Sample records for chromosome-linked dystrophin abnormalities

  1. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative tomore » Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.« less

  2. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation ofmore » the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.« less

  3. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Wyrobek, A J

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities.more » The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.« less

  4. Dandy-Walker syndrome and chromosomal abnormalities.

    PubMed

    Imataka, George; Yamanouchi, Hideo; Arisaka, Osamu

    2007-12-01

    Dandy-Walker syndrome (DWS) is a brain malformation of unknown etiology, but several reports have been published indicating that there is a causal relationship to various types of chromosomal abnormalities and malformation syndromes. In the present article, we present a bibliographical survey of several previously issued reports on chromosomal abnormalities associated with DWS, including our case of DWS found in trisomy 18. There are various types of chromosomal abnormalities associated with DWS; most of them are reported in chromosome 3, 9, 13 and 18. We also summarize some other chromosomal abnormalities and various congenital malformation syndromes.

  5. Numerically abnormal chromosome constitutions in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  6. Sex chromosome abnormalities and psychiatric diseases

    PubMed Central

    Zhang, Xinzhu; Yang, Jian; Li, Yuhong; Ma, Xin; Li, Rena

    2017-01-01

    Excesses of sex chromosome abnormalities in patients with psychiatric diseases have recently been observed. It remains unclear whether sex chromosome abnormalities are related to sex differences in some psychiatric diseases. While studies showed evidence of susceptibility loci over many sex chromosomal regions related to various mental diseases, others demonstrated that the sex chromosome aneuploidies may be the key to exploring the pathogenesis of psychiatric disease. In this review, we will outline the current evidence on the interaction of sex chromosome abnormalities with schizophrenia, autism, ADHD and mood disorders. PMID:27992373

  7. Chromosomal abnormalities in human sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhapsmore » reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.« less

  8. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othmane, K.B.; Speer, M.C.; Stauffer, J.

    1995-09-01

    Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.

  9. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  10. Chromosomal abnormalities as a cause of recurrent abortions in Egypt

    PubMed Central

    El-Dahtory, Faeza Abdel Mogib

    2011-01-01

    BACKGROUND: In 4%-8% of couples with recurrent abortion, at least one of the partners has chromosomal abnormality. Most spontaneous miscarriages which happen in the first and second trimesters are caused by chromosomal abnormalities. These chromosomal abnormalities may be either numerical or structural. MATERIAL AND METHODS: Cytogenetic study was done for 73 Egyptian couples who presented with recurrent abortion at Genetic Unit of Children Hospital, Mansoura University. RESULTS: We found that the frequency of chromosomal abnormalities was not significantly different from that reported worldwide. Chromosomal abnormalities were detected in 9 (6.1%) of 73 couples. Seven of chromosomal abnormalities were structural and two of them were numerical. CONCLUSION: Our results showed that 6.1% of the couples with recurrent abortion had chromosomal abnormalities, with no other abnormalities. We suggest that it is necessary to perform cytogenetic in vestigation for couples who have recurrent abortion. PMID:22090718

  11. The prevalence of chromosomal abnormalities in subgroups of infertile men.

    PubMed

    Dul, E C; Groen, H; van Ravenswaaij-Arts, C M A; Dijkhuizen, T; van Echten-Arends, J; Land, J A

    2012-01-01

    The prevalence of chromosomal abnormalities is assumed to be higher in infertile men and inversely correlated with sperm concentration. Although guidelines advise karyotyping infertile men, karyotyping is costly, therefore it would be of benefit to identify men with the highest risk of chromosomal abnormalities, possibly by using parameters other than sperm concentration. The aim of this study was to evaluate several clinical parameters in azoospermic and non-azoospermic men, in order to assess the prevalence of chromosomal abnormalities in different subgroups of infertile men. In a retrospective cohort of 1223 azoospermic men and men eligible for ICSI treatment, we studied sperm parameters, hormone levels and medical history for an association with chromosomal abnormalities. The prevalence of chromosomal abnormalities in the cohort was 3.1%. No association was found between chromosomal abnormalities and sperm volume, concentration, progressive motility or total motile sperm count. Azoospermia was significantly associated with the presence of a chromosomal abnormality [15.2%, odds ratio (OR) 7.70, P < 0.001]. High gonadotrophin levels were also associated with an increased prevalence of chromosomal abnormalities (OR 2.96, P = 0.013). Azoospermic men with a positive andrologic history had a lower prevalence of chromosomal abnormalities than azoospermic men with an uneventful history (OR 0.28, P = 0.047). In non-azoospermic men, we found that none of the studied variables were associated with the prevalence of chromosomal abnormalities. We show that the highest prevalence of chromosomal abnormalities is found in hypergonadotrophic azoospermic men with an uneventful andrologic history.

  12. Four families with immunodeficiency and chromosome abnormalities.

    PubMed Central

    Candy, D C; Hayward, A R; Hughes, D T; Layward, L; Soothill, J F

    1979-01-01

    Six children, with severe deficiency of some or all of the immunoglobulins and minor somatic abnormalities, had chromosomal abnormalities: (1) 45,XY,t(13q/18q), (2) 46,XY,21ps +, (3) two brothers 46,XY (inv. 7) (4) 45,X,t(11p/10p)/46X,iXq,t(11p/10p) and, (5) in addendum, 45,XX,-18;46,XX, r18. The chromosome abnormalities were detected in B- as well as T-lymphocytes (as evidenced by using both PHA- and PWM-stimulated cultures) in all probands, but one was mosaic in PHA culture, although all his PWM-stimulated cells were abnormal. Chromosomal variants were also detected in relatives of three and immunodeficiency in relatives of two. Images Fig. 1 Fig. 3 PMID:314782

  13. Association of MTHFR polymorphisms and chromosomal abnormalities in leukemia.

    PubMed

    Sinthuwiwat, Thivaratana; Poowasanpetch, Phanasit; Wongngamrungroj, Angsana; Soonklang, Kamonwan; Promso, Somying; Auewarakul, Chirayu; Tocharoentanaphol, Chintana

    2012-01-01

    Genetic variation in MTHFR gene might explain the interindividual differences in the reduction of DNA repaired and the increase of chromosome breakage and damage. Nowadays, chromosomal rearrangement is recognized as a major cause of lymphoid malignancies. In addition, the association of MTHFR polymorphisms with aneuploidy was found in several studies, making the MTHFR gene as a good candidate for leukemia etiology. Therefore, in this study, we investigated the common sequence variation, 677C>T and 1298A>C in the MTHFR gene of 350 fixed cell specimens archived after chromosome analysis. The distribution of the MTHFR polymorphisms frequency was compared in leukemic patients with structural chromosome abnormality and chromosome aneuploidy, as well as in those with no evidence of chromosome abnormalities. We observed a significant decrease in the distribution of T allele in 677C>T polymorphisms among patients with chromosomal abnormalities including both structural aberration and aneuploidy. The same significance result also found in patients with structural aberration when compare with the normal karyotype patients. Suggesting that polymorphism in the MTHFR gene was involved in chromosome abnormalities of leukemia. However, further investigation on the correlation with the specific types of chromosomal aberrations is needed.

  14. Genetic Analysis of a Kindred With X-linked Mental Handicap and Retinitis Pigmentosa

    PubMed Central

    Aldred, M. A.; Dry, K. L.; Knight-Jones, E. B.; Hardwick, L. J.; Teague, P. W.; Lester, D. H.; Brown, J.; Spowart, G.; Carothers, A. D.; Raeburn, J. A.; Bird, A. C.; Fielder, A. R.; Wright, A. F.

    1994-01-01

    A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified. PMID:7977353

  15. XYY chromosome abnormality in sexual homicide perpetrators.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2006-03-05

    In a retrospective investigation of the court reports about sexual homicide perpetrators chromosome analysis had been carried out in 13 of 166 (7.8%) men. Three men (1.8%) with XYY chromosome abnormality were found. This rate is much higher than that found in unselected samples of prisoners (0.7-0.9%) or in the general population (0.01%). The three men had shown prepubescent abnormalities, school problems, and had suffered from physical abuse. The chromosome analysis in all cases had been carried out in connection with the forensic psychiatric court report due to the sexual homicide. However, two men had earlier psychiatric referrals. All were diagnosed as sexual sadistic, showed a psychopathic syndrome or psychopathy according to the Psychopathy Checklist-Revised [Hare RD, 1991, The Hare Psychopathy Checklist-Revised, Toronto, Ontario, Canada: Multi-Health Systems]. Two were multiple murderers. Especially forensic psychiatrists should be vigilant of the possibility of XYY chromosome abnormalities in sexual offenders. (c) 2006 Wiley-Liss, Inc.

  16. Sex chromosomal abnormalities associated with equine infertility: validation of a simple molecular screening tool in the Purebred Spanish Horse.

    PubMed

    Anaya, G; Molina, A; Valera, M; Moreno-Millán, M; Azor, P; Peral-García, P; Demyda-Peyrás, S

    2017-08-01

    Chromosomal abnormalities in the sex chromosome pair (ECAX and ECAY) are widely associated with reproductive problems in horses. However, a large proportion of these abnormalities remains undiagnosed due to the lack of an affordable diagnostic tool that allows for avoiding karyotyping tests. Hereby, we developed an STR (single-tandem-repeat)-based molecular method to determine the presence of the main sex chromosomal abnormalities in horses in a fast, cheap and reliable way. The frequency of five ECAX-linked (LEX026, LEX003, TKY38, TKY270 and UCDEQ502) and two ECAY-linked (EcaYH12 and SRY) markers was characterized in 261 Purebred Spanish Horses to determine the efficiency of the methodology developed to be used as a chromosomal diagnostic tool. All the microsatellites analyzed were highly polymorphic, with a sizeable number of alleles (polymorphic information content > 0.5). Based on this variability, the methodology showed 100% sensitivity and 99.82% specificity to detect the most important sex chromosomal abnormalities reported in horses (chimerism, Turner's syndrome and sex reversal syndromes). The method was also validated with 100% efficiency in 10 individuals previously diagnosed as chromosomally aberrant. This STR screening panel is an efficient and reliable molecular-cytogenetic tool for the early detection of sex chromosomal abnormalities in equines that could be included in breeding programs to save money, effort and time of veterinary practitioners and breeders. © 2017 Stichting International Foundation for Animal Genetics.

  17. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs.

    PubMed

    Sánchez, Lluís; Beltrán, Elsa; de Stefani, Alberta; Guo, Ling T; Shea, Anita; Shelton, G Diane; De Risio, Luisa; Burmeister, Louise M

    2018-01-01

    Four full-sibling intact male Miniature Poodles were evaluated at 4-19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog.

  18. Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    PubMed Central

    Beltrán, Elsa; de Stefani, Alberta; Guo, Ling T.; Shea, Anita; Shelton, G. Diane

    2018-01-01

    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog. PMID:29474464

  19. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.

    PubMed

    Villagómez, D A F; Pinton, A

    2008-01-01

    Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.

  20. Chromosomal abnormalities in a psychiatric population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awarenessmore » to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.« less

  1. Linking abnormal mitosis to the acquisition of DNA damage

    PubMed Central

    Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis. PMID:23229895

  2. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  3. Who should be screened for chromosomal abnormalities before ICSI treatment?

    PubMed

    Dul, E C; van Ravenswaaij-Arts, C M A; Groen, H; van Echten-Arends, J; Land, J A

    2010-11-01

    Guidelines on karyotyping infertile men before ICSI treatment are not consistent. Most guidelines recommend chromosomal screening in azoospermic and severe oligozoospermic men, because they are assumed to have the highest risk of abnormalities. We performed a retrospective cohort study in azoospermic men and men eligible for ICSI. We determined the prevalence of chromosomal abnormalities in relation to sperm concentration and compared our data to studies in the literature. A high prevalence of chromosomal abnormalities in azoospermic men was found, but no difference in the prevalence of abnormalities was seen between different sperm concentration categories in non-azoospermic men. This raises the question of who should be screened for chromosomal abnormalities before ICSI treatment. Considering the costs and benefits, we would propose limiting screening to infertile couples with non-obstructive azoospermia.

  4. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia.

    PubMed

    Zaccaria, Alfonso; Valenti, Anna Maria; Donti, Emilio; Gozzetti, Alessandro; Ronconi, Sonia; Spedicato, Francesco

    2007-04-01

    Five Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) patients with additional chromosome abnormalities at diagnosis have been followed during Imatinib therapy. In all, the Ph chromosome disappeared, while the 5 cases, additional abnormalities [dup(1); del(5), +8 (2 patients) and +14] persisted in the subsequent studies, performed over a period of 11 to 49 months, either alone or together with a karyotypically normal cell population. This finding is consistent with a secondary origin of the Ph chromosome in these patients. It is still to early to evaluate the possible prognostic value of these additional abnormalities.

  5. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities.

    PubMed

    Ferlin, A; Garolla, A; Foresta, C

    2005-01-01

    The most common type of karyotype abnormality detected in infertile subjects is represented by Klinefelter's syndrome, and the most frequent non-chromosomal alteration is represented by Y chromosome long arm microdeletions. Here we report our experience and a review of the literature on sperm sex chromosome aneuploidies in these two conditions. Non mosaic 47,XXY Klinefelter patients (12 subjects) show a significantly lower percentage of normal Y-bearing sperm and slightly higher percentage of normal X-bearing sperm. Consistent with the hypothesis that 47,XXY germ cells may undergo and complete meiosis, aneuploidy rate for XX- and XY-disomies is also increased with respect to controls, whereas the percentage of YY-disomies is normal. Aneuploidy rates in men with mosaic 47,XXY/46,XY (11 subjects) are lower than those observed in men with non-mosaic Klinefelter's syndrome, and only the frequency of XY-disomic sperm is significantly higher with respect to controls. Although the great majority of children born by intracytoplasmic sperm injection from Klinefelter subjects are chromosomally normal, the risk of producing offspring with chromosome aneuploidies is significant. Men with Y chromosome microdeletions (14 subjects) showed a reduction of normal Y-bearing sperm, and an increase in nullisomic and XY-disomic sperm, suggesting an instability of the deleted Y chromosome causing its loss in germ cells, and meiotic alterations leading to XY non-disjunction. Intracytoplasmic injection of sperm from Y-deleted men will therefore transmit the deletion to male children, and therefore the spermatogenic impairment, but raises also concerns of generating 45,X and 47,XXY embryos. Copyright 2005 S. Karger AG, Basel.

  6. Genetic analysis of a kindred with X-linked mental handicap and retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldred, M.A.; Dry, K.L.; Hardwick, L.J.

    1994-11-01

    A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538more » and 5{prime}-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified. 33 refs., 2 figs., 2 tabs.« less

  7. Prevalence and consequences of chromosomal abnormalities in Canadian commercial swine herds.

    PubMed

    Quach, Anh T; Revay, Tamas; Villagomez, Daniel A F; Macedo, Mariana P; Sullivan, Alison; Maignel, Laurence; Wyss, Stefanie; Sullivan, Brian; King, W Allan

    2016-09-12

    Structural chromosome abnormalities are well known as factors that reduce fertility rate in domestic pigs. According to large-scale national cytogenetic screening programs that are implemented in France, it is estimated that new chromosome abnormalities occur at a rate of 0.5 % in fertility-unproven boars. This work aimed at estimating the prevalence and consequences of chromosome abnormalities in commercial swine operations in Canada. We found pig carriers at a frequency of 1.64 % (12 out of 732 boars). Carrier pigs consistently showed lower fertility values. The total number of piglets born for litters from carrier boars was between 4 and 46 % lower than the herd average. Similarly, carrier boars produced litters with a total number of piglets born alive that was between 6 and 28 % lower than the herd average. A total of 12 new structural chromosome abnormalities were identified. Reproductive performance is significantly reduced in sires with chromosome abnormalities. The incidence of such abnormal sires appears relatively high in populations without routine cytogenetic screening such as observed for Canada in this study. Systematic cytogenetic screening of potential breeding boars would minimise the risk of carriers of chromosome aberrations entering artificial insemination centres. This would avoid the large negative effects on productivity for the commercial sow herds and reduce the risk of transmitting abnormalities to future generations in nucleus farms.

  8. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear

  9. Association of recurrent pregnancy loss with chromosomal abnormalities and hereditary thrombophilias.

    PubMed

    Ocak, Z; Özlü, T; Ozyurt, O

    2013-06-01

    Recurrent pregnancy loss (RPL) which is generally known as >3 consecutive pregnancy losses before 20 weeks' gestation is seen in 0.5-2% of women. To evaluate the association of parental and fetal chromosomal abnormalities with recurrent pregnancy loss in our area and to analyze the frequency of three types of hereditary thrombophilia's; (MTHFR C677T polymorphisms, FV Leiden G1691A mutation and Prothrombin (factor II) G20210A mutation) in these female patients. The present case-control retrospective study was performed between February 2007 and December 2011 on 495 couples, who had two or more consecutive pregnancy losses before 20 weeks' gestation. We used conventional cytogenetic analysis and polymerase chain reaction-restriction fragment length polymorphism. Parental chromosomal abnormality was detected in 28 cases (2.8% of all cases, 5.7% of the couples) most of which (92.9%) were structural abnormalities. All of the structural abnormalities were balanced chromosomal translocations. Chromosomal analysis performed from the abortion materials detected a major chromosomal abnormality in 31.9% of the cases. The most frequently observed alteration in the hereditary thrombophilia genes was heterozygote mutation for the MTHFR C677T polymorphisms (n=55). Balanced translocations are the most commonly detected chromosomal abnormalities in couples being evaluated for recurrent pregnancy loss and these patients are the best candidates for offering prenatal genetic diagnosis by the help of which there is a possibility of obtaining a better reproductive outcome.

  10. A Case of ADHD and a Major Y Chromosome Abnormality

    ERIC Educational Resources Information Center

    Mulligan, Aisling; Gill, Michael; Fitzgerald, Michael

    2008-01-01

    Background: ADHD is a common, heritable disorder of childhood. Sex chromosome abnormalities are relatively rare conditions that are sometimes associated with behavioral disorders. Method: The authors present a male child with ADHD and a major de-novo Y chromosome abnormality consisting of deletion of the long arm and duplication of the short arm.…

  11. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals

    PubMed Central

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.

    2015-01-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888

  12. Fetal karyotyping for chromosome abnormalities after an unexplained elevated maternal serum alpha-fetoprotein screening.

    PubMed

    Feuchtbaum, L B; Cunningham, G; Waller, D K; Lustig, L S; Tompkinson, D G; Hook, E B

    1995-08-01

    To study the chromosome abnormality rate among women with elevated levels of maternal serum alpha-fetoprotein (MSAFP) and the types of chromosome abnormalities in this population, and to compare this rate with reports in the literature and the rate observed in the general population. We studied 8097 women who chose to undergo amniocentesis and fetal karyotyping after having an elevated MSAFP test of 2.5 multiples of the median (MOM) or higher. All abnormal karyotypes were reviewed and grouped according to whether the elevated MSAFP value could be explained by a ventral wall or neural tube defect. The overall chromosome abnormality rate was 13.83 per 1000 amniocenteses. The rate in the "unexplained" group was 10.92 per 1000 amniocenteses. Just over half (53%) of the abnormal karyotypes were autosomal anomalies, and 47% were sex chromosome abnormalities. The autosomal aneuploidies observed most frequently were triploidy and trisomy 13. The sex chromosome abnormalities observed most frequently were the XXY and XYY karyotypes. Women who have unexplained elevated MSAFP values of 2.5 MOM or greater have a twofold increase in the rate of chromosome abnormalities in their fetuses compared with the general population (P < or = .001). This rate is consistent with other studies that used a 2.5 MOM cutoff. Studies that used a 2.0 MOM cutoff have reported chromosome abnormality rates that do not vary from general population estimates.

  13. Down's Syndrome and Leukemia: Mechanism of Additional Chromosomal Abnormalities

    ERIC Educational Resources Information Center

    And Others; Goh, Kong-oo

    1978-01-01

    Chromosomal abnormalities, some appearing in a stepwise clonal evoluation, were found in five Down's syndrome patients (35 weeks to 12 years old), four with acute leukemia and one with abnormal regulation of leukopoiesis. (Author/SBH)

  14. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    PubMed Central

    2005-01-01

    Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex. PMID:15689636

  15. The incidence of chromosome abnormalities in neonates with structural heart disease.

    PubMed

    Dykes, John C; Al-mousily, Mohammad F; Abuchaibe, Eda-Cristina; Silva, Jennifer N; Zadinsky, Jennifer; Duarte, Daniel; Welch, Elizabeth

    2016-04-01

    This study was conducted to determine the prevalence of chromosomal anomalies in newborns with structural heart disease admitted to the cardiac intensive care unit (CICU) at Nicklaus Children's Hospital (NCH). A retrospective review identified newborns age 30 days or less admitted to NCH CICU between 2004 and 2010. Patients with structural heart disease who required admission to our CICU and received karyotype or karyotype and fluorescent in situ hybridization (FISH) testing were included in the study. All patients were examined for the presence of dysmorphic features. Four hundred and eighty-two patients met the criteria for the study; 405 (84%) received both karyotype and FISH. Chromosome abnormalities were present in 86 (17.8%) patients. Syndromes accounted for 20 (5.1%) of those with normal chromosomes. Dysmorphic features were seen in 79.1% of patients with abnormal chromosomes and 25.5% of those with normal chromosomes. All patients with syndromes were dysmorphic. Race and gender did not significantly affect the incidence of genetic abnormalities. Chromosome abnormalities, including syndromes, are prevalent in newborns with congenital heart disease. Further research is needed to evaluate the utility of cytogenetic screening in all children with congenital heart disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Hidden chromosome 8 abnormalities detected by FISH in adult primary myelodysplastic syndromes.

    PubMed

    Panani, Anna D; Pappa, Vasiliki

    2005-01-01

    Acquired clonal chromosomal abnormalities are found in about 30-50% of primary myelodysplastic syndromes (MDS). These abnormalities are predominantly characterized by total/partial chromosomal losses or gains and rarely by balanced structural aberrations. Trisomy 8 represents the most common chromosomal gain. In the present study, the numerical aberration of chromosome 8 was evaluated by the fluorescence in situ hybridization (FISH) technique in MDS, and the results compared with those of conventional cytogenetics. Thirty adult patients with primary MDS, 17 with a normal karyotype and 13 with several chromosomal abnormalities except chromosome 8, were included in this study. On comparing the results of FISH and conventional cytogenetics, a superiority of FISH over the karyotype was detected in 3 cases. In one of them, further cytogenetic analysis confirmed the FISH results. Nevertheless, the FISH technique has limitations, detecting only abnormalities specific for the target FISH probe used In clinical practice, conventional cytogenetics continues to be the basic technique for MDS patient evaluation. However, a large number of metaphases, even those of poor quality, must be analyzed in each case. The FISH technique could be considered to be complementary to achieve a more accurate analysis.

  17. Abnormal chromosome behavior in human oocytes which remained unfertilized during human in vitro fertilization.

    PubMed

    Spielmann, H; Krüger, C; Stauber, M; Vogel, R

    1985-09-01

    Chromosomal abnormalities and abnormal embryonic development have previously been observed after human in vitro fertilization (IVF). Chromosomal abnormalities may arise not only after fertilization but even earlier during meiotic maturation of human oocytes in culture. Since chromosomal analysis is simple in oocytes during meiotic maturation, the chromosomal status was analyzed in oocytes which remained unfertilized in a human in vitro fertilization program. In 50 fertilization attempts the chromosomes of 62 unfertilized oocytes could be analyzed; 45 of them were in the process of meiotic maturation. In three oocytes two small polar bodies were observed 16-18 hr after insemination in the absence of fertilization. In one oocyte abnormal chromosome behavior was found during the first meiotic division, and in four oocytes during metaphase of the second meiotic division. These data suggest that chromosomal analysis of unfertilized oocytes in human IVF may improve the understanding human oocyte maturation and fertilization.

  18. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozzio, C.B.; Bamberger, E.; Anderson, I.

    1994-09-01

    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identifiedmore » the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.« less

  19. Characterization and prognostic implication of 17 chromosome abnormalities in myelodysplastic syndrome.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; Arenillas, Leonor; Valcarcel, David; Vallespí, Teresa; Costa, Dolors; Nomdedeu, Benet; Jimenez, María José; Granada, Isabel; Grau, Javier; Ardanaz, María T; de la Serna, Javier; Carbonell, Félix; Cervera, José; Sierra, Adriana; Luño, Elisa; Cervero, Carlos J; Falantes, José; Calasanz, María J; González-Porrás, José R; Bailén, Alicia; Amigo, M Luz; Sanz, Guillermo; Solé, Francesc

    2013-07-01

    The prognosis of chromosome 17 (chr17) abnormalities in patients with primary myelodysplastic syndrome (MDS) remains unclear. The revised International Prognostic Scoring System (IPSS-R) includes these abnormalities within the intermediate cytogenetic risk group. This study assessed the impact on overall survival (OS) and risk of acute myeloid leukemia transformation (AMLt) of chr17 abnormalities in 88 patients with primary MDS. We have compared this group with 1346 patients with primary MDS and abnormal karyotype without chr17 involved. The alterations of chr17 should be considered within group of poor prognosis. The different types of alterations of chromosome 17 behave different prognosis. The study confirms the intermediate prognostic impact of the i(17q), as stated in IPSS-R. The results of the study, however, provide valuable new information on the prognostic impact of alterations of chromosome 17 in complex karyotypes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Chromosome and molecular abnormalities in myelodysplastic syndromes.

    PubMed

    Fenaux, Pierre

    2001-06-01

    Cytogenetic abnormalities are seen in approximately 50% of cases of myelodysplastic syndrome (MDS) and 80% of cases of secondary MDS (following chemotherapy or radiotherapy). These abnormalities generally consist of partial or complete chromosome deletion or addition (del5q, -7, +8, -Y, del20q), whereas balanced or unbalanced translocations are rarely found in MDS. Fluorescence hybridization techniques (fluorescence in situ hybridization [FISH], multiplex FISH, and spectral karyotyping) are useful in detecting chromosomal anomalies in cases in which few mitoses are obtained or rearrangements are complex. Ras mutations are the molecular abnormalities most frequently found in MDS, followed by p15 gene hypermethylation, FLT3 duplications, and p53 mutations, but none of these abnormalities are specific for MDS. The rare cases of balanced translocations in MDS have allowed the identification of genes whose rearrangements appear to play a role in the pathogenesis of some cases of MDS. These genes include MDS1-EVI1 in t(3;3) or t(3;21) translocations, TEL in t(5;12), HIP1 in t(5;7), MLF1 in t(3;5), and MEL1 in t(1;3). Genes more frequently implicated in the pathogenesis of MDS cases, such as those involving del5q, remain unknown, although some candidate genes are currently being studied. Cytogenetic and known molecular abnormalities generally carry a poor prognosis in MDS and can be incorporated into prognostic scoring systems such as the International Prognostic Scoring System.

  1. Abnormalities at chromosome region 3p12-14 characterize clear cell renal carcinoma.

    PubMed

    Carroll, P R; Murty, V V; Reuter, V; Jhanwar, S; Fair, W R; Whitmore, W F; Chaganti, R S

    1987-06-01

    In an effort to determine whether or not any characteristic chromosomal abnormalities exist in renal cancer, cytogenetic findings were correlated with tumor histology in nine cases of renal adenocarcinoma. Metaphase preparations adequate for analysis were obtained from cultures harvested between day 3 and day 21. Model chromosome number was diploid in three cases, hypodiploid in three, and hyperdiploid in the remaining three. One clear cell adenocarcinoma failed to reveal any chromosomal abnormality. Two tumors, a tubular/papillary carcinoma and an acinar/papillary carcinoma, showed the clonal abnormalities del(1)(p2l),+2,+7,+8,+12,+13,+16,+17,-21 and t(2;10)(q14-21;q26),+7q,+11q,-18, respectively. Interestingly, five of six clear cell tumors studied had clonal abnormalities affecting the short arm of chromosome #3 in the 3p12-21 region, and in the remaining case, of 15 karyotyped metaphases suitable for interpretation, one showed a deletion in 3p. These data indicate that clear cell carcinoma of the kidney may be associated with a nonrandom chromosomal abnormality involving the 3p12-14 region.

  2. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    PubMed

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  3. Becker muscular dystrophy severity is linked to the structure of dystrophin.

    PubMed

    Nicolas, Aurélie; Raguénès-Nicol, Céline; Ben Yaou, Rabah; Ameziane-Le Hir, Sarah; Chéron, Angélique; Vié, Véronique; Claustres, Mireille; Leturcq, France; Delalande, Olivier; Hubert, Jean-François; Tuffery-Giraud, Sylvie; Giudice, Emmanuel; Le Rumeur, Elisabeth

    2015-03-01

    In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e. Δ45-47, Δ45-48, Δ45-49 and Δ45-51. Molecular homology modelling revealed that the proteins corresponding to deletions Δ45-48 and Δ45-51 displayed a similar structure (hybrid repeat) than the wild-type dystrophin, whereas deletions Δ45-47 and Δ45-49 lead to proteins with an unrelated structure (fractional repeat). All four proteins in vitro expressed in a fragment encoding repeats 16-21 were folded in α-helices and remained highly stable. Refolding dynamics were slowed and molecular surface hydrophobicity were higher in fractional repeat containing Δ45-47 and Δ45-49 deletions compared with hybrid repeat containing Δ45-48 and Δ45-51 deletions. By retrospectively collecting data for a series of French BMD patients, we showed that the age of dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in Δ45-48 and Δ45-49 compared with Δ45-47 patients, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ45-47 and Δ45-49 patients compared with Δ45-48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    PubMed

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  5. Female phenotype and multiple abnormalities in sibs with a Y chromosome and partial X chromosome duplication: H--Y antigen and Xg blood group findings.

    PubMed Central

    Bernstein, R; Jenkins, T; Dawson, B; Wagner, J; Dewald, G; Koo, G C; Wachtel, S S

    1980-01-01

    A mentally retarded female child with multiple congenital abnormalities had an abnormal X chromosome and a Y chromosome; the karyotype was interpreted as 46,dup(X)(p21 leads to pter)Y. Prenatal chromosome studies in a later pregnancy indicated the same chromosomal abnormality in the fetus. The fetus and proband had normal female genitalia and ovarian tissue. H--Y antigen was virtually absent in both sibs, a finding consistent with the view that testis-determining genes of the Y chromosome may be suppressed by regulatory elements of the X. The abnormal X chromosome was present in the mother, the maternal grandmother, and a female sib: all were phenotypically normal and showed the karyotype 46,Xdup(X)(p21 leads to pter) with non-random inactivation of the abnormal X. Anomalous segregation of the Xga allele suggests that the Xg locus was involved in the inactivation process or that crossing-over at meiosis occurred. Images PMID:7193738

  6. Chromosome Abnormalities

    MedlinePlus

    ... chromosome has attached to another at the centromere. Inversions: A portion of the chromosome has broken off, ... individual and was not inherited from the parents. Inversion: A portion of the chromosome has broken off, ...

  7. The induction of chromosomal abnormalities by inhalational anaesthetics.

    PubMed

    Grant, C J; Powell, J N; Radford, S G

    1977-06-01

    When Vicia faba root tips are exposed for 2 h to clinically useful concentrations of halothane or methoxyflurane in air, or to halothane in 80% nitrous oxide/20% oxygen, there is a transient increase in mitotic index and then abnormal interphase cells are produced in proportion to the anaesthetic concentrations. After exposure there is a period of mitotic inhibition during which the cells become partially synchronised. When colchicine-metaphase cells collected 28 h after exposure are compared with controls and with metaphases collected only 4 h after exposure, they show a significant increase in the incidence of aneuploidy, tetraploidy and the results of chromosome breakage. It is suggested that all the abnormalities seen can be accounted for by the effects of the anaesthetics on spindle movements, and that at the concentrations used the anaesthetics have no mutagenic effects on chromosomes in interphase.

  8. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    PubMed Central

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-01

    Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by

  9. Chromosomal abnormalities are associated with aging and cancer

    Cancer.gov

    Two new studies have found that large structural abnormalities in chromosomes, some of which have been associated with increased risk of cancer, can be detected in a small fraction of people without a prior history of cancer. The studies found that these

  10. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  11. Bardet-Biedl syndrome: Mapping of a new locus to chromosome 3 and fine-mapping of the chromosome 16 linked locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitek-Black, A.E.; Rokhlina, T.; Nishimura, D.Y.

    Bardet-Biedl syndrome (BBS) is a heterogeneous autosomal recessive disorder characterized by mental retardation, post-axial polydactyly, obesity, retinitis pigmentosa, and hypogonadism. Other features of this disease include renal and cardiovascular abnormalities and an increased incidence of hypertension and diabetes mellitus. The molecular etiology for BBS is not known. We previously linked BBS to chromosome 16q13 in a large inbred Bedouin family, and excluded this locus in a second large inbred Bedouin family. We now report linkage of this second family to markers on chromosome 3q, proving non-allelic, genetic heterogeneity in the Bedouin population. A third large inbred Bedouin family was excludedmore » from the 3q and 16q BBS loci. In addition to the identification of a new BBS locus on chromosome 3, we have identified and utilized additional short tandem repeat polymorphisms (STRPs) in the 16q BBS region to narrow the candidate interval to 3 cM. Additional recombinant individuals will allow further refinement of the interval. Identification of genes causing BBS has the potential to provide insight into diverse genetic traits and disease processes including obesity, hypertension, diabetes, retinal degeneration, and abnormal limb, renal and cardiac development.« less

  12. Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature

    PubMed Central

    Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela

    2003-01-01

    The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896

  13. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  14. Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex.

