis, suggesting that these epigenetic alterations are generated by an alteration in “chromatin context”. PMID:22079941

  6. Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.M.; Cote, G.J.; Hallman, D.M.

    1995-02-01

    Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is a rare, autosomal recessive disease of unregulated insulin secretion, defined by elevations in serum insulin despite severe hypoglycemia. We used the homozygosity gene-mapping strategy to localize this disorder to the region of chromosome 11p between markers D11S1334 and D11S899 (maximum LOD score 5.02 [{theta} = 0] at marker D11S926) in five consanguineous families of Saudi Arabian origin. These results extend those of a recent report that also placed PHHI on chromosome 11p, between markers D11S926 and D11S928. Comparison of the boundaries of these two overlapping regions allows the PHHI locus to bemore » assigned to the 4-cM region between the markers D11S926 and D11S899. Identification of this gene may allow a better understanding of other disorders of glucose homeostasis, by providing insight into the regulation of insulin release. 37 refs., 2 figs., 4 tabs.« less

  7. Caucasian Families Exhibit Significant Linkage of Myopia to Chromosome 11p.

    PubMed

    Musolf, Anthony M; Simpson, Claire L; Moiz, Bilal A; Long, Kyle A; Portas, Laura; Murgia, Federico; Ciner, Elise B; Stambolian, Dwight; Bailey-Wilson, Joan E

    2017-07-01

    Myopia is a common visual disorder caused by eye overgrowth, resulting in blurry vision. It affects one in four Americans, and its prevalence is increasing. The genetic mechanisms that underpin myopia are not completely understood. Here, we use genotype data and linkage analyses to identify high-risk genetic loci that are significantly linked to myopia. Individuals from 56 Caucasian families with a history of myopia were genotyped on an exome-based array, and the single nucleotide polymorphism (SNP) data were merged with microsatellite genotype data. Refractive error measures on the samples were converted into binary phenotypes consisting of affected, unaffected, or unknown myopia status. Parametric linkage analyses assuming an autosomal dominant model with 90% penetrance and 10% phenocopy rate were performed. Single variant two-point analyses yielded three significantly linked SNPs at 11p14.1 and 11p11.2; a further 45 SNPs at 11p were found to be suggestive. No other chromosome had any significant SNPs or more than seven suggestive linkages. Two of the significant SNPs were located in BBOX1-AS1 and one in the intergenic region between ORA47 and TRIM49B. Collapsed haplotype pattern two-point analysis and multipoint analyses also yielded multiple suggestively linked genes at 11p. Multipoint analysis also identified suggestive evidence of linkage on 20q13. We identified three genome-wide significant linked variants on 11p for myopia in Caucasians. Although the novel specific signals still need to be replicated, 11p is a promising region that has been identified by other linkage studies with a number of potentially interesting candidate genes. We hope that the identification of these regions on 11p as potential causal regions for myopia will lead to more focus on these regions and maybe possible replication of our specific linkage peaks in other studies. We further plan targeted sequencing on 11p for our most highly linked families to more clearly understand the

  8. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.

    PubMed

    Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S

    1987-06-01

    In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.

  9. Cloning a balanced t(9;11)(p24;q23.1) chromosomal translocation breakpoint segregating with bipolar affective disorder in a small pedigree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, D.J.; Baysal, B.E.; Gollin, S.M.

    A small multigenerational pedigree was previously identified in which a balanced 9;11 chromosomal translocation was cosegregating with bipolar affective disorder. We hypothesize that genes or gene regulatory sequences disrupted by the translocation are contributing to bipolar affective disorder in a dominant fashion. The general strategy involves (1) using somatic cell hybrids containing the derivative 9 or 11 chromosomes to identify the closest chromosome 9 and 11 flanking markers, (2) using the nearest markers as PCR and hybridization probes to isolate both normal DNA (YAC) and patient DNA (cosmid) adjacent to and incorporating the translocation breakpoint, and (3) identifying expressed sequencesmore » in the genomic DNA that may be disrupted by the translocation. From a fusion of the translocation patient cell line and a recipient hamster cell line, somatic cell hybrids were isolated which contain either the human derivative 9 or derivative 11 chromosome. Using PCR-based STS assays with these hybrids, the location of the translocation breakpoint was localized to an estimated 500 kb region at chromosome 11 band q23.1 and a 1 cM region in 9 band p24 (more telomeric than originally reported). From a large set of CEPH and Roswell Park yeast artificial chromosomes (YACs), six chromosome 11 YACs spanning the 11q23.1 breakpoint have now been identified. A combination of pulsed field gel eletrophoresis and YAC mapping has narrowed the chromosome 11 region to less than 430 kb. Current efforts are focused on generating new chromosome 11 probes within the flanking markers, mapping these probes back to the der(9) and der(11) containing hybrids and the chromosome 11 YAC mapping panel. As the region is physically narrowed, we will identify candidate genes whose expression may be altered by this t(9:11) translocation.« less

  10. Rare congenital chromosomal aberration dic(X;Y)(p22.33;p11.32) in a patient with primary myelofibrosis.

    PubMed

    Pavlistova, Lenka; Izakova, Silvia; Zemanova, Zuzana; Bartuskova, Lucie; Langova, Martina; Malikova, Pavlina; Michalova, Kyra

    2016-01-01

    Constitutional translocations between sex chromosomes are rather rare in humans with breakpoints at Xp11 and Yq11 as the most frequent. Breakpoints on the short arm of the Y chromosome form one subgroup of t(X;Y), giving rise to a derived chromosome with the centromeres of both the X and Y chromosomes, dic(X;Y). Here, we report a rare congenital chromosomal aberration, 46,X,dic(X;Y)(p22.33;p11.32)[20]/45,X[10], in an adult male. Primary myelofibrosis, a malignant haematological disease, was diagnosed in a 63-year-old man following liver transplantation after hepatocellular carcinoma. By the analysis of the bone marrow sample, the karyotype 46,X,dic(X;Y)(p22.33;p11.32) was detected in all the mitoses analysed and verified with multicolour fluorescence in situ hybridization (mFISH). A cytogenetic examination of stimulated peripheral blood cells revealed the constitutional karyotype 46,X,dic(X;Y)(p22.33;p11.32)[20]/45,X[10]. The cell line 45,X was confirmed with FISH in 35 % of interphase nuclei. The SRY locus was present on the dicentric chromosome. A CGH/SNP array (Illumina) revealed a gain of 153,7 Mbp of the X chromosome and a 803-kbp microdeletion (including the SHOX gene), which were also confirmed with FISH. SHOX encodes a transcriptional factor that regulates the growth of the long bones. The deletion of the SHOX gene together with the Madelung deformity of the forearm and the short stature of the proband led to a diagnosis of Léri-Weill dyschondrosteosis (LWD). The gain of almost the whole X chromosome (153,7 Mbp) was considered a variant of Klinefelter syndrome (KS). The levels of gonadotropins and testosterone were consistent with gonadal dysfunction. A malformation of the right external ear was detected. We have reported a structural aberration of the sex chromosomes, dic(X;Y)(p22.33;p11.32). The related genomic imbalance is associated with two known hereditary syndromes, LWD and a KS variant, identified in our proband at an advanced age. Because the

  11. Characterization of a microdissection library from human chromosome region 3p14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardenheuer, W.; Szymanski, S.; Lux, A.

    1994-01-15

    Structural alterations in human chromosome region 3p14-p23 resulting in the inactivation of one or more tumor suppressor genes are thought to play a pathogenic role in small cell lung cancer, renal cell carcinoma, and other human neoplasms. To identify putative tumor suppressor genes, 428 recombinant clones from a microdissection library specific for human chromosome region 3p14 were isolated and characterized. Ninety-six of these (22.5%) were human single-copy DNA sequences, 57 of which were unique sequence clones. Forty-four of these were mapped to the microdissected region using a cell hybrid mapping panel. Within this mapping panel, four probes detected two newmore » chromosome breakpoints that were previously indistinguishable from the translocation breakpoint t(3;8) in 3p14.2 in hereditary renal cell carcinoma. One probe maps to the homozygously deleted region of the small cell lung cancer cell line U2020. In addition, microdissection clones have been shown to be suitable for isolation of yeast artificial chromosomes. 52 refs., 3 figs., 2 tabs.« less

  12. Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear cell renal carcinomas.

    PubMed

    Lubinski, J; Hadaczek, P; Podolski, J; Toloczko, A; Sikorski, A; McCue, P; Druck, T; Huebner, K

    1994-07-15

    Nearly all clear cell renal cell carcinomas (RCCs) exhibit loss of alleles on the short arm of chromosome 3. Loss and mutation at the von Hippel-Lindau (VHL) gene at 3p25 probably occurs in most RCCs and, since the VHL gene was recently cloned, data on VHL involvement in RCCs is accumulating. However, the region 3p14-p12, a region that contains the familial RCC-associated t(3;8)(p14.2;q24) chromosome translocation and the small cell lung carcinoma-associated homozygous deletion at 3p13-12, has also been reported to exhibit allele loss in a large fraction of RCCs. In order to focus future studies on potential suppressor genes in the 3p14-p12 region, we have studied allele loss in 30 RCCs with 9 polymorphic simple sequence repeat markers spanning 3p21.1-p12. Partial losses in the 3p21-p12 region were observed, allowing determination of common regions of loss of heterozygosity overlap in 15 RCCs. Results suggested that most RCCs exhibit loss in a region which brackets the t(3;8) familial chromosome translocation at 3p14.2, and some show additional deletions within the U2020 small cell lung carcinoma deletion at 3p12.

  13. Genomic structure and paralogous regions of the inversion breakpoint occurring between human chromosome 3p12.3 and orangutan chromosome 2.

    PubMed

    Yue, Y; Grossmann, B; Tsend-Ayush, E; Grützner, F; Ferguson-Smith, M A; Yang, F; Haaf, T

    2005-01-01

    Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26-->p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species. Copyright (c) 2005 S. Karger AG, Basel.

  14. Is classic pericentric inversion of chromosome 2 inv(2)(p11q13) associated with an increased risk of unbalanced chromosomes?

    PubMed

    Ferfouri, Fatma; Clement, Patrice; Gomes, Denise Molina; Minz, Marie; Amar, Edouard; Selva, Jacqueline; Vialard, François

    2009-10-01

    To study pericentric inversion segregation and interchromosomal effect on sperm for men heterozygous for inv(2)(p11q13), to assess the risk of miscarriage. Case report. Department of reproductive biology, cytogenetics, gynecology, and obstetrics. Seven patients heterozygous for inv(2)(p11q13) and five patients with normal karyotype with experience of recurrent spontaneous miscarriage. Fluorescence in situ hybridization on sperm with 2 p and 2q subtelomeric probes to screen for inversion segregation, and X, Y, and 18 centromeric probes to study interchromosomal effects. One thousand sperm were analyzed per experiment and per patient. Rate of unbalanced chromosomes and aneuploid sperm. The inv(2)(p11q13) patients showed a 0.3% rate of sperm with unbalanced chromosomes. For interchromosomal effects, a 0.6% aneuploid sperm rate was observed for patients heterozygous for inv(2)(p11q13). This is similar to the 0.5% rate observed for control patients. Inv(2)(p11q13) seems not to increase miscarriage for couples with men heterozygous for this inversion.

  15. USH1K, a novel locus for type I Usher syndrome, maps to chromosome 10p11.21-q21.1.

    PubMed

    Jaworek, Thomas J; Bhatti, Rashid; Latief, Noreen; Khan, Shaheen N; Riazuddin, Saima; Ahmed, Zubair M

    2012-10-01

    We ascertained two large Pakistani consanguineous families (PKDF231 and PKDF608) segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa; the defining features of Usher syndrome type 1 (USH1). To date, seven USH1 loci have been reported. Here, we map a novel locus, USH1K, on chromosome 10p11.21-q21.1. In family PKDF231, we performed a genome-wide linkage screen and found a region of homozygosity shared among the affected individuals at chromosome 10p11.21-q21.1. Meiotic recombination events in family PKDF231 define a critical interval of 11.74 cM (20.20 Mb) bounded by markers D10S1780 (63.83 cM) and D10S546 (75.57 cM). Affected individuals of family PKDF608 were also homozygous for chromosome 10p11.21-q21.1-linked STR markers. Of the 85 genes within the linkage interval, PCDH15, GJD4, FZD4, RET and LRRC18 were sequenced in both families, but no potential pathogenic mutation was identified. The USH1K locus overlaps the non-syndromic deafness locus DFNB33 raising the possibility that the two disorders may be caused by allelic mutations.

  16. A 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region in 17p11.2-p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Tatsufumi; Lupski, J.R.

    1996-05-15

    Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a 1.5-Mb tandem duplication in chromosome 17p11.2-p12, and hereditary neuropathy with liability to pressure palsies (HNPP) is associated with a 1.5-Mb deletion at this locus. Both diseases appear to result from an altered copy number of the peripheral myelin protein-22 gene, PMP22, which maps within the critical region. To identify additional genes and characterize chromosomal elements, a 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region was assembled using a yeast artificial chromosome (YAC)-based isolation and binning strategy. Whole YAC probes were used for screening a high-density arrayed chromosome 17-specific cosmidmore » library. Selected cosmids were spotted on dot blots and assigned to bins defined by YACs. This binning of cosmids facilitated the subsequent fingerprint analysis. The 1.5-Mb region was covered by 137 cosmids with a minimum overlap set of 52 cosmids assigned to 17 bins and 9 contigs. 20 refs., 2 figs.« less

  17. Juvenile myoclonic epilepsy in chromosome 6p12-p11: Locus heterogeneity and recombinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Serratosa, J.M.

    1996-06-14

    We recently analyzed under homogeneity a large pedigree from Belize with classic juvenile myoclonic epilepsy (JME). After a genome-wide search with 146 microsatellites, we obtained significant linkage between chromosome 6p markers, D6S257 and D6S272, and both convulsive and EEG traits of JME. Recombinations in two affected members defined a 40 cM JME region flanked by D6S313 and D6S258. In the present communication, we explored if the same chromosome 6p11 microsatellites also have a role in JME mixed with pyknoleptic absences. We allowed for heterogeneity during linkage analyses. We tested for heterogeneity by the admixture test and looked for more recombinations.more » D6S272, D6S466, D6S294, and D6S257 were significantly linked (Z{sub max} > 3.5) to the clinical and EEG traits of 22 families, assuming autosomal dominant inheritance with 70% penetrance. Pairwise Z{sub max} were 4.230 for D6S294 ({theta}{sub m=f} at 0.133) and 4.442 for D6S466 ({theta}{sub m=f} at 0.111). Admixture test (H{sub 2} vs. H{sub 1}) was significant (P = 0.0234 for D6S294 and 0.0128 for D6S272) supporting the hypotheses of linkage with heterogeneity. Estimated proportion of linked families, {alpha}, was 0.50 (95% confidence interval 0.05-0.99) for D6S294 and D6S272. Multipoint analyses and recombinations in three new families narrowed the JME locus to a 7 cM interval flanked by D6S272 and D6S257. 44 refs., 3 figs., 4 tabs.« less

  18. Minimum prevalence of chromosome 22q11 deletions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.I.; Cross, I.E.; Burn, J.

    1994-09-01

    Submicroscopic deletions from within chromosome 22q11 are associated with DiGeorge (DGS), velocardiofacial (VCFS) and conotruncal anomaly syndromes and isolated congenital heart defects. In 1993 our pediatric cardiologists clinically referred all children in whom a chromosome 22q11 deletion was suspected for fluorescent in situ hybridization studies using probes from the DGS critical region. 10 affected individuals have been identified to date from the children born in 1993 in the Northern Region served exclusively by our center. A further case, the subsequent pregnancy in one of these families was affected and terminated on the basis of a major heart malformation. In themore » years 1988-92, for which we have complete ascertainment, there were 1009 heart defects among 191,700 births (mean 202 per annum). Thus we estimate that chromosome 22q11 deletions were the cause of at least 5% of congenital heart disease. As not all children with chromosome 22q11 deletions have a heart defect, this gives an estimated minimum prevalence of 1/4000 live births.« less

  19. Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas.

    PubMed

    Chitragar, S; Iyer, V K; Agarwala, S; Gupta, S D; Sharma, A; Wari, M N

    2011-01-01

    IGF2 is a tumor suppressor gene at locus 11p15. Many hepatoblastomas have loss of heterozygosity (LOH) at this locus. Earlier studies have not demonstrated any association between LOH and prognosis. Aim of the study was to evaluate the prognostic significance of LOH at 11p15.5 in hepatoblastomas. DNA was isolated from normal liver and tumor tissue in 20 patients with hepatoblastoma. PCR was performed and cases were classified as LOH present, absent or non-informative. Patients' follow-up data was analyzed using Fischer's exact test and Kaplan-Meier survival analysis for relapse-free survival (RFS) in relation to LOH. Ethical clearance was obtained from the institutional ethics board. All cases were informative for at least one microsatellite marker used. 4 of the 20 cases (20%) had LOH at 11p15.5. One patient died in the immediate postoperative period. 5 of 19 patients relapsed (26%). Of 4 patients who had LOH, 3 (75%) relapsed, the time to relapse being 7, 7 and 9 months, respectively. Of the 15 cases without LOH, 2 (13.3%) relapsed. 4 patients had mixed epithelial and mesenchymal histology; 3 of them had LOH. The 2 groups with and without LOH were well matched. The RFS for patients with LOH (n=4) was 13% (mean survival time [MST]: 8.7 months; 95CI 6.7-10.7), while the RFS for cases without LOH (n=15) was 75% (MST: 100.7 months; 95CI 74.5-126.8). Mixed epithelial and mesenchymal histology is more frequently associated with LOH on chromosome 11p15.5 than pure epithelial histology. LOH on chromosome 11p15.5 is associated with a significantly increased incidence of relapse and a significantly shorter relapse-free survival in patients with hepatoblastoma. The risk of relapse is higher and the RFS lower both in standard-risk and high-risk patients with hepatoblastoma if they demonstrate the presence of LOH at 11p15.5. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Exclusion of primary congenital glaucoma (buphthalmos) from two candidate regions of chromosome arm 6p and chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarsu, A.N.; Hossain, A.; Sarfarazi, M.

    1996-01-22

    Primary congenital glaucoma (gene symbol: GLC3) is characterized by an improper development of the aqueous outflow system. The reduced outflow of fluid results in an increased intraocular pressure leading to buphthalmos, optic nerve damage, and eventual visual impairment. GLC3 is a heterogeneous condition with an estimated incidence of 1:2,500 in Middle Eastern and 1:10,000 in Western countries. In many families, GLC3 is an autosomal recessive trait with presentation of an earlier age-of-onset, high intraocular pressure, enlarged cloudy cornea, buphthalmos, and a more aggressive course. The pathogenesis of GLC3 remains elusive despite extensive histologic efforts to identify a single anatomic defect.more » Recent advances in positional mapping and cloning of human disorders provided an opportunity to identify chromosome locations of the GLC3 phenotype. Our laboratory is currently involved in the mapping of this condition by using a combination of candidate chromosome regions associated with the GLC3 phenotype and by a general positional mapping strategy. 16 refs., 3 tabs.« less

  1. Spread of X-chromosome inactivation into chromosome 15 is associated with Prader-Willi syndrome phenotype in a boy with a t(X;15)(p21.1;q11.2) translocation.

    PubMed

    Sakazume, Satoru; Ohashi, Hirofumi; Sasaki, Yuki; Harada, Naoki; Nakanishi, Katsumi; Sato, Hidenori; Emi, Mitsuru; Endoh, Kazushi; Sohma, Ryoichi; Kido, Yasuhiro; Nagai, Toshiro; Kubota, Takeo

    2012-01-01

    X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader-Willi syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),-15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.

  2. Isolation and characterization of 21 novel expressed DNA sequences from the distal region of human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Yoshikazu; Hadano, Shinji; Nagayama, Tomiko

    1994-07-15

    The authors have established an approach to the isolation of expressed DNA sequences from a defined region of the human chromosome. The method relies on the direct screening of cDNA libraries using pooled single-copy microclones generated by a laser chromosome microdissection in conjunction with a single unique primer polymerase chain reaction (SUP-PCR) procedure. They applied this method to the distal region of human chromosome 4p (4p15-4pter), which contains the Huntington disease (HD) and the Wolf-Hirschhorn syndrome (WHS) loci. Twenty-one nonoverlapping and region-specific cDNA clones encoding novel genes were isolated in this manner. Ten of 21 clones were subregionally assigned tomore » 4p16.1-4pter, and the remainder mapped to the region proximal to 4p16.1. Northern blot and reverse transcription followed by the PCR (RT-PCR) analysis revealed that 16 of these 21 clones detected transcripts in total RNA from human tissues. The method is applicable to other chromosomal regions and is a powerful approach to the isolation of region-specific cDNA clones. 44 refs., 3 figs., 3 tabs.« less

  3. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility.

    PubMed

    Nuttle, Xander; Giannuzzi, Giuliana; Duyzend, Michael H; Schraiber, Joshua G; Narvaiza, Iñigo; Sudmant, Peter H; Penn, Osnat; Chiatante, Giorgia; Malig, Maika; Huddleston, John; Benner, Chris; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Stessman, Holly A F; Marchetto, Maria C N; Denman, Laura; Harshman, Lana; Baker, Carl; Raja, Archana; Penewit, Kelsi; Janke, Nicolette; Tang, W Joyce; Ventura, Mario; Banci, Lucia; Antonacci, Francesca; Akey, Joshua M; Amemiya, Chris T; Gage, Fred H; Reymond, Alexandre; Eichler, Evan E

    2016-08-11

    Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P < 0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r = 0.36) and protein level (r = 0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282 ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.

  4. Microsatellite analysis of loss of heterozygosity on chromosomes 9q, 11p and 17p in medulloblastomas.

    PubMed

    Albrecht, S; von Deimling, A; Pietsch, T; Giangaspero, F; Brandner, S; Kleihues, P; Wiestler, O D

    1994-02-01

    Medulloblastoma (MB) is a primitive neuroectodermal tumour of the cerebellum whose pathogenesis is poorly understood. Previous studies suggest a role for loci on chromosomes 11p and 17p in the pathogenesis of MB. Evidence for another potential MB locus has recently emerged from studies on Gorlin syndrome (GS), an autosomal dominant syndrome with multiple basal cell carcinomas, epithelial jaw cysts, and skeletal anomalies. Since GS can be associated with MB, we examined sporadic (non-GS) cases of MB for evidence of loss of heterozygosity (LOH) on chromosome 9 where a putative GS locus has been localized to band q31. Nineteen paired blood and MB DNA specimens from 16 patients (11 primary tumours, two primary with recurrent tumours, one primary tumour and cell line, two cell lines) were studied by PCR analysis of microsatellites at D9S55 (9p12), D9S15 (9q13-q21.1), D9S127 (9q21.1-21.3), D9S12 (9q22.3), D9S58 (9q22.3-q31), D9S109 (9q31), D9S53 (9q31), GSN (9q33), D9S60 (9q33-q34), D9S65 (9q33-q34), ASS (9q34), D9S67 (9q34.3), TH (11p15.5), D11S490 (11q23.3), D17S261 (17p11.2-12), D17S520 (17p12), TP53 (17p13.1), D17S5 (17p13.3), D17S515 (17q22-qter), and by RFLP analysis at the WT-1 locus (11p13). Only two tumours had LOH on 9q. One was non-informative at D9S15, D9S65, and GSN but showed LOH at D9S127, D9S12, D9S58, D9S109, D9S53, D9S60, ASS, and D9S67. The other was uninterpretable at D9S65 and non-informative at D9S15, D9S58, D9S53, and D9S67 but exhibited LOH at D9S127, D9S12, D9S109, GSN, D9S60, and ASS. Both these cases were informative at D9S55 without LOH.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    PubMed Central

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  6. Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome.

    PubMed

    Scott, Stuart A; Cohen, Ninette; Brandt, Tracy; Warburton, Peter E; Edelmann, Lisa

    2010-09-01

    Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.

  7. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2.

    PubMed

    Gotter, Anthony L; Shaikh, Tamim H; Budarf, Marcia L; Rhodes, C Harker; Emanuel, Beverly S

    2004-01-01

    Two known recurrent constitutional translocations, t(11;22) and t(17;22), as well as a non-recurrent t(4;22), display derivative chromosomes that have joined to a common site within the low copy repeat B (LCR-B) region of 22q11.2. This breakpoint is located between two AT-rich inverted repeats that form a nearly perfect palindrome. Breakpoints within the 11q23, 17q11 and 4q35 partner chromosomes also fall near the center of palindromic sequences. In the present work the breakpoints of a fourth translocation involving LCR-B, a balanced ependymoma-associated t(1;22), were characterized not only to localize this junction relative to known genes, but also to further understand the mechanism underlying these rearrangements. FISH mapping was used to localize the 22q11.2 breakpoint to LCR-B and the 1p21 breakpoint to single BAC clones. STS mapping narrowed the 1p21.2 breakpoint to a 1990 bp AT-rich region, and junction fragments were amplified by nested PCR. Junction fragment-derived sequence indicates that the 1p21.2 breakpoint splits a 278 nt palindrome capable of forming stem-loop secondary structure. In contrast, the 1p21.2 reference genomic sequence from clones in the database does not exhibit this configuration, suggesting a predisposition for regional genomic instability perhaps etiologic for this rearrangement. Given its similarity to known chromosomal fragile site (FRA) sequences, this polymorphic 1p21.2 sequence may represent one of the FRA1 loci. Comparative analysis of the secondary structure of sequences surrounding translocation breakpoints that involve LCR-B with those not involving this region indicate a unique ability of the former to form stem-loop structures. The relative likelihood of forming these configurations appears to be related to the rate of translocation occurrence. Further analysis suggests that constitutional translocations in general occur between sequences of similar melting temperature and propensity for secondary structure.

  8. A palindrome-mediated mechanism distinguishes translocations involving LCR-B of chromosome 22q11.2

    PubMed Central

    Gotter, Anthony L.; Shaikh, Tamim H.; Budarf, Marcia L.; Rhodes, C. Harker; Emanuel, Beverly S.

    2010-01-01

    Two known recurrent constitutional translocations, t(11;22) and t(17;22), as well as a non-recurrent t(4;22), display derivative chromosomes that have joined to a common site within the low copy repeat B (LCR-B) region of 22q11.2. This breakpoint is located between two AT-rich inverted repeats that form a nearly perfect palindrome. Breakpoints within the 11q23, 17q11 and 4q35 partner chromosomes also fall near the center of palindromic sequences. In the present work the breakpoints of a fourth translocation involving LCR-B, a balanced ependymoma-associated t(1;22), were characterized not only to localize this junction relative to known genes, but also to further understand the mechanism underlying these rearrangements. FISH mapping was used to localize the 22q11.2 breakpoint to LCR-B and the 1p21 breakpoint to single BAC clones. STS mapping narrowed the 1p21.2 breakpoint to a 1990 bp AT-rich region, and junction fragments were amplified by nested PCR. Junction fragment-derived sequence indicates that the 1p21.2 breakpoint splits a 278 nt palindrome capable of forming stem–loop secondary structure. In contrast, the 1p21.2 reference genomic sequence from clones in the database does not exhibit this configuration, suggesting a predisposition for regional genomic instability perhaps etiologic for this rearrangement. Given its similarity to known chromosomal fragile site (FRA) sequences, this polymorphic 1p21.2 sequence may represent one of the FRA1 loci. Comparative analysis of the secondary structure of sequences surrounding translocation breakpoints that involve LCR-B with those not involving this region indicate a unique ability of the former to form stem–loop structures. The relative likelihood of forming these configurations appears to be related to the rate of translocation occurrence. Further analysis suggests that constitutional translocations in general occur between sequences of similar melting temperature and propensity for secondary structure. PMID

  9. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    PubMed

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    PubMed Central

    2010-01-01

    Background Obsessive-compulsive disorder (OCD) is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome) or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome), suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. Methods We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA). Results No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Conclusions Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD. PMID:20565924

  11. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder.

    PubMed

    Delorme, Richard; Moreno-De-Luca, Daniel; Gennetier, Aurélie; Maier, Wolfgang; Chaste, Pauline; Mössner, Rainald; Grabe, Hans Jörgen; Ruhrmann, Stephan; Falkai, Peter; Mouren, Marie-Christine; Leboyer, Marion; Wagner, Michael; Betancur, Catalina

    2010-06-21

    Obsessive-compulsive disorder (OCD) is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome) or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome), suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA). No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD.

  12. High-resolution meiotic and physical mapping of the Best vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, B.H.F.; Vogt, G.; Stoehr, H.

    1994-12-01

    Best vitelliform macular dystrophy (VMD2) has previously been linked to several microsatellite markers from chromosome 11. Subsequently, additional genetic studies have refined the Best disease region to a 3.7-cM interval flanked by markers at D11S903 and PYGM. To further narrow the interval containing the Best disease gene and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best disease pedigrees.more » Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 on the short arm and at D11S480 in band q13.2-13.3 on the proximal long arm. This study demonstrates that the physical size of the Best disease region is exceedingly larger than previously estimated from the genetic data, because of the proximity of the defective gene to the centromere of chromosome 11.« less

  13. Impact of pericentric inversion of Chromosome 9 [inv (9) (p11q12)] on infertility.

    PubMed

    Mozdarani, Hossein; Meybodi, Anahita Mohseni; Karimi, Hamideh

    2007-01-01

    One of the frequent occurrences in chromosome rearrangements is pericentric inversion of the Chromosome 9; inv (9) (p11q12), which is consider to be the variant of normal karyotype. Although it seems not to correlate with abnormal phenotypes, there have been many controversial reports indicating that it may lead to abnormal clinical conditions such as infertility. The incidence is found to be about 1.98% in the general population. We investigated the karyotypes of 300 infertile couples (600 individuals) being referred to our infertility clinic using standard GTG banding for karyotype preparation. The chromosomal analysis revealed a total of 15 (2.5%) inversions, among these, 14 male patients were inversion 9 carriers (4.69%) while one female patient was affected (0.33%). The incidence of inversion 9 in male patients is significantly higher than that of normal population and even than that of female patients (P< 0.05). This result suggests that inversion 9 may often cause infertility in men due to spermatogenic disturbances, which are arisen by the loops or acentric fragments formed in meiosis.

  14. Delineation and physical separation of novel translocation breakpoints on chromosome 1p in two genetically closely associated childhood tumors.

    PubMed

    Steenman, M J; Zijlstra, N; Kruitbosch, D L; Wiesmeijer, C; Larizza, L; Voûte, P A; Westerveld, A; Mannens, M M

    2000-01-01

    Sporadic childhood tumors associated with Beckwith-Wiedemann syndrome (BWS) all show abnormalities of the same region on chromosome 11. In addition to chromosome 11, other chromosome regions are affected in some of these tumor types. In this study we analyzed the region on chromosome 1p involved in the etiology of BWS-associated tumors, Wilms tumor, rhabdomyosarcoma, and hepatoblastoma. For this purpose we determined the location of two novel translocation breakpoints in this chromosome region in cells from a Wilms tumor and cells from a rhabdomyosarcoma. We constructed a map of the region and found that both breakpoints are separated by at least 875 kb. We identified a PAC clone which crosses the rhabdomyosarcoma breakpoint and found several exons within this clone. We established that this breakpoint is located proximal to the PAX7 gene and, therefore, identified a new region involved in the etiology of rhabdomyosarcomas. Copyright 2000 S. Karger AG, Basel

  15. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L.

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOFmore » and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.« less

  16. Mapping of the chromosome 1p36 region surrounding the Charcot-Marie-Tooth disease type 2A locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, P.; Gere, S.; Wolpert, C.

    1994-09-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy. Although CMT2 is clinically indistinguishable from CMT1, the two forms can be differentiated by pathological and neurophysiological methods. We have established one locus, CMT2A on chromosome 1p36, and have established genetic heterogeneity. This locus maps to the region of the deletions associated with neuroblastoma. We have now identified an additional 11 CMT2 families. Three families are linked to chromosome 1p36 while six families are excluded from this region. Another six families are currently under analysis and collection. To date the CMT2A families represent one third of those CMT2 families examined.more » We have established a microdissection library of the 1p36 region which is currently being characterized for microsatellite repeats and STSs using standard hybridization techniques and a modified degenerate primer method. In addition, new markers (D1S253, D1S450, D1S489, D1S503, GATA27E04, and GATA4H04) placed in this region are being mapped using critical recombinants in the CEPH reference pedigrees. Fluorescent in situ hybridization (FISH) has been used to confirm mapping. A YAC contig is being assembled from the CEPH megabase library using STSs to isolate key YACs which are extended by vectorette end clone and Alu-PCR. These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrates further heterogeneity in the CMT phenotype.« less

  17. Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders.

    PubMed

    Vorsanova, S G; Yurov, I Yu; Demidova, I A; Voinova-Ulas, V Yu; Kravets, V S; Solov'ev, I V; Gorbachevskaya, N L; Yurov, Yu B

    2007-07-01

    Cytogenetic and molecular cytogenetic analysis of children with autism (90 subjects) and their mothers (18 subjects) is presented. Anomalies and fragility were found in chromosome X in four cases of autism: mos 47,XXX[98]/46, XX[2]; 46,XY,r(22)(p11q13); 46,XY,inv(2)(p11.2q13),16qh-; and 46,Y,fra(X)(q27.3),16qh-. C staining and quantitative fluorescent in situ hybridization (FISH) were used to demonstrate a significant increase in the frequency of variations in the heterochromatin regions of chromosomes in children with autism as compared with a control group (48% and 16% respectively). Pericentric chromosome inversion 9phqh was not characteristic of patients with autism, while variation in heterochromatin regions 1phqh, 9qh+, and 16qh-were found significantly more frequently in children with autism. These data provide the basis for discussing the possible role of the gene position effect in the pathogenesis of autism and the possible search for biological markers of autistic disorders.

  18. A familial pericentric inversion of chromosome 11 associated with a microdeletion of 163 kb and microduplication of 288 kb at 11p13 and 11q22.3 without aniridia or eye anomalies.

    PubMed

    Balay, Lara; Totten, Ellen; Okada, Luna; Zell, Sidney; Ticho, Benjamin; Israel, Jeannette; Kogan, Jillene

    2016-01-01

    Interstitial deletions of 11p13 involving MPPED2, DCDC5, DCDC1, DNAJC24, IMMP1L, and ELP4 are previously reported to have downstream transcriptional effects on the expression of PAX6, due to a downstream regulatory region (DRR). Currently, no clear genotype-phenotype correlations have been established allowing for conclusive information regarding the exact location of the PAX6 DRR, though its location has been approximated in mouse models to be within the Elp4 gene. Of the clinical reports currently published examining patients with intact PAX6 genes but harboring deletions identified in genes downstream of PAX6, 100% indicate phenotypes which include aniridia, whereas approximately half report additional eye deformities, autism, or intellectual disability. In this clinical report, we present a 12-year-old male patient, his brother, and mother with pericentric inversions of chromosome 11 associated with submicroscopic interstitial deletions of 11p13 and duplications of 11q22.3. The inversions were identified by standard cytogenetic analysis; microarray and FISH detected the chromosomal imbalance. The patient's phenotype includes intellectual disability, speech abnormalities, and autistic behaviors, but interestingly neither the patient, his brother, nor mother have aniridia or other eye anomalies. To the best of our knowledge, these findings in three family members represent the only reported cases with 11p13 deletions downstream of PAX6 not demonstrating phenotypic characteristics of aniridia or abnormal eye development. Although none of the deleted genes are obvious candidates for the patient's phenotype, the absence of aniridia in the presence of this deletion in all three family members further delineates the location of the DRR for PAX6. © 2015 Wiley Periodicals, Inc.

  19. Quantitative trait loci at the 11q23.3 chromosomal region related to dyslipidemia in the population of Andhra Pradesh, India.

    PubMed

    Pranavchand, Rayabarapu; Reddy, Battini Mohan

    2017-06-13

    Given the characteristic atherogenic dyslipidemia of south Indian population and crucial role of APOA1, APOC3, APOA4 and APOA5 genes clustered in 11q23.3 chromosomal region in regulating lipoprotein metabolism and cholesterol homeostasis, a large number of recently identified variants are to be explored for their role in regulating the serum lipid parameters among south Indians. Using fluidigm SNP genotyping platform, a prioritized set of 96 SNPs of the 11q23.3 chromosomal region were genotyped on 516 individuals from Hyderabad, India, and its vicinity and aged >45 years. The linear regression analysis of the individual lipid traits viz., TC, LDLC, HDLC, VLDL and TG with each of the 78 SNPs that confirm to HWE and with minor allele frequency > 1%, suggests 23 of those to be significantly associated (p ≤ 0.05) with at least one of these quantitative traits. Most importantly, the variant rs632153 is involved in elevating TC, LDLC, TG and VLDLs and probably playing a crucial role in the manifestation of dyslipidemia. Additionally, another three SNPs rs633389, rs2187126 and rs1263163 are found risk conferring to dyslipidemia by elevating LDLC and TC levels in the present population. Further, the ROC (receiver operating curve) analysis for the risk scores and dyslipidemia status yielded a significant area under curve (AUC) = 0.675, suggesting high discriminative power of the risk variants towards the condition. The interaction analysis suggests rs10488699-rs2187126 pair of the BUD13 gene to confer significant risk (Interaction odds ratio = 14.38, P = 7.17 × 10 5 ) towards dyslipidemia by elevating the TC levels (β = 37.13, p = 6.614 × 10 5 ). On the other hand, the interaction between variants of APOA1 gene and BUD13 and/or ZPR1 regulatory genes at this region are associated with elevated TG and VLDL. The variants at 11q23.3 chromosomal region seem to determine the quantitative lipid traits and in turn dyslipidemia in the population of Hyderabad

  20. Four small supernumerary marker chromosomes derived from chromosomes 6, 8, 11 and 12 in a patient with minimal clinical abnormalities: a case report

    PubMed Central

    2010-01-01

    Introduction Small supernumerary marker chromosomes are still a problem in cytogenetic diagnostic and genetic counseling. This holds especially true for the rare cases with multiple small supernumerary marker chromosomes. Most such cases are reported to be clinically severely affected due to the chromosomal imbalances induced by the presence of small supernumerary marker chromosomes. Here we report the first case of a patient having four different small supernumerary marker chromosomes which, apart from slight developmental retardation in youth and non-malignant hyperpigmentation, presented no other clinical signs. Case presentation Our patient was a 30-year-old Caucasian man, delivered by caesarean section because of macrosomy. At birth he presented with bilateral cryptorchidism but no other birth defects. At age of around two years he showed psychomotor delay and a bilateral convergent strabismus. Later he had slight learning difficulties, with normal social behavior and now lives an independent life as an adult. Apart from hypogenitalism, he has multiple hyperpigmented nevi all over his body, short feet with pes cavus and claw toes. At age of 30 years, cytogenetic and molecular cytogenetic analysis revealed a karyotype of 50,XY,+min(6)(:p11.1-> q11.1:),+min(8)(:p11.1->q11.1:),+min(11)(:p11.11->q11:),+min(12)(:p11.2~12->q10:), leading overall to a small partial trisomy in 12p11.1~12.1. Conclusions Including this case, four single case reports are available in the literature with a karyotype 50,XN,+4mar. For prenatally detected multiple small supernumerary marker chromosomes in particular we learn from this case that such a cytogenetic condition may be correlated with a positive clinical outcome. PMID:20682055

  1. Hemoglobins, Hemorphins, and 11p15.5 Chromosomal Region in Cancer Biology and İmmunity with Special Emphasis for Brain Tumors.

    PubMed

    Altinoz, Meric Adil; Elmaci, Ilhan; Ince, Bahri; Ozpinar, Aysel; Sav, Aydin Murat

    2016-05-01

    In systemic cancers, increased hemolysis leads to extracellular hemoglobin (HB), and experimental studies have shown its provoking role on tumor growth and metastasis. However, investigations have shown that HB chains presented by tumor vascular pericytes or serum protein complexes of HB could also induce antitumor immunity, which may be harnessed to treat refractory cancers and brain tumors. Mounting recent evidence shows that expression of HBs is not restricted to erythrocytes and that HBs exist in the cells of lung and kidney, in macrophages, and in neurons and glia of the central nervous system (CNS). HBs mediate coping with hypoxia and free radical stress in normal and tumor cells, and they are increased in certain tumors including breast, lung, colon, and squamous cell cancers. Recent studies showed HBs in meningioma, in the cyst fluid of craniopharyngioma, in the cerebrospinal fluid (CSF) of pediatric patients with posterior fossa tumors, and in glioblastoma cell lines. Hemorphins, abundant brain peptides formed via HB-chain cleavage, exert opioid activity and antiproliferative and immunomodifier effects. Hence mutations in HBs may modify brain tumorigenesis via influencing hemorphins and perturbing regulations of immune surveillance and cell growth in the neuroectodermal tissues. The β-globin gene cluster resides in the chromosome region 11p15.5, harboring important immunity genes and IGF2, H19, PHLDA2/TSSC3, TRIM3, and SLC22A18 genes associated with cancers and gliomas. 11p15.5 is a prominent region subject to epigenetic regulation. Thus the β-globin loci may exert haplotypal interactions with these. Some clues support this theory. It is well established that iron load induces liver cancer in thalassemia major; however iron load-independent associations also exist. Enhanced rates of hematologic malignancies are associated with HB Lepore, association of hemoglobin E with cholangiocarcinoma, and enhanced gastric cancer rates in the thalassemia trait. In

  2. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22q11 in the DiGeorge syndrome critical region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heisterkamp, N.; Hoeve, J.T.; Groffen, J.

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 500 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one of themore » two NotI sites hybridized to mRNAs in different human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for the human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge may contribute to the mental deficiency seen in the patients. 35 refs., 5 figs.« less

  3. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    PubMed

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  4. A rare duplication on chromosome 16p11.2 is identified in patients with psychosis in Alzheimer's disease.

    PubMed

    Zheng, Xiaojing; Demirci, F Yesim; Barmada, M Michael; Richardson, Gale A; Lopez, Oscar L; Sweet, Robert A; Kamboh, M Ilyas; Feingold, Eleanor

    2014-01-01

    Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer's disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.

  5. Chromosome Rearrangements in Cornelia de Lange Syndrome (CdLS): Report of a der(3)t(3;12)(p25.3;p13.3) in Two Half Sibs With Features of CdLS and Review of Reported CdLS Cases With Chromosome Rearrangements

    PubMed Central

    DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459

  6. WAGR(O?) syndrome and congenital ptosis caused by an unbalanced t(11;15)(p13;p11.2)dn demonstrating a 7 megabase deletion by FISH.

    PubMed

    Lennon, P A; Scott, D A; Lonsdorf, D; Wargowski, D S; Kirkpatrick, S; Patel, A; Cheung, S W

    2006-06-01

    Aniridia usually occurs in isolation, but may also occur as part of the WAGR contiguous gene deletion syndrome, which includes Wilms tumor, aniridia, genitourinary abnormalities, and mental retardation. The aniridia and predisposition for Wilms tumor seen in WAGR are caused by haploinsufficiency for PAX 6 and WT1, respectively. We present a female infant with aniridia, bilateral ptosis, bilateral posterior capsular cataracts, nystagmus, left-sided glaucoma, microcephaly, mild unilateral hydronephrosis, poor linear growth, and gross motor delay consistent with a clinical diagnosis of WAGR syndrome. In addition, weight-for-height ratio at 12 months is at the 94th centile, raising the possibility of a diagnosis of WAGRO (WAGR + Obesity). Chromosome analysis revealed a translocation (11;15)(p13;p11.2) which has not been previously associated with a diagnosis of WAGR. Subsequent clinical WAGR fluorescent in situ hybridization (FISH) analysis demonstrated a deletion of 11p13 including PAX6 and WT1. A complete FISH-mapping of the breakpoints on chromosome 11 revealed a 7 Mb deletion within 11p13-11p14. The patient is examined in light of other reported patients with deletions and/or translocations involving the regions between 11p12 --> 11p14 including patients with WAGR + obesity (WAGRO) as well as with other reported patients with aniridia and congenital ptosis. Copyright 2006 Wiley-Liss, Inc.

  7. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome-associated seizures disorder.

    PubMed

    Zollino, Marcella; Orteschi, Daniela; Ruiter, Mariken; Pfundt, Rolph; Steindl, Katharina; Cafiero, Concetta; Ricciardi, Stefania; Contaldo, Ilaria; Chieffo, Daniela; Ranalli, Domiziana; Acquafondata, Celeste; Murdolo, Marina; Marangi, Giuseppe; Asaro, Alessia; Battaglia, Domenica

    2014-06-01

    Seizure disorder is one of the most relevant clinical manifestations in Wolf-Hirschhorn syndrome (WHS) and it acts as independent prognostic factor for the severity of intellectual disability (ID). LETM1, encoding a mitochondrial protein playing a role in K(+) /H(+) exchange and in Ca(2+) homeostasis, is currently considered the major candidate gene. However, whether haploinsufficiency limited to LETM1 is enough to cause epilepsy is still unclear. The main purpose of the present research is to define the 4p chromosome regions where genes for seizures reside. Comparison of our three unusual 4p16.3 deletions with 13 literature reports. Array-comparative genomic hybridization (a-CGH). Real-time polymerase chain reaction (RT-PCR) on messanger RNA (mRNA) of LETM1 and CPLX1. Direct sequencing of LETM1. Three unusual 4p16.3 deletions were detected by array-CGH in absence of a obvious clinical diagnosis of WHS. Two of these, encompassing LETM1, were found in subjects who never had seizures. The deletions were interstitial, spanning 1.1 Mb with preservation of the terminal 1.77 Mb region in one case and 0.84 Mb with preservation of the terminal 1.07 Mb region in the other. The other deletion was terminal, affecting a 0.564 Mb segment, with preservation of LETM1, and it was associated with seizures and learning difficulties. Upon evaluating our patients along with literature reports, we noted that six of eight subjects with terminal 4p deletions preserving LETM1 had seizures, whereas seven of seven with interstitial deletions including LETM1 and preserving the terminal 1 Mb region on 4p did not. An additional chromosome region for seizures is suggested, falling within the terminal 1.5 Mb on 4p, not including LETM1. We consider that haploinsufficiency not limited to LETM1 but including other genes acts as a risk factor for the WHS-associated seizure disorder, according to a comorbidity model of pathogenesis. Additional candidate genes reside in the terminal 1.5 Mb region on 4

  8. [Family paracentric inversion of the short arm of chromosome X (Xp21.2p11.23) and connection with autism spectrum disorders].

    PubMed

    Milovančević, Milica Pejović; Vešić, Marija; Jelisavčić, Marko; Nikšić, Snežana; Pilić, Gordana Radivojević; Maravić, Vanja Mandić

    2012-01-01

    Autism spectrum disorders (ASDs) are a group of complex pervasive developmental disorders characterized by impairments in communication, social interaction and behavior. In most cases autism is caused by a combination of genetic factors and environmental risk factors. In 10% to 20% of cases it has been shown that the cause of ASD is genetic. We are describing a 2-year-old boy who was referred to genetic counseling because of speech delay and certain autism-like behavior. By cytogenetic analysis the karyotype 46, inv(X),Y was obtained. The boy was a carrier of a paracentric inversion of the short arm of the chromosome X. After cytogenetic analysis of parental blood, it was detected that mother was a carrier of identical aberration, but had no clinical signs. The method of fluorescent in situ hybridization (FISH) yielded the precise breakpoint in the region (p21.2p11.23). Mother and son were carriers of identical X chromosome. Breakpoints are located in the regions that have already been linked to autism, which indicates that the positional effect of the gene could have been a possible cause of the patient's genotype. In addition to positional effects, in order to better understand the etiology of autism other genetic and environmental factors should be always taken into consideration.

  9. Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross.

    PubMed

    Buckwalter, M S; Katz, R W; Camper, S A

    1991-07-01

    Ames dwarf (df) is an autosomal recessive mutation characterized by severe dwarfism and infertility. This mutation provides a mouse model for panhypopituitarism. The dwarf phenotype results from failure in the differentiation of the cells which produce growth hormone, prolactin, and thyroid stimulating hormone. Using the backcross (DF/B-df/df X CASA/Rk) X DF/B-df/df, we confirmed the assignment of df to mouse chromosome 11 and demonstrated recombination between df and the growth hormone gene. This backcross is an invaluable resource for screening candidate genes for the df mutation. The df locus maps to less than 1 cM distal to Pad-1 (0.85 +/- 0.85 cM). Two new genes localized on mouse chromosome 11, Rpo2-1, and Edp-1, map to a region of conserved synteny with human chromosome 17. The localization of the alpha 1 adrenergic receptor, Adra-1, extends a known region of synteny conservation between mouse chromosome 11 and human chromosome 5, and suggests that a human counterpart to df would map to human chromosome 5.

  10. Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis.

    PubMed

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2009-01-01

    Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13.

  11. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: Linkage to convulsions and electroencephalography trait

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Serratosa, J.M.

    1995-08-01

    Despite affecting 4 million Americans and 100-200 million persons worldwide, the precise molecular mechanisms of human epilepsies remain unknown. Juvenile myoclonic epilepsy (JME) is the most frequent and, hence, most important form of hereditary grand mal epilepsy. In this epilepsy, electroencephalographic (EEG) 15-30 Hz multispikes produce myoclonic and tonic-clonic convulsions beginning at 8-20 years of age. Moreover, EEG 3.5-6 Hz multispike wave complexes appear in clinically asymptomatic family members. We first studied 38 members of a four-generation LA-Belize family with classical JME but with no pyknoleptic absences. Five living members had JME; four clinically asymptomatic members had EEG multispike wavemore » complexes. Pairwise analysis tightly linked microsatellites centromeric to HLA, namely D6S272 (peak lod score [Z{sub max}]=3.564-3.560 at male-female recombination [{theta}{sub m=f}]=0-0.001) and D6S257 (Z{sub max}=3.672-3.6667 at {theta}{sub m=f}=0-0.001), spanning 7 cM, to convulsive seizures and EEG multispike wave complexes. A recombination between D6S276 and D6S273 in one affected member placed the JME locus within or below HLA. Pairwise, multipoint, and recombination analyses in this large family independently proved that a JME gene is located in chromsome 6p, centromeric to HLA. We next screened, with the same chromosome 6p21.2-p11 short tandem-repeat polymorphic markers, seven multiplex pedigrees with classic JME. When lod scores for small multiplex families are added to lod scores of the LA-Belize pedigree, Z{sub max} values for D6S294 and D6S257 are >7 ({theta}{sub m=f}=0.000). Our results prove that in chromosome 6p21.2-p11 an epilepsy locus exists whose phenotype consists of classic JME with convulsions and/or EEG rapid multispike wave complexes. 31 refs., 6 figs., 4 tabs.« less

  12. Genetic linkage analysis of schizophrenia using chromosome 11q13-24 markers in Israeli pedigrees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulcrone, J.; Marchblanks, R.; Whatley, S.A.

    It is generally agreed that there is a genetic component in the etiology of schizophrenia which may be tested by the application of linkage analysis to multiply-affected families. One genetic region of interest is the long arm of chromosome 11 because of previously reported associations of genetic variation in this region with schizophrenia, and because of the fact that it contains the locus for the dopamine D2 receptor gene. In this study we have examined the segregation of schizophrenia with microsatellite dinucleotide repeat DNA markers along chromosome 11q in 5 Israeli families multiply-affected for schizophrenia. The hypothesis of linkage undermore » genetic homogeneity of causation was tested under a number of genetic models. Linkage analysis provided no evidence for significant causal mutations within the region bounded by INT and D11S420 on chromosome 11q. It is still possible, however, that a gene of major effect exists in this region, either with low penetrance or with heterogeneity. 32 refs., 2 figs., 4 tabs.« less

  13. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, N.; Wienberg, J.; Ermert, K.

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore,more » be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.« less

  14. The Norrie disease gene maps to a 150 kb region on chromosome Xp11.3.

    PubMed

    Sims, K B; Lebo, R V; Benson, G; Shalish, C; Schuback, D; Chen, Z Y; Bruns, G; Craig, I W; Golbus, M S; Breakefield, X O

    1992-05-01

    Norrie disease is a human X-linked recessive disorder of unknown etiology characterized by congenital blindness, sensory neural deafness and mental retardation. This disease gene was previously linked to the DXS7 (L1.28) locus and the MAO genes in band Xp11.3. We report here fine physical mapping of the obligate region containing the Norrie disease gene (NDP) defined by a recombination and by the smallest submicroscopic chromosomal deletion associated with Norrie disease identified to date. Analysis, using in addition two overlapping YAC clones from this region, allowed orientation of the MAOA and MAOB genes in a 5'-3'-3'-5' configuration. A recombination event between a (GT)n polymorphism in intron 2 of the MAOB gene and the NDP locus, in a family previously reported to have a recombination between DXS7 and NDP, delineates a flanking marker telomeric to this disease gene. An anonymous DNA probe, dc12, present in one of the YACs and in a patient with a submicroscopic deletion which includes MAOA and MAOB but not L1.28, serves as a flanking marker centromeric to the disease gene. An Alu-PCR fragment from the right arm of the MAO YAC (YMAO.AluR) is not deleted in this patient and also delineates the centromeric extent of the obligate disease region. The apparent order of these loci is telomere ... DXS7-MAOA-MAOB-NDP-dc12-YMAO.AluR ... centromere. Together these data define the obligate region containing the NDP gene to a chromosomal segment less than 150 kb.

  15. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus

    PubMed Central

    Jacquemont, Sébastien; Reymond, Alexandre; Zufferey, Flore; Harewood, Louise; Walters, Robin G.; Kutalik, Zoltán; Martinet, Danielle; Shen, Yiping; Valsesia, Armand; Beckmann, Noam D.; Thorleifsson, Gudmar; Belfiore, Marco; Bouquillon, Sonia; Campion, Dominique; De Leeuw, Nicole; De Vries, Bert B. A.; Esko, Tõnu; Fernandez, Bridget A.; Fernández-Aranda, Fernando; Fernández-Real, José Manuel; Gratacòs, Mònica; Guilmatre, Audrey; Hoyer, Juliane; Jarvelin, Marjo-Riitta; Kooy, Frank R.; Kurg, Ants; Le Caignec, Cédric; Männik, Katrin; Platt, Orah S.; Sanlaville, Damien; Van Haelst, Mieke M.; Villatoro Gomez, Sergi; Walha, Faida; Wu, Bai-Lin; Yu, Yongguo; Aboura, Azzedine; Addor, Marie-Claude; Alembik, Yves; Antonarakis, Stylianos E.; Arveiler, Benoît; Barth, Magalie; Bednarek, Nathalie; Béna, Frédérique; Bergmann, Sven; Beri, Mylène; Bernardini, Laura; Blaumeiser, Bettina; Bonneau, Dominique; Bottani, Armand; Boute, Odile; Brunner, Han G.; Cailley, Dorothée; Callier, Patrick; Chiesa, Jean; Chrast, Jacqueline; Coin, Lachlan; Coutton, Charles; Cuisset, Jean-Marie; Cuvellier, Jean-Christophe; David, Albert; De Freminville, Bénédicte; Delobel, Bruno; Delrue, Marie-Ange; Demeer, Bénédicte; Descamps, Dominique; Didelot, Gérard; Dieterich, Klaus; Disciglio, Vittoria; Doco-Fenzy, Martine; Drunat, Séverine; Duban-Bedu, Bénédicte; Dubourg, Christèle; El-Sayed Moustafa, Julia S.; Elliott, Paul; Faas, Brigitte H. W.; Faivre, Laurence; Faudet, Anne; Fellmann, Florence; Ferrarini, Alessandra; Fisher, Richard; Flori, Elisabeth; Forer, Lukas; Gaillard, Dominique; Gerard, Marion; Gieger, Christian; Gimelli, Stefania; Gimelli, Giorgio; Grabe, Hans J.; Guichet, Agnès; Guillin, Olivier; Hartikainen, Anna-Liisa; Heron, Délphine; Hippolyte, Loyse; Holder, Muriel; Homuth, Georg; Isidor, Bertrand; Jaillard, Sylvie; Jaros, Zdenek; Jiménez-Murcia, Susana; Joly Helas, Géraldine; Jonveaux, Philippe; Kaksonen, Satu; Keren, Boris; Kloss-Brandstätter, Anita; Knoers, Nine V. A. M.; Koolen, David A.; Kroisel, Peter M.; Kronenberg, Florian; Labalme, Audrey; Landais, Emilie; Lapi, Elisabetta; Layet, Valérie; Legallic, Solenn; Leheup, Bruno; Leube, Barbara; Lewis, Suzanne; Lucas, Josette; Macdermot, Kay D.; Magnusson, Pall; Marshall, Christian R.; Mathieu-Dramard, Michèle; Mccarthy, Mark I.; Meitinger, Thomas; Antonietta Mencarelli, Maria; Merla, Giuseppe; Moerman, Alexandre; Mooser, Vincent; Morice-Picard, Fanny; Mucciolo, Mafalda; Nauck, Matthias; Coumba Ndiaye, Ndeye; Nordgren, Ann; Pasquier, Laurent; Petit, Florence; Pfundt, Rolph; Plessis, Ghislaine; Rajcan-Separovic, Evica; Paolo Ramelli, Gian; Rauch, Anita; Ravazzolo, Roberto; Reis, Andre; Renieri, Alessandra; Richart, Cristobal; Ried, Janina S.; Rieubland, Claudine; Roberts, Wendy; Roetzer, Katharina M.; Rooryck, Caroline; Rossi, Massimiliano; Saemundsen, Evald; Satre, Véronique; Schurmann, Claudia; Sigurdsson, Engilbert; Stavropoulos, Dimitri J.; Stefansson, Hreinn; Tengström, Carola; Thorsteinsdóttir, Unnur; Tinahones, Francisco J.; Touraine, Renaud; Vallée, Louis; Van Binsbergen, Ellen; Van Der Aa, Nathalie; Vincent-Delorme, Catherine; Visvikis-Siest, Sophie; Vollenweider, Peter; Völzke, Henry; Vulto-Van Silfhout, Anneke T.; Waeber, Gérard; Wallgren-Pettersson, Carina; Witwicki, Robert M.; Zwolinksi, Simon; Andrieux, Joris; Estivill, Xavier; Gusella, James F.; Gustafsson, Omar; Metspalu, Andres; Scherer, Stephen W.; Stefansson, Kari; Blakemore, Alexandra I. F.; Beckmann, Jacques S.; Froguel, Philippe

    2011-01-01

    Both underweight and obesity have been associated with increased mortality1,2. Underweight, defined as body mass index (BMI) ≤ 18,5 kg/m2 in adults 3 and ≤ −2 standard deviations (SD) in children4,5, is the main sign of a series of heterogeneous clinical conditions such as failure to thrive (FTT) 6–8, feeding and eating disorder and/or anorexia nervosa9,10. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported 11, 12. We previously demonstrated that hemizygosity of a ~600 kb region on the short arm of chromosome 16 (chr16:29.5–30.1Mb), causes a highly-penetrant form of obesity often associated with hyperphagia and intellectual disabilities13. Here we show that the corresponding reciprocal duplication is associated with underweight. We identified 138 (132 novel cases) duplication carriers (108 unrelated carriers) from over 95,000 individuals clinically-referred for developmental or intellectual disabilities (DD/ID), psychiatric disorders or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight (mean Z-score −0.6; p=4.4×10−4) and BMI (mean Z-score −0.5; p=2.0×10−3). In particular, half of the boys younger than 5 years are underweight with a probable diagnosis of FTT, while adult duplication carriers have an 8.7-fold (p=5.9×10−11; CI_95=[4.5–16.6]) increased risk of being clinically underweight. We observe a significant trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive feeding behaviours and a significant reduction in head circumference (mean Z-score −0.9; p=7.8×10−6). Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus, correlating with changes in transcript levels for genes mapping within the duplication but not within flanking

  16. Trisomy 8 syndrome owing to isodicentric 8p chromosomes: regional assignment of a presumptive gene involved in corpus callosum development.

    PubMed Central

    Digilio, M C; Giannotti, A; Floridia, G; Uccellatore, F; Mingarelli, R; Danesino, C; Dallapiccola, B; Zuffardi, O

    1994-01-01

    Two patients with trisomy 8 syndrome owing to an isodicentric 8p;8p chromosome are described. Case 1 had a 46,XX/46,XX,-8,+idic(8)(p23) karyotype while case 2, a male, had the same abnormal karyotype without evidence of mosaicism. In situ hybridisation, performed in case 1, showed that the isochromosome was asymmetrical. Agenesis of the corpus callosum (ACC), which is a feature of trisomy 8 syndrome, was found in both patients. Although ACC is associated with aneuploidies for different chromosomes, a review of published reports indicates that, when associated with chromosome 8, this defect is the result of duplication of a gene located within 8p21-pter. Molecular analysis in one of our patients led us to exclude the distal 23 Mb of 8p from this ACC region. Images PMID:8014974

  17. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, J.B.; Kojis, T.; Heinzmann, C.

    1993-09-01

    Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less

  18. A de novo 11p12-p15.4 duplication in a patient with pharmacoresistant epilepsy, mental retardation, and dysmorphisms.

    PubMed

    Coppola, Antonietta; Striano, Pasquale; Gimelli, Stefania; Ciampa, Clotilde; Santulli, Lia; Caranci, Ferdinando; Zuffardi, Orsetta; Gimelli, Giorgio; Striano, Salvatore; Zara, Federico

    2010-03-01

    We report a 22-year-old male patient with pharmacoresistant epilepsy, mental retardation and dysmorphisms. Standard cytogenetic analysis revealed a de novo interstitial duplication of the short arm of chromosome 11 (11p). High density array-CGH analysis showed that the rearrangement spans about 35Mb on chromosome 11p12-p15.4. Duplications of 11p are rare and usually involve the distal part of the chromosome arm (11p15), being not associated with epilepsy, whereas our patient showed a unique epileptic phenotype associated with mental retardation and dysmorphic features. The role of some rearranged genes in epilepsy pathogenesis in this patient is also discussed.

  19. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions

    PubMed Central

    Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria

    2008-01-01

    We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 (∼75 Mb position) and 3q21.3-q22.1 (∼130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large (∼250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and “instability elements,” including satellite repeats and retroviral sequences. PMID:18230801

  20. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions.

    PubMed

    Darai-Ramqvist, Eva; Sandlund, Agneta; Müller, Stefan; Klein, George; Imreh, Stefan; Kost-Alimova, Maria

    2008-03-01

    We have previously found that the borders of evolutionarily conserved chromosomal regions often coincide with tumor-associated deletion breakpoints within human 3p12-p22. Moreover, a detailed analysis of a frequently deleted region at 3p21.3 (CER1) showed associations between tumor breaks and gene duplications. We now report on the analysis of 54 chromosome 3 breaks by multipoint FISH (mpFISH) in 10 carcinoma-derived cell lines. The centromeric region was broken in five lines. In lines with highly complex karyotypes, breaks were clustered near known fragile sites, FRA3B, FRA3C, and FRA3D (three lines), and in two other regions: 3p12.3-p13 ( approximately 75 Mb position) and 3q21.3-q22.1 ( approximately 130 Mb position) (six lines). All locations are shown based on NCBI Build 36.1 human genome sequence. The last two regions participated in three of four chromosome 3 inversions during primate evolution. Regions at 75, 127, and 131 Mb positions carry a large ( approximately 250 kb) segmental duplication (tumor break-prone segmental duplication [TBSD]). TBSD homologous sequences were found at 15 sites on different chromosomes. They were located within bands frequently involved in carcinoma-associated breaks. Thirteen of them have been involved in inversions during primate evolution; 10 were reused by breaks during mammalian evolution; 14 showed copy number polymorphism in man. TBSD sites showed an increase in satellite repeats, retrotransposed sequences, and other segmental duplications. We propose that the instability of these sites stems from specific organization of the chromosomal region, associated with location at a boundary between different CG-content isochores and with the presence of TBSDs and "instability elements," including satellite repeats and retroviral sequences.

  1. Genomic analysis of the chromosome 15q11-q13 Prader-Willi syndrome region and characterization of transcripts for GOLGA8E and WHCD1L1 from the proximal breakpoint region.