    PubMed

    Sciandra, Francesca; Bozzi, Manuela; Bianchi, Marzia; Pavoni, Ernesto; Giardina, Bruno; Brancaccio, Andrea

    2003-01-01

    Dystroglycan (DG) is an adhesion molecule composed of two subunits, alpha and beta, that are produced by the post-translational cleavage of a single precursor molecule. DG is a pivotal component of the dystrophin-glycoprotein complex (DGC), which connects the extracellular matrix to the cytoskeleton in skeletal muscle and many other tissues. Some muscular dystrophies are caused by mutations of DGC components, such as dystrophin, sarcoglycan or laminin-2, or also of DGC-associated molecules, such as caveolin-3. DG-null mice died during early embriogenesis and no neuromuscular diseases directly associated to genetic abnormalities of DG were identified so far. However, DG plays a crucial role for muscle integrity since its targeting at the sarcolemma is often perturbed in DGC-related neuromuscular disorders.

  15. Electrotransfer of the full-length dog dystrophin into mouse and dystrophic dog muscles.

    PubMed

    Pichavant, Christophe; Chapdelaine, Pierre; Cerri, Daniel G; Bizario, Joao C S; Tremblay, Jacques P

    2010-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.

  16. Functional correction of dystrophin actin binding domain mutations by genome editing

    PubMed Central

    Kyrychenko, Viktoriia; Kyrychenko, Sergii; Tiburcy, Malte; Shelton, John M.; Long, Chengzu; Schneider, Jay W.; Zimmermann, Wolfram-Hubertus; Bassel-Duby, Rhonda

    2017-01-01

    Dystrophin maintains the integrity of striated muscles by linking the actin cytoskeleton with the cell membrane. Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD) that result in progressive, debilitating muscle weakness, cardiomyopathy, and a shortened lifespan. Mutations of dystrophin that disrupt the amino-terminal actin-binding domain 1 (ABD-1), encoded by exons 2–8, represent the second-most common cause of DMD. In the present study, we compared three different strategies for CRISPR/Cas9 genome editing to correct mutations in the ABD-1 region of the DMD gene by deleting exons 3–9, 6–9, or 7–11 in human induced pluripotent stem cells (iPSCs) and by assessing the function of iPSC-derived cardiomyocytes. All three exon deletion strategies enabled the expression of truncated dystrophin protein and restoration of cardiomyocyte contractility and calcium transients to varying degrees. We show that deletion of exons 3–9 by genomic editing provides an especially effective means of correcting disease-causing ABD-1 mutations. These findings represent an important step toward eventual correction of common DMD mutations and provide a means of rapidly assessing the expression and function of internally truncated forms of dystrophin-lacking portions of ABD-1. PMID:28931764

  17. Genomic imprinting as a probable explanation for variable intrafamilial phenotypic expression of an unusual chromosome 3 abnormality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryburg, J.S.; Shashi, V.; Kelly, T.E.

    1994-09-01

    We present a 4 generation family in which an abnormal chromosome 3 with dup(3)(q25) segregated from great-grandmother to grandmother to son without phenotypic effect. The son`s 2 daughters have dysmorphic features, mild developmental delays and congenital heart disease. Both girls have the abnormal chr. 3 but are the only family members with the abnormality to have phenotypic effects. An unaffected son of the father has normal chromosomes. FISH with whole chromosome paints for chromosomes 1, 2, 6, 7, 8, 14, 18, and 22 excluded these as the origin of the extra material. Chromosome 3-specific paint revealed a uniform pattern, suggestingmore » that the extra material is from chromosome 3. Comparative genomic hybridization and DNA studies are pending. Possible explanations for the discordance in phenotypes between the 4th generation offspring and the first 3 generations include: an undetected rearrangement in the previous generations that is unbalanced in the two affected individuals; the chromosome abnormality may be a benign variant and unrelated to the phenotype; or, most likely, genomic imprinting. Genomic imprinting is suggested by the observation that a phenotypic effect was only seen after the chromosome was inherited from the father. The mothers in the first two generations appear to have passed the abnormal chr. 3 on without effect. This is an opportunity to delineate a region of the human genome affected by paternal imprinting.« less

  18. Dystrophin Immunity in Duchenne’s Muscular Dystrophy

    PubMed Central

    Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao; Samulski, Jade; McPhee, Scott W.; Samulski, R. Jude; Walker, Christopher M.

    2010-01-01

    SUMMARY We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.) PMID:20925545

  19. X Chromosome Abnormalities and Cognitive Development: Implications for Understanding Normal Human Development.

    ERIC Educational Resources Information Center

    Walzer, Stanley

    1985-01-01

    Argues that knowledge from studies of individuals with sex chromosome abnormalities can further understanding of aspects of normal human development. Studies of XO girls, XXY boys, XXX girls, and males with a fragile X chromosome are summarized to demonstrate how results contribute to knowledge about normal cognitive development and about…

  20. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  1. Genetics Home Reference: X-linked lissencephaly with abnormal genitalia

    MedlinePlus

    ... Health Conditions X-linked lissencephaly with abnormal genitalia X-linked lissencephaly with abnormal genitalia Printable PDF Open ... Javascript to view the expand/collapse boxes. Description X-linked lissencephaly with abnormal genitalia (XLAG) is a ...

  2. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  3. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.

    PubMed

    Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo

    2015-01-01

    Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.

  4. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease.

    PubMed

    Xia, Yu; Yang, Yongchao; Huang, Shufang; Wu, Yueheng; Li, Ping; Zhuang, Jian

    2018-03-24

    This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs. © 2018 John Wiley & Sons, Ltd.

  5. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    PubMed

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  6. High frequency of X chromosome abnormalities in women with short stature and elevated liver enzymes.

    PubMed

    Roulot, Dominique; Malan, Valérie; Ziol, Marianne; Linglart, Agnès; Bourcier, Valérie; Beaugrand, Michel; Benzacken, Brigitte

    2014-08-01

    Paucisymptomatic forms of Turner's syndrome (TS), in which short stature is the predominant clinical abnormality, remain underdiagnosed. Abnormal liver tests are extremely frequent in adult TS patients reflecting various types of hepatic lesions. The objective of the study was to investigate whether unexplained elevated liver enzymes in women with short stature could reveal X chromosome abnormalities of undiagnosed TS. Thirty-one consecutive short stature women displaying elevated liver enzymes and no previous diagnosis of TS were compared with 31 age-matched controls in a prospective study. Liver biopsy was performed in 26 patients. Systematic karyotype analysis and fluorescence in situ hybridization. X chromosome abnormalities were found in 27 patients and one control (87.0% vs 3.2%, P < .0001), including a 45,X/46,XX mosaicism in 24 patients and isochromosome of the long arm in three. Liver histological analysis showed architectural changes in 17 patients with nodular regenerative hyperplasia in 12. Biliary lesions were present in 13 patients and liver steatosis in 20. X chromosome abnormalities indicative of cryptic TS are extremely frequent in short-stature women with unexplained elevated liver enzymes. In short-stature women, abnormal liver tests should lead to systematic karyotype analysis.

  7. Genetic counseling for men with recurrent pregnancy loss or recurrent implantation failure due to abnormal sperm chromosomal aneuploidy.

    PubMed

    Kohn, Taylor P; Kohn, Jaden R; Darilek, Sandra; Ramasamy, Ranjith; Lipshultz, Larry

    2016-05-01

    The purpose of this study is to review recurrent pregnancy loss (RPL) due to sperm chromosomal abnormalities and discuss the genetic counseling that is required for men with sperm chromosomal abnormalities. The literature was reviewed, and a genetic counselor lends her expertise as to how couples with RPL and sperm chromosomal abnormalities ought to be counseled. The review of the literature was performed using MEDLINE. Sperm fluorescence in situ hybridization (FISH) can be used to determine if disomy or unbalanced chromosomal translocations are present. In men with aneuploidy in sperm or who carry a chromosomal translocation, pre-implantation genetic screening (PGS) combined with in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI) can increase chances of live birth. In men with abnormal sperm FISH results, the degree of increased risk of abnormal pregnancy remains unclear. Genetic counselors can provide information to couples about the risk for potential trisomies and sex chromosome aneuploidies and discuss their reproductive and testing options such as PGS, use of donor sperm, and adoption. The provision of genetic counseling also allows a couple to be educated about recommended prenatal testing since pregnancies conceived with a partner who has had abnormal sperm FISH are considered to be at increased risk for aneuploidy. We review the literature and discuss genetic counseling for couples with RPL or recurrent implantation failure due to increased sperm aneuploidy.

  8. Chromosomal abnormalities in azoospermic and non-azoospermic infertile men: numbers needed to be screened to prevent adverse pregnancy outcomes.

    PubMed

    Dul, E C; van Echten-Arends, J; Groen, H; Dijkhuizen, T; Land, J A; van Ravenswaaij-Arts, C M A

    2012-09-01

    How many infertile men who wish to conceive need to be screened for chromosomal abnormalities to prevent one miscarriage or the birth of one child with congenital anomalies (CAs)? In azoospermic men, the prevalence of chromosomal abnormalities is 15.2% and the number needed to be screened (NNS; minimum-maximum estimate) for a miscarriage is 80-88 and for a child with CAs is 790-3951. The prevalence of chromosomal abnormalities in non-azoospermic men is 2.3% and the NNS are 315-347 and 2543-12 723, respectively. Guidelines advise the screening of infertile men for chromosomal abnormalities to prevent miscarriages and children with congenital abnormalities, but no studies have been published on the effectiveness of this screening strategy. Retrospective cohort study of 1223 infertile men between 1994 and 2007. Men with azoospermia and men eligible for ICSI treatment visiting a university hospital fertility clinic in The Netherlands who underwent chromosomal analysis between 1994 and 2007 were identified retrospectively in a registry. Only cases of which at least one sperm analysis was available were included. Data were collected by chart review, with a follow-up of pregnancies and their outcomes until 2010. The chromosomal abnormalities were categorized according to their risk of unbalanced offspring, i.e. miscarriage and/or child with CAs. Multi-level analysis was used to estimate the impact of chromosomal abnormalities on the outcome of pregnancies in the different subgroups of our cohort. NNS for miscarriages and children with CAs were calculated based on data from our cohort and data published in the literature. A chromosomal abnormality was found in 12 of 79 men with azoospermia (15.2%) and in 26 of 1144 non-azoospermic men (2.3%). The chromosomal abnormalities were categorized based on the literature, into abnormalities with and abnormalities without increased risk for miscarriage and/or child with CAs. In our study group, there was no statistically significant

  9. Traditional karyotyping vs copy number variation sequencing for detection of chromosomal abnormalities associated with spontaneous miscarriage.

    PubMed

    Liu, S; Song, L; Cram, D S; Xiong, L; Wang, K; Wu, R; Liu, J; Deng, K; Jia, B; Zhong, M; Yang, F

    2015-10-01

    To compare the performance of traditional G-banding karyotyping with that of copy number variation sequencing (CNV-Seq) for detection of chromosomal abnormalities associated with miscarriage. Products of conception (POC) were collected from spontaneous miscarriages. Chromosomal abnormalities were detected using high-resolution G-banding karyotyping and CNV sequencing. Quantitative fluorescent polymerase chain reaction analysis of maternal and POC DNA for short tandem repeat (STR) markers was used to both monitor maternal cell contamination and confirm the chromosomal status and sex of the miscarriage tissue. A total of 64 samples of POC, comprising 16 with an abnormal and 48 with a normal karyotype, were selected and coded for analysis by CNV-Seq. CNV-Seq results were concordant for 14 (87.5%) of the 16 gross chromosomal abnormalities identified by karyotyping, including 11 autosomal trisomies and three sex chromosomal aneuploidies (45,X). Of the two discordant results, a 69,XXX polyploidy was missed by CNV-Seq, although supporting STR marker analysis confirmed the triploidy. In contrast, CNV-Seq identified a sample with 45,X karyotype as a 45,X/46,XY mosaic. In the remaining 48 samples of POC with a normal karyotype, CNV-Seq detected a 2.58-Mb 22q deletion associated with DiGeorge syndrome and nine different smaller CNVs of no apparent clinical significance. CNV-Seq used in parallel with STR profiling is a reliable and accurate alternative to karyotyping for identifying chromosome copy number abnormalities associated with spontaneous miscarriage. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  10. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    PubMed

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Down syndrome-associated haematopoiesis abnormalities created by chromosome transfer and genome editing technologies.

    PubMed

    Kazuki, Yasuhiro; Yakura, Yuwna; Abe, Satoshi; Osaki, Mitsuhiko; Kajitani, Naoyo; Kazuki, Kanako; Takehara, Shoko; Honma, Kazuhisa; Suemori, Hirofumi; Yamazaki, Satoshi; Sakuma, Tetsushi; Toki, Tsutomu; Shimizu, Ritsuko; Nakauchi, Hiromitsu; Yamamoto, Takashi; Oshimura, Mitsuo

    2014-08-27

    Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.

  12. Function of the Sex Chromosomes in Mammalian Fertility

    PubMed Central

    Heard, Edith; Turner, James

    2011-01-01

    The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045

  13. Müllerian Agenesis in Cat Eye Syndrome and 22q11 Chromosome Abnormalities: A Case Report and Literature Review.

    PubMed

    AlSubaihin, Abdulmajeed; VanderMeulen, John; Harris, Kate; Duck, John; McCready, Elizabeth

    2018-04-01

    Although Müllerian agenesis is the second most common cause of primary amenorrhea the underlying etiology in most cases is unknown. Müllerian agenesis has been reported as a rare finding associated with chromosomal aberrations of the 22q11 chromosomal region including at least 1 individual with cat eye syndrome (CES) and 10 individuals with deletions or duplications of the 22q11.2 region. However, a potential link between 22q11 abnormalities and uterine malformations has been difficult to adequately ascertain because of the limited case reports in the literature. We report a second case of Müllerian agenesis in a girl with CES. A 16-year-old girl presented with bilateral colobomata, primary amenorrhea, and absence of the uterus and upper vagina on pelvic magnetic resonance imaging. Microarray analysis showed tetrasomy of the pericentromeric region of chromosome 22 diagnostic of CES. Müllerian aplasia/hypoplasia might represent a rare feature in CES and should be considered in the investigation of young girls with this syndrome. An increasing number of cases with 22q11 chromosome abnormalities and Müllerian agenesis further highlights the possibility of a gene within the 22q11 region that might mediate normal Müllerian development in girls. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  14. Chromosomal abnormalities in HPV-16-immortalized oral epithelial cells.

    PubMed

    Oda, D; Bigler, L; Mao, E J; Disteche, C M

    1996-09-01

    Human papilloma virus (HPV) type 16 has an established association with anogenital carcinoma, and to some extent with human oral squamous cell carcinoma. We hypothesize that HPV type 16 is capable of inducing chromosomal and cell cycle changes in cultured oral epithelial cells. Normal human oral epithelia] cells were immortalized with recombinant retrovirus containing the E6/E7 open reading frames of HPV type 16. These cells have been in culture for more than 350 passages and over 4 years. Flow cytometry demonstrated an average of 42% nuclear aneuploidy in HPV 16-immortalized cells; 16% in normal controls (probably tetrasomy). Cytogenetic analysis demonstrated significant progression of chromosomal abnormalities. Cells at early passage (p10) showed trisomy 20, with no other major changes. At passage 18, trisomy 1q and monosomy 13 were seen in addition to trisomy 20. At passage 61 there were two distinct cell populations ('a' and 'b'), with multiple chromosomal changes including trisomy 5q,14,20 in one line and 7p,9q,llq in the other. Both populations had monosomy 3p, with monosomy 8p in one population and monosomy 13 in the other. At passage 136, the cells were essentially identical to population 'b' of passage 61. At this passage, mutation of the p53 gene was detected at codon 273 of exon 8, with G to T conversion (Arg to Leu). This was absent in the normal cells from which this line was developed. Passage 262 contained the two major cell populations, each with a sub-group with additional chromosomal changes such as 10p monosomy. Cells from passages 217 and 305 were injected into nude mice a year apart. Both failed to produce tumors, as did normal cells. In conclusion, we present an HPV type 16-immortalized oral epithelial cell line (IHGK) with extensive and progressive chromosomal abnormalities, invasive growth in culture and yet no tumor formation in nude mice. We suggest that the question as to whether HPV alone can induce transformation is still open.

  15. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.

    PubMed

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  16. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    PubMed Central

    Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph

    2015-01-01

    Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858

  17. Associations of recurrent miscarriages with chromosomal abnormalities, thrombophilia allelic polymorphisms and/or consanguinity in Saudi Arabia.

    PubMed

    Turki, Rola F; Assidi, Mourad; Banni, Huda A; Zahed, Hanan A; Karim, Sajjad; Schulten, Hans-Juergen; Abu-Elmagd, Muhammad; Rouzi, Abdulrahim A; Bajouh, Osama; Jamal, Hassan S; Al-Qahtani, Mohammed H; Abuzenadah, Adel M

    2016-10-10

    Recurrent pregnancy loss (RPL) or recurrent spontaneous abortion is an obstetric complication that affects couples at reproductive age. Previous reports documented a clear relationship between parents with chromosomal abnormalities and both recurrent miscarriages and infertility. However, limited data is available from the Arabian Peninsula which is known by higher rates of consanguineous marriages. The main goal of this study was to determine the prevalence of chromosomal abnormalities and thrombophilic polymorphisms, and to correlate them with RPL and consanguinity in Saudi Arabia. Cytogenetic analysis of 171 consent patients with RPL was performed by the standard method of 72-h lymphocyte culture and GTG banding. Allelic polymorphisms of three thrombophilic genes (Factor V Leiden, Prothrombin A20210G, MTHFR C677T) were performed using PCR-RFLP (restriction fragment length polymorphism) and gel electrophoresis. Data analysis revealed that 7.6 % of patients were carrier of numerical or structural chromosomal abnormalities. A high rate of translocations (46 %) was associated to increased incidence of RPL. A significant correlation between consanguineous RPL patients and chromosomal abnormalities (P < 0.05) was found. Both Factor V Leiden and Prothrombin A20210G allelic polymorphisms were significantly associated with a higher prevalence of RPL. This study demonstrated a strong association between RPL and the prevalence of chromosomal abnormalities and inherited thrombophilia. Given the high rate of consanguineous marriages in the Saudi population, these results underline the importance of systematic cytogenetic investigation and genetic counseling preferably at the premarital stage or at least during early pregnancy phase through preimplantation genetic diagnosis (PGD).

  18. The influence of parity and gravidity on first trimester markers of chromosomal abnormality.

    PubMed

    Spencer, K; Ong, C Y; Liao, A W; Nicolaides, K H

    2000-10-01

    We have studied changes in first trimester fetal nuchal translucency (NT) and maternal serum free beta-hCG and PAPP-A with gravidity and parity in 3252 singleton pregnancies unaffected by chromosomal abnormality or major pregnancy complications. We have shown that gravidity and parity is associated with a small but progressive decrease in fetal NT and a small but progressive increase in free beta-hCG and PAPP-A. None of these small changes with increasing gravidity or parity are statistically significant and hence correction for these variables is not necessary when considering first trimester screening for chromosomal abnormalities. Copyright 2000 John Wiley & Sons, Ltd.

  19. Health-related quality of life experienced by children with chromosomal abnormalities and congenital heart defects.

    PubMed

    Garcia Guerra, Gonzalo; Joffe, Ari R; Robertson, Charlene M T; Atallah, Joseph; Alton, Gwen; Sauve, Reg S; Dinu, Irina A; Ross, David B; Rebeyka, Ivan M

    2014-03-01

    Long-term outcomes are fundamental in advising parents about the potential future of their children with congenital heart disease (CHD). No published reports have described the health-related quality of life (HRQL) experienced by children with chromosomal abnormalities who had surgery in early infancy for CHD. A study was undertaken to assess HRQL among children with chromosomal abnormalities and CHD. The authors hypothesized that these children have a worse HRQL than healthy children or a cohort of children matched for CHD diagnosis. Infants with chromosomal abnormalities undergoing cardiac surgery for CHD at 6 weeks of age or younger at the Stollery Children's Hospital between July 2000 and June 2005 were included in the study. The HRQL of these infants was assessed using the Pediatric Quality of Life Inventory (PedsQL) 4.0 Generic Core Scales completed by their parents at a 4-year follow-up evaluation. The study compared the scores for 16 children with normative data. The children with chromosomal abnormalities and CHD had significantly lower mean total PedsQL (71.3 vs. 87.3; p < 0.0001), Psychosocial Summary (70.3 vs. 86.1; p < 0.0001), and Physical Summary (74.3 vs. 89.2; p = 0.0006) scores. Compared with the matched children, those with chromosomal abnormalities had a significantly lower median total PedsQL (75.0 vs. 84.6; p = 0.03), Physical Summary (79.5 vs. 96.9; p = 0.007), and School Functioning (68.5 vs. 83.0; p = 0.03) scores. A better understanding of the mechanisms and determinants of HRQL in these children has the potential to yield important implications for clinical practice including clarity for treatment decision making as well as determination of targeted supports and services to meet the needs of these children and their families differentially.

  20. Determinants of parental decisions to abort for chromosome abnormalities.

    PubMed

    Drugan, A; Greb, A; Johnson, M P; Krivchenia, E L; Uhlmann, W R; Moghissi, K S; Evans, M I

    1990-08-01

    Parental decisions concerning the continuation of pregnancy following prenatal detection of abnormal chromosomes were evaluated for 80 patients whose diagnosis and prenatal counselling were performed in our centre. Twenty-two anomalies were diagnosed by chorionic villus sampling (CVS) and 58 by amniocentesis. The severity of the chromosome anomaly and associated ultrasound findings in the first vs. second trimester were correlated with patients' decisions. No difference was found in the likelihood of parental decisions to interrupt or continue a pregnancy between CVS and amniocentesis for either the 'severe' or the 'questionable' group of chromosome anomalies. Ninety-three per cent of patients with severe prognosis and 27 per cent with questionable prognosis opted for pregnancy termination (p less than 0.0001). The association of ultrasound anomalies and termination was highly significant (p less than 0.001). The severity of the chromosome anomaly, and, to a lesser extent, the visualization of anomalies on ultrasound were the major determinants of parental decisions to terminate the pregnancy. The diagnosis of an anomaly in the first trimester was no more likely ito lead to a termination of pregnancy than in the second trimester.

  1. Chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar and their association with sperm retrieval intracytoplasmic sperm injection outcomes.

    PubMed

    Arafa, Mohamed M; Majzoub, Ahmad; AlSaid, Sami S; ElAnsari, Walid; Al Ansari, Abdulla; Elbardisi, Yara; Elbardisi, Haitham T

    2018-03-01

    To study the types and incidence of chromosomal abnormalities in infertile men with azoospermia and severe oligozoospermia in Qatar, and to compare the hormonal changes, testicular sperm retrieval rate, and intracytoplasmic sperm injection (ICSI) outcome between patients with chromosomal abnormalities and patients with idiopathic infertility. This study involved the retrospective chart review of 625 infertile male patients attending an academic tertiary medical centre in Qatar. Retrieved information included data on medical history, family history, clinical examination, semen analysis, initial hormonal profiles, and genetic studies, ICSI, and sperm retrieval results. The incidence of chromosomal abnormalities was 9.59% (10.6% amongst Qatari patients, 9.04% amongst non-Qataris). About 63.6% of the sample had azoospermia, of whom 10.8% had chromosomal abnormalities. Roughly 36.4% of the sample had oligozoospermia, of whom 7.5% had chromosomal abnormalities. There were no differences between patients with chromosomal abnormalities and those with idiopathic infertility for demographic and infertility features; but for the hormonal profiles, patients with idiopathic infertility had significantly lower luteinising hormone and follicle-stimulating hormone values. For ICSI outcomes, patients with chromosomal abnormalities had a significantly lower total sperm retrieval rate (47.4% vs 65.8%), surgical sperm retrieval rate (41.2% vs 58.1%), and lower clinical pregnancy rate (16.7% vs 26.6%) when compared to the idiopathic infertility group. The incidence of chromosomal abnormalities in Qatar as a cause of severe male infertility is within a similar range as their prevalence internationally.

  2. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    PubMed

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  3. Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker muscular dystrophy (BMD) is caused by a dystrophin insufficiency or expression of a partially functional protein product. Both of these dystrophinopathies are most commonly studied using the mdx mouse and a golden r...

  4. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles

    PubMed Central

    Murphy, Sandra; Zweyer, Margit; Mundegar, Rustam R.; Henry, Michael; Meleady, Paula; Swandulla, Dieter; Ohlendieck, Kay

    2015-01-01

    The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context. PMID:28248273

  5. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia.

    PubMed

    Harrison, Christine J; Schwab, Claire

    2016-03-01

    In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer. Copyright © 2016. Published by Elsevier Masson SAS.

  6. [Characteristics of pregnancy and delivery of fetuses affected by either central nervous system malformations or chromosomal abnormalities].

    PubMed

    Friedler, Jordana Mashiach; Mazor, Moshe; Shoham-Vardi, Ilana; Bashiri, Asher

    2011-11-01

    To determine whether fetuses affected by either chromosomal abnormalities or central nervous system (CNS) malformations are prone to complications during pregnancy and delivery. In this study, 320 singleton pregnancies with CNS malformations and 133 singleton pregnancies with chromosomal abnormaLities were compared with 149,112 singleton births without any known congenital anomalies. Exclusion criteria were: births with other congenital anomalies or malformations, pregnancies Lacking prenatal care and multiple pregnancies. Data was obtained using the computerized birth discharge records. The statistical analysis was performed with the SPSS package. There were no statistically significant differences in maternal age, ethnicity, uterine anomalies or parity. The ratio of general anesthesia was almost double in the study groups compared to the control group: 25% in the CNS malformation group (RR 2.617, CI 2.031-3.372) and 25.6% in the chromosomal abnormality group (RR 2.696, CI 1.825-3.982) and 11.3% in the control group (p < 0.001). There were nearly double cesarean sections (CS) rates in both study groups: 21.5% in the CNS malformation group, 20.3% in the chromosomal abnormaLity group and 12% in the control group. A logistic regression model that included previous CS, maLpresentation, non-reassuring fetal heart monitor (NRFHR) and presence of a malformation, concluded that the presence of a malformation was not an independent risk factor for CS. However, indirect causes, such as malpresentation (4.34 OR), were independently associated with the malformations. Fetuses affected by either CNS malformations or chromosomal abnormalities have a higher rate of pregnancy and delivery complications, including those which increase the risk of maternal morbidity and mortality.

  7. Decision to abort after a prenatal diagnosis of sex chromosome abnormality: a systematic review of the literature.

    PubMed

    Jeon, Kwon Chan; Chen, Lei-Shih; Goodson, Patricia

    2012-01-01

    We performed a systematic review of factors affecting parental decisions to continue or terminate a pregnancy after prenatal diagnosis of a sex chromosome abnormality, as reported in published studies from 1987 to May 2011. Based on the Matrix Method for systematic reviews, 19 studies were found in five electronic databases, meeting specific inclusion/exclusion criteria. Abstracted data were organized in a matrix. Alongside the search for factors influencing parental decisions, each study was judged on its methodological quality and assigned a methodological quality score. Decisions either to terminate or to continue a sex chromosome abnormality-affected pregnancy shared five similar factors: specific type of sex chromosome abnormality, gestational week at diagnosis, parents' age, providers' genetic expertise, and number of children/desire for (more) children. Factors unique to termination decisions included parents' fear/anxiety and directive counseling. Factors uniquely associated with continuation decisions were parents' socioeconomic status and ethnicity. The studies' average methodological quality score was 10.6 (SD = 1.67; range, 8-14). Findings from this review can be useful in adapting and modifying guidelines for genetic counseling after prenatal diagnosis of a sex chromosome abnormality. Moreover, improving the quality of future studies on this topic may allow clearer understanding of the most influential factors affecting parental decisions.

  8. The potential impact of NIPT as a second-tier screen on the outcomes of high-risk pregnancies with rare chromosomal abnormalities.

    PubMed

    Maxwell, Susannah; Dickinson, Jan E; Murch, Ashleigh; O'Leary, Peter

    2015-10-01

    To describe the potential impact of using noninvasive prenatal testing (NIPT) as a second-tier test, on the diagnosis and outcomes of pregnancies identified as high risk through first trimester screening (FTS) in a cohort of real pregnancies. Western Australian FTS and diagnostic data (2007-2009) were linked to pregnancy outcomes. Karyotype results from invasive prenatal testing in high-risk women were analysed. The outcomes of abnormal results that would not be detected by NIPT, assuming a panel of trisomy 21/18/13 and sex chromosome aneuploidies, and the likelihood of diagnosis in a screening model using NIPT as a second-tier test are described. Abnormal karyotype results were reported in 224 of 1488 (15%) women with high-risk pregnancies having invasive diagnostic testing. NIPT potentially would have identified 85%. The 33 abnormalities unidentifiable by NIPT were triploidies (n = 7, 21%), balanced (n = 8, 24%) and unbalanced rearrangements (n = 10, 30%) and level III mosaicisms (n = 8, 24%). For conditions not identifiable by NIPT, fetal sonographic appearance was likely to have led to invasive testing for 10 of 17 (59%) pathogenic abnormalities. If a policy was adopted recommending invasive testing for FTS risk >1:50 and/or ultrasound detected abnormality, the residual risk of an unidentified pathogenic chromosomal abnormality in those without a diagnosis would have been 0.33% (95% CI 0.01-0.65%). A screening model with NIPT as a second-tier for high-risk pregnancies would be unlikely to have changed the outcome for the majority of pregnancies. Optimising the diagnosis of rare pathogenic abnormalities requires clear indicators for invasive testing over NIPT. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  9. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    PubMed

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  10. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    PubMed

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  11. Simultaneous regression of Philadelphia chromosome and multiple nonrecurrent clonal chromosomal abnormalities with imatinib mesylate in a patient autografted 22 years before for chronic myelogenous leukemia.

    PubMed

    Van Den Akker, J; Coppo, P; Portnoï, M F; Barbu, V; Bories, D; Gorin, N C

    2007-09-01

    A 31-year-old patient developed chronic myelogenous leukemia (CML) in November, 1983. In November 1984, following a diagnosis of acceleration, he received an autologous hemopoietic transplant after conditioning with cyclophosphamide and total body irradiation. The autologous marrow was purged with mafosfamide. Over 20 years, the patient remained in chronic phase of CML. Multiple nonrecurrent clonal chromosomal abnormalities appeared leading to a very complex karyotype, including among others involvement of chromosomes 1, 7, 9, 13, 19, and X. Fluorescent in situ hybridization showed that the two chromosomes 9 were involved. Acute myeloid crisis was diagnosed in February, 2004. Treatment with imatinib mesylate resulted within 6 months in a total disappearance of all chromosomal abnormalities with a complete cytogenetic and molecular response, which persists 3 years later. We question whether the ex vivo purging procedure with mafosfamide has favored the occurrence of these particular cytogenetic abnormalities (with no independent oncogenic potential) within the original leukemic stem cell pool. It remains unclear whether the autologous transplantation has indeed resulted into some prolongation of the duration of the chronic phase, which lasted for 20 years. At time of acute crisis, the dramatic response to imatinib mesylate leading to a complete cytogenetic and molecular response is noteworthy.

  12. [Combined G-banded karyotyping and multiplex ligation-dependent probe amplification for the detection of chromosomal abnormalities in fetuses with congenital heart defects].

    PubMed

    Liu, Yang; Xie, Jiansheng; Geng, Qian; Xu, Zhiyong; Wu, Weiqin; Luo, Fuwei; Li, Suli; Wang, Qin; Chen, Wubin; Tan, Hongxi; Zhang, Hu

    2017-02-10

    To assess the value of G-banded karyotyping in combination with multiplex ligation-dependent probe amplification (MLPA) as a tool for the detection of chromosomal abnormalities in fetuses with congenital heart defects. The combined method was used to analyze 104 fetuses with heart malformations identified by ultrasonography. Abnormal findings were confirmed with chromosomal microarray analysis (CMA). Nineteen (18%) fetuses were found to harbor chromosomal aberrations by G-banded karyotyping and MLPA. For 93 cases, CMA has detected abnormalities in 14 cases including 10 pathogenic copy number variations (CNVs) and 4 CNVs of uncertain significance (VOUS). MLPA was able to detect all of the pathogenic CNVs and 1 VOUS CNV. Combined use of G-banded karyotyping and MLPA is a rapid, low-cost and effective method to detect chromosomal abnormalities in fetuses with various heart malformations.

  13. Is there an association with constitutional structural chromosomal abnormalities and hematologic neoplastic process? A short review.

    PubMed

    Panani, Anna D

    2009-04-01

    The occasional observation of constitutional chromosomal abnormalities in patients with a malignant disease has led to a number of studies on their potential role in cancer development. Investigations of families with hereditary cancers and constitutional chromosomal abnormalities have been key observations leading to the molecular identification of specific genes implicated in tumorigenesis. Large studies have been reported on the incidence of constitutional chromosomal aberrations in patients with hematologic malignancies, but they could not confirm an increased risk for hematologic malignancy among carriers of structural chromosomal changes. However, it is of particular interest that constitutional structural aberrations with breakpoints similar to leukemia-associated specific breakpoints have been reported in patients with hematologic malignancies. Because of insufficient data, it remains still unclear if these aberrations represent random events or are associated with malignancy. There has been a substantial discussion about mechanisms involved in constitutional structural chromosomal changes in the literature. The documentation of more patients with constitutional structural chromosomal changes could be of major importance. Most importantly, the molecular investigation of chromosomal regions involved in rearrangements could give useful information on the genetic events underlying constitutional anomalies, contributing to isolation of genes important in the development of the neoplastic process. Regarding constitutional anomalies in patients with hematologic disorders, a survey of the cytogenetic data of our cytogenetics unit is herein also presented.

  14. Novel rapid molecular diagnosis of fetal chromosomal abnormalities associated with recurrent pregnancy loss.

    PubMed

    Yang, Lan; Tang, Ye; Lu, Mudan; Yang, Yuefen; Xiao, Jianping; Wang, Qiaoxia; Yang, Canfeng; Tao, Hehua; Xiang, Jingying

    2016-12-01

    Labor-intensive karyotyping is used as the reference standard diagnostic test to identify copy number variants (CNVs) in the fetal genome after recurrent pregnancy loss. Our aim was to present and evaluate a novel molecular assay called CNVplex that could potentially be used as an alternative method to conventional karyotyping for diagnosing fetal chromosomal abnormalities associated with recurrent pregnancy loss. Using karyotyping as the reference standard, CNVplex was performed to identify fetal chromosomal abnormalities in the chorionic villus samples from 76 women experiencing at least two pregnancy losses. Its diagnostic accuracy, sensitivity, and specificity were evaluated to detect aneuploidies associated with recurrent pregnancy loss. Turnaround time and costs of CNVplex were also measured. Diagnostic accuracy of CNVplex in aneuploidies that are associated with recurrent pregnancy loss was 1.0 (95% CI 0.94-1.0), sensitivity was 100% (95% CI 0.89-1.0), and specificity was 100% (95% CI 0.875-1.0). Diagnostic accuracy of CNVplex was similar to that of karyotyping. Both karyotyping and CNVplex assay detected 27 autosomal trisomies, three 45,X monosomies, and three polyploidies. CNVplex also detected additional novel structural abnormalities of the fetal genome. Compared with karyotyping, CNVplex significantly (p = 0.001) reduced the waiting time by 13.98 days (95% CI 13.88-14.08) and the cost by US $241 (95% CI 234.53-247.47). CNVplex is a novel effective assay for diagnosing fetal chromosomal abnormalities associated with recurrent pregnancy loss. In the routine clinical work-up of recurrent pregnancy loss, diagnostic accuracy of CNVplex is comparable to that of conventional karyotyping but it requires less waiting time and has lower cost. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Ultrastructural localization of the C-terminus of the 43-kd dystrophin-associated glycoprotein and its relation to dystrophin in normal murine skeletal myofiber.

    PubMed Central

    Wakayama, Y.; Shibuya, S.; Takeda, A.; Jimi, T.; Nakamura, Y.; Oniki, H.

    1995-01-01

    We used single and double immunogold labeling electron microscopy to investigate ultrastructural localization of the C terminus of the 43-kd dystrophin-associated glycoprotein (43-DAG) and its relationship to dystrophin in normal murine skeletal myofibers. Single immunolabeling localized the antibody against the C terminus of 43-DAG to the inside surface of the muscle plasma membrane and the sarcoplasmic side of plasma membrane invaginations. Double immunolabeling co-localized antibodies against dystrophin and the C terminus of 43-DAG to the same site noted in the single immunolabeling localization of 43-DAG. In particular, dystrophin and the C-terminal 43-DAG antibody signals were often observed as doublets separated by less than 30 nm. We compared these results with those obtained from double immunogold labeling with anti-dystrophin and anti-beta-spectrin, as well as anti-C-terminal 43-DAG and anti-beta-spectrin antibodies. The antibodies against dystrophin and beta-spectrin, or beta-spectrin and 43-DAG, also co-localized to similar sites in skeletal muscle fibers. Signals of doublet formations were noted but their frequency was significantly lower than the doublet frequency of antidystrophin and anti-43-DAG antibodies. The results support the presence of dystrophin and 43-DAG linkage at the inside surface of the murine skeletal muscle plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7856727

  16. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    PubMed

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids.

    PubMed

    He, J H; Shahid, M Q; Li, Y J; Guo, H B; Cheng, X A; Liu, X D; Lu, Y G

    2011-08-01

    The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids. © 2011 The Author(s).

  18. Clinical and molecular cytogenetic studies in ring chromosome 5: report of a child with congenital abnormalities.

    PubMed

    Basinko, Audrey; Giovannucci Uzielli, Maria Luisa; Scarselli, Gloria; Priolo, Manuela; Timpani, Giuseppina; De Braekeleer, Marc

    2012-02-01

    We report here a child with a ring chromosome 5 (r(5)) associated with facial dysmorphology and multiple congenital abnormalities. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones was performed to determine the breakpoints involved in the r(5). The 5p deletion extended from 5p13.2-3 to 5pter and measured 34.61 Mb (range: 33.7-35.52 Mb) while the 5q deletion extended from 5q35.3 to 5qter and measured 2.44 Mb (range: 2.31-2.57 Mb). The patient presented signs such as microcephaly, hypertelorism, micrognathia and epicanthal folds, partially recalling those of a deletion of the short arm of chromosome 5 and the "cri-du-chat" syndrome. The most striking phenotypic features were the congenital heart abnormalities which have been frequently reported in deletions of the distal part of the long arm of chromosome 5 and in rings leading to a 5q35-5qter deletion. However, the NKX2-5 gene, which has been related to congenital heart defects, was not deleted in our patient, nor presumably to some other patients with 5q35.3-5qter deletion. We propose that VEGFR3, deleted in our patient, could be a candidate gene for the congenital heart abnormalities observed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Replacing the combined test by cell-free DNA testing in screening for trisomies 21, 18 and 13: impact on the diagnosis of other chromosomal abnormalities.

    PubMed

    Syngelaki, Argyro; Pergament, Eugene; Homfray, Tessa; Akolekar, Ranjit; Nicolaides, Kypros H

    2014-01-01

    To estimate the proportion of other chromosomal abnormalities that could be missed if combined testing was replaced by cell-free (cf) DNA testing as the method of screening for trisomies 21, 18 and 13. The prevalence of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities was examined in pregnancies undergoing first-trimester combined screening and chorionic villus sampling (CVS). In 1,831 clinically significant chromosomal abnormalities in pregnancies with combined risk for trisomies 21, 18 and 13≥1:100, the contribution of trisomies 21, 18 or 13, sex chromosome aneuploidies, triploidy and other chromosomal abnormalities at high risk of adverse outcome was 82.9, 8.2, 3.9 and 5.0%, respectively. Combined screening followed by CVS for risk≥1:10 and cfDNA testing for risk 1:11-1:2,500 could detect 97% of trisomy 21 and 98% of trisomies 18 and 13. Additionally, 86% of monosomy X, half of 47,XXY, 47,XYY or 47,XXX, half of other chromosomal abnormalities and one third of triploidies, which are currently detected by combined screening and CVS for risk≥1:100, could be detected. Screening by cfDNA testing, contingent on results of combined testing, improves detection of trisomies, but misses a few of the other chromosomal abnormalities detected by screening with the combined test. © 2014 S. Karger AG, Basel.

  20. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  1. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay.

    PubMed

    Hemmat, Morteza; Yang, Xiaojing; Chan, Patricia; McGough, Robert A; Ross, Leslie; Mahon, Loretta W; Anguiano, Arturo L; Boris, Wang T; Elnaggar, Mohamed M; Wang, Jia-Chi J; Strom, Charles M; Boyar, Fatih Z

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient's developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient.

  2. Characterization of a complex chromosomal rearrangement using chromosome, FISH, and microarray assays in a girl with multiple congenital abnormalities and developmental delay

    PubMed Central

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are balanced or unbalanced structural rearrangements involving three or more cytogenetic breakpoints on two or more chromosomal pairs. The phenotypic anomalies in such cases are attributed to gene disruption, superimposed cryptic imbalances in the genome, and/or position effects. We report a 14-year-old girl who presented with multiple congenital anomalies and developmental delay. Chromosome and FISH analysis indicated a highly complex chromosomal rearrangement involving three chromosomes (3, 7 and 12), seven breakpoints as a result of one inversion, two insertions, and two translocations forming three derivative chromosomes. Additionally, chromosomal microarray study (CMA) revealed two submicroscopic deletions at 3p12.3 (467 kb) and 12q13.12 (442 kb). We postulate that microdeletion within the ROBO1 gene at 3p12.3 may have played a role in the patient’s developmental delay, since it has potential activity-dependent role in neurons. Additionally, factors other than genomic deletions such as loss of function or position effects may also contribute to the abnormal phenotype in our patient. PMID:25478007

  3. Implication of sperm chromosomal abnormalities in recurrent abortion and multiple implantation failure.

    PubMed

    Caseiro, Ana Lara; Regalo, Ana; Pereira, Elisa; Esteves, Telma; Fernandes, Fernando; Carvalho, Joaquim

    2015-10-01

    Currently, some infertility treatment centres provide sperm karyotype analysis, although the impact of sperm chromosomal abnormalities on fertility is not yet fully understood. Several studies using fluorescence in-situ hybridization (FISH) to analyse sperm chromosomal constitution discovered that the incidence of aneuploidy is increased in individuals with a history of repeated abortion or implantation failure and is even higher in cases of oligoasthenoteratozoospermia (OAT), abnormal somatic karyotype or in spermatozoa retrieved directly from the testis or epididymis, showing that the application of FISH in these cases may be of some benefit for improving the reproductive outcome. This article presents the results of clinical trials of FISH analysis on spermatozoa, the medical indications for performing this examination, its results in infertile patients and the advantages when performing genetic counselling prior to treatment. Also discussed is the possibility of applying the latest techniques of genetic analysis in these cases and the potential benefits for improving the prognosis of male infertility. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Arrested human embryos are more likely to have abnormal chromosomes than developing embryos from women of advanced maternal age.

    PubMed

    Qi, Shu-Tao; Liang, Li-Feng; Xian, Ye-Xing; Liu, Jian-Qiao; Wang, Weihua

    2014-01-01

    Aneuploidy is one of the major factors that result in low efficiency in human infertility treatment by in vitro fertilization (IVF). The development of DNA microarray technology allows for aneuploidy screening by analyzing all 23 pairs of chromosomes in human embryos. All chromosome screening for aneuploidy is more accurate than partial chromosome screening, as errors can occur in any chromosome. Currently, chromosome screening for aneuploidy is performed in developing embryos, mainly blastocysts. It has not been performed in arrested embryos and/or compared between developing embryos and arrested embryos from the same IVF cycle. The present study was designed to examine all chromosomes in blastocysts and arrested embryos from the same cycle in patients of advanced maternal ages. Embryos were produced by routine IVF procedures. A total of 90 embryos (45 blastocysts and 45 arrested embryos) from 17 patients were biopsied and analyzed by the Agilent DNA array platform. It was found that 50% of the embryos developed to blastocyst stage; however, only 15.6% of the embryos (both blastocyst and arrested) were euploid, and most (84.4%) of the embryos had chromosomal abnormalities. Further analysis indicated that 28.9% of blastocysts were euploid and 71.1% were aneuploid. By contrast, only one (2.2%) arrested embryo was euploid while others (97.8%) were aneuploid. The prevalence of multiple chromosomal abnormalities in the aneuploid embryos was also higher in the arrested embryos than in the blastocysts. These results indicate that high proportions of human embryos from patients of advanced maternal age are aneuploid, and the arrested embryos are more likely to have abnormal chromosomes than developing embryos.

  5. Moderate Ovarian Stimulation Does Not Increase the Incidence of Human Embryo Chromosomal Abnormalities in in Vitro Fertilization Cycles

    PubMed Central

    Bosch, Ernesto; Alamá, Pilar; Rubio, Carmen; Rodrigo, Lorena; Pellicer, Antonio

    2012-01-01

    Context: A high chromosomal abnormalities rate has been observed in human embryos derived from in vitro fertilization (IVF) treatments. The real incidence in natural cycles has been poorly studied, so whether this frequency may be induced by external factors, such as use of gonadotropins for ovarian stimulation, remains unknown. Design: We conducted a prospective cohort study in a University-affiliated private infertility clinic with a comparison between unstimulated and stimulated ovarian cycles in the same women. Preimplantation genetic screening by fluorescence in situ hybridization was performed in all viable d 3 embryos. Objective: The primary objective was to compare the incidence of embryo chromosomal abnormalities in an unstimulated cycle and in an ulterior moderate ovarian stimulated cycle. Secondary outcome measures were embryo quality, blastocyst rate of biopsied embryos, number of normal blastocysts per donor, type of chromosomal abnormalities, and clinical outcome. Results: One hundred eighty-five oocyte donors were initially recruited for the unstimulated cycle, and preimplantation genetic screening could be performed in 51 of them, showing 35.3% of embryo chromosomal abnormalities. Forty-six of them later completed a stimulated cycle. The sperm donor sample was the same for both cycles. The proportion of embryos displaying abnormalities in the unstimulated cycle was 34.8% (16 of 46), whereas it was 40.6% (123 of 303) in the stimulated cycle with risk difference = 5.8 [95% confidence interval (CI) = −20.6–9.0], and relative risk = 1.17 (95% CI = 0.77–1.77) (P = 0.45). When an intrasubject comparison was made, the abnormalities rate was 34.8% (95% CI = 20.5–49.1) in the unstimulated cycle and 38.2% (95% CI = 30.5–45.8) in the stimulated cycle [risk difference = 3.4 (95% CI = −17.9–11.2); P = 0.64]. No differences were observed for embryo quality and type of chromosomal abnormalities. Conclusions: Moderate ovarian stimulation in young

  6. CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data.

    PubMed

    Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy

    2014-05-15

    The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.

  7. Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations

    PubMed Central

    Blanco, Gonzalo; Puiggros, Anna; Baliakas, Panagiotis; Athanasiadou, Anastasia; García-Malo, MªDolores; Collado, Rosa; Xochelli, Aliki; Rodríguez-Rivera, María; Ortega, Margarita; Calasanz, Mª José; Luño, Elisa; Vargas, MªTeresa; Grau, Javier; Martínez-Laperche, Carolina; Valiente, Alberto; Cervera, José; Anagnostopoulos, Achilles; Gimeno, Eva; Abella, Eugènia; Stalika, Evangelia; Hernández-Rivas, Jesús Mª; Ortuño, Francisco José; Robles, Diego; Ferrer, Ana; Ivars, David; González, Marcos; Bosch, Francesc; Abrisqueta, Pau; Stamatopoulos, Kostas; Espinet, Blanca

    2016-01-01

    Patients with chronic lymphocytic leukemia (CLL) harboring TP53 aberrations (TP53abs; chromosome 17p deletion and/or TP53 mutation) exhibit an unfavorable clinical outcome. Chromosome 8 abnormalities, namely losses of 8p (8p−) and gains of 8q (8q+) have been suggested to aggravate the outcome of patients with TP53abs. However, the reported series were small, thus hindering definitive conclusions. To gain insight into this issue, we assessed a series of 101 CLL patients harboring TP53 disruption. The frequency of 8p− and 8q+ was 14.7% and 17.8% respectively. Both were associated with a significantly (P < 0.05) higher incidence of a complex karyotype (CK, ≥3 abnormalities) detected by chromosome banding analysis (CBA) compared to cases with normal 8p (N-8p) and 8q (N-8q), respectively. In univariate analysis for 10-year overall survival (OS), 8p− (P = 0.002), 8q+ (P = 0.012) and CK (P = 0.009) were associated with shorter OS. However, in multivariate analysis only CK (HR = 2.47, P = 0.027) maintained independent significance, being associated with a dismal outcome regardless of chromosome 8 abnormalities. In conclusion, our results highlight the association of chromosome 8 abnormalities with CK amongst CLL patients with TP53abs, while also revealing that CK can further aggravate the prognosis of this aggressive subgroup. PMID:27821812

  8. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    USDA-ARS?s Scientific Manuscript database

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  9. The use of molecular and cytogenetic methods as a valuable tool in the detection of chromosomal abnormalities in horses: a case of sex chromosome chimerism in a Spanish purebred colt.

    PubMed

    Demyda-Peyrás, S; Membrillo, A; Bugno-Poniewierska, M; Pawlina, K; Anaya, G; Moreno-Millán, M

    2013-01-01

    Chromosomal abnormalities associated to sex chromosomes are reported as a problem more common than believed to be in horses. Most of them remain undiagnosed due to the complexity of the horse karyotype and the lack of interest of breeders and veterinarians in this type of diagnosis. Approximately 10 years ago, the Spanish Purebred Breeders Association implemented a DNA paternity test to evaluate the pedigree of every newborn foal. All candidates who showed abnormal or uncertain results are routinely submitted to cytogenetical analysis to evaluate the presence of chromosomal abnormalities. We studied the case of a foal showing 3 and even 4 different alleles in several loci in the short tandem repeat (STR) -based DNA parentage test. To confirm these results, a filiation test was repeated using follicular hair DNA showing normal results. A complete set of conventional and molecular cytogenetic analysis was performed to determine their chromosomal complements. C-banding and FISH had shown that the foal presents a sex chimerism 64,XX/64,XY with a cellular percentage of approximately 70/30, diagnosed in blood samples. The use of a diagnostic approach combining routine parentage QF-PCR-based STR screening tested with classical or molecular cytogenetic analysis could be a powerful tool that allows early detection of foals that will have a poor or even no reproductive performance due to chromosomal abnormalities, saving time, efforts and breeders' resources. Copyright © 2013 S. Karger AG, Basel.

  10. Overview of Epidemiology, Genetics, Birth Defects, and Chromosome Abnormalities Associated With CDH

    PubMed Central

    Pober, Barbara R.

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations. PMID:17436298

  11. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins.

    PubMed

    Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S; Frank, Philippe G; Woodman, Scott E; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P

    2003-10-01

    Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.

  12. Genetic correction of dystrophin deficiency and skeletal muscle remodeling in adult MDX mouse via transplantation of retroviral producer cells.

    PubMed Central

    Fassati, A; Wells, D J; Sgro Serpente, P A; Walsh, F S; Brown, S C; Strong, P N; Dickson, G

    1997-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal disease caused by mutations of the dystrophin gene. No effective therapy is available, but dystrophin gene transfer to skeletal muscle has been proposed as a treatment for DMD. We have developed a strategy for efficient in vivo gene transfer of dystrophin cDNA into regenerating skeletal muscle. Retroviral producer cells, which release a vector carrying the therapeutically active dystrophin minigene, were mitotically inactivated and transplanted in adult nude/mdx mice. Transplantation of 3 x 10(6) producer cells in a single site of the tibialis anterior muscle resulted in the transduction of between 5.5 and 18% total muscle fibers. The same procedure proved also feasible in immunocompetent mdx mice under short-term pharmacological immunosuppression. Minidystrophin expression was stable for up to 6 mo and led to alpha-sarcoglycan reexpression. Muscle stem cells could be transduced in vivo using this procedure. Transduced dystrophic skeletal muscle showed evidence of active remodeling reminiscent of the genetic normalization process which takes place in female DMD carriers. Overall, these results demonstrate that retroviral-mediated dystrophin gene transfer via transplantation of producer cells is a valid approach towards the long-term goal of gene therapy of DMD. PMID:9239410

  13. [Chromosome examination of missed abortion patients].

    PubMed

    Hu, Haomei; Yang, Hua; Yin, Zhenhui; Zhao, Lu

    2015-09-15

    To investigate the relationship between the missed abortion and chromosome abnormality and guide the healthy birth. From June 2014 to April 2015 in Tianjin central hospital of gynecology and obstetrics, we examined venous blood from 90 missed abortion couples for chromosome karyotype by lymphocyte culture method and we also examined their chromosome karyotype of abortion villus samples by high-throughput sequencing technologies. Out of the 90 couples' blood chromosome examinations, 7 were abnormal, and the abnormal rate was 3.89%, including 3 cases reciprocal translocation, 2 cases robertsonian translocation and 2 cases inversion. Abortion villus samples from the same population were also checked, of which 85 cases succeeded, with the success rate of 94.4%. Among them, villi chromosome abnormalities were found in 50 cases, including 39 cases with abnormal chromosome numbers, 11 cases with abnormal chromosome structure, and the total abnormal rate was 58.8%. In addition, the villi chromosome abnormality rate of patients with recurrent missed abortion (≥2 times) and first missed abortion were 61.7% and 55.2%, respectively, and the difference was not significant (P>0.05). The villi chromosome abnormality rate of pregnant women with age≥35 years old was 71.1%, while the pregnant women with aged <35 years old was 45% (P<0.05). Chromosome abnormality is an important cause of missed abortion; villi chromosome abnormality rate has nothing to do with the number of missed abortion; pregnant woman with age≥35 years old is risk factor of the villi chromosome abnormality.

  14. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.

    PubMed

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K; Hoffman, Eric P; Brown, Kristy J; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with (13)C6-lysine or stable isotope labeling in mammals (SILAM) with (15)N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of

  15. Identification of Disease Specific Pathways Using in Vivo SILAC Proteomics in Dystrophin Deficient mdx Mouse*

    PubMed Central

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K.; Hoffman, Eric P.; Brown, Kristy J.; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with 13C6-lysine or stable isotope labeling in mammals (SILAM) with 15N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human

  16. A case report: Becker muscular dystrophy presenting with epilepsy and dysgnosia induced by duplication mutation of Dystrophin gene.

    PubMed

    Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan

    2016-12-12

    Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.

  17. Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities.

    PubMed

    Rocha, C F; Paiva, C L A

    2014-03-31

    Prader-Willi syndrome (PWS) is caused by the lack of expression of genes located on paternal chromosome 15q11-q13. This lack of gene expression may be due to a deletion in this chromosomal segment, to maternal uniparental disomy of chromosome 15, or to a defect in the imprinting center on 15q11-q13. PWS is characterized by hypotonia during the neonatal stage and in childhood, accompanied by a delay in neuropsychomotor development. Overeating, obesity, and mental deficiency arise later on. The syndrome has a clinical overlap with other diseases, which makes it difficult to accurately diagnose. The purpose of this article is to review the Prader-Willi-like phenotype in the scientific literature from 2000 to 2013, i.e., to review the cases of PWS caused by chromosomal abnormalities different from those found on chromosome 15. A search was carried out using the "National Center for Biotechnology Information" (www.pubmed.com) and "Scientific Electronic Library Online (www.scielo.br) databases and combinations of key words such as "Prader-Willi-like phenotype" and "Prader-Willi syndrome phenotype". Editorials, letters, reviews, and guidelines were excluded. Articles chosen contained descriptions of patients diagnosed with the PWS phenotype but who were negative for alterations on 15q11-q13. Our search found 643 articles about PWS, but only 14 of these matched with the Prader-Willi-like phenotype and with the selected years of publication (2000-2013). If two or more articles reported the same chromosomal alterations for Prader-Willi-like phenotype, the most recent was chosen. Twelve articles of 14 were case reports and 2 reported series of cases.

  18. Functional Substitution by TAT-Utrophin in Dystrophin-Deficient Mice

    PubMed Central

    Sonnemann, Kevin J.; Heun-Johnson, Hanke; Turner, Amy J.; Baltgalvis, Kristen A.; Lowe, Dawn A.; Ervasti, James M.

    2009-01-01

    Background The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice. Methods and Findings Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT). Conclusions These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin. PMID:19478831

  19. Mini-dystrophin Expression Down-regulates Overactivation of G Protein–mediated IP3 Signaling Pathway in Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Constantin, Bruno; Patri, Sylvie; Thoreau, Vincent; Mondin, Ludivine; Mok, Elise; Kitzis, Alain; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the perifusion of a solution containing a high potassium concentration, was higher in SolC1(−) than in SolD(+) myotubes. The analysis of amplitude and kinetics of the calcium increase in SolC1(−) and in SolD(+) myotubes during the exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) suggested the presence of two mechanisms of SR calcium release: (1) a fast SR calcium release that depended on ryanodine receptors and (2) a slow SR calcium release mediated by IP3 receptors. Detection analyses of mRNAs (reverse transcriptase [RT]-PCR) and proteins (Western blot and immunolocalization) demonstrated the presence of the three known isoforms of IP3 receptors in both SolC1(−) and SolD(+) myotubes. Furthermore, analysis of the kinetics of the rise in calcium revealed that the slow IP3-dependent release may be increased in the SolC1(−) as compared to the SolD(+), suggesting an inhibitory effect of mini-dystrophin in this signaling pathway. Upon incubation with pertussis toxin (PTX), an inhibitory effect similar to that of the IP3R inhibitor (2-APB) was observed on K+-evoked calcium release. This result suggests the involvement of a Gi protein upstream of the IP3 pathway in these stimulation conditions. A hypothetical model is depicted in which both Gi protein and IP3 production could be involved in K+-evoked calcium release as well as a possible interaction with mini-dystrophin. Our findings demonstrate the existence of a potential relationship between mini-dystrophin and SR calcium release as well as a regulatory role of mini-dystrophin on intracellular signaling. PMID:16446505

  20. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.

    PubMed

    Klymiuk, Nikolai; Blutke, Andreas; Graf, Alexander; Krause, Sabine; Burkhardt, Katinka; Wuensch, Annegret; Krebs, Stefan; Kessler, Barbara; Zakhartchenko, Valeri; Kurome, Mayuko; Kemter, Elisabeth; Nagashima, Hiroshi; Schoser, Benedikt; Herbach, Nadja; Blum, Helmut; Wanke, Rüdiger; Aartsma-Rus, Annemieke; Thirion, Christian; Lochmüller, Hanns; Walter, Maggie C; Wolf, Eckhard

    2013-11-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.

  1. Nonequilibrium Chromosome Looping via Molecular Slip Links

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  2. Second-trimester IL-15 and IL-18 levels in the amniotic fluid of fetuses with normal karyotypes and with chromosome abnormalities.

    PubMed

    Klimkiewicz-Blok, Dominika; Florjański, Jerzy; Zalewski, Jerzy; Blok, Radosław

    2012-01-01

    Little is known about the behavior of interleukin 15 (IL-15) and 18 (IL-18) in the amniotic fluid in the second trimester of gestations complicated by chromosomal defects in the fetus. Likewise, it has not yet been established whether a fetus with chromosome abnormalities creates its immunity mechanisms in the same way as a fetus with a normal karyotype. The aim of this work was to assess the concentration of IL-15 and IL-18 in the amniotic fluid in the second trimester of gestation in fetuses with normal karyotypes and with chromosome abnormalities. The material consisted of 51 samples of amniotic fluid obtained from genetic amniocenteses carried out between the 15th and the 19th weeks of gestation. On the basis of cytogenetic screening, two groups were singled out: Group I--45 fetuses with normal karyotypes, and Group II--6 fetuses with abnormal karyotypes. The concentrations of IL-15 and IL-18 in the amniotic fluid were assessed with ready-made assays and analyzed, and the results from both groups were compared. The differences between the IL-15 levels in the amniotic fluid from Groups I and II proved to be statistically insignificant (p = 0.054). However, the average IL-18 levels in the amniotic fluid of the fetuses with normal karyotypes were significantly higher than in the amniotic fluid of the fetuses with chromosome abnormalities (p = 0.032). Some defense mechanisms in the second trimester of gestation in fetuses with chromosome abnormalities may develop in a different way than in fetuses with normal karyotypes.

  3. Frequency of chromosome healing and interstitial telomeres in 40 cases of constitutional abnormalities.

    PubMed

    Fortin, F; Beaulieu Bergeron, M; Fetni, R; Lemieux, N

    2009-01-01

    Human telomeres play a major role in stabilizing chromosome ends and preventing fusions. Chromosomes bearing a broken end are rescued by the acquisition of a new telomeric cap without any subtelomeric sequences being present at the breakpoint, a process referred to as chromosome healing. Conversely, a loss of telomeric function or integrity can lead to the presence of interstitial telomeres at the junction site in translocations or ring chromosomes. In order to determine the frequency at which interstitial telomeres or chromosome healing events are observed in target chromosome abnormalities, we conducted a retrospective FISH study using pan-telomeric and chromosome-specific subtelomeric probes on archival material from 40 cases of terminal deletions, translocations or ring chromosomes. Of the 19 terminal deletions investigated, 17 were negative for the subtelomeric probe specific to the deleted arm despite being positive for the pan-telomeric probe. These 17 cases were thus considered as having been rescued through chromosome healing, suggesting that this process is frequent in terminal deletions. In addition, as 2 of these cases were inherited from a parent bearing the same deletion, chromosomes healed by this process are thus stable through mitosis and meiosis. Regarding the 13 cases of translocations and 8 ring chromosomes, 4 and 2 cases respectively demonstrated pan-telomeric sequences at the interstitial junction point. Furthermore, 2 cases of translocations and 1 ring chromosome had both interstitial pan-telomeres and subtelomeres, whereas 2 other cases of ring chromosomes and 1 case of translocation only showed interstitial subtelomeres. Therefore, interstitial (sub)telomeric sequences in translocations and ring chromosomes are more common than previously thought, as we found a frequency of 43% in this study. Moreover, our results illustrate the necessity of performing FISH with both subtelomeric and pan-telomeric probes when investigating these

  4. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    PubMed

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  5. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  6. Mini-dystrophin Expression Down-regulates IP3-mediated Calcium Release Events in Resting Dystrophin-deficient Muscle Cells

    PubMed Central

    Balghi, Haouaria; Sebille, Stéphane; Mondin, Ludivine; Cantereau, Anne; Constantin, Bruno; Raymond, Guy; Cognard, Christian

    2006-01-01

    We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)–mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(−)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(−) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(−) (Marchand, E., B. Constantin, H. Balghi, M.C. Claudepierre, A. Cantereau, C. Magaud, A. Mouzou, G. Raymond, S. Braun, and C. Cognard. 2004. Exp. Cell Res. 297:363–379) cannot explain alone higher RSD. The exposure with SR Ca2+ channel inhibitors (ryanodine and 2-APB) and phospholipase C inhibitor (U73122) significantly reduced RSD in both cell types but with a stronger effect in dystrophin-deficient SolC1(−) myotubes. Immunocytochemistry allowed us to localize ryanodine receptors (RyRs) as well as IP3 receptors (IP3Rs), IP3R-1 and IP3R-2 isoforms, indicating the presence of both RyRs-dependent and IP3-dependent release systems in both cells. We previously reported evidence for the enhancement, through a Gi protein, of the IP3-mediated calcium signaling pathway in SolC1(−) as compared to SolD(+) myotubes during a high K+ stimulation (Balghi, H., S. Sebille, B. Constantin, S. Patri, V. Thoreau, L. Mondin, E. Mok, A. Kitzis, G. Raymond, and C. Cognard. 2006. J. Gen. Physiol. 127:171–182). Here we show that, at rest, these regulation mechanisms are also involved in the modulation of calcium release activities. The enhancement of resting release activity may participate in the calcium overload observed in dystrophin-deficient myotubes, and our findings support the hypothesis of the regulatory role of mini-dystrophin on intracellular signaling. PMID:16847098

  7. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials.

    PubMed

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S; Verschuuren, Jan J; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E; Muntoni, Francesco

    2011-12-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both

  8. Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials

    PubMed Central

    Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S.; Verschuuren, Jan J.; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E.

    2011-01-01

    Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative

  9. Detection of chromosomal abnormalities, congenital abnormalities and transfusion syndrome in twins.

    PubMed

    Sperling, L; Kiil, C; Larsen, L U; Brocks, V; Wojdemann, K R; Qvist, I; Schwartz, M; Jørgensen, C; Espersen, G; Skajaa, K; Bang, J; Tabor, A

    2007-05-01

    To evaluate the outcome of screening for structural malformations in twins and the outcome of screening for twin-twin transfusion syndrome (TTTS) among monochorionic twins through a number of ultrasound scans from 12 weeks' gestation. Enrolled into this prospective multicenter observational study were women with twin pregnancies diagnosed before 14 + 6 gestational weeks. The monochorionic pregnancies were scanned every second week until 23 weeks in order to rule out early TTTS. All pregnancies had an anomaly scan in week 19 and fetal echocardiography in week 21 that was performed by specialists in fetal echocardiography. Zygosity was determined by DNA analysis in all twin pairs with the same sex. Among the 495 pregnancies the prenatal detection rate for severe structural abnormalities including chromosomal aneuploidies was 83% by the combination of a first-trimester nuchal translucency scan and the anomaly scan in week 19. The incidence of severe structural abnormalities was 2.6% and two-thirds of these anomalies were cardiac. There was no significant difference between the incidence in monozygotic and dizygotic twins, nor between twins conceived naturally or those conceived by assisted reproduction. The incidence of TTTS was 23% from 12 weeks until delivery, and all those monochorionic twin pregnancies that miscarried had signs of TTTS. Twin pregnancies have an increased risk of congenital malformations and one out of four monochorionic pregnancies develops TTTS. Ultrasound screening to assess chorionicity and follow-up of monochorionic pregnancies to detect signs of TTTS, as well as malformation screening, are therefore essential in the antenatal care of twin pregnancies. Copyright (c) 2007 ISUOG.