    PubMed

    Jiang, Yong-Hui; Wauki, Kekio; Liu, Qian; Bressler, Jan; Pan, Yanzhen; Kashork, Catherine D; Shaffer, Lisa G; Beaudet, Arthur L

    2008-01-28

    Prader-Willi syndrome (PWS) is a neurobehavioral disorder characterized by neonatal hypotonia, childhood obesity, dysmorphic features, hypogonadism, mental retardation, and behavioral problems. Although PWS is most often caused by a paternal interstitial deletion of a 6-Mb region of chromosome 15q11-q13, the identity of the exact protein coding or noncoding RNAs whose deficiency produces the PWS phenotype is uncertain. There are also reports describing a PWS-like phenotype in a subset of patients with full mutations in the FMR1 (fragile X mental retardation 1) gene. Taking advantage of the human genome sequence, we have performed extensive sequence analysis and molecular studies for the PWS candidate region. We have characterized transcripts for the first time for two UCSC Genome Browser predicted protein-coding genes, GOLGA8E (golgin subfamily a, 8E) and WHDC1L1 (WAS protein homology region containing 1-like 1) and have further characterized two previously reported genes, CYF1P1 and NIPA2; all four genes are in the region close to the proximal/centromeric deletion breakpoint (BP1). GOLGA8E belongs to the golgin subfamily of coiled-coil proteins associated with the Golgi apparatus. Six out of 16 golgin subfamily proteins in the human genome have been mapped in the chromosome 15q11-q13 and 15q24-q26 regions. We have also identified more than 38 copies of GOLGA8E-like sequence in the 15q11-q14 and 15q23-q26 regions which supports the presence of a GOLGA8E-associated low copy repeat (LCR). Analysis of the 15q11-q13 region by PFGE also revealed a polymorphic region between BP1 and BP2. WHDC1L1 is a novel gene with similarity to mouse Whdc1 (WAS protein homology region 2 domain containing 1) and human JMY protein (junction-mediating and regulatory protein). Expression analysis of cultured human cells and brain tissues from PWS patients indicates that CYFIP1 and NIPA2 are biallelically expressed. However, we were not able to determine the allele-specific expression

  2. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    PubMed

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. A family of long intergenic non-coding RNA genes in human chromosomal region 22q11.2 carry a DNA translocation breakpoint/AT-rich sequence

    PubMed Central

    2018-01-01

    FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722

  4. Partial Tetrasomy of Chromosome 22q11.1 Resulting from a Supernumerary Isodicentric Marker Chromosome in a Boy with Cat-eye Syndrome

    PubMed Central

    Kim, Jun Bum; Pai, Ki Soo; Yun, Jun-No; Park, Sang-Jin

    2010-01-01

    The 22q11 region has been implicated in chromosomal rearrangements that result in altered gene dosage, leading to three different congenital malformation syndromes: DiGeorge syndrome, cat-eye syndrome (CES), and der(22) syndrome. Although DiGeorge syndrome is a common genomic disorder on 22q11, CES is quite rare, and there has been no report of Korean CES cases with molecular cytogenetic confirmation. In this study, we present the phenotypic and genetic characteristics of a 3-month-old boy with CES. Clinical findings included micropthalmia, multiple colobomata, and renal and genital anomalies. Cytogenetic analyses showed the presence of a supernumerary marker chromosome, which was identified as a bisatellited and isodicentric chromosome derived from an acrocentric chromosome. The results of array comparative genomic hybridization and fluorescence in situ hybridization studies confirmed the karyotype as 47,XY,+mar.ish idic(22)(q11.1) (D22S43+).arr 22q11.1(15,500,000-15,900,000)x4, resulting in a partial tetrasomy of 22q11.1. To the best of our knowledge, this is the first report in Korea of CES confirmed by cytogenetic and molecular cytogenetic analyses. PMID:21165297

  5. Partial tetrasomy of chromosome 22q11.1 resulting from a supernumerary isodicentric marker chromosome in a boy with cat-eye syndrome.

    PubMed

    Ko, Jung Min; Kim, Jun Bum; Pai, Ki Soo; Yun, Jun-No; Park, Sang-Jin

    2010-12-01

    The 22q11 region has been implicated in chromosomal rearrangements that result in altered gene dosage, leading to three different congenital malformation syndromes: DiGeorge syndrome, cat-eye syndrome (CES), and der(22) syndrome. Although DiGeorge syndrome is a common genomic disorder on 22q11, CES is quite rare, and there has been no report of Korean CES cases with molecular cytogenetic confirmation. In this study, we present the phenotypic and genetic characteristics of a 3-month-old boy with CES. Clinical findings included micropthalmia, multiple colobomata, and renal and genital anomalies. Cytogenetic analyses showed the presence of a supernumerary marker chromosome, which was identified as a bisatellited and isodicentric chromosome derived from an acrocentric chromosome. The results of array comparative genomic hybridization and fluorescence in situ hybridization studies confirmed the karyotype as 47,XY,+mar.ish idic(22)(q11.1) (D22S43+).arr 22q11.1(15,500,000-15,900,000)x4, resulting in a partial tetrasomy of 22q11.1. To the best of our knowledge, this is the first report in Korea of CES confirmed by cytogenetic and molecular cytogenetic analyses.

  6. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yaoqin; Liu, Jin; Warman, M.L.

    Osteoporosis-pseudoglioma syndrome (OPS) is an autosomal recessive disorder characterized by severe juvenile-onset osteoporosis and congenital or juvenile-onset blindness. The pathogenic mechanism is not known. Clinical, biochemical, and microscopic analyses suggest that OPS may be a disorder of matrix homeostasis rather than a disorder of matrix structure. Consequently, identification of the OPS gene and its protein product could provide insights regarding common osteoporotic conditions, such as postmenopausal and senile osteoporosis. As a first step toward determining the cause of OPS, we utilized a combination of traditional linkage analysis and homozygosity mapping to assign the OPS locus to chromosome region 11q12-13. Mappingmore » was accomplished by analyzing 16 DNA samples (seven affected individuals) from three different consanguineous kindreds. Studies in 10 additional families narrowed the candidate region, supported locus homogeneity, and did not detect founder effects. The OPS locus maps to a 13-cM interval between D11S1298 and D11S971 and most likely lies in a 3-cM region between GSTP1 and D11S1296. At present, no strong candidate genes colocalize with OPS. 33 refs., 2 figs., 1 tab.« less

  7. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, P.L.; Gancher, S.T.; Nutt, J.G.

    1995-07-01

    Episodic ataxia (EA) is a rare neurological disorder characterized by attacks of generalized ataxia and near-normal neurological function between attacks. Most inherited cases are the result of an autosomal dominant condition with unknown neuropathology. It is heterogeneous and includes at least two distinct forms. In EA-1, attacks last minutes and interictal myokymia may be present. In EA-2, attacks may last hours and interictal nystagmus may occur. We reported linkage in four EA-1 families to chromosome 12p13 and identified mutations in these families in a potassium channel gene, KCNA1. Recently, we reported linkage in two EA-2 families to a 30-cM regionmore » on chromosome 19p. This report is based on members of the same two families and one additional kindred. 18 refs., 1 fig., 1 tab.« less

  8. High-resolution meiotic and physical mapping of the Best`s vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, B.H.F.; Vogt, G.; Walker, D.

    1994-09-01

    Vitelliform macular dystrophy, also known as Best`s disease, is a juvenile-onset macular degeneration with autosomal dominant inheritance. It is characterized by well-demarcated accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium (RPE) and classically results in an egg yolk-like appearance of the macula. Typically, carriers of the disease gene show a specific electrophysiological sign which can be detected by electrooculography (EOG). The EOG measures a standing potential between the cornea and the retina which is primarily generated by the RPE. The histopathological findings as well as the EOG abnormalities suggest that Best`s disease is a generalized disorder ofmore » the RPE. The basic biochemical defect is still unknown. As a first step in the positional cloning of the defective gene, the Best`s disease locus was mapped to chromosome 11 between markers at D11S871 and INT2. Subsequently, his region was refined to a 3.7 cM interval flanked by loci D11S903 and PYGM. To further narrow the D11S903-PYGM interval and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best`s disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best`s disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 and at D11S480 in band q13.2-13.3. Our study demonstrates that the physical size of the Best`s disease region is exceedingly larger than was previously estimated from the genetic data due to the proximity of the defective gene to the centromere of chromosome 11.« less

  9. Two Y-chromosome-specific restriction fragment length polymorphisms (DYS11 and DYZ8) in Italian and Greek migrants to Australia.

    PubMed

    Mitchell, R J; Earl, L; Williams, J W

    1993-06-01

    The part of the Y chromosome not involved in recombination has been found to exhibit an extremely low frequency of DNA restriction fragment length polymorphisms (RFLPs) compared with either the X chromosome or autosomes. Also, the few Y-chromosome-specific RFLPs that have been identified have rarely been examined in more than one population. In this study two Y-chromosome-specific RFLPs at loci DYS11 and DYZ8 are examined in Italian and Greek migrants to Australia. The frequency of the rarer (8.5-kb) TaqI allele at DYS11 was 21% in Italians and even greater (34%) in Greeks. There is an inverse relationship between the frequency of the 8.5-kb allele and latitude on the Italian mainland; the regional variation (based on subject's birthplace in Italy) was significant (p < 0.01). The incidence of the 8.5-kb allele in southern Italy may reflect Greek colonization during pre-Roman times when this region was part of Magna Graecia. The frequency of the variant TaqI allele (7, 4 kb) at the DYZ8 locus is much higher in both Greeks and Italians (31% in each) than in Germans (5%), the only previously examined population. DYZ8 shows considerably less variation than DYS11 across the regional divisions of both Greece and Italy. The present findings, when added to the few other data available, indicate that these two Y-chromosome-specific loci are useful markers for investigating population affinities through the paternal line. Also, heterogeneity at these two loci (and added to that at the DYS1 locus) suggests that Mediterranean populations, compared with other groups, exhibit a high level of diversity of Y-chromosome-specific RFLPs.

  10. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4.

    PubMed

    Thiel, Cora S; Huge, Andreas; Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-01-01

    In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5 , GAPDH , HPRT1 , PLA2G4A , and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10 -4 and 9 g), 20-40% remained unchanged in microgravity (between 10 -4 and 10 -2  g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.

  11. A rare case of a three way complex variant positive Philadelphia translocation involving chromosome (9;11;22)(q34;p15;q11) in chronic myeloid leukemia: A case report

    PubMed Central

    Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood

    2016-01-01

    The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests. PMID:27602125

  12. Physical structure and chromosomal localization of a gene encoding human p58[sup clk-1], a cell division control related protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipers, P.G.

    1992-01-01

    The gene for the human p58[sup clk[minus]1] protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58[sup clk[minus]1] chromosomal gene maps to 1p36, while a highly related p58[sup clk[minus]1] sequence of unknown nature maps to chromosome 15. Assignment of a p34[sup cdc2]-related gene to 1p36 region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma and endocrine neoplasia among others. Aberrant expression of this protein kinase negatively regulates normalmore » cellular growth. The p58[sup clk[minus]1] protein contains a central domain of 299 amino acids that is 46% identical to human p34[sup cdc2], the master mitotic protein kinase. This dissertation details the complete structure of the p58[sup clk[minus]1] chromosomal gene, including its putative promoter region, transcriptional start sites, exonic sequences, and intron/exon boundary sequences. The gene is 10 kb in size and contains 12 exons and 11 introns. Interestingly, the rather large 2.0 kb 3[prime] untranslated region is interrupted by an intron that separates a region containing numerous AUUUA destabilization motifs from the coding region. Furthermore, the expression of this gene in normal human tissues, as well as several human tumor cell samples and lines, is examined. The origin of multiple human transcripts from the same chromosomal gene, and the possible differential stability of these various transcripts, is discussed with regard to the transcriptional and post-transcriptional regulation of this gene. This is the first report of the chromosomal gene structure of a member of the p34[sup cdc2] supergene family.« less

  13. A foetus with 18p11.32-q21.2 duplication and Xp22.33-p11.1 deletion derived from a maternal reciprocal translocation t(X;18)(q13;q21.3).

    PubMed

    Chen, Jun-Kun; Liu, Ping; Hu, Li-Qin; Xie, Qing; Huang, Quan-Fei; Liu, Hai-Liang

    2018-01-01

    Non-invasive prenatal testing (NIPT) evaluates circulating cell-free DNA (cfDNA) and has been widely applied, with highly accurate results for detecting foetal trisomies 21, 18 and 13. Recently, increasing attention has been paid to the clinical application of the non-invasive detection of foetal sub-chromosomal duplications and deletions beyond common aneuploidies. A 32-year-old healthy pregnant woman was referred to the Medical Genetic Centre of Ganzhou Maternal and Child Health Care Hospital. As routine practice, ultrasound examination at a gestational age of 16 weeks showed that the foetus is normal. To avoid invasive prenatal diagnosis procedures, an NIPT was offered to further screen for common foetal chromosomal abnormalities. The result showed that there was an approximately 50.94 Mb duplication in p11.32-q21.2 of chromosome 18 and an approximately 58.46 Mb deletion in p22.33-p11.1 of chromosome X. In addition, the chromosome karyotypes of the parents and foetus were also analysed. Chromosome karyotype analysis results showed that foetal karyotype was 46,X,der(18), the maternal karyotype was 46,XX,t(X;18)(q13;q21.3), and the paternal karyotype revealed no obvious abnormality. In this case, we successfully detected a healthy pregnant woman with balanced translocation X;18(q13;q21.3) and described the foetal karyotype as 46,X,der(18)t(X;18)(q11;q21.1)mat. Our report illustrated these cases which present complex X;autosome balance translocation and X;autosome unbalance translocation which may contribute to severe clinical phenotypes. In addition, our report also proved that the interruption of genes in the Xq critical region is not only reason of primary infertility. Finally, we prompted that NIPT might play a role in the first trimester screening of sub-chromosomal rearrangement.

  14. Chromosomal Translocations in the Parasite Leishmania by a MRE11/RAD50-Independent Microhomology-Mediated End Joining Mechanism

    PubMed Central

    Laffitte, Marie-Claude N.; Leprohon, Philippe; Hainse, Maripier; Légaré, Danielle; Masson, Jean-Yves; Ouellette, Marc

    2016-01-01

    The parasite Leishmania often relies on gene rearrangements to survive stressful environments. However, safeguarding a minimum level of genome integrity is important for cell survival. We hypothesized that maintenance of genomic integrity in Leishmania would imply a leading role of the MRE11 and RAD50 proteins considering their role in DNA repair, chromosomal organization and protection of chromosomes ends in other organisms. Attempts to generate RAD50 null mutants in a wild-type background failed and we provide evidence that this gene is essential. Remarkably, inactivation of RAD50 was possible in a MRE11 null mutant that we had previously generated, providing good evidence that RAD50 may be dispensable in the absence of MRE11. Inactivation of the MRE11 and RAD50 genes led to a decreased frequency of homologous recombination and analysis of the null mutants by whole genome sequencing revealed several chromosomal translocations. Sequencing of the junction between translocated chromosomes highlighted microhomology sequences at the level of breakpoint regions. Sequencing data also showed a decreased coverage at subtelomeric locations in many chromosomes in the MRE11-/-RAD50-/- parasites. This study demonstrates an MRE11-independent microhomology-mediated end-joining mechanism and a prominent role for MRE11 and RAD50 in the maintenance of genomic integrity. Moreover, we suggest the possible involvement of RAD50 in subtelomeric regions stability. PMID:27314941

  15. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    PubMed

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    PubMed

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  17. Construction of a DNA library representing 15q11-13 by subtraction of two flow sorted marker chromosome-specific libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, E.; Werelius, B.; Nordenskjoeld, M.

    Constitutional extra {open_quotes}marker chromosomes{close_quotes} are found in {approx}0.5/1000 of newborns. Of these, 50% are inverted duplications of the pericentromeric region of chromosome 15, including two variants; (1) inv dup(15)(pter{yields}q11:q11{yields}pter) and (2) inv dup(15) (pter{yields}q12-13::q12-13{yields}pter). Variant (1) is found in phenotypically normal individuals, whereas variant (2) will produce a typical clinical picture including mental retardation, autism, hyperactivity and discrete dysmorphic features. Fluorescence in situ hybridization (FISH) using single copy probes from the Prader-Willi region confirms these observations as well as chromosome painting using a flow-sorted marker chromosome-specific library from a variant (1) marker, hybridized to the chromosomes of a patient withmore » a variant (2) marker chromosome. Followingly, a flow-sorted biotinylated variant (1) library was subtracted from a non-labeled variant (2) library using magnetic beads and subsequent amplification by degenerate oligonucleotide-primed PCR (DOP-PCR). The successful result was demonstrated by using the amplified material for chromosome painting on chromosome slides from variant (1) and variant (2) patients. We have constructed a library from 15q11-13. This region contains genes producing a specific abnormal phenotype when found in a tri- or tetrasomic state. The region also contains the genes responsible for the Prader-Willi and Angelman syndromes when the paternal/maternal copy is missing, respectively. It is therefore a region where parental imprinting plays an important role. The isolated library may be used to isolate single copy clones which will allow further investigations of this region.« less

  18. Confirmation of Down syndrome critical region by FISH analysis in a patient with add(21)(p11)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Naomichi; Niikawa, Norio; Mikawa, Makoto

    1995-12-04

    We have studied a patient with clinical Down syndrome (DS) who has a mosaic 46, XX/46, XX, 21p+ karyotype. The patient was born at 39 weeks of gestation with a birth weight of 3,025 g to healthy parents. At age 2 months, she was diagnosed clinically to have DS; she had flat facies, upslanted palpebral fissures, epicanthal folds, telecanthus, flat nasal bridge, abnormal dentition, malformed ears, short neck, short fingers, clinodactyly with single flexion crease of the fifth fingers, hyperextension of joints, pes planus, distal axial triradii, and bilateral tibial arch patterns. Chromosome analysis showed mosaicism consisting of a normalmore » 46,XX cell line and a line with a 21p+ chromosome, the final karyotype being mos46,XX[57]/46,XX,add(21)(p11)[43]. Although the origin of an additional segment on chromosome 21 was not identified with conventional banding analyses, it was suspected to represent partial trisomy 21 on the basis of clinical manifestations. 6 refs., 2 figs.« less

  19. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    PubMed Central

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-01

    AIM: To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. METHODS: Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were eletrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by χ2 test. RESULTS: Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathological features. CONCLUSION: By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm). PMID:18176968

  20. Are there tumor suppressor genes on chromosome 4p in sporadic colorectal carcinoma?

    PubMed

    Zheng, Hai-Tao; Jiang, Li-Xin; Lv, Zhong-Chuan; Li, Da-Peng; Zhou, Chong-Zhi; Gao, Jian-Jun; He, Lin; Peng, Zhi-Hai

    2008-01-07

    To study the candidate tumor suppressor genes (TSG) on chromosome 4p by detecting the high frequency of loss of heterozygosity (LOH) in sporadic colorectal carcinoma in Chinese patients. Seven fluorescent labeled polymorphic microsatellite markers were analyzed in 83 cases of colorectal carcinoma and matched normal tissue DNA by PCR. PCR products were electrophoresed on an ABI 377 DNA sequencer. Genescan 3.7 and Genotype 3.7 software were used for LOH scanning and analysis. The same procedure was performed by the other six microsatellite markers spanning D4S3013 locus to make further detailed deletion mapping. Comparison between LOH frequency and clinicopathological factors was performed by c2 test. Data were collected from all informative loci. The average LOH frequency on 4p was 24.25%, and 42.3% and 35.62% on D4S405 and D4S3013 locus, respectively. Adjacent markers of D4S3013 displayed a low LOH frequency (< 30%) by detailed deletion mapping. Significant opposite difference was observed between LOH frequency and tumor diameter on D4S412 and D4S1546 locus (0% vs 16.67%, P = 0.041; 54.55% vs 11.11%, P = 0.034, respectively). On D4S403 locus, LOH was significantly associated with tumor gross pattern (11.11%, 0, 33.33%, P = 0.030). No relationship was detected on other loci compared with clinicopathological features. By deletion mapping, two obvious high frequency LOH regions spanning D4S3013 (4p15.2) and D4S405 (4p14) locus are detected. Candidate TSG, which is involved in carcinogenesis and progression of sporadic colorectal carcinoma on chromosome 4p, may be located between D4S3017 and D4S2933 (about 1.7 cm).

  1. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    PubMed

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  2. Müllerian Agenesis in Cat Eye Syndrome and 22q11 Chromosome Abnormalities: A Case Report and Literature Review.

    PubMed

    AlSubaihin, Abdulmajeed; VanderMeulen, John; Harris, Kate; Duck, John; McCready, Elizabeth

    2018-04-01

    Although Müllerian agenesis is the second most common cause of primary amenorrhea the underlying etiology in most cases is unknown. Müllerian agenesis has been reported as a rare finding associated with chromosomal aberrations of the 22q11 chromosomal region including at least 1 individual with cat eye syndrome (CES) and 10 individuals with deletions or duplications of the 22q11.2 region. However, a potential link between 22q11 abnormalities and uterine malformations has been difficult to adequately ascertain because of the limited case reports in the literature. We report a second case of Müllerian agenesis in a girl with CES. A 16-year-old girl presented with bilateral colobomata, primary amenorrhea, and absence of the uterus and upper vagina on pelvic magnetic resonance imaging. Microarray analysis showed tetrasomy of the pericentromeric region of chromosome 22 diagnostic of CES. Müllerian aplasia/hypoplasia might represent a rare feature in CES and should be considered in the investigation of young girls with this syndrome. An increasing number of cases with 22q11 chromosome abnormalities and Müllerian agenesis further highlights the possibility of a gene within the 22q11 region that might mediate normal Müllerian development in girls. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  3. Rai1 duplication causes physical and behavioral phenotypes in a mouse model of dup(17)(p11.2p11.2)

    PubMed Central

    Walz, Katherina; Paylor, Richard; Yan, Jiong; Bi, Weimin; Lupski, James R.

    2006-01-01

    Genomic disorders are conditions that result from DNA rearrangements, such as deletions or duplications. The identification of the dosage-sensitive gene(s) within the rearranged genomic interval is important for the elucidation of genes responsible for complex neurobehavioral phenotypes. Smith-Magenis syndrome is associated with a 3.7-Mb deletion in 17p11.2, and its clinical presentation is caused by retinoic acid inducible 1 (RAI1) haploinsufficiency. The reciprocal microduplication syndrome, dup(17)(p11.2p11.2), manifests several neurobehavioral abnormalities, but the responsible dosage-sensitive gene(s) remain undefined. We previously generated a mouse model for dup(17)(p11.2p11.2), Dp(11)17/+, that recapitulated most of the phenotypes observed in human patients. We have now analyzed compound heterozygous mice carrying a duplication [Dp(11)17] in one chromosome 11 along with a null allele of Rai1 in the other chromosome 11 homologue [Dp(11)17/Rai1– mice] in order to study the relationship between Rai1 gene copy number and the Dp(11)17/+ phenotypes. Normal disomic Rai1 gene dosage was sufficient to rescue the complex physical and behavioral phenotypes observed in Dp(11)17/+ mice, despite altered trisomic copy number of the other 18 genes present in the rearranged genomic interval. These data provide a model for variation in copy number of single genes that could influence common traits such as obesity and behavior. PMID:17024248

  4. Chromosome 9p21 in Amyotrophic Lateral Sclerosis in Finland: A Genome-Wide Association Study

    PubMed Central

    Laaksovirta, Hannu; Peuralinna, Terhi; Schymick, Jennifer C.; Scholz, Sonja W.; Lai, Shaoi-Lin; Myllykangas, Liisa; Sulkava, Raimo; Jansson, Lilja; Hernandez, Dena G.; Gibbs, J. Raphael; Nalls, Michael A.; Heckerman, David; Tienari, Pentti J.; Traynor, Bryan J.

    2010-01-01

    Introduction The genetic etiology of amyotrophic lateral sclerosis (ALS) is not well understood. Finland is a well-suited location for a genome-wide association study of ALS, as the incidence of the disease is one of the highest in the world, and because the genetic homogeneity of the Finnish population enhances the ability to detect risk loci. Methods We performed a genome-wide association study of 442 Finnish patients diagnosed with ALS, and 521 Finnish control subjects using Illumina genome-wide genotyping arrays. DNA was collected from patients attending an ALS specialty clinic that receives referrals from neurologists throughout Finland, whereas the control samples were obtained from a population-based study of elderly Finnish individuals. Individuals known to carry D90A alleles of the SOD1 gene (n = 40) were included in the final analysis as positive controls to determine if our GWAS was able to detect an association signal at this locus. Findings We identified two association peaks that exceeded genome-wide significance. One of these was located on chromosome 21q22 (rs13048019, p = 2·58×10−8) that corresponded to the known autosomal recessive D90A allele of the SOD1 gene. The other was detected in a 232kb block of linkage disequilibrium (rs3849942, p = 9·11×10−11) in a region of chromosome 9p that has been previously identified by linkage studies of ALS families. Within this region, we defined a 42-SNP haplotype that significantly increased risk of developing ALS (p = 4·2×10−33 among familial cases, odds ratio = 21·0, 95% CI = 11·2–39·1), and which overlapped with an association locus recently reported for fronto-temporal dementia (FTD). Based on the 93 familial ALS cases included in the analysis, population attributable risk percent for the chromosome 9p21 locus was 37.9% (95% CI, 27·7 – 48·1%), and for D90A homozygosity was 25·5% (95% CI, 16·9 – 34·1%). Interpretation In summary, we present evidence that the chromosome 9p21 ALS

  5. Familial interstitial deletion of the short arm of chromosome 4 (p15.33-p16.3) characterized by molecular cytogenetic analysis.

    PubMed

    Basinko, Audrey; Douet-Guilbert, Nathalie; Parent, Philippe; Blondin, Gilles; Mingam, M; Monot, Françoise; Morel, Frédéric; Le Bris, Marie-Josée; De Braekeleer, Marc

    2008-04-01

    This 15-month boy was expressed at the cytogenetic laboratory because of psychomotor development delay. He was tall and had plagiocephaly, micrognathia, high nasal bridge, anteverted nostrils and pectus excavatum. A 46,XY,del(4)(p16.1p16.3) karyotype was found using high-resolution R-banding technique. FISH studies using the LSI Wolf-Hirschhorn dual color 4p16.3 and the TelVysion 4p probes showed no deletion. Using BACs, the distal breakpoint was located in 4p16.3, between RP11-165K4 and RP11-717M10 and the proximal breakpoint in 4p15.33, between RP11-74M11 and RP11-1J7; therefore, approximately 7.96 Mb of the short arm were deleted. The maternal karyotype showed the same deletion, but in a mosaic status. Two distinct phenotypes have been recognized on the basis of the chromosomal bands involved in 4p deletion: the Wolf-Hirschhorn syndrome (WHS) and a proximal 4p deletion syndrome (4p15.2-p15.32). Our observation confirms that the basic WHS phenotype maps distally to this region. Copyright 2008 Wiley-Liss, Inc.

  6. 16p11.2–p12.2 duplication syndrome; a genomic condition differentiated from euchromatic variation of 16p11.2

    PubMed Central

    Barber, John C K; Hall, Victoria; Maloney, Viv K; Huang, Shuwen; Roberts, Angharad M; Brady, Angela F; Foulds, Nicki; Bewes, Beverley; Volleth, Marianne; Liehr, Thomas; Mehnert, Karl; Bateman, Mark; White, Helen

    2013-01-01

    Chromosome 16 contains multiple copy number variations (CNVs) that predispose to genomic disorders. Here, we differentiate pathogenic duplications of 16p11.2–p12.2 from microscopically similar euchromatic variants of 16p11.2. Patient 1 was a girl of 18 with autism, moderate intellectual disability, behavioural difficulties, dysmorphic features and a 7.71-Mb (megabase pair) duplication (16:21 521 005–29 233 146). Patient 2 had a 7.81-Mb duplication (16:21 382 561–29 191 527), speech delay and obsessional behaviour as a boy and, as an adult, short stature, macrocephaly and mild dysmorphism. The duplications contain 65 coding genes of which Polo-like kinase 1 (PLK1) has the highest likelihood of being haploinsufficient and, by implication, a triplosensitive gene. An additional 1.11-Mb CNV of 10q11.21 in Patient 1 was a possible modifier containing the G-protein-regulated inducer of neurite growth 2 (GPRIN2) gene. In contrast, the euchromatic variants in Patients 3 and 4 were amplifications from a 945-kb region containing non-functional immunoglobulin heavy chain (IGHV), hect domain pseudogene (HERC2P4) and TP53-inducible target gene 3 (TP53TG3) loci in proximal 16p11.2 (16:31 953 353–32 898 635). Paralogous pyrosequencing gave a total copy number of 3–8 in controls and 8 to >10 in Patients 3 and 4. The 16p11.2–p12.2 duplication syndrome is a recurrent genomic disorder with a variable phenotype including developmental delay, dysmorphic features, mild to severe intellectual disability, autism, obsessive or stereotyped behaviour, short stature and anomalies of the hands and fingers. It is important to differentiate pathogenic 16p11.2–p12.2 duplications from harmless, microscopically similar euchromatic variants of proximal 16p11.2, especially at prenatal diagnosis. PMID:22828807

  7. Mechanisms of ring chromosome formation, ring instability and clinical consequences.

    PubMed

    Guilherme, Roberta S; Meloni, Vera F Ayres; Kim, Chong A; Pellegrino, Renata; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I

    2011-12-21

    The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).

  8. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    PubMed

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Localization of a locus for juvenile myoclonic epilepsy on chromosome 6p11-21.2 and evidence for genetic heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, A.W.; Delgado-Escueta, A.V.; Alonso, V.M.E.

    1994-09-01

    Juvenile myoclonic epilepsy (JME) is a common form of primary idiopathic generalized epilepsy characterized by myoclonias, tonic-clonic or clonic tonic-clonic convulsions and absences. Ictal electroencephalograms (EEGs) show high amplitude multispikes folowed by slow waves and interictal EEGs manifest 3.5-6 Hz diffuse multispike wave complexes. JME affected about 7-10% of patients with epilepsies and its onset peaks between 13-15 years of age. We recently mapped a JME locus on chromosome 6p21.1-6p11 by linkage analysis of one relatively large JME family from Los Angeles and Belize. Assuming autosomal dominant inheritance with 70% penetrance, pairwise analyses tightly linked JME to D6S257 (Z =more » 3.67), D6S428 (Z = 3.08) and D6S272 (Z = 3.56) at {theta} = 0, m = f. Recombination and multipoints linkage analysis also suggested a locus is between markers D6S257 and D6S272. We then screened three relatively larger Mexican JME pedigrees with D6S257, D6S272, D6S282, TNF, D6S276, D6S273, D6S105 and F13A1 on chromosome 6p. Assuming autosomal dominant inheritance with incomplete penetrance, linkage to chromosome 6p DNA markers are excluded. Our findings underline the genetic heterogeneity of juvenile myoclonic epilepsy.« less

  10. Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p.

    PubMed

    Cody, N A L; Ouellet, V; Manderson, E N; Quinn, M C J; Filali-Mouhim, A; Tellis, P; Zietarska, M; Provencher, D M; Mes-Masson, A-M; Chevrette, M; Tonin, P N

    2007-01-25

    Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.

  11. A large Indian family with rearrangement of chromosome 4p16 and 3p26.3 and divergent clinical presentations.

    PubMed

    Iype, Thomas; Alakbarzade, Vafa; Iype, Mary; Singh, Royana; Sreekantan-Nair, Ajith; Chioza, Barry A; Mohapatra, Tribhuvan M; Baple, Emma L; Patton, Michael A; Warner, Thomas T; Proukakis, Christos; Kulkarni, Abhi; Crosby, Andrew H

    2015-11-10

    The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance. We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features. We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals.

  12. Subtelomeric Deletion of Chromosome 10p15.3: Clinical Findings and Molecular Cytogenetic Characterization

    PubMed Central

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H.; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia AL; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B.A.; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-01-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11,), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM# 608668) and DIP2C (OMIM# 611380) (UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. PMID:22847950

  13. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization.

    PubMed

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-09-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.

  14. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji

    1997-03-31

    Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISHmore » ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.« less

  15. The gene coding for the B cell surface protein CD19 is localized on human chromosome 16p11.

    PubMed

    Stapleton, P; Kozmik, Z; Weith, A; Busslinger, M

    1995-02-01

    The CD19 gene codes for one of the earliest markers of the human B cell lineage and is a target for the B lymphoid-specific transcription factor BSAP (Pax-5). The transmembrane protein CD19 has been implicated in controlling proliferation of mature B lymphocytes by modulating signal transduction through the antigen receptor. In this study, we have employed Southern blot and fluorescence in situ hybridization analyses to localize the CD19 gene to human chromosome 16p11.

  16. [A case of pervasive developmental disorder with chromosomal translocation (X; 4) (p11; q13)].

    PubMed

    Azzoni, A; Raja, M

    2006-01-01

    Chromosomal aberrations, with or without congenital physical abnormalities, have been frequently found associated with neuropsychiatric disorders, including mental retardation, psychosis, autism, and criminal behaviour. The meaning of the association frequently remains unclear. However, consistent findings of association between specific chromosomal abnormalities and clinical phenotype may provide evidence of a causal relationship and shed light on the pathogenesis of obscure disorders. Here, we present the case of a 28 year-old, Caucasian male affected by pervasive developmental disorder, associated with chromosomal translocation 46, XY, t (X; 4) (p11; q13), and abnormal facial features. A few days after birth, the patient was taken away from his parents and adopted for unknown reasons. No information is available about his biological relatives. Mild delay in the development of spoken language was reported. Since early childhood, the patient's behaviour was characterized by troublesome relationship with his parents and his fellows, and persistent violation of norms and rules at home and at school. Consequently, social and school functioning was poor. When he was eight, verbal and motor stereotypy appeared for the first time. As an adolescent, he was more and more aggressive. He exhibited countless episodes of rage and verbal and physical aggressiveness. After he had completed secondary school, his way of life was chaotic. He got into the habit of staying away from home, sleeping in the day and vagabonding at night. He began to abuse alcohol. Grandiosity and persecutory delusions became evident. He claimed to hate the Vatican, the Pope, and the Polish people and to be the Devil, the Antichrist. He feared that his food was poisoned by his mother and refused to eat at home any more. He loved to remain in a cage with two wild dogs, accumulating and keeping bottles full of his urine. He often engaged in violent fights in the street with tramps and foreigners. Finally

  17. Sperm-FISH analysis in a pericentric chromosome 1 inversion, 46,XY,inv(1)(p22q42), associated with infertility.

    PubMed

    Chantot-Bastaraud, S; Ravel, C; Berthaut, I; McElreavey, K; Bouchard, P; Mandelbaum, J; Siffroi, J P

    2007-01-01

    No phenotypic effect is observed in most inversion heterozygotes. However, reproductive risks may occur in the form of infertility, spontaneous abortions or chromosomally unbalanced children as a consequence of meiotic recombination between inverted and non-inverted chromosomes. An odd number of crossovers within the inverted segment results in gametes bearing recombinant chromosomes with a duplication of the region outside of the inversion segment of one arm and a deletion of the terminal segment of the other arm [dup(p)/del(q) and del(p)/dup(q)]. Using fluorescence in-situ hybridization (FISH), the chromosome segregation of a pericentric inversion of chromosome 1 was studied in spermatozoa of a inv(1)(p22q42) heterozygous carrier. Three-colour FISH was performed on sperm samples using a probe mixture consisting of chromosome 1p telomere-specific probe, chromosome 1q telomere-specific probe and chromosome 18 centromere-specific alpha satellite DNA probe. The frequency of the non-recombinant product was 80.1%. The frequencies of the two types of recombinants carrying a duplication of the short arm and a deletion of the long arm, and vice versa, were respectively 7.6 and 7.2%, and these frequencies were not statistically significant from the expected ratio of 1:1. Sperm-FISH allows the further understanding of segregation patterns and their effect on reproductive failure and allows an accurate genetic counselling.

  18. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.

    PubMed

    Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison

    2008-03-01

    Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.

  19. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Correlation of Physical and Cytogenetic Maps in Chromosomal Region 86e-87f

    PubMed Central

    Deak, P.; Omar, M. M.; Saunders, RDC.; Pal, M.; Komonyi, O.; Szidonya, J.; Maroy, P.; Zhang, Y.; Ashburner, M.; Benos, P.; Savakis, C.; Siden-Kiamos, I.; Louis, C.; Bolshakov, V. N.; Kafatos, F. C.; Madueno, E.; Modolell, J.; Glover, D. M.

    1997-01-01

    We have established a collection of 2460 lethal or semi-lethal mutant lines using a procedure thought to insert single P elements into vital genes on the third chromosome of Drosophila melanogaster. More than 1200 randomly selected lines were examined by in situ hybridization and 90% found to contain single insertions at sites that mark 89% of all lettered subdivisions of the Bridges' map. A set of chromosomal deficiencies that collectively uncover ~25% of the euchromatin of chromosome 3 reveal lethal mutations in 468 lines corresponding to 145 complementation groups. We undertook a detailed analysis of the cytogenetic interval 86E-87F and identified 87 P-element-induced mutations falling into 38 complementation groups, 16 of which correspond to previously known genes. Twenty-one of these 38 complementation groups have at least one allele that has a P-element insertion at a position consistent with the cytogenetics of the locus. We have rescued P elements and flanking chromosomal sequences from the 86E-87F region in 35 lines with either lethal or genetically silent P insertions, and used these as probes to identify cosmids and P1 clones from the Drosophila genome projects. This has tied together the physical and genetic maps and has linked 44 previously identified cosmid contigs into seven ``supercontigs'' that span the interval. STS data for sequences flanking one side of the P-element insertions in 49 lines has identified insertions in the αγ element at 87C, two known transposable elements, and the open reading frames of seven putative single copy genes. These correspond to five known genes in this interval, and two genes identified by the homology of their predicted products to known proteins from other organisms. PMID:9409831

  20. Identifying CNVs in 15q11q13 and 16p11.2 of Patients with Seizures Increases the Rates of Detecting Pathogenic Changes

    PubMed Central

    Vianna, Gabrielle S.; Freitas, Mariana L.; Oliveira, Valdirene T.de; Pietra, Rafaella X.; Gonçalves, Michele da S.; Rocha, Patrícia P.O.; Monteiro, Rejane A.C.; Ferreira, Luana C.A.; Xavier, Rosana R.; Carvalho, Andréia M.; Lima, Patrícia R. de M.; Monteiro, Maria Augusta N.P.; Mateo, Elvis C.; Giannetti, Juliana G.; César, Giovana da C.; Lima, Joziele de S.; Medeiros, Paula F.V.; Jehee, Fernanda S.

    2016-01-01

    Chromosomal changes are frequently observed in patients with syndromic seizures. Understanding the genetic etiology of this pathology is crucial for the guidance and genetic counseling of families as well as for the establishment of appropriate treatment. A combination of MLPA kits was used to identify pathogenic CNVs in a group of 70 syndromic patients with seizures. Initially, a screening was performed for subtelomeric changes (MLPA P036 and P070 kits) and for the regions most frequently related to microdeletion/microduplication syndromes (MLPA P064). Subsequently, the MLPA P343 was used to identify alterations in the 15q11q13, 16p11.2, and 22q13 regions. Screening with MLPA P343 allowed a 10-15.7% increase in the detection rate of CNVs reinforcing the importance of investigating changes in 15q11q13 and 16p11.2 in syndromic patients with seizures. We also demonstrated that the MLPA technique is an alternative with a great diagnostic potential, and we proposed its use as part of the initial assessment of syndromic patients with seizures. PMID:27920636

  1. High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma

    PubMed Central

    Wistuba, I I; Maitra, A; Carrasco, R; Tang, M; Troncoso, P; Minna, J D; Gazdar, A F

    2002-01-01

    Our recent genome-wide allelotyping analysis of gallbladder carcinoma identified 3p, 8p, 9q and 22q as chromosomal regions with frequent loss of heterozygosity. The present study was undertaken to more precisely identify the presence and location of regions of frequent allele loss involving those chromosomes in gallbladder carcinoma. Microdissected tissue from 24 gallbladder carcinoma were analysed for PCR-based loss of heterozygosity using 81 microsatellite markers spanning chromosome 3p (n=26), 8p (n=14), 9q (n=29) and 22q (n=12) regions. We also studied the role of those allele losses in gallbladder carcinoma pathogenesis by examining 45 microdissected normal and dysplastic gallbladder epithelia accompanying gallbladder carcinoma, using 17 microsatellite markers. Overall frequencies of loss of heterozygosity at 3p (100%), 8p (100%), 9q (88%), and 22q (92%) sites were very high in gallbladder carcinoma, and we identified 13 distinct regions undergoing frequent loss of heterozygosity in tumours. Allele losses were frequently detected in normal and dysplastic gallbladder epithelia. There was a progressive increase of the overall loss of heterozygosity frequency with increasing severity of histopathological changes. Allele losses were not random and followed a sequence. This study refines several distinct chromosome 3p, 8p, 9q and 22q regions undergoing frequent allele loss in gallbladder carcinoma that will aid in the positional identification of tumour suppressor genes involved in gallbladder carcinoma pathogenesis. British Journal of Cancer (2002) 87, 432–440. doi:10.1038/sj.bjc.6600490 www.bjcancer.com © 2002 Cancer Research UK PMID:12177780

  2. Chromosomal location and gene paucity of the male specific region on papaya Y chromosome.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Hobza, Roman; Feltus, F Alex; Wang, Xiue; Jin, Weiwei; Skelton, Rachel L; Blas, Andrea; Lemke, Cornelia; Saw, Jimmy H; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Vyskot, Boris; Ming, Ray

    2007-08-01

    Sex chromosomes in flowering plants evolved recently and many of them remain homomorphic, including those in papaya. We investigated the chromosomal location of papaya's small male specific region of the hermaphrodite Y (Yh) chromosome (MSY) and its genomic features. We conducted chromosome fluorescence in situ hybridization mapping of Yh-specific bacterial artificial chromosomes (BACs) and placed the MSY near the centromere of the papaya Y chromosome. Then we sequenced five MSY BACs to examine the genomic features of this specialized region, which resulted in the largest collection of contiguous genomic DNA sequences of a Y chromosome in flowering plants. Extreme gene paucity was observed in the papaya MSY with no functional gene identified in 715 kb MSY sequences. A high density of retroelements and local sequence duplications were detected in the MSY that is suppressed for recombination. Location of the papaya MSY near the centromere might have provided recombination suppression and fostered paucity of genes in the male specific region of the Y chromosome. Our findings provide critical information for deciphering the sex chromosomes in papaya and reference information for comparative studies of other sex chromosomes in animals and plants.

  3. Partial trisomy 11q involving chromosome 1 detected by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorquodale, M.; Bereziouk, O.; McCorquodale, D.J.

    1994-09-01

    Partial trisomy 11q was detected in an infant delivered 3-4 weeks prematurely. The phenotype included slanted palpebral fissures, high arched palate, developmental delay, microcephaly, and cardiac defects, all of which occur in the majority of cases with this syndrome. Other features included a column-shaped skull, preauricular pit, single palmar crease, short, broad great toes, flat occiput, unilateral kidney agenesis, and strabismus. Chromosomes obtained from peripheral blood cells revealed the presence of extra material on the long arm of chromosome 1. The G-banding pattern of this extra material indicated that it might be derived from chromosome 1 or 11. Chromosomal {open_quotes}paints{close_quotes}more » showed that it was not chromosome 1 material, but was chromosome 11 material extending from band q21 to qter. Partial trisomy 11q arising from translocation of the 11q material to chromosome 2, 3, 4, 5, 6, 9, 10, 13, 17, 21, 22, and X has been reported previously, whereas translocation to chromosome 1 has not. The chromosome to which the 11q material is translocated does not alter the most frequent features of the partial trisomy 11q syndrome, but may influence other less common features.« less

  4. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkin, D.J.; Jones, C.; Kimbro, K.S.

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with themore » presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.« less

  5. Microduplications of 16p11.2 are Associated with Schizophrenia

    PubMed Central

    McCarthy, Shane; Makarov, Vladimir; Kirov, George; Addington, Anjene; McClellan, Jon; Yoon, Seungtai; Perkins, Dianna; Dickel, Diane E.; Kusenda, Mary; Krastoshevsky, Olga; Krause, Verena; Kumar, Ravinesh A.; Grozeva, Detelina; Malhotra, Dheeraj; Walsh, Tom; Zackai, Elaine H.; Kaplan, Paige; Ganesh, Jaya; Krantz, Ian D.; Spinner, Nancy B.; Roccanova, Patricia; Bhandari, Abhishek; Pavon, Kevin; Lakshmi, B.; Leotta, Anthony; Kendall, Jude; Lee, Yoon-ha; Vacic, Vladimir; Gary, Sydney; Iakoucheva, Lilia; Crow, Timothy J.; Christian, Susan L.; Lieberman, Jeffrey; Stroup, Scott; Lehtimäki, Terho; Puura, Kaija; Haldeman-Englert, Chad; Pearl, Justin; Goodell, Meredith; Willour, Virginia L.; DeRosse, Pamela; Steele, Jo; Kassem, Layla; Wolff, Jessica; Chitkara, Nisha; McMahon, Francis J.; Malhotra, Anil K.; Potash, James B.; Schulze, Thomas G.; Nöthen, Markus M.; Cichon, Sven; Rietschel, Marcella; Leibenluft, Ellen; Kustanovich, Vlad; Lajonchere, Clara M.; Sutcliffe, James S.; Skuse, David; Gill, Michael; Gallagher, Louise; Mendell, Nancy R.; Craddock, Nick; Owen, Michael J.; O’Donovan, Michael C.; Shaikh, Tamim H.; Susser, Ezra; DeLisi, Lynn E.; Sullivan, Patrick F.; Deutsch, Curtis K.; Rapoport, Judith; Levy, Deborah L.; King, Mary-Claire; Sebat, Jonathan

    2010-01-01

    Recurrent microdeletions and microduplications of a 600 kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders1-3. Here we report the strong association of 16p11.2 microduplications with schizophrenia in two large cohorts. In the primary sample, the microduplication was detected in 12/1906 (0.63%) cases and 1/3971 (0.03%) controls (P=1.2×10-5, OR=25.8). In the replication sample, the microduplication was detected in 9/2645 (0.34%) cases and 1/2420 (0.04%) controls (P=0.022, OR=8.3). For the series combined, microduplication of 16p11.2 was associated with 14.5-fold increased risk of schizophrenia (95% C.I. [3.3, 62]). A meta-analysis of multiple psychiatric disorders showed a significant association of the microduplication with schizophrenia, bipolar disorder and autism. The reciprocal microdeletion was associated only with autism and developmental disorders. Analysis of patient clinical data showed that head circumference was significantly larger in patients with the microdeletion compared with patients with the microduplication (P = 0.0007). Our results suggest that the microduplication of 16p11.2 confers substantial risk for schizophrenia and other psychiatric disorders, whereas the reciprocal microdeletion is associated with contrasting clinical features. PMID:19855392

  6. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juyal, R.C.; Figuera, L.E.; Hauge, X.

    1996-05-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosomemore » 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.« less

  7. Isolation of Notl sites from chromosome 22q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ten Hoeve, J.; Groffen, J.; Heisterkamp, N.

    1993-12-01

    Chromosome 22q11 contains a large number of interesting loci, including genes associated with cancer and developmental defects. The region is also the site of the lambda immunoglobulin variable and constants regions and the BCR, [gamma]-glutamyl transpeptidase, and GGT-like activity multigene families. Because of the complexities associated with mapping highly related gene families, the authors have examined the utility of mapping large areas of DNA using a defined approach. A total of 21 complete NotI sites from band q11 were cloned and ordered into six noncontiguous clusters of sites using a combination of somatic cell hybrid panels, NotI jumping and linkingmore » libraries, and fluorescence in situ hybridization. The largest cluster spanned an estimated 2 Mb of NotI fragments, the smallest 115 kb. Approximately 3.5 Mb of band q11 could be examined for rearrangements in NotI restriction enzyme fragments. A number of conserved sequences, two genes, and a minimum of two families of related sequences were identified adjacent to NotI sites. 51 refs., 5 figs., 4 tabs.« less

  8. Frequent epigenetic inactivation of chromosome 3p candidate tumor suppressor genes in gallbladder carcinoma.

    PubMed

    Riquelme, Erick; Tang, Moying; Baez, Sergio; Diaz, Alfonso; Pruyas, Martha; Wistuba, Ignacio I; Corvalan, Alejandro

    2007-05-18

    Gallbladder carcinoma (GBC) is a highly malignant neoplasm that represents the leading cause of death for cancer in Chilean females. There is limited information about the molecular abnormalities involved in its pathogenesis. We have identified a number of molecular changes in GBC, including frequent allelic losses at chromosome 3p regions. Four distinct 3p sites (3p12, 3p14.2, 3p21.3 and 3p22-24) with frequent and early allelic losses in the sequential pathogenesis of this neoplasm have been detected. We investigated epigenetic and genetic abnormalities in GBC affecting 6 candidate tumor suppressor genes (TSG) located in chromosome 3p, including DUTT1 (3p12), FHIT (3p14.2), BLU, RASSF1A, SEMA3B and hMLH1 (3p21.3). DNA extracted from frozen tissue obtained from 50 surgical resected GBCs was examined for gene promoter methylation using MSP (methylation-specific PCR) technique after bisulfite treatment in all 6 genes. In addition, we performed PCR-based mutation examination using SSCP in FHIT and RASSF1A genes and loss of heterozygosity (LOH) analysis using microdissected tissue in a subset of tumors for the 3p21.3 region with 8 microsatellite markers. A very high frequency of GBC methylation was detected in SEMA3B (46/50, 92%) and FHIT (33/50, 66%), intermediate incidences in BLU (13/50, 26%) and DUTT1 (11/50, 22%) and very low frequencies in RASSF1A (4/50, 8%) and hMLH1 (2/50, 4%). Allelic loss at 3p21.3 was found in nearly half of the GBCs examined. We conclude that epigenetic inactivation by abnormal promoter methylation is a frequent event in chromosome 3p candidate TSGs in GBC pathogenesis, especially affecting genes SEMA3B (3p21.3) and FHIT (3p14.2).

  9. Analysis of chromosome 22q11 copy number variations by multiplex ligation-dependent probe amplification for prenatal diagnosis of congenital heart defect.

    PubMed

    Zhang, Jingjing; Ma, Dingyuan; Wang, Yan; Cao, Li; Wu, Yun; Qiao, Fengchang; Liu, An; Li, Li; Lin, Ying; Liu, Gang; Liu, Cuiyun; Hu, Ping; Xu, Zhengfeng

    2015-01-01

    Congenital heart defects (CHD) represent one of the most common birth defects. This study aimed to evaluate the value of multiplex ligation-dependent probe amplification (MLPA) as a tool to detect the copy number variations (CNVs) of 22q11 in fetuses with CHD. A large cohort of 225 fetuses with CHD was screened by fetal echocardiography. Once common chromosome abnormalities in 30 fetuses were screened out by conventional G-banding analysis, the CNVs of chromosome 22q11 in the remaining 195 fetuses were determined by MLPA for prenatal genetic counseling. In 195 CHD fetuses with normal karyotype, 11 cases had pathological CNVs, including 22q11.2 deletion (seven cases), the deletion of 22q11 cat eye syndrome (CES) region (one case), 22q11.2 duplication (one case), 22q13.3 deletion (one case) and 17p13.3 deletion (one case). In total, our findings from MLPA screening represented 4.9 % in our cohort. Among these, three cases were inherited CNVs, and eight cases were de novo. These CNVs were further verified by single nucleotide polymorphism (SNP)-array analysis, and their chromosomal location was refined. This study indicated that MLPA could serve as an effective test for routine prenatal diagnosis of 22q11 in fetuses with CHD.

  10. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    PubMed

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  11. Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes.

    PubMed

    Szamalek, Justyna M; Goidts, Violaine; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2006-08-01

    The human and chimpanzee genomes are distinguishable in terms of ten gross karyotypic differences including nine pericentric inversions and a chromosomal fusion. Seven of these large pericentric inversions are chimpanzee-specific whereas two of them, involving human chromosomes 1 and 18, were fixed in the human lineage after the divergence of humans and chimpanzees. We have performed detailed molecular and computational characterization of the breakpoint regions of the human-specific inversion of chromosome 1. FISH analysis and sequence comparisons together revealed that the pericentromeric region of HSA 1 contains numerous segmental duplications that display a high degree of sequence similarity between both chromosomal arms. Detailed analysis of these regions has allowed us to refine the p-arm breakpoint region to a 154.2 kb interval at 1p11.2 and the q-arm breakpoint region to a 562.6 kb interval at 1q21.1. Both breakpoint regions contain human-specific segmental duplications arranged in inverted orientation. We therefore propose that the pericentric inversion of HSA 1 was mediated by intra-chromosomal non-homologous recombination between these highly homologous segmental duplications that had themselves arisen only recently in the human lineage by duplicative transposition.

  12. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    PubMed Central

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  13. Identification and genetic mapping of a homeobox gene to the 4p16. 1 region of human chromosome 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, H.S.; Padanilam, B.J.; Solursh, M.

    1992-12-01

    A human craniofacial cDNA library was screened with a degenerate oligonucleotide probe based on the conserved third helix of homeobox genes. From this screening, we identified a homeobox gene, H6, which shared only 57-65% amino acid identity to previously reported homeodomains. H6 was physically mapped to the 4P16.1 region by using somatic cell hybrids containing specific deletions of human chromosome 4. Linkage data from a single-stranded conformational polymorphism derived from the 3[prime] untranslated region of the H6 cDNA placed this homeobox gene more than 20 centimorgans proximal of the previously mapped HOX7 gene on chromosome 4. Identity comparisons of themore » H6 Homeodomain with previously reported homeodomains reveal the highest identities to be with the Nk class of homeobox genes in Drosophila melanogaster. 53 refs., 5 figs., 2 tabs.« less

  14. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11.

    PubMed

    Ranum, L P; Schut, L J; Lundgren, J K; Orr, H T; Livingston, D M

    1994-11-01

    Autosomal dominant ataxias are a genetically heterogeneous group of disorders for which spinocerebellar ataxia (SCA) loci on chromosomes 6p, 12q, 14q and 16q have been reported. We have examined 170 individuals (56 of whom were affected) from a previously unreported ten-generation kindred with a dominant ataxia that is clinically and genetically distinct from those previously mapped. The family has two major branches which both descend from the paternal grandparents of President Abraham Lincoln. Among those examined, 56 individuals have a generally non-life threatening cerebellar ataxia. Disease onset varies from 10-68 years and anticipation is evident. We have mapped this gene, spinocerebellar ataxia type 5 (SCA5), to the centromeric region of chromosome 11.

  15. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    PubMed Central

    2010-01-01

    Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two

  16. Association of deletion in the chromosomal 8p21.3-23 region with the development of invasive head & neck squamous cell carcinoma in Indian patients.

    PubMed

    Bhattacharya, N; Tripathi, A; Dasgupta, S; Sabbir, Md G; Roy, A; Sengupta, A; Roy, B; Roychowdhury, S; Panda, C K

    2003-08-01

    Deletions in chromosome 8 (chr.8) have been shown to be necessary for the development of head and neck squamous cell carcinoma (HNSCC). Attempts have been made in this study to detect the minimal deleted region in chr.8 associated with the development of HNSCC in Indian patients and to study the association of clinicopathological features with the progression of the disease. The deletion mapping of chr.8 was done in samples from 10 primary dysplastic lesions and 43 invasive squamous cell carcinomas from the head and neck region of Indian patients to detect allelic alterations (deletion or size alteration) using 12 highly polymorphic microsatellite markers. The association of the highly deleted region was correlated with the tumour node metastasis (TNM) stages, nodal involvement, tobacco habit and human papilloma virus (HPV) infection of the samples. High frequency (49%) of loss of heterozygosity (LOH) was seen within 13.12 megabase (Mb) region of chromosomal 8p21.3-23 region in the HNSCC samples, whereas the dysplastic samples did not show any allelic alterations in this region. The highest frequency (17%) of microsatellite size alterations (MA) was observed in the chr.8p22 region. The loss of short arm or normal copy of chr.8 and rare bi-allelic alterations were seen in the stage II-IV tumours (939, 5184, 2772, 1319 and 598) irrespective of their primary sites. The highly deleted region did not show any significant association with any of the clinical parameters. However, HPV infection was significantly associated (P < 0.05) with the differentiation grades and overall allelic alterations (LOH/MA) of the samples. Our data indicate that the 13.12 Mb deleted region in the chromosomal 8p21.3-23 region could harbour candidate tumour suppressor gene(s) (TSGs) associated with the progression anti invasion of HNSCC tumours in Indian patients.

  17. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    PubMed

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  18. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, C.M.; Huebner, K.; Isobe, M.

    1987-10-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosomemore » region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin lambda light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph/sup 1/). Similarly, in mouse-human hybrids retaining a Ph/sup 1/ chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q/sup +/ and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere ..-->.. BCR2, BCR4, and IGL ..-->.. BCR1 ..-->.. BCR3 ..-->.. SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph/sup 1/ chromosome.« less

  19. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    PubMed

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  20. Genetic and physical map of the von Recklinghausen neurofibromatosis (NF1) region on chromosome 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagle, M.K.; Parruti, G.; Xu, W.

    The von Recklinghausen neurofibromatosis 1 (NF1) locus has been previously assigned to the proximal long arm of chromosome 17, and two NF1 patients have been identified who have constitutional balanced translocations involving 17q11.2. The authors have constructed a cosmid library from a chromosome-mediated gene transfectant, KLT8, that contains approximately 10% of chromosome 17, including 17q11.2. Cosmids isolated from this library have been mapped across a panel of somatic cell hybrids, including the hybrids from the two patients, and have been localized to seven small regions of proximal 17q. They have 5 cosmids that map directly above the two NF1 translocations,more » and 11 cosmids that map directly below. Of these, 2 cosmids in each region are linked to the disease locus and 3 of these cosmids show no recombination. One distal cosmid, 2B/B35, detects the two NF1 translocations by pulsed-field gel analysis and has been used to produce a long-range restriction map that covers the translocations.« less

  1. Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints

    PubMed Central

    Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit

    2000-01-01

    A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455

  2. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias

    PubMed Central

    Söderhäll, Cilla; Körberg, Izabella Baranowska; Thai, Hanh T T; Cao, Jia; Chen, Yougen; Zhang, Xufeng; Shulu, Zu; van der Zanden, Loes F M; van Rooij, Iris A L M; Frisén, Louise; Roeleveld, Nel; Markljung, Ellen; Kockum, Ingrid; Nordenskjöld, Agneta

    2015-01-01

    Hypospadias is a common male genital malformation and is regarded as a complex disease affected by multiple genetic as well as environmental factors. In a previous genome-wide scan for familial hypospadias, we reported suggestive linkage in nine chromosomal regions. We have extended this analysis by including new families and additional markers using non-parametric linkage. The fine mapping analysis displayed an increased LOD score on chromosome 8q24.1 and 10p15 in altogether 82 families. On chromosome 10p15, with the highest LOD score, we further studied AKR1C2, AKR1C3 and AKR1C4 involved in steroid metabolism, as well as KLF6 expressed in preputial tissue from hypospadias patients. Mutation analysis of the AKR1C3 gene showed a new mutation, c.643G>A (p.(Ala215Thr)), in a boy with penile hypospadias. This mutation is predicted to have an impact on protein function and structure and was not found in controls. Altogether, we homed in on four chromosomal regions likely to harbor genes for hypospadias. Future studies will aim for studying regulatory sequence variants in these regions. PMID:24986825

  3. SNPs detection in DHPS-WDR83 overlapping genes mapping on porcine chromosome 2 in a QTL region for meat pH.

    PubMed

    Zambonelli, Paolo; Davoli, Roberta; Bigi, Mila; Braglia, Silvia; De Paolis, Luigi Francesco; Buttazzoni, Luca; Gallo, Maurizio; Russo, Vincenzo

    2013-10-08

    The pH is an important parameter influencing technological quality of pig meat, a trait affected by environmental and genetic factors. Several quantitative trait loci associated to meat pH are described on PigQTL database but only two genes influencing this parameter have been so far detected: Ryanodine receptor 1 and Protein kinase, AMP-activated, gamma 3 non-catalytic subunit. To search for genes influencing meat pH we analyzed genomic regions with quantitative effect on this trait in order to detect SNPs to use for an association study. The expressed sequences mapping on porcine chromosomes 1, 2, 3 in regions associated to pork pH were searched in silico to find SNPs. 356 out of 617 detected SNPs were used to genotype Italian Large White pigs and to perform an association analysis with meat pH values recorded in semimembranosus muscle at about 1 hour (pH1) and 24 hours (pHu) post mortem.The results of the analysis showed that 5 markers mapping on chromosomes 1 or 3 were associated with pH1 and 10 markers mapping on chromosomes 1 or 2 were associated with pHu. After False Discovery Rate correction only one SNP mapping on chromosome 2 was confirmed to be associated to pHu. This polymorphism was located in the 3'UTR of two partly overlapping genes, Deoxyhypusine synthase (DHPS) and WD repeat domain 83 (WDR83). The overlapping of the 3'UTRs allows the co-regulation of mRNAs stability by a cis-natural antisense transcript method of regulation. DHPS catalyzes the first step in hypusine formation, a unique amino acid formed by the posttranslational modification of the protein eukaryotic translation initiation factor 5A in a specific lysine residue. WDR83 has an important role in the modulation of a cascade of genes involved in cellular hypoxia defense by intensifying the glycolytic pathway and, theoretically, the meat pH value. The involvement of the SNP detected in the DHPS/WDR83 genes on meat pH phenotypic variability and their functional role are suggestive of

  4. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    PubMed Central

    Terra, Jill K.; France, Bryan; Cote, Christopher K.; Jenkins, Amy; Bozue, Joel A.; Welkos, Susan L.; Bhargava, Ragini; Ho, Chi-Lee; Mehrabian, Margarete; Pan, Calvin; Lusis, Aldons J.; Davis, Richard C.; LeVine, Steven M.; Bradley, Kenneth A.

    2011-01-01

    Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. PMID:22241984

  5. A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8.

    PubMed

    Eidenschenk, Celine; Dunne, Jean; Jouanguy, Emmanuelle; Fourlinnie, Claire; Gineau, Laure; Bacq, Delphine; McMahon, Corrina; Smith, Owen; Casanova, Jean-Laurent; Abel, Laurent; Feighery, Conleth

    2006-04-01

    We describe four children with a novel primary immunodeficiency consisting of specific natural-killer (NK) cell deficiency and susceptibility to viral diseases. One child developed an Epstein-Barr virus-driven lymphoproliferative disorder; two others developed severe respiratory illnesses of probable viral etiology. The four patients are related and belong to a large inbred kindred of Irish nomadic descent, which suggests autosomal recessive inheritance of this defect. A genomewide scan identified a single 12-Mb region on chromosome 8p11.23-q11.21 that was linked to this immunodeficiency (maximum LOD score 4.51). The mapping of the disease-causing genomic region paves the way for the identification of a novel pathway governing NK cell differentiation in humans.

  6. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma

    PubMed Central

    Han, Summer S.; Yeager, Meredith; Moore, Lee E.; Wei, Ming-Hui; Pfeiffer, Ruth; Toure, Ousmane; Purdue, Mark P.; Johansson, Mattias; Scelo, Ghislaine; Chung, Charles C.; Gaborieau, Valerie; Zaridze, David; Schwartz, Kendra; Szeszenia-Dabrowska, Neonilia; Davis, Faith; Bencko, Vladimir; Colt, Joanne S.; Janout, Vladimir; Matveev, Vsevolod; Foretova, Lenka; Mates, Dana; Navratilova, M.; Boffetta, Paolo; Berg, Christine D.; Grubb, Robert L.; Stevens, Victoria L.; Thun, Michael J.; Diver, W. Ryan; Gapstur, Susan M.; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Burdett, Laurie; Brisuda, Antonin; McKay, James D.; Fraumeni, Joseph F.; Chatterjee, Nilanjan; Rosenberg, Philip S.; Rothman, Nathaniel; Brennan, Paul; Chow, Wong-Ho; Tucker, Margaret A.; Chanock, Stephen J.; Toro, Jorge R.

    2012-01-01

    In follow-up of a recent genome-wide association study (GWAS) that identified a locus in chromosome 2p21 associated with risk for renal cell carcinoma (RCC), we conducted a fine mapping analysis of a 120 kb region that includes EPAS1. We genotyped 59 tagged common single-nucleotide polymorphisms (SNPs) in 2278 RCC and 3719 controls of European background and observed a novel signal for rs9679290 [P = 5.75 × 10−8, per-allele odds ratio (OR) = 1.27, 95% confidence interval (CI): 1.17–1.39]. Imputation of common SNPs surrounding rs9679290 using HapMap 3 and 1000 Genomes data yielded two additional signals, rs4953346 (P = 4.09 × 10−14) and rs12617313 (P = 7.48 × 10−12), both highly correlated with rs9679290 (r2 > 0.95), but interestingly not correlated with the two SNPs reported in the GWAS: rs11894252 and rs7579899 (r2 < 0.1 with rs9679290). Genotype analysis of rs12617313 confirmed an association with RCC risk (P = 1.72 × 10−9, per-allele OR = 1.28, 95% CI: 1.18–1.39) In conclusion, we report that chromosome 2p21 harbors a complex genetic architecture for common RCC risk variants. PMID:22113997

  7. Hydronephrosis with ureteritis developed in C57BL/6N mice carrying the congenic region derived from MRL/MpJ-type chromosome 11.

    PubMed

    Ichii, Osamu; Chihara, Masataka; Lee, Shin-Hyo; Nakamura, Teppei; Otsuka-Kanazawa, Saori; Horino, Taro; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2017-03-01

    Inbred MRL/MpJ mice show several unique phenotypes in tissue regeneration processes and the urogenital and immune systems. Clarifying the genetic and molecular bases of these phenotypes requires the analysis of their genetic susceptibility locus. Herein, hydronephrosis development was incidentally observed in MRL/MpJ-derived chromosome 11 (D11Mit21-212)-carrying C57BL/6N-based congenic mice, which developed bilateral or unilateral hydronephrosis in both males and females with 23.5% and 12.5% prevalence, respectively. Histopathologically, papillary malformations of the transitional epithelium in the pelvic-ureteric junction seemed to constrict the ureter luminal entrance. Characteristically, eosinophilic crystals were observed in the lumen of diseased ureters. These ureters were surrounded by infiltrating cells mainly composed of numerous CD3 +  T-cells and B220 +  B-cells. Furthermore, several Iba-1 +  macrophages, Gr-1 +  granulocytes, mast cells and chitinase 3-like 3/Ym1 (an important inflammatory lectin)-positive cells were detected. Eosinophils also accumulated to these lesions in diseased ureters. Some B6.MRL-(D11Mit21-D11Mit212) mice had duplicated ureters. We determined >100 single nucleotide variants between C57BL/6N- and MRL/MpJ-type chromosome 11 congenic regions, which were associated with nonsynonymous substitution, frameshift or stopgain of coding proteins. In conclusion, B6.MRL-(D11Mit21-D11Mit212) mice spontaneously developed hydronephrosis due to obstructive uropathy with inflammation. Thus, this mouse line would be useful for molecular pathological analysis of obstructive uropathy in experimental medicine.

  8. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15.

    PubMed

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells.

  9. Establishment of a Conditionally Immortalized Wilms Tumor Cell Line with a Homozygous WT1 Deletion within a Heterozygous 11p13 Deletion and UPD Limited to 11p15

    PubMed Central

    Brandt, Artur; Löhers, Katharina; Beier, Manfred; Leube, Barbara; de Torres, Carmen; Mora, Jaume; Arora, Parineeta; Jat, Parmjit S.; Royer-Pokora, Brigitte

    2016-01-01

    We describe a stromal predominant Wilms tumor with focal anaplasia and a complex, tumor specific chromosome 11 aberration: a homozygous deletion of the entire WT1 gene within a heterozygous 11p13 deletion and an additional region of uniparental disomy (UPD) limited to 11p15.5-p15.2 including the IGF2 gene. The tumor carried a heterozygous p.T41A mutation in CTNNB1. Cells established from the tumor carried the same chromosome 11 aberration, but a different, homozygous p.S45Δ CTNNB1 mutation. Uniparental disomy (UPD) 3p21.3pter lead to the homozygous CTNNB1 mutation. The tumor cell line was immortalized using the catalytic subunit of human telomerase (hTERT) in conjunction with a novel thermolabile mutant (U19dl89-97tsA58) of SV40 large T antigen (LT). This cell line is cytogenetically stable and can be grown indefinitely representing a valuable tool to study the effect of a complete lack of WT1 in tumor cells. The origin/fate of Wilms tumors with WT1 mutations is currently poorly defined. Here we studied the expression of several genes expressed in early kidney development, e.g. FOXD1, PAX3, SIX1, OSR1, OSR2 and MEIS1 and show that these are expressed at similar levels in the parental and the immortalized Wilms10 cells. In addition the limited potential for muscle/ osteogenic/ adipogenic differentiation similar to all other WT1 mutant cell lines is also observed in the Wilms10 tumor cell line and this is retained in the immortalized cells. In summary these Wilms10 cells are a valuable model system for functional studies of WT1 mutant cells. PMID:27213811

  10. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  11. Physical mapping of chromosome 17p13.3 in the region of a putative tumor suppressor gene important in medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.D.; Daneshvar, L.; Willert, J.R.

    1994-09-01

    Deletion mapping of a medulloblastoma tumor panel revealed loss of distal chromosome 17p13.3 sequences in tumors from 14 of 32 patients (44%). Of the 14 tumors showing loss of heterozygosity by restriction fragment length polymorphism analysis, 14 of 14 (100%) displayed loss of the telomeric marker p144-D6 (D17S34), while a probe for the ABR gene on 17p13.3 was lost in 7 of 8 (88%) informative cases. Using pulsed-field gel electrophoresis, we localized the polymorphic marker (VNTR-A) of the ABR gene locus to within 220 kb of the p144-D6 locus. A cosmid contig constructed in this region was used to demonstratemore » by fluorescence in situ hybridization that the ABR gene is oriented transcriptionally 5{prime} to 3{prime} toward the telomere. This report provides new physical mapping data for the ABR gene, which has not been previously shown to be deleted in medulloblastoma. These results provide further evidence for the existence of a second tumor suppressor gene distinct from p53 on distal chromosome 17p. 12 refs., 3 figs.« less

  12. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  13. Detection Of Amplified Or Deleted Chromosomal Regions

    DOEpatents

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  14. Molecular Cytogenetic Characterization of an inv(Y)(p11.2q11.221∼q11.222) in a Syrian Family.

    PubMed

    Al-Achkar, W; Wafa, A; Al-Ablog, A; Moassass, F; Liehr, T

    2013-12-01

    Constitutional chromosomal abnormalities are an important cause of miscarriage, infertility, congenital anomalies and mental retardation in humans. Pericentric inversions of the human Y-chromosome [inv(Y)] are rather common and show an estimated incidence of 0.6-1:1,000 in males in the general population. Most of the reported cases with inv(Y) are familial. For carriers of pericentric inversions the risk of mental retardation or multiple abortions is not apparently increased and there is no relation with abnormal phenotypic features. Polymerase chain reaction (PCR) analysis to detect microdeletions along the Y-chromosome as well as cytogenetic and fluorescence in situ hybridization (FISH) analysis were done to delineate the characteristics of an inv(Y) in a Syrian family. Thus, we present a detailed molecular-cytogenetic characterization of a father and his two sons having an inv(Y)(p11. 2q11.221∼q11.222) with varying mental retardation features but otherwise normal phenotype.

  15. Cystic Dilation of the Aqueductus Sylvii in Case of Trisomy 17p11.2—pter with the Deletion of the Terminal Portion of the Chromosome 6

    PubMed Central

    Horváth, Emese; Sikovanyecz, János; Pál, Attila; Kaiser, László; Bálint, Bálint L.; Szilárd, Póliska; Kozinszky, Zoltán; Szabó, János

    2010-01-01

    Since the 1970s, about 30 cases of partial or complete trisomy 17p have been presented in the literature. Partial trisomies of the short arm of chromosome 17 are somewhat more common, but complete trisomy is quite rare. Most of these cases were described in infants and newborns; and to our knowledge only 3 cases of trisomy 17p have been detected intrauterine. Phenotypic features of trisomy 17p in fetuses are intrauterine growth retardation, ventriculomegaly, cleft lip and cleft palate, micrognathia, horseshoe kidneys, single umbilical artery, and congenital heart defects. The sonographic and foetopathologic findings of a pregnancy trisomy 17p11.2—pter with the deletion of the terminal portion of the chromosome 6 due to paternal balanced translocation are described in this case report. PMID:21274281

  16. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

    PubMed Central

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-01-01

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  17. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  18. Linkage of Wolfram syndrome to chromosome 4p16.1 and evidence for heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, D.A.; Curtis, D.; Arranz, M.J.

    1996-10-01

    Wolfram syndrome (DIDMOAD syndrome; MIM 222300) is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and bilateral optic atrophy. Previous linkage analysis of multiply affected families indicated that the gene for Wolfram syndrome is on chromosome 4p, and it produced no evidence for locus heterogeneity. We have investigated 12 U.K. families with Wolfram syndrome, and we report confirmation of linkage to chromosome 4p, with a maximum two-point LOD score of 4.6 with DRD5, assuming homogeneity, and of 5.1, assuming heterogeneity. Overlapping multipoint analysis using six markers at a time produced definite evidence for locus heterogeneity: the maximum multipointmore » LOD score under homogeneity was <2, whereas when heterogeneity was allowed for an admixture a LOD of 6.2 was obtained in the interval between D4S432 and D4S431, with the peak close to the marker D4S3023. One family with an atypical phenotype was definitely unlinked to the region. Haplotype inspection of the remaining 11 families, which appear linked to chromosome 4p and had typical phenotypes, revealed crossover events during meiosis, which also placed the gene in the interval D4S432 and D4S431. In these families no recombinants were detected with the marker D4S3023, which maps within the same interval. 22 refs., 3 figs., 2 tabs.« less

  19. Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust

    PubMed Central

    Kang, Houyang; Wang, Yi; Fedak, George; Cao, Wenguang; Zhang, Haiqin; Fan, Xing; Sha, Lina; Xu, Lili; Zheng, Youliang; Zhou, Yonghong

    2011-01-01

    Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding. PMID:21760909

  20. Unique double de novo structural rearrangements for chromosome 11 with 46,XX,del(11)(q13q23)/46,XX,inv dup(11)(q13q23) in an infant with minor congenital abnormalities and delayed development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tharapel, A.T.; Zhao, J.; Smith, M.E.

    1994-09-01

    Reported here is a patient with two most unusual structural rearrangements, both involving chromosome 11. The first cell line showed an interstitial deletion of a chromosome 11 with a 46,XX,del(11)(q13q23) chromosome complement. In the second cell line, one of the chromosome 11s had a duplication for the exact region, (11)(q13q23), that was deleted in the first cell line. This duplication also appeared to be inverted with karyotype 46,XX,inv dup(11)(q13q23). Interestingly, chromosome analysis did not reveal a normal cell line and the two abnormal cell lines were present in a 1:1 ratio. Parental chromosome analyses showed normal karyotypes. The patient wasmore » referred for genetic evaluation because of developmental delay. Minor congenital anomalies presented on physical examination included: weight and height at or below the 5th percentile, microcephaly, downward slanting palpebral fissures, severe clinodactyly of one toe, bilateral short fifth fingers and a broad based gait. Results of the MRI and urine metabolic screen were normal. Two hypotheses are advanced to explain the origin of the abnormality. It is most likely that the abnormality arose as a postzygotic event at the very early zygotic division. During the first DNA synthesis after fertilization and before the zygotic division, DNA synthesis errors could result in two chromatids, one with a deletion and the other with a duplication. It is also possible that after the DNA synthesis prior to the first cell division, the chromatids of the same chromosome 11 for unknown reasons were involved in uneven double somatic crossing over events resulting in deleted and duplicated chromatids, respectively. The 1:1 cell ratio found in the patient and the apparent non-existence of a normal cell line further suggest that the origin of the abnormality was post-zygotic.« less

  1. Localization of a gene responsible for nonspecific mental retardation (MRX9) to the pericentromeric region of the X chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willems, P.; Vits, L.; Buntinx, I.

    1993-11-01

    Nonspecific X-linked mental retardation (MRX) includes several distinct entities with mental retardation but without additional distinguishing features. The MRX family reported here has been classified previously as MRX9. In this study, the authors performed linkage analysis of MRX9 with a panel of 43 polymorphic DNA markers dispersed over chromosome X. Two-point linkage analysis revealed lod scores of 3.52 and 3.82 at 0% recombination for OATL1 and MAOA, both located in Xp11.2-p11.4. Lod scores for linkage with PGK1P1, DXS106, and DXS132, all located in Xq11-q13, were 3.83, 3.82, and 3.52, respectively, all at 0% recombination. Multipoint linkage analysis showed two peaksmore » with MAOA and DXS132/DXS106, respectively. Analysis of recombinational events indicated a position of the MRX9 gene between DXS164 and DXS453. These findings are compatible with a location of the MRX9 gene in the pericentromeric region of the X chromosome at Xp21-q13. 26 refs., 3 figs., 2 tabs.« less

  2. A novel locus for split-hand/foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1-17p13.3.

    PubMed

    Lezirovitz, Karina; Maestrelli, Sylvia Regina Pedrosa; Cotrim, Nelson Henderson; Otto, Paulo A; Pearson, Peter L; Mingroni-Netto, Regina Celia

    2008-07-01

    Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2-q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1-17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.

  3. Assignment of xeroderma pigmentosum group C(XPC) gene to chromosome 3p25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legerski, R.J.; Liu, P.; Li, L.

    1994-05-01

    The human gene XPC (formerly designated XPCC), which corrects the repair deficiency of xeroderma pigmentosum (XP) group C cells, was mapped to 3p25. A cDNA probe for Southern blot hybridization and diagnostic PCR analyses of hybrid clone panels informative for human chromosomes in general and portions of chromosome 3 in particular produced the initial results. Fluorescence in situ hybridization utilizing both a yeast artificial chromosome DNA containing the gene and XPC cDNA as probes provided verification and specific regional assignment. A conflicting assignment of XPC to chromosome 5 is discussed in light of inadequacies in the exclusive use of microcell-mediatedmore » chromosome transfer for gene mapping. 12 refs., 3 figs.« less

  4. A Novel Primary Immunodeficiency with Specific Natural-Killer Cell Deficiency Maps to the Centromeric Region of Chromosome 8

    PubMed Central

    Eidenschenk, Céline; Dunne, Jean; Jouanguy, Emmanuelle; Fourlinnie, Claire; Gineau, Laure; Bacq, Delphine; McMahon, Corrina; Smith, Owen; Casanova, Jean-Laurent; Abel, Laurent; Feighery, Conleth

    2006-01-01

    We describe four children with a novel primary immunodeficiency consisting of specific natural-killer (NK) cell deficiency and susceptibility to viral diseases. One child developed an Epstein-Barr virus–driven lymphoproliferative disorder; two others developed severe respiratory illnesses of probable viral etiology. The four patients are related and belong to a large inbred kindred of Irish nomadic descent, which suggests autosomal recessive inheritance of this defect. A genomewide scan identified a single 12-Mb region on chromosome 8p11.23-q11.21 that was linked to this immunodeficiency (maximum LOD score 4.51). The mapping of the disease-causing genomic region paves the way for the identification of a novel pathway governing NK cell differentiation in humans. PMID:16532402

  5. Pax1, a member of the paired box-containing class of developmental control genes, is mapped to human chromosome 20p11.2 by in situ hybridization (ISH and FISH).

    PubMed

    Schnittger, S; Rao, V V; Deutsch, U; Gruss, P; Balling, R; Hansmann, I

    1992-11-01

    Pax-1, a member of a murine multigene family, belongs to the paired box-containing class of developmental control genes first identified in Drosophila. The Pax-1 gene encodes a sequence-specific DNA-binding protein with transcriptional activating properties and has been found to be mutated in the autosomal recessive mutation undulated (un) on mouse chromosome 2 with vertebral anomalies along the entire rostrocaudal axis. By radioactive in situ hybridization (ISH) using a fragment from the murine Pax-1 paired box that is almost identical to the respective sequences from the cognate human gene HuP48 and fluorescence in situ hybridization (FISH) using a complete mouse Pax-1 cDNA, we have assigned the human homologue of murine Pax-1, the PAX1 locus, to chromosome 20p. The map position of PAX1 after FISH (FL-pter value of 0.34 +/- 0.04) corresponds to band p11.2. These results confirm the exceptional homology between human chromosome 20 and the distal segment of mouse chromosome 2, extending from bands F to G, and add PAX1 to the group of genes on 20p like PTPA, PRNP, SCG1, BMP2A, which are located in proximity on both chromosomes.

  6. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M.

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which ismore » G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.« less

  7. The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannik, Jaana; Castillo, Daniel E.; Yang, Da

    Despite extensive research over several decades, a comprehensive view of how the Escherichia coli chromosome is organized within the nucleoid, and how two daughter chromosomes segregate has yet to emerge. Here we investigate the role of the MatP, ZapA and ZapB proteins in organizing the replication terminus (Ter) region and in the chromosomal segregation process. Quantitative image analysis of the fluorescently labeled Ter region shows that the replication terminus attaches to the divisome in a single segment along the perimeter of the cell in a MatP, ZapA and ZapB-dependent manner. The attachment does not significantly affect the bulk chromosome segregationmore » in slow growth conditions. With or without the attachment, two chromosomal masses separate from each other at a speed comparable to the cell growth. The separation starts even before the replication terminus region positions itself at the center of the nucleoid. Modeling of the segregation based on conformational entropy correctly predicts the positioning of the replication terminus region within the nucleoid. Furthermore, the model produces a distinctly different chromosomal density distribution than the experiment, indicating that the conformational entropy plays a limited role in segregating the chromosomes in the late stages of replication.« less

  8. The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli

    DOE PAGES

    Mannik, Jaana; Castillo, Daniel E.; Yang, Da; ...

    2016-01-13

    Despite extensive research over several decades, a comprehensive view of how the Escherichia coli chromosome is organized within the nucleoid, and how two daughter chromosomes segregate has yet to emerge. Here we investigate the role of the MatP, ZapA and ZapB proteins in organizing the replication terminus (Ter) region and in the chromosomal segregation process. Quantitative image analysis of the fluorescently labeled Ter region shows that the replication terminus attaches to the divisome in a single segment along the perimeter of the cell in a MatP, ZapA and ZapB-dependent manner. The attachment does not significantly affect the bulk chromosome segregationmore » in slow growth conditions. With or without the attachment, two chromosomal masses separate from each other at a speed comparable to the cell growth. The separation starts even before the replication terminus region positions itself at the center of the nucleoid. Modeling of the segregation based on conformational entropy correctly predicts the positioning of the replication terminus region within the nucleoid. Furthermore, the model produces a distinctly different chromosomal density distribution than the experiment, indicating that the conformational entropy plays a limited role in segregating the chromosomes in the late stages of replication.« less

  9. Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11-q13 syndromes by fine-structure homology mapping in the mouse.

    PubMed Central

    Nicholls, R D; Gottlieb, W; Russell, L B; Davda, M; Horsthemke, B; Rinchik, E M

    1993-01-01

    Prader-Willi and Angelman syndromes are complex neurobehavioral contiguous gene syndromes whose expression depends on the unmasking of genomic imprinting for different genetic loci in human chromosome 15q11-q13. The homologous chromosomal region in the mouse genome has been fine-mapped by using interspecific (Mus spretus) crosses and overlapping, radiation-induced deletions to evaluate potential animal models for both imprinted and nonimprinted components of these syndromes. Four evolutionarily conserved sequences from human 15q11-q13, including two cDNAs from fetal brain (DN10, D15S12h; DN34, D15S9h-1), a microdissected clone (MN7; D15F37S1h) expressed in mouse brain, and the gene for the beta 3 subunit of the gamma-aminobutyric acid type A receptor (Gabrb3), were mapped in mouse chromosome 7 by analysis of deletions at the pink-eyed dilution (p) locus. Three of these loci are deleted in pre- and postnatally lethal p-locus mutations, which extend up to 5.5 +/- 1.7 centimorgans (cM) proximal to p; D15S9h-1, which maps 1.1 +/- 0.8 cM distal to p and is the mouse homolog of the human gene D15S9 (which shows a DNA methylation imprint), is not deleted in any of the p-locus deletion series. A transcript from the Gabrb3 gene, but not the transcript detected by MN7 at the D15F37S1h locus, is expressed in mice homozygous for the p6H deletion, which have an abnormal neurological phenotype. Furthermore, the Gabrb3 transcript is expressed equally well from the maternal or paternal chromosome 7 and, therefore, its expression is not imprinted in mouse brain. Deletions at the mouse p locus should serve as intermediate genetic reagents and models with which to analyze the genetics and etiology of individual components of human 15q11-q13 disorders. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8095339

  10. Pericentric inversion of chromosome 11 (p14.3q21) associated with developmental delays, hypopigmented skin lesions and abnormal brain MRI findings - a new case report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachor, D.A.; Lofton, M.

    1994-09-01

    We report 3 year old male, referred for evaluation of developmental delays. Pregnancy was complicated by oligohydramnios, proteinuria and prematurity. Medical history revealed: bilateral inguinal hernia, small scrotal sac, undescended testes, developmental delays and behavioral problems. The child had: microcephaly, facial dysmorphic features, single palmar creases, hypopigmented skin lesions of variable size, intermittent exotropia and small retracted testes. Neurological examination was normal. Cognitive level was at the average range with mild delay in his adaptive behavior. Expressive language delays and severe articulation disorder were noted, as well as clumsiness, poor control and precision of gross and fine motor skills. Chromosomalmore » analysis of peripheral leukocytes indicated that one of the number 11 chromosomes had undergone a pericentric inversion with breakpoints on the short (p) arm at band p14.3 and the long (q) arm at band q21. An MRI of the brain showed mild delay in myelinization pattern of white matter. Chromosome 11 inversion in other sites was associated with Beckwith-Wiedemann syndrome and several malignancies. To our knowledge this is the first description of inv(11)(p14.3q21) that is associated with microcephaly, dysmorphic features, hypopigmented skin lesions and speech delay. This inversion may disrupt the expression of the involved genes. However, additional cases with the same cytogenetic anomaly are needed to explore the phenotypic significance of this disorder.« less

  11. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T.

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  12. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    PubMed Central

    Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis. PMID:24455347

  13. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    PubMed

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  14. Sex chromosome loss and the pseudoautosomal region genes in hematological malignancies

    PubMed Central

    Weng, Stephanie; Stoner, Samuel A.; Zhang, Dong-Er

    2016-01-01

    Cytogenetic aberrations, such as chromosomal translocations, aneuploidy, and amplifications, are frequently detected in hematological malignancies. For many of the common autosomal aberrations, the mechanisms underlying their roles in cancer development have been well-characterized. On the contrary, although loss of a sex chromosome is observed in a broad range of hematological malignancies, how it cooperates in disease development is less understood. Nevertheless, it has been postulated that tumor suppressor genes reside on the sex chromosomes. Although the X and Y sex chromosomes are highly divergent, the pseudoautosomal regions are homologous between both chromosomes. Here, we review what is currently known about the pseudoautosomal region genes in the hematological system. Additionally, we discuss implications for haploinsufficiency of critical pseudoautosomal region sex chromosome genes, driven by sex chromosome loss, in promoting hematological malignancies. Because mechanistic studies on disease development rely heavily on murine models, we also discuss the challenges and caveats of existing models, and propose alternatives for examining the involvement of pseudoautosomal region genes and loss of a sex chromosome in vivo. With the widespread detection of loss of a sex chromosome in different hematological malignances, the elucidation of the role of pseudoautosomal region genes in the development and progression of these diseases would be invaluable to the field. PMID:27655702

  15. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines.

    PubMed

    Hidalgo, Alfredo; Monroy, Alberto; Arana, Rosa Ma; Taja, Lucía; Vázquez, Guelaguetza; Salcedo, Mauricio

    2003-03-20

    Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma.

  16. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family.

    PubMed

    Cardarelli, Laura; Sparago, Angela; De Crescenzo, Agostina; Nalesso, Elisa; Zavan, Barbara; Cubellis, Maria Vittoria; Selicorni, Angelo; Cavicchioli, Paola; Pozzan, Giovanni Battista; Petrella, Marilena; Riccio, Andrea

    2010-01-01

    Genomic imprinting is an epigenetic phenomenon resulting in differential expression of maternal and paternal alleles of a subset of genes. In the mouse, mutation of imprinted genes often results in contrasting phenotypes, depending on parental origin. The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the growth restriction-associated Silver-Russell syndrome (SRS) have been linked with a variety of epigenetic and genetic defects affecting a cluster of imprinted genes at chromosome 11p15.5. Paternally derived and maternally derived 11p15.5 duplications represent infrequent findings in BWS and SRS, respectively. Here, we report a case in which a 6.5 Mb duplication of 11p15.4-pter resulted in SRS and BWS phenotypes in a child and her mother, respectively. Molecular analyses demonstrated that the duplication involved the maternal chromosome 11p15 in the child and the paternal chromosome 11p15 in the mother. This observation provides a direct demonstration that SRS and BWS represent specular images, both at the clinical and molecular levels.

  17. A segment of the apospory-specific genomic region is highly microsyntenic not only between the apomicts Pennisetum squamulatum and buffelgrass, but also with a rice chromosome 11 centromeric-proximal genomic region.

    PubMed

    Gualtieri, Gustavo; Conner, Joann A; Morishige, Daryl T; Moore, L David; Mullet, John E; Ozias-Akins, Peggy

    2006-03-01

    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory.

  18. MDS/AML del(11)(q14) Share Common Morphological Features Despite Different Chromosomal Breakpoints.

    PubMed

    Dambruoso, Irene; Invernizzi, Rosangela; Boni, Marina; Zappatore, Rita; Giardini, Ilaria; Cavigliano, Maria Paola; Rocca, Barbara; Calvello, Celeste; Bastia, Raffaella; Caresana, Marilena; Pasi, Francesca; Nano, Rosanna; Bernasconi, Paolo

    2017-02-01

    In myelodysplatic syndromes and acute myeloid leukemia (MDS/AML) deletion of the 11q14 region is a rare chromosomal defect (incidence: 0.6-1.0%), included within the intermediate risk criteria by the International Prognostic Scoring System. No fluorescence in situ hybridization (FISH) study has yet been performed to identify a common breakpoint region (CBR). In our study through FISH with bacterial artificial chromosomes and commercial probes, we analyzed seven patients with MDS/AML harboring 11q14 deletion on conventional cytogenetic analysis. FISH revealed deletions in five patients and amplifications in two. Three patients with deletion carried a CBR, two had a deletion involving a more centromeric breakpoint. These five patients exhibited multilineage dysplasia, blast cells with large round nuclei, loose chromatin, small and abundant nucleoli, and vacuolated cytoplasm with very thin Auer bodies. In conclusion, the morphological features which occur independently of the extent of the deletion are of multilineage dysplasia in MDS and leukemic blasts strongly reactive to peroxidase in AML; despite the variable size of the deleted area, some patients harbor a CBR. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Correlation Between Interphase Chromatin Structure and - and High-Let Radiation-Induced - and Intra-Chromosome Exchange Hotspots

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Mangala, Lingegowda; Asaithamby, Aroumougame; Chen, David

    2012-07-01

    CORRELATION BETWEEN INTERPHASE CHROMATIN STRUCTURE AND LOW- AND HIGH-LET RADIATION-INDUCED INTER- AND INTRA-CHROMOSOME EXCHANGE HOTSPOTS Ye Zhang1,2, Lingegowda S. Mangala1,3, Aroumougame Asaithamby4, David J. Chen4, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 3 University of Houston Clear Lake, Houston, Texas, USA 4 University of Texas, Southwestern Medical Center, Dallas, Texas, USA To investigate the relationship between chromosome aberrations induced by low- and high-LET radiation and chromatin folding, we reconstructed the three dimensional structure of chromosome 3 and measured the physical distances between different regions of this chromosome. Previously, we investigated the location of breaks involved in inter- and intrachromosomal type exchange events in chromosome 3 of human epithelial cells, using the multicolor banding in situ hybridization (mBAND) technique. After exposure to both low- and high-LET radiations in vitro, intra-chromosome exchanges occurred preferentially between a break in the 3p21 and one in the 3q11 regions, and the breaks involved in inter-chromosome exchanges occurred in two regions near the telomeres of the chromosome. In this study, human epithelial cells were fixed in G1 phase and interphase chromosomes hybridized with an mBAND probe for chromosome 3 were captured with a laser scanning confocal microscope. The 3-dimensional structure of interphase chromosome 3 with different colored regions was reconstructed, and the distance between different regions was measured. We show that, in most of the G1 cells, the regions containing 3p21 and 3q11 are colocalized in the center of the chromosome domain, whereas, the regions towards the telomeres of the chromosome are located in the peripherals of the chromosome domain. Our results demonstrate that the distribution of breaks involved in radiation-induced inter and intra-chromosome aberrations depends

  20. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnet, D.; Cormier-Daire, V.; Munnich, A.

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19)more » within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion. 10 refs., 1 fig., 1 tab.« less

  1. A complete YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13) and refined localization of the SNRPN gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutirangura, A.; Jayakumar, A.; Sutcliffe, J.S.

    1993-12-01

    Since a previous report of a partial YAC contig of the Prader-Willi/Angelman chromosome region (15q11-q13), a complete contig spanning approximately 3.5 Mb has been developed. YACs were isolated from two human genomic libraries by PCR and hybridization screening methods. Twenty-three sequence-tagged sites (STSs) were mapped within the contig, a density of [approximately]1 per 200 kb. Overlaps between YAC clones were identified by Alu-PCR dot-blot analysis and confirmed by STS mapping or hybridization with ends of YAC inserts. The gene encoding small nuclear ribonucleoprotein-associated peptide N (SNRPN), recently identified as a candidate gene for Prader-Willi syndrome, was localized within this contigmore » between markers PW71 and TD3-21. Loci mapped within and immediately flanking the Prader-Willi/Angelman chromosome region contig are ordered as follows: cen-IR39-ML34-IR4-3R-TD189-1-PW71-SNRPN-TD3-21-LS6-1-GABRB3,D15S97-GABRA5-IR10-1-CMW1-tel. This YAC contig will be a useful resource for more detailed physical mapping of the region, for generation of new DNA markers, and for mapping or cloning candidate genes for the Prader-Willi and Angelman syndromes. 36 refs., 2 figs., 2 tabs.« less

  2. [High-resolution GTG-banding and nucleolar organizer regions of chromosomes of two vole species: Microtus rossiaemeridonionalis and M. transcaspicus (Rodentia, Arvicolidae)].

    PubMed

    Mazurok, N A; Rubtsova, N V; Isaenko, A A; Nesterova, T B; Meĭer, M N; Zakiian, S M

    1998-08-01

    With the use of the GTG-banding of prometaphase chromosomes, 503 and 402 segments were revealed in haploid chromosome sets of voles Microtus rossiaemeridionalis and M. transcaspicus, respectively. Based on a detailed study of chromosomes at different condensation levels, idiograms of M. rossiaemeridionalis and M. transcaspicus chromosomes were constructed. Sequential Ag-staining and GTG-banding allowed nucleolar organizer regions (NORs) to be localized in 16 and 11 chromosome pairs of M. rossiaemeridionalis and M. transcaspicus, respectively.

  3. A new case of Beckwith-Wiedemann syndrome with an 11p15 duplication of paternal origin [46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)pat].

    PubMed

    Krajewska-Walasek, M; Gutkowska, A; Mospinek-Krasnopolska, M; Chrzanowska, K

    1996-01-01

    We present a new case of 11p15 duplication (trisomy 11p15) in a boy (46,XY,-21,+der(21), t(11;21)(p15.2;q22.3)] suffering from Beckwith-Wiedemann syndrome (BWS), whose phenotypically normal father carries a balanced translocation between chromosomes 11 and 21[46,XY, t(11;21)(p15.2;q22.3)]. The paternal grandmother has the same balanced translocation and is also clinically normal. BWS was suspected when the boy was 6 months old because of gigantism, macroglossia, visceromegaly, ear lobe creases and abdominal distention. Apart from the characteristic BWS phenotype, the boy has other features which are almost exclusively observed in 11p trisomy (high forehead with frontal upsweep of hair, wide central nose bridge, slightly beaked nose, chubby cheeks and severe mental retardation). So far, at least eight cases of 11p15 duplication have been described as patients with BWS. In six of these, the duplication was due to inheritance of a translocated or rearranged paternal chromosome. This was also the case in our patient. In the two other previously published cases, the 11p15 duplications were de novo, but in one of these, DNA analysis has subsequently shown that the duplication was of paternal origin. We discuss our observations in relation to the above-mentioned previous cases of 11p15 duplication and the possible role of genomic imprinting in the etiology of BWS.

  4. Early recurrence in standard-risk medulloblastoma patients with the common idic(17)(p11.2) rearrangement

    PubMed Central

    Bien-Willner, Gabriel A.; López-Terrada, Dolores; Bhattacharjee, Meena B.; Patel, Kayuri U.; Stankiewicz, Paweł; Lupski, James R.; Pfeifer, John D.; Perry, Arie

    2012-01-01

    Medulloblastoma is diagnosed histologically; treatment depends on staging and age of onset. Whereas clinical factors identify a standard- and a high-risk population, these findings cannot differentiate which standard-risk patients will relapse and die. Outcome is thought to be influenced by tumor subtype and molecular alterations. Poor prognosis has been associated with isochromosome (i)17q in some but not all studies. In most instances, molecular investigations document that i17q is not a true isochromosome but rather an isodicentric chromosome, idic(17)(p11.2), with rearrangement breakpoints mapping within the REPA/REPB region on 17p11.2. This study explores the clinical utility of testing for idic(17)(p11.2) rearrangements using an assay based on fluorescent in situ hybridization (FISH). This test was applied to 58 consecutive standard- and high-risk medulloblastomas with a 5-year minimum of clinical follow-up. The presence of i17q (ie, including cases not involving the common breakpoint), idic(17)(p11.2), and histologic subtype was correlated with clinical outcome. Overall survival (OS) and disease-free survival (DFS) were consistent with literature reports. Fourteen patients (25%) had i17q, with 10 (18%) involving the common isodicentric rearrangement. The presence of i17q was associated with a poor prognosis. OS and DFS were poor in all cases with anaplasia (4), unresectable disease (7), and metastases at presentation (10); however, patients with standard-risk tumors fared better. Of these 44 cases, tumors with idic(17)(p11.2) were associated with significantly worse patient outcomes and shorter mean DFS. FISH detection of idic(17)(p11.2) may be useful for risk stratification in standard-risk patients. The presence of this abnormal chromosome is associated with early recurrence of medulloblastoma. PMID:22573308

  5. A Novel Four-Way Complex Variant Translocation Involving Chromosome 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) in a Chronic Myeloid Leukemia Patient

    PubMed Central

    Asif, Muhammad; Jamal, Mohammad Sarwar; Khan, Abdul Rehman; Naseer, Muhammad Imran; Hussain, Abrar; Choudhry, Hani; Malik, Arif; Khan, Shahida Aziz; Mahmoud, Maged Mostafa; Ali, Ashraf; Iram, Saima; Kamran, Kashif; Iqbal, Asim; Abduljaleel, Zainularifeen; Pushparaj, Peter Natesan; Rasool, Mahmood

    2016-01-01

    Philadelphia (Ph) chromosome (9;22)(q34;q11) is well established in more than 90% of chronic myeloid leukemia (CML) patients, and the remaining 5–8% of CML patients show variant and complex translocations, with the involvement of third, fourth, or fifth chromosome other than 9;22. However, in very rare cases, the fourth chromosome is involved. Here, we found a novel case of four-way Ph+ chromosome translocation involving 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) with CML in the chronic phase. Complete blood cell count of the CML patient was carried out to obtain total leukocytes count, hemoglobin, and platelets. Fluorescence in situ hybridization technique was used for the identification of BCR–ABL fusion gene, and cytogenetic test for the confirmation of Ph (9;22)(q34;q11) and the mechanism of variant translocation in the bone marrow. The patient is successfully treated with a dose of 400 mg/day imatinib mesylate (Gleevec). We observed a significant decrease in white blood cell count of 11.7 × 109/L after 48-month follow-up. Patient started feeling better generally. There was a reduction in the swelling of the body, fatigue, and anxiety. PMID:27303656

  6. B-acute lymphoblastic leukemia and cystinuria in a patient with duplication 22q11.21 detected by chromosomal microarray analysis.

    PubMed

    Chang, Vivian Y; Quintero-Rivera, Fabiola; Baldwin, Erin E; Woo, Kathy; Martinez-Agosto, Julian A; Fu, Cecilia; Gomperts, Brigitte N

    2011-03-01

    Duplication 22q11.2 syndrome is the result of a microduplication of the same chromosomal region that is deleted in DiGeorge and Velocardiofacial syndromes. We describe a patient with dysmorphic features who was diagnosed with pre-B acute lymphoblastic leukemia, and developed cystinuria and pancreatitis during treatment. Duplication 22q11.2 has not been previously described in association with hematologic abnormalities. Chromosomal microarray technology was used to diagnose duplication 22q11.2 syndrome. In this era of advanced genomics, this technology has become an important method for helping to determine the molecular basis of diseases, best treatments and ultimately patient outcomes. Copyright © 2010 Wiley-Liss, Inc.

  7. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  8. Kabuki syndrome is not caused by a microdeletion in the DiGeorge/velocardiofacial chromosomal region within 22q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.; Zackai, E.H.; Kaplan, P.

    1996-10-16

    Kabuki syndrome (KS) or Niikawa-Kuroki syndrome is a sporadic disorder characterized by postnatal growth retardation, developmental delay, mild to moderate retardation, and a characteristic facial appearance. Cardiovascular defects, clefts of the lip, palate, or both, and musculoskeletal abnormalities occur in about 50% of patients with KS. The cause of this multiple congenital anomaly syndrome is unknown, and investigators have speculated that KS is a contiguous gene-deletion syndrome. Based on the presence of congenital heart defects in patients with KS, it was suggested that this disorder might share a common cause with the 22q11 deletion syndromes. A preliminary study of 2more » patients with KS failed to detect a deletion within 22q11. We report the results of fluorescence in situ hybridization with cosmid probes for loci D22S75 (N25) and D22S259 (1132) within the DiGeorge chromosomal region (DGCR) on metaphase spreads from an additional 5 patients, 2 non-Japanese and 3 Japanese, with KS. None of the 5 had deletions at either locus. It is unlikely that KS is caused by a deletion within 22q11. 16 refs.« less

  9. Copy number variations at the Prader-Willi syndrome region on chromosome 15 and associations with obesity in whites.

    PubMed

    Chen, Yuan; Liu, Yong-Jun; Pei, Yu-Fang; Yang, Tie-Lin; Deng, Fei-Yan; Liu, Xiao-Gang; Li, Ding-You; Deng, Hong-Wen

    2011-06-01

    Obesity is a serious health problem with strong genetic determination. Copy number variation (CNV) is a common type of genomic variant associated with some complex human diseases. However, it is not clear how CNVs contribute to the etiology of obesity. In this study, we examined 1,000 unrelated US whites to search for CNVs that may predispose to obesity. We focused our analyses on the Prader-Willi syndrome (PWS) critical region (chromosome 15q11-q13), because the PWS region is a hotspot for CNV generation and obesity is one of the major clinical manifestations for chromosome abnormalities at this region. We constructed a map containing 39 CNVs at the PWS critical region with CNV occurrence rates higher than 1%. Among them, three CNVs were significantly associated with body fat mass (P < 0.05), with a higher copy number (CN) associated with an increase of 5.08-9.77 kg in body fat mass. These three CNVs are close to two known PWS genes, NDN (necdin homolog) and C15orf2 (chromosome 15 open reading frame 2), and partially overlap with another obesity gene PWRN1 (Prader-Willi region nonprotein-coding RNA 1). Interestingly, our recently published whole genome association scan study using the same sample by examining single-nucleotide polymorphisms (SNPs) did not find any significant associations at these CNV regions, suggesting the importance of examining both CNVs and SNPs for better understanding of genetic basis of obesity. Further studies are warranted to validate these CNVs and their importance to obesity.

  10. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families.

    PubMed

    Blumenthal, Ian; Ragavendran, Ashok; Erdin, Serkan; Klei, Lambertus; Sugathan, Aarathi; Guide, Jolene R; Manavalan, Poornima; Zhou, Julian Q; Wheeler, Vanessa C; Levin, Joshua Z; Ernst, Carl; Roeder, Kathryn; Devlin, Bernie; Gusella, James F; Talkowski, Michael E

    2014-06-05

    Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Transcriptional Consequences of 16p11.2 Deletion and Duplication in Mouse Cortex and Multiplex Autism Families

    PubMed Central

    Blumenthal, Ian; Ragavendran, Ashok; Erdin, Serkan; Klei, Lambertus; Sugathan, Aarathi; Guide, Jolene R.; Manavalan, Poornima; Zhou, Julian Q.; Wheeler, Vanessa C.; Levin, Joshua Z.; Ernst, Carl; Roeder, Kathryn; Devlin, Bernie; Gusella, James F.; Talkowski, Michael E.

    2014-01-01

    Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described “distal” 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis. PMID:24906019

  12. Williams-Beuren syndrome: phenotypic variability and deletions of chromosomes 7, 11, and 22 in a series of 52 patients.

    PubMed Central

    Joyce, C A; Zorich, B; Pike, S J; Barber, J C; Dennis, N R

    1996-01-01

    Fluorescence in situ hybridisation (FISH) and conventional chromosome analysis were performed on a series of 52 patients with classical Williams-Beuren syndrome (WBS), suspected WBS, or supravalvular aortic stenosis (SVAS). In the classical WBS group, 22/23 (96%) had a submicroscopic deletion of the elastin locus on chromosome 7, but the remaining patient had a unique interstitial deletion of chromosome 11 (del(11)(q13.5q14.2)). In the suspected WBS group 2/22 (9%) patients had elastin deletions but a third patient had a complex karyotype including a ring chromosome 22 with a deletion of the long arm (r(22)(p11-->q13)). In the SVAS group, 1/7 (14%) had an elastin gene deletion, despite having normal development and minimal signs of WBS. Overall, some patients with submicroscopic elastin deletions have fewer features of Williams-Beuren syndrome than those with other cytogenetic abnormalities. These results, therefore, emphasise the importance of a combined conventional and molecular cytogenetic approach to diagnosis and suggest that the degree to which submicroscopic deletions of chromosome 7 extend beyond the elastin locus may explain some of the phenotypic variability found in Williams-Beuren syndrome. Images PMID:9004128

  13. A YAC contig of the human CC chemokine genes clustered on chromosome 17q11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruse, Kuniko; Nomiyama, Hisayuki; Miura, Retsu

    1996-06-01

    CC chemokines are cytokines that attract and activate leukocytes. The human genes for the CC chemokines are clustered on chromosome 17. To elucidate the genomic organization of the CC chemokine genes, we constructed a YAC contig comprising 34 clones. The contig was shown to contain all 10 CC chemokine genes reported so far, except for one gene whose nucleotide sequence is not available. The contig also contains 4 CC chemokine-like genes, which were deposited in GenBank as ESTs and are here referred to as NCC-1, NCC-2, NCC-3, and NCC-4. Within the contig, the CC chemokine genes were localized in twomore » regions. In addition, the CC chemokine genes were localized in two regions. In addition, the CC chemokine genes were more precisely mapped on chromosome 17q11.2 using a somatic cell hybrid cell DNA panel containing various portions of human chromosome 17. Interestingly, a reciprocal translocation t(Y;17) breakpoint, contained in the hybrid cell line Y1741, lay between the two chromosome 17 chemokine gene regions covered by our YAC contig. From these results, the order and the orientation of CC chemokine genes on chromosome 17 were determined as follows: centromere-neurofibromatosis 1-(MCP-3, MCP-1, NCC-1, I-309)-Y1741 breakpoint-RANTES-(LD78{gamma}, AT744.2, LD78{beta})-(NCC-3, NCC-2, AT744.1, LD78{alpha})-NCC-4-retinoic acid receptor {alpha}-telomere. 22 refs., 1 fig., 2 tabs.« less

  14. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord

    PubMed Central

    2014-01-01

    We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS. PMID:24860619

  15. Constitutional chromosomal events at 22q11 and 15q26 in a child with a pilocytic astrocytoma of the spinal cord.

    PubMed

    Mascelli, Samantha; Severino, Mariasavina; Raso, Alessandro; Nozza, Paolo; Tassano, Elisa; Morana, Giovanni; De Marco, Patrizia; Merello, Elisa; Milanaccio, Claudia; Pavanello, Marco; Rossi, Andrea; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2014-01-01

    We report on a 9-years-old patient with mild intellectual disability, facial dimorphisms, bilateral semicircular canal dysplasia, periventricular nodular heterotopias, bilateral hippocampal malrotation and abnormal cerebellar foliation, who developed mild motor impairment and gait disorder due to a pilocytic astrocytoma of the spinal cord. Array-CGH analysis revealed two paternal inherited chromosomal events: a 484.3 Kb duplication on chromosome 15q26.3 and a 247 Kb deletion on 22q11.23. Further, a second de novo 1.5 Mb deletion on 22q11.21 occurred. Chromosome 22 at q11.2 and chromosome 15 at q24q26 are considered unstable regions subjected to copy number variations, i.e. structural alterations of genome, mediated by low copy repeat sequences or segmental duplications. The link between some structural CNVs, which compromise fundamental processes controlling DNA stability, and genomic disorders suggest a plausible scenario for cancer predisposition. Evaluation of the genes at the breakpoints cannot account simultaneously for the phenotype and tumour development in this patient. The two paternal inherited CNVs arguably are not pathogenic and do not contribute to the clinical manifestations. Similarly, although the de novo large deletion at 22q11.21 overlaps with the Di George (DGS) critical region and results in haploinsufficiency of genes compromising critical processes for DNA stability, this case lacks several hallmarks of DGS.

  16. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer.

    PubMed

    Rodriguez-Nieto, Salvador; Sanchez-Cespedes, Montse

    2009-04-01

    Losses of heterozygosity (LOH) of the short arm of chromosome 19 are frequent in lung cancer, suggesting that one or more tumor suppressor genes are present in this region. The LKB1 gene, also called STK11, is somatically inactivated through point mutations and large deletions in lung tumors, demonstrating that LKB1 is a target of the LOH of this chromosomal arm. Data from several independent groups have provided information about the profiles of lung tumors with LKB1 inactivation and it is generally agreed that this alteration strongly predominates in non-small cell lung cancer, in particular adenocarcinomas, in smokers. The LKB1 protein has serine-threonine kinase activity and is involved in the regulation of the cell energetic checkpoint through the phosphorylation and activation of adenosine monophosphate-dependent kinase (AMPK). LKB1 is also involved in other processes such as cell polarization, probably through substrates other than AMPK. Interestingly, another gene on chromosome 19p, BRG1, encoding a component of the SWI/SNF chromatin-remodeling complex, has emerged as a tumor suppressor gene that is altered in lung tumors. Similar to LKB1, BRG1 is somatically inactivated by point mutations or large deletions in lung tumors featuring LOH of chromosome 19p. These observations suggest an important role for BRG1 in lung cancer and highlight the need to further our understanding of the function of Brahma/SWI2-related gene 1 (BRG1) in cancer. Finally, simultaneous mutations at LKB1 and BRG1 are common in lung cancer cells, which exemplifies how a single event, LOH of chromosome 19p in this instance, targets two different tumor suppressors.

  17. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    PubMed

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  18. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  19. A 1.37-Mb 12p11.22-p11.21 deletion coincident with a 367-kb 22q11.2 duplication detected by array comparative genomic hybridization in an adolescent girl with autism and difficulty in self-care of menstruation.

    PubMed

    Chen, Chih-Ping; Lin, Shuan-Pei; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Lee, Chen-Chi; Wang, Wayseen

    2014-03-01

    To present an array comparative genomic hybridization (aCGH) characterization of a 12p11.22-p11.21 microdeletion and 22q11.2 microduplication in an adolescent girl with autism, mental retardation, facial dysmorphism, microcephaly, behavior problems, and an apparently balanced reciprocal translocation of t(8;12)(q24.3;p11.2). A 13-year-old girl was referred to the hospital because of autism, mental retardation, and difficulty in the self-care of her menstruation. Cytogenetic analysis revealed an apparently balanced reciprocal translocation and a karyotype of 46,XX,t(8;12) (q24.3;p11.2)dn. The girl manifested microcephaly, hypertelorism, flat facial profile, prominent forehead, thick scalp hair, upslanting palpebral fissures, broad nasal bridge, bulbous nose, right simian crease, bilateral clinodactyly of the fifth fingers, bilateral pes cavus, learning difficulties, mental retardation, emotional instability, cognitive impairment, behavior problems, jumping-like gaits, and autistic spectrum disorder. aCGH was performed to evaluate genomic imbalance in this patient. aCGH analysis revealed a 1.37-Mb 12p11.22-p11.21 microdeletion or arr [hg 19] 12p11.22-p11.21 (30,645,008-32,014,774)×1 and a 367-kb 22q11.21 microduplication or arr [hg 19] 22q11.21 (18,657,470-19,024,306)×3. The 1.37-Mb 12p11.22-p11.21 microdeletion encompassed 26 genes including IPO8, CAPRIN2, and DDX11, and the 367-kb 22q11.21 microduplication encompassed 20 genes including USP18, DGCR6, PRODH, and DGCR2. An apparently balanced translocation may be in fact affected by concurrent deletion and duplication in two different chromosomal regions. Our presentation provides information on diagnostic phenotype of 12p11.22-p11.21 microdeletion and 22q11.2 microduplication. Copyright © 2014. Published by Elsevier B.V.

  20. Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism.

    PubMed

    Angelakos, Christopher C; Watson, Adam J; O'Brien, W Timothy; Krainock, Kyle S; Nickl-Jockschat, Thomas; Abel, Ted

    2017-04-01

    Sleep disturbances and hyperactivity are prevalent in several neurodevelopmental disorders, including autism spectrum disorders (ASDs) and attention deficit-hyperactivity disorder (ADHD). Evidence from genome-wide association studies indicates that chromosomal copy number variations (CNVs) are associated with increased prevalence of these neurodevelopmental disorders. In particular, CNVs in chromosomal region 16p11.2 profoundly increase the risk for ASD and ADHD, disorders that are more common in males than females. We hypothesized that mice hemizygous for the 16p11.2 deletion (16p11.2 del/+) would exhibit sex-specific sleep and activity alterations. To test this hypothesis, we recorded activity patterns using infrared beam breaks in the home-cage of adult male and female 16p11.2 del/+ and wildtype (WT) littermates. In comparison to controls, we found that both male and female 16p11.2 del/+ mice exhibited robust home-cage hyperactivity. In additional experiments, sleep was assessed by polysomnography over a 24-hr period. 16p11.2 del/+ male, but not female mice, exhibited significantly more time awake and significantly less time in non-rapid-eye-movement (NREM) sleep during the 24-hr period than wildtype littermates. Analysis of bouts of sleep and wakefulness revealed that 16p11.2 del/+ males, but not females, spent a significantly greater proportion of wake time in long bouts of consolidated wakefulness (greater than 42 min in duration) compared to controls. These changes in hyperactivity, wake time, and wake time distribution in the males resemble sleep disturbances observed in human ASD and ADHD patients, suggesting that the 16p11.2 del/+ mouse model may be a useful genetic model for studying sleep and activity problems in human neurodevelopmental disorders. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 572-584. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016

  1. The Karyotype of Microsternarchus aff. bilineatus: A First Case of Y Chromosome Degeneration in Gymnotiformes.

    PubMed

    Batista, Jéssica Almeida; Cardoso, Adauto Lima; Milhomem-Paixão, Susana Suely Rodrigues; Ready, Jonathan Stuart; Pieczarka, Julio Cesar; Nagamachi, Cleusa Yoshiko

    2017-06-01

    Various species and lineages that until recently were identified as Microsternarchus bilineatus (Hypopomidae, Gymnotiformes) have a widespread distribution in the Amazon and Orinoco River basins and across the Guiana shield. Recent molecular studies show five distinct lineages for Microsternarchus from different localities. These results suggest that this previously monotypic genus actually consists of more than one species. Here, we describe the karyotype of M. aff. bilineatus from the Cururutuia River (Bragança, Pará, Brazil). The diploid number of 48 chromosomes (14 meta-submetacentric/34 subtelo-acrocentric) is found for males and females, with an XX/XY sex chromosome system. The nucleolar organizer region is found in the short arm of pair 9. Constitutive heterochromatin occurs in the pericentromeric region of all chromosomes, in the distal region of 3p, 5p, 7p, 8q, 9q, 16q, and Xq, in the interstitial region in 2p, 10q, 11q, and 12q and all along 4p, and in a large block of the Y chromosome. These results indicate extensive karyotype divergence between this population and samples from Igarapé Tarumã Grande (Negro River, Amazonas, Brazil) studied by other researchers. Moreover, despite the diversity of sex chromosome systems found in Gymnotiformes, the XX/XY sex chromosome system of M. aff. bilineatus is the first case of Y chromosome degeneration in this order. The present data are valuable to help understand karyotype evolution in Hypopomidae.

  2. A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome--deletion region at 7q11.23.

    PubMed

    Peoples, R; Franke, Y; Wang, Y K; Pérez-Jurado, L; Paperna, T; Cisco, M; Francke, U

    2000-01-01

    Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.

  3. A Physical Map, Including a BAC/PAC Clone Contig, of the Williams-Beuren Syndrome–Deletion Region at 7q11.23

    PubMed Central

    Peoples, Risa; Franke, Yvonne; Wang, Yu-Ker; Pérez-Jurado, Luis; Paperna, Tamar; Cisco, Michael; Francke, Uta

    2000-01-01

    Summary Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although ⩾16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of ⩾320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region. PMID:10631136

  4. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    ERIC Educational Resources Information Center

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  5. A gene for nystagmus-associated episodic ataxia maps to chromosome 19p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, P.L.; Root, D.; Gancher, S.

    1994-09-01

    Episodic ataxia (EA) is a rare, autosomal dominant disorder, characterized by attacks of generalized ataxia and relatively normal neurological function between attacks. Onset occurs in childhood or adolescence and persists through adulthood. Penetrance is nearly complete. EA is clinically heterogeneous, including at least two distinct entities: (1) episodes of ataxia and dysarthria lasting hours to days, generally with interictal nystagmus (MIM 108500); (2) episodes of ataxia and dysarthria lasting only minutes, with interictal myokymia (MMM 160120). The EA/nystagmus patients sometimes develop persistent ataxia and cerebellar atrophy. Previously we reported linkage in four EA/myokymia families to a K{sup +} channel genemore » on chromosome 12p. We excluded this region in a large family with EA/nystagmus. We now report evidence for linkage to chromosome 19p in this and in one other EA/nystagmus family, based on eight microsatellite markers which span approximately 30 cM. The region is flanked distally by D19S209 and proximally by D19S226. All six markers within this region gave positive evidence for linkage; the highest total two-point lod scores occurred wtih D19S221 (3.98 at theta = 0.10) and D19S413 (3.37 at theta = 0.05). Interestingly, Joutel et al. (1993) mapped a gene for familial hemiplegic migraine (FHM) to the region around D19S221. Some individuals in these families have ataxia, cerebellar atrophy and interictal nystagmus, but no episodic ataxia. These results demonstrate that the clinical heterogeneity in EA reflects underlying genetic hetreogeneity. In addition, they suggest that EA/nystagmus and some FHM may represent different mutations in the same gene locus on chromosome 19p.« less

  6. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22.

    PubMed Central

    Wu, D A; Bu, X; Warden, C H; Shen, D D; Jeng, C Y; Sheu, W H; Fuh, M M; Katsuya, T; Dzau, V J; Reaven, G M; Lusis, A J; Rotter, J I; Chen, Y D

    1996-01-01

    Resistance to insulin-mediated glucose disposal is a common finding in patients with non-insulin-dependent diabetes mellitus (NIDDM), as well as in nondiabetic individuals with hypertension. In an effort to identify the generic loci responsible for variations in blood pressure in individuals at increased risk of insulin resistance, we studied the distribution of blood pressure in 48 Taiwanese families with NIDDM and conducted quantitative sib-pair linkage analysis with candidate loci for insulin resistance, lipid metabolism, and blood pressure control. We found no evidence for linkage of the angiotensin converting enzyme locus on chromosome 17, nor the angiotensinogen and renin loci on chromosome 1, with either systolic or diastolic blood pressures. In contrast, we obtained significant evidence for linkage or systolic blood pressure, but not diastolic blood pressure, to a genetic region at or near the lipoprotein lipase (LPL) locus on the short arm of chromosome 8 (P = 0.002, n = 125 sib-pairs, for the haplotype generated from two simple sequence repeat markers within the LPL gene). Further strengthening this linkage observation, two flanking marker loci for LPL locus, D8S261 (9 cM telomeric to LPL locus) and D8S282 (3 cM centromeric to LPL locus), also showed evidence for linkage with systolic blood pressure (P = 0.02 and 0.0002 for D8S261 and D8S282, respectively). Two additional centromeric markers (D8S133, 5 cM from LPL locus, and NEFL, 11 cM from LPL locus) yielded significant P values of 0.01 and 0.001, respectively. Allelic variation around the LPL gene locus accounted for as much as 52-73% of the total interindividual variation in systolic blood pressure levels in this data set. Thus, we have identified a genetic locus at or near the LPL gene locus which contributes to the variation of systolic blood pressure levels in nondiabetic family members at high risk for insulin resistance and NIDDM. PMID:8621801

  7. Prenatal diagnosis and molecular cytogenetic characterization of rec(10)dup(10p)inv(10)(p11.2q26.3) in a fetus associated with paternal pericentric inversion.

    PubMed

    Chen, Chih-Ping; Ko, Tsang-Ming; Su, Yi-Ning; Wang, Liang-Kai; Chern, Schu-Rern; Wu, Peih-Shan; Chen, Yen-Ni; Chen, Shin-Wen; Ko, Kevin; Lee, Chen-Chi; Chen, Li-Feng; Yang, Chien-Wen; Wang, Wayseen

    2016-10-01

    We present prenatal diagnosis and molecular cytogenetic characterization of a recombinant chromosome 10 in a fetus associated with a paternal pericentric inversion. A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of an advanced maternal age. Amniocentesis revealed a karyotype of 46,XY,der(10)del(10) (q26.3)dup(10)(p11.2p15). She underwent repeat amniocentesis at 21 weeks of gestation and array comparative genomic hybridization revealed a 31.65-Mb duplication of chromosome 10p15.3-p11.22 and a 3.07-Mb deletion of chromosome 10q26.3. Prenatal ultrasound findings were unremarkable. She was referred for genetic counseling and cytogenetic analysis revealed a karyotype of 46,XY,inv(10)(p11.2q26.3) in the father and a karyotype of 46,XX in the mother. The pregnancy was subsequently terminated, and a fetus was delivered with prominent facial dysmorphism. Postnatal cytogenetic analysis of the placenta revealed a karyotype of 46,XY, rec(10)dup(10p)inv(10)(p11.2q26.3). Fluorescence in situ hybridization analysis revealed a duplication of terminal 10p and a deletion of terminal 10q in the recombinant chromosome 10. Array comparative genomic hybridization analysis of the cord blood and umbilical cord confirmed the prenatal diagnosis. Prenatal diagnosis of a recombinant chromosome because of an advanced maternal age should alert the possibility of a paternal pericentric inversion. Copyright © 2016. Published by Elsevier B.V.

  8. The sex-specific region of sex chromosomes in animals and plants.

    PubMed

    Gschwend, Andrea R; Weingartner, Laura A; Moore, Richard C; Ming, Ray

    2012-01-01

    Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.

  9. A Segment of the Apospory-Specific Genomic Region Is Highly Microsyntenic Not Only between the Apomicts Pennisetum squamulatum and Buffelgrass, But Also with a Rice Chromosome 11 Centromeric-Proximal Genomic Region1[W

    PubMed Central

    Gualtieri, Gustavo; Conner, Joann A.; Morishige, Daryl T.; Moore, L. David; Mullet, John E.; Ozias-Akins, Peggy

    2006-01-01

    Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory. PMID:16415213

  10. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11~13;q11) show recurrent involvement of genes at 20q11.21

    PubMed Central

    An, Qian; Wright, Sarah L.; Moorman, Anthony V.; Parker, Helen; Griffiths, Mike; Ross, Fiona M.; Davies, Teresa; Harrison, Christine J.; Strefford, Jon C.

    2009-01-01

    The dic(9;20)(p11~13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3’ of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3’ of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci. PMID:19586940

  11. Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21.

    PubMed

    An, Qian; Wright, Sarah L; Moorman, Anthony V; Parker, Helen; Griffiths, Mike; Ross, Fiona M; Davies, Teresa; Harrison, Christine J; Strefford, Jon C

    2009-08-01

    The dic(9;20)(p11-13;q11) is a recurrent chromosomal abnormality in patients with acute lymphoblastic leukemia. Although it results in loss of material from 9p and 20q, the molecular targets on both chromosomes have not been fully elucidated. From an initial cohort of 58 with acute lymphoblastic leukemia patients with this translocation, breakpoint mapping with fluorescence in situ hybridization on 26 of them revealed breakpoint heterogeneity of both chromosomes. PAX5 has been proposed to be the target gene on 9p, while for 20q, FISH analysis implicated the involvement of the ASXL1 gene, either by a breakpoint within (n=4) or centromeric (deletion, n=12) of the gene. Molecular copy-number counting, long-distance inverse PCR and direct sequence analysis identified six dic(9;20) breakpoint sequences. In addition to the three previously reported: PAX5-ASXL1, PAX5-C20ORF112 and PAX5-KIF3B; we identified three new ones in this study: sequences 3' of PAX5 disrupting ASXL1, and ZCCHC7 disrupted by sequences 3' of FRG1B and LOC1499503. This study provides insight into the breakpoint complexity underlying dicentric chromosomal formation in acute lymphoblastic leukemia and highlights putative target gene loci.

  12. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    PubMed

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  13. Derivative chromosomes involving 5p large rearranged segments went unnoticed with the use of conventional cytogenetics.

    PubMed

    Yokoyama, Emiy; Del Castillo, Victoria; Sánchez, Silvia; Ramos, Sandra; Molina, Bertha; Torres, Leda; Navarro, María José; Avila, Silvia; Castrillo, José Luis; García-De Teresa, Benilde; Asch, Bárbara; Frías, Sara

    2018-01-01

    In countries where comparative genomic hybridization arrays (aCGH) and next generation sequencing are not widely available due to accessibility and economic constraints, conventional 400-500-band karyotyping is the first-line choice for the etiological diagnosis of patients with congenital malformations and intellectual disability. Conventional karyotype analysis can rule out chromosomal alterations greater than 10 Mb. However, some large structural abnormalities, such as derivative chromosomes, may go undetected when the analysis is performed at less than a 550-band resolution and the size and banding pattern of the interchanged segments are similar. Derivatives frequently originate from inter-chromosomal exchanges and sometimes are inherited from a parent who carries a reciprocal translocation. We present two cases with derivative chromosomes involving a 9.1 Mb 5p deletion/14.8 Mb 10p duplication in the first patient and a 19.9 Mb 5p deletion/ 18.5 Mb 9p duplication in the second patient. These long chromosomal imbalances were ascertained by aCGH but not by conventional cytogenetics. Both patients presented with a deletion of the Cri du chat syndrome region and a duplication of another genomic region. Each patient had a unique clinical picture, and although they presented some features of Cri du chat syndrome, the phenotype did not conclusively point towards this diagnosis, although a chromosomopathy was suspected. These cases highlight the fundamental role of the clinical suspicion in guiding the approach for the etiological diagnosis of patients. Molecular cytogenetics techniques, such as aCGH, should be considered when the clinician suspects the presence of a chromosomal imbalance in spite of a normal karyotype.

  14. Physical and functional mapping of a tumor suppressor locus for renal cell carcinoma within chromosome 3p12.

    PubMed

    Lott, S T; Lovell, M; Naylor, S L; Killary, A M

    1998-08-15

    Using a functional genetic approach, we previously identified a novel genetic locus, NRC-1 (Nonpapillary Renal Cell Carcinoma 1), that mediated tumor suppression and rapid cell death of renal cell carcinoma (RCC) cells in vivo. For these experiments, a defined subchromosomal fragment of human chromosome 3p was transferred into a sporadic RCC cell line via microcell fusion, and microcell hybrid clones were tested for tumorigenicity in vivo. The results indicated functional evidence for a novel tumor suppressor locus within the 3p14-p12 interval known to contain the most common fragile site of the human genome (FRA3B), the FHIT gene, and the breakpoint region associated with the familial form of RCC. We now report the physical mapping of the NRC-1 critical region by detailed microsatellite analyses of novel microcell hybrid clones containing transferred fragments of chromosome 3p in the RCC cell background that were phenotypically suppressed or unsuppressed for tumorigenicity in vivo. The results limit the region containing the tumor suppressor locus within chromosome 3p12. The FHIT gene, FRA3B, and the familial RCC breakpoint region were excluded from the NRC-1 critical region. Furthermore, the NRC-1 locus falls within a well-characterized homozygous deletion region of 5-7 Mb associated with a small cell lung carcinoma cell line, U2020, suggesting that a more general tumor suppressor gene may reside in this region.

  15. Del(12)(p11.21p12.2) associated with an asphyxiating thoracic dystrophy or chondroectodermal dysplasia-like syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, T.; Kato, R.; Hasegawa, T.

    1995-01-02

    We describe a 5-year-old Japanese boy who has some radiographic findings characteristic of asphyxiating thoracic dystrophy (ATD)-chondroectodermal dysplasia with a de novo chromosome abnormality. He also has mild mental retardation, short stature, hypoplastic hair and skin, oligodontia, small thoracic cage, hypoplastic pelvis and cone-shaped epiphyses of hands. On cytogenetic studies he was found to have a de novo del(12)(p11.21p12.2). These results suggest that the locus of the gene associated with ATD-chondroectodermal dysplasia may be situated at 12p11.21p12.2. 11 refs., 2 figs.

  16. Recurrent sequence exchange between homeologous grass chromosomes.

    PubMed

    Wicker, Thomas; Wing, Rod A; Schubert, Ingo

    2015-11-01

    All grass species evolved from an ancestor that underwent a whole-genome duplication (WGD) approximately 70 million years ago. Interestingly, the short arms of rice chromosomes 11 and 12 (and independently their homologs in sorghum) were found to be much more similar to each other than other homeologous regions within the duplicated genome. Based on detailed analysis of rice chromosomes 11 and 12 and their homologs in seven grass species, we propose a mechanism that explains the apparently 'younger' age of the duplication in this region of the genome, assuming a small number of reciprocal translocations at the chromosome termini. In each case the translocations were followed by unbalanced transmission and subsequent lineage sorting of the involved chromosomes to offspring. Molecular dating of these translocation events also allowed us to date major chromosome 'fusions' in the evolutionary lineages that led to Brachypodium and Triticeae. Furthermore, we provide evidence that rice is exceptional regarding the evolution of chromosomes 11 and 12, inasmuch as in other species the process of sequence exchange between homeologous chromosomes ceased much earlier than in rice. We presume that random events rather than selective forces are responsible for the observed high similarity between the short arm ends of rice chromosomes 11 and 12. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. A YAC contig encompassing the chromosome 7p locus for autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.F.; Keen, T.J.; Ratel, R.