  10. Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata.

    PubMed

    Guan, J-Z; Wang, J-J; Cheng, Z-H; Liu, Y; Li, Z-Y

    2012-01-17

    Houttuynia cordata (Saururaceae) is a leaf vegetable and a medicinal herb througout much of Asia. Cytomixis and meiotic abnormalities during microsporogenesis were found in two populations of H. cordata with different ploidy levels (2n = 38, 96). Cytomixis occurred in pollen mother cells during meiosis at high frequencies and with variable degrees of chromatin/chromosome transfer. Meiotic abnormalities, such as chromosome laggards, asymmetric segregation and polyads, also prevailed in pollen mother cells at metaphase of the first division and later stages. They were caused by cytomixis and resulted in very low pollen viability and male sterility. Pollen mother cells from the population with 2n = 38 showed only simultaneous cytokinesis, but most pollen mother cells from the population with 2n = 96 showed successive cytokinesis; a minority underwent simultaneous cytokinesis. Cytomixis and irregular meiotic divisions appear to be the origin of the intraspecific polyploidy in this species, which has large variations in chromosome numbers.

  11. Variation in the levels of pregnancy-specific beta-1-glycoprotein in maternal serum from chromosomally abnormal pregnancies.

    PubMed

    Graham, G W; Crossley, J A; Aitken, D A; Connor, J M

    1992-06-01

    Human pregnancy-specific beta-1-glycoprotein (SP1) was assayed retrospectively in stored maternal serum (MS) samples from 82 chromosomally abnormal pregnancies and 377 matched controls. The median MSSP1 concentration in 48 Down's syndrome pregnancies was significantly elevated at 1.17 multiples of the control median (MOM), and significantly reduced (0.5 MOM) in a group of eight cases of unbalanced translocations. There was no significant difference in median SP1 concentrations in cases of trisomy 18, trisomy 13, balanced translocations, or sex chromosome abnormalities. A comparison with human chorionic gonadotrophin results in the same series of samples indicates that SP1 is a less sensitive predictor of Down's syndrome pregnancies.

  12. Prenatal diagnosis of sex chromosome abnormalities: the 8-year experience of a single medical center.

    PubMed

    Vaknin, Zvi; Reish, Orit; Ben-Ami, Ido; Heyman, Eli; Herman, Arie; Maymon, Ron

    2008-01-01

    To assess the indications for prenatal karyotyping of sex chromosomal abnormalities (SCAs) during pregnancy. All singleton pregnancies interrupted in our institute because of SCAs (1998-2005) were categorized into subgroups of 45,XO (Turner syndrome), 47,XXY (Klinefelter syndrome), 47,XXX and 47,XYY. The indications for prenatal diagnostic testing were recorded. There were 67 SCAs pregnancies: 33% Turner syndrome, 28% Klinefelter syndrome, 21% 47,XXX and 18% 47,XYY. Maternal age was similar among the 4 groups (34 +/- 5, range 25-42 years). The main indications for fetal karyotyping were abnormal Down's syndrome (DS) screening or ultrasound findings, advanced maternal age (> or =35 years), and parental request. About 2/3 of the Turner and 47,XYY cases had either abnormal DS screening tests or sonographic findings, such as: increased nuchal translucency, mainly cystic hygroma and fetal hydrops. However, fetal karyotyping in more than 2/3 of the 47,XXX and 47,XXY cases was mainly performed because of advanced maternal age, and the diagnosis of fetal SCAs was coincidental (p <0.03). Our recent suggestion to expand the DS screening capacity to other chromosomal abnormalities including SCAs is further supported. Prenatal detection seems to be promising for Turner syndrome and possibly for 47,XYY syndrome, while other SCAs are less likely to be detected either by ultrasound or biochemical screening. (c) 2007 S. Karger AG, Basel

  13. A genetic method for sex determination in Ovis spp. by interruption of the zinc finger protein, Y-linked (ZFY) gene on the Y chromosome.

    PubMed

    Zhang, Yong Sheng; Du, Ying Chun; Sun, Li Rong; Wang, Xu Hai; Liu, Shuai Bing; Xi, Ji Feng; Li, Chao Cheng; Ying, Rui Wen; Jiang, Song; Wang, Xiang Zu; Shen, Hong; Jia, Bin

    2018-03-06

    The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.

  14. Clinical accuracy of abnormal cell-free fetal DNA results for the sex chromosomes.

    PubMed

    Scibetta, Emily W; Gaw, Stephanie L; Rao, Rashmi R; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2017-12-01

    To investigate factors associated with abnormal cell-free DNA (cfDNA) results for sex chromosomes (SCs). This is a retrospective cohort study of abnormal cfDNA results for SC at a referral practice from March 2013 to July 2015. Cell-free DNA results were abnormal if they were positive for SC aneuploidy (SCA), inconclusive, or discordant with ultrasound (US) findings. Primary outcome was concordance with karyotype or postnatal evaluation. Of 50 abnormal cfDNA results for SC, 31 patients (62%) were positive for SCA, 13 (26%) were inconclusive, and 6 (12%) were sex discordant on US. Of SCA results, 19 (61%) were reported as 45,X and 12 (39%) were SC trisomy. Abnormal karyotypes were confirmed in 8/23 (35%) of SC aneuploidy and 1/5 (20%) of inconclusive results. Abnormal SC cfDNA results were associated with in vitro fertilization (P = .001) and twins (P < .001). Sex discordance between cfDNA and US was associated with twin gestation (P < .001). In our cohort, abnormal SC cfDNA results were associated with in vitro fertilization and twins. Our results indicate cfDNA for sex prediction in twins of limited utility. Positive predictive value and sensitivity for SC determination were lower than previously reported. © 2017 John Wiley & Sons, Ltd.

  15. Expression pattern of X-linked genes in sex chromosome aneuploid bovine cells.

    PubMed

    Basrur, Parvathi K; Farazmand, Ali; Stranzinger, Gerald; Graphodatskaya, Daria; Reyes, Ed R; King, W Allan

    2004-01-01

    Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.

  16. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  17. [Fetal malformations and chromosome abnormalities diagnosed at the Center of Prenatal Diagnosis of the University of Aquila in the 1995-1998 triennium].

    PubMed

    Carta, G; Iovenitti, P; D'Alfonso, A; Mascaretti, G; Moscarini, M

    1999-10-01

    Over the past few years numerous techniques have been developed, allowing an evaluation of fetal physiopathology that was unthinkable until recently. The authors describe 20 cases of fetal malformations and chromosomal abnormalities diagnosed by scan and amniocentesis at the Centre for Diagnosis and Obstetric Prophylaxis at L'Aquila University. Between January 1995 and April 1998 a total of 1180 amniocentesis and 4000 obstetric scans were performed in a group of 1650 pregnant women. Of the patients examined using ultrasound scan, 8 presented manifest fetal pathologies, of which 5 were associated with chromosome abnormalities: 1) left ventricular hypoplasia, common atrium, tricuspid dysplasia; 2) omphalocele; 3) Morgagni-Stewart-Morel syndrome; 4) plurilobate cystic hygroma; 5) duodenal atresia; 6) Dandy-Walker syndrome; 7) cystic hygroma and hydrops; 8) cystic hygroma, hydrops, cardiopathy and Dandy-Walker syndrome. Among the pregnant women undergoing amniocentesis without a prior diagnosis of fetal malformation, 12 presented pathological fetal karyotypes: 2 cases of Turner's syndrome; 2 cases of Edward's syndrome; 2 cases of Klinefelter's syndrome, of deletion of a stretch of chromosome 8; 1 case of Down's syndrome; 2 cases of supernumerary marker chromosome; 1 twin pregnancy with Klinefelter's syndrome in one twin and paracentric inversion of chromosome 13 in the other; 1 twin pregnancy with a small supernumerary marker chromosome in both twins. Ultrasonography often enables the diagnosis of congenital abnormalities not associated with chromosome pathologies. However, karyotype studies play an essential role in pregnancies with a high genetic risk.

  18. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  19. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    PubMed

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [Prevalence of congenital abnormalities identified in fetuses with 13, 18 and 21 chromosomal trisomy].

    PubMed

    Emer, Caroline Soares Cristofari; Duque, Julio Alejandro Peña; Müller, Ana Lúcia Letti; Gus, Rejane; Sanseverino, Maria Teresa Vieira; da Silva, André Anjos; Magalhães, José Antonio de Azevedo

    2015-07-01

    To describe the prevalence of malformations found in fetuses with trisomy of chromosomes 13, 18 and 21 by identifying the most frequent within each condition. A retrospective cross-sectional study with the analysis of trisomy cases of chromosomes 13, 18 and 21 diagnosed through fetal karyotype obtained by amniocentesis/cordocentesis, between October 1994 and May 2014, at a Teaching Hospital in Brazil Southern Region. Malformations identified through morphological ultrasonography were described and, subsequently, confirmed in newborn examinations and/or fetal autopsy. The results were analyzed using Fisher's test and analysis of variance (ANOVA), with a 5% level of significance (p=0.05). Sixty-nine cases of trisomy were diagnosed among 840 exams; nine were excluded due to outcome outside Hospital de Clínicas de Porto Alegre or incomplete records, remaining 60 cases (nine cases of chromosome 13 trisomy, 26 of chromosome 18, and 25 of chromosome 21). In all three groups, heart disease occurred in most cases; the ventricular septal defect was more prevalent and occurred in 66.7% of the trisomy 13 group. Gastrointestinal abnormalities were more prevalent in the trisomy 18 group, especially omphalocele (38.5%; p<0.01). Genitourinary anomalies were more significantly frequent in the trisomy 13 group (pyelectasis, 55.6% - p<0.01; ambiguous genitalia, 33.3% - p=0.01). Central nervous system defects were identified in all cases of trisomy 13. Facial cracks were significantly more prevalent among fetuses with trisomy 13 (66.7%; p<0.01). Hand and feet malformations significantly differed among the trisomy groups. Hand defects occurred in 50% of trisomy 18 cases, and in 44.4% of all trisomy 13 cases (p<0.01); congenital clubfoot was more common in the trisomy 18 group, being detected in 46.2% of fetuses (p<0.01). The abnormalities were found in 50.9, 27.3 and 21.7% of trisomy 18, 13 and 21 cases respectively. Many fetal malformations identified at ultrasound are suggestive of

  1. Chromosomes

    MedlinePlus

    ... Sheets A Brief Guide to Genomics About NHGRI Research About the International HapMap Project Biological Pathways Chromosome Abnormalities Chromosomes Cloning Comparative Genomics DNA Microarray Technology DNA Sequencing Deoxyribonucleic Acid ( ...

  2. Rare X Chromosome Abnormalities in Systemic Lupus Erythematosus and Sjögren's Syndrome.

    PubMed

    Sharma, Rohan; Harris, Valerie M; Cavett, Joshua; Kurien, Biji T; Liu, Ke; Koelsch, Kristi A; Fayaaz, Anum; Chaudhari, Kaustubh S; Radfar, Lida; Lewis, David; Stone, Donald U; Kaufman, C Erick; Li, Shibo; Segal, Barbara; Wallace, Daniel J; Weisman, Michael H; Venuturupalli, Swamy; Kelly, Jennifer A; Pons-Estel, Bernardo; Jonsson, Roland; Lu, Xianglan; Gottenberg, Jacques-Eric; Anaya, Juan-Manuel; Cunninghame-Graham, Deborah S; Huang, Andrew J W; Brennan, Michael T; Hughes, Pamela; Alevizos, Ilias; Miceli-Richard, Corinne; Keystone, Edward C; Bykerk, Vivian P; Hirschfield, Gideon; Nordmark, Gunnel; Bucher, Sara Magnusson; Eriksson, Per; Omdal, Roald; Rhodus, Nelson L; Rischmueller, Maureen; Rohrer, Michael; Wahren-Herlenius, Marie; Witte, Torsten; Alarcón-Riquelme, Marta; Mariette, Xavier; Lessard, Christopher J; Harley, John B; Ng, Wan-Fai; Rasmussen, Astrid; Sivils, Kathy L; Scofield, R Hal

    2017-11-01

    Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE) are related by clinical and serologic manifestations as well as genetic risks. Both diseases are more commonly found in women than in men, at a ratio of ~10 to 1. Common X chromosome aneuploidies, 47,XXY and 47,XXX, are enriched among men and women, respectively, in either disease, suggesting a dose effect on the X chromosome. We examined cohorts of SS and SLE patients by constructing intensity plots of X chromosome single-nucleotide polymorphism alleles, along with determining the karyotype of selected patients. Among ~2,500 women with SLE, we found 3 patients with a triple mosaic, consisting of 45,X/46,XX/47,XXX. Among ~2,100 women with SS, 1 patient had 45,X/46,XX/47,XXX, with a triplication of the distal p arm of the X chromosome in the 47,XXX cells. Neither the triple mosaic nor the partial triplication was found among the controls. In another SS cohort, we found a mother/daughter pair with partial triplication of this same region of the X chromosome. The triple mosaic occurs in ~1 in 25,000-50,000 live female births, while partial triplications are even rarer. Very rare X chromosome abnormalities are present among patients with either SS or SLE and may inform the location of a gene(s) that mediates an X dose effect, as well as critical cell types in which such an effect is operative. © 2017, American College of Rheumatology.

  3. Complex chromosomal abnormalities in a patient with HTLV-1 positive T-cell leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, P.; Macera, M.J.; Gogineni, S.K.

    HTLV-1 positive adult T-cell leukemia (ATL) is associated with numerous chromosomal abnormalities. The chromosomal rearrangements can be extremely complex and additional material is often present, making precise identification by routine cytogenetic techniques difficult. We report a case of ATL that was established of bone marrow cells by both QFQ and GTG banding techniques revealed a highly complex 49,XX,der(2)t(2;?)(q37;?),+5,+2mar karyotype in the dividing cells. The identical cytogenetic findings were also seen in unstimulated peripheral blood collected one week later. Using the FISH-technique, we applied spectrum green-labeled No. 1- and No. 7-specific WCP, spectrum orange-labeled No. 2- and No. 5-specific WCP (GIBCO/BRL,more » Gaithersburg, MD) and biotin-labeled No. 18-specific WCP (Oncor, Gaithersburg, MD) to metaphase chromosomes. The large marker chromosome was identified as an extra 1q arm, the material attached to the distal 2q was additional 7q. The presence of three No. 5 chromosomes was verified and the small marker was determined to be an extra partial 5p in Robertsonian translocation with an additional partial 18q arm. The karyotype was revised to 49,XX,+1q,der(2)t(2;7)(q37;q22),+5,+t(5;18)(p14{r_arrow}p11::q11{r_arrow}q12). Identification of the numerous chromosomal anomalies associated with the disease by molecular techniques shall lead to a better understanding of this deadly cancer.« less

  4. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications.

    PubMed

    Zaccaria, Alfonso; Testoni, Nicoletta; Valenti, Anna Maria; Luatti, Simona; Tonelli, Michela; Marzocchi, Giulia; Cipriani, Raffaella; Baldazzi, Carmen; Giannini, Barbara; Stacchini, Monica; Gamberini, Carla; Castagnetti, Fausto; Rosti, Gianantonio; Azzena, Annalisa; Cavazzini, Francesco; Cianciulli, Anna Maria; Dalsass, Alessia; Donti, Emilio; Giugliano, Emilia; Gozzetti, Alessandro; Grimoldi, Maria Grazia; Ronconi, Sonia; Santoro, Alessandra; Spedicato, Francesco; Zanatta, Lucia; Baccarani, Michele

    2010-06-01

    Additional chromosome abnormalities (ACAs) occur in less than 10% of cases at diagnosis of Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia (CML). In some cases, on the basis of the persistence of the ACAs in Ph-negative cells after response to imatinib, a secondary origin of the Ph chromosome has been demonstrated. In this study, the possible prognostic value of this phenomenon was evaluated. Thirty-six Ph-positive CML patients were included in the study. In six patients, ACAs persisted after the disappearance of the Ph. A complete cytogenetic response (CCR) was obtained in five of these six patients, and five of six also had a high Sokal score. In all the other cases, ACAs disappeared together (in cases of response to therapy with imatinib) or persisted with the Ph (in cases of no response to imatinib). In the former cases, the primary origin of the Ph was demonstrated. CCR was obtained in 22 cases (17 with low to intermediate Sokal scores), while no response was observed in 8 patients (5 with a high Sokal score). Sokal score seems to maintain its prognostic value for patients in whom the Ph occurs as a primary event, but not in those in whom it occurs as a secondary one. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Creation of Dystrophin Expressing Chimeric Cells of Myoblast Origin as a Novel Stem Cell Based Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Siemionow, M; Cwykiel, J; Heydemann, A; Garcia-Martinez, J; Siemionow, K; Szilagyi, E

    2018-04-01

    Over the past decade different stem cell (SC) based approaches were tested to treat Duchenne Muscular Dystrophy (DMD), a lethal X-linked disorder caused by mutations in dystrophin gene. Despite research efforts, there is no curative therapy for DMD. Allogeneic SC therapies aim to restore dystrophin in the affected muscles; however, they are challenged by rejection and limited engraftment. Thus, there is a need to develop new more efficacious SC therapies. Chimeric Cells (CC), created via ex vivo fusion of donor and recipient cells, represent a promising therapeutic option for tissue regeneration and Vascularized Composite Allotransplantation (VCA) due to tolerogenic properties that eliminate the need for lifelong immunosuppression. This proof of concept study tested feasibility of myoblast fusion for Dystrophin Expressing. Chimeric Cell (DEC) therapy through in vitro characterization and in vivo assessment of engraftment, survival, and efficacy in the mdx mouse model of DMD. Murine DEC were created via ex vivo fusion of normal (snj) and dystrophin-deficient (mdx) myoblasts using polyethylene glycol. Efficacy of myoblast fusion was confirmed by flow cytometry and dystrophin immunostaining, while proliferative and myogenic differentiation capacity of DEC were assessed in vitro. Therapeutic effect after DEC transplant (0.5 × 10 6 ) into the gastrocnemius muscle (GM) of mdx mice was assessed by muscle functional tests. At 30 days post-transplant dystrophin expression in GM of injected mdx mice increased to 37.27 ± 12.1% and correlated with improvement of muscle strength and function. Our study confirmed feasibility and efficacy of DEC therapy and represents a novel SC based approach for treatment of muscular dystrophies.

  6. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy.

    PubMed

    Meng, Jinhong; Counsell, John R; Reza, Mojgan; Laval, Steven H; Danos, Olivier; Thrasher, Adrian; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer E

    2016-01-27

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation.

  7. Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy.

    PubMed

    Viggiano, Emanuela; Ergoli, Manuela; Picillo, Esther; Politano, Luisa

    2016-07-01

    Duchenne and Becker dystrophinopathies (DMD and BMD) are X-linked recessive disorders caused by mutations in the dystrophin gene that lead to absent or reduced expression of dystrophin in both skeletal and heart muscles. DMD/BMD female carriers are usually asymptomatic, although about 8 % may exhibit muscle or cardiac symptoms. Several mechanisms leading to a reduced dystrophin have been hypothesized to explain the clinical manifestations and, in particular, the role of the skewed XCI is questioned. In this review, the mechanism of XCI and its involvement in the phenotype of BMD/DMD carriers with both a normal karyotype or with X;autosome translocations with breakpoints at Xp21 (locus of the DMD gene) will be analyzed. We have previously observed that DMD carriers with moderate/severe muscle involvement, exhibit a moderate or extremely skewed XCI, in particular if presenting with an early onset of symptoms, while DMD carriers with mild muscle involvement present a random XCI. Moreover, we found that among 87.1 % of the carriers with X;autosome translocations involving the locus Xp21 who developed signs and symptoms of dystrophinopathy such as proximal muscle weakness, difficulty to run, jump and climb stairs, 95.2 % had a skewed XCI pattern in lymphocytes. These data support the hypothesis that skewed XCI is involved in the onset of phenotype in DMD carriers, the X chromosome carrying the normal DMD gene being preferentially inactivated and leading to a moderate-severe muscle involvement.

  8. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    ERIC Educational Resources Information Center

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  9. Ring chromosome 18 in combination with 18q12.1 (DTNA) interstitial microdeletion in a patient with multiple congenital defects.

    PubMed

    Zlotina, Anna; Nikulina, Tatiana; Yany, Natalia; Moiseeva, Olga; Pervunina, Tatiana; Grekhov, Eugeny; Kostareva, Anna

    2016-01-01

    Ring chromosome 18 [r(18)] syndrome represents a relatively rare condition with a complex clinical picture including multiple congenital dysmorphia and varying degrees of mental retardation. The condition is cytogenetically characterized by a complete or mosaic form of ring chromosome 18, with ring formation being usually accompanied by the partial loss of both chromosomal arms. Here we observed a 20-year-old male patient who along with the features typical for r(18) carriers additionally manifested a severe congenital subaortic stenosis. To define the genetic basis of such a compound phenotype, standard cytogenetic and high-resolution molecular-cytogenetic analysis of the patient was performed. Standard chromosome analysis of cultured lymphocytes confirmed 46, XY, r(18) karyotype. Array-based comparative genomic hybridization (array-CGH) allowed to define precisely the breakpoints of 18p and 18q terminal deletions, thus identifying the hemizygosity extent, and to reveal an additional duplication adjoining the breakpoint of the 18p deletion. Apart from the terminal imbalances, we found an interstitial microdeletion of 442 kb in size (18q12.1) that encompassed DTNA gene encoding α-dystrobrevin, a member of dystrophin-associated glycoprotein complex. While limited data on the role of DTNA missense mutations in pathogenesis of human cardiac abnormalities exist, a microdeletion corresponding to whole DTNA sequence and not involving other genes has not been earlier described. A detailed molecular-cytogenetic characterization of the patient with multiple congenital abnormalities enabled to unravel a combination of genetic defects, namely, a ring chromosome 18 with terminal imbalances and DTNA whole-gene deletion. We suggest that such combination could contribute to the complex phenotype. The findings obtained allow to extend the knowledge of the role of DTNA haploinsufficiency in congenital heart malformation, though further comprehensive functional studies are

  10. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  11. Sex chromosome abnormalities and sterility in river buffalo.

    PubMed

    Di Meo, G P; Perucatti, A; Di Palo, R; Iannuzzi, A; Ciotola, F; Peretti, V; Neglia, G; Campanile, G; Zicarelli, L; Iannuzzi, L

    2008-01-01

    Thirteen male river buffaloes, 119 females with reproductive problems (which had reached reproductive age but had failed to become pregnant in the presence of bulls) and two male co-twins underwent both clinical and cytogenetic investigation. Clinical analyses performed by veterinary practitioners revealed normal body conformation and external genitalia for most females. However, some subjects showed some slight male traits such as large base horn circumference, prominent withers and tight pelvis. Rectal palpation revealed damage to internal sex adducts varying between atrophy of Mullerian ducts to complete lack of internal sex adducts (with closed vagina). All bulls had normal karyotypes at high resolution banding, while 25 animals (23 females and 2 male co-twins) (20.7%) with reproductive problems were found to carry the following sex chromosome abnormalities: X monosomy (2 females); X trisomy (1 female); sex reversal syndrome (2 females); and free-martinism (18 females and 2 males). All female carriers were sterile. Copyright 2008 S. Karger AG, Basel.

  12. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    PubMed

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

  13. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype

    PubMed Central

    State, Matthew W.; Greally, John M.; Cuker, Adam; Bowers, Peter N.; Henegariu, Octavian; Morgan, Thomas M.; Gunel, Murat; DiLuna, Michael; King, Robert A.; Nelson, Carol; Donovan, Abigail; Anderson, George M.; Leckman, James F.; Hawkins, Trevor; Pauls, David L.; Lifton, Richard P.; Ward, David C.

    2003-01-01

    Gilles de la Tourette syndrome (GTS) is a potentially debilitating neuropsychiatric disorder defined by the presence of both vocal and motor tics. Despite evidence that this and a related phenotypic spectrum, including chronic tics (CT) and Obsessive Compulsive Disorder (OCD), are genetically mediated, no gene involved in disease etiology has been identified. Chromosomal abnormalities have long been proposed to play a causative role in isolated cases of GTS spectrum phenomena, but confirmation of this hypothesis has yet to be forthcoming. We describe an i(18q21.1-q22.2) inversion in a patient with CT and OCD. We have fine mapped the telomeric aspect of the rearrangement to within 1 Mb of a previously reported 18q22 breakpoint that cosegregated in a family with GTS and related phenotypes. A comprehensive characterization of this genomic interval led to the identification of two transcripts, neither of which was found to be structurally disrupted. Analysis of the epigenetic characteristics of the region demonstrated a significant increase in replication asynchrony in the patient compared to controls, with the inverted chromosome showing delayed replication timing across at least a 500-kb interval. These findings are consistent with long-range functional dysregulation of one or more genes in the region. Our data support a link between chromosomal aberrations and epigenetic mechanisms in GTS and suggest that the study of the functional consequences of balanced chromosomal rearrangements is warranted in patients with phenotypes of interest, irrespective of the findings regarding structurally disrupted transcripts. PMID:12682296

  14. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening.

    PubMed

    O'Leary, Debra A; Sharif, Orzala; Anderson, Paul; Tu, Buu; Welch, Genevieve; Zhou, Yingyao; Caldwell, Jeremy S; Engels, Ingo H; Brinker, Achim

    2009-12-17

    One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened approximately 10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping.

  15. Use of capillary Western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne muscular dystrophy.

    PubMed

    Beekman, Chantal; Janson, Anneke A; Baghat, Aabed; van Deutekom, Judith C; Datson, Nicole A

    2018-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease characterized by progressive weakness of the skeletal and cardiac muscles. This X-linked disorder is caused by open reading frame disrupting mutations in the DMD gene, resulting in strong reduction or complete absence of dystrophin protein. In order to use dystrophin as a supportive or even surrogate biomarker in clinical studies on investigational drugs aiming at correcting the primary cause of the disease, the ability to reliably quantify dystrophin expression in muscle biopsies of DMD patients pre- and post-treatment is essential. Here we demonstrate the application of the ProteinSimple capillary immunoassay (Wes) method, a gel- and blot-free method requiring less sample, antibody and time to run than conventional Western blot assay. We optimized dystrophin quantification by Wes using 2 different antibodies and found it to be highly sensitive, reproducible and quantitative over a large dynamic range. Using a healthy control muscle sample as a reference and α-actinin as a protein loading/muscle content control, a panel of skeletal muscle samples consisting of 31 healthy controls, 25 Becker Muscle dystrophy (BMD) and 17 DMD samples was subjected to Wes analysis. In healthy controls dystrophin levels varied 3 to 5-fold between the highest and lowest muscle samples, with the reference sample representing the average of all 31 samples. In BMD muscle samples dystrophin levels ranged from 10% to 90%, with an average of 33% of the healthy muscle average, while for the DMD samples the average dystrophin level was 1.3%, ranging from 0.7% to 7% of the healthy muscle average. In conclusion, Wes is a suitable, efficient and reliable method for quantification of dystrophin expression as a biomarker in DMD clinical drug development.

  16. Chromosome abnormalities and the genetics of congenital corneal opacification.

    PubMed

    Mataftsi, A; Islam, L; Kelberman, D; Sowden, J C; Nischal, K K

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed.

  17. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  18. Amniotic fluid-AFP in Down syndrome and other chromosome abnormalities.

    PubMed

    Crandall, B F; Matsumoto, M; Perdue, S

    1988-05-01

    80.2 Per cent of 111 Down syndrome pregnancies had anmiotic fluid (AF) alpha fetoprotein (AFP) levels on or below the median and 10.8 per cent at or below 0.5 MoM compared with 41.9 and 1.4 per cent of controls. These differences were even more striking when the gestational age was less than 18 weeks compared with greater than or equal to 18 weeks. No such association was seen for other chromosome abnormalities including trisomy 18,45,X and mosaics, 47,XXY,47,XXX, and other structural abnormalities and triploidy, even when high levels due to defects such as omphalocele and cystic hygroma were excluded. All cases of trisomy 13 and 80 per cent with 47,XYY had AF-AFP levels above the median. Selection of cases for karyotyping by a low level of AF-AFP would clearly fail to detect aneuploidies other than Down syndrome and is not recommended. A possible weak association between low maternal serum (MS) and AF-AFPs in Down syndrome was most evident at less than 18 weeks, suggesting that MS screening between 16 and 18 weeks may be the most informative time.

  19. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    PubMed

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  20. Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations.

    PubMed

    Pillers, D A; Fitzgerald, K M; Duncan, N M; Rash, S M; White, R A; Dwinnell, S J; Powell, B R; Schnur, R E; Ray, P N; Cibis, G W; Weleber, R G

    1999-01-01

    The dark-adapted electroretinogram (ERG) of patients with Duchenne and Becker muscular dystrophy (DMD/BMD) shows a marked reduction in b-wave amplitude. Genotype-phenotype studies of mouse models for DMD show position-specific effects of the mutations upon the phenotype: mice with 5' defects of dystrophin have normal ERGs, those with defects in the central region have a normal b-wave amplitude associated with prolonged implicit times for both the b-wave and oscillatory potentials, and mice with 3' defects have a phenotype similar to that seen in DMD/BMD patients. The mouse studies suggest a key role for the carboxyl terminal dystrophin isoform, Dp260, in retinal electrophysiology. We have undertaken a systematic evaluation of DMD/BMD patients through clinical examination and review of the literature in order to determine whether the position-specific effects of mutations noted in the mouse are present in man. We have found that, in man, a wider variation of DMD defects correlate with reductions in the b-wave amplitude. Individuals with normal ERGs have mutations predominantly located 5' of the transcript initiation site of Dp260. Our results suggest that the most important determinant in the ERG b-wave phenotype is the mutation position, rather than muscle disease severity. Forty-six per cent of patients with mutations 5' of the Dp260 transcript start site have abnormal ERGs, as opposed to 94% with more distal mutations. The human genotype-phenotype correlations are consistent with a role for Dp260 in normal retinal electrophysiology and may also reflect the expression of other C-terminal dystrophin isoforms and their contributions to retinal signal transmission.

  1. Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk nuclear test site.

    PubMed

    Takeichi, Nobuo; Hoshi, Masaharu; Iida, Shozo; Tanaka, Kimio; Harada, Yuka; Zhumadilov, Zhaxybay; Chaizhunusova, Nailya; Apsalikov, Kazbek N; Noso, Yoshihiro; Inaba, Toshiya; Tanaka, Kenichi; Endo, Satoru

    2006-02-01

    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52-63 years old, were performed in 2001-2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid.

  2. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    PubMed

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  3. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  4. Sequential Cross-Species Chromosome Painting among River Buffalo, Cattle, Sheep and Goat: A Useful Tool for Chromosome Abnormalities Diagnosis within the Family Bovidae

    PubMed Central

    Pauciullo, Alfredo; Perucatti, Angela; Cosenza, Gianfranco; Iannuzzi, Alessandra; Incarnato, Domenico; Genualdo, Viviana; Di Berardino, Dino; Iannuzzi, Leopoldo

    2014-01-01

    The main goal of this study was to develop a comparative multi-colour Zoo-FISH on domestic ruminants metaphases using a combination of whole chromosome and sub-chromosomal painting probes obtained from the river buffalo species (Bubalus bubalis, 2n = 50,XY). A total of 13 DNA probes were obtained through chromosome microdissection and DOP-PCR amplification, labelled with two fluorochromes and sequentially hybridized on river buffalo, cattle (Bos taurus, 2n = 60,XY), sheep (Ovis aries, 2n = 54,XY) and goat (Capra hircus, 2n = 60,XY) metaphases. The same set of paintings were then hybridized on bovine secondary oocytes to test their potential use for aneuploidy detection during in vitro maturation. FISH showed excellent specificity on metaphases and interphase nuclei of all the investigated species. Eight pairs of chromosomes were simultaneously identified in buffalo, whereas the same set of probes covered 13 out 30 chromosome pairs in the bovine and goat karyotypes and 40% of the sheep karyotype (11 out of 27 chromosome pairs). This result allowed development of the first comparative M-FISH karyotype within the domestic ruminants. The molecular resolution of complex karyotypes by FISH is particularly useful for the small chromosomes, whose similarity in the banding patterns makes their identification very difficult. The M-FISH karyotype also represents a practical tool for structural and numerical chromosome abnormalities diagnosis. In this regard, the successful hybridization on bovine secondary oocytes confirmed the potential use of this set of probes for the simultaneous identification on the same germ cell of 12 chromosome aneuploidies. This is a fundamental result for monitoring the reproductive health of the domestic animals in relation to management errors and/or environmental hazards. PMID:25330006

  5. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients. © 2014 AlphaMed Press.

  6. Exon skipping and gene transfer restore dystrophin expression in human induced pluripotent stem cells-cardiomyocytes harboring DMD mutations.

    PubMed

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns; Denning, Chris

    2013-10-15

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47-50 or 48-50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart.

  7. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations

    PubMed Central

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns

    2013-01-01

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870

  8. Chromosome abnormalities and the genetics of congenital corneal opacification

    PubMed Central

    Mataftsi, A.; Islam, L.; Kelberman, D.; Sowden, J.C.

    2011-01-01

    Congenital corneal opacification (CCO) encompasses a broad spectrum of disorders that have different etiologies, including genetic and environmental. Terminology used in clinical phenotyping is commonly not specific enough to describe separate entities, for example both the terms Peters anomaly and sclerocornea have been ascribed to a clinical picture of total CCO, without investigating the presence or absence of iridocorneal adhesions. This is not only confusing but also unhelpful in determining valid genotype-phenotype correlations, and thereby revealing clues for pathogenesis. We undertook a systematic review of the literature focusing on CCO as part of anterior segment developmental anomalies (ASDA), and analyzed its association specifically with chromosomal abnormalities. Genes previously identified as being associated with CCO are also summarized. All reports were critically appraised to classify phenotypes according to described features, rather than the given diagnosis. Some interesting associations were found, and are discussed. PMID:21738392

  9. Parental decisions to abort or continue a pregnancy following prenatal diagnosis of chromosomal abnormalities in a setting where termination of pregnancy is not legally available.

    PubMed

    Quadrelli, Roberto; Quadrelli, Andrea; Mechoso, Búrix; Laufer, Mauricio; Jaumandreu, Ciro; Vaglio, Alicia

    2007-03-01

    To learn about parental decisions to abort or continue a pregnancy after prenatal diagnosis of chromosomal abnormalities among the population in Uruguay. Between 1982 and 2003, 14 656 amniocentesis and 2740 chorionic villus samplings were performed in a referral Genetic Unit. Chromosomal anomalies were found in 376 cases (2.16%) and included Down syndrome, aneuploidies in which a severe prognosis was expected, sex chromosome aneuploidy and aneuploidies with a low risk of an abnormal clinical phenotype. The couples that received abnormal results were contacted by phone and asked if they had continued or interrupted the pregnancy after the diagnosis and genetic counseling. We contacted 207 couples (55%). When confronted with Down syndrome or an aneuploidy in which a severe prognosis was expected, 89% and 96% of patients, respectively, decided to terminate the pregnancy. When confronted with sex chromosome aneuploidy or aneuploidies with a low risk of an abnormal clinical phenotype, 79% and 90% of patients, respectively, decided to continue the pregnancy. The present study shows that when faced with an anomaly such as Down syndrome and aneuploidies in which a severe prognosis was expected, most of the couples decided to terminate the pregnancy, although TOP is not legally available in Uruguay. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Outcome of chromosomally abnormal pregnancies in Lebanon: obstetricians' roles during and after prenatal diagnosis.

    PubMed

    Eldahdah, Lama T; Ormond, Kelly E; Nassar, Anwar H; Khalil, Tayma; Zahed, Laila F

    2007-06-01

    To better understand obstetrician experiences in Lebanon when disclosing abnormal amniocentesis results. Structured interviews with 38 obstetricians identified as caregivers from the American University of Beirut Medical Center Cytogenetics Laboratory database of patients with abnormal amniocentesis results between 1999 and 2005. Obstetricians were primarily male, Christian, and with an average of 14 years of experience. They reported doing most pre-amniocentesis counseling, including discussion of risk for common autosomal aneuplodies (95%), and procedure-related risk (95%). Obstetricians reported that 80% of patients at risk for aneuploidy underwent amniocentesis. The study population reported on 143 abnormal test results (124 autosomal abnormalities). When disclosing results, obstetricians reportedly discussed primarily physical and cognitive features of the diagnosis. They varied in levels of directiveness and comfort in providing information. Our records showed that 59% of pregnancies with sex chromosome abnormalities were terminated compared to 90% of those with autosomal aneuploidies; various reasons were proposed by obstetricians. This study is among the few to assess prenatal diagnosis practices in the Middle East, with a focus on the role of the obstetrician. Given the influence of culture and social norms on prenatal decision-making, it remains important to understand the various impacts on clinical practice in many nations. (c) 2007 John Wiley & Sons, Ltd.

  11. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shomrat, R.; Gluck, E.; Legum, C.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and themore » remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.« less

  12. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    PubMed

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  13. Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 ∆45-55).

    PubMed

    Gowran, Aoife; Spaltro, Gabriella; Casalnuovo, Federica; Vigorelli, Vera; Spinelli, Pietro; Castiglioni, Elisa; Rovina, Davide; Paganini, Stefania; Di Segni, Marina; Gervasini, Cristina; Nigro, Patrizia; Pompilio, Giulio

    2018-04-01

    Becker muscular dystrophy (BMD) is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55). Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Identification of Small Molecule and Genetic Modulators of AON-Induced Dystrophin Exon Skipping by High-Throughput Screening

    PubMed Central

    O'Leary, Debra A.; Sharif, Orzala; Anderson, Paul; Tu, Buu; Welch, Genevieve; Zhou, Yingyao; Caldwell, Jeremy S.; Engels, Ingo H.; Brinker, Achim

    2009-01-01

    One therapeutic approach to Duchenne Muscular Dystrophy (DMD) recently entering clinical trials aims to convert DMD phenotypes to that of a milder disease variant, Becker Muscular Dystrophy (BMD), by employing antisense oligonucleotides (AONs) targeting splice sites, to induce exon skipping and restore partial dystrophin function. In order to search for small molecule and genetic modulators of AON-dependent and independent exon skipping, we screened ∼10,000 known small molecule drugs, >17,000 cDNA clones, and >2,000 kinase- targeted siRNAs against a 5.6 kb luciferase minigene construct, encompassing exon 71 to exon 73 of human dystrophin. As a result, we identified several enhancers of exon skipping, acting on both the reporter construct as well as endogenous dystrophin in mdx cells. Multiple mechanisms of action were identified, including histone deacetylase inhibition, tubulin modulation and pre-mRNA processing. Among others, the nucleolar protein NOL8 and staufen RNA binding protein homolog 2 (Stau2) were found to induce endogenous exon skipping in mdx cells in an AON-dependent fashion. An unexpected but recurrent theme observed in our screening efforts was the apparent link between the inhibition of cell cycle progression and the induction of exon skipping. PMID:20020055

  15. Clinical utility of the X-chromosome array.

    PubMed

    Zarate, Yuri A; Dwivedi, Alka; Bartel, Frank O; Bellomo, M Allison; Cathey, Sara S; Champaigne, Neena L; Clarkson, L Kate; Dupont, Barbara R; Everman, David B; Geer, Joseph S; Gordon, Barbara C; Lichty, Angie W; Lyons, Michael J; Rogers, R Curtis; Saul, Robert A; Schroer, Richard J; Skinner, Steven A; Stevenson, Roger E

    2013-01-01

    Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families. Copyright © 2012 Wiley Periodicals, Inc.

  16. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects.

    PubMed

    Jansen, Fenna A R; Hoffer, Mariette J V; van Velzen, Christine L; Plati, Stephani Klingeman; Rijlaarsdam, Marry E B; Clur, Sally-Ann B; Blom, Nico A; Pajkrt, Eva; Bhola, Shama L; Knegt, Alida C; de Boer, Marion A; Haak, Monique C

    2016-02-01

    To demonstrate the spectrum of copy number variants (CNVs) in fetuses with isolated left-sided congenital heart defects (CHDs), and analyse genetic content. Between 2003 and 2012, 200 fetuses were identified with left-sided CHD. Exclusion criteria were chromosomal rearrangements, 22q11.2 microdeletion and/or extra-cardiac malformations (n = 64). We included cases with additional minor anomalies (n = 39), such as single umbilical artery. In 54 of 136 eligible cases, stored material was available for array analysis. CNVs were categorized as either (likely) benign, (likely) pathogenic or of unknown significance. In 18 of the 54 isolated left-sided CHDs we found 28 rare CNVs (prevalence 33%, average 1.6 CNV per person, size 10.6 kb-2.2 Mb). Our interpretation yielded clinically significant CNVs in two of 54 cases (4%) and variants of unknown significance in three other cases (6%). In left-sided CHDs that appear isolated, with normal chromosome analysis and 22q11.2 FISH analysis, array analysis detects clinically significant CNVs. When counselling parents of a fetus with a left-sided CHD it must be taken into consideration that aside from the cardiac characteristics, the presence of extra-cardiac malformations and chromosomal abnormalities influence the treatment plan and prognosis. © 2015 John Wiley & Sons, Ltd.

  17. Clinical implications of chromosomal abnormalities in gastric adenocarcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chew-Wun; Chen, Gen-Der; Fann, Cathy S.-J.

    2003-06-23

    Gastric carcinoma (GC) is one of the most common malignancies worldwide and has a very poor prognosis. Genetic imbalances in 62 primary gastric adenocarcinomas of various histopathologic types and pathologic stages and six gastric cancer-derived cell lines were analyzed by comparative genomic hybridization, and the relationship of genomic abnormalities to clinical features in primary GC was evaluated at a genome-wide level. Eighty-four percent of the tumors and all six cell lines showed DNA copy number changes. The recurrent chromosomal abnormalities including gains at 15 regions and losses at 8 regions were identified. Statistical analyses revealed that gains at 17q24-qter (53more » percent), 20q13-qter (48 percent), 1p32-p36 (42 percent), 22q12-qter (27 percent), 17p13-pter (24 percent), 16p13-pter (21 percent), 6p21-pter (19 percent), 20p12-pter (19 percent), 7p21-pter (18 percent), 3q28-qter (8 percent), and 13q13-q14 (8 percent), and losses at 18q12-qter (11 percent), 3p12 (8 percent), 3p25-pter (8 percent), 5q14-q23 (8 percent), and 9p21-p23 (5 percent), are associated with unique patient or tumor-related features. GCs of differing histopathologic features were shown to be associated with distinct patterns of genetic alterations, supporting the notion that they evolve through distinct genetic pathways. Metastatic tumors were also associated with specific genetic changes. These regions may harbor candidate genes involved in the pathogenesis of this malignancy.« less

  18. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin.

    PubMed

    Singh, Surinder M; Molas, Justine F; Kongari, Narsimulu; Bandi, Swati; Armstrong, Geoffrey S; Winder, Steve J; Mallela, Krishna M G

    2012-05-01

    Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  19. Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong

    2010-07-01

    Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.

  20. Abnormal chromosome complement resulting from a familial inversion of chromosome 2.

    PubMed Central

    Richter, S; Lockwood, B; Lockwood, D; Allanson, J

    1989-01-01

    It has been suggested that pericentric inversions of chromosome 2 increase the risk for spontaneous abortion but do not increase the risk for unbalanced recombinant offspring. We report our experience of a familial pericentric inversion of chromosome 2 resulting in two unbalanced recombinant offspring. Both subjects have 46,XX,rec(2),dup q,inv(2)(p25q35). Images PMID:2479747

  1. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy

    PubMed Central

    Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A.; Shelton, John M.; Sanchez-Ortiz, Efrain; McAnally, John R.; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D.; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders. PMID:29187645

  2. Nicorandil, a Nitric Oxide Donor and ATP-Sensitive Potassium Channel Opener, Protects Against Dystrophin-Deficient Cardiomyopathy

    PubMed Central

    Afzal, Muhammad Z.; Reiter, Melanie; Gastonguay, Courtney; McGivern, Jered V.; Guan, Xuan; Ge, Zhi-Dong; Mack, David L.; Childers, Martin K.; Ebert, Allison D.; Strande, Jennifer L.

    2016-01-01

    Background Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy. PMID:26940570

  3. Microsatellites within the feline androgen receptor are suitable for X chromosome-linked clonality testing in archival material.

    PubMed

    Farwick, Nadine M; Klopfleisch, Robert; Gruber, Achim D; Weiss, Alexander Th A

    2017-04-01

    Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls of using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat.

  4. Sustained trilineage recovery and disappearance of abnormal chromosome clone in a patient with myelodysplastic syndrome following combination therapy with cytokines (granulocyte colony-stimulating factor and erythropoietin) and high-dose methylprednisolone.

    PubMed

    Imai, Y; Fukuoka, T; Nakatani, A; Ohsaka, A; Takahashi, A

    1996-04-01

    We report a case of hypoplastic myelodyplastic syndrome (MDS) (refractory anemia (RA)) in which sustained trilineage haematological response and persistent disappearance of an abnormal chromosome clone were achieved after treatment with combination therapy of cytokines (granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo)) and methylprednisolone (mPSL) pulse dose. The patient's haematological recovery was rapid and maintained even after cessation of the therapy. In addition, the predominant chromosome clone 13q- in bone marrow cells disappeared in the fourth week. The patient's improved bone marrow haemopoiesis and disappearance of the abnormal chromosome has continued to the present, 13 months after treatment. The occurrence of both trilineage response and abnormal chromosome disappearance in MDS patients treated with cytokine(s) or steroids is rare. Combination therapy might therefore be advantageous in MDS.

  5. [No X-chromosome linked juvenile foveal retinoschisis].

    PubMed

    Pérez Alvarez, M J; Clement Fernández, F

    2002-08-01

    To describe the clinical characteristics of two cases of juvenile foveal retinoschisis in women with an atypical hereditary pattern, no X-chromosome linked. An autosomal recessive inheritance is proposed. Two generations of a family (5 members) in which only two sisters were evaluated. The complete examination of these two cases includes retinography, fluorescein angiography, automated perimetry, color vision testing, electroretinogram, electrooculogram and visually evoked potentials. Comparing our cases with the classic form of X-linked juvenile retinoschisis, they are less severely affected. The best visual acuity and the less disturbed or even normal electroretinogram confirm this fact. We emphasise the existence of isolated plaques of retinal pigment epithelium atrophy with perivascular pigment clumps without foveal schisis in one patient, which could represent an evolved form of this entity. The hereditary foveal juvenile retinoschisis in women suggests an autosomal inheritance (autosomal recessive in our cases) and presents less severe involvement (Arch Soc Esp Oftalmol 2002; 77: 443-448).

  6. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy.

    PubMed

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-05-28

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

  7. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  8. The Chromosome 18 Clinical Resource Center.

    PubMed

    Cody, Jannine D; Hasi-Zogaj, Minire; Heard, Patricia; Hill, Annice; Rupert, David; Sebold, Courtney; Soileau, Bridgette; Hale, Daniel E

    2018-05-01

    The Chromosome 18 Clinical Research Center has created a pediatrician-friendly virtual resource center for managing patients with chromosome 18 abnormalities. To date, children with rare chromosome abnormalities have been cared for either symptomatically or palliatively as a reaction to the presenting medical problems. As we enter an era of genomic-informed medicine, we can provide children, even those with individually unique chromosome abnormalities, with proactive medical care and management based on the most contemporary data on their specific genomic change. It is problematic for practicing physicians to obtain and use the emerging data on specific genes because this information is derived from diverse sources (e.g., animal studies, case reports, in vitro explorations) and is often published in sources that are not easily accessible in the clinical setting. The Chromosome 18 Clinical Resource Center remedies this challenging problem by curating and synthesizing the data with clinical implications. The data are collected from our database of over 26 years of natural history and medical data from over 650 individuals with chromosome 18 abnormalities. The resulting management guides and video presentations are a first edition of this collated data specifically oriented to guide clinicians toward the optimization of care for each child. The chromosome 18 data and guides also serve as models for an approach to the management of any individual with a rare chromosome abnormality of which there are over 1,300 born every year in the US alone. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  9. Changes in Muscle Metabolism are Associated with Phenotypic Variability in Golden Retriever Muscular Dystrophy




    PubMed Central

    Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176

  10. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.

    PubMed

    Coombe, Lauren; Zhang, Jessica; Vandervalk, Benjamin P; Chu, Justin; Jackman, Shaun D; Birol, Inanc; Warren, René L

    2018-06-20

    The long-range sequencing information captured by linked reads, such as those available from 10× Genomics (10xG), helps resolve genome sequence repeats, and yields accurate and contiguous draft genome assemblies. We introduce ARKS, an alignment-free linked read genome scaffolding methodology that uses linked reads to organize genome assemblies further into contiguous drafts. Our approach departs from other read alignment-dependent linked read scaffolders, including our own (ARCS), and uses a kmer-based mapping approach. The kmer mapping strategy has several advantages over read alignment methods, including better usability and faster processing, as it precludes the need for input sequence formatting and draft sequence assembly indexing. The reliance on kmers instead of read alignments for pairing sequences relaxes the workflow requirements, and drastically reduces the run time. Here, we show how linked reads, when used in conjunction with Hi-C data for scaffolding, improve a draft human genome assembly of PacBio long-read data five-fold (baseline vs. ARKS NG50 = 4.6 vs. 23.1 Mbp, respectively). We also demonstrate how the method provides further improvements of a megabase-scale Supernova human genome assembly (NG50 = 14.74 Mbp vs. 25.94 Mbp before and after ARKS), which itself exclusively uses linked read data for assembly, with an execution speed six to nine times faster than competitive linked read scaffolders (~ 10.5 h compared to 75.7 h, on average). Following ARKS scaffolding of a human genome 10xG Supernova assembly (of cell line NA12878), fewer than 9 scaffolds cover each chromosome, except the largest (chromosome 1, n = 13). ARKS uses a kmer mapping strategy instead of linked read alignments to record and associate the barcode information needed to order and orient draft assembly sequences. The simplified workflow, when compared to that of our initial implementation, ARCS, markedly improves run time performances on experimental human genome

  11. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study

    PubMed Central

    Kinali, Maria; Arechavala-Gomeza, Virginia; Feng, Lucy; Cirak, Sebahattin; Hunt, David; Adkin, Carl; Guglieri, Michela; Ashton, Emma; Abbs, Stephen; Nihoyannopoulos, Petros; Garralda, Maria Elena; Rutherford, Mary; Mcculley, Caroline; Popplewell, Linda; Graham, Ian R; Dickson, George; Wood, Matthew JA; Wells, Dominic J; Wilton, Steve D; Kole, Ryszard; Straub, Volker; Bushby, Kate; Sewry, Caroline; Morgan, Jennifer E; Muntoni, Francesco

    2009-01-01

    Summary Background Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefit patients with this disorder. Methods We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, to assess the safety and biochemical efficacy of an intramuscular morpholino splice-switching oligonucleotide (AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fibroblasts from a skin biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the secondary endpoint was its biochemical efficacy. This trial is registered, number NCT00159250. Findings Two patients received 0·09 mg AVI-4658 in 900 μL (0·9%) saline and five patients received 0·9 mg AVI-4658 in 900 μL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained sections that were adjacent to the needle track through which AVI-4658 was given, 44–79% of myofibres had increased expression of dystrophin. In randomly chosen

  12. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    PubMed

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).

  13. First-trimester screening for chromosomal abnormalities: advantages of an instant results approach.

    PubMed

    Norton, Mary E

    2010-09-01

    Protocols that include first trimester screening for fetal chromosome abnormalities have become standard of care throughout the United States. Earlier screening allows for first trimester diagnostic testing in cases found to be at increased risk. However, first trimester screening requires coordination of the nuchal translucency ultrasound screening (NT) and biochemical screening, during early, specific, narrow, but slightly different gestational age ranges. Instant results can often be provided at the time of the NT ultrasound if preceded by the programs that perform the biochemical analyses; this optimizes the benefits of the first trimester approach while improving efficiency and communication with the patient. This article discusses the benefits and logistics of such an approach. Copyright 2010 Elsevier Inc. All rights reserved.

  14. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    PubMed Central

    Madrigal, I; Rodríguez-Revenga, L; Armengol, L; González, E; Rodriguez, B; Badenas, C; Sánchez, A; Martínez, F; Guitart, M; Fernández, I; Arranz, JA; Tejada, MI; Pérez-Jurado, LA; Estivill, X; Milà, M

    2007-01-01

    Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients. PMID:18047645

  15. Study about locomotory ability of dystrophin-defected C.elegans after spaceflight

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Sun, Yeqing; Lei, Huang; Xu, Dan

    2012-07-01

    Space microgravity could induce a variety of biological changes such as muscular atrophy. Recent studies show that gravisensing is a key point in muscular atrophy process, but the molecular mechanism is still unknown. Dystrophin, a muscle-related protein, plays an important role in muscle development. It is reported that mutation of human dystrophin gene could cause muscular atrophy. In this study, we focus on whether dystrophin gene acts as a gravisensing factor and observe locomotory ability of dystrophin-defected Caenorhabditis elegans (C.elegans) after spaceflight. We used wild-type (WT) and dystrophin-defected (dys-1) mutant of C.elegans, which were cultured to dauer stage and sent to space by Shenzhou 8 spacecraft (from Nov 1st to 17th, 2011). These worms were divided into three groups: space group (space radiation and microgravity conditions), space control group (space radiation and chmetcnvTCSC0NumberType1NegativeFalseHasSpaceFalseSourceValue1UnitNameg1g centrifuge force conditions) and ground control group.We already observed the progeny (generation F1 and F2) of worms which were sent to space, the movement of C. elegans is restricted to a two-dimensional sinusoidal pattern, and evaluated locomotory ability by the ratio (length/width) in crawl trace wave of C. elegans. The increased value of ratio indicates the decrease in locomotory ability of C. elegans. Our results from generation F1 showed that WT worms in space group(7.7±1.8) demonstrated the significant decrease in locomotory ability about 15%, compared with those in space control group(6.7±1.2). This finding indicates that locomotory ability of C. elegans progeny could be affected by microgravity in space environment. In comparison to the obvious difference in ratio between space group and space control group for WT worms, there is no significant difference between two space groups of generation F2 .For dys-1 mutant of C.elegans (generation F1 and F2), the results show that dystrophin deficiency

  16. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype

    PubMed Central

    Pratte-Santos, Rodrigo; Ribeiro, Katyanne Heringer; Santos, Thainá Altoe; Cintra, Terezinha Sarquis

    2016-01-01

    ABSTRACT Objective To investigate chromosomal abnormalities by CGH-array in patients with dysmorphic features and intellectual disability with normal conventional karyotype. Methods Retrospective study, carried out from January 2012 to February 2014, analyzing the CGH-array results of 39 patients. Results Twenty-six (66.7%) patients had normal results and 13 (33.3%) showed abnormal results - in that, 6 (15.4%) had pathogenic variants, 6 (15.4%) variants designated as uncertain and 1 (2.5%) non-pathogenic variants. Conclusion The characterization of the genetic profile by CGH-array in patients with intellectual disability and dysmorphic features enabled making etiologic diagnosis, followed by genetic counseling for families and specific treatment. PMID:27074231

  17. Dystrophin Expressing Chimeric (DEC) Human Cells Provide a Potential Therapy for Duchenne Muscular Dystrophy.

    PubMed

    Siemionow, Maria; Cwykiel, Joanna; Heydemann, Ahlke; Garcia, Jesus; Marchese, Enza; Siemionow, Krzysztof; Szilagyi, Erzsebet

    2018-06-01

    Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MB N1 /MB N2 ), and normal and DMD donors (MB N /MB DMD ). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 10 6 ) restored dystrophin expression (17.27%±8.05-MB N1 /MB N2 and 23.79%±3.82-MB N /MB DMD ) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.

  18. Assessment of chromosomal abnormalities in sperm of infertile men using sperm karyotyping and multicolour fluorescence in situ hybridization (FISH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moosani, N.; Martin, R.H.

    1994-09-01

    Individuals with male factor infertility resulting from idiopathic oligo-, astheno- or teratozoospermia are frequently offered IVF in an attempt to increase their chances of having a child. A concern remains whether these infertile males have an elevated risk of transmitting chromosomal abnormalities to their offspring. Sperm chromosomal complements from these men were assayed using the human sperm/hamster oocyte fusion system and fluorescence in situ hybridization (FISH) on sperm nuclei. For each of 5 infertile patients, 100 sperm karyotypes were analyzed and multicolour FISH analysis was performed on a minimum of 10,000 sperm nuclei for each chromosome-specific DNA probe for chromosomesmore » 1 (pUC1.77), 12 (D12Z3), X (XC) and Y (DYZ3). As a group, the infertile patients showed increased frequencies of both numerical ({chi}{sup 2}=17.26, {proportional_to} <0.001) and total abnormalities ({chi}{sup 2}=7.78, {proportional_to} <0.01) relative to control donors when assessed by sperm karyotypes. Analysis of sperm nuclei by FISH indicated a significant increase in the frequency of disomy for chromosome 1 in three of the five patients as compared to control donors ({chi}{sup 2}>8.35, {proportional_to} <0.005). In addition, the frequency of XY disomy was significantly higher in four of the five patients studied by FISH ({chi}{sup 2}>10.58, {proportional_to}<0.005), suggesting that mis-segregation caused by the failure of the XY bivalent to pair may play a role in idiopathic male infertility.« less

  19. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries

    PubMed Central

    Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.

    2012-01-01

    SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361

  20. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Cancer.gov

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is little doubt that chromosomal translocations can contribute to cancer, there is an active "chicken and the egg" discussion about the role translocations and other chromosomal abnormalities play—do they actually cause cancer or merely occur because of other changes within the cancer cell.  

  1. Arsenic Exposure, Dermatological Lesions, Hypertension, and Chromosomal Abnormalities among People in a Rural Community of Northwest Iran

    PubMed Central

    Dastgiri, Saeed; Fizi, Mohammad A.H.; Olfati, Nahid; Zolali, Shahin; Pouladi, Nasser; Azarfam, Parvin

    2010-01-01

    Chronic exposure to arsenic compounds is one of the major public-health problems in many developing and some developed countries. The aim of this study was to investigate the effects of chronic exposure to arsenic on dermatological lesions, hypertension, and chromosomal abnormalities among people in a community in the northwest of Iran. The occurrence of dermatological lesions, hypertension, and chromosomal abnormalities was investigated in two groups: Ghopuz village, including 101 subjects with chronic exposure to arsenic in drinking-water and Mayan village, including 107 subjects with no exposure. Daily/yearly absorbed amounts of arsenic were calculated for all subjects. Cumulative arsenic index for each individual was then estimated on the basis of age, water consumption, and location of residence. Arsenic concentration in drinking-water sources in Ghopuz and Mayan villages was 1031±1103 μg/L and non-detectable respectively. The mean systolic blood pressure in the exposure group [n=137, 95% confidence interval (CI 132–142)] was significantly higher than that in the control group (n=107, 95% CI 99.9–114). A similar significant difference was observed for diastolic blood pressure (exposed: n=82, 95% CI 79–85 vs non-exposed: n=71, 95% CI 66–75). The incidence of hyperkeratosis was 34 times higher among the exposure group compared to the control subjects [odds ratio (OR)=34, p<0.001)]. A significant difference was also observed in the occurrence of skin-pigmentation between the two groups (OR=2.4, p<0.007). Location and severity of the pigmentations were statistically different between the two groups. Twenty-five percent of the subjects in the exposure group showed chromosomal abnormalities (p=0.05). Arsenic exposure was a serious health problem in the region. More studies are needed to investigate the long-term effects and dose-response relationship of arsenic in the region and similar areas. Wide-ranging monitoring programmes for drinking-water sources

  2. A Dominantly Acting Murine Allele of Mcm4 Causes Chromosomal Abnormalities and Promotes Tumorigenesis

    PubMed Central

    Bagley, Bruce N.; Keane, Thomas M.; Maklakova, Vilena I.; Marshall, Jonathon G.; Lester, Rachael A.; Cancel, Michelle M.; Paulsen, Alex R.; Bendzick, Laura E.; Been, Raha A.; Kogan, Scott C.; Cormier, Robert T.; Kendziorski, Christina; Adams, David J.; Collier, Lara S.

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4D573H). MCM4 is part of the heterohexameric complex of MCM2–7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities. PMID:23133403

  3. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    PubMed

    Bagley, Bruce N; Keane, Thomas M; Maklakova, Vilena I; Marshall, Jonathon G; Lester, Rachael A; Cancel, Michelle M; Paulsen, Alex R; Bendzick, Laura E; Been, Raha A; Kogan, Scott C; Cormier, Robert T; Kendziorski, Christina; Adams, David J; Collier, Lara S

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  4. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases

    PubMed Central

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562

  5. siRNAs from an X-linked satellite repeat promote X-chromosome recognition in Drosophila melanogaster.

    PubMed

    Menon, Debashish U; Coarfa, Cristian; Xiao, Weimin; Gunaratne, Preethi H; Meller, Victoria H

    2014-11-18

    Highly differentiated sex chromosomes create a lethal imbalance in gene expression in one sex. To accommodate hemizygosity of the X chromosome in male fruit flies, expression of X-linked genes increases twofold. This is achieved by the male- specific lethal (MSL) complex, which modifies chromatin to increase expression. Mutations that disrupt the X localization of this complex decrease the expression of X-linked genes and reduce male survival. The mechanism that restricts the MSL complex to X chromatin is not understood. We recently reported that the siRNA pathway contributes to localization of the MSL complex, raising questions about the source of the siRNAs involved. The X-linked 1.688 g/cm(3) satellite related repeats (1.688(X) repeats) are restricted to the X chromosome and produce small RNA, making them an attractive candidate. We tested RNA from these repeats for a role in dosage compensation and found that ectopic expression of single-stranded RNAs from 1.688(X) repeats enhanced the male lethality of mutants with defective X recognition. In contrast, expression of double-stranded hairpin RNA from a 1.688(X) repeat generated abundant siRNA and dramatically increased male survival. Consistent with improved survival, X localization of the MSL complex was largely restored in these males. The striking distribution of 1.688(X) repeats, which are nearly exclusive to the X chromosome, suggests that these are cis-acting elements contributing to identification of X chromatin.

  6. Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse.

    PubMed

    Rimessi, Paola; Sabatelli, Patrizia; Fabris, Marina; Braghetta, Paola; Bassi, Elena; Spitali, Pietro; Vattemi, Gaetano; Tomelleri, Giuliano; Mari, Lara; Perrone, Daniela; Medici, Alessandro; Neri, Marcella; Bovolenta, Matteo; Martoni, Elena; Maraldi, Nadir M; Gualandi, Francesca; Merlini, Luciano; Ballestri, Marco; Tondelli, Luisa; Sparnacci, Katia; Bonaldo, Paolo; Caputo, Antonella; Laus, Michele; Ferlini, Alessandra

    2009-05-01

    For subsets of Duchenne muscular dystrophy (DMD) mutations, antisense oligoribonucleotide (AON)-mediated exon skipping has proven to be efficacious in restoring the expression of dystrophin protein. In the mdx murine model systemic delivery of AON, recognizing the splice donor of dystrophin exon 23, has shown proof of concept. Here, we show that using cationic polymethylmethacrylate (PMMA) (marked as T1) nanoparticles loaded with a low dose of 2'-O-methyl-phosphorothioate (2'OMePS) AON delivered by weekly intraperitoneal (IP) injection (0.9 mg/kg/week), could restore dystrophin expression in body-wide striated muscles. Delivery of an identical dose of naked AON did not result in detectable dystrophin expression. Transcription, western, and immunohistochemical analysis showed increased levels of dystrophin transcript and protein, and correct localization at the sarcolemma. This study shows that T1 nanoparticles have the capacity to bind and convoy AONs in body-wide muscle tissues and to reduce the dose required for dystrophin rescue. By immunofluorescence and electron microscopy studies, we highlighted the diffusion pathways of this compound. This nonviral approach may valuably improve the therapeutic usage of AONs in DMD as well as the delivery of RNA molecules with many implications in both basic research and medicine.

  7. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy.

    PubMed

    England, Jennifer; Loughna, Siobhan; Rutland, Catrin Sian

    2017-07-07

    Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy.

  8. Dystrophin Is Required for Proper Functioning of Luminance and Red-Green Cone Opponent Mechanisms in the Human Retina.

    PubMed

    Barboni, Mirella Telles Salgueiro; Martins, Cristiane Maria Gomes; Nagy, Balázs Vince; Tsai, Tina; Damico, Francisco Max; da Costa, Marcelo Fernandes; de Cassia, Rita; Pavanello, M; Lourenço, Naila Cristina Vilaça; de Cerqueira, Antonia Maria Pereira; Zatz, Mayana; Kremers, Jan; Ventura, Dora Fix

    2016-07-01

    Visual information is processed in parallel pathways in the visual system. Parallel processing begins at the synapse between the photoreceptors and their postreceptoral neurons in the human retina. The integrity of this first neural connection is vital for normal visual processing downstream. Of the numerous elements necessary for proper functioning of this synaptic contact, dystrophin proteins in the eye play an important role. Deficiency of muscle dystrophin causes Duchenne muscular dystrophy (DMD), an X-linked disease that affects muscle function and leads to decreased life expectancy. In DMD patients, postreceptoral retinal mechanisms underlying scotopic and photopic vision and ON- and OFF-pathway responses are also altered. In this study, we recorded the electroretinogram (ERG) while preferentially activating the (red-green) opponent or the luminance pathway, and compared data from healthy participants (n = 16) with those of DMD patients (n = 10). The stimuli were heterochromatic sinusoidal modulations at a mean luminance of 200 cd/m2. The recordings allowed us also to analyze ON and OFF cone-driven retinal responses. We found significant differences in 12-Hz response amplitudes and phases between controls and DMD patients, with conditions with large luminance content resulting in larger response amplitudes in DMD patients compared to controls, whereas responses of DMD patients were smaller when pure chromatic modulation was given. The results suggest that dystrophin is required for the proper function of luminance and red-green cone opponent mechanisms in the human retina.