    1994-09-01

    Retinitis pigmentosa is an inherited retinal degeneration characterized by night blindness and loss of peripheral vision, often leading to complete blindness. The autosomal dominant form (adRP) maps to at least six different loci, including the rhodopsin and peripherin/Rds genes and four loci identified only by linkage analysis on chromosomes 7p, 7q, 8cen and 19q. The 7p locus was reported by this laboratory in a large English family, with a lod score of 16.5. Several new genetic markers have been tested in the family and this locus has now been refined to an interval of approximately 1 cM between markers D7S795more » and D7S484 in the 7p13-15 region. In order to clone the gene for adRP, we have used microsatellites and STSs from the region to identify over 80 YACs, from four different libraries, which map to this interval. End clones from key YACs were isolated for the generation of additional STSs. Eleven microsatellite markers between D7S435 (distal) and D7S484 (proximal) have been ordered by a combination of both physical and genetic mapping. In this way we have now obtained a YAC contig spanning approximately 3 megabases of chromosome 7p within which the adRP gene must lie. One gene (aquaporin) and one chromosome 7 brain EST have been placed on the contig but both map distal to the region of interest. Sixteen other ESTs and three further known 7p genes mapping in the region have been excluded. We are now attempting to build a cosmid contig in the defined interval and identify further expressed sequences from both YACs and cosmids to test as candidates for the adRP gene.« less

  18. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.

    PubMed

    Eggermann, Thomas; Heilsberg, Ann-Kathrin; Bens, Susanne; Siebert, Reiner; Beygo, Jasmin; Buiting, Karin; Begemann, Matthias; Soellner, Lukas

    2014-07-01

    The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID

  19. Is mammalian chromosomal evolution driven by regions of genome fragility?

    PubMed Central

    Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

    2006-01-01

    Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

  20. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    PubMed

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  1. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kere, J.; Grzeschik, K.H.; Limon, J.

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  2. Monoamine oxidase deficiency in males with an X chromosome deletion.

    PubMed

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  3. [Chromosomal variation in Chironomus plumosus L. (Diptera, Chironomidae) from populations of Bryansk region, Saratov region (Russia), and Gomel region (Belarus)].

    PubMed

    Belyanina, S I

    2015-02-01

    Cytogenetic analysis was performed on samples of Chironomus plumosus L. (Diptera, Chironomidae) taken from waterbodies of various types in Bryansk region (Russia) and Gomel region (Belarus). Karyotypes of specimens taken from stream pools of the Volga were used as reference samples. The populations of Bryansk and Gomel regions (except for a population of Lake Strativa in Starodubskii district, Bryansk region) exhibit broad structural variation, including somatic mosaicism for morphotypes of the salivary gland chromosome set, decondensation of telomeric sites, and the presence of small structural changes, as opposed to populations of Saratov region. As compared with Saratov and Bryansk regions, the Balbiani ring in the B-arm of chromosome I is repressed in populations of Gomel region. It is concluded that the chromosome set of Ch. plumosus in a range of waterbodies of Bryansk and Gomel regions is unstable.

  4. Relatives with opposite chromosome constitutions, rec(10)dup(10p)inv(10)(p15.1q26.12) and rec(10)dup(10q)inv(10)(p15.1q26.12), due to a familial pericentric inversion.

    PubMed

    Ciuladaite, Zivile; Preiksaitiene, Egle; Utkus, Algirdas; Kučinskas, Vaidutis

    2014-01-01

    Large pericentric inversions in chromosome 10 are rare chromosomal aberrations with only few cases of familial inheritance. Such chromosomal rearrangements may lead to production of unbalanced gametes. As a result of a recombination event in the inversion loop, 2 recombinants with duplicated and deficient chromosome segments, including the regions distal to the inversion, may be produced. We report on 2 relatives in a family with opposite terminal chromosomal rearrangements of chromosome 10, i.e. rec(10)dup(10p)inv(10) and rec(10)dup(10q)inv(10), due to familial pericentric inversion inv(10)(p15.1q26.12). Based on array-CGH results, we characterized the exact genomic regions involved and compared the clinical features of both patients with previous reports on similar pericentric inversions and regional differences within 10p and 10q. The fact that both products of recombination are viable indicates a potentially high recurrence risk of unbalanced offspring. This report of unbalanced rearrangements in chromosome 10 in 2 generations confirms the importance of screening for terminal imbalances in patients with idiopathic intellectual disability by molecular cytogenetic techniques such as FISH, MLPA or microarrays. It also underlines the necessity for FISH to define structural characteristics of such cryptic intrachromosomal rearrangements and the underlying cytogenetic mechanisms. © 2014 S. Karger AG, Basel.

  5. Nucleotide, cytogenetic and expression impact of the human chromosome 8p23.1 inversion polymorphism.

    PubMed

    Bosch, Nina; Morell, Marta; Ponsa, Immaculada; Mercader, Josep Maria; Armengol, Lluís; Estivill, Xavier

    2009-12-14

    The human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.

  6. [Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].

    PubMed

    Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F

    2013-01-01

    About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.

  7. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in whichmore » there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.« less

  8. New developments in Smith-Magenis syndrome (del 17p11.2).

    PubMed

    Gropman, Andrea L; Elsea, Sarah; Duncan, Wallace C; Smith, Ann C M

    2007-04-01

    Recent clinical, neuroimaging, sleep, and molecular cytogenetic studies have provided new insights into the mechanisms leading to the Smith-Magenis phenotype and are summarized in this review. Cross sectional studies of patients with Smith-Magenis syndrome have found evidence for central and peripheral nervous system abnormalities, neurobehavioral disturbances, and an inverted pattern of melatonin secretion leading to circadian rhythm disturbance. A common chromosome 17p11.2 deletion interval spanning approximately 3.5 Mb is identified in about 70% of individuals with chromosome deletion. Recently heterozygous point mutations in the RAI1 gene within the Smith-Magenis syndrome critical region have been reported in Smith-Magenis syndrome patients without detectable deletion by fluorescent in-situ hybridization. Patients with intragenic mutations in RAI1 as well as those with deletions share most but not all aspects of the phenotype. Findings from molecular cytogenetic analysis suggest that other genes or genetic background may play a role in altering the functional availability of RAI1 for downstream effects. Further research into additional genes in the Smith-Magenis syndrome critical region will help define the role they play in modifying features or severity of the Smith-Magenis syndrome phenotype. More research is needed to translate advances in clinical research into new treatment options to address the sleep and neurobehavioral problems in this disorder.

  9. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  10. Two patients with chromosome 22q11.2 deletion presenting with childhood obesity and hyperphagia.

    PubMed

    Bassett, J K; Chandler, K E; Douzgou, S

    2016-08-01

    Chromosome 22q11.2 deletion syndrome is a clinically heterogeneous condition of intellectual disability, parathyroid and thyroid hypoplasia, palatal abnormalities, cardiac malformations and psychiatric symptoms. Hyperphagia and childhood obesity is widely reported in Prader-Willi Syndrome (PWS) but there is only one previous report of this presentation in chromosome 22q11.2 deletion syndrome. We describe two further cases of chromosome 22q11.2 deletion syndrome in which hyperphagia and childhood obesity were the presenting features. This may be a manifestation of obsessive behaviour secondary to some of the psychiatric features commonly seen in chromosome 22q11.2 deletion syndrome. Serious complications may result from hyperphagia and childhood obesity therefore early recognition and intervention is crucial. Due to the similar clinical presentation of these two patients to patients with PWS, it is suggested that the hyperphagia seen here should be managed in a similar way to how it is managed in PWS. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis

    PubMed Central

    Bewick, Adam J.; Chain, Frédéric J.J.; Zimmerman, Lyle B.; Sesay, Abdul; Gilchrist, Michael J.; Owens, Nick D.L.; Seifertova, Eva; Krylov, Vladimir; Macha, Jaroslav; Tlapakova, Tereza; Kubickova, Svatava; Cernohorska, Halina; Zarsky, Vojtech; Evans, Ben J.

    2013-01-01

    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians. PMID:23666865

  12. Genetic and Physical Mapping of Meloidogyne Incognita Resistance on Chromosome 11 of Acala NemX Cotton.

    USDA-ARS?s Scientific Manuscript database

    Root-knot nematode (RKN, Meloidogyne incognita) resistance in Gossypium hirsutum ‘Acala NemX’ cotton is conferred by the recessive gene rkn1 (locus Mi2h-C11) on chromosome 11. The concentration of RKN, reniform nematode and other disease resistance determinants on chromosome 11 indicates that much c...

  13. Acute leukaemia and myelodysplastic syndromes with chromosomal rearrangement involving 11q23 locus, but not MLL gene.

    PubMed

    Zuo, Wenli; Wang, Sa A; DiNardo, Courtney; Yabe, Mariko; Li, Shaoying; Medeiros, L Jeffrey; Tang, Guilin

    2017-03-01

    Chromosome 11q23 translocations, resulting in MLL (KMT2A ) rearrangement, have been well characterised in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL). However, little is known of haematopoietic neoplasms associated with 11q23 translocation but without MLL rearrangement (11q23+/ MLL -). The aim of this study is to characterise such cases with 11q23+/ MLL -. We retrospectively searched our database for cases with haematopoietic malignancies with 11q23+/ MLL -. We identified nine patients, two with AML, two with B-lymphoblastic leukaemia (B-ALL); two with T-lymphoblastic leukaemia (T-ALL), two with myelodysplastic syndrome (MDS) and one with chronic myelomonocytic leukaemia (CMML). The translocations included t(X;11)(p11.2;q23), t(2;11)(p21;q23), t(6;11)(q27;q23), t(8;9;11)(q13;q13;q23), t(11;11)(p15;q23), t(11;14)(q23;q24) and t(11;15)(q23;q14). Five of six patients with acute leukaemia had received chemotherapy and detection of 11q23 translocation occurred at time of disease relapse. Both patients with MDS and the patient with CMML had 11q23 translocation detected at time of initial diagnosis, all three patients progressed to AML after >1 year on hypomethylating agent therapy. All patients received risk-adapted therapies, including stem cell transplant in five patients. At the last follow-up, eight patients died with a median overall survival of 14 months. 11q23+/ MLL - occurs rarely, involving different partner chromosomes and showing clinical and pathological features and disease subtypes different from those cases with MLL rearrangement. 11q23+/ MLL - appears to be associated with clonal evolution/disease progression in acute leukaemia, a high risk for AML progression in MDS/CMML and a high incidence of disease relapse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. A Case of Partial Trisomy of Chromosome 8p Associated with Autism

    ERIC Educational Resources Information Center

    Papanikolaou, Katerina; Paliokosta, Elena; Gyftodimou, Jolanda; Kolaitis, Gerassimos; Vgenopoulou, Sofia; Sarri, Catherine; Tsiantis, John

    2006-01-01

    We report on a case of a 6-year-old female with partial trisomy 8p(21-23) associated with autism, mild dysmorphic features, and moderate learning disability. Although mental retardation is a common finding in patients with mosaic trisomy 8 or partial trisomy of various regions of chromosome 8, only two cases associated with autism have been…

  15. The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36.

    PubMed

    Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M

    1993-09-01

    The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.

  16. The gene for glycogen-storage disease type 1b maps to chromosome 11q23.

    PubMed

    Annabi, B; Hiraiwa, H; Mansfield, B C; Lei, K J; Ubagai, T; Polymeropoulos, M H; Moses, S W; Parvari, R; Hershkovitz, E; Mandel, H; Fryman, M; Chou, J Y

    1998-02-01

    Glycogen-storage disease type 1 (GSD-1), also known as "von Gierke disease," is caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase) activity. There are four distinct subgroups of this autosomal recessive disorder: 1a, 1b, 1c, and 1d. All share the same clinical manifestations, which are caused by abnormalities in the metabolism of glucose-6-phosphate (G6P). However, only GSD-1b patients suffer infectious complications, which are due to both the heritable neutropenia and the functional deficiencies of neutrophils and monocytes. Whereas G6Pase deficiency in GSD-1a patients arises from mutations in the G6Pase gene, this gene is normal in GSD-1b patients, indicating a separate locus for the disorder in the 1b subgroup. We now report the linkage of the GSD-1b locus to genetic markers spanning a 3-cM region on chromosome 11q23. Eventual molecular characterization of this disease will provide new insights into the genetic bases of G6P metabolism and neutrophil-monocyte dysfunction.

  17. Sequence Ready Characterization of the Pericentromeric Region of 19p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evan E. Eichler

    2006-08-31

    Current mapping and sequencing strategies have been inadequate within the proximal portion of 19p12 due, in part, to the presence of a recently expanded ZNF (zinc-finger) gene family and the presence of large (25-50 kb) inverted beta-satellite repeat structures which bracket this tandemly duplicated gene family. The virtual of absence of classically defined “unique” sequence within the region has hampered efforts to identify and characterize a suitable minimal tiling path of clones which can be used as templates required for finished sequencing of the region. The goal of this proposal is to develop and implement a novel sequence-anchor strategy tomore » generate a contiguous BAC map of the most proximal portion of chromosome 19p12 for the purpose of complete sequence characterization. The target region will be an estimated 4.5 Mb of DNA extending from STS marker D19S450 (the beginning of the ZNF gene cluster) to the centromeric (alpha-satellite) junction of 19p11. The approach will entail 1) pre-selection of 19p12 BAC and cosmid clones (NIH approved library) utilizing both 19p12 -unique and 19p12-SPECIFIC repeat probes (Eichler et al., 1998); 2) the generation of a BAC/cosmid end-sequence map across the region with a density of one marker every 8kb; 3) the development of a second-generation of STS (sequence tagged sites) which will be used to identify and verify clonal overlap at the level of the sequence; 4) incorporation of these sequence-anchored overlapping clones into existing cosmid/BAC restriction maps developed at Livermore National Laboratory; and 5) validation of the organization of this region utilizing high-resolution FISH techniques (extended chromatin analysis) on monochromosomal 19 somatic cell hybrids and parental cell lines of source material. The data generated will be used in the selection of the most parsimonious tiling path of BAC clones to be sequenced as part of the JGI effort on chromosome 19 and should serve as a model for the

  18. A cloned DNA segment from the telomeric region of human chromosome 4p is not detectably rearranged in Huntington disease patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, C.; Casher, D.; Myers, R.M.

    1990-09-01

    Genetic linkage studies have mapped the Huntington disease (HD) mutation to the distal region of the short arm of human chromosome 4. Analysis of recombination events in this region has produced contradictory locations for HD. One possible location is in the region distal to the D4S90 marker, which is located within 300 kilobases of the telomere. Other crossover events predict a more centromeric position for HD. Here the authors analyze the telomeric region of 4p in detail. Cloned DNA segments were derived from this region by utilizing a radiation-induced somatic cell hybrid as a source of DNA combined with preparativemore » pulsed-field gel electrophoresis to enrich for the telmoeric fraction. Additional DNA was obtained by using the cloned segments as multiple start points for cosmid walks. This strategy proved to be an effective method for cloning 250 kilobases of DNA in the region telomeric to D4S90. Hybridization analysis with the cloned DNA did not provide any evidence for the presence of rearrangements of 100 base pairs or greater in the DNA of individuals affected with HD. They also found no charge in the size or structure of the 4p telomere in these samples.« less

  19. The gene for achondroplasia maps to the telomeric region of chromosome 4p.

    PubMed

    Velinov, M; Slaugenhaupt, S A; Stoilov, I; Scott, C I; Gusella, J F; Tsipouras, P

    1994-03-01

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. We have now mapped the achondroplasia gene near the telomere of the short arm of chromosome 4 (4p16.3), by family linkage studies using 14 pedigrees. A positive lod score of z = 3.35 with no recombinants was obtained with an intragenic marker for IDUA. This localization will facilitate the positional cloning of the disease gene.

  20. Common variants on chromosome 6p22.1 are associated with schizophrenia

    PubMed Central

    Shi, Jianxin; Levinson, Douglas F.; Duan, Jubao; Sanders, Alan R.; Zheng, Yonglan; Pe'er, Itsik; Dudbridge, Frank; Holmans, Peter A.; Whittemore, Alice S.; Mowry, Bryan J.; Olincy, Ann; Amin, Farooq; Cloninger, C. Robert; Silverman, Jeremy M.; Buccola, Nancy G.; Byerley, William F.; Black, Donald W.; Crowe, Raymond R.; Oksenberg, Jorge R.; Mirel, Daniel B.; Kendler, Kenneth S.; Freedman, Robert; Gejman, Pablo V.

    2009-01-01

    Schizophrenia, a devastating psychiatric disorder, has a prevalence of 0.5–1%, with high heritability (80–85%) and complex transmission.1 Recent studies implicate rare, large, high-penetrance copy number variants (CNVs) in some cases2, but it is not known what genes or biological mechanisms underlie susceptibility. Here we show that schizophrenia is significantly associated with single nucleotide polymorphisms (SNPs) in the extended Major Histocompatibility Complex (MHC) region on chromosome 6. We carried out a genome-wide association study (GWAS) of common SNPs in the Molecular Genetics of Schizophrenia (MGS) case-control sample, and then a meta-analysis of data from the MGS, International Schizophrenia Consortium (ISC) and SGENE datasets. No MGS finding achieved genome-wide statistical significance. In the meta-analysis of European-ancestry subjects (8,008 cases, 19,077 controls), significant association with schizophrenia was observed in a region of linkage disequilibrium on chromosome 6p22.1 (P = 9.54 × 10−9). This region includes a histone gene cluster and several immunity-related genes, possibly implicating etiologic mechanisms involving chromatin modification, transcriptional regulation, auto-immunity and/or infection. These results demonstrate that common schizophrenia susceptibility alleles can be detected. The characterization of these signals will suggest important directions for research on susceptibility mechanisms. PMID:19571809

  1. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing.

    PubMed

    Silar, Philippe; Barreau, Christian; Debuchy, Robert; Kicka, Sébastien; Turcq, Béatrice; Sainsard-Chanet, Annie; Sellem, Carole H; Billault, Alain; Cattolico, Laurence; Duprat, Simone; Weissenbach, Jean

    2003-08-01

    A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.

  2. 8p11 myeloproliferative syndrome: diagnostic challenges and pitfalls.

    PubMed

    Antic, Darko A; Vukovic, Vojin M; Milosevic Feenstra, Jelena D; Kralovics, Robert; Bogdanovic, Andrija D; Dencic Fekete, Marija S; Mihaljevic, Biljana S

    2016-01-01

    8p11 myeloproliferative syndrome (EMS) is a very rare clinicopathological entity which is characterized by the appearance of a myeloproliferative neoplasm in the bone marrow, peripheral lymphadenopathy, usually caused by T or B lymphoblastic lymphoma/leukemia, and a reciprocal translocation involving chromosome 8p11. Herein we describe a 22-year-old male patient with unusual clinical presentation of EMS. Namely, he initially presented with prolonged epistaxis. Complete blood count showed elevated hemoglobin (17.7g/dl), thrombocytopenia (98x109/l) and leukocytosis (57x109/l). Bone marrow aspirate and biopsy findings corresponded with the presence of a myeloproliferative neoplasm while cytogenetic analysis revealed t(8;13)(p11q12). After that ZMYM2-FGFR1 in-frame fusion was confirmed at the molecular level. Immediately after establishing the diagnosis of a myeloproliferative neoplasm (MPN) generalized lymphadenopathy was developed. Histopathologic examination of lymph node sample confirmed the diagnosis of a T cell lymphoblastic lymphoma without bone marrow involvement. Four cycles of Hyper CVAD chemotherapy were administered with complete morphological and cytogenetic remission. Four weeks after evaluation, patient developed peripheral blood monocytosis and eosinophilia without bone marrow criteria for acute leukemia. Cytogenetic analysis showed t(8;13) accompanied by complex numerical and structural aberrations. The patient underwent allogeneic stem cell transplantation (allo-SCT) from HLA matched sister and he subsequently achieved complete remission. In conclusion, patients with MPN and translocations involving chromosome 8 need to be carefully evaluated for EMS. However, having in mind the very aggressive clinical course of EMS allo-SCT is the only potential curative option.

  3. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulman, E.P.; Brodeur, G.M.; Ikegaki, N.

    1997-03-01

    Mouse eck, a member of the EPH gene family, has been mapped to mouse chromosome 4. The syntenic relationship between this chromosome and human chromosome 1 suggests that the human ECK gene maps to the distal short arm of human chromosome 1 (1p). Since this region is frequently deleted or altered in certain tumors of neuroectodermal origin, it is important to define the specific chromosomal localization of the human ECK gene. PCR screening of a rodent-human somatic cell hybrid panel by ECK-specific primers showed that ECK is indeed localized to human chromosome 1. Additional PCR screening of a regional screeningmore » panel for chromosome 1p indicated that ECK is localized to 1p36, distal to FUCA1. Furthermore, fluorescence in situ hybridization analysis with an ECK-specific P1 clone showed that ECK maps proximal to genetic marker D1S228. Taken together, the data suggest that ECK maps to 1p36.1, a region that is frequently deleted in neuroblastoma, melanoma, and other neuroectodermal tumors. 23 refs., 3 figs.« less

  4. Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains

    PubMed Central

    2017-01-01

    The Escherichia coli chromosome is organized into four macrodomains (Ori, Ter, Right and Left) and two non-structured regions. This organization influences the segregation of sister chromatids, the mobility of chromosomal DNA, and the cellular localization of the chromosome. The organization of the Ter and Ori macrodomains relies on two specific systems, MatP/matS for the Ter domain and MaoP/maoS for the Ori domain, respectively. Here by constructing strains with chromosome rearrangements to reshuffle the distribution of chromosomal segments, we reveal that the difference between the non-structured regions and the Right and Left lateral macrodomains relies on their position on the chromosome. A change in the genetic location of oriC generated either by an inversion within the Ori macrodomain or by the insertion of a second oriC modifies the position of Right and Left macrodomains, as the chromosome region the closest to oriC are always non-structured while the regions further away behave as macrodomain regardless of their DNA sequence. Using fluorescent microscopy we estimated that loci belonging to a non-structured region are significantly closer to the Ori MD than loci belonging to a lateral MD. Altogether, our results suggest that the origin of replication plays a prominent role in chromosome organization in E. coli, as it determines structuring and localization of macrodomains in growing cell. PMID:28486476

  5. The osteoporosis-pseudoglioma syndrome locus is on chromosome 11q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y.; Vikkula, M.; Boon, L.M.

    The osteoporosis-pseudoglioma syndrome (OPS), is a rare autosomal recessive disorder characterized by severe osteoporosis with multiple fractures and blindness, both occurring in childhood. The precise pathogenic mechanism for OPS is unknown. Insights into its cause may be useful towards understanding the pathophysiology of more common disorders, such as senile osteoporosis, persistent hyperplasia of the primary vitreous, and retinopathy of prematurity, whose features have some similarity with OPS. As a first step in determining the cause of OPS, we have mapped the locus of the disorder to chromosome 11q. This was accomplished by assuming genetic homogeneity and by performing linkage analysismore » with homozygosity mapping in 18 individuals (7 patients, 5 unaffected siblings, and 7 parents) from 3 different consanguineous kindreds. Since the condition could be caused by an abnormal extracellular matrix component, we began by testing several candidate genes (e.g., COL1A1, COL1A2, Osteopontin, Osteonectin) distributed on 12 different chromosomes. We also initiated a systematic search at 20 cM intervals with highly polymorphic simple sequence tandem repeats. Linkage and homozygosity was detected with marker D11S913 (LOD score 3.8 at {theta} = 0). Additional markers are being tested to confirm this observation. The fibroblast collagenase, fibronectin-like-2 gene and rod outer segment protein-1 (ROM 1) also map to chromosome 11q and are candidate genes.« less

  6. Gene leopard nuclei (len P103) participating in control of disjunction and coiling of chromosomes in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omel`yanchuk, L.V.

    1995-12-01

    A lethal insertion of an element P[lArB], which caused nondisjunction and structural abnormalities in chromosomes in the neuroblasts of homozygous larvae, was found. The insertion was mapped to region 57B1-12 of the polytene map of chromosome 2 of Drosophila. The expression of the corresponding gene was found in testes, ovaries, and neural ganglia. 8 refs., 6 figs.

  7. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: Evidence for epistasis between 1p and IBD1

    PubMed Central

    Cho, Judy H.; Nicolae, Dan L.; Gold, Leslee H.; Fields, Carter T.; LaBuda, Michele C.; Rohal, Patrick M.; Pickles, Michael R.; Qin, Li; Fu, Yifan; Mann, Jasdeep S.; Kirschner, Barbara S.; Jabs, Ethylin Wang; Weber, James; Hanauer, Stephen B.; Bayless, Theodore M.; Brant, Steven R.

    1998-01-01

    The idiopathic inflammatory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 × 10−4), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 × 10−5), and at chromosome 1p (MLod = 2.65, P = 2.4 × 10−4) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 × 10−4), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 × 10−3), particularly among Ashkenazim (MLod = 1.51, P = 7.8 × 10−3); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC. PMID:9636179

  8. Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris.

    PubMed Central

    Goel, Shailendra; Chen, Zhenbang; Conner, Joann A; Akiyama, Yukio; Hanna, Wayne W; Ozias-Akins, Peggy

    2003-01-01

    Apomixis is a means of asexual reproduction by which plants produce embryos without meiosis and fertilization; thus the embryo is of clonal, maternal origin. We previously reported molecular markers showing no recombination with the trait for aposporous embryo sac development in Pennisetum squamulatum and Cenchrus ciliaris, and the collective single-dose alleles defined an apospory-specific genomic region (ASGR). Fluorescence in situ hybridization (FISH) was used to confirm that the ASGR is a hemizygous genomic region and to determine its chromosomal position with respect to rDNA loci and centromere repeats. We also documented chromosome transmission from P. squamulatum in several backcrosses (BCs) with P. glaucum using genomic in situ hybridization (GISH). One to three complete P. squamulatum chromosomes were detected in BC(6), but only one of the three hybridized with the ASGR-linked markers. In P. squamulatum and in all BCs examined, the apospory-linked markers were located in the distal region of the short arm of a single chromosome. All alien chromosomes behaved as univalents during meiosis and segregated randomly in BC(3) and later BC generations, but presence of the ASGR-carrier chromosome alone was sufficient to confer apospory. FISH results support our hypotheses that hemizygosity, proximity to centromeric sequences, and chromosome structure may all play a role in low recombination in the ASGR. PMID:12663545

  9. High-Resolution Chromosome 3p Allelotyping of Breast Carcinomas and Precursor Lesions Demonstrates Frequent Loss of Heterozygosity and a Discontinuous Pattern of Allele Loss

    PubMed Central

    Maitra, Anirban; Wistuba, Ignacio I.; Washington, Constance; Virmani, Arvind K.; Ashfaq, Raheela; Milchgrub, Sara; Gazdar, Adi F.; Minna, John D.

    2001-01-01

    We performed high-resolution allelotyping for loss of heterozygosity (LOH) analysis on microdissected samples from 45 primary breast cancers, 47 mammary preneoplastic epithelial foci, and 18 breast cancer cell lines, using a panel of 27 polymorphic chromosome 3p markers. Allele loss in some regions of chromosome 3p was detected in 39 of 45 (87%) primary breast tumors. The 3p21.3 region had the highest frequency of LOH (69%), followed by 3p22-24 (61%), 3p21.2-21.3 (58%), 3p25 (48%), 3p14.2 (45%), 3p14.3 (41%), and 3p12 (35%). Analysis of all of the data revealed at least nine discrete intervals showing frequent allele loss: D3S1511-D3S1284 (U2020/DUTT1 region centered on D3S1274 with a homozygous deletion), D3S1300-D3S1234 [fragile histidine triad (FHIT)/FRA3B region centered on D3S1300 with a homozygous deletion], D3S1076-D3S1573, D3S4624/Luca2.1-D3S4597/P1.5, D3S1478-D3S1029, D3S1029 (with a homozygous deletion), D3S1612-D3S1537, D3S1293-D3S1597, and D3S1597-telomere; it is more than likely that additional localized regions of LOH not examined in this study also exist on chromosome 3p. In multiple cases, there was discontinuous allele loss at several 3p sites in the same tumor. Twenty-one of 47 (45%) preneoplastic lesions demonstrated 3p LOH, including 12 of 13 (92%) ductal carcinoma in situ, 2 of 7 (29%) apocrine metaplasia, and 7 of 25 (28%) usual epithelial hyperplasia. The 3p21.3 region had the highest frequency of LOH in preneoplastic breast epithelium (36%), followed by 3p21.2-21.3 (20%), 3p14.2/FHIT region (11%), 3p25 (10%), and 3p22-24 (5%). In 39 3p loci showing LOH in both the tumor and accompanying preneoplasia, 34 (87%) showed loss of the same parental allele (P = 1.2 × 10−6, cumulative binomial test). In addition, when 21 preneoplastic samples showing LOH were compared to their accompanying cancers, 67% were clonally related, 20% were potentially clonally related but were divergent, and 13% were clonally unrelated. Overall this demonstrated the

  10. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer

    PubMed Central

    Ong, DCT; Ho, YM; Rudduck, C; Chin, K; Kuo, W-L; Lie, DKH; Chua, CLM; Tan, PH; Eu, KW; Seow-Choen, F; Wong, CY; Hong, GS; Gray, JW; Lee, ASG

    2010-01-01

    Deletion of 11q23–q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n=11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P=0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2′-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene. PMID:19734946

  11. A 1.5 Mb submicroscopic deletion in 17p11.2-p12 is frequently observed in Italian families with hereditary neuropathy with liability to pressure palsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, D.; Roa, B.B.; Abbas, N.E.

    1994-09-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies that was recently associated with a 1.5 Mb deletion in chromosome 17p11.2-p12. Duplication of the same region is known to be associated with Charcot-Marie-Tooth disease type 1A (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity. The CMT1A duplication and HNPP deletion are reciprocal recombination products involving a repeat element (CMT1A-REP) which flanks the 1.5 Mb region involved in the duplication/deletion. Patients from 9 unrelated HNPP Italian families were clinically, electrophysiologically and histologically evaluated. Families were typed with amore » polymorphic (CA){sub n} repeat and with RFLPs corresponding to loci D17S122, D17S125 and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, suggesting the presence of deletion. Southern blot analysis of EcoRI digested genomic DNA from HNPP patients and control subjects was performed using a probe mapping within the CMT1A-REP elements. A reduced hybridization signal of a 6.0 kb EcoRI fragment, mapping within the distal CMT1A-REP, was observed in all HNPP patients suggesting the loss of one copy of this fragment in the HNPP-deleted chromosome. PFGE analysis of SacII digested genomic DNA from selected HNPP subjects showed the presence of a junction fragment which has previously been found in association with the 1.5 Mb HNPP deletion. Evidence for deletion could be demonstrated in all 9 families suggesting that the 17p11.2-p12 deletion is commonly associated with HNPP.« less

  12. 40 CFR 721.10420 - Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569). 721.10420 Section 721.10420 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10420 Fluoropolymers (generic) (P-11-567, P-11-568...

  13. 40 CFR 721.10420 - Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569). 721.10420 Section 721.10420 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10420 Fluoropolymers (generic) (P-11-567, P-11-568...

  14. 40 CFR 721.10420 - Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluoropolymers (generic) (P-11-567, P-11-568, and P-11-569). 721.10420 Section 721.10420 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10420 Fluoropolymers (generic) (P-11-567, P-11-568...

  15. Molecular and clinical characterization of a patient with a chromosome 4p deletion, Wolf-Hirschhorn syndrome, and congenital glaucoma.

    PubMed

    Finzi, S; Pinto, C F; Wiggs, J L

    2001-03-01

    Wolf-Hirschhorn syndrome is a developmental disorder associated with hemizygous deletion of the distal short arm of chromosome 4. We have identified a patient affected with Wolf-Hirschhorn syndrome and early onset glaucoma. Five other patients with Wolf-Hirschhorn syndrome and early onset glaucoma or ocular anomalies associated with early onset glaucoma have been previously described, suggesting that the association with Wolf-Hirschhorn syndrome is not coincidental. The infrequent association of early onset glaucoma suggests that the chromosomal region commonly deleted in Wolf-Hirschhorn patients does not contain genes responsible for early onset glaucoma. In this study, we performed a molecular characterization of the deleted chromosome 4 to determine the extent of the deletion in an attempt to begin to identify the chromosomal region responsible for the associated glaucoma. Using microsatellite repeat markers located on 4p, we determined that the deletion spanned a 60-cM region including the minimal Wolf-Hirschhorn region. The proximal breakpoint occurred between markers D4S3045 and D4S2974. These results support the hypothesis that patients with Wolf-Hirschhorn syndrome and early onset glaucoma may have large deletions of 4p that include a gene(s) that may be responsible for a dominant form of congenital glaucoma.

  16. Angelman syndrome associated with an inversion of chromosome 15q11.2q24.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greger, V.; Knoll, J.H.M.; Wagstaff, J.

    1997-03-01

    Angelman syndrome (AS) most frequently results from large ({ge}5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangementsmore » in AS. We report the first such case involving a paracentric inversion with a breakpoint located {approximately}25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within {approximately}1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype. 47 refs., 3 figs.« less

  17. Machado Joseph disease maps to the same region of chromosome 14 as the spinocerebellar ataxia type 3 locus.

    PubMed Central

    Twist, E C; Casaubon, L K; Ruttledge, M H; Rao, V S; Macleod, P M; Radvany, J; Zhao, Z; Rosenberg, R N; Farrer, L A; Rouleau, G A

    1995-01-01

    Machado Joseph disease (MJD) is an autosomal dominantly inherited neuro-degenerative disorder primarily affecting the motor system. It can be divided into three phenotypes based on the variable combination of a range of clinical symptoms including pyramidal and extra-pyramidal features, cerebellar deficits, and distal muscle atrophy. MJD is thought to be caused by mutation of a single gene which has recently been mapped, using genetic linkage analysis, to a 29 cM region on chromosome 14q24.3-q32 in five Japanese families. A second disorder, spinocerebellar ataxia type 3 (SCA3), which has clinical symptoms similar to MJD, has also been linked to the same region of chromosome 14q in two French families. In order to narrow down the region of chromosome 14 which contains the MJD locus and to determine if this region overlaps with the predisposing locus for SCA3, we have performed genetic linkage analysis in seven MJD families, six of Portuguese/Azorean origin and one of Brazilian origin, using nine microsatellite markers mapped to 14q24.3-q32. Our results localise the MJD locus in these families to an 11 cM interval flanked by the markers D14S68 and AFM343vf1. In addition we show that this 11 cM interval maps within the 15 cM interval containing the SCA3 locus, suggesting that these diseases are allelic. PMID:7897622

  18. Transferring Desirable Genes from Agropyron cristatum 7P Chromosome into Common Wheat

    PubMed Central

    Li, Huanhuan; Pan, Cuili; Guo, Yong; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2016-01-01

    Wheat-Agropyron cristatum 7P disomic addition line Ⅱ-5-1, derived from the distant hybridization between A. cristatum (2n = 4x = 28, PPPP) and the common wheat cv. Fukuhokomugi (Fukuho), displays numerous desirable agronomic traits, including enhanced thousand-grain weight, smaller flag leaf, and enhanced tolerance to drought. In order to transfer these traits into common wheat, Ⅱ-5-1 was induced by 60Co-γ ray, leading to the creation of 18 translocation lines and three deletion lines. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) indicated that multiple wheat chromosomes were involved in the translocation events, including chromosome 2A, 3A, 5A, 7A, 3B, 5B, 7B, 3D and 7D. A. cristatum 7P chromosome was divided into 15 chromosomal bins with fifty-five sequence-tagged site (STS) markers specific to A. cristatum 7P chromosome. Seven and eight chromosomal bins were located on 7PS and 7PL, respectively. The above-mentioned translocation and deletion lines each contained different, yet overlapping 7P chromosomal fragments, covering the entire A. cristatum 7P chromosome. Three translocation lines (7PT-13, 7PT-14 and 7PT-17) and three deletion lines (del-1, del-2 and del-3), which contained the common chromosomal bins 7PS1-3, displayed higher thousand-grain weigh than Fukuho, suggesting that potential genes conferring high thousand-grain weigh might be located on these chromosomal bins. Therefore, wheat-A. cristatum 7P translocation lines with elite traits will be useful as novel germplasms for wheat genetic improvement. PMID:27459347

  19. Transferring Desirable Genes from Agropyron cristatum 7P Chromosome into Common Wheat.

    PubMed

    Lu, Mingjie; Lu, Yuqing; Li, Huanhuan; Pan, Cuili; Guo, Yong; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2016-01-01

    Wheat-Agropyron cristatum 7P disomic addition line Ⅱ-5-1, derived from the distant hybridization between A. cristatum (2n = 4x = 28, PPPP) and the common wheat cv. Fukuhokomugi (Fukuho), displays numerous desirable agronomic traits, including enhanced thousand-grain weight, smaller flag leaf, and enhanced tolerance to drought. In order to transfer these traits into common wheat, Ⅱ-5-1 was induced by 60Co-γ ray, leading to the creation of 18 translocation lines and three deletion lines. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) indicated that multiple wheat chromosomes were involved in the translocation events, including chromosome 2A, 3A, 5A, 7A, 3B, 5B, 7B, 3D and 7D. A. cristatum 7P chromosome was divided into 15 chromosomal bins with fifty-five sequence-tagged site (STS) markers specific to A. cristatum 7P chromosome. Seven and eight chromosomal bins were located on 7PS and 7PL, respectively. The above-mentioned translocation and deletion lines each contained different, yet overlapping 7P chromosomal fragments, covering the entire A. cristatum 7P chromosome. Three translocation lines (7PT-13, 7PT-14 and 7PT-17) and three deletion lines (del-1, del-2 and del-3), which contained the common chromosomal bins 7PS1-3, displayed higher thousand-grain weigh than Fukuho, suggesting that potential genes conferring high thousand-grain weigh might be located on these chromosomal bins. Therefore, wheat-A. cristatum 7P translocation lines with elite traits will be useful as novel germplasms for wheat genetic improvement.

  20. Association of reading disability on chromosome 6p22 in the Afrikaner population.

    PubMed

    Platko, Jill V; Wood, Frank B; Pelser, Izelda; Meyer, Marianne; Gericke, George S; O'Rourke, Julia; Birns, Julie; Purcell, Shaun; Pauls, David L

    2008-10-05

    The genetic basis of reading disability (RD) has long been established through family and twin studies. More recently genetic linkage studies have identified genomic regions that appear to harbor susceptibility genes for RD. Association studies have been shown to have greater power for detecting genes of modest effect, particularly in genetically isolated populations. Hence, a case control study of RD was undertaken in the Afrikaner population in South Africa. Sixty-eight microsatellite markers in regions where linkages had been reported in previous studies were genotyped on 122 children with reading disability and 112 typically reading controls drawn from the same school population. A single allele of marker D6S299 showed a highly significant association with the RD phenotype (D6S299[229], P-value 0.000014). Other markers on other chromosomes also showed suggestive associations. Of particular interest were markers on chromosomes 1 and 15. These two regions have been implicated in studies of populations that formed the founding population in the Afrikaner population.

  1. A gene (ETM) for essential tremor maps to chromosome 2p22-p25.

    PubMed

    Higgins, J J; Pho, L T; Nee, L E

    1997-11-01

    We report the results of linkage analysis in a large American family of Czech descent with dominantly inherited "pure" essential tremor (ET) and genetic anticipation. Genetic loci on chromosome 2p22-p25 establish linkage to this region with a maximum LOD score (Zmax) = 5.92 for the locus, D2S272. Obligate recombinant events place the ETM gene in a 15-cM candidate interval between the genetic loci D2S168 and D2S224. Repeat expansion detection analysis suggests that expanded CAG trinucleotide sequences are associated with ET. These findings will facilitate the search for an ETM gene and may further our understanding of the human motor system.

  2. Linkage of Type 2 Diabetes on Chromosome 9p24 in Mexican Americans: Additional Evidence from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Farook, Vidya S.; Coletta, Dawn K.; Puppala, Sobha; Schneider, Jennifer; Chittoor, Geetha; Hu, Shirley L.; Winnier, Deidre A.; Norton, Luke; Dyer, Thomas D.; Arya, Rector; Cole, Shelley A.; Carless, Melanie; Göring, Harald H.; Almasy, Laura; Mahaney, Michael C.; Comuzzie, Anthony G.; Curran, Joanne E.; Blangero, John; Duggirala, Ravindranath; Lehman, Donna M.; Jenkinson, Christopher P.; DeFronzo, Ralph A.

    2014-01-01

    Objective Type 2 diabetes (T2DM) is a complex metabolic disease and is more prevalent in certain ethnic groups such as the Mexican Americans. The goal of our study was to perform a genome-wide linkage analysis to localize T2DM susceptibility loci in Mexican Americans. Methods We used the phenotypic and genotypic data from 1,122 Mexican American individuals (307 families) who participated in the Veterans Administration Genetic Epidemiology Study (VAGES). Genome-wide linkage analysis was performed, using the variance components approach. Data from two additional Mexican American family studies, the San Antonio Family Heart Study (SAFHS) and the San Antonio Family Diabetes/Gallbladder Study (SAFDGS), were combined with the VAGES data to test for improved linkage evidence. Results After adjusting for covariate effects, T2DM was found to be under significant genetic influences (h2 = 0.62, P = 2.7 × 10−6). The strongest evidence for linkage of T2DM occurred between markers D9S1871 and D9S2169 on chromosome 9p24.2-p24.1 (LOD = 1.8). Given that we previously reported suggestive evidence for linkage of T2DM at this region in SAFDGS also, we found the significant and increased linkage evidence (LOD = 4.3, empirical P = 1.0 × 10−5, genome-wide P = 1.6 × 10−3) for T2DM at the same chromosomal region when we performed genome-wide linkage analysis of the VAGES data combined with SAFHS and SAFDGS data. Conclusion Significant T2DM linkage evidence was found on chromosome 9p24 in Mexican Americans. Importantly, the chromosomal region of interest in this study overlaps with several recent genome-wide association studies (GWASs) involving T2DM related traits. Given its overlap with such findings and our own initial T2DM association findings in the 9p24 chromosomal region, high throughput sequencing of the linked chromosomal region could identify the potential causal T2DM genes. PMID:24060607

  3. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements

    PubMed Central

    Kurahashi, H; Inagaki, H; Ohye, T; Kogo, H; Tsutsumi, M; Kato, T; Tong, M; Emanuel, BS

    2012-01-01

    The constitutional t(11;22)(q23;q11) is the most common recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both chromosomes are characterized by several hundred base pairs of palindromic AT-rich repeats (PATRRs). Similar PATRRs have also been identified at the breakpoints of other nonrecurrent translocations, suggesting that PATRR-mediated chromosomal translocation represents one of the universal pathways for gross chromosomal rearrangement in the human genome. We propose that PATRRs have the potential to form cruciform structures through intrastrand-base pairing in single-stranded DNA, creating a source of genomic instability and leading to translocations. Indeed, de novo examples of the t(11;22) are detected at a high frequency in sperm from normal healthy males. This review synthesizes recent data illustrating a novel paradigm for an apparent spermatogenesis-specific translocation mechanism. This observation has important implications pertaining to the predominantly paternal origin of de novo gross chromosomal rearrangements in humans. PMID:20507342

  4. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    PubMed

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  5. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    PubMed

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  6. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer.

    PubMed

    Cody, Neal A L; Shen, Zhen; Ripeau, Jean-Sebastien; Provencher, Diane M; Mes-Masson, Anne-Marie; Chevrette, Mario; Tonin, Patricia N

    2009-12-01

    The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.

  7. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    PubMed

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  8. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  9. Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Kondo, Motohiko; Yamamoto, Toshio; Arai-Sanoh, Yumiko; Ando, Tsuyu; Ookawa, Taiichiro; Yano, Masahiro; Hirasawa, Tadashi

    2010-01-01

    Background and Aims The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance. Methods Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used. Key Results The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’. Conclusions The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one

  10. Suppression of genetic recombination in the pseudoautosomal region and at subtelomeres in mice with a hypomorphic Spo11 allele.

    PubMed

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Sengupta, Uttara; Camerini-Otero, R Daniel; Petukhova, Galina V

    2013-07-22

    Homologous recombination is the key process that generates genetic diversity and drives evolution. SPO11 protein triggers recombination by introducing DNA double stranded breaks at discreet areas of the genome called recombination hotspots. The hotspot locations are largely determined by the DNA binding specificity of the PRDM9 protein in human, mice and most other mammals. In budding yeast Saccharomyces cerevisae, which lacks a Prdm9 gene, meiotic breaks are formed opportunistically in the regions of accessible chromatin, primarily at gene promoters. The genome-wide distribution of hotspots in this organism can be altered by tethering Spo11 protein to Gal4 recognition sequences in the strain expressing Spo11 attached to the DNA binding domain of the Gal4 transcription factor. To establish whether similar re-targeting of meiotic breaks can be achieved in PRDM9-containing organisms we have generated a Gal4BD-Spo11 mouse that expresses SPO11 protein joined to the DNA binding domain of yeast Gal4. We have mapped the genome-wide distribution of the recombination initiation sites in the Gal4BD-Spo11 mice. More than two hundred of the hotspots in these mice were novel and were likely defined by Gal4BD, as the Gal4 consensus motif was clustered around the centers in these hotspots. Surprisingly, meiotic DNA breaks in the Gal4BD-Spo11 mice were significantly depleted near the ends of chromosomes. The effect is particularly striking at the pseudoautosomal region of the X and Y chromosomes - normally the hottest region in the genome. Our data suggest that specific, yet-unidentified factors influence the initiation of meiotic recombination at subtelomeric chromosomal regions.

  11. A 1.5-Mb deletion in 17p11.2-p12 is frequently observed in Italian families with hereditary neuropathy with liability to pressure palsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, D.; Pandolfo, M.; Pareyson, D.

    1995-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder characterized by recurrent mononeuropathies. A 1.5-Mb deletion in chromosome 17p11.2-p12 has been associated with HNPP. Duplication of the same 1.5-Mb region is known to be associated with Charcot-Marie-Tooth disease type 1 (CMT1A), a more severe peripheral neuropathy characterized by symmetrically slowed nerve conduction velocity (NCV). The CMT1A duplication and HNPP deletion appear to be the reciprocal products of a recombination event involving a repeat element (CMT1A-REP) that flanks the 1.5-Mb region involved in the duplication/deletion. Patients from nine unrelated Italian families who were diagnosed with HNPP onmore » the basis of clinical, electrophysiological, and histological evaluations were analyzed by molecular methods for DNA deletion on chromosome 17p. In all nine families, Southern analysis using a CMT1A-REP probe detected a reduced hybridization signal of a 6.0-kb EcoRI fragment mapping within the distal CMT1A-REP, indicating deletion of one copy of CMT1A-REP in these HNPP patients. Families were also typed with a polymorphic (CA){sub n} repeat and with RFLPs corresponding to loci D17S122, D17S125, and D17S61, which all map within the deleted region. Lack of allelic transmission from affected parent to affected offspring was observed in four informative families, providing an independent indication for deletion. Furthermore, pulsed-field gel electrophoresis analysis of SacII-digested genomic DNA detected junction fragments specific to the 1.5-Mb HNPP deletion in seven of nine Italian families included in this study. These findings suggest that a 1.5-Mb deletion on 17p11.2-p12 is the most common mutation associated with HNPP. 51 refs., 5 figs., 1 tab.« less

  12. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    PubMed

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. A contiguous clone map over 3 Mb on the long arm of chromosome 11 across a balanced translocation associated with schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, K.L.; Shibasaki, Yoshiro; Devon, R.S.

    1995-08-10

    Forty-nine clones derived by microdissection of a schizophrenia-associated t(1;11)(q42.1;q14.3) breakpoint region have been assigned by somatic cell hybrid mapping to seven discrete intervals on the long arm of human chromosome 11. Eleven of the clones were shown to map to a small region immediately distal to the translocation breakpoint on 11q. A 3-Mb contiguous clone map of this region was established by isolation of corresponding YAC recombinants. The contig was oriented and shown to traverse the translocation breakpoint by FISH and microsatellite marker analysis. This contig will facilitate the isolation of candidate sequences whose expression may be affected by themore » translocation. 28 refs., 4 figs., 3 tabs.« less

  14. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    PubMed

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  15. Phylogeography of Y-chromosome haplogroup O3a2b2-N6 reveals patrilineal traces of Austronesian populations on the eastern coastal regions of Asia

    PubMed Central

    Teo, Yik-Ying; Huang, Yun-Zhi; Wang, Ling-Xiang; Yu, Ge; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Lu, Yan; Zhang, Chao; Xu, Shu-Hua; Jin, Li; Li, Hui

    2017-01-01

    Austronesian diffusion is considered one of the greatest dispersals in human history; it led to the peopling of an extremely vast region, ranging from Madagascar in the Indian Ocean to Easter Island in Remote Oceania. The Y-chromosome haplogroup O3a2b*-P164(xM134), a predominant paternal lineage of Austronesian populations, is found at high frequencies in Polynesian populations. However, the internal phylogeny of this haplogroup remains poorly investigated. In this study, we analyzed -seventeen Y-chromosome sequences of haplogroup O3a2b*-P164(xM134) and generated a revised phylogenetic tree of this lineage based on 310 non-private Y-chromosome polymorphisms. We discovered that all available O3a2b*-P164(xM134) samples belong to the newly defined haplogroup O3a2b2-N6 and samples from Austronesian populations belong to the sublineage O3a2b2a2-F706. Additionally, we genotyped a series of Y-chromosome polymorphisms in a large collection of samples from China. We confirmed that the sublineage O3a2b2a2b-B451 is unique to Austronesian populations. We found that O3a2b2-N6 samples are widely distributed on the eastern coastal regions of Asia, from Korea to Vietnam. Furthermore, we propose- that the O3a2b2a2b-B451 lineage represents a genetic connection between ancestors of Austronesian populations and ancient populations in North China, where foxtail millet was domesticated about 11,000 years ago. The large number of newly defined Y-chromosome polymorphisms and the revised phylogenetic tree of O3a2b2-N6 will be helpful to explore the origin of proto-Austronesians and the early diffusion process of Austronesian populations. PMID:28380021

  16. Construction of physical maps for the sex-specific regions of papaya sex chromosomes.

    PubMed

    Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-05-08

    Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common

  17. Partial hexasomy of chromosome 15.

    PubMed

    Huang, Bing; Bartley, James

    2003-09-01

    Marker chromosomes originating from chromosome 15, often referred to as inv dup(15), is the most common marker chromosome found in humans. The large marker 15 that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, behavioral problems, and mild dysmorphic features. We report here an infant boy with two copies of the large inv dup(15). A 10-day-old infant was found to have infantile spasms, microcephaly, hypotonia, and lethargy. Lymphocyte chromosome analysis revealed a 48,XY, +2mar karyotype. Fluorescence in situ hybridization with probes rRNA, D15Z4, D15S11, and GABRB3 demonstrated that both markers were chromosome 15 in origin and contained the Prader-Willi/Angelman syndrome chromosome region. Therefore, this patient is hexasomic for the PWS/AS region. The phenotype of this patient does not appear to be significantly more severe than patients with one copy of the large inv dup(15) at birth, however, follow-up evaluation of the patient at 21 months of age shows that this patient has frequent and severe seizure activity, severe bilateral hearing loss, and cortical blindness. Copyright 2003 Wiley-Liss, Inc.

  18. Prenatal diagnosis and molecular characterization of a novel locus for Dandy-Walker malformation on chromosome 7p21.3.

    PubMed

    Liao, Can; Fu, Fang; Li, Ru; Yang, Xin; Xu, Qing; Li, Dong-Zhi

    2012-01-01

    We present three foetuses with Dandy-Walker malformation, intra-uterine growth restriction and multiple congenital abnormalities, who were studied by array-based comparative genomic hybridization and revealed a novel locus on chromosome 7p21.3. The association of pure chromosome 7p aberrations with Dandy-Walker malformation has rarely been reported. The present study suggests that the critical region associated with Dandy-Walker malformation is restricted to 7p21.3, including the cerebellar disease associated genes NDUFA4 and PHF14. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. De novo reciprocal translocation t(5;11)(q22;p15) associated with hydrops fetalis (reciprocal translocation and hydrops fetalis).

    PubMed

    Pala, Halil Gursoy; Artunc-Ulkumen, Burcu; Uyar, Yildiz; Bal, Filiz; Baytur, Yesim Bulbul; Koyuncu, Faik Mumtaz

    2015-02-01

    This is a case of a prenatally diagnosed non-immune hydrops fetalis (NIHF) associated with translocation t(5;11)(q22;p15). An association between NIHF and this translocation has not been reported previously. The patient was referred to the perinatology clinic with hydrops fetalis diagnosis at 23 weeks' gestation. We noted that the fetus had bilateral pleural effusion, ascites, widespread subcutaneous edema, membranous ventricular septal defect, hypoplastic fifth finger middle phalanx, clinodactyly, single umbilical artery. We performed cordocentesis. Chromosomal analysis on blood showed a balanced translocation between the long arm of chromosome 5 and the short arm of chromosome 11 with karyotype of 46,XX,t(5;11)(q22;p15). We present prenatal diagnosis of a de novo translocation (5;11) in a hydropic fetus with ultrason abnormalities. In our case, karyotype analysis of the fetus, mother and father provided evidence of a de novo translocation, that might explain the NIHF.

  20. Myeloid- and lymphoid-specific breakpoint cluster regions in chromosome band 13q14 in acute leukemia.

    PubMed

    Coignet, L J; Lima, C S; Min, T; Streubel, B; Swansbury, J; Telford, N; Swanton, S; Bowen, A; Nagai, M; Catovsky, D; Fonatsch, C; Dyer, M J

    1999-07-01

    Abnormalities of chromosome band 13q14 occur in hematologic malignancies of all lineages and at all stages of differentiation. Unlike other chromosomal translocations, which are usually specific for a given lineage, the chromosomal translocation t(12;13)(p12;q14) has been observed in both B-cell and T-cell precursor acute lymphoblastic leukemia (BCP-, TCP-ALL), in differentiated and undifferentiated acute myeloblastic leukemia (AML), and in chronic myeloid leukemia (CML) at progression to blast crisis. The nature of these translocations and their pathologic consequences remain unknown. To begin to define the gene(s) involved on chromosome 13, we have performed fluorescence in situ hybridization (FISH) using a panel of YACs from the region, on a series of 10 cases of acute leukemia with t(12;13)(p12;q14) and 1 case each with "variant" translocations including t(12;13)(q21;q14), t(10;13)(q24;q14) and t(9;13)(p21;q14). In 8/13 cases/cell lines, the 13q14 break fell within a single 1.4 Mb CEPH MegaYAC. This YAC fell immediately telomeric of the forkhead (FKHR) gene, which is disrupted in the t(2;13)(q35;q14) seen in pediatric alveolar rhabdomyosarcoma. Seven of the 8 cases with breaks in this YAC were AML. In 4/13 cases, the 13q14 break fell within a 1.7-Mb YAC located about 3 Mb telomeric of the retinoblastoma (RB1) gene: all 4 cases were ALL. One case of myelodysplastic syndrome exhibited a break within 13q12, adjacent to the BRCA2 gene. These data indicate the presence of myeloid- and lymphoid-specific breakpoint cluster regions within chromosome band 13q14 in acute leukemia.

  1. Cloning, genomic organization, and chromosomal localization of human citrate transport protein to the DiGeorge/velocardiofacial syndrome minimal critical region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmuntz, E.; Budarf, M.L.; Wang, Zhili

    1996-04-15

    DiGeorge syndrome (DGS) and velocardiofacial syndrome have been shown to be associated with microdeletions of chromosomal region 22q11. More recently, patients with conotruncal anomaly face syndrome and some nonsyndromic patients with isolated forms of conotruncal cardiac defects have been found to have 22q11 microdeletions as well. The commonly deleted region, called the DiGeorge chromosomal region (DGCR), spans approximately 1.2 mb and is estimated to contain at least 30 genes. We report a computational approach for gene identification that makes use of large-scale sequencing of cosmids from a contig spanning the DGCR. Using this methodology, we have mapped the human homologmore » of a rodent citrate transport protein to the DGCR. We have isolated a partial cDNA containing the complete open reading frame and have determined the genomic structure by comparing the genomic sequence from the cosmid to the sequence of the cDNA clone. Whether the citrate transport protein can be implicated in the biological etiology of DGS or other 22q11 microdeletion syndromes remains to be defined. 36 refs., 3 figs., 1 tab.« less

  2. Four families with immunodeficiency and chromosome abnormalities.

    PubMed Central

    Candy, D C; Hayward, A R; Hughes, D T; Layward, L; Soothill, J F

    1979-01-01

    Six children, with severe deficiency of some or all of the immunoglobulins and minor somatic abnormalities, had chromosomal abnormalities: (1) 45,XY,t(13q/18q), (2) 46,XY,21ps +, (3) two brothers 46,XY (inv. 7) (4) 45,X,t(11p/10p)/46X,iXq,t(11p/10p) and, (5) in addendum, 45,XX,-18;46,XX, r18. The chromosome abnormalities were detected in B- as well as T-lymphocytes (as evidenced by using both PHA- and PWM-stimulated cultures) in all probands, but one was mosaic in PHA culture, although all his PWM-stimulated cells were abnormal. Chromosomal variants were also detected in relatives of three and immunodeficiency in relatives of two. Images Fig. 1 Fig. 3 PMID:314782

  3. Chromosome 9p21 In Ischemic Stroke: Population Structure and Meta-Analysis

    PubMed Central

    Anderson, CD; Biffi, A; Rost, NS; Cortellini, L; Furie, KL; Rosand, J

    2011-01-01

    Background and Purpose Sequence variants on chromosome 9p21.3 are implicated in coronary artery disease (CAD) and myocardial infarction (MI), but studies in ischemic stroke have produced inconsistent results. We investigated whether these conflicting findings were due to false positive studies confounded by population stratification, or false negative studies that failed to account for effects specific to certain stroke subtypes. Methods After assessing for population stratification at 9p21.3 using genome-wide data, we meta-analyzed 8 ischemic stroke studies. This analysis focused on two single nucleotide polymorphisms (SNPs), rs1537378 and rs10757278, as these variants are in strong linkage disequilibrium with most SNPs analyzed in prior studies of the region. Results Principal component analysis of the genome-wide data showed no evidence of population stratification at that locus. Meta-analysis confirmed that both rs1537378 and rs10757278 are risk factors for ischemic stroke (odds ratios 1.09, [p = 0.0014], and 1.11, [p = 0.001] respectively). Subtype analysis revealed a substantial increase in the effect of each SNP for risk of large artery (LA) stroke, achieving an effect size similar to that seen in CAD/MI. Conclusions Variants on 9p21.3 are associated with ischemic stroke, and restriction of analysis to LA stroke increases effect size towards that observed in prior association studies of CAD/MI. Previous inconsistent findings are best explained by this subtype-specificity rather than any unmeasured confounding by population stratification. PMID:20395606

  4. Duplication of (12)(pter-q13.3) combined with deletion of (22)(pter-q11.2) in a patient with features of both chromosome aberrations.

    PubMed

    Tyshchenko, Nataliya A; Riegel, Mariluce; Evseenkova, Elena G; Zerova, Tatjana E; Gorovenko, Nataliya G; Schinzel, Albert

    2007-01-01

    We report a patient with multiple dysmorphic signs and congenital malformations, representing a combination of clinical features of duplication (12p) and deletion (22)(q11.2) syndromes. The girl had overgrowth at birth, showed abnormal cranio-facial findings, cleft uvula, a complex conotruncal heart defect, a polycystic right kidney, and an umbilical hernia. She died at the age of 6 months of cardio-respiratory failure. Cytogenetic examination demonstrated a derivative chromosome 12 replacing one of the two chromosomes 22. The paternal karyotype was normal 46,XY while the mother's karyotype was 46,XX,rcp(12;22)(q13.2;q11.2). According to the published data, all patients with deletion 22q11.2 combined with other unbalanced chromosomal aberration have a more severe clinical expression than those with interstitial deletions.

  5. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    PubMed

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  6. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans.

    PubMed

    Kehrer-Sawatzki, H; Sandig, C A; Goidts, V; Hameister, H

    2005-01-01

    During this study, we analysed the pericentric inversion that distinguishes human chromosome 12 (HSA12) from the homologous chimpanzee chromosome (PTR10). Two large chimpanzee-specific duplications of 86 and 23 kb were observed in the breakpoint regions, which most probably occurred associated with the inversion. The inversion break in PTR10p caused the disruption of the SLCO1B3 gene in exon 11. However, the 86-kb duplication includes the functional SLCO1B3 locus, which is thus retained in the chimpanzee, although inverted to PTR10q. The second duplication spans 23 kb and does not contain expressed sequences. Eleven genes map to a region of about 1 Mb around the breakpoints. Six of these eleven genes are not among the differentially expressed genes as determined previously by comparing the human and chimpanzee transcriptome of fibroblast cell lines, blood leukocytes, liver and brain samples. These findings imply that the inversion did not cause major expression differences of these genes. Comparative FISH analysis with BACs spanning the inversion breakpoints in PTR on metaphase chromosomes of gorilla (GGO) confirmed that the pericentric inversion of the chromosome 12 homologs in GGO and PTR have distinct breakpoints and that humans retain the ancestral arrangement. These findings coincide with the trend observed in hominoid karyotype evolution that humans have a karyotype close to an ancestral one, while African great apes present with more derived chromosome arrangements. Copyright (c) 2005 S. Karger AG, Basel.

  7. Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

    PubMed Central

    Truong, Therese; Hung, Rayjean J.; Amos, Christopher I.; Wu, Xifeng; Bickeböller, Heike; Rosenberger, Albert; Sauter, Wiebke; Illig, Thomas; Wichmann, H.-Erich; Risch, Angela; Dienemann, Hendrik; Kaaks, Rudolph; Yang, Ping; Jiang, Ruoxiang; Wiencke, John K.; Wrensch, Margaret; Hansen, Helen; Kelsey, Karl T.; Matsuo, Keitaro; Tajima, Kazuo; Schwartz, Ann G.; Wenzlaff, Angie; Seow, Adeline; Ying, Chen; Staratschek-Jox, Andrea; Nürnberg, Peter; Stoelben, Erich; Wolf, Jürgen; Lazarus, Philip; Muscat, Joshua E.; Gallagher, Carla J.; Zienolddiny, Shanbeh; Haugen, Aage; van der Heijden, Henricus F. M.; Kiemeney, Lambertus A.; Isla, Dolores; Mayordomo, Jose Ignacio; Rafnar, Thorunn; Stefansson, Kari; Zhang, Zuo-Feng; Chang, Shen-Chih; Kim, Jin Hee; Hong, Yun-Chul; Duell, Eric J.; Andrew, Angeline S.; Lejbkowicz, Flavio; Rennert, Gad; Müller, Heiko; Brenner, Hermann; Le Marchand, Loïc; Benhamou, Simone; Bouchardy, Christine; Teare, M. Dawn; Xue, Xiaoyan; McLaughlin, John; Liu, Geoffrey; McKay, James D.; Spitz, Margaret R.

    2010-01-01

    Background Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. Methods Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case–control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. Results Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was

  8. Targeted induction of meiotic double-strand breaks reveals chromosomal domain-dependent regulation of Spo11 and interactions among potential sites of meiotic recombination

    PubMed Central

    Fukuda, Tomoyuki; Kugou, Kazuto; Sasanuma, Hiroyuki; Shibata, Takehiko

    2008-01-01

    Meiotic recombination is initiated by programmed DNA double-strand break (DSB) formation mediated by Spo11. DSBs occur with frequency in chromosomal regions called hot domains but are seldom seen in cold domains. To obtain insights into the determinants of the distribution of meiotic DSBs, we examined the effects of inducing targeted DSBs during yeast meiosis using a UAS-directed form of Spo11 (Gal4BD-Spo11) and a meiosis-specific endonuclease, VDE (PI-SceI). Gal4BD-Spo11 cleaved its target sequence (UAS) integrated in hot domains but rarely in cold domains. However, Gal4BD-Spo11 did bind to UAS and VDE efficiently cleaved its recognition sequence in either context, suggesting that a cold domain is not a region of inaccessible or uncleavable chromosome structure. Importantly, self-association of Spo11 occurred at UAS in a hot domain but not in a cold domain, raising the possibility that Spo11 remains in an inactive intermediate state in cold domains. Integration of UAS adjacent to known DSB hotspots allowed us to detect competitive interactions among hotspots for activation. Moreover, the presence of VDE-introduced DSB repressed proximal hotspot activity, implicating DSBs themselves in interactions among hotspots. Thus, potential sites for Spo11-mediated DSB are subject to domain-specific and local competitive regulations during and after DSB formation. PMID:18096626

  9. Recurrent proximal 18p monosomy and 18q trisomy in a family due to a pericentric inversion.

    PubMed

    Zamani, Ayse Gul; Acar, Aynur; Durakbasi-Dursun, Gul; Yildirim, M Selman; Ceylaner, Serdar; Tuncez, Ebru

    2014-05-01

    Here, we report on a family with pericentric inversion of chromosome 18 [inv(18)(p11.2q21)] and two recombinants with a duplication of q21 → qter and a deletion of p11.2 → pter regions in a four-generation family. This chromosomal abnormality was inherited in our first patient from the father, while it was transmitted to the second patient from the mother. Array-CGH analysis were used to better characterize duplicated and deleted chromosomal regions and showed no genomic copy number variation (CNV) differences between these two relatives. We discussed genotype-phenotype correlations including previously reported. © 2014 Wiley Periodicals, Inc.

  10. [Supernumerary chromosomes in the karyotype of the Siberian spruce, P. obovata].

    PubMed

    Muratova, E N; Vladimirova, O S

    2001-01-01

    Results of karyological study of ornamental forms of Picea obovata Ledeb. are presented. Typical chromosome number (2n) is 24, but some trees have one or two additional chromosomes (2n = 24 + 1B; 2n = 24 + 2B). Heritability of additional chromosomes, pollen fertility, morphological features of cones, and seed quality in trees with and without additional chromosomes were studied. System of B-chromosomes is of importance for population and species adaptation and possibly plays a role in adaptation of P. obovata under introduction.

  11. Chromosome 3p allele loss in early invasive breast cancer: detailed mapping and association with clinicopathological features

    PubMed Central

    Martinez, A; Walker, R A; Shaw, J A; Dearing, S J; Maher, E R; Latif, F

    2001-01-01

    Aims—Chromosome 3p allele loss is a frequent event in many common sporadic cancers including lung, breast, kidney, ovarian, and head and neck cancer. To analyse the extent and frequency of 3p allelic losses in T1N0 and T1N1 invasive sporadic breast cancer, 19 microsatellite markers spread along 3p were analysed in 40 such breast carcinomas with known clinicopathological parameters. Methods—Loss of heterozygosity analysis was carried out using 3p microsatellite markers that were non-randomly distributed and chosen to represent regions that show hemizygous and/or homozygous losses in lung cancer (lung cancer tumour suppressor gene region 1 ( LCTSGR1) at 3p21.3 and LCTSGR2 at 3p12), and regions demonstrating suppression of tumorigenicity in breast, kidney, lung, and ovarian cancer. Results—Allelic loss was seen at one or more loci in 22 of these clinically early stage sporadic breast tumours, but none had complete 3p allele loss. Several regions with non-overlapping deletions were defined, namely: (1) 18 tumours showed loss at 3p21–22, a physical distance of 12 Mb; (2) 11 tumours showed loss at 3p12 within a physical distance of 1 Mb, this region is contained within LCTSGR2; (3) six tumours showed loss at 3p25–24, including the von Hippel-Lindau (VHL) locus; (4) five tumours showed loss at 3p14.2, including the fragile histidine triad (FHIT) locus. Conclusions—This is the largest study to date defining the extent and range of 3p allelic losses in early stage invasive breast cancer and the results indicate that region 3p21–22 containing LCTSGR1 and a region at 3p12 within LCTSGR2 are the most frequent sites of 3p allelic loss in these breast carcinomas. This suggests that tumour suppressor genes located in these regions may play important roles in the development of breast cancer. There was an association between increasing 3p allelic loss and increasing tumour grade and loss of progesterone (p = 0.0098) and oestrogen (p = 0.0472) receptor expression

  12. Chromosome 3p allele loss in early invasive breast cancer: detailed mapping and association with clinicopathological features.

    PubMed

    Martinez, A; Walker, R A; Shaw, J A; Dearing, S J; Maher, E R; Latif, F

    2001-10-01

    Chromosome 3p allele loss is a frequent event in many common sporadic cancers including lung, breast, kidney, ovarian, and head and neck cancer. To analyse the extent and frequency of 3p allelic losses in T1N0 and T1N1 invasive sporadic breast cancer, 19 microsatellite markers spread along 3p were analysed in 40 such breast carcinomas with known clinicopathological parameters. Loss of heterozygosity analysis was carried out using 3p microsatellite markers that were non-randomly distributed and chosen to represent regions that show hemizygous and/or homozygous losses in lung cancer (lung cancer tumour suppressor gene region 1 ( LCTSGR1) at 3p21.3 and LCTSGR2 at 3p12), and regions demonstrating suppression of tumorigenicity in breast, kidney, lung, and ovarian cancer. Allelic loss was seen at one or more loci in 22 of these clinically early stage sporadic breast tumours, but none had complete 3p allele loss. Several regions with non-overlapping deletions were defined, namely: (1) 18 tumours showed loss at 3p21-22, a physical distance of 12 Mb; (2) 11 tumours showed loss at 3p12 within a physical distance of 1 Mb, this region is contained within LCTSGR2; (3) six tumours showed loss at 3p25-24, including the von Hippel-Lindau (VHL) locus; (4) five tumours showed loss at 3p14.2, including the fragile histidine triad (FHIT) locus. This is the largest study to date defining the extent and range of 3p allelic losses in early stage invasive breast cancer and the results indicate that region 3p21-22 containing LCTSGR1 and a region at 3p12 within LCTSGR2 are the most frequent sites of 3p allelic loss in these breast carcinomas. This suggests that tumour suppressor genes located in these regions may play important roles in the development of breast cancer. There was an association between increasing 3p allelic loss and increasing tumour grade and loss of progesterone (p = 0.0098) and oestrogen (p = 0.0472) receptor expression, indicating a link between 3p allelic loss and the

  13. Segmental Duplications in Euchromatic Regions of Human Chromosome 5: A Source of Evolutionary Instability and Transcriptional Innovation

    PubMed Central

    Courseaux, Anouk; Richard, Florence; Grosgeorge, Josiane; Ortola, Christine; Viale, Agnes; Turc-Carel, Claude; Dutrillaux, Bernard; Gaudray, Patrick; Nahon, Jean-Louis

    2003-01-01

    Recent analyses of the structure of pericentromeric and subtelomeric regions have revealed that these particular regions of human chromosomes are often composed of blocks of duplicated genomic segments that have been associated with rapid evolutionary turnover among the genomes of closely related primates. In the present study, we show that euchromatic regions of human chromosome 5—5p14, 5p13, 5q13, 5q15–5q21—also display such an accumulation of segmental duplications. The structure, organization and evolution of those primate-specific sequences were studied in detail by combining in silico and comparative FISH analyses on human, chimpanzee, gorilla, orangutang, macaca, and capuchin chromosomes. Our results lend support to a two-step model of transposition duplication in the euchromatic regions, with a founder insertional event at the time of divergence between Platyrrhini and Catarrhini (25–35 million years ago) and an apparent burst of inter- and intrachromosomal duplications in the Hominidae lineage. Furthermore, phylogenetic analysis suggests that the chronology and, likely, molecular mechanisms, differ regarding the region of primary insertion—euchromatic versus pericentromeric regions. Lastly, we show that as their counterparts located near the heterochromatic region, the euchromatic segmental duplications have consistently reshaped their region of insertion during primate evolution, creating putative mosaic genes, and they are obvious candidates for causing ectopic rearrangements that have contributed to evolutionary/genomic instability. [Supplemental material is available online at www.genome.org. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: D. Le Paslier, A. McKenzie, J. Melki, C. Sargent, J. Scharf and S. Selig.] PMID:12618367

  14. Study of chromosomal region 5p13.1 in Crohn's disease, ulcerative colitis, and rheumatoid arthritis.

    PubMed

    Perdigones, Nieves; Martín, Ezequiel; Robledo, Gema; Lamas, José Ramón; Taxonera, Carlos; Díaz-Rubio, Manuel; de la Concha, Emilio G; López-Nevot, Miguel Angel; García, Antonio; Gómez-García, María; Fernández-Gutiérrez, Benjamín; Martín, Javier; Urcelay, Elena

    2010-08-01

    Chromosomal region 5p13 includes regulatory elements of the prostaglandin receptor EP4 (PTGER4) gene and is associated with inflammatory bowel disease (IBD) susceptibility. We aimed at corroborating the association of the PTGER4 risk variant in IBD. Given the proinflammatory activity of prostaglandin E(2) in rheumatoid arthritis (RA), the reduction in incidence and severity of collagen-induced arthritis observed in mice deficient in the prostaglandin receptor EP4, and a modest signal of association found in an RA genome-wide scan, we proposed to extend the investigation of this locus to RA patients. A total of 709 Crohn's disease (CD) patients, 662 ulcerative colitis (UC) patients, and 1369 control subjects were genotyped for rs17234657. This polymorphism was also analyzed in 605 RA patients, and rs6871834 was studied in the RA patient group. Replication of the previous finding in CD was achieved in our independent collections, although with a milder effect (odds ratios = 1.23) than that originally described. No further association of the previously mentioned polymorphisms was detected with either UC or RA patients. We validated this 5p13 signal as a genuine susceptibility factor for CD in Caucasian populations. Our data seem to rule out a major influence of these polymorphisms on UC or RA predisposition. Copyright 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  15. Somatic cell hybrid mapping on mouse chromosome 11 (MMU11): Assignment of markers relative to two breakpoints in band D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.J.; Robinson, T.J.; Adler, I.D.

    1993-02-01

    Mouse [times] rat somatic cell hybrids were generated by fusing mouse cell lines that are heterozygous for reciprocal translocations involving the T42H and T9Ad breakpoints on mouse chromosome 11 (MMU11) to a thymidine kinase-negative (Tk[sup [minus

  16. Long-range restriction map of human chromosome 22q11-22q12 between the lambda immunoglobulin locus and the Ewing sarcoma breakpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermid, H.E.; Budarf, M.L.; Emanuel, B.S.

    1993-11-01

    A long-range restriction map of the region between the immunoglobulin lambda locus and the Ewing sarcoma breakpoint has been constructed using the rare-cutting enzymes NotI, NruI, AscI, and BsiWI. The map spans approximately 11,000 kb and represents about one-fifth of the long arm of chromosome 22. Thirty-nine markers, including seven NotI junction clones as well as numerous genes and anonymous sequences, were mapped to the region with a somatic cell hybrid panel. These probes were then used to produce the map. The seven NotI junction clones each identified a possible CpG island. The breakpoints of the RAJ5 hybrid and themore » Ewing sarcoma t(11;22) were also localized in the resulting map. This physical map will be useful in studying chromosomal rearrangements in the region, as well as providing the details to examine the fidelity of the YAC and cosmid contigs currently under construction. Comparisons of this physical map to genetic and radiation hybrid maps are discussed. 52 refs., 7 figs., 3 tabs.« less

  17. Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset Alzheimer's disease.

    PubMed

    Morgan, A R; Hamilton, G; Turic, D; Jehu, L; Harold, D; Abraham, R; Hollingworth, P; Moskvina, V; Brayne, C; Rubinsztein, D C; Lynch, A; Lawlor, B; Gill, M; O'Donovan, M; Powell, J; Lovestone, S; Williams, J; Owen, M J

    2008-09-05

    Late-onset Alzheimer's disease (LOAD) is a genetically complex neurodegenerative disorder. Currently, only the epsilon4 allele of the Apolipoprotein E gene has been identified unequivocally as a genetic susceptibility factor for LOAD. Others remain to be found. In 2002 we observed genome-wide significant evidence of linkage to a region on chromosome 10q11.23-q21.3 [Myers et al. (2002) Am J Med Genet 114:235-244]. Our objective in this study was to test every gene within the maximum LOD-1 linkage region, for association with LOAD. We obtained results for 528 SNPs from 67 genes, with an average density of 1 SNP every 10 kb within the genes. We demonstrated nominally significant association with LOAD for 4 SNPs: rs1881747 near DKK1 (P = 0.011, OR = 1.24), rs2279420 in ANK3 (P = 0.022, OR = 0.79), rs2306402 in CTNNA3 (P = 0.024, OR = 1.18), and rs5030882 in CXXC6 (P = 0.046, OR = 1.29) in 1,160 cases and 1,389 controls. These results would not survive correction for multiple testing but warrant attempts at confirmation in independent samples. 2007 Wiley-Liss, Inc.

  18. Chromosome

    MedlinePlus

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  19. Molecular Characterization of the Lipid Genome-Wide Association Study Signal on Chromosome 18q11.2 Implicates HNF4A-Mediated Regulation of the TMEM241 Gene.

    PubMed

    Rodríguez, Alejandra; Gonzalez, Luis; Ko, Arthur; Alvarez, Marcus; Miao, Zong; Bhagat, Yash; Nikkola, Elina; Cruz-Bautista, Ivette; Arellano-Campos, Olimpia; Muñoz-Hernández, Linda L; Ordóñez-Sánchez, Maria-Luisa; Rodriguez-Guillen, Rosario; Mohlke, Karen L; Laakso, Markku; Tusie-Luna, Teresa; Aguilar-Salinas, Carlos A; Pajukanta, Päivi

    2016-07-01

    We recently identified a locus on chromosome 18q11.2 for high serum triglycerides in Mexicans. We hypothesize that the lead genome-wide association study single-nucleotide polymorphism rs9949617, or its linkage disequilibrium proxies, regulates 1 of the 5 genes in the triglyceride-associated region. We performed a linkage disequilibrium analysis and found 9 additional variants in linkage disequilibrium (r(2)>0.7) with the lead single-nucleotide polymorphism. To select the variants for functional analyses, we annotated the 10 variants using DNase I hypersensitive sites, transcription factor and chromatin states and identified rs17259126 as the lead candidate variant for functional in vitro validation. Using luciferase transcriptional reporter assay in liver HepG2 cells, we found that the G allele exhibits a significantly lower effect on transcription (P<0.05). The electrophoretic mobility shift and ChIPqPCR (chromatin immunoprecipitation coupled with quantitative polymerase chain reaction) assays confirmed that the minor G allele of rs17259126 disrupts an hepatocyte nuclear factor 4 α-binding site. To find the regional candidate gene, we performed a local expression quantitative trait locus analysis and found that rs17259126 and its linkage disequilibrium proxies alter expression of the regional transmembrane protein 241 (TMEM241) gene in 795 adipose RNAs from the Metabolic Syndrome In Men (METSIM) cohort (P=6.11×10(-07)-5.80×10(-04)). These results were replicated in expression profiles of TMEM241 from the Multiple Tissue Human Expression Resource (MuTHER; n=856). The Mexican genome-wide association study signal for high serum triglycerides on chromosome 18q11.2 harbors a regulatory single-nucleotide polymorphism, rs17259126, which disrupts normal hepatocyte nuclear factor 4 α binding and decreases the expression of the regional TMEM241 gene. Our data suggest that decreased transcript levels of TMEM241 contribute to increased triglyceride levels in Mexicans.

  20. Double insertion of homogeneously staining regions in chromosome 1 of wild Mus musculus musculus: effects on chromosome pairing and recombination.

    PubMed

    Borodin, P M; Gorlov, I P; Ladygina TYu

    1990-01-01

    An examination of the meiotic pattern of chromosome 1 isolated from a feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. The region delineated by the proximal breakpoint of Is(HSR;1C5) 1Icg and the distal breakpoint of Is(HSR;1E3)2Icg is desynapsed during the early pachytene stage and heterosynapsed at the midpachytene, as shown by electron microscopic analysis of synaptonemal complexes. The HSRs have no effect on the segregation of chromosome 1 in heterozygous mice. The lack of homosynapsis in the region under study causes chiasmata redistribution in heteromorphic bivalents. In normal males, single chiasmata are located in the medial part of the chromosome. In heterozygotes, this segment is heterosynapsed and unavailable for recombination. This leads to a significant decrease in the frequency of bivalents bearing single chiasmata. The total number of chiasmata per bivalent is much higher in heterozygous males than in normal ones. The recombination frequency between proximal markers fz and In also is higher in heterozygous animals. The increase in the total chiasma number in the heteromorphic bivalent is due to the addition of double chiasmata located mostly at precentromeric and pretelomeric regions of the chromosome.

  1. Large-scale polymorphism near the ends of several human chromosomes analyzed by using fluorescence in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, B.J.; Friedman, C.; Giorgi, D.

    1994-09-01

    We have discovered a large DNA segment that is polymorphically present at the ends of several human chromosomes. The segment, f7501, was originally derived form a human chromosome 19-specific cosmid library. FISH was used to determine the cosmid`s chromosomal distribution on 44 unrelated humans and several closely related primates. The human subjects represent a diversity of reproductively isolated ethnic populations. FISH analysis revealed that sequences highly homologous to the cosmid`s insert are present on both homologs at 3q, 15q,. and 19p in almost all individuals (88, 85, and 87 of 88 homologs, respectively). Other chromosomes sites were labeled much moremore » rarely in the sampled individuals. For example, 56 of the 88 analyzed chromosomes 11 were labeled (18+/+, 6-/-, and 20+/- individuals). In contrast, 2q was labeled on only 1/88 sampled chromosomes. The termini of 2q, 5q, 6p, 6q, 7p, 8p, 9p, 9q, 11p, 12q, 16p, 19q, and 20q and an interstitial site at 2q13-14 were labeled in at least one individual of the set. EcoR1-fragments derived from the cosmid showed the same hybridization pattern as the entire cosmid, indicating that at least 40 kbp is shared by these chromosome ends. Ethnic differences in the allele frequency of these polymorphic variants was observed. For example, signals were observed on 8/10 and 7/10 of the chromosomes 7p and 16q, respectively, derived form Biakan Pygmies, but these sites were infrequently labeled in non-Pygmy human populations (2/68, respectively). This region has undergone significant changes in chromosome location during human evolution. Strong signal was seen on chimpanzee and gorilla chromosome 3, which is homologous to human chromosome 4, a chromosome unlabeled in any of the humans we have analyzed.« less

  2. C11orf95-MKL2 is the Resulting Fusion Oncogene of t(11;16)(q13;p13) in Chondroid Lipoma

    PubMed Central

    Huang, Dali; Sumegi, Janos; Cin, Paola Dal; Reith, John D.; Yasuda, Taketoshi; Nelson, Marilu; Muirhead, David; Bridge, Julia A.

    2010-01-01

    Chondroid lipoma, a rare benign adipose tissue tumor, may histologically resemble myxoid liposarcoma or extraskeletal myxoid chondrosarcoma, but is genetically distinct. In the current study, an identical reciprocal translocation, t(11;16)(q13;p13) was identified in three chondroid lipomas, a finding consistent with previous isolated reports. A fluorescence in situ hybridization (FISH)-based positional cloning strategy using a series of bacterial artificial chromosome (BAC) probe combinations designed to narrow the 16p13 breakpoint revealed MKL2 as the candidate gene. Subsequent 5′ RACE studies demonstrated C11orf95 as the MKL2 fusion gene partner. MKL/myocardin-like 2 (MKL2) encodes myocardin-related transcription factor B (MRTF-B) in a megakaryoblastic leukemia gene family, and C11orf95 (chromosome 11 open reading frame 95) is a hypothetical protein. Sequencing analysis of RT-PCR generated transcripts from all three chondroid lipomas defined the fusion as occurring between exons 5 and 9 of C11orf95 and MKL2, respectively. Dual-color breakpoint spanning probe sets custom-designed for recognition of the translocation event in interphase cells confirmed the anticipated rearrangements of the C11orf95 and MKL2 loci in all cases. The FISH and RT-PCR assays developed in this study can serve as diagnostic adjuncts for identification of this novel C11orf95-MKL2 fusion oncogene in chondroid lipoma. PMID:20607705

  3. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    PubMed

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Aberrant interchromosomal exchanges are the predominant cause of the 22q11.2 deletion

    PubMed Central

    Saitta, Sulagna C.; Harris, Stacy E.; Gaeth, Ann P.; Driscoll, Deborah A.; McDonald-McGinn, Donna M.; Maisenbacher, Melissa K.; Yersak, Jill M.; Chakraborty, Prabir K.; Hacker, April M.; Zackai, Elaine H.; Ashley, Terry; Emanuel, Beverly S.

    2010-01-01

    Chromosome 22q11.2 deletions are found in almost 90% of patients with DiGeorge/velocardiofacial syndrome (DGS/VCFS). Large, chromosome-specific low copy repeats (LCRs), flanking and within the deletion interval, are presumed to lead to misalignment and aberrant recombination in meiosis resulting in this frequent microdeletion syndrome. We traced the grandparental origin of regions flanking de novo 3 Mb deletions in 20 informative three-generation families. Haplotype reconstruction showed an unexpectedly high number of proximal interchromosomal exchanges between homologs, occurring in 19/20 families. Instead, the normal chromosome 22 in these probands showed interchromosomal exchanges in 2/15 informative meioses, a rate consistent with the genetic distance. Meiotic exchanges, visualized as MLH1 foci, localize to the distal long arm of chromosome 22 in 75% of human spermatocytes tested, also reflecting the genetic map. Additionally, we found no effect of proband gender or parental age on the crossover frequency. Parental origin studies in 65 de novo 3 Mb deletions (including these 20 patients) demonstrated no bias. Unlike Williams syndrome, we found no chromosomal inversions flanked by LCRs in 22 sets of parents of 22q11 deleted patients, or in eight non-deleted patients with a DGS/VCFS phenotype using FISH. Our data are consistent with significant aberrant interchromosomal exchange events during meiosis I in the proximal region of the affected chromosome 22 as the likely etiology for the deletion. This type of exchange occurs more often than is described for deletions of chromosomes 7q11, 15q11, 17p11 and 17q11, implying a difference in the meiotic behavior of chromosome 22. PMID:14681306

  5. Ulcerative colitis loci on chromosomes 1p36 and 12q15 identified by genome-wide association study

    PubMed Central

    Silverberg, Mark S.; Cho, Judy H.; Rioux, John D.; McGovern, Dermot P.B.; Wu, Jing; Annese, Vito; Achkar, Jean-Paul; Goyette, Philippe; Scott, Regan; Xu, Wei; Barmada, M. Michael; Klei, Lambertus; Daly, Mark J.; Abraham, Clara; Bayless, Theodore M.; Bossa, Fabrizio; Griffiths, Anne M.; Ippoliti, Andrew F.; Lahaie, Raymond G.; Latiano, Anna; Paré, Pierre; Proctor, Deborah D.; Regueiro, Miguel D.; Steinhart, A. Hillary; Targan, Stephan R.; Schumm, L. Philip; Kistner, Emily O.; Lee, Annette T.; Gregersen, Peter K.; Rotter, Jerome I.; Brant, Steven R.; Taylor, Kent D.; Roeder, Kathryn; Duerr, Richard H.

    2008-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon that presents as diarrhea and gastrointestinal bleeding. We performed a genome-wide association study using DNA samples from 1,052 individuals with ulcerative colitis and pre-existing data from 2,571 controls, all of European ancestry. In an analysis that controlled for gender and population structure, ulcerative colitis loci attaining genome-wide significance and subsequent replication in two independent populations were identified on chromosomes 1p36 (rs6426833, combined P = 5.1×10−13, combined OR = 0.73) and 12q15 (rs1558744, combined P = 2.5×10−12, combined OR = 1.35). In addition, combined genome-wide significant evidence for association was found in a region spanning BTNL2 to HLA-DQB1 on chromosome 6p21 (rs2395185, combined P = 1.0×10−16, combined OR = 0.66) and at the IL23R locus on chromosome 1p31 (rs11209026, combined P = 1.3×10−8, combined OR = 0.56; rs10889677, combined P = 1.3×10−8, combined OR = 1.29). PMID:19122664

  6. Flagellar region 3b supports strong expression of integrated DNA and the highest chromosomal integration efficiency of the Escherichia coli flagellar regions.

    PubMed

    Juhas, Mario; Ajioka, James W

    2015-07-01

    The Gram-negative bacterium Escherichia coli is routinely used as the chassis for a variety of biotechnology and synthetic biology applications. Identification and analysis of reliable chromosomal integration and expression target loci is crucial for E. coli engineering. Chromosomal loci differ significantly in their ability to support integration and expression of the integrated genetic circuits. In this study, we investigate E. coli K12 MG1655 flagellar regions 2 and 3b. Integration of the genetic circuit into seven and nine highly conserved genes of the flagellar regions 2 (motA, motB, flhD, flhE, cheW, cheY and cheZ) and 3b (fliE, F, G, J, K, L, M, P, R), respectively, showed significant variation in their ability to support chromosomal integration and expression of the integrated genetic circuit. While not reducing the growth of the engineered strains, the integrations into all 16 target sites led to the loss of motility. In addition to high expression, the flagellar region 3b supports the highest efficiency of integration of all E. coli K12 MG1655 flagellar regions and is therefore potentially the most suitable for the integration of synthetic genetic circuits. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Nucleolus organizer regions and B-chromosomes of wood mice (mammalia, rodentia, Apodemus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boeskorov, G.G.; Kartavtseva, I.V.; Zagorodnyuk, I.V.

    1995-02-01

    Distribution of nucleolus organizer regions (NORs) in karyotypes was studied in 10 species of wood mice, including Apodemus flavicollis, A. sylvaticus, A. uralensis (=A. microps), A. fulvipectus (=A. falzfeini), A. ponticus, A. hyrcanicus, A. mystacinus, A. agrarius, A. peninsulae, and A. speciosus. Peculiarities of NOR location in karyotypes can be used in interspecific diagnostics of wood mice. Intraspecific polymorphism of A. sylvaticus, A. agrarius, and A. peninsulae in terms of the number of NORs and their localization in chromosomes can serve as evidence for karyological differentiation in certain populations of these species. The minimum number of active NORs in micemore » of the genus Apodemus is two to four. Two A. flavicollis wood mice with karyotypes containing one small acrocentric B-chromosome (2n = 49) were identified among animals captured in Estonia. In A. peninsulae, B-chromosomes were found among animals captured in the following regions: the vicinity of Kyzyl (one mouse with 17 microchromosomes, 2n = 65); the vicinity of Birakan (two mice with one metacentric chromosome each, 2n = 49); and in the Ussuri Nature Reserve (one mouse with five B-chromosomes, including three metacentric and two dotlike chromosomes; 2n = 53). In the latter animal, the presence of NORs on two metacentric B-chromosomes was revealed; this is the first case of identification of active NORs on extra chromosomes of mammals. 29 refs., 4 figs., 1 tab.« less

  8. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    ERIC Educational Resources Information Center

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  9. Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes.

    PubMed

    Svobodova, Karla; Zemanova, Zuzana; Lhotska, Halka; Novakova, Milena; Podskalska, Lucie; Belickova, Monika; Brezinova, Jana; Sarova, Iveta; Izakova, Silvia; Lizcova, Libuse; Berkova, Adela; Siskova, Magda; Jonasova, Anna; Cermak, Jaroslav; Michalova, Kyra

    2016-03-01

    Complex karyotypes are seen in approximately 20% of patients with myelodysplastic syndromes (MDS) and are associated with a high risk of transformation to acute myeloid leukemia and poor outcomes in patients. Copy number neutral loss of heterozygosity (CN-LOH, i.e., both copies of a chromosomal pair or their parts originate from one parent) might contribute to increased genomic instability in the bone-marrow cells of patients with MDS. The pathological potential of CN-LOH, which arises as a clonal aberration in a proportion of somatic cells, consists of tumor suppressor gene and oncogene homozygous mutations. The aim of our study was to evaluate the frequency of CN-LOH at 17p in bone-marrow cells of newly diagnosed MDS patients with complex chromosomal aberrations and to assess its correlation with mutations in the TP53 gene (17p13.1). CN-LOH was detected in 40 chromosomal regions in 21 (29%) of 72 patients analyzed. The changes in 27 of the 40 regions identified were sporadic. The most common finding was CN-LOH of the short arm of chromosome 17, which was detected in 13 (18%) of 72 patients. A mutational analysis confirmed the homozygous mutation of TP53 in all CN-LOH 17p patients, among which two frameshift mutations are not registered in the International Agency for Research on Cancer TP53 Database. CN-LOH 17p correlated with aggressive disease (median overall survival 4 months) and was strongly associated with a complex karyotype in the cohort studied, which might cause rapid disease progression in high-risk MDS. No other CN-LOH region previously recorded in MDS or AML patients (1p, 4q, 7q, 11q, 13q, 19q, 21q) was detected in our cohort of patients with complex karyotype examined at the diagnosis of MDS. The LOH region appeared to be balanced (i.e., with no DNA copy number change) when examined with conventional and molecular cytogenetic methods. Therefore, a microarray that detects single-nucleotide polymorphisms is an ideal method with which to identify and

  10. Identification of ovule transcripts from the Apospory-Specific Genomic Region (ASGR)-carrier chromosome

    PubMed Central

    2011-01-01

    Background Apomixis, asexual seed production in plants, holds great potential for agriculture as a means to fix hybrid vigor. Apospory is a form of apomixis where the embryo develops from an unreduced egg that is derived from a somatic nucellar cell, the aposporous initial, via mitosis. Understanding the molecular mechanism regulating aposporous initial specification will be a critical step toward elucidation of apomixis and also provide insight into developmental regulation and downstream signaling that results in apomixis. To discover candidate transcripts for regulating aposporous initial specification in P. squamulatum, we compared two transcriptomes derived from microdissected ovules at the stage of aposporous initial formation between the apomictic donor parent, P. squamulatum (accession PS26), and an apomictic derived backcross 8 (BC8) line containing only the Apospory-Specific Genomic Region (ASGR)-carrier chromosome from P. squamulatum. Toward this end, two transcriptomes derived from ovules of an apomictic donor parent and its apomictic backcross derivative at the stage of apospory initiation, were sequenced using 454-FLX technology. Results Using 454-FLX technology, we generated 332,567 reads with an average read length of 147 base pairs (bp) for the PS26 ovule transcriptome library and 363,637 reads with an average read length of 142 bp for the BC8 ovule transcriptome library. A total of 33,977 contigs from the PS26 ovule transcriptome library and 26,576 contigs from the BC8 ovule transcriptome library were assembled using the Multifunctional Inertial Reference Assembly program. Using stringent in silico parameters, 61 transcripts were predicted to map to the ASGR-carrier chromosome, of which 49 transcripts were verified as ASGR-carrier chromosome specific. One of the alien expressed genes could be assigned as tightly linked to the ASGR by screening of apomictic and sexual F1s. Only one transcript, which did not map to the ASGR, showed expression

  11. A new small supernumerary marker chromosome, generating mosaic pure trisomy 16q11.1-q12.1 in a healthy man.

    PubMed

    Rodríguez, Laura; Liehr, Tomas; Martínez-Fernández, María Luisa; Lara, Ana; Torres, Antonio; Martínez-Frías, María Luisa

    2008-04-02

    Here we report on a healthy and fertile 30 years old man, who was carrier of a small supernumerary marker chromosome (sSMC). The application of molecular techniques such as fluorescence in situ hybridisation (FISH), microdissection and reverse painting, helped to characterize the sSMC which resulted to be derived from chromosome 16. In fact, the presence of euchromatin material from the long arm (16q) in the sSMC was demonstrated, and the karyotype can be written as mos 47, XY,+min(16)(:p11.1->q12.1:)[20]/46, XY [10].

  12. Heterogeneity of chromosome 22 breakpoint in Philadelphia-positive (Ph/sup +/) acute lymphocytic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erikson, J.; Griffin, C.A.; Ar-Rushdi, A.

    1986-03-01

    In chronic myelogenous leukemias (CML) with the t(9;22)(q34;q11) chromosome translocation the breakpoints on chromosome 22 occur within a 5.8-kilobase segment of DNA referred to as breakpoint cluster region (bcr). The same cytogenetically indinstinguishable translocation occurs in approximately 10% of patients with acute lymphocytic leukemias (ALL). In this study the authors have investigated the chromosome breakpoints in several cases of ALL carrying the t(9;22) translocation. In three of five cases of ALL they found that the bcr region was not involved in the chromosome rearrangement and that the 22q11 chromosome breakpoints were proximal (5') to the bcr region at band 22q11.more » In addition, they observed normal size bcr and c-alb transcripts in an ALL cell line carrying the t(9;22) translocation. They conclude, therefore, that if c-alb is inappropriately expressed in ALL cells without bcr rearrangements, the genetic mechanism of activation must be different from that reported for CML.« less

  13. Chromosomal microarray analysis as the first-tier test for the identification of pathogenic copy number variants in chromosome 9 pericentric regions and its challenge.

    PubMed

    Wang, Jia-Chi; Boyar, Fatih Z

    2016-01-01

    Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome 9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful tools renders significant challenges in the characterization of chromosome 9 pericentric regions. None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.

  14. Constitutional t(5;7)(q11;p15) rearranged to acquire monosomy 7q and trisomy 1q in a patient with myelodysplastic syndrome transforming to acute myelocytic leukemia.

    PubMed

    Ganly, Peter; McDonald, Margaret; Spearing, Ruth; Morris, Christine M

    2004-03-01

    We report the case of a 61-year-old woman who presented with a myelodysplastic syndrome (MDS) and a t(5;7)(q11.2;p15) in her bone marrow cells. Subsequent analysis of phytohemagglutinin-stimulated peripheral blood lymphocytes and cultured skin fibroblasts showed that the translocation was constitutional. Disruption of chromosome bands 5q11.2 and 7p15 has been described recurrently in MDS and acute myelocytic leukemia (AML) and, although the age of onset was not earlier than usual, it is nonetheless possible that genes interrupted by this translocation may been a predisposing factor for her condition. With progression to AML, a further rearrangement of the constitutional der(7)t(5;7) occurred, involving chromosome arm 1q. Fluorescence in situ hybridization (FISH) with whole-chromosome paints showed that the result of the second rearrangement, a t(1;7)(q32.1;q32), was observed, leading to trisomy of the segment 1q32.1 approximately qter and monosomy of the segment 7q32.1 approximately qter. The acquired imbalances, particularly loss of 7q, are commonly associated with MDS/AML and a poor prognosis; however, this patient remained in remission after treatment for more than two years before AML relapse, perhaps because the affected regions fall outside of the critical regions of imbalance.

  15. Fine genetic mapping of a gene for autosomal recessive retinitis pigmentosa on chromosome 6p21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shugart, Yin Y.; Banerjee, P.; Knowles, J.A.

    1995-08-01

    The inherited retinal degenerations known as retinitis pigmentosa (RP) can be caused by mutations at many different loci and can be inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait. Two forms of autosomal recessive (arRP) have been reported to cosegregate with mutations in the rhodopsin gene and the beta-subunit of rod phosphodiesterase on chromosome 4p. Genetic linkage has been reported on chromosomes 6p and 1q. In a large Dominican family, we reported an arRp gene near the region of the peripherin/RDS gene. Four recombinations were detected between the disease locus and an intragenic marker derived from peripherin/RDS.more » 26 refs., 2 figs., 1 tab.« less

  16. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene.

    PubMed

    Iida, S; Rao, P H; Nallasivam, P; Hibshoosh, H; Butler, M; Louie, D C; Dyomin, V; Ohno, H; Chaganti, R S; Dalla-Favera, R

    1996-12-01

    The t(9;14)(p13;q32) translocation is associated with approximately 50% of lymphoplasmacytoid lymphoma (LPL), a subtype of B-cell non-Hodgkin's lymphoma (NHL). We cloned the chromosomal breakpoint of der (14) from an LPL case (1052) and showed that it involved a junction between 9p13 and the switch micro region of the Ig heavy chain locus (IgH) on 14q32. Using a YAC contig spanning 1.5 megabase (Mb), we determined that the 9p13 breakpoint in one case (1052) mapped within a 270-kb restriction fragment containing two previously reported 9p breakpoints associated with a alpha-heavy chain disease case (MAL) and KI-1 positive diffuse large cell lymphoma (DLCL) cell line (KIS-1). The same fragment also contained the PAX-5 gene which encodes a B-cell specific transcription factor involved in the control of B-cell proliferation and differentiation. The breakpoints of KIS-1 and 1052 were mapped within the 5' noncoding region of PAX-5, while the 9p13 breakpoint of MAL mapped 230 to 270 kb upstream to PAX-5. In all three cases, the translocation caused the juxtaposition of the PAX-5 gene to the IgH locus in the opposite direction of transcription. When compared with six other DLCL cell lines lacking t(9;14)(p13;q32), the KIS-1 cell line showed an 11-fold overexpression of PAX-5 mRNA and a significantly reduced expression of the p53 gene, which is normally regulated by PAX-5. Moreover, metaphase and interphase fluorescence in situ hybridization (FISH) analysis using a YAC clone spanning 1 Mb including the PAX-5 as a probe identified chromosomal translocations in 5 of 7 cases carrying 9p13 translocations. These findings suggest that the PAX-5 gene is the target of the t(9;14) in LPL whereby its expression may be deregulated by juxtaposition to IgH regulatory elements, thus contributing to lymphomagenesis.

  17. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17.

    PubMed

    Cheng, S V; Nadeau, J H; Tanzi, R E; Watkins, P C; Jagadesh, J; Taylor, B A; Haines, J L; Sacchi, N; Gusella, J F

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid beta precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, we have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  18. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  19. Cytogenetic study of a patient with infant acute lymphoblastic leukemia using GTG-banding and chromosome painting.

    PubMed

    Alter, D; Mark, H F

    2000-10-01

    Numerical and structural chromosomal abnormalities occur in up to 90% of cases of childhood acute lymphoblastic leukemia (ALL). Two-thirds of these abnormalities are recurrent. The most common abnormalities are pseudodiploidy and t(1;19), occurring 40 and 5-6% of the time. Hyperdiploidy has the best prognosis, with an 80-90% 5-year survival. The 4;11 translocation has the worst prognosis, with a 10-35% 5-year survival. We report a patient with infant acute lymphoblastic leukemia and nonrecurrent rearrangements of chromosomes 10 and 11. Structural rearrangements between chromosomes 10 and 11 have been observed in 0.5% of all cases of childhood ALL with cytogenetic abnormalities. The identification of the apparently unique structural abnormalities was achieved using fluorescent in situ hybridization (FISH) with chromosome 10- and chromosome 11-specific painting probes as an adjunct to conventional cytogenetics. As is often the case, suboptimal preparations often preclude unequivocal identification of complex rearrangements by conventional banding techniques. The cytogenetic diagnosis of our patient was established as 46,XY, der(10)-t(10;11)(p15;q14)t(10;11)(q25;p11), der(11)t(10;11)(p15;q14)t(10;11)-(q25;p11). The benefits of FISH serve to increase the resolution of detection for chromosomal abnormalities and the understanding of the pathogenic mechanisms of childhood ALL. Copyright 2000 Academic Press.

  20. A radiation hybrid map of the distal short arm of human chromosome II, containing the Beckwith-Weidemann and associated embroyonal tumor disease loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, C.W. III; Berg, D.J.; Meeker, T.C.

    1993-05-01

    The authors describe a high-resolution radiation hybrid (RH) map of the distal short arm of human chromosome 11 containing the Beckwith-Weidemann gene and the associated embryonal tumor disease loci. Thirteen human 11p15 genes and 17 new anonymous probes were mapped by a statistical analysis of the cosegregation of markers in 102 rodent-human radiation hybrids retaining fragments of human chromosome 11. The 17 anonymous probes were generated from lambda phage containing human 11p15.5 inserts, by using ALU-PCR. A comprehensive map of all 30 loci and a framework map of nine clusters of loci ordered at odds of 1,000:1 were constructed bymore » a multipoint maximum-likelihood approach by using the computer program RHMAP. This RH map localizes one new gene to chromosome 11p15 (WEE1), provides more precise order information for several 11p15 genes (CTSD, H19, HPX,.ST5, RNH, and SMPD1), confirms previous map orders for other 11p15 genes (CALCA, PTH, HBBC, TH, HRAS, and DRD4), and maps 17 new anonymous probes within the 11p15.5 region. This RH map should prove useful in better defining the positions of the Beckwith-Weidemann and associated embryonal tumor disease-gene loci. 41 refs., 1 fig., 2 tabs.« less

  1. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis.

    PubMed

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna

    2017-07-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.

  2. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis

    PubMed Central

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O.; Jauch, Anna

    2017-01-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. PMID:28341732

  3. Familial isolated hyperparathyroidism is linked to a 1.7 Mb region on chromosome 2p13.3–14

    PubMed Central

    Warner, J; Nyholt, D R; Busfield, F; Epstein, M; Burgess, J; Stranks, S; Hill, P; Perry‐Keene, D; Learoyd, D; Robinson, B; Teh, B T; Prins, J B; Cardinal, J W

    2006-01-01

    Bachground Familial isolated hyperparathyroidism (FIHP) is an autosomal dominantly inherited form of primary hyperparathyroidism. Although comprising only about 1% of cases of primary hyperparathyroidism, identification and functional analysis of a causative gene for FIHP is likely to advance our understanding of parathyroid physiology and pathophysiology. Methods A genome‐wide screen of DNA from seven pedigrees with FIHP was undertaken in order to identify a region of genetic linkage with the disorder. Results Multipoint linkage analysis identified a region of suggestive linkage (LOD score 2.68) on chromosome 2. Fine mapping with the addition of three other families revealed significant linkage adjacent to D2S2368 (maximum multipoint LOD score 3.43). Recombination events defined a 1.7 Mb region of linkage between D2S2368 and D2S358 in nine pedigrees. Sequencing of the two most likely candidate genes in this region, however, did not identify a gene for FIHP. Conclusions We conclude that a causative gene for FIHP lies within this interval on chromosome 2. This is a major step towards eventual precise identification of a gene for FIHP, likely to be a key component in the genetic regulation of calcium homeostasis. PMID:16525030

  4. Genetic linkage studies in familial partial epilepsy: Exclusion of the human chromosome regions syntenic to the El-1 mouse locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes-Cendes, I.; Mulley, J.C.; Andermann, E.

    1994-09-01

    Recently, six families with a familial form of partial epilepsy were described. All pedigrees showed autosomal dominant inheritance with incomplete penetrance. Affected individuals present with predominantly nocturnal seizures with frontal lobe semiology. In 1959, a genetic mouse model for partial epilepsy, the El mouse, was reported. In the El mouse, a major seizure susceptibility gene, El-1, segregates in an autosomal dominant fashion and has been localized to a region distal to the centromere of mouse chromosome 9. Comparative genetic maps between man and mouse have been used for prediction of localization of several human disease genes. Because the region ofmore » mouse chromosome 9 that is the most likely to contain the El-1 locus is syntenic to regions on human chromosomes 3q21-p22, 3q21-q23.3, 6q12 and 15q24, we adopted the candidate gene approach as an initial linkage strategy. Twenty-two polymorphic microsatellite markers covering these regions were used for genotyping individuals in the three larger families ascertained, two of which are Australian and one French-Canadian. Negative two-point lod scores were obtained separately for each family. The analysis of all three families combined significantly excludes the candidate regions on chromosomes 3, 6 and 15.« less

  5. Benign infantile seizures followed by autistic regression in a boy with 16p11.2 deletion.

    PubMed

    Milone, Roberta; Valetto, Angelo; Bertini, Veronica; Sicca, Federico

    2017-06-01

    Benign infantile seizures (BIS) are usually a self-limiting condition, which may be associated with heterozygous mutations in the PRRT2 gene at chromosome 16p11.2. Here, we report a boy with a deletion in 16p11.2, presenting with BIS and typical neurodevelopment in the first year of life, unexpectedly followed by severe autistic regression. 16p11.2 deletions are typically associated with intellectual disability, autism, and language disorders, and only rarely with BIS. This clinical report shows that the neurodevelopmental prognosis in BIS patients may not always be benign, and suggests that array CGH screening should be considered for affected infants in order to rule out deletions at 16p11.2 and long-term clinical follow-up.

  6. Fine mapping of the NRC-1 tumor suppressor locus within chromosome 3p12.

    PubMed

    Zhang, Kun; Lott, Steven T; Jin, Li; Killary, Ann McNeill

    2007-08-31

    Identification of tumor suppressor genes based on physical mapping exercises has proven to be a challenging endeavor, due to the difficulty of narrowing regions of loss of heterozygosity (LOH), infrequency of homozygous deletions, and the labor-intensive characterization process for screening candidates in a given genomic interval. We previously defined a chromosome 3p12 tumor suppressor locus NRC-1 (Nonpapillary Renal Carcinoma-1) by functional complementation experiments in which renal cell carcinoma microcell hybrids containing introduced normal chromosome 3p fragments were either suppressed or unsuppressed for tumorigenicity following injection into athymic nude mice. We now present the fine-scale physical mapping of NRC-1 using a QPCR-based approach for measuring copy number at sequence tagged sites (STS) which allowed a sub-exon mapping resolution. Using STS-QPCR and a novel statistical algorithm, the NRC-1 locus was narrowed to 4.615-Mb with the distal boundary mapping within a 38-Kb interval between exon 3 and exon 4 of the DUTT1/Robo1 gene, currently the only candidate tumor suppressor gene in the interval. Further mutational screening and gene expression analyses indicate that DUTT1/ROBO1 is not involved in the tumor suppressor activity of NRC-1, suggesting that there are at least two important tumor suppressor genes within the chromosome 3p12 interval.

  7. Complete nucleotide sequence of the gene for human heparin cofactor II and mapping to chromosomal band 22q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, R.; Lutz, S.; Blin, N.

    1991-02-05

    Heparin cofactor II (HCII) is a 66-kDa plasma glycoprotein that inhibits thrombin rapidly in the presence of dermatan sulfate or heparin. Clones comprising the entire HCII gene were isolated from a human leukocyte genomic library in EMBL-3 {lambda} phage. The sequence of the gene was determined on both strands of DNA (15,849 bp) and included 1,749 bp of 5{prime}-flanking sequence, five exons, four introns, and 476 bp of DNA 3{prime} to the polyadenylation site. Ten complete and one partial Alu repeats were identified in the introns and 5{prime}-flanking region. The HCII gene was regionally mapped on chromosome 22 using rodent-humanmore » somatic cell hybrids, carrying only parts of human chromosome 22, and the chronic myelogenous leukemia cell line K562. With the cDNA probe HCII7.2, containing the entire coding region of the gene, the HCII gene was shown to be amplified 10-20-fold in K562 cells by Southern analysis and in situ hybridization. From these data, the authors concluded that the HCII gene is localized on the chromosomal band 22q11 proximal to the breakpoint cluster region (BCR). Analysis by pulsed-field gel electrophoresis indicated that the amplified HCII gene in K562 cells maps at least 2 Mbp proximal to BCR-1. Furthermore, the HCII7.2 cDNA probe detected two frequent restriction fragment length polymorphisms with the restriction enzymes BamHI and Hind III.« less

  8. Central nervous system abnormalities and psychomotor retardation in a girl with a 15.4-MB deletion of 14q12→q21.2 and a 550-KB deletion of 18p11.23: microarray delineation of an unbalanced chromosome rearrangement and a literature review.

    PubMed

    Torun, D; Arslan, M; Akar, H; Karaer, K; Ünay, B; Tunca, Y

    This paper describes the presence of a 15.4 Mb deletion of 14q12→q21.2 and a 550-KB deletion of 18p11.23 in a patient with an apparently balanced translocation between chromosomes 14 and 18 [t( 14; 18) (ql2; pi 11)]. The patient had developmental delay, truncal hypotonia, hyperreflexia and spasticity of the lower extremities, prominent forehead, fullness of the periorbital region, hypertelorism, upslanted palpebral fissures, systagmus, a depressed nasal bridge, down-turned conrners of the mouth, a prominent philtrum, thin upper lip, pointed chin, and deep palmar creases. Cranial MRI revealed agenesis of the corpus callosum, diffuse cerebral atrophy, and enlargement of the third and lateral ventricles. Here, we review and compare published cases with proximal 14q deletions to establish a genotype-phenotype correlation according to the deleted regions involving the 14q12, 14q13, 14q21, and 14q22q23. We also examined the literature to find cases with deleted regions overlapping the deletion in our patient to establish a clinical spectrum in proximal 14q deletions.

  9. Assignment of the {beta}-arrestin 1 gene (ARRB1) to human chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Morizio, E.; Palka, G.

    1994-11-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor, and its functional cofactor, {beta}-arrestin. {beta}ARK is a member of a multigene family, consisting of six known subtypes, which have also been named G-protein-coupled receptor kinases (GRK 1 to 6) due to the apparently unique functional association of such kinases with this receptor family. The gene for {beta}ARK1 has been localized to human chromosome 11q13. The four members of the arrestin/{beta}-arrestin gene family identified so far are arrestin, X-arrestin, {beta}-arrestin 1, and {beta}-arrestin 2. Here themore » authors report the chromosome mapping of the human gene for {beta}-arrestin 1 (ARRB1) to chromosome 11q13 by fluorescence in situ hybridization (FISH). Two-color FISH confirmed that the two genes coding for the functionally related proteins {beta}ARK1 and {beta}arrestin 1 both map to 11q13. 16 refs., 1 fig., 1 tab.« less

  10. Novel QTL at chromosome 6p22 for alcohol consumption: Implications for the genetic liability of alcohol use disorders

    PubMed Central

    Kos, Mark Z.; Glahn, David C.; Carless, Melanie A.; Olvera, Rene; McKay, D. Reese; Quillen, Ellen E.; Gelernter, Joel; Chen, Xiang-Ding; Deng, Hong-Wen; Kent, Jack W.; Dyer, Thomas D.; Göring, Harald H.H.; Curran, Joanne E.; Duggirala, Ravi; Blangero, John; Almasy, Laura

    2014-01-01

    Linkage studies of alcoholism have implicated several chromosome regions, leading to the successful identification of susceptibility genes, including ADH4 and GABRA2 on chromosome 4. Quantitative endophenotypes that are potentially closer to gene action than clinical endpoints offer a means of obtaining more refined linkage signals of genes that predispose alcohol use disorders (AUD). In this study we examine a self-reported measure of the maximum number of drinks consumed in a 24-hour period (abbreviated Max Drinks), a significantly heritable phenotype (h2 = 0.32 ± 0.05; P = 4.61 × 10−14) with a strong genetic correlation with AUD (ρg = 0.99 ± 0.13) for the San Antonio Family Study (n = 1,203). Genome-wide SNPs were analyzed using variance components linkage methods in the program SOLAR, revealing a novel, genome-wide significant QTL (LOD = 4.17; P = 5.85 × 10−6) for Max Drinks at chromosome 6p22.3, a region with a number of compelling candidate genes implicated in neuronal function and psychiatric illness. Joint analysis of Max Drinks and AUD status shows that the QTL has a significant non-zero effect on diagnosis (P = 4.04 × 10−3), accounting for 8.6% of the total variation. Significant SNP associations for Max Drinks were also identified at the linkage region, including one, rs7761213 (P = 2.14 × 10−4), obtained for an independent sample of Chinese families. Thus, our study identifies a potential risk locus for AUD at 6p22.3, with significant pleiotropic effects on the heaviness of alcohol consumption that may not be population specific. PMID:24692236

  11. Genetic homogeneity in Sjoegren-Larsson syndrome: Linkage to chromosome 17p in families of different non-Swedish ethnic origins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, G.R.; Lee, M.; Compton, J.G.

    1995-11-01

    Sjoegren-Larsson syndrome (SLS) is a rare, autosomal recessive disorder that is characterized by congenital ichthyosis, mental retardation, and spastic diplegia or tetraplegia. Three United States families, three Egyptian families, and one Israeli Arab family were investigated for linkage of the SLS gene to a region of chromosome 17. Pairwise and multipoint linkage analysis with nine markers mapped the SLS gene to the same region of the genome as that reported in Swedish SLS pedigrees. Examination of recombinants by haplotype analysis showed that the gene lies in the region containing the markers D17S953, D17S805, D17S689, and D17S842. D17S805 is pericentromeric onmore » 17p. Patients in two consanguineous Egyptian families were homozygous at the nine marker loci tested, and another patient from a third family was homozygous for eight of the nine, suggesting that within each of these families the region of chromosome 17 carrying the SLS gene is identical by descent. Linkage of the SLS gene to chromosome 17p in families of Arabic, mixed European, Native American, and Swedish descent provides evidence for a single SLS locus and should prove useful for diagnosis and carrier detection in worldwide cases. 25 refs., 4 figs., 1 tab.« less

  12. Syndromal frontonasal dysostosis in a child with a complex translocation involving chromosomes 3, 7, and 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, C.A.; Qumsiyeh, M.B.

    We report on a 4-year-old boy with typical frontonasal dysostosis and an apparently balanced de novo translocation involving chromosomes 3, 7, and 11, and four breakpoints. The karyotype was 46,XY,t(7;3)(3;11) (7pter{r_arrow}7q21.3::3q27{r_arrow}3qter;3pter{r_arrow}3q23::11q21{r_arrow}11qter;11pter{r_arrow}11q21::3q23{r_arrow}3q27::7q21.3{r_arrow}7qter). In situ hybridization with a chromosome 3 painting probe confirmed the interpretation from GTG banding. The child had a widow`s peak, marked hypertelorism, absence of the nasal tip, and widely separated nares. He also had an atrial septal defect, micropenis, small testes, clubfeet, scoliosis, block C2-4, and structural brain abnormalities on MRI. In review we found two other cases of frontonasal dysostosis with chromosome abnormalities, neither of which wasmore » similar to our case. The presence of a de novo (apparently) balanced translocation in our patient may help to locate the gene(s) for frontonasal dysplasia and perhaps other midline craniofacial malformations. 16 refs., 4 figs.« less

  13. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed Central

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-01-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype. Images Figure 2 Figure 3 PMID:1384329

  14. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  15. Association of levels of fasting glucose and insulin with rare variants at the chromosome 11p11.2-MADD locus: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study.

    PubMed

    Cornes, Belinda K; Brody, Jennifer A; Nikpoor, Naghmeh; Morrison, Alanna C; Chu, Huan; Ahn, Byung Soo; Wang, Shuai; Dauriz, Marco; Barzilay, Joshua I; Dupuis, Josée; Florez, Jose C; Coresh, Josef; Gibbs, Richard A; Kao, W H Linda; Liu, Ching-Ti; McKnight, Barbara; Muzny, Donna; Pankow, James S; Reid, Jeffrey G; White, Charles C; Johnson, Andrew D; Wong, Tien Y; Psaty, Bruce M; Boerwinkle, Eric; Rotter, Jerome I; Siscovick, David S; Sladek, Robert; Meigs, James B

    2014-06-01

    Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels. Sequencing (mean depth, 38×) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9% of which were rare (minor allele frequency <1%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73×10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28×10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity. Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity. © 2014 American Heart Association, Inc.

  16. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors havemore » established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.« less

  17. LOH at 16p13 is a novel chromosomal alteration detected in benign and malignant microdissected papillary neoplasms of the breast.

    PubMed

    Lininger, R A; Park, W S; Man, Y G; Pham, T; MacGrogan, G; Zhuang, Z; Tavassoli, F A

    1998-10-01

    Papillary carcinoma of the breast is a variant of predominantly intraductal carcinoma characterized by a papillary growth pattern with fibrovascular support. Loss of heterozygosity (LOH) was evaluated at multiple chromosomal loci (including loci reported to show frequent genetic alterations in breast cancer) to determine the frequency of genetic mutations in these tumors and their precursors. Thirty-three papillary lesions of the breast (6 papillary carcinomas, 12 carcinomas arising in a papilloma, and 15 intraductal papillomas with florid epithelial hyperplasia) were retrieved from the files of the Armed Forces Institute of Pathology (AFIP). Tumor cells and normal tissue were microdissected in each case and screened for LOH at INT-2 and p53 as well as several loci on chromosome 16p13 in the TSC2/PKD1 gene region (D16S423, D16S663, D16S665). LOH on chromosome 16p13 was present in 10 of 16 (63%) informative cases of either papillary carcinoma or carcinoma arising in a papilloma as well as in 6 of 10 (60%) informative cases of intraductal papilloma with florid epithelial hyperplasia (IDH). One case showed simultaneous LOH in both the florid IDH and carcinoma components of a papilloma. LOH was not observed at either INT-2 or p53 in any of the papillary carcinomas or papillomas with florid IDH. In conclusion, a high frequency of LOH at chromosome 16p13 (the TSC2/PKD1 gene region) is in both papillary carcinomas of the breast as well as in papillomas with florid IDH, including a case with LOH present simultaneously in both components. These findings suggest that chromosome 16p contains a tumor suppressor gene that frequently is mutated early in papillary neoplasia.

  18. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3.

    PubMed

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-03-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.

  20. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3

    PubMed Central

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-01-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders. PMID:23860047

  1. A High-Resolution Comparative Chromosome Map of Cricetus cricetus and Peromyscus eremicus Reveals the Involvement of Constitutive Heterochromatin in Breakpoint Regions.

    PubMed

    Vieira-da-Silva, Ana; Louzada, Sandra; Adega, Filomena; Chaves, Raquel

    2015-01-01

    Compared to humans and other mammals, rodent genomes, specifically Muroidea species, underwent intense chromosome reshuffling in which many complex structural rearrangements occurred. This fact makes them preferential animal models for studying the process of karyotype evolution. Here, we present the first combined chromosome comparative maps between 2 Cricetidae species, Cricetus cricetus and Peromyscus eremicus, and the index species Mus musculus and Rattus norvegicus. Comparative chromosome painting was done using mouse and rat paint probes together with in silico analysis from the Ensembl genome browser database. Hereby, evolutionary events (inter- and intrachromosomal rearrangements) that occurred in C. cricetus and P. eremicus since the putative ancestral Muroidea genome could be inferred, and evolutionary breakpoint regions could be detected. A colocalization of constitutive heterochromatin and evolutionary breakpoint regions in each genome was observed. Our results suggest the involvement of constitutive heterochromatin in karyotype restructuring of these species, despite the different levels of conservation of the C. cricetus (derivative) and P. eremicus (conserved) genomes. © 2015 S. Karger AG, Basel.

  2. A Genetic Association Study of Chromosome 11q22-24 in Two Different Samples Implicates the FXYD6 Gene, Encoding Phosphohippolin, in Susceptibility to Schizophrenia

    PubMed Central

    Choudhury, Khalid; McQuillin, Andrew; Puri, Vinay; Pimm, Jonathan; Datta, Susmita; Thirumalai, Srinivasa; Krasucki, Robert; Lawrence, Jacob; Bass, Nicholas J.; Quested, Digby; Crombie, Caroline; Fraser, Gillian; Walker, Nicholas; Nadeem, Haitham; Johnson, Sophie; Curtis, David; St. Clair, David; Gurling, Hugh M. D.

    2007-01-01

    Previous linkage analyses of families with multiple cases of schizophrenia by us and others have confirmed the involvement of the chromosome 11q22-24 region in the etiology of schizophrenia, with LOD scores of 3.4 and 3.1. We now report fine mapping of a susceptibility gene in the 11q22-24 region, determined on the basis of a University College London (UCL) sample of 496 cases and 488 supernormal controls. Confirmation was then performed by the study of an Aberdeen sample consisting of 858 cases and 591 controls (for a total of 2,433 individuals: 1,354 with schizophrenia and 1,079 controls). Seven microsatellite or single-nucleotide polymorphism (SNP) markers localized within or near the FXYD6 gene showed empirically significant allelic associations with schizophrenia in the UCL sample (for D11S1998, P=.021; for rs3168238, P=.009; for TTTC20.2, P=.048; for rs1815774, P=.049; for rs4938445, P=.010; for rs4938446, P=.025; for rs497768, P=.023). Several haplotypes were also found to be associated with schizophrenia; for example, haplotype Hap-F21 comprising markers rs10790212-rs4938445-rs497768 was found to be associated with schizophrenia, by a global permutation test (P=.002). Positive markers in the UCL sample were then genotyped in the Aberdeen sample. Two of these SNPs were found to be associated with schizophrenia in the Scottish sample (for rs4938445, P=.044; for rs497768, P=.037). The Hap-F21 haplotype also showed significant association with schizophrenia in the Aberdeen sample, with the same alleles being associated (P=.013). The FXYD6 gene encodes a protein called “phosphohippolin” that is highly expressed in regions of the brain thought to be involved in schizophrenia. The protein functions by modulating the kinetic properties of Na,K-ATPase to the specific physiological requirements of the tissue. Etiological base-pair changes in FXYD6 or in associated promoter/control regions are likely to cause abnormal function or expression of phosphohippolin and

  3. Testing for Archaic Hominin Admixture on the X Chromosome: Model Likelihoods for the Modern Human RRM2P4 Region From Summaries of Genealogical Topology Under the Structured Coalescent

    PubMed Central

    Cox, Murray P.; Mendez, Fernando L.; Karafet, Tatiana M.; Pilkington, Maya Metni; Kingan, Sarah B.; Destro-Bisol, Giovanni; Strassmann, Beverly I.; Hammer, Michael F.

    2008-01-01

    A 2.4-kb stretch within the RRM2P4 region of the X chromosome, previously sequenced in a sample of 41 globally distributed humans, displayed both an ancient time to the most recent common ancestor (e.g., a TMRCA of ∼2 million years) and a basal clade composed entirely of Asian sequences. This pattern was interpreted to reflect a history of introgressive hybridization from archaic hominins (most likely Asian Homo erectus) into the anatomically modern human genome. Here, we address this hypothesis by resequencing the 2.4-kb RRM2P4 region in 131 African and 122 non-African individuals and by extending the length of sequence in a window of 16.5 kb encompassing the RRM2P4 pseudogene in a subset of 90 individuals. We find that both the ancient TMRCA and the skew in non-African representation in one of the basal clades are essentially limited to the central 2.4-kb region. We define a new summary statistic called the minimum clade proportion (pmc), which quantifies the proportion of individuals from a specified geographic region in each of the two basal clades of a binary gene tree, and then employ coalescent simulations to assess the likelihood of the observed central RRM2P4 genealogy under two alternative views of human evolutionary history: recent African replacement (RAR) and archaic admixture (AA). A molecular-clock-based TMRCA estimate of 2.33 million years is a statistical outlier under the RAR model; however, the large variance associated with this estimate makes it difficult to distinguish the predictions of the human origins models tested here. The pmc summary statistic, which has improved power with larger samples of chromosomes, yields values that are significantly unlikely under the RAR model and fit expectations better under a range of archaic admixture scenarios. PMID:18202385

  4. A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.

    PubMed

    Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R

    1991-12-01

    We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1.

  5. A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci.

    PubMed Central

    Richard, C W; Withers, D A; Meeker, T C; Maurer, S; Evans, G A; Myers, R M; Cox, D R

    1991-01-01

    We describe a high-resolution radiation hybrid map of the proximal long arm of human chromosome 11 containing the bcl-1 and multiple endocrine neoplasia type 1 (MEN-1) disease gene loci. We used X-ray irradiation and cell fusion to generate a panel of 102 hamster-human somatic cell hybrids containing fragments of human chromosome 11. Sixteen human loci in the 11q12-13 region were mapped by statistical analysis of the cosegregation of markers in these radiation hybrids. The most likely order for these loci is C1NH-OSBP-(CD5/CD20)-PGA-FTH1-COX8-PYGM -SEA-KRN1-(MTC/P11EH/HSTF1/INT2)-GST3- PPP1A. Our localization of the human protooncogene SEA between PYGM and INT2, two markers that flank MEN-1, suggests SEA as a potential candidate for the MEN-1 locus. We map two mitogenic fibroblast growth factor genes, HSTF1 and INT2, close to bcl-1, a mapping that is consistent with previously published data. Our map places the human leukocyte antigen genes CD5 and CD20 far from the bcl-1 locus, indicating that CD5 and CD20 expression is unlikely to be altered by bcl-1 rearrangements. PPP1A, which has been postulated as a MEN-1 candidate tumor suppressor gene, and GST3, a gene transcriptionally active in many human cancers, both map distal to the bcl-1 translocation cluster and the region containing MEN-1, and therefore are unlikely to be directly involved in bcl-1 or MEN-1. PMID:1684084

  6. A chromosome 10 variant with a 12 Mb inversion [inv(10)(q11.22q21.1)] identical by descent and frequent in the Swedish population.

    PubMed

    Entesarian, Miriam; Carlsson, Birgit; Mansouri, Mahmoud Reza; Stattin, Eva-Lena; Holmberg, Eva; Golovleva, Irina; Stefansson, Hreinn; Klar, Joakim; Dahl, Niklas

    2009-03-01

    We identified a paracentric inversion of chromosome 10 [inv(10)(q11.22q21.1)] in 0.20% of Swedish individuals (15/7,439) referred for cytogenetic analysis. A retrospective analysis of 8,896 karyotypes from amniocenteses in Sweden revealed a carrier frequency of 0.079% (7/8,896) for the inversion. Cloning and detailed analysis of the inversion breakpoint regions show enrichment for interspersed repeat elements and AT-stretches. The centromeric breakpoint coincides with that of a predicted inversion from HapMap data, which suggests that this region is involved in several chromosome 10 variants. No known gene or predicted transcript are disrupted by the inversion which spans approximately 12 Mb. Carriers from four non-related Swedish families have identical inversion breakpoints and haplotype analysis confirmed that the rearrangement is identical by descent. Diagnosis was retrieved in 6 out of the 15 carriers referred for cytogenetic analysis. No consistent phenotype was found to be associated with the inversion. Our study demonstrates that the inv(10)(q11.22q21.1) is a rare and inherited chromosome variant with a broad geographical distribution in Sweden. 2009 Wiley-Liss, Inc.

  7. Proximity within interphase chromosome contributes to the breakpoint distribution in radiation-induced intrachromosomal exchanges

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2014-07-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome 3 in human mammary epithelial cells after exposures to either low- or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome 3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations.

  8. Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes.