  9. Abnormally banded chromosomal regions in doxorubicin-resistant B16-BL6 murine melanoma cells.

    PubMed

    Slovak, M L; Hoeltge, G A; Ganapathi, R

    1986-08-01

    B16-BL6 murine melanoma cells were selected for cytogenetic evaluation during the stepwise development of increasing resistance in vitro to the antitumor antibiotic, doxorubicin (DOX). Karyotypic studies demonstrated extensive heteroploidy with both numerical and structural abnormalities which were not present in the parental DOX-sensitive B16-BL6 cells. Trypsin-Giemsa banding revealed the presence of several marker chromosomes containing abnormally banding regions (ABRs) in the 44-fold B16-BL6 DOX-resistant subline. These ABRs appeared to be more homogeneously staining at the higher DOX concentrations. Length measurements (ABR index) in seven banded metaphases indicated a direct correlation with increasing DOX concentration. When the DOX-resistant cells were grown in drug-free medium for 1 yr, the drug-resistant phenotype gradually declined in parallel with the level of resistance and the ABR index. DOX-induced cytogenetic damage examined by sister chromatid exchange methodology in parental B16-BL6 cells indicated a linear sister chromatid exchange:DOX dose-response relationship. However, after continuous treatment of parental B16-BL6 cells with DOX (0.01 microgram/ml) for 30 days, sister chromatid exchange scores were found to return to base-line values. The B16-BL6 resistant cells demonstrated a cross-resistant phenotype with N-trifluoroacetyladriamycin-14-valerate, actinomycin D, and the Vinca alkaloids but not with 1-beta-D-arabinofuranosylcytosine. The results suggest that ABR-containing chromosomes in DOX-resistant sublines may represent cytogenetic alterations of specific amplified genes involved in the expression of DOX resistance. Further studies are required to identify and define the possible gene products and to correlate their relationship to the cytotoxic action of doxorubicin.

  10. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  11. Chromosomal Translocations: Chicken or Egg? | Center for Cancer Research

    Cancer.gov

    Many tumor cells have abnormal chromosomes. Some of these abnormalities are caused by chromosomal translocations, which occur when two chromosomes break and incorrectly rejoin, resulting in an exchange of genetic material. Translocations can activate oncogenes, silence tumor suppressor genes, or result in the creation of completely new fusion gene products. While there is

  12. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy

    PubMed Central

    England, Jennifer

    2017-01-01

    Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy. PMID:29367539

  13. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

    PubMed

    Serena, Elena; Zatti, Susi; Zoso, Alice; Lo Verso, Francesca; Tedesco, F Saverio; Cossu, Giulio; Elvassore, Nicola

    2016-12-01

    : Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from

  14. Childhood-onset schizophrenia case with 2.2 Mb deletion at chromosome 3p12.2-p12.1 and two large chromosomal abnormalities at 16q22.3-q24.3 and Xq23-q28.

    PubMed

    Rudd, Danielle; Axelsen, Michael; Epping, Eric A; Andreasen, Nancy; Wassink, Thomas

    2015-04-01

    Childhood-onset schizophrenia is rare, comprising 1% of known schizophrenia cases. Here, we report a patient with childhood-onset schizophrenia who has three large chromosomal abnormalities: an inherited 2.2 Mb deletion of chromosome 3p12.2-p12.1, a de novo 16.7 Mb duplication of 16q22.3-24.3, and a de novo 43 Mb deletion of Xq23-q28.

  15. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    PubMed

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons.

    PubMed

    Leung, C L; Sun, D; Zheng, M; Knowles, D R; Liem, R K

    1999-12-13

    We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends-PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH(2) terminus. However, unlike dystonin, mACF7 does not contain a coiled-coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest-specific protein, Gas2. In this paper, we demonstrate that the NH(2)-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.

  17. Age-related conversion of dystrophin-negative to -positive fiber segments of skeletal but not cardiac muscle fibers in heterozygote mdx mice.

    PubMed

    Karpati, G; Zubrzycka-Gaarn, E E; Carpenter, S; Bulman, D E; Ray, P N; Worton, R G

    1990-03-01

    Immunoreactive dystrophin was examined in muscle fibers of quadriceps, extraocular muscles and cardiac ventricular muscles of female heterozygote mdx mice at 10, 35 and 60 days of age, with microscopic immunoperoxidase method and by immunoblots. In quadriceps muscle fibers there was a marked gradual diminution of the dystrophin-negative fiber segments between age 10 and 60 days. We suggest that this was partly due to a spontaneous fusion of dystrophin-competent satellite cells into the dystrophin-negative fiber segments and partly to an expansion of the cytoplasmic domain of dystrophin expression related to the original myonuclei. In cardiac muscle that lacks satellite cells, there was persistence of a large number of dystrophin-negative fiber segments even at age 60 days and probably beyond. The findings of this study have implications for the detection of heterozygote female carriers of Duchenne muscular dystrophy (DMD) and for the possible therapy of DMD muscles by myoblast transfer.

  18. Total alpha-fetoprotein and Lens culinaris agglutinin-reactive alpha-fetoprotein in fetal chromosomal abnormalities.

    PubMed

    Yamamoto, R; Azuma, M; Kishida, T; Yamada, H; Satomura, S; Fujimoto, S

    2001-11-01

    To examine the differences in multiples of the median (MoM) of total alpha-fetoprotein, and the proportion of Lens culinaris agglutinin reactive alpha-fetoprotein (% alpha-fetoprotein-L2 + L3) in the maternal serum and amniotic fluid of pregnant women whose fetuses were diagnosed with autosomal or sex chromosomal abnormalities. Prospective consecutive series. University hospital. Maternal sera and amniotic fluids from 46 pregnant women with trisomy 21 fetuses, 10 pregnant women with trisomy 18 fetuses, one pregnant woman with a trisomy 13 fetus, six pregnant women with fetal sex chromosomal abnormalities, and 100 pregnant women for whom the fetal karyotype was diagnosed as normal following a genetic amniocentesis. The proportion of alpha-fetoprotein-L2 + L3 in maternal serum for trisomy 21 (40.3%. P < 0.0001) and trisomy 18 (39.8%, P < 0.05) showed a significantly higher value compared with normal (32.6%). The proportion of alpha-fetoprotein-L2 + L3 in amniotic fluid was significantly higher (P < 0.0001) for trisomy 21 (46.6%) than for a normal karyotype (41.5%). Only for the trisomy 21 group was there a strong correlation in the % alpha-fetoprotein-L2 + L3 between maternal serum and amniotic fluid (r = 0.840, P < 0.0001). For all groups, there was no correlation between alpha-fetoprotein MoM and % alpha-fetoprotein-L2 + L3 in maternal serum and amniotic fluid. The proportion of alpha-fetoprotein-L2 + L3 in maternal serum is an appropriate choice for a trisomy 21 biochemical marker, and it is possible that combining alpha-fetoprotein-L2 + L3 analysis with assays of alpha-fetoprotein in maternal serum could further improve the sensitivity and specificity of multiple marker screening.

  19. Spermatozoa with numerical chromosomal abnormalities are more prone to be retained by Annexin V-MACS columns.

    PubMed

    Esbert, M; Godo, A; Soares, S R; Florensa, M; Amorós, D; Ballesteros, A; Vidal, F

    2017-07-01

    Colloidal super-paramagnetic microbeads conjugated with annexin V are effective for separating apoptotic spermatozoa by MACS as a result of the high affinity of annexin V for externalized PS molecules. The effectiveness of the procedure in reducing the percentage of sperm with fragmented DNA and abnormal morphology has also been reported. However, it is still unknown if it could decrease the percentage of aneuploid spermatozoa. The objective of our prospective study, performed on 16 males with abnormal FISH on spermatozoa, was to assess if MACS columns were useful tools to retain spermatozoa carrying chromosomal abnormalities in semen samples processed after density gradient centrifugation (DGC). The pellet obtained after DGC was subjected to MACS, and sperm FISH analyses were performed both in the eluded fraction and in the fraction retained in the column. The observed frequencies of disomy and nullisomy 13, 18, and 21, X and Y, as well as the diploidy rates in the MACS eluded fraction and the fraction retained in the MACS column were recorded. We observed that the frequencies of aneuploidies in the eluded fraction were lower than in the fraction retained in the MACS column (0.59% vs. 0.75%; p = 0.010). DGC determined a significant reduction in sperm concentration (z-ratio = 2.83; p = 0.005) and a significant increase in sperm progressive motility (z-ratio = -3.5; p < 0.001). MACS also led to a significant reduction in sperm concentration (z-ratio = 3.14; p = 0.002) and a significant increase in progressive motility (z-ratio = -2.59; p = 0.01) when compared with the post-DGC sample. Sperm concentration was similar in the two fractions generated by MACS (z-ratio = 0.63; p = 0.52), while progressive motility was significantly higher in the MACS eluded fraction (z-ratio = 2.42; p = 0.02). According to our results, MACS columns are able to selectively retain spermatozoa carrying chromosomal abnormalities. Furthermore, the performance of DGC

  20. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation.

    PubMed

    Smith, David A S; Gordon, Ian J; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard

    2016-07-27

    Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and male-killing, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi show that the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus Our results demonstrate how a complex interplay between sex, colour pattern, male-killing, and a neo-W chromosome, has set up a genetic 'sink' that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a 'smoking gun' for an ongoing speciation process. © 2016 The Authors.

  1. First report on an X-linked hypohidrotic ectodermal dysplasia family with X chromosome inversion: Breakpoint mapping reveals the pathogenic mechanism and preimplantation genetics diagnosis achieves an unaffected birth.

    PubMed

    Wu, Tonghua; Yin, Biao; Zhu, Yuanchang; Li, Guangui; Ye, Lijun; Liang, Desheng; Zeng, Yong

    2017-12-01

    To investigate the etiology of X-linked hypohidrotic ectodermal dysplasia (XLHED) in a family with an inversion of the X chromosome [inv(X)(p21q13)] and to achieve a healthy birth following preimplantation genetic diagnosis (PGD). Next generation sequencing (NGS) and Sanger sequencing analysis were carried out to define the inversion breakpoint. Multiple displacement amplification, amplification of breakpoint junction fragments, Sanger sequencing of exon 1 of ED1, haplotyping of informative short tandem repeat markers and gender determination were performed for PGD. NGS data of the proband sample revealed that the size of the possible inverted fragment was over 42Mb, spanning from position 26, 814, 206 to position 69, 231, 915 on the X chromosome. The breakpoints were confirmed by Sanger sequencing. A total of 5 blastocyst embryos underwent trophectoderm biopsy. Two embryos were diagnosed as carriers and three were unaffected. Two unaffected blastocysts were transferred and a singleton pregnancy was achieved. Following confirmation by prenatal diagnosis, a healthy baby was delivered. This is the first report of an XLHED family with inv(X). ED1 is disrupted by the X chromosome inversion in this XLHED family and embryos with the X chromosomal abnormality can be accurately identified by means of PGD. Copyright © 2017. Published by Elsevier B.V.

  2. MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy.

    PubMed

    Zimowski, Janusz G; Massalska, Diana; Holding, Mariola; Jadczak, Sylwia; Fidziańska, Elżbieta; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Kamińska, Anna; Zaremba, Jacek

    2014-01-01

    Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X-linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately 60-65% of mutations, duplications for 5-10%. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 2009-2012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity

    PubMed Central

    Randazzo, Davide; Giacomello, Emiliana; Lorenzini, Stefania; Rossi, Daniela; Pierantozzi, Enrico; Blaauw, Bert; Reggiani, Carlo; Lange, Stephan; Peter, Angela K.; Chen, Ju

    2013-01-01

    Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity. PMID:23420875

  4. Compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  5. Compositions for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1998-05-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.

  6. Clinical features of early onset, familial Alzheimer`s disease linked to chromosome 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullan, M.; Bennett, C.; Figueredo, C.

    1995-02-27

    Early onset familial Alzheimer`s disease (AD) has an autosomal dominant mode of inheritance. Two genes are responsible for the majority of cases of this subtype of AD. Mutations in the {beta}-amyloid precursor protein ({beta}APP) gene on chromosome 21 have been shown to completely cosegregate with the disease. We and others have previously described the clinical features of families with {beta}APP mutations at the codon 717 locus in an attempt to define the phenotype associated with a valine to isoleucine (Val {r_arrow} Ile) or a valine to glycine (Val {r_arrow} Gly) change. More recently, a second locus for very early onsetmore » disease has been localized to chromosome 14. The results of linkage studies in some families suggesting linkage to both chromosomes have been explained by the suggestion of a second (centromeric) locus on chromosome 21. Here we report the clinical features and genetic analysis of a British pedigree (F74) with early onset AD in which neither the {beta}APP locus nor any other chromosome 21 locus segregates with the disease, but in which good evidence is seen for linkage on the long arm of chromosome 14. In particular we report marker data suggesting that the chromosome 14 disease locus is close to D14S43 and D14S77. Given the likelihood that F74 represents a chromosome 14 linked family, we describe the clinical features and make a limited clinical comparison with the {beta}APP717 Val {r_arrow} Ile and {beta}APP717 Val {r_arrow} Gly encoded families that have been previously described. We conclude that although several previously reported clinical features occur to excess in early onset familial AD, no single clinical feature demarcates either the chromosome 14 or {beta}APP codon 717 mutated families except mean age of onset. 52 refs., 2 figs., 5 tabs.« less

  7. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.

    PubMed

    van Steensel, Bas; Belmont, Andrew S

    2017-05-18

    In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus

    PubMed Central

    Brooks, Wesley H.; Renaudineau, Yves

    2015-01-01

    Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune

  9. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    DTIC Science & Technology

    2015-09-01

    injection. We also showed that systemic delivery of a canine micro-dystrophin AAV vector is safe in young adult affected dogs. These results...In addition, we have performed a comprehensive review on the current status of DMD gene therapy in the canine model. We also contributed another...micro-dystrophin, adeno-associated virus, AAV, muscle, gene therapy, systemic gene delivery, canine model 16. SECURITY CLASSIFICATION OF: 17

  10. Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy.

    PubMed

    Batchelor, Clare L; Winder, Steve J

    2006-04-01

    The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.

  11. Autosomal dominant familial spastic paraplegia: Tight linkage to chromosome 15q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, J.K.; Wu, C.T.B.; Jones, S.M.

    1994-09-01

    Familial spastic paraplegia (FSP) (MIM No.18260) constitutes a clinically and genetically diverse group of disorders that share the primary feature of progressive, severe, lower extremity spasticity. FSP is classified according to the mode of inheritance and whether progressive spasticity occurs in isolation ({open_quotes}uncomplicated FSP{close_quotes}) or with other neurologic abnormalities ({open_quotes}complicated FSP{close_quotes}), including optic neuropathy, retinopathy, extrapyramidal disturbance, dementia, ataxia, ichthyosis, mental retardation, or deafness. Recently, autosomal dominant, uncomplicated FSP was shown to be genetically heterogeneous and tightly linked to a group of microsatellite markers on chromosome 14q in one large kindred. We examined 126 members of a non-consanguineous North Americanmore » kindred of Irish descent. FSP was diagnosed in 31 living subjects who developed insidiously progressive gait disturbance between ages 12 and 35 years. Using genetic linkage analysis to microsatellite DNA polymorphisms, we showed that the FSP locus on chromosome 14q was exluded from linkage with the disorder in our family. Subsequently, we searched for genetic linkage between the disorder and microsatellite DNA polymorphisms spanning approximately 50% of the genome. We observed significantly positive, two-point maximum lod scores (Z) for markers on chromosome 15q: D15S128 (Z=9.70, {theta}=0.05), D15S165 (Z=3.30, {theta}=0.10), and UT511 (Z=3.86, {theta}=0.10). Our data clearly establishes that one locus for autosomal dominant, uncomplicated FSP is mapped to the pericentric region of chromosome 15q. Identifying genes responsible for chromosome 15q-linked and chromosome 14q-linked FSP will greatly advance our understanding of this condition and hopefully other inherited and degenerative brain and spinal cord disorders that are also characterized by axonal degeneration.« less

  12. Restoring Dystrophin Expression in Duchenne Muscular Dystrophy Muscle

    PubMed Central

    Hoffman, Eric P.; Bronson, Abby; Levin, Arthur A.; Takeda, Shin'ichi; Yokota, Toshifumi; Baudy, Andreas R.; Connor, Edward M.

    2011-01-01

    The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders. PMID:21703390

  13. Prevalence of chromosomal aberrations in Mexican women with primary amenorrhoea.

    PubMed

    Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; Vargas-Villarreal, Javier; Cerda-Flores, Ricardo M

    2007-10-01

    Primary amenorrhoea refers to the absence of menarche by the age of 16-18 years in the presence of secondary sexual characteristics, and occurs in 1-3% of women of reproductive age. To study the prevalence of chromosomal abnormalities and the different options available for clinical management of women in Mexico with primary amenorrhoea, a cross-sectional study was conducted in 187 women with primary amenorrhoea referred from Department of Reproductive Medicine of Morones Prieto Hospital, IMSS in Monterrey, Mexico during 1995-2003. Peripheral blood lymphocytes were cultured for chromosomal studies by the standard methods. Numerical or structural abnormalities of the sex chromosome were found in 78 women (41.71%). These women were classified into four categories: X-chromosome aneuploidies (22.99%: 12.83% pure line and 10.16% mosaicism association with a 45, X cell line); presence of chromosome Y (10.70%); structural anomalies of the X chromosome (4.28%); and marker chromosomes (3.74%). In conclusion, the prevalence of chromosomal abnormalities in Mexican women with primary amenorrhoea is within the range (24-46%) reported in world literature. Chromosomal analysis is absolutely necessary for appropriate clinical management of these patients.

  14. Neural correlates of genetically abnormal social cognition in Williams syndrome.

    PubMed

    Meyer-Lindenberg, Andreas; Hariri, Ahmad R; Munoz, Karen E; Mervis, Carolyn B; Mattay, Venkata S; Morris, Colleen A; Berman, Karen Faith

    2005-08-01

    Williams-Beuren syndrome (WBS), caused by a microdeletion of approximately 21 genes on chromosome 7q11.23, is characterized by unique hypersociability combined with increased non-social anxiety. Using functional neuroimaging, we found reduced amygdala activation in individuals with WBS for threatening faces but increased activation for threatening scenes, relative to matched normal controls. Activation and interactions of prefrontal regions linked to amygdala, especially orbitofrontal cortex, were abnormal, suggesting a genetically controlled neural circuitry for regulating human social behavior.

  15. Dialkyl phosphate urinary metabolites and chromosomal abnormalities in human sperm.

    PubMed

    Figueroa, Zaida I; Young, Heather A; Meeker, John D; Martenies, Sheena E; Barr, Dana Boyd; Gray, George; Perry, Melissa J

    2015-11-01

    The past decade has seen numerous human health studies seeking to characterize the impacts of environmental exposures, such as organophosphate (OP) insecticides, on male reproduction. Despite an extensive literature on OP toxicology, many hormone-mediated effects on the testes are not well understood. This study investigated environmental exposures to OPs and their association with the frequency of sperm chromosomal abnormalities (i.e., disomy) among adult men. Men (n=159) from a study assessing the impact of environmental exposures on male reproductive health were included in this investigation. Multi-probe fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine XX18, YY18, XY18 and total disomy in sperm nuclei. Urine was analyzed using gas chromatography coupled with mass spectrometry for concentrations of dialkyl phosphate (DAP) metabolites of OPs [dimethylphosphate (DMP); dimethylthiophosphate (DMTP); dimethyldithiophosphate (DMDTP); diethylphosphate (DEP); diethylthiophosphate (DETP); and diethyldithiophosphate (DEDTP)]. Poisson regression was used to model the association between OP exposures and disomy measures. Incidence rate ratios (IRRs) were calculated for each disomy type by exposure quartiles for most metabolites, controlling for age, race, BMI, smoking, specific gravity, total sperm concentration, motility, and morphology. A significant positive trend was seen for increasing IRRs by exposure quartiles of DMTP, DMDTP, DEP and DETP in XX18, YY18, XY18 and total disomy. A significant inverse association was observed between DMP and total disomy. Findings for total sum of DAP metabolites concealed individual associations as those results differed from the patterns observed for each individual metabolite. Dose-response relationships appeared nonmonotonic, with most of the increase in disomy rates occurring between the second and third exposure quartiles and without additional increases between the third and fourth

  16. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    PubMed

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chromosome rearrangements in canine fibrosarcomas.

    PubMed

    Sargan, D R; Milne, B S; Hernandez, J Aguirre; O'Brien, P C M; Ferguson-Smith, M A; Hoather, T; Dobson, J M

    2005-01-01

    We have previously reported the use of six- and seven-color paint sets in the analysis of canine soft tissue sarcomas. Here we combine this technique with flow sorting of translocation chromosomes, reverse painting, and polymerase chain reaction (PCR) analysis of the gene content of the reverse paint in order to provide a more detailed analysis of cytogenetic abnormalities in canine tumors. We examine two fibrosarcomas, both from female Labrador retrievers, and show abnormalities in chromosomes 11 and 30 in both cases. Evidence of involvement of TGFBR1 is presented for one tumor.

  18. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy

    PubMed Central

    Robinson-Hamm, Jacqueline N.; Gersbach, Charles A.

    2016-01-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  19. The Sex Chromosomes in Evolution and in Medicine

    PubMed Central

    Barr, Murray L.

    1966-01-01

    The recent emergence of human cytogenetics has a firm foundation in studies on other forms of life. Historical highlights are Mendel's studies on the garden pea (published in 1865 but lost in an obscure journal until 1900); formulation of cytogenic postulates by Sutton and Boveri (1902-1903); Bridges' discovery of chromosome abnormalities in Drosophila (1916), followed by numerous similar studies in plants; and demonstration of the chromosomal basis of the syndromes of Down, Klinefelter and Turner in man (1959). The sex chromosomes (XX and XY) evolved from a pair of undifferentiated autosomes of a premammalian ancestor, the X chromosome changing less than the Y as they evolved. Eleven numerical abnormalities of the sex chromosomes are known in man, and knowledge of their effects on development is accumulating. The abnormal complexes range in size from the XO error of Turner's syndrome to the XXXXY error of a variant of Klinefelter's syndrome. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4224254

  20. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E.

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groupsmore » of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.« less

  1. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    DTIC Science & Technology

    2016-09-01

    minidystrophin gene (a gift from Dr Jeffrey Chamberlain at the University of Washington, Seattle, WA) and the bovine growth hormone polyadenylation...full-length micro-dystrophin protein. Dys-2 is a short peptide in the wild-type full-length dystrophin. It can be recognized by the Dys-2...muscle. In one approach, a muscle homing peptide is inserted on the surface of the capsid to facilitate the entry of AAV into muscle cells. In the

  2. Disappearance of enlarged nuchal translucency before 14 weeks' gestation: relationship with chromosomal abnormalities and pregnancy outcome.

    PubMed

    Müller, M A; Pajkrt, E; Bleker, O P; Bonsel, G J; Bilardo, C M

    2004-08-01

    The aim of this study was to investigate the natural course of enlarged nuchal translucency (NT) and to determine if its disappearance before 14 weeks' gestation is a favorable prognostic sign in relation to fetal karyotype and pregnancy outcome. A total of 147 women with increased NT (> 95th centile) at first measurement were included in this study. A second measurement was performed in all cases, at an interval of at least 2 days. Both measurements were taken between 10 + 3 and 14 + 0 weeks. All women underwent chorionic villus sampling or amniocentesis for subsequent karyotyping. In those women with a normal karyotype, a fetal anomaly scan was performed at 20 weeks' gestation. Pregnancy outcome was recorded in all cases. The finding of persistent or disappearing NT enlargement was analyzed in relation to fetal karyotype and pregnancy outcome. Of the 147 paired measurements, NT remained enlarged at the second measurement in 121 (82%) cases. An abnormal karyotype was found in 35% of these cases. In 26 (18%) fetuses the NT measurement was found to be below the 95th percentile at the second measurement and in only two of them an abnormal karyotype was found (8%). In the 103 chromosomally normal fetuses an adverse outcome (i.e. fetal loss or structural defects) was recorded in 22 fetuses with persistent enlargement (28%) and in four fetuses with disappearing enlargement (17%). Disappearance of an enlarged NT before 14 weeks' gestation is not a rare phenomenon and seems to be a favorable prognostic sign with respect to fetal karyotype. Overall, no significant difference in pregnancy outcome was found between chromosomally normal fetuses with persisting or disappearing NT enlargement. Copyright 2004 ISUOG

  3. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia

    PubMed Central

    Papaemmanuil, Elli; Robinson, Hazel M.; Jacobs, Patricia; Moorman, Anthony V.; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A.; Carroll, Andrew J.; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M.; Gaunt, Lorraine; McNally, Richard J. Q.; Young, Bryan D.; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R.; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J.; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R.

    2014-01-01

    Changes in gene dosage are a major driver of cancer, engineered from a finite, but increasingly well annotated, repertoire of mutational mechanisms1. This can potentially generate correlated copy number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21)2,3. We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. We find that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have ~2700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimised for leukemic potential, showing constrained copy number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can co-ordinate to fashion copy number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes. PMID:24670643

  4. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    PubMed

    Li, Yilong; Schwab, Claire; Ryan, Sarra; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  5. Age-related Differences in Dystrophin: Impact on Force Transfer Proteins, Membrane Integrity, and Neuromuscular Junction Stability.

    PubMed

    Hughes, David C; Marcotte, George R; Marshall, Andrea G; West, Daniel W D; Baehr, Leslie M; Wallace, Marita A; Saleh, Perrie M; Bodine, Sue C; Baar, Keith

    2017-05-01

    The loss of muscle strength with age has been studied from the perspective of a decline in muscle mass and neuromuscular junction (NMJ) stability. A third potential factor is force transmission. The purpose of this study was to determine the changes in the force transfer apparatus within aging muscle and the impact on membrane integrity and NMJ stability. We measured an age-related loss of dystrophin protein that was greatest in the flexor muscles. The loss of dystrophin protein occurred despite a twofold increase in dystrophin mRNA. Importantly, this disparity could be explained by the four- to fivefold upregulation of the dystromir miR-31. To compensate for the loss of dystrophin protein, aged muscle contained increased α-sarcoglycan, syntrophin, sarcospan, laminin, β1-integrin, desmuslin, and the Z-line proteins α-actinin and desmin. In spite of the adaptive increase in other force transfer proteins, over the 48 hours following lengthening contractions, the old muscles showed more signs of impaired membrane integrity (fourfold increase in immunoglobulin G-positive fibers and 70% greater dysferlin mRNA) and NMJ instability (14- to 96-fold increases in Runx1, AchRδ, and myogenin mRNA). Overall, these data suggest that age-dependent alterations in dystrophin leave the muscle membrane and NMJ more susceptible to contraction-induced damage even before changes in muscle mass are obvious. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Sequencing of a Patient with Balanced Chromosome Abnormalities and Neurodevelopmental Disease Identifies Disruption of Multiple High Risk Loci by Structural Variation

    PubMed Central

    Blake, Jonathon; Riddell, Andrew; Theiss, Susanne; Gonzalez, Alexis Perez; Haase, Bettina; Jauch, Anna; Janssen, Johannes W. G.; Ibberson, David; Pavlinic, Dinko; Moog, Ute; Benes, Vladimir; Runz, Heiko

    2014-01-01

    Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception. PMID:24625750

  7. Plant Sex Chromosomes.

    PubMed

    Charlesworth, Deborah

    2016-04-29

    Although individuals in most flowering plant species, and in many haploid plants, have both sex functions, dioecious species-in which individuals have either male or female functions only-are scattered across many taxonomic groups, and many species have genetic sex determination. Among these, some have visibly heteromorphic sex chromosomes, and molecular genetic studies are starting to uncover sex-linked markers in others, showing that they too have fully sex-linked regions that are either too small or are located in chromosomes that are too small to be cytologically detectable from lack of pairing, lack of visible crossovers, or accumulation of heterochromatin. Detailed study is revealing that, like animal sex chromosomes, plant sex-linked regions show evidence for accumulation of repetitive sequences and genetic degeneration. Estimating when recombination stopped confirms the view that many plants have young sex-linked regions, making plants of great interest for studying the timescale of these changes.

  8. Nephrogenic diabetes insipidus: an X chromosome-linked dominant inheritance pattern with a vasopressin type 2 receptor gene that is structurally normal.

    PubMed Central

    Friedman, E; Bale, A E; Carson, E; Boson, W L; Nordenskjöld, M; Ritzén, M; Ferreira, P C; Jammal, A; De Marco, L

    1994-01-01

    Nephrogenic diabetes insipidus is a rare hereditary disorder, most commonly transmitted in an X chromosome-linked recessive manner and characterized by the lack of renal response to the action of antidiuretic hormone [Arg8]vasopressin. The vasopressin type 2 receptor (V2R) has been suggested to be the gene that causes the disease, and its role in disease pathogenesis is supported by mutations within this gene in affected individuals. Using the PCR, denaturing gradient gel electrophoresis, and direct DNA sequencing, we examined the V2R gene in four unrelated kindreds. In addition, linkage analysis with chromosome Xq28 markers was done in one large Brazilian kindred with an apparent unusual X chromosome-linked dominant inheritance pattern. In one family, a mutation in codon 280, causing a Tyr-->Cys substitution in the sixth transmembrane domain of the receptor, was found. In the other three additional families with nephrogenic diabetes insipidus, the V2R-coding region was normal in sequence. In one large Brazilian kindred displaying an unusual X chromosome-linked dominant mode of inheritance, the disease-related gene was localized to the same region of the X chromosome as the V2R, but no mutations were found, thus raising the possibility that this disease is caused by a gene other than V2R. Images PMID:8078903

  9. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation.

    PubMed

    Kiefer, Yvonne; Schulte, Christoph; Tiemann, Markus; Bullerdiek, Joern

    2012-01-01

    Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM) in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH). Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL.

  10. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice

    PubMed Central

    Williams, Jason H; Schray, Rebecca C; Sirsi, Shashank R; Lutz, Gordon J

    2008-01-01

    Background Exon skipping oligonucleotides (ESOs) of 2'O-Methyl (2'OMe) and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD). However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA) muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG) or adsorbtion of colloidal gold (CG), respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal levels were found at

  11. Sex-linked dominant

    MedlinePlus

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  12. Familial Isolated Clubfoot Is Associated with Recurrent Chromosome 17q23.1q23.2 Microduplications Containing TBX4

    PubMed Central

    Alvarado, David M.; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B.; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R.; Dobbs, Matthew B.; Gurnett, Christina A.

    2010-01-01

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. PMID:20598276

  13. Non-invasive prenatal testing for fetal chromosomal abnormalities by low-coverage whole-genome sequencing of maternal plasma DNA: review of 1982 consecutive cases in a single center.

    PubMed

    Lau, T K; Cheung, S W; Lo, P S S; Pursley, A N; Chan, M K; Jiang, F; Zhang, H; Wang, W; Jong, L F J; Yuen, O K C; Chan, H Y C; Chan, W S K; Choy, K W

    2014-03-01

    To review the performance of non-invasive prenatal testing (NIPT) by low-coverage whole-genome sequencing of maternal plasma DNA at a single center. The NIPT result and pregnancy outcome of 1982 consecutive cases were reviewed. NIPT was based on low coverage (0.1×) whole-genome sequencing of maternal plasma DNA. All subjects were contacted for pregnancy and fetal outcome. Of the 1982 NIPT tests, a repeat blood sample was required in 23 (1.16%). In one case, a conclusive report could not be issued, probably because of an abnormal vanished twin fetus. NIPT was positive for common trisomies in 29 cases (23 were trisomy 21, four were trisomy 18 and two were trisomy 13); all were confirmed by prenatal karyotyping (specificity=100%). In addition, 11 cases were positive for sex-chromosomal abnormalities (SCA), and nine cases were positive for other aneuploidies or deletion/duplication. Fourteen of these 20 subjects agreed to undergo further investigations, and the abnormality was found to be of fetal origin in seven, confined placental mosaicism (CPM) in four, of maternal origin in two and not confirmed in one. Overall, 85.7% of the NIPT-suspected SCA were of fetal origin, and 66.7% of the other abnormalities were caused by CPM. Two of the six cases suspected or confirmed to have CPM were complicated by early-onset growth restriction requiring delivery before 34 weeks. Fetal outcome of the NIPT-negative cases was ascertained in 1645 (85.15%). Three chromosomal abnormalities were not detected by NIPT, including one case each of a balanced translocation, unbalanced translocation and triploidy. There were no known false negatives involving the common trisomies (sensitivity=100%). Low-coverage whole-genome sequencing of maternal plasma DNA was highly accurate in detecting common trisomies. It also enabled the detection of other aneuploidies and structural chromosomal abnormalities with high positive predictive value. Copyright © 2013 ISUOG. Published by John Wiley & Sons

  14. Childhood-onset schizophrenia case with 2.2 Mb deletion at chromosome 3p12.2–p12.1 and two large chromosomal abnormalities at 16q22.3–q24.3 and Xq23–q28

    PubMed Central

    Rudd, Danielle; Axelsen, Michael; Epping, Eric A; Andreasen, Nancy; Wassink, Thomas

    2015-01-01

    Key Clinical Message Childhood-onset schizophrenia is rare, comprising 1% of known schizophrenia cases. Here, we report a patient with childhood-onset schizophrenia who has three large chromosomal abnormalities: an inherited 2.2 Mb deletion of chromosome 3p12.2–p12.1, a de novo 16.7 Mb duplication of 16q22.3–24.3, and a de novo 43 Mb deletion of Xq23–q28. PMID:25914809

  15. The long-term clinical implications of clonal chromosomal abnormalities in newly diagnosed chronic phase chronic myeloid leukemia patients treated with imatinib mesylate.