    PubMed

    Turner, Peter C; Yomano, Lorraine P; Jarboe, Laura R; York, Sean W; Baggett, Christy L; Moritz, Brélan E; Zentz, Emily B; Shanmugam, K T; Ingram, Lonnie O

    2012-04-01

    Escherichia coli KO11 (ATCC 55124) was engineered in 1990 to produce ethanol by chromosomal insertion of the Zymomonas mobilis pdc and adhB genes into E. coli W (ATCC 9637). KO11FL, our current laboratory version of KO11, and its parent E. coli W were sequenced, and contigs assembled into genomic sequences using optical NcoI restriction maps as templates. E. coli W contained plasmids pRK1 (102.5 kb) and pRK2 (5.4 kb), but KO11FL only contained pRK2. KO11FL optical maps made with AflII and with BamHI showed a tandem repeat region, consisting of at least 20 copies of a 10-kb unit. The repeat region was located at the insertion site for the pdc, adhB, and chloramphenicol-resistance genes. Sequence coverage of these genes was about 25-fold higher than average, consistent with amplification of the foreign genes that were inserted as circularized DNA. Selection for higher levels of chloramphenicol resistance originally produced strains with higher pdc and adhB expression, and hence improved fermentation performance, by increasing the gene copy number. Sequence data for an earlier version of KO11, ATCC 55124, indicated that multiple copies of pdc adhB were present. Comparison of the W and KO11FL genomes showed large inversions and deletions in KO11FL, mostly enabled by IS10, which is absent from W but present at 30 sites in KO11FL. The early KO11 strain ATCC 55124 had no rearrangements, contained only one IS10, and lacked most accumulated single nucleotide polymorphisms (SNPs) present in KO11FL. Despite rearrangements and SNPs in KO11FL, fermentation performance was equal to that of ATCC 55124.

  9. Dose Effect and Mode of Inheritance of Diabetogenic Gene on Mouse Chromosome 11

    PubMed Central

    Ueda, Hironori; Noso, Shinsuke; Hiromine, Yoshihisa; Nojima, Koji; Itoi-Babaya, Michiko; Kobayashi, Misato; Fujisawa, Tomomi

    2013-01-01

    The quantitative trait locus (QTL) mapping in segregating crosses of NSY (Nagoya-Shibata-Yasuda) mice, an animal model of type 2 diabetes, with nondiabetic strain C3H/He mice has identified diabetogenic QTLs on multiple chromosomes. The QTL on chromosome 11 (Chr11) (Nidd1n) showing the largest effect on hyperglycemia was confirmed by our previous studies with homozygous consomic mice, C3H-11NSY, in which the NSY-derived whole Chr11 was introgressed onto control C3H background genes. C3H-11NSY mice also showed a streptozotocin (STZ) sensitivity. In the present study, we constructed heterozygous C3H-11NSY mice and the phenotypes were analyzed in detail in comparison with those of homozygous C3H-11NSY and C3H mice. Heterozygous C3H-11NSY mice had significantly higher blood glucose levels and STZ sensitivity than those in C3H mice. Hyperglycemia and STZ sensitivity in heterozygous C3H-11NSY mice, however, were not as severe as in homozygous C3H-11NSY mice. The body weight and fat pad weight in heterozygous C3H-11NSY mice were similar to those in C3H and homozygous C3H-11NSY mice. These data indicated that the introgression of Chr11 of the diabetes-susceptible NSY strain onto diabetes-resistant C3H caused marked changes in the glucose tolerance and STZ susceptibility even in a heterozygous state, and suggested that the mode of inheritance of a gene or genes on Chr11 for hyperglycemia and STZ sensitivity is additive. PMID:23671880

  10. Isolation of a yeast artificial chromosome contig spanning the Greig cephalopolysyndactyly syndrome (GCPS) gene region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vortkamp, A.; Gessler, M.; Le Paslier, D.

    1994-08-01

    Disruption of the zinc finger gene GLI3 has been shown to be the cause of Greig cephalopolysyndactyly syndrome (GCPS), at least in some GCPS translocation patients. To characterize this genomic region on human chromosome 7p13, we have isolated a YAC contig of more than 1000 kb including the GLI3 gene. In this contig the gene itself spans at least 200-250 kb. A CpG island is located in the vicinity of the 5{prime} region of the known GLI3 cDNA, implying a potential promoter region. 28 refs., 3 figs., 1 tab.

  11. Chromosomal Effects on Mutability in the P-M System of Hybrid Dysgenesis in DROSOPHILA MELANOGASTER

    PubMed Central

    Simmons, Michael J.; Raymond, John D.; Laverty, Todd R.; Doll, Rhonda F.; Raymond, Nancy C.; Kocur, Gordon J.; Drier, Eric A.

    1985-01-01

    Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, sn w, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis. PMID:3934034

  12. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  13. Characterisation of the Nevoid basal cell carcinoma (Gorlin`s) syndrome (NBCCS) gene region on chromosome 9q22-q31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.J.; Digweed, M.; Sperling, K.

    1994-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominantly inherited malignancy-associated disease of unknown etiology. The gene has been mapped to chromosome 9q22-q31 by us and other groups, using linkage analysis and loss of heterozygosity studies. Subsequent linkage and haplotype analyses from 133 meioses in NBCCS families has refined the position of the gene between D9S12 and D9S287. Since the gene for Fanconi`s Anaemia type C (FAAC) has been assigned to the same 9q region, we have performed linkage analysis between FACC and NBCCCS in NBCCS families. No recombination has been observed between NBCCS and FACC and maximum lodmore » scores of 34.98 and 11.94 occur for both diseases at the markers D9S196/D9S197. Southern blot analysis using an FACC cDNA probe has revealed no detectable rearrangements in our NBCCS patients. We have established a YAC contig spanning the region from D9S12 to D9S176 and STS content mapping in 22 YACs has allowed the ordering of 12 loci in the region, including the xeroderma pigmentosum type A (XPAC) gene, as follows: D9S151/D9S12P1 - D9S12P2 - D9S197 - D9S196 - D9S280 - FACC - D9S287/XPAC - D9S180 - D9S6 - D9S176. Using the contig we have been able to eliminate the {alpha}1 type XV collagen gene and the markers D9S119 and D9S297 from the NBCCS candidate region. Twelve YACs have been used to screen a chromosome 9 cosmid library and more than 1000 cosmids from the region have been identified to be used for the construction of a cosmid contig. A selection of these cosmids will be used for the isolation of coding sequencing from the region.« less

  14. Expression of Immune Genes on Chromosome 6p21.3-22.1 in Schizophrenia

    PubMed Central

    Sinkus, Melissa L.; Adams, Catherine E.; Logel, Judith; Freedman, Robert; Leonard, Sherry

    2013-01-01

    Schizophrenia is a common mental illness with a large genetic component. Three genome-wide association studies have implicated the major histocompatibility complex gene region on chromosome 6p21.3-22.1 in schizophrenia. In addition, nicotine, which is commonly abused in schizophrenia, affects the expression of central nervous system immune genes. Messenger RNA levels for genes in the 6p21.3-22.1 region were measured in human postmortem hippocampus of 89 subjects. The effects of schizophrenia diagnosis, smoking and systemic inflammatory illness were compared. Cell-specific expression patterns for the class I major histocompatibility complex gene HLA-A were explored utilizing in situ hybridization. Expression of five genes was altered in schizophrenic subjects. Messenger RNA levels for the class I major histocompatibility complex antigen HLA-B were increased in schizophrenic nonsmokers, while levels for smokers were indistinguishable from those of controls. β2 microglobulin, HLA-A and Notch4 were all expressed in a pattern where inflammatory illness was associated with increased expression in controls but not in subjects with schizophrenia. Schizophrenia was also associated with increased expression of Butyrophilin 2A2. HLA-A was expressed in glutamatergic and GABAergic neurons in the dentate gyrus, hilus, and the stratum pyramidale of the CA1-CA4 regions of the hippocampus, but not in astrocytes. In conclusion, the expression of genes from the major histocompatibility complex region of chromosome 6 with likely roles in synaptic development is altered in schizophrenia. There were also significant interactions between schizophrenia diagnosis and both inflammatory illness and smoking. PMID:23395714

  15. Proximity Within Interphase Chromosome Contributes to the Breakpoint Distribution in Radiation-Induced Intrachromosomal Exchanges

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2015-01-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome3 in human mammary epithelial cells after exposures to either low-or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations. Further investigations suggest that the 3D chromosome folding is cell type and culture condition dependent.

  16. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12-p21.1.

    PubMed

    Holmberg, M; Johansson, J; Forsgren, L; Heijbel, J; Sandgren, O; Holmgren, G

    1995-08-01

    We present linkage analysis on a large Swedish five-generation family of 15 affected individuals with autosomal dominant cerebellar ataxia (ADCA) associated with retinal degeneration and anticipation. Common clinical signs in this family include ataxia, dysarthria and severely impaired vision with the phenotype ADCA type II. Different subtypes of ADCA have proven difficult to classify clinically due to extensive phenotypic variability within and between families. Genetic analysis of a number of ADCA type I families shows that heterogeneity exists also genetically. During the last few years several types of ADCA type I have been localized and to date six genetically distinct forms have been identified including SCA1 (6p), SCA2 (12q), SCA3 and Machado-Joseph disease (MJD) (14q), SCA4 (16q), and finally SCA5 (11). We performed a genome-wide search of the Swedish ADCA type II family using a total of 270 microsatellite markers. Positive lod scores were obtained with a number of microsatellite markers located on chromosome 3p12-p21.1. Three markers gave lod scores over 3 with a maximum lod score of 4.53 achieved with the marker D3S1600. The ADCA type II gene could be restricted to a region of 32 cM by the markers D3S1547 and D3S1274.

  17. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  18. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 22 associated with cat eye syndrome.

    PubMed

    Chen, Chih-Ping; Ko, Tsang-Ming; Chen, Yi-Yung; Su, Jun-Wei; Wang, Wayseen

    2013-09-15

    We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1-q11.21 encompassing CECR1-CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population.

    PubMed

    Chen, Hongyan; Chen, Yuanyuan; Zhao, Yao; Fan, Weiwei; Zhou, Keke; Liu, Yanhong; Zhou, Liangfu; Mao, Ying; Wei, Qingyi; Xu, Jianfeng; Lu, Daru

    2011-04-15

    Two genome-wide association studies of glioma in European populations identified 14 genetic variants strongly associated with risk of glioma, but it is unknown whether these variants are associated with glioma risk in Asian populations. The authors genotyped these 14 variants in 976 glioma patients and 1,057 control subjects to evaluate their associations with risk of glioma, particularly high-grade glioma (glioblastoma; n = 312), in a Chinese population (2004-2009). Overall, the authors identified 3 susceptibility loci for glioma risk at 20q13.33 (RTEL1 rs6010620 (P = 2.79 × 10(-6))), 11q23.3 (PHLDB1 rs498872 (P = 3.8 × 10(-6))), and 5p15.33 (TERT rs2736100 (P = 3.69 × 10(-4))) in this study population; these loci were also associated with glioblastoma risk (20q13.33: RTEL1 rs6010620 (P = 3.57 × 10(-7)); 11q23.3: PHLDB1 rs498872 (P = 7.24 × 10(-3)); 5p15.33: TERT rs2736100 and TERT rs2736098 (P = 1.21 × 10(-4) and P = 2.84 × 10(-4), respectively)). This study provides further evidence for 3 glioma susceptibility regions at 20q13.33, 11q23.3, and 5p15.33 in Chinese populations.

  20. Role of chromosome 3p12-p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis.

    PubMed

    Martinez, A; Fullwood, P; Kondo, K; Kishida, T; Yao, M; Maher, E R; Latif, F

    2000-06-01

    Chromosome 3p deletions and loss of heterozygosity (LOH) for 3p markers are features of clear cell renal cell carcinoma but are rare in non-clear cell renal cell carcinoma. The VHL tumour suppressor gene, which maps to 3p25, is a major gatekeeper gene for clear cell renal cell carcinoma and is inactivated in most sporadic cases of this disease. However, it has been suggested that inactivation of other 3p tumour suppressor genes might be crucial for clear cell renal cell carcinoma tumorigenesis, with inactivation (VHL negative) and without inactivation (VHL positive) of the VHL tumour suppressor gene. This study set out to investigate the role of non-VHL tumour suppressor genes in VHL negative and VHL positive clear cell renal cell carcinoma. Eighty two clear cell renal cell carcinomas of known VHL inactivation status were analysed for LOH at polymorphic loci within the candidate crucial regions for chromosome 3p tumour suppressor genes (3p25, LCTSGR1 at 3p21.3, LCTSGR2 at 3p12 and at 3p14.2). Chromosome 3p12-p21 LOH was frequent both in VHL negative and VHL positive clear cell renal cell carcinoma. However, although the frequency of 3p25 LOH in VHL negative clear cell renal cell carcinoma was similar to that at 3p12-p21, VHL positive tumours demonstrated significantly less LOH at 3p25 than at 3p12-p21. Although there was evidence of LOH for clear cell renal cell carcinoma tumour suppressor genes at 3p21, 3p14.2, and 3p12, both in VHL negative and VHL positive tumours, the major clear cell renal cell carcinoma LOH region mapped to 3p21.3, close to the lung cancer tumour suppressor gene region 1 (LCTSGR1). There was no association between tumour VHL status and tumour grade and stage. These findings further indicate that VHL inactivation is not sufficient to initiate clear cell renal cell carcinoma and that loss of a gatekeeper 3p21 tumour suppressor gene is a crucial event for renal cell carcinoma development in both VHL negative and VHL positive clear cell renal

  1. Chromosome Rearrangements That Involve the Nucleolus Organizer Region in Neurospora

    PubMed Central

    Perkins, D. D.; Raju, N. B.; Barry, E. G.; Butler, D. K.

    1995-01-01

    In ~3% of Neurospora crassa rearrangements, part of a chromosome arm becomes attached to the nucleolus organizer region (NOR) at one end of chromosome 2 (linkage group V). Investigations with one inversion and nine translocations of this type are reported here. They appear genetically to be nonreciprocal and terminal. When a rearrangement is heterozygous, about one-third of viable progeny are segmental aneuploids with the translocated segment present in two copies, one in normal position and one associated with the NOR. Duplications from many of the rearrangements are highly unstable, breaking down by loss of the NOR-attached segment to restore normal chromosome sequence. When most of the rearrangements are homozygous, attenuated strands can be seen extending through the unstained nucleolus at pachytene, joining the translocated distal segment to the remainder of chromosome 2. Although the rearrangements appear genetically to be nonreciprocal, molecular evidence shows that at least several of them are physically reciprocal, with a block of rDNA repeats translocated away from the NOR. Evidence that NOR-associated breakpoints are nonterminal is also provided by intercrosses between pairs of translocations that transfer different-length segments of the same donor-chromosome arm to the NOR. PMID:8582636

  2. Survivin safeguards chromosome numbers and protects from aneuploidy independently from p53

    PubMed Central

    2014-01-01

    Background Survivin, a member of the inhibitor of apoptosis (IAP) gene family, has a dual role in mitosis and in apoptosis. It is abundantly expressed in every human tumor, compared with normal tissues. During mitosis Survivin assembles with the chromosomal passenger complex and regulates chromosomal segregation. Here, we aim to explore whether interference with the mitotic function of Survivin is linked to p53-mediated G1 cell cycle arrest and affects chromosomal stability. Methods In this study, we used HCT116, SBC-2, and U87-MG and generated corresponding isogenic p53-deficient cells. Retroviral vectors were used to stably knockdown Survivin. The resulting phenotype, in particular the mechanisms of cell cycle arrest and of initiation of aneuploidy, were investigated by Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and RNAi. Results In all cell lines Survivin-RNAi did not induce instant apoptosis but caused polyplodization irrespective of p53 status. Strikingly, polyploidization after knockdown of Survivin resulted in merotelic kinetochore spindle assemblies, γH2AX-foci, and DNA damage response (DDR), which was accompanied by a transient p53-mediated G1-arrest. That p53 wild type cells specifically arrest due to DNA damage was shown by simultaneous inhibition of ATM and DNA-PK, which abolished induction of p21waf/cip. Cytogenetic analysis revealed chromosomal aberrations indicative for DNA double strand break repair by the mechanism of non-homologous end joining (NHEJ), only in Survivin-depleted cells. Conclusion Our findings suggest that Survivin plays an essential role in proper amphitelic kinetochore-spindle assembly and that constraining Survivin’s mitotic function results in polyploidy and aneuploidy which cannot be controlled by p53. Therefore, Survivin critically safeguards chromosomal stability independently from p53. PMID:24886358

  3. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    PubMed

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  4. Inactivation of IL11 Signaling Causes Craniosynostosis, Delayed Tooth Eruption, and Supernumerary Teeth

    PubMed Central

    Nieminen, Pekka; Morgan, Neil V.; Fenwick, Aimée L.; Parmanen, Satu; Veistinen, Lotta; Mikkola, Marja L.; van der Spek, Peter J.; Giraud, Andrew; Judd, Louise; Arte, Sirpa; Brueton, Louise A.; Wall, Steven A.; Mathijssen, Irene M.J.; Maher, Eamonn R.; Wilkie, Andrew O.M.; Kreiborg, Sven; Thesleff, Irma

    2011-01-01

    Craniosynostosis and supernumerary teeth most often occur as isolated developmental anomalies, but they are also separately manifested in several malformation syndromes. Here, we describe a human syndrome featuring craniosynostosis, maxillary hypoplasia, delayed tooth eruption, and supernumerary teeth. We performed homozygosity mapping in three unrelated consanguineous Pakistani families and localized the syndrome to a region in chromosome 9. Mutational analysis of candidate genes in the region revealed that all affected children harbored homozygous missense mutations (c.662C>G [p.Pro221Arg], c.734C>G [p.Ser245Cys], or c.886C>T [p.Arg296Trp]) in IL11RA (encoding interleukin 11 receptor, alpha) on chromosome 9p13.3. In addition, a homozygous nonsense mutation, c.475C>T (p.Gln159X), and a homozygous duplication, c.916_924dup (p.Thr306_Ser308dup), were observed in two north European families. In cell-transfection experiments, the p.Arg296Trp mutation rendered the receptor unable to mediate the IL11 signal, indicating that the mutation causes loss of IL11RA function. We also observed disturbed cranial growth and suture activity in the Il11ra null mutant mice, in which reduced size and remodeling of limb bones has been previously described. We conclude that IL11 signaling is essential for the normal development of craniofacial bones and teeth and that its function is to restrict suture fusion and tooth number. The results open up the possibility of modulation of IL11 signaling for the treatment of craniosynostosis. PMID:21741611

  5. Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2.

    PubMed

    Moralli, Daniela; Nudel, Ron; Chan, May T M; Green, Catherine M; Volpi, Emanuela V; Benítez-Burraco, Antonio; Newbury, Dianne F; García-Bellido, Paloma

    2015-01-01

    We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs.

  6. Identification of centromere regions in chromosomes of a unicellular red alga, Cyanidioschyzon merolae.

    PubMed

    Kanesaki, Yu; Imamura, Sousuke; Matsuzaki, Motomichi; Tanaka, Kan

    2015-05-08

    To investigate the evolution of centromere architecture in plant cells, it is important to identify centromere regions of primitive algae, such as Cyanidioschyzon merolae. In a previous genome project, in silico analysis predicted an AT-rich region in each chromosome as putative centromere regions. Here, we identified a centromere position in each chromosome by ChIP-on-chip analysis using an anti-CENP-A antibody. The identified centromeres were of the regional type, about 2-3 kb in length and contained no consensus or repeat elements. Centromeres in primitive eukaryotic plant cells may have originated from these regional type centromeres. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    PubMed Central

    2012-01-01

    Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R). One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species. PMID:23194088

  8. Molecular mapping of the Edwards syndrome phenotype to two noncontiguous regions on chromosome 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boghosian-Sell, L.; Mewar, R.; Harrison, W.

    1994-09-01

    In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, the authors have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. The authors have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical featuresmore » and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals. 25 refs., 3 figs., 1 tab.« less

  9. De novo pericentric inversion of chromosome 9 in congenital anomaly.

    PubMed

    Jeong, Seon-Yong; Kim, Bo-Young; Yu, Jae Eun

    2010-09-01

    The pericentric inversion of chromosome 9 is one of the most common structural balanced chromosomal variations and has been found in both normal populations and patients with various abnormal phenotypes and diseases. The aim of this study was to re-evaluate the clinical impact of inv(9)(p11q13). We studied the karyotypes of 431 neonates with congenital anomalies at the Pediatric Clinic in Ajou University Hospital between 2004 and 2008 and retrospectively reviewed their clinical data. Chromosomal aberrations were detected in 60 patients (13.9%). The most common type of structural abnormality was inv(9)(p11q13), found in eight patients. Clinical investigation revealed that all eight cases with inv(9)(p11q13) had various congenital anomalies including: polydactyly, club foot, microtia, deafness, asymmetric face, giant Meckel's diverticulum, duodenal diaphragm, small bowel malrotation, pulmonary stenosis, cardiomyopathy, arrhythmia, and intrauterine growth restriction. The cytogenetic analysis of parents showed that all of the cases were de novo heterozygous inv(9)(p11q13). Since our results indicate that the incidence of inv(9)(p11q13) in patients with congenital anomalies was not significantly different from the normal population, inv(9)(p11q13) does not appear to be pathogenic with regard to the congenital anomalies. Some other, to date unknown, causes of the anomalies remain to be identified.

  10. Replication pattern of the pericentromeric region of chromosome 10q and expression of the RET protooncogene.

    PubMed

    Cinti, R; Schena, F; Passalacqua, M; Ceccherini, I; Ravazzolo, R

    2004-08-15

    Regulation of the RET gene is highly specific during embryo development and is strictly tissue-specific. Control of transcription depends on mechanisms influenced by epigenetic processes, in particular, histone acetylation at regions flanking the 5' end of the gene. Since the RET gene is mapped in the pericentromeric region of the human chromosome 10, the implication of epigenetic processes is even more striking and worth to be investigated in an extended chromosomal tract. One experimental approach to study the chromatin status in relationship with gene transcription is to assess the replication timing, which we did by using fluorescent in situ hybridization in cells expressing or not expressing the RET gene. By using probes spanning a 700-kb genomic region from the RET locus toward the centromere, we found a relationship between RET expression and early replication. Different patterns were observed between cells naturally expressing RET and cells induced to expression of RET by treatment with sodium butyrate, an inhibitor of histone deacetylases. Three-dimensional analysis of the nuclear localization of fluorescent signals by confocal microscopy showed difference of localization between the RET probe and a probe for a housekeeping gene, G3PDH, located at 12p13.3, in cells that do not express RET, in accordance with previous data for other genes and chromosomal regions. However, RET-expressing cells showed a localization of signals which was not consistent with that expected for expressed genes.

  11. Chromosomal Gains at 9q Characterize Enteropathy-Type T-Cell Lymphoma

    PubMed Central

    Zettl, Andreas; Ott, German; Makulik, Angela; Katzenberger, Tiemo; Starostik, Petr; Eichler, Thorsten; Puppe, Bernhard; Bentz, Martin; Müller-Hermelink, Hans Konrad; Chott, Andreas

    2002-01-01

    Genetic alterations in enteropathy-type T-cell lymphoma (ETL) are unknown so far. In this series, 38 cases of ETL were analyzed by comparative genomic hybridization (CGH). CGH revealed chromosomal imbalances in 87% of cases analyzed, with recurrent gains of genetic material involving chromosomes 9q (in 58% of cases), 7q (24%), 5q (18%), and 1q (16%). Recurrent losses of genetic material occurred on chromosomes 8p and 13q (24% each), and 9p (18%). In this first systematic genetic study on ETL, chromosomal gains on 9q (minimal overlapping region 9q33-q34) were found to be highly characteristic of ETL. Fluorescence in situ hybridization analysis on four cases of ETL, using a probe for 9q34, indicated frequent and multiple gains of chromosomal material at 9q34 (up to nine signals per case). Among 16 patients with ETL who survived initial disease presentation, patients with more than three chromosomal gains or losses (n = 11) followed a worse clinical course than those with three or less imbalances (n = 5). The observation of similar genetic alterations in ETL and in primary gastric (n = 4) and colonic (n = 1) T-cell lymphoma, not otherwise specified, is suggestive of a genetic relationship of gastrointestinal T-cell lymphomas at either localization. PMID:12414511

  12. Dandy-Walker malformations in a case of partial trisomy 9p (p12.1→pter) due to maternal translocation t(9;12)(p12.1;p13.3)

    PubMed Central

    Vundinti, Babu Rao; Kerketta, Lily; Korgaonkar, Seema; Ghosh, Kanjaksha

    2007-01-01

    We describe a five-year-old proband presented with Dandy-Walker malformations, right microopthalmia, hamstring contractures, undescended testis with absence of testis in right scrotum in addition to typical trisomy 9p clinical features. Routine cytogenetic studies with GTG - banding showed 46,XY,der(12)t(9;12) (p12;q13.3),mat karyotype (trisomy 9p). Chromosomal analysis of the father was normal and phenotypically normal mother had 46,XX,t(9;12)(p12;q13) karyotype. Fluorescence in situ hybridization analysis with single copy probes bA5OIA2 (9p11.2), bA562M8 (12p12.1) and centromere probes (9) showed break point at 9p12.1 region. The gene dosage effect of Chromosome 9p along with environmental factors might be associated with Dandy- Walker malformations in the patient. PMID:21957340

  13. A tumor suppressor locus within 3p14-p12 mediates rapid cell death of renal cell carcinoma in vivo.

    PubMed Central

    Sanchez, Y; el-Naggar, A; Pathak, S; Killary, A M

    1994-01-01

    High frequency loss of alleles and cytogenetic aberrations on the short arm of chromosome 3 have been documented in renal cell carcinoma (RCC). Potentially, three distinct regions on 3p could encode tumor suppressor genes involved in the genesis of this cancer. We report that the introduction of a centric fragment of 3p, encompassing 3p14-q11, into a highly malignant RCC cell line resulted in a dramatic suppression of tumor growth in athymic nude mice. Another defined deletion hybrid contained the region 3p12-q24 of the introduced human chromosome and failed to suppress tumorigenicity. These data functionally define a tumor suppressor locus, nonpapillary renal carcinoma-1 (NRC-1), within 3p14-p12, the most proximal region of high frequency allele loss in sporadic RCC as well as the region containing the translocation breakpoint in familial RCC. Furthermore, we provide functional evidence that NRC-1 controls the growth of RCC cells by inducing rapid cell death in vivo. Images PMID:8159756

  14. A new small supernumerary marker chromosome, generating mosaic pure trisomy 16q11.1–q12.1 in a healthy man

    PubMed Central

    Rodríguez, Laura; Liehr, Tomas; Martínez-Fernández, María Luisa; Lara, Ana; Torres, Antonio; Martínez-Frías, María Luisa

    2008-01-01

    Here we report on a healthy and fertile 30 years old man, who was carrier of a small supernumerary marker chromosome (sSMC). The application of molecular techniques such as fluorescence in situ hybridisation (FISH), microdissection and reverse painting, helped to characterize the sSMC which resulted to be derived from chromosome 16. In fact, the presence of euchromatin material from the long arm (16q) in the sSMC was demonstrated, and the karyotype can be written as mos 47, XY,+min(16)(:p11.1->q12.1:)[20]/46, XY [10]. PMID:18471313

  15. Association of Many Regions of the Bacillus subtilis Chromosome with the Cell Membrane

    PubMed Central

    Ivarie, Robert D.; Pène, Jacques J.

    1973-01-01

    Unsheared lysates of Bacillus subtilis 168T− containing uniformly labeled deoxyribonucleic acid (DNA) were exposed to varying doses of gamma rays to introduce double-strand scissions in the chromosome. From an estimate of the number-average molecular weight and the amount of DNA bound to membrane after irradiation, about 70 to 90 regions of the bacterial chromosome were detected in membrane fractions. Since this number was independent of the molecular weight of the DNA (i.e., the extent of fragmentation of the chromosome), it is thought to represent an upper limit in the number of membrane-binding sites per chromosome. PMID:4196245

  16. Rapid divergence and expansion of the X chromosome in papaya

    PubMed Central

    Gschwend, Andrea R.; Yu, Qingyi; Tong, Eric J.; Zeng, Fanchang; Han, Jennifer; VanBuren, Robert; Aryal, Rishi; Charlesworth, Deborah; Moore, Paul H.; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcript-encoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Yh chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X. PMID:22869742

  17. Exclusion of primary congenital glaucoma (PCG) from two candidate regions of chromosomes 1 and 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarfarazi, M.; Akarsu, A.N.; Barsoum-Homsy, M.

    1994-09-01

    PCG is a genetically heterogeneous condition in which a significant proportion of families inherit in an autosomally recessive fashion. Although association of PCG with chromosomal abnormalities has been repeatedly reported in the literature, the chromosomal location of this condition is still unknown. Therefore, this study is designed to identify the chromosomal location of the PCG locus by positional mapping. We have identified 80 PCG families with a total of 261 potential informative meiosis. A group of 19 pedigrees with a minimum of 2 affected children in each pedigree and consanguinity in most of the parental generation were selected as ourmore » initial screening panel. This panel consists of a total of 44 affected and 93 unaffected individuals giving a total of 99 informative meiosis, including 5 phase-known. We used polymerase chain reaction (PCR), denaturing polyacrylamide gels and silver staining to genotype our families. We first screened for markers on 1q21-q31, the reported location for juvenile primary open-angle glaucoma and excluded a region of 30 cM as the likely site for the PCG locus. Association of PCG with both ring chromosome 6 and HLA-B8 has also been reported. Therefore, we genotyped our PCG panel with PCR applicable markers from 6p21. Significant negative lod scores were obtained for D6S105 (Z = -18.70) and D6S306 (Z = -5.99) at {theta}=0.001. HLA class 1 region has also contained one of the tubulin genes (TUBB) which is an obvious candidate for PCG. Study of this gene revealed a significant negative lod score with PCG (Z = -16.74, {theta}=0.001). A multipoint linkage analysis of markers in this and other regions containing the candidate genes will be presented.« less

  18. Twenty-seven nonoverlapping zinc finger cDNAs from human T cells map to nine different chromosomes with apparent clustering.

    PubMed Central

    Huebner, K; Druck, T; Croce, C M; Thiesen, H J

    1991-01-01

    cDNA clones encoding zinc finger structures were isolated by screening Molt4 and Jurkat cDNA libraries with zinc finger consensus sequences. Candidate clones were partially sequenced to verify the presence of zinc finger-encoding regions; nonoverlapping cDNA clones were chosen on the basis of sequences and genomic hybridization pattern. Zinc finger structure-encoding clones, which were designated by the term "Kox" and a number from 1 to 32 and which were apparently unique (i.e., distinct from each other and distinct from those isolated by other laboratories), were chosen for mapping in the human genome. DNAs from rodent-human somatic cell hybrids retaining defined complements of human chromosomes were analyzed for the presence of each of the Kox genes. Correlation between the presence of specific human chromosome regions and specific Kox genes established the chromosomal locations. Multiple Kox loci were mapped to 7q (Kox 18 and 25 and a locus detected by both Kox 8 cDNA and Kox 27 cDNA), 8q24 5' to the myc locus (Kox 9 and 32), 10cen----q24 (Kox 2, 15, 19, 21, 30, and 31), 12q13-qter (Kox 1 and 20), 17p13 (Kox 11 and 26), and 19q (Kox 5, 6, 10, 22, 24, and 28). Single Kox loci were mapped to 7p22 (Kox 3), 18q12 (Kox 17), 19p (Kox 13), 22q11 between IG lambda and BCR-1 (locus detected by both Kox 8 cDNA and Kox 27 cDNA), and Xp (Kox 14). Several of the Kox loci map to regions in which other zinc finger structure-encoding loci have already been localized, indicating possible zinc finger gene clusters. In addition, Kox genes at 8q24, 17p13, and 22q11--and perhaps other Kox genes--are located near recurrent chromosomal translocation breakpoints. Others, such as those on 7p and 7q, may be near regions specifically active in T cells. Images Figure 4 Figure 5 Figure 2 Figure 3 PMID:2014798

  19. A dominant spinocerebellar ataxia gene (SCA5) in a family descendent from the paternal grandparents of President Lincoln maps to chromosome 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranum, L.P.W.; Lundgren, J.K.; Schut, L.J.

    1994-09-01

    Four different genes that cause spinocerebellar ataxia (SCA1, SCA2, Machado Joseph`s Disease (MJD)/SCA3 and SCA4) have been mapped to chromosomes 6p, 12q, 14q, and 16q, respectively. We have examined and collected 170 individuals (56 affected) from a previously unreported 10 generation kindred (the Lincoln Family) with a dominant ataxia that is clinically and genetically distinct from those previously mapped. The family has two major branches from Indiana and Kentucky. Of historical interest is that both branches descend from the paternal grandparents of President Abraham Lincoln. While the ataxia in this kindred is disabling, the most striking clinical distinction from SCA1,more » SCA2 and MJD/SCA3 is that it is generally not life threatening. This clinical difference is explained by the absence of bulbar paralysis and lower motor neuron degeneration that causes respiratory muscle weakness. We have mapped the gene, SCA5, using microsatellite markers spaced at 20-40 cM intervals throughout the genome. After 75 markers, the first to demonstrate a lod score greater than 3.0 was D11S871 (Zmax=5.05). Four additional markers from the centromeric region of chromosome 11 also gave lod scores greater than 3. The highest lod scores were 12.3 for both D11S905 ({theta}=0.056) and D11S913 ({theta}=0.030). Multipoint linkage and haplotype analyses indicate the most likely location for SCA5 is within the 7 cM interval between GATA2A01 and D11S913. A statistical analysis of the age of onset of parent-offspring pairs within the family supports (p<0.0002) the presence of anticipation. Several dramatic examples of anticipation have been observed in which grandmothers have onsets 10-20 years later in life than their daughters who have onsets 10-20 years later than their children. Interestingly, all four of the juvenile onset cases are maternally inherited, suggesting a maternal bias in anticipation for SCA5 rather than a paternal bias as seen with SCA1.« less

  20. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  1. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30more » primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.« less

  2. Evidence for positive selection of taurine genes within a QTL region on chromosome X associated with testicular size in Australian Brahman cattle

    PubMed Central

    2014-01-01

    Background Previous genome-wide association studies have identified significant regions of the X chromosome associated with reproductive traits in two Bos indicus-influenced breeds: Brahman cattle and Tropical Composites. Two QTL regions on this chromosome were identified in both breeds as strongly associated with scrotal circumference measurements, a reproductive trait previously shown to be useful for selection of young bulls. Scrotal circumference is genetically correlated with early age at puberty in both male and female offspring. These QTL were located at positions 69–77 and 81–92 Mb respectively, large areas each to which a significant number of potential candidate genes were mapped. Results To further characterise these regions, a bioinformatic approach was undertaken to identify novel non-synonymous SNP within the QTL regions of interest in Brahman cattle. After SNP discovery, we used conventional molecular assay technologies to perform studies of two candidate genes in both breeds. Non-synonymous SNP mapped to Testis-expressed gene 11 (Tex11) were associated (P < 0.001) with scrotal circumference in both breeds, and associations with percentage of normal sperm cells were also observed (P < 0.05). Evidence for recent selection was found as Tex11 SNP form a haplotype segment of Bos taurus origin that is retained within Brahman and Tropical Composite cattle with greatest reproductive potential. Conclusions Association of non-synonymous SNP presented here are a first step to functional genetic studies. Bovine species may serve as a model for studying the role of Tex11 in male fertility, warranting further in-depth molecular characterisation. PMID:24410912

  3. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma.

    PubMed

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-07-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10(-9) ), but was less obvious in other types of solid tumors except for prostate and Epstein-Barr virus (EBV)-positive gastric cancer (FDR<10(-3) ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    PubMed

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  5. Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon.

    PubMed Central

    Meijer, W J; de Boer, A J; van Tongeren, S; Venema, G; Bron, S

    1995-01-01

    A 3.1 kb fragment of the large (approximately 55 kb) Bacillus subtilis plasmid pLS20 containing all the information for autonomous replication was cloned and sequenced. In contrast to the parental plasmid, derived minireplicons were unstably maintained. Using deletion analysis the fragment essential and sufficient for replication was delineated to 1.1 kb. This 1.1 kb fragment is located between two divergently transcribed genes, denoted orfA and orfB, neither of which is required for replication. orfA shows homology to the B.subtilis chromosomal genes rapA (spoOL, gsiA) and rapB (spoOP). The 1.1 kb fragment, which is characterized by the presence of several regions of dyad symmetry, contains no open reading frames of more than 85 codons and shows no similarity with other known plasmid replicons. The structural organization of the pLS20 minimal replicon is entirely different from that of typical rolling circle plasmids from Gram-positive bacteria. The pLS20 minireplicons replicate in polA5 and recA4 B.subtilis strains. Taken together, these results strongly suggest that pLS20 belongs to a new class of theta replicons. PMID:7667098

  6. The human mitochondrial NADH: Ubiquinone oxidoreductase 51-kDa subunit oxidoreductase 51-kDa subunit maps adjacent to the glutathione S-transferase P1-1 gene on chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.R.; Taylor, J.B.; Cowell, I.G.

    The soluble glutathione transferases (GSTs) are a family of dimeric isoenymes catalyzing the conjugation of glutathione to hydrophobic electropiles. Their subunits can be grouped into four families, alpha, mu, pi, and theta, on the basis of their primary structures. In man, the pi class is represented by a single gene, GSTP1-1 (GST[pi]) localized to human chromosome 11, band q13. The oncogenes INT2, HSTF1, and PRAD1 are also localized at 11q13, and together with the GSTP1 locus and other gene loci mapped to 11q13, i.e., BCL1 and EMS1, they form a unit of DNA approximately 2000-2500 kb, known as the 11q13more » amplicon, which is often amplified in a range of solid tumors. Any gene locus at 11q13 is of interest because it may influence tumorigenesis. 14 refs., 1 fig.« less

  7. STS map of genes and anonymous DNA fragments on human chromosome 18 using a panel of somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overhauser, J.; Mewar, R.; Rojas, K.

    1993-02-01

    Somatic cell hybrids containing different deleted regions of chromosome 18 derived form patients with balanced translocations or terminal deletions were used to create a deletion mapping panel. Twenty-four sequence-tagged sites (STSs) for 17 genes and 7 anonymous polymorphic DNA fragments were identified. These STSs were used to map the 24 loci to 18 defined regions of chromosome 18. Both ERV1, previously mapped to 18q22-q23, and YES1, previously mapped to 18q21.3, were found to map to 18p11.21-pter. Several genes previously mapped to 18q21 were found to be in the order cen-SSAV1-DCC-FECH-GRP-BCL2-PLANH2-tel. The precise mapping of genes to chromosome 18 should helpmore » in determining whether these genes may be involved in the etiology of specific chromosomal syndromes associated with chromosome 18. The mapping of the poloymorphic loci will assist in the integration of the physical map with the recombination map of chromosome 18. 43 refs., 2 figs., 1 tab.« less

  8. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    PubMed

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  9. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  10. A Genetic and Molecular Analysis of the 46c Chromosomal Region Surrounding the Fmrfamide Neuropeptide Gene in Drosophila Melanogaster

    PubMed Central

    O'Brien, M. A.; Roberts, M. S.; Taghert, P. H.

    1994-01-01

    We have analyzed the FMRFamide neuropeptide gene region of Drosophila melanogaster. This gene maps to the 46C region of chromosome 2R; this interval previously was not well characterized. For this genetic and molecular analysis, we have used X-ray mutagenesis, EMS mutagenesis, and the recently reported local P element transposition method. We identified four overlapping deletions, two of which have proximal breakpoints that define a 50-60-kb region surrounding the FMRFamide gene in 46C. To this small region, we mapped three lethal complementation groups; 10 additional lethal complementation groups were mapped to more distal regions of 46CD. One of these groups corresponds to even-skipped, the other 12 are previously unidentified. Using various lines of evidence we excluded the possibility that FMRFamide corresponds to any of the three lethal complementation groups mapping to its immediate 50-60-kb vicinity. The positions of two of the three lethal complementation groups were identified with P elements using a local transposition scheme. The third lethal complementation group was excluded as being FMRFamide mutants by sequence analysis and by immunocytochemistry with proFMRFamide precursor-specific antibodies. This analysis has (1) provided a genetic map of the 46CD chromosomal region and a detailed molecular map of a portion of the 46C region and (2) provided additional evidence of the utility of local transposition for targeting nearby genes. PMID:8056304

  11. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    PubMed

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

  12. Coincidence of synteny breakpoints with malignancy-related deletions on human chromosome 3

    PubMed Central

    Kost-Alimova, Maria; Kiss, Hajnalka; Fedorova, Ludmila; Yang, Ying; Dumanski, Jan P.; Klein, George; Imreh, Stefan

    2003-01-01

    We have found previously that during tumor growth intact human chromosome 3 transferred into tumor cells regularly looses certain 3p regions, among them the ≈1.4-Mb common eliminated region 1 (CER1) at 3p21.3. Fluorescence in situ hybridization analysis of 12 mouse orthologous loci revealed that CER1 splits into two segments in mouse and therefore contains a murine/human conservation breakpoint region (CBR). Several breaks occurred in tumors within the region surrounding the CBR, and this sequence has features that characterize unstable chromosomal regions: deletions in yeast artificial chromosome clones, late replication, gene and segment duplications, and pseudogene insertions. Sequence analysis of the entire 3p12-22 revealed that other cancer-associated deletions (regions eliminated from monochromosomal hybrids carrying an intact chromosome 3 during tumor growth and homozygous deletions found in human tumors) colocalized nonrandomly with murine/human CBRs and were characterized by an increased number of local gene duplications and murine/human conservation mismatches (single genes that do not match into the conserved chromosomal segment). The CBR within CER1 contains a simple tandem TATAGA repeat capable of forming a 40-bp-long secondary hairpin-like structure. This repeat is nonrandomly localized within the other tumor-associated deletions and in the vicinity of 3p12-22 CBRs. PMID:12738884

  13. Haplotype analysis of the apolipoprotein gene cluster on human chromosome 11

    PubMed Central

    Olivier, Michael; Wang, Xujing; Cole, Regina; Gau, Brian; Kim, Jessica; Rubin, Edward M.; Pennacchio, Len A.

    2009-01-01

    Members of the apolipoprotein gene cluster (APOA1/C3/A4/A5) on human chromosome 11q23 play an important role in lipid metabolism. Polymorphisms in both APOA5 and APOC3 are strongly associated with plasma triglyceride concentrations. The close genomic locations of these two genes as well as their functional similarity have hindered efforts to define whether each gene independently influences human triglyceride concentrations. In this study, we examined the linkage disequilibrium and haplotype structure of 49 SNPs in a 150-kb region spanning the gene cluster. We identified a total of five common APOA5 haplotypes with a frequency of greater than 8% in samples of northern European origin. The APOA5 haplotype block did not extend past the 7 SNPs in the gene and was separated from the other apolipoprotein gene in the cluster by a region of significantly increased recombination. Furthermore, one previously identified triglyceride risk haplotype of APOA5 (APOA5*3) showed no association with three APOC3 SNPs previously associated with triglyceride concentrations, in contrast to the other risk haplotype (APOA5*2), which was associated with all three minor APOC3 SNP alleles. These results highlight the complex genetic relationship between APOA5 and APOC3 and support the notion that APOA5 represents an independent risk gene affecting plasma triglyceride concentrations in humans. PMID:15081120

  14. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication.

    PubMed

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and compared the clinical, genotyping, and gene

  15. Case report of individual with cutaneous immunodeficiency and novel 1p36 duplication

    PubMed Central

    Hatter, Alyn D; Soler, David C; Curtis, Christine; Cooper, Kevin D; McCormick, Thomas S

    2016-01-01

    Introduction Crusted or Norwegian scabies is an infectious skin dermatopathology usually associated with an underlying immunodeficiency condition. It is caused when the mite Sarcoptes scabiei infects the skin, and the immune system is unable to control its spread, leading to a massive hyperinfestation with a simultaneous inflammatory and hyperkeratotic reaction. This is the first report of a novel 1p36 duplication associated with a recurrent infection of crusted scabies. Case report We describe a 34-year-old patient with a cutaneous immunodeficiency characterized by recurrent crusted scabies infestation, diffuse tinea, and recurrent staphylococcal cellulitis, who we suspected had an undiagnosed syndrome. The patient also suffered from mental retardation, renal failure, and premature senescence. A cytogenetic fluorescence in situ hybridization analysis revealed a 9.34 Mb duplication within the short (p) arm of chromosome 1, precisely from 1p36.11 to 1p36.21, with an adjacent 193 kb copy gain entirely within 1p36.11. In addition, chromosome 4 had a 906 kb gain in 4p16.1 and chromosome 9 had a 81 kb copy gain in 9p24.3. Over 100 genes localized within these duplicated regions. Gene expression array revealed 82 genes whose expression changed >1.5-fold compared to a healthy age-matched skin control, but among them only the lipolytic enzyme arylacetamide deacetylase-like 3 was found within the duplicated 1p36 region of chromosome 1. Discussion Although genetic duplications in the 1p36 region have been previously described, our report describes a novel duplicative variant within the 1p36 region. The patient did not have a past history of immunosuppression but was afflicted by a recurrent case of crusted scabies, raising the possibility that the recurrent infection was associated with the 1p36 genetic duplication. Conclusion To our knowledge, the specific duplicated sequence between 1p36.11 and p36.21 found in our patient has never been previously reported. We reviewed and

  16. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14.

    PubMed

    Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O

    2000-12-15

    Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.

  17. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33

    PubMed Central

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C.; Sampson, Joshua N.; Hoskins, Jason W.; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S.; Abnet, Christian C.; Adjei, Andrew A.; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E.; Ambrosone, Christine B.; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L.; Arici, Cecilia; Arslan, Alan A.; Austin, Melissa A.; Baris, Dalsu; Barkauskas, Donald A.; Bassig, Bryan A.; Beane Freeman, Laura E.; Berg, Christine D.; Berndt, Sonja I.; Bertazzi, Pier Alberto; Biritwum, Richard B.; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Brennan, Paul; Brinton, Louise A.; Brotzman, Michelle; Bueno-de-Mesquita, H. Bas; Buring, Julie E.; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E.; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P.; Chu, Lisa W.; Clavel-Chapelon, Francoise; Colditz, Graham A.; Colt, Joanne S.; Conti, David; Cook, Michael B.; Cortessis, Victoria K.; Crawford, E. David; Cussenot, Olivier; Davis, Faith G.; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P.; Di Stefano, Anna Luisa; Diver, W. Ryan; Duell, Eric J.; Elena, Joanne W.; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D.; Flanagan, Adrienne M.; Fraumeni, Joseph F.; Freedman, Neal D.; Fridley, Brooke L.; Fuchs, Charles S.; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M.; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M.; Gaziano, J. Michael; Gerhard, Daniela S.; Giffen, Carol A.; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M.; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H.; Gross, Myron; Grossman, H. Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A.; Hallmans, Goran; Hankinson, Susan E.; Harris, Curtis C.; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B.; He, Qincheng; Helman, Lee; Henderson, Brian E.; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A.; Hong, Yun-Chul; Hoover, Robert N.; Hosgood, H. Dean; Hsiao, Chin-Fu; Hsing, Ann W.; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J.; Inskip, Peter D.; Ito, Hidemi; Jacobs, Eric J.; Jacobs, Kevin B.; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M.; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M.; Klein, Alison P.; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N.; Kooperberg, Charles; Kratz, Christian P.; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C.; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C.; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P.; Le Marchand, Loic; Lerner, Seth P.; Li, Donghui; Liao, Linda M.; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S.; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A.; McKean-Cowdin, Roberta; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Meltzer, Paul S.; Mensah, James E.; Miao, Xiaoping; Michaud, Dominique S.; Mondul, Alison M.; Moore, Lee E.; Muir, Kenneth; Niwa, Shelley; Olson, Sara H.; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V.; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H. M.; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Picci, Piero; Pike, Malcolm C.; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P.; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A.; Rodabough, Rebecca J.; Rothman, Nathaniel; Ruder, Avima M.; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R.; Schwartz, Ann G.; Schwartz, Kendra L.; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D.; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T.; Simon, Matthias; Southey, Melissa C.; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael Z.; Stram, Daniel O.; Strom, Sara S.; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R.; Tettey, Yao; Thomas, David M.; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S.; Toro, Jorge R.; Travis, Ruth C.; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A.; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K.; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S.; Weiderpass, Elisabete; Weinstein, Stephanie J.; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K.; Wolk, Alicja; Wolpin, Brian M.; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S.; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P.; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D.; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A.; Kraft, Peter; Chanock, Stephen J.; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T.

    2014-01-01

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10−39; Region 3: rs2853677, P = 3.30 × 10−36 and PConditional = 2.36 × 10−8; Region 4: rs2736098, P = 3.87 × 10−12 and PConditional = 5.19 × 10−6, Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10−6; and Region 6: rs10069690, P = 7.49 × 10−15 and PConditional = 5.35 × 10−7) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10−18 and PConditional = 7.06 × 10−16). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. PMID:25027329

  18. Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33.

    PubMed

    Wang, Zhaoming; Zhu, Bin; Zhang, Mingfeng; Parikh, Hemang; Jia, Jinping; Chung, Charles C; Sampson, Joshua N; Hoskins, Jason W; Hutchinson, Amy; Burdette, Laurie; Ibrahim, Abdisamad; Hautman, Christopher; Raj, Preethi S; Abnet, Christian C; Adjei, Andrew A; Ahlbom, Anders; Albanes, Demetrius; Allen, Naomi E; Ambrosone, Christine B; Aldrich, Melinda; Amiano, Pilar; Amos, Christopher; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L; Arici, Cecilia; Arslan, Alan A; Austin, Melissa A; Baris, Dalsu; Barkauskas, Donald A; Bassig, Bryan A; Beane Freeman, Laura E; Berg, Christine D; Berndt, Sonja I; Bertazzi, Pier Alberto; Biritwum, Richard B; Black, Amanda; Blot, William; Boeing, Heiner; Boffetta, Paolo; Bolton, Kelly; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Brennan, Paul; Brinton, Louise A; Brotzman, Michelle; Bueno-de-Mesquita, H Bas; Buring, Julie E; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Cao, Guangwen; Caporaso, Neil E; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chang, Gee-Chen; Chang, I-Shou; Chang-Claude, Jenny; Che, Xu; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chung-Hsing; Chen, Constance; Chen, Kuan-Yu; Chen, Yuh-Min; Chokkalingam, Anand P; Chu, Lisa W; Clavel-Chapelon, Francoise; Colditz, Graham A; Colt, Joanne S; Conti, David; Cook, Michael B; Cortessis, Victoria K; Crawford, E David; Cussenot, Olivier; Davis, Faith G; De Vivo, Immaculata; Deng, Xiang; Ding, Ti; Dinney, Colin P; Di Stefano, Anna Luisa; Diver, W Ryan; Duell, Eric J; Elena, Joanne W; Fan, Jin-Hu; Feigelson, Heather Spencer; Feychting, Maria; Figueroa, Jonine D; Flanagan, Adrienne M; Fraumeni, Joseph F; Freedman, Neal D; Fridley, Brooke L; Fuchs, Charles S; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; Garcia-Closas, Reina; Gastier-Foster, Julie M; Gaziano, J Michael; Gerhard, Daniela S; Giffen, Carol A; Giles, Graham G; Gillanders, Elizabeth M; Giovannucci, Edward L; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M; Gonzalez, Carlos; Gorlick, Richard; Greene, Mark H; Gross, Myron; Grossman, H Barton; Grubb, Robert; Gu, Jian; Guan, Peng; Haiman, Christopher A; Hallmans, Goran; Hankinson, Susan E; Harris, Curtis C; Hartge, Patricia; Hattinger, Claudia; Hayes, Richard B; He, Qincheng; Helman, Lee; Henderson, Brian E; Henriksson, Roger; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Hosgood, H Dean; Hsiao, Chin-Fu; Hsing, Ann W; Hsiung, Chao Agnes; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Hunter, David J; Inskip, Peter D; Ito, Hidemi; Jacobs, Eric J; Jacobs, Kevin B; Jenab, Mazda; Ji, Bu-Tian; Johansen, Christoffer; Johansson, Mattias; Johnson, Alison; Kaaks, Rudolf; Kamat, Ashish M; Kamineni, Aruna; Karagas, Margaret; Khanna, Chand; Khaw, Kay-Tee; Kim, Christopher; Kim, In-Sam; Kim, Jin Hee; Kim, Yeul Hong; Kim, Young-Chul; Kim, Young Tae; Kang, Chang Hyun; Jung, Yoo Jin; Kitahara, Cari M; Klein, Alison P; Klein, Robert; Kogevinas, Manolis; Koh, Woon-Puay; Kohno, Takashi; Kolonel, Laurence N; Kooperberg, Charles; Kratz, Christian P; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C; Kurucu, Nilgun; Lan, Qing; Lathrop, Mark; Lau, Ching C; Lecanda, Fernando; Lee, Kyoung-Mu; Lee, Maxwell P; Le Marchand, Loic; Lerner, Seth P; Li, Donghui; Liao, Linda M; Lim, Wei-Yen; Lin, Dongxin; Lin, Jie; Lindstrom, Sara; Linet, Martha S; Lissowska, Jolanta; Liu, Jianjun; Ljungberg, Börje; Lloreta, Josep; Lu, Daru; Ma, Jing; Malats, Nuria; Mannisto, Satu; Marina, Neyssa; Mastrangelo, Giuseppe; Matsuo, Keitaro; McGlynn, Katherine A; McKean-Cowdin, Roberta; McNeill, Lorna H; McWilliams, Robert R; Melin, Beatrice S; Meltzer, Paul S; Mensah, James E; Miao, Xiaoping; Michaud, Dominique S; Mondul, Alison M; Moore, Lee E; Muir, Kenneth; Niwa, Shelley; Olson, Sara H; Orr, Nick; Panico, Salvatore; Park, Jae Yong; Patel, Alpa V; Patino-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H M; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M; Picci, Piero; Pike, Malcolm C; Porru, Stefano; Prescott, Jennifer; Pu, Xia; Purdue, Mark P; Qiao, You-Lin; Rajaraman, Preetha; Riboli, Elio; Risch, Harvey A; Rodabough, Rebecca J; Rothman, Nathaniel; Ruder, Avima M; Ryu, Jeong-Seon; Sanson, Marc; Schned, Alan; Schumacher, Fredrick R; Schwartz, Ann G; Schwartz, Kendra L; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D; Severi, Gianluca; Shen, Hongbing; Shen, Min; Shete, Sanjay; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesumaga, Luis; Sierri, Sabina; Loon Sihoe, Alan Dart; Silverman, Debra T; Simon, Matthias; Southey, Melissa C; Spector, Logan; Spitz, Margaret; Stampfer, Meir; Stattin, Par; Stern, Mariana C; Stevens, Victoria L; Stolzenberg-Solomon, Rachael Z; Stram, Daniel O; Strom, Sara S; Su, Wu-Chou; Sund, Malin; Sung, Sook Whan; Swerdlow, Anthony; Tan, Wen; Tanaka, Hideo; Tang, Wei; Tang, Ze-Zhang; Tardon, Adonina; Tay, Evelyn; Taylor, Philip R; Tettey, Yao; Thomas, David M; Tirabosco, Roberto; Tjonneland, Anne; Tobias, Geoffrey S; Toro, Jorge R; Travis, Ruth C; Trichopoulos, Dimitrios; Troisi, Rebecca; Truelove, Ann; Tsai, Ying-Huang; Tucker, Margaret A; Tumino, Rosario; Van Den Berg, David; Van Den Eeden, Stephen K; Vermeulen, Roel; Vineis, Paolo; Visvanathan, Kala; Vogel, Ulla; Wang, Chaoyu; Wang, Chengfeng; Wang, Junwen; Wang, Sophia S; Weiderpass, Elisabete; Weinstein, Stephanie J; Wentzensen, Nicolas; Wheeler, William; White, Emily; Wiencke, John K; Wolk, Alicja; Wolpin, Brian M; Wong, Maria Pik; Wrensch, Margaret; Wu, Chen; Wu, Tangchun; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xiang, Yong-Bing; Xu, Jun; Yang, Hannah P; Yang, Pan-Chyr; Yatabe, Yasushi; Ye, Yuanqing; Yeboah, Edward D; Yin, Zhihua; Ying, Chen; Yu, Chong-Jen; Yu, Kai; Yuan, Jian-Min; Zanetti, Krista A; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Zhou, Baosen; Mirabello, Lisa; Savage, Sharon A; Kraft, Peter; Chanock, Stephen J; Yeager, Meredith; Landi, Maria Terese; Shi, Jianxin; Chatterjee, Nilanjan; Amundadottir, Laufey T

    2014-12-15

    Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. A boy with partial dup(18q)/del(18p) due to a maternal pericentric inversion: Genotype-phenotype correlation and risk of recombinant chromosomes based on systematic review of the literature.

    PubMed

    Lustosa-Mendes, Elaine; Dos Santos, Ana Paula; Viguetti-Campos, Nilma Lúcia; Vieira, Társis Paiva; Gil-da-Silva-Lopes, Vera Lúcia

    2017-01-01

    We report a boy carrying a recombinant chromosome 18, with terminal deletion of 10.8 Mb from 18p11.32 to 18p11.21 and a terminal duplication of 22.8 Mb from 18q21.31 to 18q23, resulting from a maternal pericentric inversion of the chromosome 18. He presented with poor growth, developmental delay, facial dysmorphisms, surgically repaired left cleft lip and palate, a mild form of holoprosencephaly characterized by single central incisor and agenesis of the septum pellucidum, and body asymmetry. Based on the systematic review of the literature, we discuss genotype-phenotype correlation and the risk for the recombinants of pericentric inversions of chromosome 18. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes

    PubMed Central

    Loviglio, M N; Leleu, M; Männik, K; Passeggeri, M; Giannuzzi, G; van der Werf, I; Waszak, S M; Zazhytska, M; Roberts-Caldeira, I; Gheldof, N; Migliavacca, E; Alfaiz, A A; Hippolyte, L; Maillard, A M; Loviglio, Maria Nicla; Männik, Katrin; van der Werf, Ilse; Giannuzzi, Giuliana; Zazhytska, Marianna; Gheldof, Nele; Migliavacca, Eugenia; Alfaiz, Ali A; Roberts-Caldeira, Inês; Hippolyte, Loyse; Maillard, Anne M; Ferrarini, Alessandra; Butschi, Florence Niel; Conrad, Bernard; Addor, Marie-Claude; Belfiore, Marco; Roetzer, Katharina; Dijck, Anke Van; Blaumeiser, Bettina; Kooy, Frank; Roelens, Filip; Dheedene, Annelies; Chiaie, Barbara Delle; Menten, Björn; Oostra, Ann; Caberg, Jean-Hubert; Carter, Melissa; Kellam, Barbara; Stavropoulos, Dimitri J; Marshall, Christian; Scherer, Stephen W; Weksberg, Rosanna; Cytrynbaum, Cheryl; Bassett, Anne; Lowther, Chelsea; Gillis, Jane; MacKay, Sara; Bache, Iben; Ousager, Lilian B; Smerdel, Maja Patricia; Graakjaer, Jesper; Kjaergaard, Susanne; Metspalu, Andres; Mathieu, Michele; Bonneau, Dominique; Guichet, Agnes; Parent, Philippe; Férec, Claude; Gerard, Marion; Plessis, Ghislaine; Lespinasse, James; Masurel, Alice; Marle, Nathalie; Faivre, Laurence; Callier, Patrick; Layet, Valerie; Meur, Nathalie Le; Le Goff, Céline; Duban-Bedu, Bénédicte; Sukno, Sylvie; Boute, Odile; Andrieux, Joris; Blanchet, Patricia; Geneviève, David; Puechberty, Jacques; Schneider, Anouck; Leheup, Bruno; Jonveaux, Philippe; Mercier, Sandra; David, Albert; Le Caignec, Cédric; de Pontual, Loic; Pipiras, Eva; Jacquette, Aurelia; Keren, Boris; Gilbert-Dussardier, Brigitte; Bilan, Frederic; Goldenberg, Alice; Chambon, Pascal; Toutain, Annick; Till, Marianne; Sanlaville, Damien; Leube, Barbara; Royer-Pokora, Brigitte; Grabe, Hans Jörgen; Schmidt, Carsten Oliver; Schurmann, Claudia; Homuth, Georg; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Bernardini, Laura; Novelli, Antonio; Micale, Lucia; Merla, Giuseppe; Zollino, Marcella; Mari, Francesca; Rizzo, Caterina Lo; Renieri, Alessandra; Silengo, Margherita; Vulto-van Silfhout, Anneke T; Schouten, Meyke; Pfundt, Rolph; de Leeuw, Nicole; Vansenne, Fleur; Maas, Saskia M; Barge-Schaapveld, Daniela QCM; Knegt, Alida C; Stadheim, Barbro; Rodningen, Olaug; Houge, Gunnar; Price, Sue; Hawkes, Lara; Campbell, Carolyn; Kini, Usha; Vogt, Julie; Walters, Robin; Blakemore, Alexandra; Gusella, James F; Shen, Yiping; Scott, Daryl; Bacino, Carlos A; Tsuchiya, Karen; Ladda, Roger; Sell, Susan; Asamoah, Alexander; Hamati, Aline I; Rosenfeld, Jill A; Shaffer, Lisa G; Mitchell, Elyse; Hodge, Jennelle C; Beckmann, Jacques S; Jacquemont, Sébastien; Reymond, Alexandre; Reymond, Alexandre; Ewans, Lisa J; Mowat, David; Walker, Jan; Amor, David J; Esch, Hilde Van; Leroy, Patricia; Caberg, Jean-Hubert; Bamforth, John-Steven; Babu, Deepti; Till, Marianne; Sanlaville, Damien; Geneviève, David; Puechberty, Jacques; Isidor, Bertrand; DiDonato, Nataliya; Hackmann, Karl; Passeggeri, Marzia; Haeringen, Arie van; Rosenfeld, Jill A; Shaffer, Lisa G; Smith, Rosemarie; Ellingwood, Sara; Farber, Darren M; Puri, Vinay; Zadeh, Neda; Weaver, David D; Miller, Mandy; Wilks, Timothy; Jorgez, Carolina J; Lafayette, DeeDee; Jacquemont, Sébastien; Van Dijck, A; Kooy, R F; Sanlaville, D; Rosenfeld, J A; Shaffer, L G; Andrieux, J; Marshall, C; Scherer, S W; Shen, Y; Gusella, J F; Thorsteinsdottir, U; Thorleifsson, G; Dermitzakis, E T; Deplancke, B; Beckmann, J S; Rougemont, J; Jacquemont, S; Reymond, A

    2017-01-01

    Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts’ maps could uncover functionally and clinically related genes. PMID:27240531

  1. Linkage analysis of idiopathic generalized epilepsy (IGE) and marker loci on chromosome 6p in families of patients with juvenile myocloni epilepsy: No evidence for an epilepsy locus in the HLA region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehouse, W.P.; Rees, M.; Curtis, D.

    1993-09-01

    Evidence for a locus (EJM1) in the HLA region of chromosome 6p predisposing to idiopathic generalized epilepsy (IGE) in the families of patients with juvenile myoclonic epilepsy (JME) has been obtained in two previous studies of separately ascertained groups of kindreds. Linkage analysis has been undertaken in a third set of 25 families including a patient with JME and at least one first-degree relative with IGE. Family members were typed for eight polymorphic loci on chromosome 6p: F13A, D6889, D6S109, D6S105, D6S10, C4B, DQA1/A2, and TCTE1. Pairwise and multipoint linkage analysis was carried out assuming autosomal dominant and autosomal recessivemore » inheritance and age-dependent high or low penetrance. No significant evidence in favor of linkage was obtained at any locus. Multipoint linkage analysis generated significant exclusion data (lod score < -2.0) at HLA and for a region 10-30 cM telomeric to HLA, the extent of which varied with the level of penetrance assumed. These observations indicate that genetic heterogeneity exists within this epilepsy phenotype. 39 refs., 4 figs., 2 tabs.« less

  2. Development of a YAC contig covering the minimal region of a CSNB1 locus in Xp11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boycott, K.M.; Gratton, K.J.; Moore, B.J.

    1994-09-01

    X-linked congenital stationary night blindness (CSNB1) is an eye disorder that includes impairment of night vision, reduced visual acuity and, in some cases, myopia and congenital nystagmus. Electroretinography reveals a marked reduction of the b-wave in affected individuals suggesting that X-linked CSNB is due to a molecular defect in the bipolar layer of the retina. Based on our studies of a large four generation family with X-linked CSNB, a CSNB1 locus was mapped to a 4-5 cM region at Xp11.23-Xp11.22 bounded telomerically by DXS426 and centromerically by DXS988. Using a panel of radiation and conventional somatic cell hybrids, a detailedmore » map of new and published STSs has been generated for the minimal region of CSNB1. PCR primer pairs for STSs has been generated for the minimal region of CSNB1. PCR primer pairs for twenty-five STSs, including eleven end-clones, were used to isolate YAC clones from CEPH, mega-CEPH, and X chromosome-specific YAC libraries. In total, fifty-two YACs were characterized for STS overlaps and assembled to provide a minimum of 3 Mb of physical coverage in the region between DXS426 and DXS988. Five gaps proximal to SYP are still to be closed. Our physical map suggests the following gene order: Xpter-OTAL1-GF1-DXS1011E-MG81-HUMCRAS2P-SYP-Xcen. STS analysis of the YACs revealed three subregions of the physical map which appear to be particularly susceptible to internal deletions and end-clone analysis demonstrated chimerism in six of seventeen YACs. A physical map of Xp11.23-Xp11.22 will provide a resource for the isolation of candidate genes for the X-linked CSNB gene which maps to this region.« less

  3. Frequency of satellite association of human chromosomes is correlated with amount of Ag-staining of the nucleolus organizer region.