    PubMed

    Lee, Sung-Eun; Choi, Soo Young; Bang, Ju-Hee; Kim, Soo-Hyun; Jang, Eun-Jung; Byeun, Ji-Young; Park, Jin Eok; Jeon, Hye-Rim; Oh, Yun Jeong; Kim, Myungshin; Kim, Dong-Wook

    2012-11-01

    The aim of this study was to evaluate the long-term clinical significance of an additional chromosomal abnormality (ACA), variant Philadelphia chromosome (vPh) at diagnosis, and newly developed other chromosomal abnormalities (OCA) in patients with chronic myeloid leukemia (CML) on imatinib (IM) therapy. Sequential cytogenetic data from 281 consecutive new chronic phase CML patients were analyzed. With a median follow-up of 78.6 months, the 22 patients with vPh (P = 0.034) or ACA (P = 0.034) at diagnosis had more events of IM failure than did the patients with a standard Ph. The 5-year overall survival (OS), event-free survival (EFS), and failure-free survival (FFS) rates for patients with vPh at diagnosis were 77.8%, 75.0%, and 53.3%, respectively; for patients with ACA at diagnosis, 100%, 66.3%, and 52.1%, respectively; and for patients with a standard Ph, 96.0%, 91.3%, and 83.7%, respectively. During IM therapy, eight patients developed an OCA, which had no impact on outcomes as a time-dependent covariate in our Cox proportional hazards regression models. This study showed that vPh was associated with poor OS and FFS and that ACA had adverse effects on EFS and FFS. In addition, no OCA, except monosomy 7, had any prognostic impact, suggesting that the development of OCA may not require a change in treatment strategy. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics].

    PubMed

    Douet-Guilbert, N; Basinko, A; Le Bris, M-J; Herry, A; Morel, F; De Braekeleer, M

    2008-09-01

    Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.

  17. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, Trond; Pinkel, Daniel; Gray, Joe W.

    1995-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  18. Detection Of Amplified Or Deleted Chromosomal Regions

    DOEpatents

    Stokke, Trond , Pinkel, Daniel , Gray, Joe W.

    1997-05-27

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. Linkage of autosomal recessive lamellar ichthyosis to chromosome 14q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.J.; Compton, J.G.; Bale, S.J.

    The authors have mapped the locus for lamellar ichthyosis (LI), an autosomal recessive skin disease characterized by abnormal cornification of the epidermis. Analysis using both inbred and outbred families manifesting severe LI showed complete linkage to several markers within a 9.3-cM region on chromosome 14q11. Affected individuals in inbred families were also found to have striking homozygosity for markers in this region. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families. Several transcribed genes have been mapped to the chromosome 14 region containing the LI gene. The transglutaminase 1 gene (TGM1), which encodes one of themore » enzymes responsible for cross-linking epidermal proteins during formation of the stratum corneum, maps to this interval. The TGM1 locus was completely linked to LI (Z = 9.11), suggesting that TGM1 is a good candidate for further investigation of this disorder. The genes for four serine proteases also map to this region but are expressed only in hematopoietic or mast cells, making them less likely candidates.« less

  20. Machado-Joseph disease in pedigrees of Azorean descent is linked to chromosome 14.

    PubMed

    St George-Hyslop, P; Rogaeva, E; Huterer, J; Tsuda, T; Santos, J; Haines, J L; Schlumpf, K; Rogaev, E I; Liang, Y; McLachlan, D R

    1994-07-01

    A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocerebellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence that MJD in five pedigrees of Azorean descent is also linked to chromosome 14q in an 18-cM region between the markers D14S67 and AACT (multipoint lod score +7.00 near D14S81). We also report molecular evidence for homozygosity at the MJD locus in an MJD-affected subject with severe, early-onset symptoms. These observations confirm the initial report of linkage of MJD to chromosome 14; suggest that MJD in Japanese and Azorean subjects may represent allelic or identical mutations at the same locus; and provide one possible explanation (MJD gene dosage) for the observed phenotypic heterogeneity in this disease.

  1. Machado-Joseph Disease in Pedigrees of Azorean descent is Linked to Chromosome 14

    PubMed Central

    George-Hyslop, P. St; Rogaeva, E.; Huterer, J.; Tsuda, T.; Santos, J.; Haines, J. L.; Schlumpf, K.; Rogaev, E. I.; Liang, Y.; McLachlan, D. R. Crapper; Kennedy, J.; Weissenbach, J.; Billingsley, G. D.; Cox, D. W.; Lang, A. E.; Wherrett, J. R.

    1994-01-01

    A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocere-bellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence that MJD in five pedigrees of Azorean descent is also linked to chromosome 14q in an 18-cM region between the markers D14S67 and AACT (multipoint lod score +7.00 near D14S81). We also report molecular evidence for homozy-gosity at the MJD locus in an MJD-affected subject with severe, early-onset symptoms. These observations confirm the initial report of linkage of MJD to chromosome 14; suggest that MJD in Japanese and Azorean subjects may represent allelic or identical mutations at the same locus; and provide one possible explanation (MJD gene dosage) for the observed phenotypic heterogeneity in this disease. PMID:8023841

  2. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour

    PubMed Central

    Scott, R H; Stiller, C A; Walker, L; Rahman, N

    2006-01-01

    Wilms tumour has been reported in association with over 50 different clinical conditions and several abnormal constitutional karyotypes. Conclusive evidence of an increased risk of Wilms tumour exists for only a minority of these conditions, including WT1 associated syndromes, familial Wilms tumour, and certain overgrowth conditions such as Beckwith‐Wiedemann syndrome. In many reported conditions the rare co‐occurrence of Wilms tumour is probably due to chance. However, for several conditions the available evidence cannot either confirm or exclude an increased risk, usually because of the rarity of the syndrome. In addition, emerging evidence suggests that an increased risk of Wilms tumour occurs only in a subset of individuals for some syndromes. The complex clinical and molecular heterogeneity of disorders associated with Wilms tumour, together with the apparent absence of functional links between most of the known predisposition genes, suggests that abrogation of a variety of pathways can promote Wilms tumorigenesis. PMID:16690728

  3. Abnormal protein in the cerebrospinal fluid of patients with a submicroscopic X-chromosomal deletion associated with Norrie disease: preliminary report.

    PubMed

    Joy, J E; Poglod, R; Murphy, D L; Sims, K B; de la Chapelle, A; Sankila, E M; Norio, R; Merril, C R

    1991-01-01

    Norrie disease is an X-linked recessive disorder characterized by congenital blindness and, in many cases, mental retardation. Some Norrie disease cases have been shown to be associated with a submicroscopic deletion in chromosomal region Xp11.3. Cerebrospinal fluid (CSF) was collected from four male patients with an X-chromosomal deletion associated with Norrie disease. CSF proteins were resolved using two-dimensional gel electrophoresis and then analyzed by computer using the Elsie V program. Our analysis revealed a protein that appears to be altered in patients with Norrie disease deletion.

  4. Detection of amplified or deleted chromosomal regions

    DOEpatents

    Stokke, T.; Pinkel, D.; Gray, J.W.

    1995-12-05

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20. 3 figs.

  5. Methods And Compositions For Chromosome-Specific Staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2003-08-19

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  6. Unique double de novo structural rearrangements for chromosome 11 with 46,XX,del(11)(q13q23)/46,XX,inv dup(11)(q13q23) in an infant with minor congenital abnormalities and delayed development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tharapel, A.T.; Zhao, J.; Smith, M.E.

    1994-09-01

    Reported here is a patient with two most unusual structural rearrangements, both involving chromosome 11. The first cell line showed an interstitial deletion of a chromosome 11 with a 46,XX,del(11)(q13q23) chromosome complement. In the second cell line, one of the chromosome 11s had a duplication for the exact region, (11)(q13q23), that was deleted in the first cell line. This duplication also appeared to be inverted with karyotype 46,XX,inv dup(11)(q13q23). Interestingly, chromosome analysis did not reveal a normal cell line and the two abnormal cell lines were present in a 1:1 ratio. Parental chromosome analyses showed normal karyotypes. The patient wasmore » referred for genetic evaluation because of developmental delay. Minor congenital anomalies presented on physical examination included: weight and height at or below the 5th percentile, microcephaly, downward slanting palpebral fissures, severe clinodactyly of one toe, bilateral short fifth fingers and a broad based gait. Results of the MRI and urine metabolic screen were normal. Two hypotheses are advanced to explain the origin of the abnormality. It is most likely that the abnormality arose as a postzygotic event at the very early zygotic division. During the first DNA synthesis after fertilization and before the zygotic division, DNA synthesis errors could result in two chromatids, one with a deletion and the other with a duplication. It is also possible that after the DNA synthesis prior to the first cell division, the chromatids of the same chromosome 11 for unknown reasons were involved in uneven double somatic crossing over events resulting in deleted and duplicated chromatids, respectively. The 1:1 cell ratio found in the patient and the apparent non-existence of a normal cell line further suggest that the origin of the abnormality was post-zygotic.« less

  7. Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected.

    PubMed

    Najfeld, Vesna; Montella, Lya; Scalise, Angela; Fruchtman, Steven

    2002-11-01

    Between 1986 and 2001, 220 patients with polycythaemia vera (PV) were studied using conventional cytogenetics. Of 204 evaluable patients, 52 (25.4%) had clonal abnormalities. The recurrent chromosomal rearrangements were those of chromosome 9 (21.1%), del(20q) (19.2%), trisomy 8 (19.2%), rearrangements of 13q (13.4%), abnormalities of 1q (11.5%), and of chromosomes 5 and 7 (9.6%). Subsequent analysis of 32 patients, performed at follow-up of up to 14.8 years, revealed new clonal abnormalities in five patients and the disappearance of an abnormal clone in four. Eleven patients remained normal up to 11.5 years and seven patients maintained an abnormality for over 10 years. Fifty-three patients were studied retrospectively using interphase fluorescence in situ hybridization (I-FISH), utilizing probes for centromere enumeration of chromosomes 8 and 9, and for 13q14 and 20q12 loci. Conventional cytogenetics demonstrated clonal chromosome abnormalities in 23% of these 53 patients. The addition of I-FISH increased the detection of abnormalities to 29% and permitted clarification of chromosome 9 rearrangements in an additional 5.6% of patients. FISH uncovered rearrangements of chromosome 9 in 53% of patients with an abnormal FISH pattern, which represented the most frequent genomic alteration in this series.

  8. X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene.

    PubMed

    Christie, P T; Harding, B; Nesbit, M A; Whyte, M P; Thakker, R V

    2001-08-01

    X-linked hypophosphatemia is commonly caused by mutations of the coding region of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). However, such PHEX mutations are not detected in approximately one third of X-linked hypophosphatemia patients who may harbor defects in the noncoding or intronic regions. We have therefore investigated 11 unrelated X-linked hypophosphatemia patients in whom coding region mutations had been excluded, for intronic mutations that may lead to mRNA splicing abnormalities, by the use of lymphoblastoid RNA and RT-PCRs. One X-linked hypophosphatemia patient was found to have 3 abnormally large transcripts, resulting from 51-bp, 100-bp, and 170-bp insertions, all of which would lead to missense peptides and premature termination codons. The origin of these transcripts was a mutation (g to t) at position +1268 of intron 7, which resulted in the occurrence of a high quality novel donor splice site (ggaagg to gtaagg). Splicing between this novel donor splice site and 3 preexisting, but normally silent, acceptor splice sites within intron 7 resulted in the occurrences of the 3 pseudoexons. This represents the first report of PHEX pseudoexons and reveals further the diversity of genetic abnormalities causing X-linked hypophosphatemia.

  9. Remission induction of refractory anaemia with excess blasts in transformation by sole treatment with granulocyte colony-stimulating factor with persistent chromosomal abnormality.

    PubMed

    Kondo, Haruki; Kasahara, Yasunori; Mori, Akinori

    2002-01-01

    We report a patient with myelodysplastic syndrome (MDS), refractory anaemia with excess blasts in transformation, in whom complete remission (CR) was achieved with the administration of granulocyte colony-stimulating factor (G-CSF). The 76-year-old patient was admitted to our hospital with a fever and a productive cough; a diagnosis of pneumonia was thus made. Following treatment with antibiotics, the patient's condition improved, and MDS was diagnosed from peripheral blood and bone marrow examinations after the patient recovered from the infection. The patient achieved a sustained haematological CR that was confirmed by morphological and flow cytometric examination after treatment with G-CSF alone, although chromosomal abnormalities persisted. According to the literature, in almost all patients with acute myeloid leukaemia or MDS who were reported to achieve CR by G-CSF, the course was associated with infection, although our case did not have this complication during the course of G-CSF therapy. We suggest that patients with G-CSF alone without infection can achieve CR and that this may be related to a differentiation effect of G-CSF based on persistent chromosomal abnormality in this case. Copyright 2002 S. Karger AG, Basel

  10. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

    PubMed

    Radhakrishnan, Srihari; Valenzuela, Nicole

    2017-10-30

    Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  12. Assessment of aneuploidy in human oocytes and preimplantation embryos by chromosome painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougier, N.; Viegas-Pequignot, E.; Plachot, M.

    1994-09-01

    The poor quality of chromosome preparations often observed after fixation of oocytes and embryos did not usually allow accurate identification of chromosomes involved in non-disjunctions. We, therefore, used chromosome painting to determine the incidence of abnormalities for chromosomes 1 and 7. A total of 50 oocytes inseminated for IVF and showing no signs of fertilization as well as 37 diploid embryos donated for research were fixed according to the Dyban`s technique. Fluorescence in situ hybridization was carried out using whole chromosome painting DNA probes specific for human chromosome 1 and 7. The incidence of aneuploidy was 28%, 10% and 60%more » for metaphase II, polar body and sperm chromosomes, respectively. The high incidence of aneuploidy observed in sperm prematurely condensed sperm chromosomes is due to the fact that usually far less than 23 sperm chromatids are observed, maybe as a consequence of incomplete chromosome condensation. Thirty seven embryos were analyzed with the same probes. 48% of early embryos were either monosomic 1 or 7 or mosaics comprising blastomeres with 1, 2 or 3 signals. Thus, 8 among the 11 abnormal embryos had hypodiploid cells (25 to 37 chromosomes) indicating either an artefactual loss of chromosomes or a complex anomaly of nuclear division (maltinucleated blastomeres, abnormal migration of chromosomes at anaphase). We therefore calculated a {open_quotes}corrected{close_quotes} incidence of aneuploidy for chromosomes 1 or 7 in early embryos: 18%. 86% of the blastocysts showed mosaicism 2n/3 or 4n as a consequence of the formation of the syncitiotrophoblast. To conclude, chromosome painting is an efficient method to accurately identify chromosomes involved in aneuploidy. This technique should allow us to evaluate the incidence of non-disjunction for all chromosome pairs. Our results confirm the high incidence of chromosome abnormalities occurring as a consequence of meiotic or mitotic non-disjunctions in human oocytes and

  13. [Prenatal diagnosis of X-linked anhidrotic ectodermal dysplasia with X-chromosome inversion].

    PubMed

    Shi, Hui-juan; Fang, Qun; Wang, Lian-tang

    2005-07-13

    To investigate the possibility of prenatal diagnosis of the fetal suspected to be affected by anhidrotic ectodermal dysplasia (EDA) in a family with X-linked EDA so as to provide a basis for prenatal diagnosis and genetic counseling of this disorder. Pedigree analysis and genetic counseling were performed in a family after a proband was diagnosed with EDA. The peripheral blood samples were collected from the proband, a 12-year-old boy, his mother, and his 2 aunts, one being pregnant, to undergo chromosome karyotype analysis. The fetus Puncture of umbilical vein was performed to collect the blood of fetus for chromosome examination. Induced abortion was conducted due to the diagnosis of the fetus with EDA. Autopsy, immunohistochemistry of the skin tissues of face, breast, epigastrium, and thigh, and X-ray photography of the lower jawbone were made. Pericentric inversion occurring at one of the X-chromosome [inv (x) (p22q13)] was found in the proband and his nephew (the fetus), both patients, and his mother and his second aunt (the pregnant woman), both carriers. Autopsy of the fetus showed epidermis dysplasia and deficiency of hair follicle and sebaceous gland. Immunohistochemistry showed that epithelial membrane antigen and cytokeratin were negatively expressed in the fetal skin tissues. Pedigree analysis and genetic counseling for the family members of EDA patients and prenatal and postpartum examination for the fetus help diagnose EDA.

  14. Relationship of Chromosome Changes to Neoplastic Cell Transformation

    PubMed Central

    DiPaolo, Joseph A.; Popescu, Nicolae C.

    1976-01-01

    Chromosomal abnormalities are a frequent concomitant of neoplasia, and although it is tempting to relate these mutations and alterations in chromatin (DNA) function to cancer, their relationship to the initiation or progression of carcinogenesis is unknown. Mammalian cells in culture, after interacting with chemical carcinogens, often exhibit chromosome damage consisting of breaks and exchanges of chromatid material. The pattern of damage of banded metaphases indicates that negative bands are especially vulnerable to the action of chemical carcinogens, probably because of differential chromatin condensation. Damage to individual chromosomes may be random or nonrandom, depending on the species. Cell death can be correlated with chromatid alterations that occur shortly after treatment with chemical carcinogens. There is also a correlation between mutagenic and carcinogenic activity of some chemical carcinogens and the frequency of sister chromatid exchanges. The question of whether specific chromosome changes are absolutely required for neoplastic transformation cannot be answered because of conflicting data and diverse results from studies even with known carcinogens. Cell transformation may occur without any visible chromosome changes. A universal specific numerical or visible structural chromosomal alteration is not necessarily associated with chemical or viral transformation. Chromosome changes are independent of the etiologic agents: different carcinogens may produce transformation associated with the same abnormal chromosomes, but not all transformed lines invariably exhibit the same abnormality, even with the same chemical. In some species, chromosome having nucleolar organizer regions may be more frequently involved in numerical or structural deviations. Progressively growing tumors also may occur as a result of the proliferation of transformed cells without detectable chromosome changes, indicating that tumorigenicity need not be related to an imbalance of

  15. Detection of chromosomal abnormalities by fluorescent in-situ hybridization in immotile viable spermatozoa determined by hypo-osmotic sperm swelling test.

    PubMed

    Zeyneloglu, H B; Baltaci, V; Ege, S; Haberal, A; Batioglu, S

    2000-04-01

    If randomly selected immotile spermatozoa are used for intracytoplasmic sperm injection (ICSI), pregnancy rates are significantly decreased. The hypo-osmotic swelling test (HOST) is the only method available to detect the viable, but immotile spermatozoa for ICSI. However, evidence is still lacking for the chromosomal abnormalities for the normal-looking, but immotile spermatozoa positive for HOST. Sperm samples from 20 infertile men with normal chromosomal constitution were obtained. After Percoll separation, morphologically normal but immotile spermatozoa were transported individually into HOST solution for 1 min using micropipettes. Cells that showed tail curling with swelling in HOST were then transferred back into human tubal fluid solution to allow reversal of swelling. These sperm cells were fixed and processed for the multi-colour fluorescence in-situ hybridization (FISH) for chromosomes X, Y and 18. The same FISH procedure was applied for the motile spermatozoa from the same cohort, which formed the control group. The average aneuploidy rates were 1.70 and 1.54% in 1000 HOST positive immotile and motile spermatozoa respectively detected by FISH for each patient. Our results indicate that morphologically normal, immotile but viable spermatozoa have an aneuploidy rate similar to that of normal motile spermatozoa.

  16. Familial isolated clubfoot is associated with recurrent chromosome 17q23.1q23.2 microduplications containing TBX4.

    PubMed

    Alvarado, David M; Aferol, Hyuliya; McCall, Kevin; Huang, Jason B; Techy, Matthew; Buchan, Jillian; Cady, Janet; Gonzales, Patrick R; Dobbs, Matthew B; Gurnett, Christina A

    2010-07-09

    Clubfoot is a common musculoskeletal birth defect for which few causative genes have been identified. To identify the genes responsible for isolated clubfoot, we screened for genomic copy-number variants with the Affymetrix Genome-wide Human SNP Array 6.0. A recurrent chromosome 17q23.1q23.2 microduplication was identified in 3 of 66 probands with familial isolated clubfoot. The chromosome 17q23.1q23.2 microduplication segregated with autosomal-dominant clubfoot in all three families but with reduced penetrance. Mild short stature was common and one female had developmental hip dysplasia. Subtle skeletal abnormalities consisted of broad and shortened metatarsals and calcanei, small distal tibial epiphyses, and thickened ischia. Several skeletal features were opposite to those described in the reciprocal chromosome 17q23.1q23.2 microdeletion syndrome associated with developmental delay and cardiac and limb abnormalities. Of note, during our study, we also identified a microdeletion at the locus in a sibling pair with isolated clubfoot. The chromosome 17q23.1q23.2 region contains the T-box transcription factor TBX4, a likely target of the bicoid-related transcription factor PITX1 previously implicated in clubfoot etiology. Our result suggests that this chromosome 17q23.1q23.2 microduplication is a relatively common cause of familial isolated clubfoot and provides strong evidence linking clubfoot etiology to abnormal early limb development. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Editorial: X-chromosome-linked Kallmann's syndrome: Pathology at the molecular level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prager, D.; Braunstein, G.D.

    Kallmann's syndrome or olfactogenital dysplasia refers to a disorder characterized by hypogonadotropic hypogonadism and anosmia or hyposmia which can occur sporadically or in a familial setting. Originally described in 1856, the first familial cases were reported by Kallmann et al., in 1944. Based on segregation analysis of multiple families, three modes of transmission have been documented: X-linked, autosomal dominant with variable penetrance, and autosomal recessive. Kallmann's syndrome occurs in less than 1 in 10,000 male births, with a 5-fold excess of affected males to females, suggesting that the X-linked form is the most frequent. By genetic linkage analysis the X-linkedmore » form of Kallmann's syndrome was localized to Xp22.3. This was confirmed by the description of patients with contiguous gene syndromes due to deletions of various portions of the distal short arm of the X-chromosome. Such patients present with complex phenotypes characterized by a combination of Kallmann's syndrome with X-linked icthyosis due to steroid sulfatase deficiency, chondrodysplasia punctata, short stature, and mental retardation. DNA analysis has identified and mapped the genes responsible for these disorders. 10 refs., 1 fig., 1 tab.« less

  18. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  19. Chromosome-wide mechanisms to decouple gene expression from gene dose during sex-chromosome evolution

    PubMed Central

    Wheeler, Bayly S; Anderson, Erika; Frøkjær-Jensen, Christian; Bian, Qian; Jorgensen, Erik; Meyer, Barbara J

    2016-01-01

    Changes in chromosome number impair fitness by disrupting the balance of gene expression. Here we analyze mechanisms to compensate for changes in gene dose that accompanied the evolution of sex chromosomes from autosomes. Using single-copy transgenes integrated throughout the Caenorhabditis elegans genome, we show that expression of all X-linked transgenes is balanced between XX hermaphrodites and XO males. However, proximity of a dosage compensation complex (DCC) binding site (rex site) is neither necessary to repress X-linked transgenes nor sufficient to repress transgenes on autosomes. Thus, X is broadly permissive for dosage compensation, and the DCC acts via a chromosome-wide mechanism to balance transcription between sexes. In contrast, no analogous X-chromosome-wide mechanism balances transcription between X and autosomes: expression of compensated hermaphrodite X-linked transgenes is half that of autosomal transgenes. Furthermore, our results argue against an X-chromosome dosage compensation model contingent upon rex-directed positioning of X relative to the nuclear periphery. DOI: http://dx.doi.org/10.7554/eLife.17365.001 PMID:27572259

  20. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.

    PubMed

    Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M

    2015-03-01

    To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.

  1. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    PubMed

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  2. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy

    PubMed Central

    Risson, Valérie; Mazelin, Laetitia; Roceri, Mila; Sanchez, Hervé; Moncollin, Vincent; Corneloup, Claudine; Richard-Bulteau, Hélène; Vignaud, Alban; Baas, Dominique; Defour, Aurélia; Freyssenet, Damien; Tanti, Jean-François; Le-Marchand-Brustel, Yannick; Ferrier, Bernard; Conjard-Duplany, Agnès; Romanino, Klaas; Bauché, Stéphanie; Hantaï, Daniel; Mueller, Matthias; Kozma, Sara C.; Thomas, George; Rüegg, Markus A.; Ferry, Arnaud; Pende, Mario; Bigard, Xavier; Koulmann, Nathalie

    2009-01-01

    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent. PMID:20008564

  3. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript.

    PubMed

    Todeschini, Alice; Gualandi, Francesca; Trabanelli, Cecilia; Armaroli, Annarita; Ravani, Anna; Fanin, Marina; Rota, Silvia; Bello, Luca; Ferlini, Alessandra; Pegoraro, Elena; Padovani, Alessandro; Filosto, Massimiliano

    2016-10-01

    We describe a 29-year-old patient who complained of left thigh muscle weakness since he was 23 and of moderate proximal weakness of both lower limbs with difficulty in climbing stairs and running since he was 27. Mild weakness of iliopsoas and quadriceps muscles and muscle atrophy of both the distal forearm and thigh were observed upon clinical examination. He harboured a novel c.1150-3C>G substitution in the DMD gene, affecting the intron 10 acceptor splice site and causing exon 11 skipping and an out-of-frame transcript. However, protein of normal molecular weight but in reduced amounts was observed on Western Blot analysis. Reverse transcription analysis on muscle RNA showed production, via alternative splicing, of a transcript missing exon 11 as well as a low abundant full-length transcript which is enough to avoid the severe Duchenne phenotype. Our study showed that a reduced amount of full length dystrophin leads to a mild form of Becker muscular dystrophy. These results confirm earlier findings that low amounts of dystrophin can be associated with a milder phenotype, which is promising for therapies aiming at dystrophin restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene.

    PubMed Central

    Pinard, J M; Motte, J; Chiron, C; Brian, R; Andermann, E; Dulac, O

    1994-01-01

    Neuronal migration disorders can now be recognised by MRI. This paper reports two families in which the mothers had subcortical laminar heterotopia and four of their children had either similar heterotopia (two girls) or severe pachygyria or lissencephaly (two boys). Laminar heterotopia was more evident on MRI T2 weighted images. The patients had mild to severe epilepsy and mental retardation depending on the extent of cortical abnormalities. In these families, subcortical laminar heterotopia, pachygyria, and lissencephaly seem to share the same X linked or autosomal dominant gene. No chromosomal abnormalities, especially of chromosome 17, could be identified. For appropriate genetic counselling of the family of a child with lissencephaly or subcortical laminar heterotopia, MRI should be performed in parents or siblings with mental retardation or epilepsy. Images PMID:8057113

  5. Chromosomal disorders and male infertility

    PubMed Central

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility. PMID:22120929

  6. Chromosomal disorders and male infertility.

    PubMed

    Harton, Gary L; Tempest, Helen G

    2012-01-01

    Infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family. Despite this, the molecular and genetic factors underlying the cause of infertility remain largely undiscovered. Nevertheless, more and more genetic factors associated with infertility are being identified. This review will focus on our current understanding of the chromosomal basis of male infertility specifically: chromosomal aneuploidy, structural and numerical karyotype abnormalities and Y chromosomal microdeletions. Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans. Aneuploidy is predominantly maternal in origin, but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts. Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm. Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed, as well as the application of preimplantation genetic diagnosis (PGD) in such cases. Clinical recommendations where possible will be made, as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  7. Methods of biological dosimetry employing chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2000-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  8. Live-cell imaging of nuclear-chromosomal dynamics in bovine in vitro fertilised embryos.

    PubMed

    Yao, Tatsuma; Suzuki, Rie; Furuta, Natsuki; Suzuki, Yuka; Kabe, Kyoko; Tokoro, Mikiko; Sugawara, Atsushi; Yajima, Akira; Nagasawa, Tomohiro; Matoba, Satoko; Yamagata, Kazuo; Sugimura, Satoshi

    2018-05-10

    Nuclear/chromosomal integrity is an important prerequisite for the assessment of embryo quality in artificial reproductive technology. However, lipid-rich dark cytoplasm in bovine embryos prevents its observation by visible light microscopy. We performed live-cell imaging using confocal laser microscopy that allowed long-term imaging of nuclear/chromosomal dynamics in bovine in vitro fertilised (IVF) embryos. We analysed the relationship between nuclear/chromosomal aberrations and in vitro embryonic development and morphological blastocyst quality. Three-dimensional live-cell imaging of 369 embryos injected with mRNA encoding histone H2B-mCherry and enhanced green fluorescent protein (EGFP)-α-tubulin was performed from single-cell to blastocyst stage for eight days; 17.9% reached the blastocyst stage. Abnormalities in the number of pronuclei (PN), chromosomal segregation, cytokinesis, and blastomere number at first cleavage were observed at frequencies of 48.0%, 30.6%, 8.1%, and 22.2%, respectively, and 13.0%, 6.2%, 3.3%, and 13.4%, respectively, for abnormal embryos developed into blastocysts. A multivariate analysis showed that abnormal chromosome segregation (ACS) and multiple PN correlated with delayed timing and abnormal blastomere number at first cleavage, respectively. In morphologically transferrable blastocysts, 30-40% of embryos underwent ACS and had abnormal PN. Live-cell imaging may be useful for analysing the association between nuclear/chromosomal dynamics and embryonic development in bovine embryos.

  9. Correlation between CD34 expression and chromosomal abnormalities but not clinical outcome in acute myeloid leukemia.

    PubMed

    Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H

    1996-11-01

    The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P < 0.01). Monosomy 7/7q- or monosomy 5/5q- occurred in 10 patients and 8 of them expressed the CD34 antigen (P < 0.05). All patients with t(8;21) which is considered as a favorable factor in AML had levels of CD34 >/= 20% (P < 0.05). We did not find any association between CD34 expression and attainment of complete remission, overall survival, or disease-free survival. In conclusion, the variations of CD34 expression in AML are correlated with cytogenetic abnormalities associated both with poor and favorable outcome. The evaluation of the correlations between CD34 antigen and clinical outcome in AML should take into account the results of pretreatment karyotype.

  10. A patient with familial bone marrow failure and an inversion of chromosome 8.

    PubMed

    Buchbinder, David Kyle; Zadeh, Touran; Nugent, Diane

    2011-12-01

    Familial bone marrow failure has been associated with a variety of chromosomal aberrations. Chromosome 8 abnormalities have been described in association with neoplastic and hematologic disorders; however, to our knowledge, inversion of the long arm of chromosome 8 has not been described in the context of familial bone marrow failure. We describe a 9-year-old female with familial bone marrow failure and an inversion of chromosome 8 [inv (8) (q22, q24.3)]. Given the importance of considering the genetic determinants of familial bone marrow failure, the potential role of chromosome 8 abnormalities in the development of marrow failure is discussed.

  11. MACF1 gene structure: a hybrid of plectin and dystrophin.

    PubMed

    Gong, T W; Besirli, C G; Lomax, M I

    2001-11-01

    Mammalian MACF1 (Macrophin1; previously named ACF7) is a giant cytoskeletal linker protein with three known isoforms that arise by alternative splicing. We isolated a 19.1-kb cDNA encoding a fourth isoform (MACF1-4) with a unique N-terminus. Instead of an N-terminal actin-binding domain found in the other three isoforms, MACF1-4 has eight plectin repeats. The MACF1 gene is located on human Chr 1p32, contains at least 102 exons, spans over 270 kb, and gives rise to four major isoforms with different N-termini. The genomic organization of the actin-binding domain is highly conserved in mammalian genes for both plectin and BPAG1. All eight plectin repeats are encoded by one large exon; this feature is similar to the genomic structure of plectin. The intron positions within spectrin repeats in MACF1 are very similar to those in the dystrophin gene. This demonstrates that MACF1 has characteristic features of genes for two classes of cytoskeletal proteins, i.e., plectin and dystrophin.

  12. Origin of sex chromosomes in six groups of Rana rugosa frogs inferred from a sex-linked DNA marker.

    PubMed

    Oike, Akira; Watanabe, Koichiro; Min, Mi-Sook; Tojo, Koji; Kumagai, Masahide; Kimoto, Yuya; Yamashiro, Tadashi; Matsuo, Takanori; Kodama, Maho; Nakamura, Yoriko; Notsu, Masaru; Tochimoto, Takeyoshi; Fujita, Hiroyuki; Ota, Maki; Ito, Etsuro; Yasumasu, Shigeki; Nakamura, Masahisa

    2017-08-01

    Each vertebrate species, as a general rule, has either the XX/XY or ZZ/ZW chromosomes by which sex is determined. However, the Japanese Rana (R.) rugosa frog is an exception, possessing both sex-determining combinations within one species, varying with region of origin. We collected R. rugosa frogs from 104 sites around Japan and South Korea and determined the nucleotide sequences of the mitochondrial 12S ribosomal RNA gene. Based on the sequences, R. rugosa frogs were divided into four groups from Japan and one from South Korea. The ZZ/ZW type is reportedly derived from the XX/XY type, although recently a new ZZ/ZW type of R. rugosa was reported. However, it still remains unclear from where the sex chromosomes in the five groups of this species were derived. In this study, we successfully isolated a sex-linked DNA maker and used it to classify R. rugosa frogs into several groupings. From the DNA marker as well as from nucleotide analysis of the promoter region of the androgen receptor (AR) gene, we identified another female heterogametic group, designated, West-Central. The sex chromosomes in the West-Central originated from the West and Central groups. The results indicate that a sex-linked DNA marker is a verifiable tool to determine the origin of the sex chromosomes in R. rugosa frogs in which the sex-determining system has changed, during two independent events, from the male to female heterogamety. © 2017 Wiley Periodicals, Inc.

  13. Chromosomal localization of Emv-16 and Emv-17, two closely linked ecotropic proviruses of RF/J mice.

    PubMed Central

    Buchberg, A M; Taylor, B A; Jenkins, N A; Copeland, N G

    1986-01-01

    Emv-16 and Emv-17, the two closely linked ecotropic proviral loci of RF/J mice, have been mapped to chromosome 1 between leaden, ln, and the mouse engrailed homeo-box locus, En-1, by using recombinant inbred strains and conventional backcross analysis. Images PMID:2878091

  14. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Two genetic markers closely linked to adult polycystic kidney disease on chromosome 16.

    PubMed Central

    Reeders, S T; Breuning, M H; Corney, G; Jeremiah, S J; Meera Khan, P; Davies, K E; Hopkinson, D A; Pearson, P L; Weatherall, D J

    1986-01-01

    The genetic locus for autosomal dominant adult polycystic kidney disease was recently assigned to chromosome 16 by the finding of genetic linkage to the alpha globin gene cluster. Further study showed that the phosphoglycolate phosphatase locus is also closely linked to both the locus for adult polycystic kidney disease and the alpha globin gene cluster. These findings have important implications for the prenatal and presymptomatic diagnosis of adult polycystic kidney disease and for a better understanding of its pathogenesis. Images FIG 1 PMID:3008903

  16. Escape of X-linked miRNA genes from meiotic sex chromosome inactivation

    PubMed Central

    Sosa, Enrique; Flores, Luis; Yan, Wei; McCarrey, John R.

    2015-01-01

    Past studies have indicated that transcription of all X-linked genes is repressed by meiotic sex chromosome inactivation (MSCI) during the meiotic phase of spermatogenesis in mammals. However, more recent studies have shown an increase in steady-state levels of certain X-linked miRNAs in pachytene spermatocytes, suggesting that either synthesis of these miRNAs increases or that degradation of these miRNAs decreases dramatically in these cells. To distinguish between these possibilities, we performed RNA-FISH to detect nascent transcripts from multiple miRNA genes in various spermatogenic cell types. Our results show definitively that Type I X-linked miRNA genes are subject to MSCI, as are all or most X-linked mRNA genes, whereas Type II and III X-linked miRNA genes escape MSCI by continuing ongoing, active transcription in primary spermatocytes. We corroborated these results by co-localization of RNA-FISH signals with both a corresponding DNA-FISH signal and an immunofluorescence signal for RNA polymerase II. We also found that X-linked miRNA genes that escape MSCI locate non-randomly to the periphery of the XY body, whereas genes that are subject to MSCI remain located within the XY body in pachytene spermatocytes, suggesting that the mechanism of escape of X-linked miRNA genes from MSCI involves their relocation to a position outside of the repressive chromatin domain associated with the XY body. The fact that Type II and III X-linked miRNA genes escape MSCI suggests an immediacy of function of the encoded miRNAs specifically required during the meiotic stages of spermatogenesis. PMID:26395485

  17. Enhanced Detection of Chromosomal Abnormalities in Chronic Lymphocytic Leukemia by Conventional Cytogenetics Using CpG Oligonucleotide in Combination with Pokeweed Mitogen and Phorbol Myristate Acetate

    PubMed Central

    Muthusamy, Natarajan; Breidenbach, Heather; Andritsos, Leslie; Flynn, Joseph; Jones, Jeffrey; Ramanunni, Asha; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Heerema, Nyla A.

    2011-01-01

    Reproducible cytogenetic analysis in CLL has been limited by the inability to obtain reliable metaphase cells for analysis. CpG oligonucleotide and cytokine stimulation have been shown to improve metaphase analysis of CLL cytogenetic abnormalities, but is limited by variability in the cytokine receptor levels, stability and biological activity of the cytokine in culture conditions and high costs associated with these reagents. We report here use of a novel, stable CpG, GNKG168 along with pokeweed mitogen (PWM) and phorbol 12-myristate 13-acetate (PMA) for conventional cytogenetic assessment in CLL. We demonstrate that the combined use of GNKG168+PWM/PMA increased the sensitivity of detection of chromosomal abnormalities compared to PWM/PMA (n=207, odds ratio=2.2, p=0.0002) and GNKG168 (n=219, odds ratio=1.5, p=0.0452). Further, a significant increase in sensitivity to detect complexity ≥3 with GNKG168+PWM/PMA compared to GNKG168 alone (odds ratio 8.0, p=0.0022) or PWM/PMA alone (odds ratio 9.6, p=0.0007) was observed. The trend toward detection of higher complexity was significantly greater with GNKG168+PWM/PMA compared to GNKG168 alone (p=0.0412). The increased sensitivity was mainly attributed to the addition of PWM/PMA with GNKG168 because GNKG168 alone showed no difference in sensitivity for detection of complex abnormalities (p=0.17). Comparison of fluorescence in situ hybridization (FISH) results with karyotypic results showed a high degree of consistency, although some complex karyotypes were present in cases with no adverse FISH abnormality. These studies provide evidence for potential use of GNKG168 in combination with PWM and PMA in karyotypic analysis of CLL patient samples to better identify chromosomal abnormalities for risk stratification. PMID:21494579

  18. Sialoadhesin (Sn) maps to mouse chromosome 2 and human chromosome 20 and is not linked to the other members of the Sialoadhesin family, CD22, MAG, and CD33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mucklow, S.; Hartnell, A.; Crocker, P.R.

    1995-07-20

    Sialoadhesin is a cell-cell interaction molecule expressed by subpopulations of tissue macrophages. It contains 17 immunoglobulin (Ig)-like domains and is structurally related to CD22, MAG, and CD33. These molecules establish a distinct family of sialic acid-dependent adhesion molecules, the sialoadhesin family. We have mapped the rodent sialoadhesin gene, Sn, to chromosome 2F-H1 by in situ hybridization (ISH) and shown linkage to Il1b and four other markers by backcross linkage analysis. We have also used ISH and a human-mouse somatic cell hybrid panel to localize the human sialoadhesin gene, SN, to the conserved syntenic region on human chromosome 20p13. This demonstratesmore » that the sialoadhesin gene is not linked to the other members of the sialoadhesin family, CD22, MAG. and CD33, which have been independently mapped to the distal region of mouse chromosome 7 and to human chromosome 19q13.1-3. 19 refs., 1 fig.« less

  19. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less

  20. Alport syndrome, mental retardation, midface hypoplasia, and elliptocytosis: a new X linked contiguous gene deletion syndrome?

    PubMed Central

    Jonsson, J J; Renieri, A; Gallagher, P G; Kashtan, C E; Cherniske, E M; Bruttini, M; Piccini, M; Vitelli, F; Ballabio, A; Pober, B R

    1998-01-01

    We describe a family with four members, a mother, two sons, and a daughter, who show clinical features consistent with X linked Alport syndrome. The two males presented with additional features including mental retardation, dysmorphic facies with marked midface hypoplasia, and elliptocytosis. The elliptocytosis was not associated with any detectable abnormalities in red cell membrane proteins; red cell membrane stability and rigidity was normal on ektacytometry. Molecular characterisation suggests a submicroscopic X chromosome deletion encompassing the entire COL4A5 gene. We propose that the additional abnormalities found in the affected males of this family are attributable to deletion or disruption of X linked recessive genes adjacent to the COL4A5 gene and that this constellation of findings may represent a new X linked contiguous gene deletion syndrome. Images PMID:9598718

  1. Human sperm chromosome analysis after subzonal sperm insemination of hamster oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, J.

    1994-09-01

    Sperm microinjection techniques, subzonal sperm insemination (SUZI) and intracytoplasmic sperm injection (ICSI), have achieved a wide spread clinical application for the treatment of male infertility. To date, only one study has focused on sperm karyotypes after microinjection. Martin et al. reported a very high incidence of abnormal human sperm complements after ICSI into hamster oocytes. In the present study, are reported the first human sperm karyotypes after SUZI of hamster oocytes. Spermatozoa from two control donors were treated by calcium ionophore A23187 and injected under the zona of hamster eggs. The microinjected eggs were then cultured for cytogenetic analysis ofmore » the pronuclei. Out of 47 analyzed sperm chromosome metaphases, 5 (10.6%) were abnormal, 4 (8.5%) were hypohaploid and 1 (2.1%) had a structural abnormality. The sex ratio was not significantly different from the expected 1:1 ratio. Rates of chromosomal abnormalities in microinjected spermatozoa were similar to those observed in spermatozoa inseminated with zona free eggs, suggesting that SUZI procedure per se does not increase sperm chromosomal abnormalities.« less

  2. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheu, M.; Sigman, M.; Mark, H.F.L.

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated amore » prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.« less

  3. Cytogenetic study of a patient with infant acute lymphoblastic leukemia using GTG-banding and chromosome painting.

    PubMed

    Alter, D; Mark, H F

    2000-10-01

    Numerical and structural chromosomal abnormalities occur in up to 90% of cases of childhood acute lymphoblastic leukemia (ALL). Two-thirds of these abnormalities are recurrent. The most common abnormalities are pseudodiploidy and t(1;19), occurring 40 and 5-6% of the time. Hyperdiploidy has the best prognosis, with an 80-90% 5-year survival. The 4;11 translocation has the worst prognosis, with a 10-35% 5-year survival. We report a patient with infant acute lymphoblastic leukemia and nonrecurrent rearrangements of chromosomes 10 and 11. Structural rearrangements between chromosomes 10 and 11 have been observed in 0.5% of all cases of childhood ALL with cytogenetic abnormalities. The identification of the apparently unique structural abnormalities was achieved using fluorescent in situ hybridization (FISH) with chromosome 10- and chromosome 11-specific painting probes as an adjunct to conventional cytogenetics. As is often the case, suboptimal preparations often preclude unequivocal identification of complex rearrangements by conventional banding techniques. The cytogenetic diagnosis of our patient was established as 46,XY, der(10)-t(10;11)(p15;q14)t(10;11)(q25;p11), der(11)t(10;11)(p15;q14)t(10;11)-(q25;p11). The benefits of FISH serve to increase the resolution of detection for chromosomal abnormalities and the understanding of the pathogenic mechanisms of childhood ALL. Copyright 2000 Academic Press.

  4. Log-PCR: a new tool for immediate and cost-effective diagnosis of up to 85% of dystrophin gene mutations.

    PubMed

    Trimarco, Amelia; Torella, Annalaura; Piluso, Giulio; Maria Ventriglia, Vega; Politano, Luisa; Nigro, Vincenzo

    2008-06-01

    Duchenne (DMD) and Becker (BMD) muscular dystrophies are caused by mutations in the dystrophin gene. Despite the progress in the technologies of mutation detection, the disease of one third of patients escapes molecular definition because the labor and expense involved has precluded analyzing the entire gene. Novel techniques with higher detection rates, such as multiplex ligation-dependent probe amplification and multiplex amplifiable probe hybridization, have been introduced. We approached the challenge of multiplexing by modifying the PCR chemistry. We set up a rapid protocol that analyzes all dystrophin exons and flanking introns (57.5 kb). We grouped exons according to their effect on the reading frame and ran 2 PCR reactions for DMD mutations and 2 reactions for BMD mutations under the same conditions. The PCR products are evenly spaced logarithmically on the gel (Log-PCR) in an order that reproduces their chromosomal locations. This strategy enables both simultaneous mapping of all the mutation borders and distinguishing between DMD and BMD. As a proof of principle, we reexamined samples from 506 patients who had received a DMD or BMD diagnosis. We observed gross rearrangements in 428 of the patients (84.6%; 74.5% deletions and 10.1% duplications). We also recognized a much broader spectrum of mutations and identified 14.6% additional cases. This study is the first exhaustive investigation of this subject and has made possible the development of a cost-effective test for diagnosing a larger proportion of cases. The benefit of this approach may allow more focused efforts for discovering small or deep-intronic mutations among the few remaining undiagnosed cases. The same protocol can be extended to set up Log-PCRs for other high-throughput applications.

  5. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.

  6. A family study of congenital X linked sideroblastic anaemia.

    PubMed Central

    Holmes, J; May, A; Geddes, D; Jacobs, A

    1990-01-01

    We report on the cytogenetic findings in a family study of pyridoxine responsive, X linked sideroblastic anaemia. An increase in the number of X chromosomes was observed in a small proportion of metaphases prepared from five female members, but these findings did not strictly correlate with the carrier status of the condition. No consistent cytogenetic abnormality could be identified or associated with this rare familial condition. The diagnosis and counselling of carriers of this condition is discussed. Images PMID:2308152

  7. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

    PubMed Central

    Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2017-01-01

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574

  8. Duplication of the EFNB1 Gene in Familial Hypertelorism: Imbalance in Ephrin-B1 Expression and Abnormal Phenotypes in Humans and Mice

    PubMed Central

    Babbs, Christian; Stewart, Helen S; Williams, Louise J; Connell, Lyndsey; Goriely, Anne; Twigg, Stephen RF; Smith, Kim; Lester, Tracy; Wilkie, Andrew OM

    2011-01-01

    Familial hypertelorism, characterized by widely spaced eyes, classically shows autosomal dominant inheritance (Teebi type), but some pedigrees are compatible with X-linkage. No mechanism has been described previously, but clinical similarity has been noted to craniofrontonasal syndrome (CFNS), which is caused by mutations in the X-linked EFNB1 gene. Here we report a family in which females in three generations presented with hypertelorism, but lacked either craniosynostosis or a grooved nasal tip, excluding CFNS. DNA sequencing of EFNB1 was normal, but further analysis revealed a duplication of 937 kb including EFNB1 and two flanking genes: PJA1 and STARD8. We found that the X chromosome bearing the duplication produces ∼1.6-fold more EFNB1 transcript than the normal X chromosome and propose that, in the context of X-inactivation, this difference in expression level of EFNB1 results in abnormal cell sorting leading to hypertelorism. To support this hypothesis, we provide evidence from a mouse model carrying a targeted human EFNB1 cDNA, that abnormal cell sorting occurs in the cranial region. Hence, we propose that X-linked cases resembling Teebi hypertelorism may have a similar mechanism to CFNS, and that cellular mosaicism for different levels of ephrin-B1 (as well as simple presence/absence) leads to craniofacial abnormalities. Hum Mutat 32:1–9, 2011. © 2011 Wiley-Liss, Inc. PMID:21542058

  9. Convergent evolution of Y chromosome gene content in flies.

    PubMed

    Mahajan, Shivani; Bachtrog, Doris

    2017-10-04

    Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species.While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.

  10. Central Arterial Function Measured by Non-invasive Pulse Wave Analysis is Abnormal in Patients with Duchenne Muscular Dystrophy.

    PubMed

    Ryan, Thomas D; Parent, John J; Gao, Zhiqian; Khoury, Philip R; Dupont, Elizabeth; Smith, Jennifer N; Wong, Brenda; Urbina, Elaine M; Jefferies, John L

    2017-08-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutation of dystrophin. Cardiovascular involvement includes dilated cardiomyopathy. Non-invasive assessment of vascular function has not been evaluated in DMD. We hypothesize arterial wave reflection is abnormal in patients with DMD. Pulse wave analysis was performed on DMD patients with a SphygmoCor SCOR-PVx System to determine central blood pressure and augmentation index (AIx) as an assessment of arterial wave reflection. Results were compared to a control group. A total of 43 patients with DMD were enrolled, and compared to 43 normal controls. Central systolic blood pressure was lower, while both AIx-75 (7.8 ± 9.6% vs. 2.1 ± 10.4%, p 0.01, DMD vs. normal) and AIx-not corrected (16.8 ± 10.1% vs. -3.6 ± 10.9, p < 0.001, DMD vs. normal) were higher in the DMD compared to control. Using multivariable linear regression model, the variables found to have a significant effect on AIx-not corrected included diagnosis of DMD, height, and heart rate (r 2  = 0.257). The current data suggest that, despite lower central systolic blood pressure, patients with DMD have higher wave reflection when compared to normal controls, which may represent increased arterial stiffness. Overall there appears to be no effect on ventricular systolic function, however the long-term consequence in this group is unknown. Further study is required to determine the mechanism of these differences, which may be related to the effects of systemic steroids or the role of dystrophin in vascular function.

  11. Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy.

    PubMed

    Vieira, Natassia M; Spinazzola, Janelle M; Alexander, Matthew S; Moreira, Yuri B; Kawahara, Genri; Gibbs, Devin E; Mead, Lillian C; Verjovski-Almeida, Sergio; Zatz, Mayana; Kunkel, Louis M

    2017-06-06

    Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN ( DMD ) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these "escaper" dogs revealed reduced expression of phosphatidylinositol transfer protein-α ( PITPNA ) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.

  12. Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy

    PubMed Central

    Vieira, Natassia M.; Spinazzola, Janelle M.; Alexander, Matthew S.; Moreira, Yuri B.; Kawahara, Genri; Gibbs, Devin E.; Mead, Lillian C.; Zatz, Mayana; Kunkel, Louis M.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these “escaper” dogs revealed reduced expression of phosphatidylinositol transfer protein-α (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases. PMID:28533404

  13. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy

    PubMed Central

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M.; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin’ichi; Yokota, Toshifumi

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart. PMID:28373570

  14. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy.

    PubMed

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Lim, Kenji Rowel Q; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin'ichi; Yokota, Toshifumi

    2017-04-18

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMD J ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMD J dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMD J dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.

  15. Pericentric Inversion of Chromosome 9 in an Infant With Ambiguous Genitalia.

    PubMed

    Sotoudeh, Arya; Rostami, Parastoo; Nakhaeimoghadam, Maryam; Mohsenipour, Reihaneh; Rezaei, Nima

    2017-10-01

    Pericentric inversion of Chromosome 9 is one of the most common chromosomal abnormalities, which could be associated with various manifestations in some cases. Herein, a patient is presented with ambiguous genitalia that karyotyping revealed pericentric inversion of Chromosome 9 (p12,q13). Pericentric inversion of Chromosome 9 could be considered in the list of differential diagnosis of those with ambiguous genitalia, while chromosomal karyotype and culture could be recommended in children with ambiguous genitalia.

  16. Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome

    PubMed Central

    Chandra, H. Sharat; Heistekamp, Nora C.; Hungerford, Alice; Morrissette, Jennifer J.D.; Nowell, Peter C.; Rowley, Janet D.; Testa, Joseph R.

    2011-01-01

    This report summarizes highlights of the ‘Philadelphia Chromosome Symposium: Past, Present and Future’, held September 28, 2010, to commemorate the 50th anniversary of the discovery of the Philadelphia chromosome. The symposium sessions included presentations by investigators who made seminal contributions concerning the discovery and molecular characterization of the Ph chromosome and others who developed a highly successful therapy based on the specific molecular alteration observed in chronic myelogenous leukemia. Additional presentations highlighted future opportunities for the design of molecularly targeted therapies for various types of cancer. Also included here are reminiscences connected with the discovery of the Ph chromosome by David Hungerford and Peter Nowell, the discovery that the abnormality arises from a chromosomal translocation, by Janet Rowley, and the cloning of the 9;22 translocation breakpoints by Nora Heisterkamp, John Groffen and colleagues. PMID:21536234

  17. Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research

    Cancer.gov

    Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a

  18. The X chromosome in space.

    PubMed

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  19. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    PubMed

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  20. [Structural and functional organization of centromeres in plant chromosomes].

    PubMed

    Silkova, O G; Loginova, D B

    2014-12-01

    The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.

  1. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    PubMed

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  2. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain

    PubMed Central

    Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377

  3. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    PubMed Central

    Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.

    2008-01-01

    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095

  4. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes.

    PubMed

    Noël, Geoffroy; Tham, Daniel Kai Long; Moukhles, Hakima

    2009-07-17

    Astrocyte endfeet surrounding blood vessels are active domains involved in water and potassium ion transport crucial to the maintenance of water and potassium ion homeostasis in brain. A growing body of evidence points to a role for dystroglycan and its interaction with perivascular laminin in the targeting of the dystrophin complex and the water-permeable channel, aquaporin 4 (AQP4), at astrocyte endfeet. However, the mechanisms underlying such compartmentalization remain poorly understood. In the present study we found that AQP4 resided in Triton X-100-insoluble fraction, whereas dystroglycan was recovered in the soluble fraction in astrocytes. Cholesterol depletion resulted in the translocation of a pool of AQP4 to the soluble fraction indicating that its distribution is indeed associated with cholesterol-rich membrane domains. Upon laminin treatment AQP4 and the dystrophin complex, including dystroglycan, reorganized into laminin-associated clusters enriched for the lipid raft markers GM1 and flotillin-1 but not caveolin-1. Reduced diffusion rates of GM1 in the laminin-induced clusters were indicative of the reorganization of raft components in these domains. In addition, both cholesterol depletion and dystroglycan silencing reduced the number and area of laminin-induced clusters of GM1, AQP4, and dystroglycan. These findings demonstrate the interdependence between laminin binding to dystroglycan and GM1-containing lipid raft reorganization and provide novel insight into the dystrophin complex regulation of AQP4 polarization in astrocytes.

  5. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice

    PubMed Central

    Friedrich, O; Both, M; Gillis, J M; Chamberlain, J S; Fink, RHA

    2004-01-01

    L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin. PMID:14594987

  6. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment.

    PubMed

    Assereto, Stefania; Stringara, Silvia; Sotgia, Federica; Bonuccelli, Gloria; Broccolini, Aldobrando; Pedemonte, Marina; Traverso, Monica; Biancheri, Roberta; Zara, Federico; Bruno, Claudio; Lisanti, Michael P; Minetti, Carlo

    2006-02-01

    In this report, we have developed a novel method to identify compounds that rescue the dystrophin-glycoprotein complex (DGC) in patients with Duchenne or Becker muscular dystrophy. Briefly, freshly isolated skeletal muscle biopsies (termed skeletal muscle explants) from patients with Duchenne or Becker muscular dystrophy were maintained under defined cell culture conditions for a 24-h period in the absence or presence of a specific candidate compound. Using this approach, we have demonstrated that treatment with a well-characterized proteasome inhibitor, MG-132, is sufficient to rescue the expression of dystrophin, beta-dystroglycan, and alpha-sarcoglycan in skeletal muscle explants from patients with Duchenne or Becker muscular dystrophy. These data are consistent with our previous findings regarding systemic treatment with MG-132 in a dystrophin-deficient mdx mouse model (Bonuccelli G, Sotgia F, Schubert W, Park D, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, and Lisanti MP. Am J Pathol 163: 1663-1675, 2003). Our present results may have important new implications for the possible pharmacological treatment of Duchenne or Becker muscular dystrophy in humans.

  7. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  8. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes.

    PubMed

    Veltsos, Paris; Cossard, Guillaume; Beaudoing, Emmanuel; Beydon, Genséric; Savova Bianchi, Dessislava; Roux, Camille; C González-Martínez, Santiago; R Pannell, John

    2018-05-29

    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.

  9. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  10. Association of the Philadelphia chromosome and 5q- in secondary blood disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dastugue, N.; Demur, C.; Pris, F.

    1988-02-01

    A patient developed a secondary blood disorder 7 years after radiotherapy for a gastric lymphoma. The initial myelodysplastic syndrome evolved to a myeloproliferative phase with transient polycythemia, progressive thrombocythemia, and hyperleukocytosis. Chromosome analysis performed in the terminal phase showed del(5)(q13q31),t(9;22)(q34;q11), and a complex rearrangement involving chromosomes number2 and number3. A correlation between chromosomal abnormalities and hematologic findings could be established. In this case, we have assumed that the Philadelphia translocation is a late event, due to prior mutagen exposure, and its association with a common secondary abnormality (5q-), followed by a progressively developing myeloproliferative phase. Furthermore, the association of Phmore » and 5q- in a single clone seems to indicate that the same stem cell is affected by these two abnormalities.« less

  11. Dissociable Effects of Sry and Sex Chromosome Complement on Activity, Feeding and Anxiety-Related Behaviours in Mice

    PubMed Central

    Kopsida, Eleni; Lynn, Phoebe M.; Humby, Trevor; Wilkinson, Lawrence S.; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine ‘four core genotype’ (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry (‘sex chromosome complement’ effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions. PMID:24009762

  12. Relationship of sleep abnormalities to patient genotypes in Prader-Willi syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vgontzas, A.N.; Kales, A.; Bixler, E.O.

    To assess whether sleep abnormalities are related to the genetic abnormalities in Prader-Willi Syndrome (PWS), we performed polysomnographic studies (nighttime and daytime) and determined the chromosome 15 genotypes in eight patients with PWS. Four patients demonstrated sleep onset REM periods (SOREM), and five met the objective polysomnographic criteria for severe or moderate excessive daytime sleepiness (EDS). Three of the four patients with SOREM displayed a paternally derived deletion of chromosome 15q11-q13, whereas the fourth exhibited maternal uniparental heterodisomy in this chromosomal region (UPD). Two of the four patients that did not display SOREM carried paternally derived deletions; the remaining twomore » demonstrated UPD. Four of the five patients with EDS displayed paternal deletions, and the fifth exhibited UPD. One of three patients without evidence of EDS demonstrated paternal deletion; the remaining two showed UPD. Although neither EDS nor SOREM was not consistently associated with a specific genetic abnormality, these phenotypes may be more common in patients with paternal deletions than in those with UPD. Sleep abnormalities in PWS cannot be explained by a single genetic model. 32 refs., 1 tab.« less

  13. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Chromosomal rearrangement segregating with adrenoleukodystrophy: associated changes in color vision.

    PubMed Central

    Alpern, M; Sack, G H; Krantz, D H; Jenness, J; Zhang, H; Moser, H W

    1993-01-01

    A patient from a large kindred with adrenoleukodystrophy showed profound disturbance of color ordering, color matching, increment thresholds, and luminosity. Except for color matching, his performance was similar to blue-cone "monochromacy," an X chromosome-linked recessive retinal dystrophy in which color vision is dichromatic, mediated by the visual pigments of rods and short-wave-sensitive cones. Color matching, however, indicated that an abnormal rudimentary visual pigment was also present. This may reflect the presence of a recombinant visual pigment protein or altered regulation of residual pigment genes, due to DNA changes--deletion of the long-wave pigment gene and reorganized sequences 5' to the pigment gene cluster--that segregate with the metabolic defect in this kindred. PMID:8415729

  15. Partial deletion of long arm of chromosome 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golomb, H.M.; Rowley, J.; Vardiman, J.

    Two patients with acute promyelocytic leukemia had an identical chromosomal abnormality detected by fluorescence banding. In each case, the clinical course was rapidly fatal, and was characterized by a lack of response to chemotherapy with cytarabine and thioguanine, and was complicated by disseminated intravascular coagulation. Bone marrow cells from each patient contained 46 chromosomes; in each instance, however, one chromosome 17 had a deletion of almost one half of the proximal portion of the long arm (del(17)(q11q21 or 22)).

  16. An Autosomal Factor from Drosophila Arizonae Restores Normal Spermatogenesis in Drosophila Mojavensis Males Carrying the D. Arizonae Y Chromosome

    PubMed Central

    Pantazidis, A. C.; Galanopoulos, V. K.; Zouros, E.

    1993-01-01

    Males of Drosophila mojavensis whose Y chromosome is replaced by the Y chromosome of the sibling species Drosophila arizonae are sterile. It is shown that genetic material from the fourth chromosome of D. arizonae is necessary and sufficient, in single dose, to restore fertility in these males. In introgression and mapping experiments this material segregates as a single Mendelian factor (sperm motility factor, SMF). Light and electron microscopy studies of spermatogenesis in D. mojavensis males whose Y chromosome is replaced by introgression with the Y chromosome of D. arizonae (these males are symbolized as mojY(a)) revealed postmeiotic abnormalities all of which are restored when the SMF of D. arizonae is co-introgressed (these males are symbolized as mojY(a)SMF(a)). The number of mature sperm per bundle in mojY(a)SMF(a) is slightly less than in pure D. mojavensis and is even smaller in males whose fertility is rescued by introgression of the entire fourth chromosome of D. arizonae. These observations establish an interspecific incompatibility between the Y chromosome and an autosomal factor (or more than one tightly linked factors) that can be useful for the study of the evolution of male hybrid sterility in Drosophila and the genetic control of spermatogenesis. PMID:8514139

  17. [Chromosome abnormalities associated with Phl and acturial survivorship curve in chronic myeloid leukemia. Probabilistic interpretation of blastic transformation of CML].

    PubMed

    Coutris, G

    1981-12-01

    Sixty-six patients with chronic myelogenous leukemia, all with Philadelphia chromosome, have been studied for chromosomic abnormalities associated (CAA) to Ph', as well as for actuarial curve of survivorship. Patients dying from another disease were excluded from this study. Frequency of cells with CAA was measured and appeared strongly higher after blastic transformation than during myelocytic state; probability to be a blastic transformation is closely correlated with this frequency. On the other hand, actuarial curve of survivorship is very well represented by an exponential curve. This suggests a constant rate of death during disease evolution, for these patients without intercurrent disease. As a mean survivance after blastic transformation is very shorter than myelocytic duration, a constant rate of blastic transformation could be advanced: it explains possible occurrence of transformation as soon as preclinic state of a chronic myelogenous leukemia. Even if CAA frequency increases after blastic transformation, CAA can occur a long time before it and do not explain it: submicroscopic origin should be searched for the constant rate of blastic transformation would express the risk of a genic transformation at a constant rate during myelocytic state.

  18. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression

    PubMed Central

    Charlesworth, Deborah

    2018-01-01

    Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution. PMID:29783761

  19. Partial hexasomy of chromosome 15.

    PubMed

    Huang, Bing; Bartley, James

    2003-09-01

    Marker chromosomes originating from chromosome 15, often referred to as inv dup(15), is the most common marker chromosome found in humans. The large marker 15 that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, behavioral problems, and mild dysmorphic features. We report here an infant boy with two copies of the large inv dup(15). A 10-day-old infant was found to have infantile spasms, microcephaly, hypotonia, and lethargy. Lymphocyte chromosome analysis revealed a 48,XY, +2mar karyotype. Fluorescence in situ hybridization with probes rRNA, D15Z4, D15S11, and GABRB3 demonstrated that both markers were chromosome 15 in origin and contained the Prader-Willi/Angelman syndrome chromosome region. Therefore, this patient is hexasomic for the PWS/AS region. The phenotype of this patient does not appear to be significantly more severe than patients with one copy of the large inv dup(15) at birth, however, follow-up evaluation of the patient at 21 months of age shows that this patient has frequent and severe seizure activity, severe bilateral hearing loss, and cortical blindness. Copyright 2003 Wiley-Liss, Inc.

  20. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    PubMed

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  1. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man

    PubMed Central

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms. PMID:24611143

  2. Women's experiences receiving abnormal prenatal chromosomal microarray testing results.

    PubMed

    Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J

    2013-02-01

    Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.

  3. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    PubMed

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  4. Association of pericentric inversion of chromosome 9 and infertility in romanian population.

    PubMed

    Dana, Mierla; Stoian, Veronica

    2012-01-01

    One of the most common structural balanced chromosome rearrangements is pericentric inversion of chromosome 9; inv(9)(p11q12), which is consider to be the variant of normal karyotype and has been found in normal population. Although it seems not to correlate with abnormal phenotypes, there have been many controversial reports indicating that it may lead to abnormal clinical conditions such as infertility and recurrent abortions. The incidence is found to be about 1% - 3% in the general population. The aim of this study was to re-evaluate the clinical impact of inv(9)(p11q12)/(p11q13) in infertility. We investigated the karyotypes of 900 infertile couples (1800 individuals) admitted in our hospital for cytogenetic analysis. The control group consists of 1116 fetuses investigated by amniocentesis. This group was considered to be a sample of the fertile population, as the fetus being karyotyped is the result of a spontaneous pregnancy. Fetal karyotyping was made according to the standard indications for prenatal diagnosis (abnormal maternal serum screening results). Chromosomes from cultured peripheral blood lymphocytes and amniotic fluid were analyzed using Giemsa Trypsin-Giemsa (GTG) banding. The results of the two groups were compared. 1800 infertile people were submitted for cytogenetic investigation. In the control group 97.73% had normal karyotype and 2.27% showed inversion of chromosome 9, while in the studied group 96.24% had normal karyotype and 3.76% showed inversion of chromosome 9. The incidence of inversion 9 in both male and female patients is not significantly higher comparing with normal population (p = 0.343, p< 0.05). Because a considerable proportion of patients with reproductive dysfunction had various cytogenetic abnormalities, the chromosomal analysis should be considered as a diagnostic tool in the evaluation of reproductive dysfunction (infertility in men due to spermatogenic disturbances and in recurrent spontaneous abortion in females).

  5. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy.

    PubMed

    Benedetti, Sara; Uno, Narumi; Hoshiya, Hidetoshi; Ragazzi, Martina; Ferrari, Giulia; Kazuki, Yasuhiro; Moyle, Louise Anne; Tonlorenzi, Rossana; Lombardo, Angelo; Chaouch, Soraya; Mouly, Vincent; Moore, Marc; Popplewell, Linda; Kazuki, Kanako