    PubMed Central

    Miller, D A; Tantravahi, R; Dev, V G; Miller, O J

    1977-01-01

    Methaphase chromosomes from karyotypically normal adult humans (three males, six females) and one male with a 13p - chromosome were stained by quinacrine and then by the Ag-AS silver staining method to reveal nucleolus organizer regions (NORs). Each person had a characteristic number of Ag-stained chromosomes per cell, always fewer than 10. Determination of the mean Ag-size of each chromosome showed that each of the 10 individuals had a unique distribution of Ag-stain. Within each individual, there was some variation from cell to cell in the number of acrocentric chromosomes that were Ag-stained; this was not random, and the same chromosomes (those that had at most a small amount of Ag-stain) tended to be unstained in every cell. Satellite associations were scored on the same cells. Chromosomes that had no Ag-stain were involved in satellite association less than 20% as often as those that had some Ag-stain. Chromosomes that had a small amount of Ag-stain were involved in association about 50% as often as those that had a large amount of stain. Regression analysis of the 50 (of a total of 100) acrocentric chromosomes which could be individually identified by quinacrine markers showed that the frequency with which a chromosome was involved in satellite association was strongly correlated with the amount of Ag-stained material in the NOR. Images Fig. 1 Fig. 3 PMID:70995

  4. Role of chromosome 3p12–p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis

    PubMed Central

    Martinez, A; Fullwood, P; Kondo, K; Kishida, T; Yao, M; Maher, E R; Latif, F

    2000-01-01

    Aims—Chromosome 3p deletions and loss of heterozygosity (LOH) for 3p markers are features of clear cell renal cell carcinoma but are rare in non-clear cell renal cell carcinoma. The VHL tumour suppressor gene, which maps to 3p25, is a major gatekeeper gene for clear cell renal cell carcinoma and is inactivated in most sporadic cases of this disease. However, it has been suggested that inactivation of other 3p tumour suppressor genes might be crucial for clear cell renal cell carcinoma tumorigenesis, with inactivation (VHL negative) and without inactivation (VHL positive) of the VHL tumour suppressor gene. This study set out to investigate the role of non-VHL tumour suppressor genes in VHL negative and VHL positive clear cell renal cell carcinoma. Methods—Eighty two clear cell renal cell carcinomas of known VHL inactivation status were analysed for LOH at polymorphic loci within the candidate crucial regions for chromosome 3p tumour suppressor genes (3p25, LCTSGR1 at 3p21.3, LCTSGR2 at 3p12 and at 3p14.2). Results—Chromosome 3p12–p21 LOH was frequent both in VHL negative and VHL positive clear cell renal cell carcinoma. However, although the frequency of 3p25 LOH in VHL negative clear cell renal cell carcinoma was similar to that at 3p12–p21, VHL positive tumours demonstrated significantly less LOH at 3p25 than at 3p12–p21. Although there was evidence of LOH for clear cell renal cell carcinoma tumour suppressor genes at 3p21, 3p14.2, and 3p12, both in VHL negative and VHL positive tumours, the major clear cell renal cell carcinoma LOH region mapped to 3p21.3, close to the lung cancer tumour suppressor gene region 1 (LCTSGR1). There was no association between tumour VHL status and tumour grade and stage. Conclusions—These findings further indicate that VHL inactivation is not sufficient to initiate clear cell renal cell carcinoma and that loss of a gatekeeper 3p21 tumour suppressor gene is a crucial event for renal cell carcinoma development in both VHL

  5. [Chromosome examination of missed abortion patients].

    PubMed

    Hu, Haomei; Yang, Hua; Yin, Zhenhui; Zhao, Lu

    2015-09-15

    To investigate the relationship between the missed abortion and chromosome abnormality and guide the healthy birth. From June 2014 to April 2015 in Tianjin central hospital of gynecology and obstetrics, we examined venous blood from 90 missed abortion couples for chromosome karyotype by lymphocyte culture method and we also examined their chromosome karyotype of abortion villus samples by high-throughput sequencing technologies. Out of the 90 couples' blood chromosome examinations, 7 were abnormal, and the abnormal rate was 3.89%, including 3 cases reciprocal translocation, 2 cases robertsonian translocation and 2 cases inversion. Abortion villus samples from the same population were also checked, of which 85 cases succeeded, with the success rate of 94.4%. Among them, villi chromosome abnormalities were found in 50 cases, including 39 cases with abnormal chromosome numbers, 11 cases with abnormal chromosome structure, and the total abnormal rate was 58.8%. In addition, the villi chromosome abnormality rate of patients with recurrent missed abortion (≥2 times) and first missed abortion were 61.7% and 55.2%, respectively, and the difference was not significant (P>0.05). The villi chromosome abnormality rate of pregnant women with age≥35 years old was 71.1%, while the pregnant women with aged <35 years old was 45% (P<0.05). Chromosome abnormality is an important cause of missed abortion; villi chromosome abnormality rate has nothing to do with the number of missed abortion; pregnant woman with age≥35 years old is risk factor of the villi chromosome abnormality.

  6. Further linkage evidence for localization of mutational sites for nonsyndromic types of X-linked mental retardation at pericentromeric region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robledo, R.; Melis, P.; Siniscalco, M.

    We used several microsatellite markers scattered along the X chromosome to search for linkage relationships in a large Sardinian pedigree segregating for nonspecific X-linked mental retardation (MRX). Markers DXS573 and AR, located at chromosomal subregions Xp11.4-p11.22 and Xq11.2-q12, respectively, were found to segregate in full concordance with the disease, leading to a LOD score of 4.21 at zero recombination value. Recombination with the disease was found with markers MAOB and DXS454 located at Xp11.4-p11.3 and Xq21.1-q22, respectively; accordingly, markers distal to Xp11.4 and Xq22 also segregated independently of the disease. These findings provide strong linkage evidence in favor of themore » localization of one MRX mutational site in the pericentromeric region of the human X chromosome, justifying the assignment of a new symbol (MRX26) to our pedigree. Finally, on the basis of the recombinational events observed in the Xq21-q22 region, we have been able to refine the assignment of marker DXS456 to Xq21.33-q22. 26 refs., 3 figs., 1 tab.« less

  7. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region.

    PubMed

    Vašut, Radim J; Vijverberg, Kitty; van Dijk, Peter J; de Jong, Hans

    2014-11-01

    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is

  8. Fluorescence in situ hybridization analyses of hematologic malignancies reveal frequent cytogenetically unrecognized 12p rearrangements.

    PubMed

    Andreasson, P; Johansson, B; Billström, R; Garwicz, S; Mitelman, F; Höglund, M

    1998-03-01

    Thirty-two hematologic malignancies--nine with cytogenetically identified 12p abnormalities and 23 with whole or partial losses of chromosome 12--were selected for fluorescence in situ hybridization (FISH) investigations of 12p. These analyses revealed structural 12p changes, such as translocations, deletions, insertions, inversions and amplification, in 20 cases. ETV6 rearrangements were detected in three acute leukemias. One acute undifferentiated leukemia had t(4;12)(q12;p13) as the sole anomaly. The second case, an acute myeloid leukemia (AML), displayed complex abnormalities involving, among others, chromosomes 9 and 12. The third case, also an AML, had an insertion of the distal part of ETV6 into chromosome arm 11q and into multiple ring chromosomes, which also contained chromosome 11 material, resulting in an amplification of a possible fusion gene. The fusion partners in these cases remain to be identified. Thirty-one additional breakpoints on 12p could be characterized in detail. The majority of these breaks were shown to result in interchromosomal rearrangements, possibly indicating the location of hitherto unrecognized genes of importance in the pathogenesis of hematologic malignancies. The FISH analyses disclosed terminal or interstitial 12p deletions in 18 cases. Seven myeloid malignancies showed deletions restricted to a region, including ETV6 and CDKN1B, which has been reported to be frequently lost in leukemias. In four cases, the deletions involved both these genes, whereas two AML displayed loss of CDKN1B but not ETV6, supporting previously reported findings indicating a region of deletion not including this gene. However, one myelodysplastic syndrome lacked one copy of ETV6 but not CDKN1B. Hence, we suggest a minimal region of deletion on 12p located between the ETV6 and CDKN1B genes.

  9. Genomic Anatomy of a Premier Major Histocompatibility Complex Paralogous Region on Chromosome 1q21–q22

    PubMed Central

    Shiina, Takashi; Ando, Asako; Suto, Yumiko; Kasai, Fumio; Shigenari, Atsuko; Takishima, Nobusada; Kikkawa, Eri; Iwata, Kyoko; Kuwano, Yuko; Kitamura, Yuka; Matsuzawa, Yumiko; Sano, Kazumi; Nogami, Masahiro; Kawata, Hisako; Li, Suyun; Fukuzumi, Yasuhito; Yamazaki, Masaaki; Tashiro, Hiroyuki; Tamiya, Gen; Kohda, Atsushi; Okumura, Katsuzumi; Ikemura, Toshimichi; Soeda, Eiichi; Mizuki, Nobuhisa; Kimura, Minoru; Bahram, Seiamak; Inoko, Hidetoshi

    2001-01-01

    Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under

  10. Genomewide Linkage Scan of 409 European-Ancestry and African American Families with Schizophrenia: Suggestive Evidence of Linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the Combined Sample

    PubMed Central

    Suarez, Brian K.; Duan, Jubao; Sanders, Alan R.; Hinrichs, Anthony L.; Jin, Carol H.; Hou, Cuiping; Buccola, Nancy G.; Hale, Nancy; Weilbaecher, Ann N.; Nertney, Deborah A.; Olincy, Ann; Green, Susan; Schaffer, Arthur W.; Smith, Christopher J.; Hannah, Dominique E.; Rice, John P.; Cox, Nancy J.; Martinez, Maria; Mowry, Bryan J.; Amin, Farooq; Silverman, Jeremy M.; Black, Donald W.; Byerley, William F.; Crowe, Raymond R.; Freedman, Robert; Cloninger, C. Robert; Levinson, Douglas F.; Gejman, Pablo V.

    2006-01-01

    We report the clinical characteristics of a schizophrenia sample of 409 pedigrees—263 of European ancestry (EA) and 146 of African American ancestry (AA)—together with the results of a genome scan (with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia (SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs (ASPs) (279 EA and 124 AA) and 100 all-possible half-sibling ASPs (15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 (empirical Z likelihood-ratio score [Zlr] threshold ⩾2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Zlr scores >2.0 in 8p were observed from 30.7 cM to 61.7 cM (Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Zlr of 3.25 (equivalent Kong-Cox LOD of 2.30) near D8S1771 (at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 (NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Zlr scores was observed for 5p14.1-q12.1, where the maximum Zlr increased from 2.77 initially to 3.80 after fine mapping in the EA families. PMID:16400611

  11. Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample.

    PubMed

    Suarez, Brian K; Duan, Jubao; Sanders, Alan R; Hinrichs, Anthony L; Jin, Carol H; Hou, Cuiping; Buccola, Nancy G; Hale, Nancy; Weilbaecher, Ann N; Nertney, Deborah A; Olincy, Ann; Green, Susan; Schaffer, Arthur W; Smith, Christopher J; Hannah, Dominique E; Rice, John P; Cox, Nancy J; Martinez, Maria; Mowry, Bryan J; Amin, Farooq; Silverman, Jeremy M; Black, Donald W; Byerley, William F; Crowe, Raymond R; Freedman, Robert; Cloninger, C Robert; Levinson, Douglas F; Gejman, Pablo V

    2006-02-01

    We report the clinical characteristics of a schizophrenia sample of 409 pedigrees--263 of European ancestry (EA) and 146 of African American ancestry (AA)--together with the results of a genome scan (with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia (SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs (ASPs) (279 EA and 124 AA) and 100 all-possible half-sibling ASPs (15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 (empirical Z likelihood-ratio score [Z(lr)] threshold >/=2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >2.0 in 8p were observed from 30.7 cM to 61.7 cM (Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 (equivalent Kong-Cox LOD of 2.30) near D8S1771 (at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 (NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.

  12. Validated context-dependent associations of coronary heart disease risk with genotype variation in the chromosome 9p21 region: the Atherosclerosis Risk in Communities study

    PubMed Central

    Lusk, Christine M.; Dyson, Greg; Clark, Andrew G.; Ballantyne, Christie M.; Frikke-Schmidt, Ruth; Tybjærg-Hansen, Anne; Boerwinkle, Eric

    2014-01-01

    Markers of the chromosome 9p21 region are regarded as the strongest and most reliably significant genome-wide association study (GWAS) signals for Coronary heart disease (CHD) risk; this was recently confirmed by the CARDIoGRAMplusC4D Consortium meta-analysis. However, while these associations are significant at the population level, they may not be clinically relevant predictors of risk for all individuals. We describe here the results of a study designed to address the question: What is the contribution of context defined by traditional risk factors in determining the utility of DNA sequence variations marking the 9p21 region for explaining variation in CHD risk? We analyzed a sample of 7,589 (3,869 females and 3,720 males) European American participants of the Atherosclerosis Risk in Communities study. We confirmed CHD-SNP genotype associations for two 9p21 region marker SNPs previously identified by the CARDIoGRAMplusC4D Consortium study, of which ARIC was a part. We then tested each marker SNP genotype effect on prediction of CHD within sub-groups of the ARIC sample defined by traditional CHD risk factors by applying a novel multi-model strategy, PRIM. We observed that the effects of SNP genotypes in the 9p21 region were strongest in a subgroup of hypertensives. We subsequently validated the effect of the region in an independent sample from the Copenhagen City Heart Study. Our study suggests that marker SNPs identified as predictors of CHD risk in large population based GWAS may have their greatest utility in explaining risk of disease in particular sub-groups characterized by biological and environmental effects measured by the traditional CHD risk factors. PMID:24889828

  13. Characterization of Potocki-Lupski Syndrome (dup(17)(p11.2p11.2)) and Delineation of a Dosage-Sensitive Critical Interval That Can Convey an Autism Phenotype

    PubMed Central

    Potocki, Lorraine; Bi, Weimin; Treadwell-Deering, Diane; Carvalho, Claudia M. B.; Eifert, Anna; Friedman, Ellen M.; Glaze, Daniel; Krull, Kevin; Lee, Jennifer A.; Lewis, Richard Alan; Mendoza-Londono, Roberto; Robbins-Furman, Patricia; Shaw, Chad; Shi, Xin; Weissenberger, George; Withers, Marjorie; Yatsenko, Svetlana A.; Zackai, Elaine H.; Stankiewicz, Pawel; Lupski, James R.

    2007-01-01

    The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described—the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (∼3.7 Mb), 13 subjects (∼37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability. PMID:17357070

  14. Rat chromosome 1: regional localization of seven genes (Slc9a3, Srd5a1, Esr, Tcp1, Grik5, Tnnt3, Jak2) and anchoring of the genetic linkage map to the cytogenetic map.

    PubMed

    Szpirer, C; Szpirer, J; Tissir, F; Stephanova, E; Vanvooren, P; Kurtz, T W; Iwai, N; Inagami, T; Pravenec, M; Kren, V; Klinga-Levan, K; Levan, G

    1997-09-01

    Seven genes were regionally localized on rat Chromosome (Chr) 1, from 1p11 to 1q42, and two of these genes were also included in a linkage map. This mapping work integrates the genetic linkage map and the cytogenetic map, and allows us to orient the linkage map with respect to the centromere, and to deduce the approximate position of the centromere in the linkage map. These mapping data also indicate that the Slc9a3 gene, encoding the Na+/H+ exchanger 3, is an unlikely candidate for the blood pressure loci assigned to rat Chr 1. These new localizations expand comparative mapping between rat Chr 1 and mouse or human chromosomes.

  15. An unusual haplotype structure on human chromosome 8p23 derived from the inversion polymorphism.

    PubMed

    Deng, Libin; Zhang, Yuezheng; Kang, Jian; Liu, Tao; Zhao, Hongbin; Gao, Yang; Li, Chaohua; Pan, Hao; Tang, Xiaoli; Wang, Dunmei; Niu, Tianhua; Yang, Huanming; Zeng, Changqing

    2008-10-01

    Chromosomal inversion is an important type of genomic variations involved in both evolution and disease pathogenesis. Here, we describe the refined genetic structure of a 3.8-Mb inversion polymorphism at chromosome 8p23. Using HapMap data of 1,073 SNPs generated from 209 unrelated samples from CEPH-Utah residents with ancestry from northern and western Europe (CEU); Yoruba in Ibadan, Nigeria (YRI); and Asian (ASN) samples, which were comprised of Han Chinese from Beijing, China (CHB) and Japanese from Tokyo, Japan (JPT)-we successfully deduced the inversion orientations of all their 418 haplotypes. In particular, distinct haplotype subgroups were identified based on principal component analysis (PCA). Such genetic substructures were consistent with clustering patterns based on neighbor-joining tree reconstruction, which revealed a total of four haplotype clades across all samples. Metaphase fluorescence in situ hybridization (FISH) in a subset of 10 HapMap samples verified their inversion orientations predicted by PCA or phylogenetic tree reconstruction. Positioning of the outgroup haplotype within one of YRI clades suggested that Human NCBI Build 36-inverted order is most likely the ancestral orientation. Furthermore, the population differentiation test and the relative extended haplotype homozygosity (REHH) analysis in this region discovered multiple selection signals, also in a population-specific manner. A positive selection signal was detected at XKR6 in the ASN population. These results revealed the correlation of inversion polymorphisms to population-specific genetic structures, and various selection patterns as possible mechanisms for the maintenance of a large chromosomal rearrangement at 8p23 region during evolution. In addition, our study also showed that haplotype-based clustering methods, such as PCA, can be applied in scanning for cryptic inversion polymorphisms at a genome-wide scale.

  16. FISH-Based Analysis of Clonally Derived CHO Cell Populations Reveals High Probability for Transgene Integration in a Terminal Region of Chromosome 1 (1q13).

    PubMed

    Li, Shengwei; Gao, Xiaoping; Peng, Rui; Zhang, Sheng; Fu, Wei; Zou, Fangdong

    A basic goal in the development of recombinant proteins is the generation of cell lines that express the desired protein stably over many generations. Here, we constructed engineered Chinese hamster ovary cell lines (CHO-S) with a pCHO-hVR1 vector that carried an extracellular domain of a VEGF receptor (VR) fusion gene. Forty-five clones with high hVR1 expression were selected for karyotype analysis. Using fluorescence in situ hybridization (FISH) and G-banding, we found that pCHO-hVR1 was integrated into three chromosomes, including chromosomes 1, Z3 and Z4. Four clones were selected to evaluate their productivity under non-fed, non-optimized shake flask conditions. The results showed that clones 1 and 2 with integration sites on chromosome 1 revealed high levels of hVR1 products (shake flask of approximately 800 mg/L), whereas clones 3 and 4 with integration sites on chromosomes Z3 or Z4 had lower levels of hVR1 products. Furthermore, clones 1 and 2 maintained their productivity stabilities over a continuous period of 80 generations, and clones 3 and 4 showed significant declines in their productivities in the presence of selection pressure. Finally, pCHO-hVR1 localized to the same region at chromosome 1q13, the telomere region of normal chromosome 1. In this study, these results demonstrate that the integration of exogenous hVR1 gene on chromosome 1, band q13, may create a high protein-producing CHO-S cell line, suggesting that chromosome 1q13 may contain a useful target site for the high expression of exogenous protein. This study shows that the integration into the target site of chromosome 1q13 may avoid the problems of random integration that cause gene silencing or also overcome position effects, facilitating exogenous gene expression in CHO-S cells.

  17. Mitotic chromosome condensation in vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in themore » localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  18. Targeted Segment Transfer from Rye Chromosome 2R to Wheat Chromosomes 2A, 2B, and 7B.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2017-01-01

    Increased chromosome instability was induced by a rye (Secale cereale L.) monosomic 2R chromosome into wheat (Triticum aestivum L.). Centromere breakage and telomere dysfunction result in high rates of chromosome aberrations, including breakages, fissions, fusions, deletions, and translocations. Plants with target traits were sequentially selected to produce a breeding population, from which 3 translocation lines with target traits have been selected. In these lines, wheat chromosomes 2A, 2B, and 7B recombined with segments of the rye chromosome arm 2RL. This was detected by FISH analysis using repeat sequences pSc119.2, pAs1 and genomic DNA of rye together as probes. The translocation chromosomes in these lines were named as 2ASMR, 2BSMR, and 7BSMR. The small segments that were transferred into wheat consisted of pSc119.2 repeats and other chromatin regions that conferred resistance to stripe rust and expressed target traits. These translocation lines were highly resistant to stripe rust, and expressed several typical traits that were associated with chromosome arm 2RL, which are better than those of its wheat parent, disomic addition, and substitution lines that show agronomic characteristics. The integration of molecular methods and conventional techniques to improve wheat breeding schemes are discussed. © 2017 S. Karger AG, Basel.

  19. Anterior pituitary failure (panhypopituitarism) with balanced chromosome translocation 46,XY,t(11;22)(q24;q13).

    PubMed

    Yang, C Y; Chou, C W; Chen, S Y; Cheng, H M

    2001-04-01

    Hypopituitarism is the clinical syndrome that results from failure of the anterior pituitary gland to produce its hormones. Hypopituitarism can result from: (1) intrinsic or primary pituitary disease; (2) intrinsic hypothalamic or secondary pituitary disease; or (3) extrinsic extrasellar or parasellar disease. The etiologies of primary hypopituitarism are miscellaneous. The dominant clinical picture of hypopituitarism in the adult is that of hypogonadism. Reports have associated hypopituitarism with anti-pituitary-antibodies, hereditary syndrome and chromosome defects, but hypopituitarism has rarely been associated with balanced chromosome translocation (11;22)(q24;q13). Here, we describe a case of anterior pituitary failure with balanced chromosome translocation. A 19-year-old Chinese teenager presented with failure of pubertal development and sexual infantilism. On examination, the patient had the classic appearance of hypogonadism. Endocrine studies and three combined pituitary function tests revealed panhypopituitarism. A chromosomal study revealed 46,XY,t(11;22)(q24;q13), a balanced translocation between 11q24 and 22q13. Chest films showed delayed fusion of bilateral humeral head epiphyses and bilateral acromions. Scrotal sonography revealed testes were small bilaterally. Magnetic resonance imaging (MRI) of the sella revealed pituitary dwarfism. The patient received 19 months replacement therapy, including steroids (prednisolone 5 mg each day), L-thyroxine (Eltroxin 100 ug each day), and testosterone enanthate 250 mg every two weeks. His height increased 4 cm with secondary sexual characteristics developed, and muscle power increased.

  20. Development of a quantitative pachytene chromosome map and its unification with somatic chromosome and linkage maps of rice (Oryza sativa L.).

    PubMed

    Ohmido, Nobuko; Iwata, Aiko; Kato, Seiji; Wako, Toshiyuki; Fukui, Kiichi

    2018-01-01

    A quantitative pachytene chromosome map of rice (Oryza sativa L.) was developed using imaging methods. The map depicts not only distribution patterns of chromomeres specific to pachytene chromosomes, but also the higher order information of chromosomal structures, such as heterochromatin (condensed regions), euchromatin (decondensed regions), the primary constrictions (centromeres), and the secondary constriction (nucleolar organizing regions, NOR). These features were image analyzed and quantitatively mapped onto the map by Chromosome Image Analyzing System ver. 4.0 (CHIAS IV). Correlation between H3K9me2, an epigenetic marker and formation and/or maintenance of heterochromatin, thus was, clearly visualized. Then the pachytene chromosome map was unified with the existing somatic chromosome and linkage maps by physically mapping common DNA markers among them, such as a rice A genome specific tandem repeat sequence (TrsA), 5S and 45S ribosomal RNA genes, five bacterial artificial chromosome (BAC) clones, four P1 bacteriophage artificial chromosome (PAC) clones using multicolor fluorescence in situ hybridization (FISH). Detailed comparison between the locations of the DNA probes on the pachytene chromosomes using multicolor FISH, and the linkage map enabled determination of the chromosome number and short/long arms of individual pachytene chromosomes using the chromosome number and arm assignment designated for the linkage map. As a result, the quantitative pachytene chromosome map was unified with two other major rice chromosome maps representing somatic prometaphase chromosomes and genetic linkages. In conclusion, the unification of the three rice maps serves as an indispensable basic information, not only for an in-depth comparison between genetic and chromosomal data, but also for practical breeding programs.

  1. Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division

    PubMed Central

    Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise

    2003-01-01

    Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680

  2. A patient with de-novo partial deletion of Xp (p11.4-pter) and partial duplication of 22q (q11.2-qter).

    PubMed

    Armour, Christine M; McGowan-Jordan, Jean; Lawrence, Sarah E; Bouchard, Amélie; Basik, Mark; Allanson, Judith E

    2008-01-01

    We report on a girl with partial deletion of Xp and partial duplication of 22q. Family studies demonstrate that both the patient's mother and her nonidentical twin sister carry the corresponding balanced translocation; 46,X,t(X;22)(p11.4;q11.2). This girl has developmental delay, microcephaly, mild dysmorphisms and hearing loss but otherwise shows few of the features described in individuals with duplications of the long arm of chromosome 22. She does manifest characteristics, such as short stature and biochemical evidence of ovarian failure, which are seen in partial or complete Xp deletions and Turner's syndrome.

  3. The neurological mouse mutations jittery and hesitant are allelic and map to the region of mouse chromosome 10 homologous to 19p13.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapfhamer, D.; Sufalko, D.; Warren, S.

    1996-08-01

    Jittery (ji) is a recessive mouse mutation on Chromosome 10 characterized by progressive ataxic gait, dystonic movements, spontaneus seizures, and death by dehydration/starvation before fertility. Recently, a viable neurological recessive mutation, hesitant, was discovered. It is characterized by hesitant, uncoordinated movements, exaggerated stepping of the hind limbs, and reduced fertility in males. In a complementation test and by genetic mapping we have shown here that hesitant and jittery are allelic. Using several large intersubspecific backcrosses and intercrosses we have genetically mapped ji near the marker Amh and microsatellite markers D10Mit7, D10Mit21, and D10Mit23. The linked region of mouse Chromosome 10more » is homologous to human 19p13.3, to which several human ataxia loci have recently been mapped. By excluding genes that map to human 21q22.3 (Pfkl) and 12q23 (Nfyb), we conclude that jittery is not likely to be a genetic mouse model for human Unverricht-Lundborg progressive myoclonus epilepsy (EPM1) on 21q22.3 nor for spinocerebellar ataxia II (SCA2) on 12q22-q24. The closely linked markers presented here will facilitate positional cloning of the ji gene. 31 refs., 2 figs.« less

  4. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks.

    PubMed

    Yang, Mu; Lewis, Freeman C; Sarvi, Michael S; Foley, Gillian M; Crawley, Jacqueline N

    2015-12-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/- mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/-, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/- mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey-Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/- mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/- failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/-. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/- mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. © 2015 Yang et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R.

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundariesmore » are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.« less

  6. Evidence of a novel quantitative-trait locus for obesity on chromosome 4p in Mexican Americans.

    PubMed

    Arya, Rector; Duggirala, Ravindranath; Jenkinson, Christopher P; Almasy, Laura; Blangero, John; O'Connell, Peter; Stern, Michael P

    2004-02-01

    Although several genomewide scans have identified quantitative-trait loci influencing several obesity-related traits in humans, genes influencing normal variation in obesity phenotypes have not yet been identified. We therefore performed a genome scan of body mass index (BMI) on Mexican Americans, a population prone to obesity and diabetes, using a variance-components linkage analysis to identify loci that influence BMI. We used phenotypic data from 430 individuals (26% diabetics, 59% females, mean age +/- SD = 43 +/- 17 years, mean BMI +/- SD = 30.0 +/- 6.7, mean leptin (ng/ml) +/- SD = 22.1 +/- 17.1) distributed across 27 low-income Mexican American pedigrees who participated in the San Antonio Family Diabetes Study (SAFDS) for whom a 10-15-cM map is available. In this genomewide search, after accounting for the covariate effects of age, sex, diabetes, and leptin, we identified a genetic region exhibiting the most highly significant evidence for linkage (LOD 4.5) with BMI on chromosome 4p (4p15.1) at 42 cM, near marker D4S2912. This linkage result has been confirmed in an independent linkage study of severe obesity in Utah pedigrees. Two strong positional candidates, the human peroxisome proliferator-activated receptor gamma coactivator 1 (PPARGC1) and cholecystokinin A receptor (CCKAR) with major roles in the development of obesity, are located in this region. In conclusion, we identified a major genetic locus influencing BMI on chromosome 4p in Mexican Americans.

  7. Gene order and recombination rate in homologous chromosome regions of the chicken and a passerine bird.

    PubMed

    Dawson, Deborah A; Akesson, Mikael; Burke, Terry; Pemberton, Josephine M; Slate, Jon; Hansson, Bengt

    2007-07-01

    Genome structure has been found to be highly conserved between distantly related birds and recent data for a limited part of the genome suggest that this is true also for the gene order (synteny) within chromosomes. Here, we confirm that synteny is maintained for large chromosomal regions in chicken and a passerine bird, the great reed warbler Acrocephalus arundinaceus, with few rearrangements, but in contrast show that the recombination-based linkage map distances differ substantially between these species. We assigned a chromosomal location based on sequence similarity to the chicken genome sequence to a set of microsatellite loci mapped in a pedigree of great reed warblers. We detected homologous loci on 14 different chromosomes corresponding to chicken chromosomes Gga1-5, 7-9, 13, 19, 20, 24, 25, and Z. It is known that 2 passerine macrochromosomes correspond to the chicken chromosome Gga1. Homology of 2 different great reed warbler linkage groups (LG13 and LG5) to Gga1 allowed us to locate the split to a position between 20.8 and 84.8 Mb on Gga1. Data from the 5 chromosomal regions (on Gga1, 2, 3, 5, and Z) with 3 or more homologous loci showed that synteny was conserved with the exception of 2 large previously unreported inversions on Gga1/LG5 and Gga2/LG3, respectively. Recombination data from the 9 chromosomal regions in which we identified 2 or more homologous loci (accounting for the inversions) showed that the linkage map distances in great reed warblers were only 6.3% and 13.3% of those in chickens for males and females, respectively. This is likely to reflect the true interspecific difference in recombination rate because our markers were not located in potentially low-recombining regions: several linkage groups covered a substantial part of their corresponding chicken chromosomes and were not restricted to centromeres. We conclude that recombination rates may differ strongly between bird species with highly conserved genome structure and synteny and

  8. GABRA2 Alcohol Dependence Risk Allele is Associated with Reduced Expression of Chromosome 4p12 GABAA Subunit Genes in Human Neural Cultures.

    PubMed

    Lieberman, Richard; Kranzler, Henry R; Joshi, Pujan; Shin, Dong-Guk; Covault, Jonathan

    2015-09-01

    Genetic variation in a region of chromosome 4p12 that includes the GABAA subunit gene GABRA2 has been reproducibly associated with alcohol dependence (AD). However, the molecular mechanisms underlying the association are unknown. This study examined correlates of in vitro gene expression of the AD-associated GABRA2 rs279858*C-allele in human neural cells using an induced pluripotent stem cell (iPSC) model system. We examined mRNA expression of chromosome 4p12 GABAA subunit genes (GABRG1, GABRA2, GABRA4, and GABRB1) in 36 human neural cell lines differentiated from iPSCs using quantitative polymerase chain reaction and next-generation RNA sequencing. mRNA expression in adult human brain was examined using the BrainCloud and BRAINEAC data sets. We found significantly lower levels of GABRA2 mRNA in neural cell cultures derived from rs279858*C-allele carriers. Levels of GABRA2 RNA were correlated with those of the other 3 chromosome 4p12 GABAA genes, but not other neural genes. Cluster analysis based on the relative RNA levels of the 4 chromosome 4p12 GABAA genes identified 2 distinct clusters of cell lines, a low-expression cluster associated with rs279858*C-allele carriers and a high-expression cluster enriched for the rs279858*T/T genotype. In contrast, there was no association of genotype with chromosome 4p12 GABAA gene expression in postmortem adult cortex in either the BrainCloud or BRAINEAC data sets. AD-associated variation in GABRA2 is associated with differential expression of the entire cluster of GABAA subunit genes on chromosome 4p12 in human iPSC-derived neural cell cultures. The absence of a parallel effect in postmortem human adult brain samples suggests that AD-associated genotype effects on GABAA expression, although not present in mature cortex, could have effects on regulation of the chromosome 4p12 GABAA cluster during neural development. Copyright © 2015 by the Research Society on Alcoholism.

  9. Familial mental retardation in a family with an inherited chromosome rearrangement

    PubMed Central

    Chudley, A. E.; Bauder, F.; Ray, M.; McAlpine, Phyllis J.; Pena, S. D. J.; Hamerton, J. L.

    1974-01-01

    A family of three generations has been described with an insertional type of chromosome rearrangement involving chromosomes 11 and 18[46,XX or XY, ins(11;18)(p15;q11q21)] detected by G-banding using a trypsin digestion method. Four members of this family with clinical features of 18q− have inherited the der(18) from their father and are thus deficient for (18)(q11q21). Three other family members have inherited the der(11) and thus have a duplication of the same segment [(18)(q11q21)]. Genetic marker studies on this family, show no significant segregation of any of the markers studied with either the der(11) or der(18). Eight family members had the PepA8PepA1 genotype and four of these were carrying the der(18), indicating that the PepA locus which had been previously assigned to chromosome 18, does not lie in the segment q11→q21. Images PMID:4140909

  10. Characterization of an Autism-Associated Segmental Maternal Heterodisomy of the Chromosome 15q11-13 Region

    ERIC Educational Resources Information Center

    Kwasnicka-Crawford, Dorota A.; Roberts, Wendy; Scherer, Stephen W.

    2007-01-01

    Cytogenetic abnormalities in the Prader-Willi/Angelman syndrome (PWS/AS) critical region have been described in individuals with autism. Maternal duplications and linkage disequilibrium in families with autism suggest the existence of a susceptibility locus at 15q11-q13. Here, we describe a 6-year-old girl diagnosed with autism, developmental…

  11. Regional gene mapping using mixed radiation hybrids and reverse chromosome painting.

    PubMed

    Lin, J Y; Bedford, J S

    1997-11-01

    We describe a new approach for low-resolution physical mapping using pooled DNA probe from mixed (non-clonal) populations of human-CHO cell hybrids and reverse chromosome painting. This mapping method is based on a process in which the human chromosome fragments bearing a complementing gene were selectively retained in a large non-clonal population of CHO-human hybrid cells during a series of 12- to 15-Gy gamma irradiations each followed by continuous growth selection. The location of the gene could then be identified by reverse chromosome painting on normal human metaphase spreads using biotinylated DNA from this population of "enriched" hybrid cells. We tested the validity of this method by correctly mapping the complementing human HPRT gene, whose location is well established. We then demonstrated the method's usefulness by mapping the chromosome location of a human gene which complemented the defect responsible for the hypersensitivity to ionizing radiation in CHO irs-20 cells. This method represents an efficient alternative to conventional concordance analysis in somatic cell hybrids where detailed chromosome analysis of numerous hybrid clones is necessary. Using this approach, it is possible to localize a gene for which there is no prior sequence or linkage information to a subchromosomal region, thus facilitating association with known mapping landmarks (e.g. RFLP, YAC or STS contigs) for higher-resolution mapping.

  12. Small Supernumerary Marker Chromosome May Provide Information on Dosage-insensitive Pericentric Regions in Human.

    PubMed

    Al-Rikabi, Ahmed B Hamid; Pekova, Sona; Fan, Xioabo; Jančušková, Tereza; Liehr, Thomas

    2018-04-01

    Cytogenetically visible chromosomal imbalances in humans are deleterious and adverse in the majority of the cases. However, healthy persons living with chromosomal imbalances in the range of several megabasepairs (Mbps) in size, like carriers of small Supernumerary Marker Chromosomes (sSMCs) exist. The identification of healthy sSMC carriers with euchromatic centromere-near (ECN) imbalances led to the following proposal: ECN-regions do not contain any dosage sensitive genes. Due to own previous work, dosage-insensitive pericentric ECN-regions were already determined with an accuracy of 0.3 and 5 Mbp. Based on this data we established 43 new pericentromeric probe sets spanning about 3-5 Mbp of each euchromatic human chromosome arm starting from the known insensitive regions towards distal. Such so called pericentromeric-critical region fluorescence in situ hybridization (PeCR-FISH) probe sets were applied exemplarily and successful here in 15 sSMC cases as available from the Else Kröner-Fresenius-sSMC-cellbank . Most of the involved sSMC breakpoints could be characterized as a higher resolution than before. An unexpected result was that in 5/15 cases cryptic mosaicism was characterized. The latter is also to be considered to have potentially an influence on the clinical outcome in these so-called discontinuous sSMCs. Overall, the suitability of PeCR-FISH to characterize sSMCs was proven; the potential of this probe set to further delineate sizes of dosage insensitive pericentric regions is obvious but dependent on suited cases. Furthermore, discontinuous sSMCs can be identified by this approach and this new subtype of sSMC needs to be studied in more detail in future.

  13. Clinical utility of a DNA probe to 17p11.2 in screening of patients with a peripheral neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blancato, J.; Precht, K.; Meck, J.

    1994-09-01

    We assessed the usefulness of in situ hybridization with a DNA probe to the area of chromosome 17 at p11.2 as a diagnostic tool for screening for Charcot Marte Tooth 1A (CMT 1A). In situ hybridization with a probe to 17p11.2 was performed on fixed lymphocytes from the following groups of individuals: (1) normal controls; (2) patients evoking a strong clinical suspicion of CMT 1A; and (3) 3 families with an apparent autosomal dominant peripheral neuropathy of unknown diagnoses. Group 2 patients had evidence of demyelination as defined by nerve conduction of less that 50% of the normal mean ormore » terminal latency greater than 50% of the normal mean in conduction studies. Analysis of interphase cells hybridized with a cosmid DNA probe to 17p11.2 requires inclusion of a normal control with each trial and masked observer. Due to the size of the target DNA and the nature of the centromeric heterochromatin, the scoring of this probe is more subjective than centromere probes. For example, if the two 17 chromosomes are decondensed as in interphase, two tandem signals may be visualized as one. Results from duplication positive patients demonstrate a large proportion of cells with two closely aligned, but separate, signals with an additional single signal. Normal results demonstrate a majority of cells with two separate signals representing both normal homologues. None of the 3 families with questionable diagnosis revealed a duplication at the region, reinforcing our belief that a clinical diagnosis is the most discriminating tool available for diagnosis of CMT 1A. We concur with Boylan that molecular analysis for CMT 1A is useful for establishing a diagnosis of CMT 1A, but is not a primary differential diagnostic test. The yield in screening patients without physiologic evidence of demyelination is likely to be low. We further find that the use of in situ hybridization is a simple method of performing the duplication analysis.« less

  14. Schizophrenia and chromosomal deletions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized.more » These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.« less

  15. Evidence of linkage and association on chromosome 20 for late-onset Alzheimer disease.

    PubMed

    Goddard, Katrina A B; Olson, Jane M; Payami, Haydeh; van der Voet, Monique; Kuivaniemi, Helena; Tromp, Gerard

    2004-06-01

    Recently, we reported evidence of linkage on chromosome 20 for Alzheimer disease (AD) using a novel statistical approach to incorporate covariates (e.g., age, ApoE genotype) into the analysis. These results suggest that very elderly subjects (>85 years), and individuals who carry an epsilon2 allele at the ApoE locus are more likely to be linked to this candidate region. The region on chromosome 20 includes a strong candidate gene, cystatin C (CST3), which has previously been associated with AD in case-control studies. We investigated these findings further by genotyping additional markers to narrow the candidate region, and to identify evidence of linkage disequilibrium as additional support for a susceptibility locus on chromosome 20. We selected 43 elderly sibships (89 subjects) from the NIMH AD Genetics Initiative based on current age older than 84 years, and identified 129 unrelated control subjects who were older than 84 years from the Oregon Brain Aging Study to conduct linkage and association studies in this region. Fourteen additional markers were evaluated, including 4 markers located within or near CST3. We narrowed the candidate region on chromosome 20 to an 11.8-cM region between markers D20S174 and D20S471, which includes the CST3 candidate gene. In addition, we observed evidence of association for markers located near the CST3 candidate gene, with P values between 0.002 and 0.08 for two-locus haplotypes. These results support the presence of a susceptibility locus for AD in the vicinity of CST3 for very elderly subjects with AD.

  16. Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Zepeda, E.A.; Sarafi, M.N.; Luster, A.D.

    1997-05-01

    Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5{prime} of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescence in situ hybridization analysis localized eotaxin to human chromosome 17, in the region q21.1-q21.2, and the human gene name SCYA11 was assigned. We also present the 5{prime} flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters.more » In particular, the presence of elements such as NF-{Kappa}B, interferon-{gamma} response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids. 17 refs., 4 figs., 1 tab.« less

  17. Localization of an Ataxia-Telangiectasia Gene to an −500-kb Interval on Chromosome 11q23.1: Linkage Analysis of 176 Families by an International Consortium

    PubMed Central

    Lange, Ethan; Borresen, Anna-Lise; Chen, Xiaoguang; Chessa, Luciana; Chiplunkar, Sujata; Concannon, Patrick; Dandekar, Sugandha; Gerken, Steven; Lange, Kenneth; Liang, Teresa; McConville, Carmel; Polakow, Jeff; Porras, Oscar; Rotman, Galit; Sanal, Ozden; Sheikhavandi, Sepideh; Shiloh, Yosef; Sobel, Eric; Taylor, Malcolm; Telatar, Milhan; Teraoka, Sharon; Tolun, Aslihan; Udar, Nitin; Uhrhammer, Nancy; Vanagaite, Lina; Wang, Zhijun; Wapelhorst, Beth; Wright, Jocyndra; Yang, Huan-Ming; Yang, Lan; Ziv, Yael; Gatti, Richard A.

    1995-01-01

    We describe a 20-point linkage analysis map of chromosome 11q22-23 that is based on genotyping 249 families (59 CEPH and 190 A-T). Monte Carlo linkage analyses of 176 ataxia-telangiectasia (A-T) families localizes the major A-T locus to the region between S1819(A4) and S1818(A2). When seven nonlinking families were excluded from subsequent analyses, a 2-lod support interval of ∼500 kb was identified between S1819(A4) and S1294. No recombinants were observed between A-T and markers S384, B7, S535, or S1294. Only 17 of the international consortium families have been assigned to complementation groups. The available evidence favors either a cluster of A-T genes on chromosome 11 or intragenic defects in a single gene. PMID:7611279

  18. Plasmids with a Chromosome-Like Role in Rhizobia ▿ †

    PubMed Central

    Landeta, Cristina; Dávalos, Araceli; Cevallos, Miguel Ángel; Geiger, Otto; Brom, Susana; Romero, David

    2011-01-01

    Replicon architecture in bacteria is commonly comprised of one indispensable chromosome and several dispensable plasmids. This view has been enriched by the discovery of additional chromosomes, identified mainly by localization of rRNA and/or tRNA genes, and also by experimental demonstration of their requirement for cell growth. The genome of Rhizobium etli CFN42 is constituted by one chromosome and six large plasmids, ranging in size from 184 to 642 kb. Five of the six plasmids are dispensable for cell viability, but plasmid p42e is unusually stable. One possibility to explain this stability would be that genes on p42e carry out essential functions, thus making it a candidate for a secondary chromosome. To ascertain this, we made an in-depth functional analysis of p42e, employing bioinformatic tools, insertional mutagenesis, and programmed deletions. Nearly 11% of the genes in p42e participate in primary metabolism, involving biosynthetic functions (cobalamin, cardiolipin, cytochrome o, NAD, and thiamine), degradation (asparagine and melibiose), and septum formation (minCDE). Synteny analysis and incompatibility studies revealed highly stable replicons equivalent to p42e in content and gene order in other Rhizobium species. A systematic deletion analysis of p42e allowed the identification of two genes (RHE_PE00001 and RHE_PE00024), encoding, respectively, a hypothetical protein with a probable winged helix-turn-helix motif and a probable two-component sensor histidine kinase/response regulator hybrid protein, which are essential for growth in rich medium. These data support the proposal that p42e and its homologous replicons (pA, pRL11, pRLG202, and pR132502) merit the status of secondary chromosomes. PMID:21217003

  19. A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize.

    PubMed

    Theuri, J; Phelps-Durr, T; Mathews, S; Birchler, J

    2005-01-01

    Bacterial Artificial Chromosomes (BACs) derived from the B chromosome, based on homology with the B specific sequence, were subcloned and sequenced. Analysis of DNA sequence data indicated the presence of 23 common retroelements, as well as novel sequences of B chromosome origin. Generally, where the same retrotransposon type was observed in both A and B chromosomes, there were more copies per unit of sequence in the B centromeric region (the major site of B repeat) than in the A centromere, except for Huck-1. Based on previous estimates of the age of the major burst of transposition into the maize genome, the oldest retrotransposons (Ji-6 and Tekay, approximately 5.0 and 5.2 million years ago, respectively) were found in the B centromere region only, while the next two oldest (Huck-1 and Opie-1) were found in both the A and B sequences. Phylogenetic analysis of Opie retroelements from both A and B centromeres indicated that some of the B Opie centromeric sequences share a more recent common ancestor with A Opie retroelements than they do with other B Opie centromeric sequences. These results imply that the supernumerary maize B chromosome has coexisted with the A chromosomes during that period of transposition. They also support the hypothesis that the B chromosome had its origins from A chromosome elements, or that alternative origins, such as being donated to the maize genome in a wide species cross, preceded six million years ago, because the spectrum of retrotransposons in the two chromosomes is quite similar.

  20. Linkage of osteoporosis to chromosome 20p12 and association to BMP2.

    PubMed

    Styrkarsdottir, Unnur; Cazier, Jean-Baptiste; Kong, Augustine; Rolfsson, Ottar; Larsen, Helene; Bjarnadottir, Emma; Johannsdottir, Vala D; Sigurdardottir, Margret S; Bagger, Yu; Christiansen, Claus; Reynisdottir, Inga; Grant, Struan F A; Jonasson, Kristjan; Frigge, Michael L; Gulcher, Jeffrey R; Sigurdsson, Gunnar; Stefansson, Kari

    2003-12-01

    Osteoporotic fractures are a major cause of morbidity and mortality in ageing populations. Osteoporosis, defined as low bone mineral density (BMD) and associated fractures, have significant genetic components that are largely unknown. Linkage analysis in a large number of extended osteoporosis families in Iceland, using a phenotype that combines osteoporotic fractures and BMD measurements, showed linkage to Chromosome 20p12.3 (multipoint allele-sharing LOD, 5.10; p value, 6.3 x 10(-7)), results that are statistically significant after adjusting for the number of phenotypes tested and the genome-wide search. A follow-up association analysis using closely spaced polymorphic markers was performed. Three variants in the bone morphogenetic protein 2 (BMP2) gene, a missense polymorphism and two anonymous single nucleotide polymorphism haplotypes, were determined to be associated with osteoporosis in the Icelandic patients. The association is seen with many definitions of an osteoporotic phenotype, including osteoporotic fractures as well as low BMD, both before and after menopause. A replication study with a Danish cohort of postmenopausal women was conducted to confirm the contribution of the three identified variants. In conclusion, we find that a region on the short arm of Chromosome 20 contains a gene or genes that appear to be a major risk factor for osteoporosis and osteoporotic fractures, and our evidence supports the view that BMP2 is at least one of these genes.

  1. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.

    PubMed

    Pouillot, Flavie; Fayolle, Corinne; Carniel, Elisabeth

    2008-10-01

    The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) and four open reading frames (ORFs; orf1 to orf4) that were conserved in Y. pseudotuberculosis and absent from Y. pestis. Their conservation in Y. pseudotuberculosis suggests a positive selective pressure and a role during the life cycle of this species. Attempts to delete two ORFs (orf3 and orf4) from the chromosome of strain IP32953 were unsuccessful, indicating that they are essential for its viability. The seven remaining loci were individually deleted from the IP32953 chromosome, and the ability of each mutant to grow in vitro and to kill mice upon intragastric infection was evaluated. Four loci (orf1, R2, R4, and R5) were not required for optimal growth or virulence of Y. pseudotuberculosis. In contrast, orf2, encoding a putative pseudouridylate synthase involved in RNA stability, was necessary for the optimal growth of IP32953 at 37 degrees C in a chemically defined medium (M63S). Deletion of R1, a region predicted to encode the methionine salvage pathway, altered the mutant pathogenicity, suggesting that the availability of free methionine is severely restricted in vivo. R3, a region composed mostly of genes of unknown functions, was necessary for both optimal growth of Y. pseudotuberculosis at 37 degrees C in M63S and for virulence. Therefore, despite their loss in Y. pestis, five of the nine Y. pseudotuberculosis-specific chromosomal loci studied play a role in the survival, growth, or virulence of this species.

  2. Partial trisomy 3p and partial monosomy 11q associated with atrial septal defect, cleft palate, and developmental delay: a case report.

    PubMed

    Tan, E-C; Lim, E; Cham, B; Knight, L; Ng, I

    2011-01-01

    Unbalanced translocation involving both chromosome 3p duplication and 11q deletion in the same patient is extremely rare; only 1 live-born case was reported previously. This karyotype was also detected during prenatal diagnosis of 2 different pregnancies in a Taiwanese family which were both terminated. In all 3 cases, only standard karyotyping was done to detect the abnormal karyotypes. Here, we report a 4-year-old boy with cleft palate, atrial septal defect, and hypotonia with gross and fine motor delay. Oligonucleotide-based array comparative genomic hybridization showed copy number gain from 3pter to 3p24.2 (approximately 24.5 Mb) and copy number loss from 11q25 to 11qter (approximately 5.8 Mb). This de novo unbalanced translocation event involving a terminal 3p duplication and a terminal 11q deletion provides candidate genes for further investigation of dosage effect leading to the patient's multiple phenotypic abnormalities. Genotype-phenotype correlation is difficult to make in this case due to the large number of genes involved. However, the description of such cases together with precise gene-level mapping of chromosomal breakpoints will add to further refinement of candidate genes to be investigated for terminal imbalances in 3p and 11q when more similar cases are reported. Copyright © 2011 S. Karger AG, Basel.

  3. Association of pericentric inversion of chromosome 9 and infertility in romanian population.

    PubMed

    Dana, Mierla; Stoian, Veronica

    2012-01-01

    One of the most common structural balanced chromosome rearrangements is pericentric inversion of chromosome 9; inv(9)(p11q12), which is consider to be the variant of normal karyotype and has been found in normal population. Although it seems not to correlate with abnormal phenotypes, there have been many controversial reports indicating that it may lead to abnormal clinical conditions such as infertility and recurrent abortions. The incidence is found to be about 1% - 3% in the general population. The aim of this study was to re-evaluate the clinical impact of inv(9)(p11q12)/(p11q13) in infertility. We investigated the karyotypes of 900 infertile couples (1800 individuals) admitted in our hospital for cytogenetic analysis. The control group consists of 1116 fetuses investigated by amniocentesis. This group was considered to be a sample of the fertile population, as the fetus being karyotyped is the result of a spontaneous pregnancy. Fetal karyotyping was made according to the standard indications for prenatal diagnosis (abnormal maternal serum screening results). Chromosomes from cultured peripheral blood lymphocytes and amniotic fluid were analyzed using Giemsa Trypsin-Giemsa (GTG) banding. The results of the two groups were compared. 1800 infertile people were submitted for cytogenetic investigation. In the control group 97.73% had normal karyotype and 2.27% showed inversion of chromosome 9, while in the studied group 96.24% had normal karyotype and 3.76% showed inversion of chromosome 9. The incidence of inversion 9 in both male and female patients is not significantly higher comparing with normal population (p = 0.343, p< 0.05). Because a considerable proportion of patients with reproductive dysfunction had various cytogenetic abnormalities, the chromosomal analysis should be considered as a diagnostic tool in the evaluation of reproductive dysfunction (infertility in men due to spermatogenic disturbances and in recurrent spontaneous abortion in females).

  4. Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association.

    PubMed

    Elmore, James R; Obmann, Melissa A; Kuivaniemi, Helena; Tromp, Gerard; Gerhard, Glenn S; Franklin, David P; Boddy, Amy M; Carey, David J

    2009-06-01

    The goal of this project was to identify genetic variants associated with abdominal aortic aneurysms (AAAs). A genome wide association study was carried out using pooled DNA samples from 123 AAA cases and 112 controls matched for age, gender, and smoking history using Affymetrix 500K single nucleotide polymorphism (SNP) arrays (Affymetrix, Inc, Santa Clara, Calif). The difference in mean allele frequency between cases and controls was calculated for each SNP and used to identify candidate genomic regions. Association of candidate SNPs with AAA was confirmed by individual TaqMan genotype assays in a total of 2096 cases and controls that included an independent replication sample set. A genome wide association study of AAA cases and controls identified a candidate AAA-associated haplotype on chromosome 3p12.3. By individual genotype analysis, four SNPs in this region were significantly associated with AAA in cases and controls from the original study population. One SNP in this region (rs7635818) was genotyped in a total of 502 cases and 736 controls from the original study population (P = .017) and 448 cases and 410 controls from an independent replication sample (P = .013; combined P value = .0028; combined odds ratio [OR] = 1.33). An even stronger association with AAA was observed in a subset of smokers (391 cases, 241 controls, P = .00041, OR = 1.80), which represent the highest risk group for AAA. The AAA-associated haplotype is located approximately 200 kbp upstream of the CNTN3 gene transcription start site. This study identifies a region on chromosome 3 that is significantly associated with AAA in 2 distinct study populations.

  5. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A.; Silva, Kathleen A.; Kennedy, Victoria E.; Cario, Clinton L; Richardson, Matthew A.; Chase, Thomas H.; Schofield, Paul N.; Uitto, Jouni; Sundberg, John P.

    2017-01-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641

  6. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases.

    PubMed

    Knösel, Thomas; Petersen, Simone; Schwabe, Holger; Schlüns, Karsten; Stein, Ulrike; Schlag, Peter Michael; Dietel, Manfred; Petersen, Iver

    2002-02-01

    Comparative genomic hybridization (CGH) was used to screen 54 advanced colon carcinomas. i.e., 24 primary tumors and 30 metastases, for chromosomal alterations. Using a sensitive statistical method for the determination of DNA imbalances and histograms for analysis of the incidence of changes, we identified the DNA over-representation of chromosome 20q as the most common alteration being present in 100% of cases. High incidence deletions were observed on 18q21-18q23 (96%), 4q27-4q28 (96%), 4p14 (87%), 5q21 (81%), 1p21-1p22 (72%), 21q21 (74%), 6q16 (72%), 3p12 (66%), 8p24-8p21 (66%), 9p21 (64%), 11q22 (64%), and 14q13-14q21 (64%). Further frequent over-representation was found on 7q12-7q11.2 (75%), 16p11-16p12 (70%), 19p13 (70%), 9q34 (67%), 19q13 (67%), 13q34 (64%), 13q13 (64%), 17q21 (59%), 22q11 (61%), 8q24 (57%), and 1q21 (57%). Pronounced DNA gains and losses being defined as regions in which the ratio profiles exceeded the values of 1.5 and 0.5, respectively, frequently colocalized with peaks of incidence curve. The use of difference histograms for the comparison of tumor subgroups as well as case-by-case histogram for the analysis of 15 paired tumor samples identified several of the above alterations as relevant for tumor progression and metastasis formation. The study identified additional loci and delineates more precisely those that have been previously reported. For comparative purposes, we have made our primary data (ratio profiles, clinicopathological parameters, histograms) available at the interactive web site http://amba.charite.de/cgh, where the incidence of changes can be determined at individual loci and additional parameters can be applied for the analysis of our CGH results.

  7. Haplotype frequency distribution for 7 microsatellites in chromosome 8 and 11 in relation to the metabolic syndrome in four ethnic groups: Tehran Lipid and Glucose Study.

    PubMed

    Daneshpour, Maryam Sadat; Hosseinzadeh, Nima; Zarkesh, Maryam; Azizi, Fereidoun

    2012-03-01

    Different variants of haplotype frequencies may lead to various frequencies of the same variants in individuals with drug resistance and disease susceptibility at the population level. In this study, the haplotype frequencies of 4 STR loci including the D8S1132, D8S1779, D8S514 and D8S1743, and 3 STR loci including D11S1304, D11S1998 and D11S934 were investigated in 563 individuals of four Iranian ethnic groups in the capital city of Iran, Tehran. One hundred thirty subjects had the metabolic syndrome. Haplotype frequencies of all markers were calculated. There were significant differences in the haplotype frequencies in short and long alleles between the metabolic affected subjects and controls. In addition, haplotype frequencies were significant in the four ethnic groups in both chromosomes 8 and 11. Our findings show a relation between the short allele of D8S1743 in all related haplotype frequencies of subjects with metabolic syndrome. These findings may require more studies of some candidate genes, including the lipoprotein lipase gene, in this chromosomal region. Copyright © 2011. Published by Elsevier B.V.

  8. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  9. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.

  10. Evaluation of association between common genetic variants on chromosome 9p21 and coronary artery disease in Turkish population.

    PubMed

    Çakmak, Hüseyin Altuğ; Bayoğlu, Burcu; Durmaz, Eser; Can, Günay; Karadağ, Bilgehan; Cengiz, Müjgan; Vural, Vural Ali; Yüksel, Hüsniye

    2015-03-01

    Coronary artery disease (CAD), which develops from complex interactions between genetic and enviromental factors, is a leading cause of death worldwide. Based on genome-wide association studies (GWAS), the chromosomal region 9p21 has been identified as the most relevant locus presenting a strong association with CAD in different populations. The aim of the present study was to investigate the association of two SNPs on chromosome 9p21 on susceptibility to CAD and the effect of these SNPs along with cardiovascular risk factors on the severity of CAD in the Turkish population. This study had an observational case-control design. We genotyped 460 subjects, aged 30-65 years, to investigate the association of 2 SNPs (rs1333049, rs2383207) on chromosome 9p21 and CAD risk in Turkish population. Real-time polymerase chain reaction (RT-PCR) was used to analyze the 2 SNPs in CAD patients and healthy controls. The genotype and allelic variations of these SNPs with the severity of CAD was also assessed using semi-quantitative methods such as the Gensini score. Student's t test and multiple regression analysis were used for statistical analysis. The SNPs rs1333049 and rs2383207 were found to be associated with CAD with an adjusted OR of 1.81 (95% Cl 1.05-3.12) and 2.12 (95% CI 1.19-4.10) respectively. After adjustment of CAD risk factors such as smoking, family history of CAD and diabetes, the homozygous AA genotype for rs2383207 increased the CAD risk with an OR 3.69. Also a very strong association was found between rs1333049 and rs2383207 and Gensini scores representing the severity of CAD (p<0.001). The rs2383207 and rs1333049 SNPs on 9p21 chromosome were significantly associated with the risk and severity of CAD in the Turkish population.

  11. Physical mapping of the torsion dystonia region of human chromosome 9q34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozelius, L.J.; Hewett, J.; Shalish, C.

    1994-09-01

    Torsion dystonia is a syndrome characterized by loss of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. The DYT1 gene is responsible for a subtype of torsion dystonia in which onset of symptoms tends to occur in a limb at an early age (mean 13 years) and to progress to a generalized state. Expression of the disease gene follows an autosomal dominant mode of inheritance with reduced penetrance. We initially mapped this gene to human chromosome 9q34 and have now defined its location to a < 1 cM region near the ASS locus based on historic recombination eventsmore » around a founder mutation in the Ashkenazic Jewish population. Using the CEPH YAC library and a chromosome 9 flow-sorted YAC library, we have generated a YAC contig spanning about 500 kb of this region. These YACs are being used to identify cosmids by direct hybridization to chromosome 9-specific cosmid libraries. Cosmids are being aligned by restriction digest patterns and by hybridization with oligonucleotide repeat probes. In addition, the cosmids are being {open_quotes}trapped{close_quotes} by exon amplification and these exons used to screen cDNA libraries. Thus far we have identified several candidate transcripts in this region.« less

  12. Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans.

    PubMed

    Kammerer, Candace M; Schneider, Jennifer L; Cole, Shelley A; Hixson, James E; Samollow, Paul B; O'Connell, Jeffrey R; Perez, Reina; Dyer, Thomas D; Almasy, Laura; Blangero, John; Bauer, Richard L; Mitchell, Braxton D

    2003-12-01

    We performed a genome scan using BMD data of the forearm and hip on 664 individuals in 29 Mexican-American families. We obtained evidence for QTL on chromosome 4p, affecting forearm BMD overall, and on chromosomes 2p and 13q, affecting hip BMD in men. The San Antonio Family Osteoporosis Study (SAFOS) was designed to identify genes and environmental factors that influence bone mineral density (BMD) using data from large Mexican-American families. We performed a genome-wide linkage analysis using 416 highly polymorphic microsatellite markers spaced approximately 9.5 cM apart to locate and identify quantitative trait loci (QTL) that affect BMD of the forearm and hip. Multipoint variance components linkage analyses were done using data on all 664 subjects, as well as two subgroups of 259 men and 261 premenopausal women, from 29 families for which genotypic and phenotypic data were available. We obtained significant evidence for a QTL affecting forearm (radius midpoint) BMD in men and women combined on chromosome 4p near D4S2639 (maximum LOD = 4.33, genomic p = 0.006) and suggestive evidence for a QTL on chromosome 12q near locus D12S2070 (maximum conditional LOD = 2.35). We found suggestive evidence for a QTL influencing trochanter BMD on chromosome 6 (maximum LOD = 2.27), but no evidence for QTL affecting the femoral neck in men and women combined. In men, we obtained evidence for QTL affecting neck and trochanter BMD on chromosomes 2p near D2S1780 (maximum LOD = 3.98, genomic p = 0.013) and 13q near D13S788 (maximum LOD = 3.46, genomic p = 0.039), respectively. We found no evidence for QTL affecting forearm or hip BMD in premenopausal women. These results provide strong evidence that a QTL on chromosome 4p affects radius BMD in Mexican-American men and women, as well as evidence that QTL on chromosomes 2p and 13q affect hip BMD in men. Our results are consistent with some reports in humans and mice. J Bone Miner Res 2003;18:2245-2252

  13. Fine mapping of the chromosome 10q11-q21 linkage region in Alzheimer's disease cases and controls.

    PubMed

    Fallin, Margaret Daniele; Szymanski, Megan; Wang, Ruihua; Gherman, Adrian; Bassett, Susan S; Avramopoulos, Dimitrios

    2010-07-01

    We have previously reported strong linkage on chromosome 10q in pedigrees transmitting Alzheimer's disease through the mother, overlapping with many significant linkage reports including the largest reported study. Here, we report the most comprehensive fine mapping of this region to date. In a sample of 638 late-onset Alzheimer's disease (LOAD) cases and controls including 104 maternal LOAD cases, we genotyped 3,884 single nucleotide polymorphisms (SNPs) covering 15.2 Mb. We then used imputations and publicly available data to generate an extended dataset including 4,329 SNPs for 1,209 AD cases and 839 controls in the same region. Further, we screened eight genes in this region for rare alleles in 283 individuals by nucleotide sequencing, and we tested for possible monoallelic expression as it might underlie our maternal parent of origin linkage. We excluded the possibility of multiple rare coding risk variants for these genes and monoallelic expression when we could test for it. One SNP, rs10824310 in the PRKG1 gene, showed study-wide significant association without a parent of origin effect, but the effect size estimate is not of sufficient magnitude to explain the linkage, and no association is observed in an independent genome-wide association studies (GWAS) report. Further, no causative variants were identified though sequencing. Analysis of cases with maternal disease origin pointed to a few regions of interest that included the genes PRKG1 and PCDH15 and an intergenic interval of 200 Kb. It is likely that non-transcribed rare variants or other mechanisms involving these genomic regions underlie the observed linkage and parent of origin effect. Acquiring additional support and clarifying the mechanisms of such involvement is important for AD and other complex disorder genetics research.

  14. Screening of copy number variants in the 22q11.2 region of congenital heart disease patients from the São Miguel Island, Azores, revealed the second patient with a triplication.

    PubMed

    Pires, Renato; Pires, Luís M; Vaz, Sara O; Maciel, Paula; Anjos, Rui; Moniz, Raquel; Branco, Claudia C; Cabral, Rita; Carreira, Isabel M; Mota-Vieira, Luisa

    2014-11-07

    The rearrangements in the 22q11.2 chromosomal region, responsible for the 22q11.2 deletion and microduplication syndromes, are frequently associated with congenital heart disease (CHD). The present work aimed to identify the genetic basis of CHD in 87 patients from the São Miguel Island, Azores, through the detection of copy number variants (CNVs) in the 22q11.2 region. These structural variants were searched using multiplex ligation-dependent probe amplification (MLPA). In patients with CNVs, we additionally performed fluorescent in situ hybridization (FISH) for the assessment of the exact number of 22q11.2 copies among each chromosome, and array comparative genomic hybridization (array-CGH) for the determination of the exact length of CNVs. We found that four patients (4.6%; A to D) carried CNVs. Patients A and D, both affected with a ventricular septal defect, carried a de novo 2.5 Mb deletion of the 22q11.2 region, which was probably originated by inter-chromosomal (inter-chromatid) non-allelic homologous recombination (NAHR) events in the regions containing low-copy repeats (LCRs). Patient C, with an atrial septal defect, carried a de novo 2.5 Mb duplication of 22q11.2 region, which could have been probably generated during gametogenesis by NAHR or by unequal crossing-over; additionally, this patient presented a benign 288 Kb duplication, which included the TOP3B gene inherited from her healthy mother. Finally, patient B showed a 3 Mb triplication associated with dysmorphic facial features, cognitive deficit and heart defects, a clinical feature not reported in the only case described so far in the literature. The evaluation of patient B's parents revealed a 2.5 Mb duplication in her father, suggesting a paternal inheritance with an extra copy. This report allowed the identification of rare deletion and microduplication syndromes in Azorean CHD patients. Moreover, we report the second patient with a 22q11.2 triplication, and we suggest that patients with

  15. Evidence of a Novel Quantitative-Trait Locus for Obesity on Chromosome 4p in Mexican Americans

    PubMed Central

    Arya, Rector; Duggirala, Ravindranath; Jenkinson, Christopher P.; Almasy, Laura; Blangero, John; O’Connell, Peter; Stern, Michael P.

    2004-01-01

    Although several genomewide scans have identified quantitative-trait loci influencing several obesity-related traits in humans, genes influencing normal variation in obesity phenotypes have not yet been identified. We therefore performed a genome scan of body mass index (BMI) on Mexican Americans, a population prone to obesity and diabetes, using a variance-components linkage analysis to identify loci that influence BMI. We used phenotypic data from 430 individuals (26% diabetics, 59% females, mean age ± SD = 43 ± 17 years, mean BMI ± SD = 30.0 ± 6.7, mean leptin (ng/ml) ± SD = 22.1 ± 17.1) distributed across 27 low-income Mexican American pedigrees who participated in the San Antonio Family Diabetes Study (SAFDS) for whom a 10–15-cM map is available. In this genomewide search, after accounting for the covariate effects of age, sex, diabetes, and leptin, we identified a genetic region exhibiting the most highly significant evidence for linkage (LOD 4.5) with BMI on chromosome 4p (4p15.1) at 42 cM, near marker D4S2912. This linkage result has been confirmed in an independent linkage study of severe obesity in Utah pedigrees. Two strong positional candidates, the human peroxisome proliferator-activated receptor gamma coactivator 1 (PPARGC1) and cholecystokinin A receptor (CCKAR) with major roles in the development of obesity, are located in this region. In conclusion, we identified a major genetic locus influencing BMI on chromosome 4p in Mexican Americans. PMID:14740316

  16. Map refinement of locus RP13 to human chromosome 17p13.3 in a second family with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojis, T.L.; Heinzmann, C.; Ngo, J.T.

    1996-02-01

    In order to elucidate the genetic basis of autosomal dominant retinitis pigmentosa (adRP) in a large eight-generation family (UCLA-RP09) of British descent, we assessed linkage between the UCLA-RP09 adRP gene and numerous genetic loci, including eight adRP candidate genes, five anonymous adRP-linked DNA loci, and 20 phenotypic markers. Linkage to the UCLA-RP09 disease gene was excluded for all eight candidate genes analyzed, including rhodopsin (RP4) and peripherin/RDS (RP7), for the four adRP loci RP1, RP9, RP10 and RP11, as well as for 17 phenotypic markers. The anonymous DNA marker locus D17S938, linked to adRP locus RP13 on chromosome 17p13.1, yieldedmore » a suggestive but not statistically significant positive lod score. Linkage was confirmed between the UCLA-RP09 adRP gene and markers distal to D17S938 in the chromosomal region 17p13.3. A reanalysis of the original RP13 data from a South African adRP family of British descent, in conjunction with our UCLA-RP09 data, suggests that only one adRP locus exists on 17p but that it maps to a more telomeric position, at band 17p13.3, than previously reported. Confirmation of the involvement of RP13 in two presumably unrelated adRP families, both of British descent, suggests that this locus is a distinct adRP gene in a proportion of British, and possibly other, adRP families. 39 refs., 4 figs., 3 tabs.« less

  17. Linkage of Usher syndrome type I gene (USH1B) to the long arm of chromosome 11.

    PubMed

    Kimberling, W J; Möller, C G; Davenport, S; Priluck, I A; Beighton, P H; Greenberg, J; Reardon, W; Weston, M D; Kenyon, J B; Grunkemeyer, J A

    1992-12-01

    Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.

  18. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    PubMed Central

    2012-01-01

    Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1

  19. Characterization of the OmyY1 region on the rainbow trout Y chromosome

    USGS Publications Warehouse

    Phillips, Ruth B.; DeKoning, Jenefer J.; Brunelli, Joseph P.; Faber-Hammond, Joshua J.; Hansen, John D.; Christensen, Kris A.; Renn, Suzy C.P.; Thorgaard, Gary H.

    2013-01-01

    We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescence in situ hybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.

  20. Isolation and characterization of two overlapping cosmid clones from the 4q35 region, near the facioscapulohumeral muscular dystrophy locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deidda, G.; Grisanti, P.; Vigneti, E.

    1994-09-01

    The gene for facioscapulohumeral muscular dystrophy (FSHD) has been localized by linkage analysis to the 4q35 region. The most telomeric p13E-11 prove has been shown to detect 4q35 DNA rearrangements in both sporadic and familial cases of the disease. With the aim of constructing a detailed physical map of the 4q35 region and searching for the mutant gene, we used p13E-11 probe to isolate cosmid clones from a human genomic library in a pCos-EMBL 2 vector. Two positive clones were isolated, clones 3 and 5, which partially overlap and carry human genomic inserts of 42 and 45 kb, respectively. Themore » cosmids share a common region containing the p13E-11 region and a stretch of KpnI units consisting of 3.2 kb tandemly repeated sequences (about 10). The restriction maps were constructed using the following enzymes: Bam HI, BgIII, Eco RI, EcoRV, KpnI and Sfi I. Clone 3 extends 4 kb upstream of C5 and stops within the Kpn repeats. Clone 5 extends 4 kb downstream from the Kpn repeats and it presents an additional EcoRI site. Clone 5 contains a stretch of Kpn sequences of nearly 32 kb, corresponding to 10 Kpn repeats; clone 3 contains a stretch of 29 kb corresponding to 9 Kpn repeats, as determined by PFGE analysis of partial digestion of the clones. Clone 5 seems to contain the entire Eco RI region prone to rearrangements in FSHD patients. From clone 5 several subclones were obtained, from the Kpn region and from the region spanning from the last Kpn repeat to the cloning site. No single copy sequences were detected. Subclones from the 3{prime} end region contain beta-satellite or Sau3A-like sequences. In situ hybridization with the whole C5 cosmid shows hybridization signals at the tip of chromosome 4 (4q35) and chromosome 10 (10q26), in the pericentromeric region of chromosome 1 (1q12) and in the p12 region of the acrocentric chromosomes (chr. 21, 22, 13, 14, 15).« less

  1. Genetic locus on chromosome 6p for multicystic renal dysplasia, pelvi-ureteral junction stenosis, and vesicoureteral reflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devriendt, K.; Fryns, J.P.

    1995-11-20

    Robson et al. suggest that renal agenesis, multicystic renal dysplasia (MRD), and uretero-pelvic junction (PUJ) stenosis are pathogenetically related. They proposed a vascular disruption as the cause, with the variable severity of the disorder related to the timing of the abnormal blood supply to the ureteric bud. Alternatively, there exists convincing evidence of a genetic cause transmitted as an autosomal dominant disorder with variable expression, and with a candidate gene localized on chromosome arm 6p. Combinations of these urological malformations occur in the same individual or in different relatives in the same family. In several families with PUJ-stenosis, linkage withmore » the HLA-locus on 6p has been demonstrated. Furthermore, we recently described a patient with a de novo reciprocal translocation involving the same region on 6p in a patient with bilateral multicystic renal dysplasia. Most disease-associated reciprocal translocations appear to have a breakpoint within a candidate gene: therefore, it is reasonable to hypothesize that the breakpoint on 6p in this patient resides within a gene causing MRD. This suggests that mutations in the same gene may lead either to PUJ-stenosis or, when the stenosis is complete, to MRD. A translocation is expected to result in a complete disruption of the gene, and this could explain the severe clinical expression of bilateral MRD. Less severe mutations in the same gene, associated with a partially conserved gene function, could lead to PUJ-stenosis. 11 refs.« less

  2. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  3. Partial trisomy of chromosome 22 resulting from a supernumerary marker chromosome 22 in a child with features of cat eye syndrome.

    PubMed

    Bélien, Valérie; Gérard-Blanluet, Marion; Serero, Stéphane; Le Dû, Nathalie; Baumann, Clarisse; Jacquemont, Marie-Line; Dupont, Céline; Krabchi, Kada; Drunat, Séverine; Elbez, Annie; Janaud, Jean-Claude; Benzacken, Brigitte; Verloes, Alain; Tabet, Anne-Claude; Aboura, Azzedine

    2008-07-15

    Small supernumerary marker chromosomes are present in about 0.05% of the human population. In approximately 28% of persons with these markers (excluding the approximately 60% derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. We report on a 3-month-old girl with intrauterine growth retardation, craniofacial features, hypotonia, partial coloboma of iris and total anomalous pulmonary venous return. Cytogenetic analysis showed the presence of a supernumerary marker chromosome, identified by fluorescence in situ hybridization as part of chromosome 22, and conferring a proximal partial trisomy 22q22.21, not encompassing the DiGeorge critical region (RP11-154H4 + , TBX1-). This observation adds new information relevant to cat eye syndrome and partial trisomy of 22q. 2008 Wiley-Liss, Inc.

  4. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1.

    PubMed

    Benomar, A; Krols, L; Stevanin, G; Cancel, G; LeGuern, E; David, G; Ouhabi, H; Martin, J J; Dürr, A; Zaim, A

    1995-05-01

    Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy (ADCA type II) is a rare neurodegenerative disorder with marked anticipation. We have mapped the ADCA type II locus to chromosome 3 by linkage analysis in a genome-wide search and found no evidence for genetic heterogeneity among four families of different geographic origins. Haplotype reconstruction initially restricted the locus to the 33 cM interval flanked by D3S1300 and D3S1276 located at 3p12-p21.1. Combined multipoint analysis, using the Zmax-1 method, further reduced the candidate interval to an 8 cM region around D3S1285. Our results show that ADCA type II is a genetically homogenous disorder, independent of the heterogeneous group of type I cerebellar ataxias.

  5. Delimitation of duplicated segments and identification of their parental origin in two partial chromosome 3p duplications.

    PubMed

    Antonini, Sylvie; Kim, Chong A; Sugayama, Sofia M; Vianna-Morgante, Angela M

    2002-11-22

    Two chromosome 3 short arm duplications identified through G-banding were further investigated using fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) of microsatellite markers, aiming at mapping breakpoints and disclosing mechanisms of origin of these chromosome aberrations. Patient 1 was found to be a mosaic: a 3p12 --> 3p21 duplication was observed in most of his cells, and a normal cell line occurred with a frequency of about 3% in blood. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the short-arm duplication. Using FISH of short-arm sequences, the YAC 961_h_3 was shown to contain the proximal breakpoint (3p12.1 or 3p12.2), and the distal breakpoint was located between the YACs 729_c_3 and 806_h_2, which are adjacent in the WC 3.10 contig (3p21.1). In Patient 2, G-banding indicated a 3p21 --> 3p24 duplication, without mosaicism. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the duplication of short-arm sequences. FISH of chromosome 3 sequences showed that the YAC 749_a_7 spanned the proximal breakpoint (3p21.33). The distal breakpoint mapped to the interval between YACs 932_b_6 (3p24.3) and 909_b_6 (3p25). In both cases, microsatellite genotyping pointed to a rearrangement between paternal sister chromatids. Copyright 2002 Wiley-Liss, Inc.

  6. Two Siblings with Alternate Unbalanced Recombinants Derived from a Large Cryptic Maternal Pericentric Inversion of Chromosome 20

    PubMed Central

    DeScipio, Cheryl; Morrissette, Jennifer J.D.; Conlin, Laura K.; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B.; Krantz, Ian D.

    2009-01-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologues, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially-available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, ~900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, ~1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e. between RP11-93B14 and proximal BAC RP11-765G16). PMID:20101690

  7. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    PubMed

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16). Copyright 2010 Wiley-Liss, Inc.

  8. The short arm deletion syndrome of chromosome 4 (4p- syndrome).

    PubMed

    Zellweger, H; Bardach, J; Bordwell, J; Williams, K

    1975-01-01

    Partial deletion of the short arm of chromosome 4 (4p-) represents another (rare) cause of cleft lip and cleft palate. Further characteristic manifestations of the syndrome (also called Wolf or Wolf-Hirschhorn syndrome) are growth failure, microcephaly, prominent glabella, hypertelorism, beaked nose, poorly differentiated and low set ears, cardiac and renal malformation and hypospadias. Life expectancy is often shortened. The 4p- syndrome has many features in common with another deletion syndrome, the cri-du-chat syndrome, and also with the Smith-Lemli-Opitz syndrome. The latter is a hereditary condition with normal karyotype. The cri-du-chat syndrome is characterized by a peculiar high-pitched, mewing cry and can be differentiated from the Wolf syndrome by the different staining characteristics (banding) of chromosomes 4 and 5.

  9. Exceptional complex chromosomal rearrangements in three generations.

    PubMed

    Kartapradja, Hannie; Marzuki, Nanis Sacharina; Pertile, Mark D; Francis, David; Suciati, Lita Putri; Anggaratri, Helena Woro; Ambarwati, Debby Dwi; Idris, Firman Prathama; Lesmana, Harry; Trimarsanto, Hidayat; Paramayuda, Chrysantine; Harahap, Alida Roswita

    2015-01-01

    We report an exceptional complex chromosomal rearrangement (CCR) found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband's mother, which was confirmed using the whole chromosome painting (WCP) FISH. High resolution whole genome microarray analysis of DNA from the proband's mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother's and grandmother's CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  10. Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation

    PubMed Central

    Hart, T; Hart, P; Michalec, M; Zhang, Y; Marazita, M; Cooper, M; Yassin, O; Nusier, M; Walker, S

    2000-01-01

    Prepubertal periodontitis (PPP) is a rare and rapidly progressive disease of young children that results in destruction of the periodontal support of the primary dentition. The condition may occur as part of a recognised syndrome or may occur as an isolated finding. Both autosomal dominant and recessive forms of Mendelian transmission have been reported for PPP. We report a consanguineous Jordanian family with four members affected by PPP in two nuclear sibships. The parents of the affected subjects are first cousins. We have localised a gene of major effect for PPP in this kindred (Zmax=3.55 for D11S901 at θ=0.00) to a 14 cM genetic interval on chromosome 11q14 flanked by D11S916 and D11S1367. This PPP candidate interval overlaps the region of chromosome 11q14 that contains the cathepsin C gene responsible for Papillon-Lefèvre and Haim-Munk syndromes. Sequence analysis of the cathepsin C gene from PPP affected subjects from this Jordanian family indicated that all were homozygous for a missense mutation (1040A→G) that changes a tyrosine to a cysteine. All four parents were heterozygous carriers of this Tyr347Cys cathepsin C mutation. None of the family members who were heterozygous carriers for this mutation showed any clinical findings of PPP. None of the 50 controls tested were found to have this Tyr347Cys mutation. This is the first reported gene mutation for non-syndromic periodontitis and shows that non-syndromic PPP is an allelic variant of the type IV palmoplantar ectodermal dysplasias.


Keywords: prepubertal periodontitis; periodontal disease; cathepsin C; linkage PMID:10662808

  11. A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16.

    PubMed

    Asherson, P; Zhou, K; Anney, R J L; Franke, B; Buitelaar, J; Ebstein, R; Gill, M; Altink, M; Arnold, R; Boer, F; Brookes, K; Buschgens, C; Butler, L; Cambell, D; Chen, W; Christiansen, H; Feldman, L; Fleischman, K; Fliers, E; Howe-Forbes, R; Goldfarb, A; Heise, A; Gabriëls, I; Johansson, L; Lubetzki, I; Marco, R; Medad, S; Minderaa, R; Mulas, F; Müller, U; Mulligan, A; Neale, B; Rijsdijk, F; Rabin, K; Rommelse, N; Sethna, V; Sorohan, J; Uebel, H; Psychogiou, L; Weeks, A; Barrett, R; Xu, X; Banaschewski, T; Sonuga-Barke, E; Eisenberg, J; Manor, I; Miranda, A; Oades, R D; Roeyers, H; Rothenberger, A; Sergeant, J; Steinhausen, H-C; Taylor, E; Thompson, M; Faraone, S V

    2008-05-01

    As part of the International Multi-centre ADHD Genetics project we completed an affected sibling pair study of 142 narrowly defined Diagnostic and Statistical Manual of Mental Disorders, fourth edition combined type attention deficit hyperactivity disorder (ADHD) proband-sibling pairs. No linkage was observed on the most established ADHD-linked genomic regions of 5p and 17p. We found suggestive linkage signals on chromosomes 9 and 16, respectively, with the highest multipoint nonparametric linkage signal on chromosome 16q23 at 99 cM (log of the odds, LOD=3.1) overlapping data published from the previous UCLA (University of California, Los Angeles) (LOD>1, approximately 95 cM) and Dutch (LOD>1, approximately 100 cM) studies. The second highest peak in this study was on chromosome 9q22 at 90 cM (LOD=2.13); both the previous UCLA and German studies also found some evidence of linkage at almost the same location (UCLA LOD=1.45 at 93 cM; German LOD=0.68 at 100 cM). The overlap of these two main peaks with previous findings suggests that loci linked to ADHD may lie within these regions. Meta-analysis or reanalysis of the raw data of all the available ADHD linkage scan data may help to clarify whether these represent true linked loci.

  12. Male infertility associated with de novo pericentric inversion of chromosome 1.

    PubMed

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  13. The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6p21.1-p12: Implications for genetic counseling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guay-Woodford, L.M.; Hopkins, S.D.; Waldo, F.B.

    Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzedmore » the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by hisopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene. 22 refs., 4 figs., 1 tab.« less

  14. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population

    PubMed Central

    McInnes, L. Alison; Service, Susan K.; Reus, Victor I.; Barnes, Glenn; Charlat, Olga; Jawahar, Satya; Lewitzky, Steve; Yang, Qing; Duong, Quyen; Spesny, Mitzi; Araya, Carmen; Araya, Xinia; Gallegos, Alvaro; Meza, Luis; Molina, Julio; Ramirez, Rolando; Mendez, Roxana; Silva, Sandra; Fournier, Eduardo; Batki, Steven L.; Mathews, Carol A.; Neylan, Thomas; Glatt, Charles E.; Escamilla, Michael A.; Luo, David; Gajiwala, Paresh; Song, Terry; Crook, Stephen; Nguyen, Jasmine B.; Roche, Erin; Meyer, Joanne M.; Leon, Pedro; Sandkuijl, Lodewijk A.; Freimer, Nelson B.; Chen, Hong

    2001-01-01

    We have searched for genes predisposing to bipolar disorder (BP) by studying individuals with the most extreme form of the affected phenotype, BP-I, ascertained from the genetically isolated population of the Central Valley of Costa Rica (CVCR). The results of a previous linkage analysis on two extended CVCR BP-I pedigrees, CR001 and CR004, and of linkage disequilibrium (LD) analyses of a CVCR population sample of BP-I patients implicated a candidate region on 18p11.3. We further investigated this region by creating a physical map and developing 4 new microsatellite and 26 single-nucleotide polymorphism markers for typing in the pedigree and population samples. We report the results of fine-scale association analyses in the population sample, as well as evaluation of haplotypes in pedigree CR001. Our results suggest a candidate region containing six genes but also highlight the complexities of LD mapping of common disorders. PMID:11572994

  15. Mapping of a gene for long QT syndrome to chromosome 4q25-27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schott, J.J.; Charpentier, F.; Peltier, S.

    1995-11-01

    Long QT syndrome (LQTS) is a heterogeneous inherited disorder causing syncope and sudden death from ventricular arrhythmias. A first locus for this disorder was mapped to chromosome 11p15.5. However, locus heterogeneity has been demonstrated in several families, and two other loci have recently been located on chromosomes 7q35-36 and 3p21-24. We used linkage analysis to map the locus in a 65-member family in which LQTS was associated with more marked sinus bradycardia than usual, leading to sinus node dysfunction. Linkage to chromosome 11p15.5, 7q35-36, or 3p21-24 was excluded. Positive linkage was obtained for markers located on chromosome 4q25-27. A maximalmore » LOD score of 7.05 was found for marker D4S402. The identification of a fourth locus for LQTS confirms its genetic heterogeneity. Locus 4q25-27 is associated with a peculiar phenotype within the LQTS entity. 42 refs., 4 figs., 3 tabs.« less

  16. Genomic Organization of the Murine Miller–Dieker/Lissencephaly Region: Conservation of Linkage with the Human Region

    PubMed Central

    Hirotsune, Shinji; Pack, Svetlana D.; Chong, Samuel S.; Robbins, Christiane M.; Pavan, William J.; Ledbetter, David H.; Wynshaw-Boris, Anthony

    1997-01-01

    Several human syndromes are associated with haploinsufficiency of chromosomal regions secondary to microdeletions. Isolated lissencephaly sequence (ILS), a human developmental disease characterized by a smooth cerebral surface (classical lissencephaly) and microscopic evidence of incomplete neuronal migration, is often associated with small deletions or translocations at chromosome 17p13.3. Miller–Dieker syndrome (MDS) is associated with larger deletions of 17p13.3 and consists of classical lissencephaly with additional phenotypes including facial abnormalities. We have isolated the murine homologs of three genes located inside and outside the MDS region: Lis1, Mnt/Rox, and 14-3-3ε. These genes are all located on mouse chromosome 11B2, as determined by metaphase FISH, and the relative order and approximate gene distance was determined by interphase FISH analysis. The transcriptional orientation and intergenic distance of Lis1 and Mnt/Rox were ascertained by fragmentation analysis of a mouse yeast artificial chromosome containing both genes. To determine the distance and orientation of 14-3-3ε with respect to Lis1 and Mnt/Rox, we introduced a super-rare cutter site (VDE) that is unique in the mouse genome into 14-3-3ε by gene targeting. Using the introduced VDE site, the orientation of this gene was determined by pulsed field gel electrophoresis and Southern blot analysis. Our results demonstrate that the MDS region is conserved between human and mouse. This conservation of linkage suggests that the mouse can be used to model microdeletions that occur in ILS and MDS. PMID:9199935

  17. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dracopoli, N.C.; Harnett, P.; Bale, S.J.

    The gene for familial malignant melanoma and its precursor lesion, the dysplastic nevus, has been assigned to a region of the distal short arm of chromosome 1, which is frequently involved in karyotypic abnormalities in melanoma cells. The authors have examined loci on chromosome 1p for loss-of-constitutional heterozygosity in 35 melanomas and 21 melanoma cell lines to analyze the role of these abnormalities in melanocyte transformation. Loss-of-heterozygosity at loci on chromosome 1p was identified in 15/35 (43%) melanomas and 11/21 (52%) melanoma cell lines. Analysis of multiple metastases derived from the same patient and of melanoma and lymphoblastoid samples frommore » a family with hereditary melanoma showed that the loss-of-heterozygosity at loci on distal 1p is a late event in tumor progression, rather than the second mutation that would occur if melanoma were due to a cellular recessive mechanism. Comparisons with neuroblastoma and multiple endocrine neoplasia (MEN2) suggest that the frequent 1p loss-of-heterozygosity in these malignancies is a common late event of neuroectodermal tumor progression.« less

  18. A cytological-physical map of 22q11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, E.A.; Rizzu, P.; Gaddini, L.

    Our laboratory is involved in the construction of a cytological-physical map of 22q11 and isolation of expressed sequences from the region involved in DiGeorge syndrome (DGS) and Velo-Cardio-Facial syndrome (VCFS). One of the goals of the mapping is an understanding of the molecular mechanisms which generate the 22q11 microdeletions observed with high frequency in DGS and VCFS. Our of over 60 deleted patients studied in our laboratory, all but one were deleted for two loci approximately 1-2 Mb apart. There is evidence from patients with balanced and unbalanced translocations that deletion of the whole region is not necessary for determinationmore » of the clinical phenotype. Therefore, it is possible that deletion breakpoints occur as a consequence of structural characteristics of the DNA that predispose to rearrangements. A striking characteristic of the 22q11 region is the abundance of low copy repeat sequences. It is reasonable to think that recombination between these repeats may lead to microdeletions. However, a direct demonstration of such mechanism is not available yet. The presence of repeats makes standard physical mapping techniques based on hybridization or STS mapping often difficult to interpret. For example, we have found clones positive for the same STS that are located in different positions within 22q11. For this reason we have used high resolution cytological mapping as a supporting technique for map validation. We present the current status map which includes known polymorphic and non-polymorphic loci, newly isolated clones and chromosomal deletion breakpoints. The map extends from the loci D22S9/D22S24 to TOP1P2. Extended chromatin hybridization experiments visually demonstrate the presence of at least two repeat islands flanking (or at) the region where chromosomal breakpoints of the commonly deleted region occur.« less

  19. The cld mutation: narrowing the critical chromosomal region and selecting candidate genes.

    PubMed

    Péterfy, Miklós; Mao, Hui Z; Doolittle, Mark H

    2006-10-01

    Combined lipase deficiency (cld) is a recessive, lethal mutation specific to the tw73 haplotype on mouse Chromosome 17. While the cld mutation results in lipase proteins that are inactive, aggregated, and retained in the endoplasmic reticulum (ER), it maps separately from the lipase structural genes. We have narrowed the gene critical region by about 50% using the tw18 haplotype for deletion mapping and a recombinant chromosome used originally to map cld with respect to the phenotypic marker tf. The region now extends from 22 to 25.6 Mbp on the wild-type chromosome, currently containing 149 genes and 50 expressed sequence tags (ESTs). To identify the affected gene, we have selected candidates based on their known role in associated biological processes, cellular components, and molecular functions that best fit with the predicted function of the cld gene. A secondary approach was based on differences in mRNA levels between mutant (cld/cld) and unaffected (+/cld) cells. Using both approaches, we have identified seven functional candidates with an ER localization and/or an involvement in protein maturation and folding that could explain the lipase deficiency, and six expression candidates that exhibit large differences in mRNA levels between mutant and unaffected cells. Significantly, two genes were found to be candidates with regard to both function and expression, thus emerging as the strongest candidates for cld. We discuss the implications of our mapping results and our selection of candidates with respect to other genes, deletions, and mutations occurring in the cld critical region.

  20. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  1. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization.

    PubMed

    Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.

  2. Refinement of the cone-rod retinal dystrophy locus on chromosome 19q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, C.Y.; Evans, K.; Bhattacharya, S.S.

    1994-11-01

    Cone-rod dystrophy (CRD) is a severe example of an inherited retinal dystrophy: ophthalmic diseases that as a group constitute the commonest causes of blindness in children in the developed world and account for a significant proportion of visual handicap in adults. Two case reports suggested loci for CRD-causing genes on chromosomes 18q and chromosome 17q. Recently, we reported the results of a total genome search that localized an autosomal dominant form of CRD to chromosome 19q in the region 19q13.1-q13.2. Since then, using data from a short tandem repeat-polymorphism linkage map of chromosome 19 and recently developed microsatellite markers inmore » this region, we have been able to further refine the localization of the chromosome 19q CRD-causing gene. Seven new microsatellite markers were used to genotype 34 affected subjects, 22 unaffected subjects, and 15 spouses. Two-point, multipoint, and FASTMAP analyses were performed. 11 refs., 1 tab.« less

  3. Linkage of autosomal recessive lamellar ichthyosis to chromosome 14q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.J.; Compton, J.G.; Bale, S.J.

    The authors have mapped the locus for lamellar ichthyosis (LI), an autosomal recessive skin disease characterized by abnormal cornification of the epidermis. Analysis using both inbred and outbred families manifesting severe LI showed complete linkage to several markers within a 9.3-cM region on chromosome 14q11. Affected individuals in inbred families were also found to have striking homozygosity for markers in this region. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families. Several transcribed genes have been mapped to the chromosome 14 region containing the LI gene. The transglutaminase 1 gene (TGM1), which encodes one of themore » enzymes responsible for cross-linking epidermal proteins during formation of the stratum corneum, maps to this interval. The TGM1 locus was completely linked to LI (Z = 9.11), suggesting that TGM1 is a good candidate for further investigation of this disorder. The genes for four serine proteases also map to this region but are expressed only in hematopoietic or mast cells, making them less likely candidates.« less

  4. Trisomy 4p and deletion 4p- in a family having translocation, t(4p-; 12p+).

    PubMed

    Mortimer, J G; Chewings, W; Miethke, P; Smith, G F

    1978-01-01

    Chromosome studies on a newborn infant with the clinical features of 4p-syndrome revealed a 46,XY,4p-karyotype with deletion of bands distal to 4p14. Investigation of the family revealed normal chromosomes in the mother and a balanced translocation rcp(4;12) (p14;p13) in the father, the paternal grandfather and an uncle. A severely retarded and malformed aunt is a partial trismoy for the short arms of chromosome 4, with the unbalanced karyotype 45,XX,12p+. It appears that monosomy of bands 4p15 and 4p16 leads to the full clinical features of 4p-syndrome, while trisomy of this region causes disabilities consistent with the rather more variable 4p trisomy syndrome. From currently reported cases, a summary is presented of the results of pregnancies of both male and female translocation carriers.

  5. BPDE induced lymphocytic chromosome 3p deletions may predict renal cell carcinoma risk.

    PubMed

    Zhu, Yimin; Horikawa, Yohei; Yang, Hushan; Wood, Christopher G; Habuchi, Tomonori; Wu, Xifeng

    2008-06-01

    Cigarette smoking is a risk factor for renal cell carcinoma. BPDE (benzo[alpha]pyrene diol epoxide) (Midwest Research Institute, Kansas City, Missouri), which is a major constituent of cigarette smoke, induces 3p aberrations that are associated with susceptibility to other smoking associated cancers. Because chromosome 3p deletions are known to be the most frequent genetic alterations in renal cell carcinoma, we tested whether 3p sensitivity to BPDE predicts susceptibility to renal cell carcinoma. Cultured peripheral blood lymphocytic cells from 170 cases and 135 controls were treated with 2 microM BPDE for 24 hours and assessed for 3p deletions by fluorescence in situ hybridization using probes directed to 3p25.2, 3p21.3, 3p14.2 and 3p12.2. A probe for 3q13 served as a control. One thousand lymphocyte interphases were scored per sample. At each locus BPDE induced 3p deletions were significantly more common in cases than in controls. No significant differences between cases and controls were observed for deletions in 3q13. Using the median value in controls as the cutoff point for BPDE sensitivity we found that the OR in subjects with high BPDE sensitivity at 3p25.2, 3p21.3, 3p14.2 and 3p12.2 was 2.02 (95% CI 1.18-3.46), 2.28 (95% CI 1.33-3.92), 1.84 (95% CI 1.07-3.16) and 1.97 (95% CI 1.15-3.37), respectively. There were dose dependent relationships between the number of deletions at each locus and the risk of renal cell carcinoma. This study demonstrates that chromosome 3p may be a specific molecular target of cigarette carcinogens and BPDE sensitivity in chromosome 3p may reflect the genetic susceptibility of an individual to renal cell carcinoma.

  6. Prediction of a rare chromosomal aberration simultaneously with next generation sequencing-based comprehensive chromosome screening in human preimplantation embryos for recurrent pregnancy loss.

    PubMed

    Lee, Yi-Xuan; Chen, Chien-Wen; Lin, Yi-Hui; Tzeng, Chii-Ruey; Chen, Chi-Huang

    2018-01-01

    Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.

  7. Fine mapping and association studies of a high-density lipoprotein cholesterol linkage region on chromosome 16 in French-Canadian subjects

    PubMed Central

    Dastani, Zari; Pajukanta, Päivi; Marcil, Michel; Rudzicz, Nicholas; Ruel, Isabelle; Bailey, Swneke D; Lee, Jenny C; Lemire, Mathieu; Faith, Janet; Platko, Jill; Rioux, John; Hudson, Thomas J; Gaudet, Daniel; Engert, James C; Genest, Jacques

    2010-01-01

    Low levels of high-density lipoprotein cholesterol (HDL-C) are an independent risk factor for cardiovascular disease. To identify novel genetic variants that contribute to HDL-C, we performed genome-wide scans and quantitative association studies in two study samples: a Quebec-wide study consisting of 11 multigenerational families and a study of 61 families from the Saguenay–Lac St-Jean (SLSJ) region of Quebec. The heritability of HDL-C in these study samples was 0.73 and 0.49, respectively. Variance components linkage methods identified a LOD score of 2.61 at 98 cM near the marker D16S515 in Quebec-wide families and an LOD score of 2.96 at 86 cM near the marker D16S2624 in SLSJ families. In the Quebec-wide sample, four families showed segregation over a 25.5-cM (18 Mb) region, which was further reduced to 6.6 Mb with additional markers. The coding regions of all genes within this region were sequenced. A missense variant in CHST6 segregated in four families and, with additional families, we observed a P value of 0.015 for this variant. However, an association study of this single-nucleotide polymorphism (SNP) in unrelated Quebec-wide samples was not significant. We also identified an SNP (rs11646677) in the same region, which was significantly associated with a low HDL-C (P=0.016) in the SLSJ study sample. In addition, RT-PCR results from cultured cells showed a significant difference in the expression of CHST6 and KIAA1576, another gene in the region. Our data constitute additional evidence for a locus on chromosome 16q23-24 that affects HDL-C levels in two independent French-Canadian studies. PMID:19844255

  8. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications.

    PubMed

    Grams, Sarah E; Argiropoulos, Bob; Lines, Matthew; Chakraborty, Pranesh; Mcgowan-Jordan, Jean; Geraghty, Michael T; Tsang, Marilyn; Eswara, Marthand; Tezcan, Kamer; Adams, Kelly L; Linck, Leesa; Himes, Patricia; Kostiner, Dana; Zand, Dina J; Stalker, Heather; Driscoll, Daniel J; Huang, Taosheng; Rosenfeld, Jill A; Li, Xu; Chen, Emily

    2016-04-01

    We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication. © 2015 Wiley Periodicals, Inc.

  9. Small supernumerary chromosome marker generating complete and pure trisomy 18p, characterized by molecular cytogenetic techniques and review.

    PubMed

    Rodríguez, L; Liehr, T; Mrasek, K; Mansilla, E; Martínez-Fernández, M L; Garcia, A; Martínez-Frías, M L

    2007-11-15

    Small supernumerary marker chromosomes (sSMC) have been described from all human chromosomes with different sizes and shapes. However, it is difficult to know the clinical manifestations associated with them, because such knowledge depends on the size, presence of euchromatic material, degree of mosaicism and/or uniparental disomy (UPD). Pure trisomy of the whole arm of chromosome 18 (18p), has been described in only a few cases and the general consensus is that there is a mild phenotypic effect. Here we report on a newborn male presenting with an atrial septal defect and a club foot. The high resolution G-band karyotype (550-850 bands) and the molecular cytogenetic techniques revealed in all cells the presence of an sSMC, which was a complex derivative from the short arm of a chromosome 18 (18p) and a centromere of a chromosome 13/21. His healthy mother had the same sSMC in all analyzed cells. With the present case, we support the previous suggestion that this unusual chromosome trisomy 18p has little clinical repercussions. (c) 2007 Wiley-Liss, Inc.

  10. Evidence for chromosome 2p16.3 polycystic ovary syndrome susceptibility locus in affected women of European ancestry.

    PubMed

    Mutharasan, Priscilla; Galdones, Eugene; Peñalver Bernabé, Beatriz; Garcia, Obed A; Jafari, Nadereh; Shea, Lonnie D; Woodruff, Teresa K; Legro, Richard S; Dunaif, Andrea; Urbanek, Margrit

    2013-01-01

    A previous genome-wide association study in Chinese women with polycystic ovary syndrome (PCOS) identified a region on chromosome 2p16.3 encoding the LH/choriogonadotropin receptor (LHCGR) and FSH receptor (FSHR) genes as a reproducible PCOS susceptibility locus. The objective of the study was to determine the role of the LHCGR and/or FSHR gene in the etiology of PCOS in women of European ancestry. This was a genetic association study in a European ancestry cohort of women with PCOS. The study was conducted at an academic medical center. Participants in the study included 905 women with PCOS diagnosed by National Institutes of Health criteria and 956 control women. We genotyped 94 haplotype-tagging single-nucleotide polymorphisms and two coding single-nucleotide polymorphisms mapping to the coding region of LHCGR and FSHR plus 20 kb upstream and downstream of the genes and test for association in the case control cohort and for association with nine quantitative traits in the women with PCOS. We found strong evidence for an association of PCOS with rs7562215 (P = 0.0037) and rs10495960 (P = 0.0046). Although the marker with the strongest association in the Chinese PCOS genome-wide association study (rs13405728) was not informative in the European populations, we identified and genotyped three markers (rs35960650, rs2956355, and rs7562879) within 5 kb of rs13405728. Of these, rs7562879 was nominally associated with PCOS (P = 0.020). The strongest evidence for association mapping to FSHR was observed with rs1922476 (P = 0.0053). Furthermore, markers with the FSHR gene region were associated with FSH levels in women with PCOS. Fine mapping of the chromosome 2p16.3 Chinese PCOS susceptibility locus in a European ancestry cohort provides evidence for association with two independent loci and PCOS. The gene products LHCGR and FSHR therefore are likely to be important in the etiology of PCOS, regardless of ethnicity.

  11. Three SNPs in the GSTO1, GSTO2 and PRSS11 genes on chromosome 10 are not associated with age-at-onset of Alzheimer's disease.

    PubMed

    Ozturk, Ayla; Desai, Purnima P; Minster, Ryan L; Dekosky, Steven T; Kamboh, M Ilyas

    2005-01-01

    Linkage studies suggest the presence of putative risk and/or age-at-onset genes for Alzheimer's disease on Chromosome 10. Recently, a genomic converging approach using a combination of linkage, expression and association studies has reported significant associations of the glutathione S-transferase omega 1 and 2 (GSTO1 and GSTO2) genes and possibly the protease serine 11 (PRSS11) gene on chromosome 10 with age-at-onset, but not risk, for Alzheimer's disease (AD) and Parkinson disease. We investigated the association of the reported three polymorphisms in 990 sporadic late-onset AD cases (26% autopsy confirmed) and 735 controls. In our sample, we found no association either with age-at-onset in AD cases or with disease risk in the case-control cohort. However, haplotype analysis revealed a modest association of one haplotype with AD risk (p = 0.04). Additional markers in these genes need to be screened to explore their role in the etiology of AD.

  12. Wolf-Hirschhorn (4p-) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Chen, Yi-Yung; Su, Jun-Wei; Chern, Schu-Rern; Chen, Yu-Ting; Chen, Wen-Lin; Chen, Li-Feng; Wang, Wayseen

    2011-12-01

    To present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion. A 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0-6,531,998 bp)×1, 8p22p21.3 (18,705,388-19,940,445 bp)×3, 10p15.3 (0-1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered. The present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes. Copyright © 2011. Published by Elsevier B.V.

  13. LOCALIZATION OF THE MOUSE THYMIDINE KINASE GENE TO THE DISTAL PORTION OF CHROMOSOME 11

    EPA Science Inventory

    We report the regional mapping of the thymidine kinase (tk-1) gene in the mouse using two complementary analyses: 1) investigation of chromosome aberrations associated with tx-1 gene inactivation in the L5178Y TX+/-3.7.2c cell line and (2) in situ molecular hybridization of a clo...

  14. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    ERIC Educational Resources Information Center

    Sanders, Ashley F.; Hobbs, Diana A.; Stephenson, David D.; Laird, Robert D.; Beaton, Elliott A.

    2017-01-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial…

  15. Clinical and cytogenetic features of a Potocki-Lupski syndrome with the shortest 0.25Mb microduplication in 17p11.2 including RAI1.

    PubMed

    Lee, Cha Gon; Park, Sang-Jin; Yim, Shin-Young; Sohn, Young Bae

    2013-08-01

    Potocki-Lupski syndrome (PTLS [MIM 610883]) is a recently recognized microduplication syndrome associated with 17p11.2. It is characterized by mild facial dysmorphic features, hypermetropia, infantile hypotonia, failure to thrive, mental retardation, autistic spectrum disorders, behavioral abnormalities, sleep apnea, and cardiovascular anomalies. In several studies, the critical PTLS region was deduced to be 1.3Mb in length, and included RAI1 and 17 other genes. We report a 3-year-old Korean boy with the smallest duplication in 17p11.2 and a milder phenotype. He had no family history of neurologic disease or developmental delay and no history of seizure, autistic features, or behavior problems. He showed subtle facial dysmorphic features (dolichocephaly and a mildly asymmetric smile) and flat feet. All laboratory tests were normal and he had no evidence of internal organ anomalies. He was found to have mild intellectual disabilities (full scale IQ 65 on K-WPPSI) and language developmental delay (age of 2.2year-old on PRESS). Array comparative genomic hybridization (CGH) showed about a 0.25Mb microduplication on chromosome 17p11.2 containing four Refseq (NCBI reference sequence) genes, including RAI1 [arr 17p11.2(17,575,978-17,824,623)×3]. When compared with previously reported cases, the milder phenotype of our patient may be associated with the smallest duplication in 17p11.2, 0.25Mb in length. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Single nucleotide polymorphisms in an intergenic chromosome 2q region associated with tissue factor pathway inhibitor plasma levels and venous thromboembolism.

    PubMed

    Dennis, J; Truong, V; Aïssi, D; Medina-Rivera, A; Blankenberg, S; Germain, M; Lemire, M; Antounians, L; Civelek, M; Schnabel, R; Wells, P; Wilson, M D; Morange, P-E; Trégouët, D-A; Gagnon, F

    2016-10-01

    Essentials Tissue factor pathway inhibitor (TFPI) regulates the blood coagulation cascade. We replicated previously reported linkage of TFPI plasma levels to the chromosome 2q region. The putative causal locus, rs62187992, was associated with TFPI plasma levels and thrombosis. rs62187992 was marginally associated with TFPI expression in human aortic endothelial cells. Click to hear Ann Gil's presentation on new insights into thrombin activatable fibrinolysis inhibitor SUMMARY: Background Tissue factor pathway inhibitor (TFPI) regulates fibrin clot formation, and low TFPI plasma levels increase the risk of arterial thromboembolism and venous thromboembolism (VTE). TFPI plasma levels are also heritable, and a previous linkage scan implicated the chromosome 2q region, but no specific genes. Objectives To replicate the finding of the linkage region in an independent sample, and to identify the causal locus. Methods We first performed a linkage analysis of microsatellite markers and TFPI plasma levels in 251 individuals from the F5L Family Study, and replicated the finding of the linkage peak on chromosome 2q (LOD = 3.06). We next defined a follow-up region that included 112 603 single nucleotide polymorphisms (SNPs) under the linkage peak, and meta-analyzed associations between these SNPs and TFPI plasma levels across the F5L Family Study and the Marseille Thrombosis Association (MARTHA) Study, a study of 1033 unrelated VTE patients. SNPs with false discovery rate q-values of < 0.10 were tested for association with TFPI plasma levels in 892 patients with coronary artery disease in the AtheroGene Study. Results and Conclusions One SNP, rs62187992, was associated with TFPI plasma levels in all three samples (β = + 0.14 and P = 4.23 × 10 -6 combined; β = + 0.16 and P = 0.02 in the F5L Family Study; β = + 0.13 and P = 6.3 × 10 -4 in the MARTHA Study; β = + 0.17 and P = 0.03 in the AtheroGene Study), and contributed to the linkage peak in the F5L Family Study. rs

  17. A Balanced Chromosomal Translocation Disrupting ARHGEF9 Is Associated With Epilepsy, Anxiety, Aggression, and Mental Retardation

    PubMed Central

    Kalscheuer, Vera M.; Musante, Luciana; Fang, Cheng; Hoffmann, Kirsten; Fuchs, Celine; Carta, Eloisa; Deas, Emma; Venkateswarlu, Kanamarlapudi; Menzel, Corinna; Ullmann, Reinhard; Tommerup, Niels; Dalprà, Leda; Tzschach, Andreas; Selicorni, Angelo; Lüscher, Bernhard; Ropers, Hans-Hilger; Harvey, Kirsten; Harvey, Robert J.

    2013-01-01

    Clustering of inhibitory γ-aminobutyric acidA (GABAA) and glycine receptors at synapses is thought to involve key interactions between the receptors, a “scaffolding” protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7–10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/ PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the “membrane activation model” of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABAA receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABAA receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory. PMID:18615734

  18. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3.

    PubMed

    Hassan, Muhammad Jawad; Santos, Regie Lyn P; Rafiq, Muhammad Arshad; Chahrour, Maria H; Pham, Thanh L; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M

    2006-01-01

    Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for approximately 75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.

  19. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3

    PubMed Central

    Hassan, Muhammad Jawad; Santos, Regie Lyn P.; Rafiq, Muhammad Arshad; Chahrour, Maria H.; Pham, Thanh L.; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M.

    2010-01-01

    Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants. PMID:16261342

  20. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].

    PubMed

    Solov'ev, I V; Iurov, Iu B; Vorsanova, S G; Marcais, B; Rogaev, E I; Kapanadze, B I; Brodianskiĭ, V M; Iankovskiĭ, N K; Roizes, G

    1998-11-01

    Fluorescent in situ hybridization (FISH) was employed in mapping the alpha-satellite DNA that was revealed in the cosmid libraries specific for human chromosomes 13, 21, and 22. In total, 131 clones were revealed. They contained various elements of centromeric alphoid DNA sequences of acrocentric chromosomes, including those located close to SINEs, LINEs, and classical satellite sequences. The heterochromatin of acrocentric chromosomes was shown to contain two different groups of alphoid sequences: (1) those immediately adjacent to the centromeric regions (alpha 13-1, alpha 21-1, and alpha 22-1 loci) and (2) those located in the short arm of acrocentric chromosomes (alpha 13-2, alpha 21-2, and alpha 22-2 loci). Alphoid DNA sequences from the alpha 13-2, alpha 21-2, and alpha 22-2 loci are apparently not involved in the formation of centromeres and are absent from mitotically stable marker chromosomes with a deleted short arm. Robertsonian translocations t(13q; 21q) and t(14q; 22q), and chromosome 21p-. The heterochromatic regions of chromosomes 13, 21, and 22 were also shown to contain relatively chromosome-specific repetitive sequences of various alphoid DNA families, whose numerous copies occur in other chromosomes. Pools of centromeric alphoid cosmids can be of use in further studies of the structural and functional properties of heterochromatic DNA and the identification of centromeric sequences. Moreover, these clones can be employed in high-resolution mapping and in sequencing the heterochromatic regions of the human genome. The detailed FISH analysis of numerous alphoid cosmid clones allowed the identification of several new, highly specific DNA probes of molecular cytogenetic studies--in particular, the interphase and metaphase analyses of chromosomes 2, 9, 11, 14, 15, 16, 18, 20, 21-13, 22-14, and X.

  1. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    PubMed

    Sapkota, Sirjan; Conner, Joann A; Hanna, Wayne W; Simon, Bindu; Fengler, Kevin; Deschamps, Stéphane; Cigan, Mark; Ozias-Akins, Peggy

    2016-01-01

    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  2. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet

    PubMed Central

    Sapkota, Sirjan; Conner, Joann A.; Hanna, Wayne W.; Simon, Bindu; Fengler, Kevin; Deschamps, Stéphane; Cigan, Mark; Ozias-Akins, Peggy

    2016-01-01

    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen. PMID:27031857

  3. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome

    PubMed Central

    Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir

    2014-01-01

    In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468

  4. Further refinement of the location for autosomal dominant retinitis pigmentosa on chromosome 7p (RP9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inglehearn, C.F.; Keen, T.J.; Al-Maghtheh, M.

    1994-04-01

    A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this regionmore » and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus. 21 refs., 3 figs., 1 tab.« less

  5. Molecular Characterization of the Pericentric Inversion That Causes Differences Between Chimpanzee Chromosome 19 and Human Chromosome 17

    PubMed Central

    Kehrer-Sawatzki, Hildegard; Schreiner, Bettina; Tänzer, Simone; Platzer, Matthias; Müller, Stefan; Hameister, Horst

    2002-01-01

    A comparison of the human genome with that of the chimpanzee is an attractive approach to attempts to understand the specificity of a certain phenotype's development. The two karyotypes differ by one chromosome fusion, nine pericentric inversions, and various additions of heterochromatin to chromosomal telomeres. Only the fusion, which gave rise to human chromosome 2, has been characterized at the sequence level. During the present study, we investigated the pericentric inversion by which chimpanzee chromosome 19 differs from human chromosome 17. Fluorescence in situ hybridization was used to identify breakpoint-spanning bacterial artificial chromosomes (BACs) and plasmid artificial chromosomes (PACs). By sequencing the junction fragments, we localized breakpoints in intergenic regions rich in repetitive elements. Our findings suggest that repeat-mediated nonhomologous recombination has facilitated inversion formation. No addition or deletion of any sequence element was detected at the breakpoints or in the surrounding sequences. Next to the break, at a distance of 10.2–39.1 kb, the following genes were found: NGFR and NXPH3 (on human chromosome 17q21.3) and GUC2D and ALOX15B (on human chromosome 17p13). The inversion affects neither the genomic structure nor the gene-activity state with regard to replication timing of these genes. PMID:12094327

  6. Distal 22q11.2 microduplication encompassing the BCR gene.

    PubMed

    Descartes, Maria; Franklin, Judy; Diaz de Ståhl, Teresita; Piotrowski, Arkadiusz; Bruder, Carl E G; Dumanski, Jan P; Carroll, Andrew J; Mikhail, Fady M

    2008-12-01

    Chromosome 22 band q11.2 has been recognized to be highly susceptible to subtle microdeletions and microduplications, which have been attributed to the presence of several large segmental duplications; also known as low copy repeats (LCRs). These LCRs function as mediators of non-allelic homologous recombination (NAHR), which results in these chromosomal rearrangements as a result of unequal crossover. The four centromeric LCRs at proximal 22q11.2 have been previously implicated in recurrent chromosomal rearrangements including the DiGeorge/Velocardiofacial syndrome (DG/VCFs) microdeletion and its reciprocal microduplication. Recently, we and others have demonstrated that the four telomeric LCRs at distal 22q11.2 are causally implicated in a newly recognized recurrent distal 22q11.2 microdeletion syndrome in the region immediately telomeric to the DG/VCFs typically deleted region. Here we report on the clinical, cytogenetic, and array CGH studies of a 4.5-year-old girl with history of failure to thrive, developmental delay (DD), and relative macrocephaly. She carries a paternally inherited approximately 2.1 Mb microduplication at distal 22q11.2, which spans approximately 34 annotated genes, and is flanked by two of the four telomeric 22q11.2 LCRs. We conclude that the four telomeric LCRs at distal 22q11.2 can mediate both deletions and duplications in this genomic region. Both deletions and duplication of this region present with subtle clinical features including mild to moderate mental retardation, DD, and mild dysmorphic features. Copyright (c) 2008 Wiley-Liss, Inc.

  7. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae.

    PubMed Central

    Basrai, M A; Kingsbury, J; Koshland, D; Spencer, F; Hieter, P

    1996-01-01

    A chromosome transmission fidelity (ctf) mutant, s138, of Saccharomyces cerevisiae was identified by its centromere (CEN) transcriptional readthrough phenotype, suggesting perturbed kinetochore integrity in vivo. The gene complementing the s138 mutation was found to be identical to the S. cerevisiae SPT4 gene. The s138 mutation is a missense mutation in the second of four conserved cysteine residues positioned similarly to those of zinc finger proteins, and we henceforth refer to the mutation of spt4-138. Both spt4-138 and spt4 delta strains missegregate a chromosome fragment at the permissive temperature, are temperature sensitive for growth at 37 degrees C, and upon a shift to the nonpermissive temperature show an accumulation of large budded cells, each with a nucleus. Previous studies suggest that Spt4p functions in a complex with Spt5p and Spt6p, and we determined that spt6-140 also causes missegregation of a chromosome fragment. Double mutants carrying spt4 delta 2::HIS3 and kinetochore mutation ndc10-42 or ctf13-30 show a synthetic conditional phenotype. Both spt4-138 and spt4 delta strains exhibit synergistic chromosome instability in combination with CEN DNA mutations and show in vitro defects in microtubule binding to minichromosomes. These results indicate that Spt4p plays a role in chromosome segregation. The results of in vivo genetic interactions with mutations in kinetochore proteins and CEN DNA and of in vitro biochemical assays suggest that Spt4p is important for kinetochore function. PMID:8649393

  8. Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1.

    PubMed

    Carofiglio, Fabrizia; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Inagaki, Akiko; van Cappellen, Wiggert A; Grootegoed, J Anton; Toth, Attila; Baarends, Willy M

    2018-03-01

    Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11 YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11 YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11 YF/YF compared to Spo11 +/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11 YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. GenomeLandscaper: Landscape analysis of genome-fingerprints maps assessing chromosome architecture.

    PubMed

    Ai, Hannan; Ai, Yuncan; Meng, Fanmei

    2018-01-18

    Assessing correctness of an assembled chromosome architecture is a central challenge. We create a geometric analysis method (called GenomeLandscaper) to conduct landscape analysis of genome-fingerprints maps (GFM), trace large-scale repetitive regions, and assess their impacts on the global architectures of assembled chromosomes. We develop an alignment-free method for phylogenetics analysis. The human Y chromosomes (GRCh.chrY, HuRef.chrY and YH.chrY) are analysed as a proof-of-concept study. We construct a galaxy of genome-fingerprints maps (GGFM) for them, and a landscape compatibility among relatives is observed. But a long sharp straight line on the GGFM breaks such a landscape compatibility, distinguishing GRCh38p1.chrY (and throughout GRCh38p7.chrY) from GRCh37p13.chrY, HuRef.chrY and YH.chrY. We delete a 1.30-Mbp target segment to rescue the landscape compatibility, matching the antecedent GRCh37p13.chrY. We re-locate it into the modelled centromeric and pericentromeric region of GRCh38p10.chrY, matching a gap placeholder of GRCh37p13.chrY. We decompose it into sub-constituents (such as BACs, interspersed repeats, and tandem repeats) and trace their homologues by phylogenetics analysis. We elucidate that most examined tandem repeats are of reasonable quality, but the BAC-sized repeats, 173U1020C (176.46 Kbp) and 5U41068C (205.34 Kbp), are likely over-repeated. These results offer unique insights into the centromeric and pericentromeric regions of the human Y chromosomes.

  10. Review of renal carcinoma with t(6;11)(p21;q12) with focus on clinical and pathobiological aspects.

    PubMed

    Kuroda, Naoto; Tanaka, Azusa; Sasaki, Naomi; Ishihara, Akira; Matsuura, Keiko; Moriyama, Masatsugu; Nagashima, Yoji; Inoue, Keiji; Petersson, Fredrik; Martignoni, Guido; Michal, Michal; Hes, Ondrej

    2013-06-01

    Recently, a new category of MiTF/TFE family translocation carcinomas of the kidney has been proposed. This category includes Xp11.2 renal cell carcinoma (RCC) and the t(6;11) RCC. These tumors share clinical, morphological, immunohistochemical and molecular genetic features. In this article, we review t(6;11) RCC. This tumor predominantly affects children and young adults. Macroscopically, the tumor generally forms a well circumscribed mass. Satellite nodules may be observed. Histologically, the tumor comprises large cells and small cells surrounded by basement membrane material. Immunohistochemically, tumor cells show nuclear immunolabeling for TFEB and usually express Cathepsin-K in the cytoplasm. Karyotyping detects the rearrangement between chromosome 6p21 and chromosome 11q12. Alpha-TFEB fusion can be detected by reverse transcriptase polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization (FISH). Most cases affecting children and young adults seem to be indolent, but some adult cases have presented with metastasis or caused death. As previously reported cases remain limited to date, further examination in a large scale study will be needed in order to elucidate clinical behavior and molecular characteristics.

  11. Complex chromosomal rearrangement in a girl with psychomotor-retardation and a de novo inversion: inv(2)(p15;q24.2).

    PubMed

    Granot-Hershkovitz, Einat; Raas-Rothschild, Annick; Frumkin, Ayala; Granot, David; Silverstein, Shira; Abeliovich, Dvorah

    2011-08-01

    Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse-PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1; the phenotypic effect of these genes is not currently known. Copyright © 2011 Wiley-Liss, Inc.

  12. Inversion (X)(p11.4q22) associated with Norrie disease in a four generation family.

    PubMed

    Pettenati, M J; Rao, P N; Weaver, R G; Thomas, I T; McMahan, M R

    1993-03-01

    We report on a 4-generation family in which Norrie disease occurs together with a pericentric inversion of the X chromosome in all affected males and carrier females. The breakpoint in the short arm of the X chromosome appears to be at the purported location of the Norrie disease gene. This is the second report of an association between Norrie disease and a chromosome aberration involving Xp11, and the first report of a specific gene disruption, thus physical gene location, due to a pericentric chromosome inversion.

  13. Hereditary spherocytic anemia with deletion of the short arm of chromosome 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Nobuhiko; Wada, Yoshinao; Nakamura, Yoich

    1995-09-11

    We describe a 30-month-old boy with multiple anomalies and mental retardation with hereditary spherocytic anemia. His karyotype was 46,XYdel(8)(p11.23p21.1). Genes for ankyrin and glutathione reductase (GSR) were localized to chromosome areas 8p11.2 and 8p21.1, respectively. Six patients with spherocytic anemia and interstitial deletion of 8p- have been reported. In these patients, severe mental retardation and multiple anomalies are common findings. This is a new contiguous gene syndrome. Lux established that ankyrin deficiency and associated deficiencies of spectrin and protein 4.2 were responsible for spherocytosis in this syndrome. We reviewed the manifestations of this syndrome. Patients with spherocytic anemia and multiplemore » congenital anomalies should be investigated by high-resolution chromosomal means to differentiate this syndrome. 14 refs., 3 figs., 2 tabs.« less

  14. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  15. Chromosomal variation in Argentine populations of Akodon montensis Thomas, 1913 (Rodentia, Cricetidae, Sigmodontinae)

    PubMed Central

    Malleret, Matías Maximiliano; Labaroni, Carolina Alicia; García, Gabriela Verónica; Ferro, Juan Martín; Martí, Dardo Andrea; Lanzone, Cecilia

    2016-01-01

    Abstract The genus Akodon Meyen, 1833 is one of the most species-rich among sigmodontine rodents and has great chromosome variability. Akodon montensis has a relatively broad distribution in South America, and Argentine populations are located in the southernmost region of its range. Brazilian populations have important chromosomal variability, but cytogenetic data from Argentina are scarce. We performed a chromosome characterization of natural populations of Akodon montensis using conventional staining, C-banding, Ag-NORs and base-specific fluorochromes. A total of 31 specimens from five localities of Misiones Province, in Argentina, were analyzed. The 2n=24 chromosomes was the most frequently observed karyotype. However, five individuals presented 25 chromosomes due to a supernumerary B-chromosome; and one individual had 2n=26 due to one B plus a trisomy for chromosome 11. Additionally, two XY females and two variants of the X chromosomes were found. C-positive centromeric bands occurred in all chromosomes; additional C-bands were observed in some autosomes, the X, Y and B chromosomes. Ag-NORs were observed in five autosomes, and the B chromosome was frequently marked. Fluorochrome banding was similar among karyotypes of the analyzed populations. Comparisons of cytogenetic data among populations of Argentina and Brazil showed the presence of high intraspecific variability in Akodon montensis and some differences among regions. PMID:27186343

  16. The protocadherin 11X/Y (PCDH11X/Y) gene pair as determinant of cerebral asymmetry in modern Homo sapiens.

    PubMed

    Priddle, Thomas H; Crow, Timothy J

    2013-06-01

    Annett's right-shift theory proposes that human cerebral dominance (the functional and anatomical asymmetry or torque along the antero-posterior axis) and handedness are determined by a single "right-shift" gene. Familial transmission of handedness and specific deviations of cerebral dominance in sex chromosome aneuploidies implicate a locus within an X-Y homologous region of the sex chromosomes. The Xq21.3/Yp11.2 human-specific region of homology includes the protocadherin 11X/Y (PCDH11X/Y) gene pair, which encode cell adhesion molecules subject to accelerated evolution following the separation of the human and chimpanzee lineages six million years ago. PCDH11X and PCDH11Y, differentially regulated by retinoic acid, are highly expressed in the ventricular zone, subplate, and cortical plate of the developing cerebral cortex. Both proteins interact with β-catenin, a protein that plays a role in determining axis formation and regulating cortical size. In this way, the PCDH11X/Y gene pair determines cerebral asymmetry by initiating the right shift in Homo sapiens. © 2013 New York Academy of Sciences.

  17. B-chromosome systems in the greater glider, Petauroides volans (Marsupialia: Pseudocheiridae). II. Investigation of B-chromosome DNA sequences isolated by micromanipulation and PCR.

    PubMed

    McQuade, L R; Hill, R J; Francis, D

    1994-01-01

    B chromosomes, despite their common occurrence throughout the animal and plant kingdoms, have not been investigated extensively at the molecular level. While the majority of B chromosomes occurring in animals have been described as heterochromatic, only a few researchers have examined the DNA of these chromosomes beyond this gross cytological level. This is the case in the largest of the gliding marsupial possums, the greater glider, Petauroides volans. To examine the molecular composition and localization of B-chromosome DNA sequences in P. volans, a combination of micromanipulation and the polymerase chain reaction was used in this study to isolate and then amplify the DNA of the B chromosomes. Localization of the isolated B-chromosome sequences to metaphase chromosomes was investigated using fluorescence in situ hybridization. The B chromosomes in this species are shown to be composed of a heterogeneous mixture of sequences, some of which are unique to the B chromosomes, while others exhibit homology to the centromeric regions of the autosomal complement.

  18. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.

    PubMed

    Veyrunes, Frédéric; Waters, Paul D; Miethke, Pat; Rens, Willem; McMillan, Daniel; Alsop, Amber E; Grützner, Frank; Deakin, Janine E; Whittington, Camilla M; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Ferguson-Smith, Malcolm A; Warren, Wes; Marshall Graves, Jennifer A

    2008-06-01

    In therian mammals (placentals and marsupials), sex is determined by an XX female: XY male system, in which a gene (SRY) on the Y affects male determination. There is no equivalent in other amniotes, although some taxa (notably birds and snakes) have differentiated sex chromosomes. Birds have a ZW female: ZZ male system with no homology with mammal sex chromosomes, in which dosage of a Z-borne gene (possibly DMRT1) affects male determination. As the most basal mammal group, the egg-laying monotremes are ideal for determining how the therian XY system evolved. The platypus has an extraordinary sex chromosome complex, in which five X and five Y chromosomes pair in a translocation chain of alternating X and Y chromosomes. We used physical mapping to identify genes on the pairing regions between adjacent X and Y chromosomes. Most significantly, comparative mapping shows that, contrary to earlier reports, there is no homology between the platypus and therian X chromosomes. Orthologs of genes in the conserved region of the human X (including SOX3, the gene from which SRY evolved) all map to platypus chromosome 6, which therefore represents the ancestral autosome from which the therian X and Y pair derived. Rather, the platypus X chromosomes have substantial homology with the bird Z chromosome (including DMRT1) and to segments syntenic with this region in the human genome. Thus, platypus sex chromosomes have strong homology with bird, but not to therian sex chromosomes, implying that the therian X and Y chromosomes (and the SRY gene) evolved from an autosomal pair after the divergence of monotremes only 166 million years ago. Therefore, the therian X and Y are more than 145 million years younger than previously thought.

  19. Localization of the human {beta}-catenin gene (CTNNB1) to 3p21: A region implicated in tumor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, C.; Liehr, T.; Ballhausen, G.

    1994-09-01

    The human {beta}-catenin locus (CTNNB1) was mapped by in situ fluorescence analysis to band p21 on the short arm of chromosome 3, a region frequently affected by somatic alterations in a variety of tumors. PCR primers for the genomic amplification of {beta}-catenin sequences were selected on the basis of homology to exon 4 of the Drosophila armadillo gene. Analysis of a panel of somatic cell hybrids confirmed the localization of {beta}-catenin on human chromosome 3. Furthermore, exclusion mapping of three hybrids carrying defined fragments of the short arm of human chromosome 3 allowed us to determine the position of themore » CTNNB1 locus close to the marker D3S2 in 3p21. 22 refs., 3 figs.« less

  20. Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement.

    PubMed

    Tan, Sang-Nee; Sim, Sai-Peng

    2018-04-12

    Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC. We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced. BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute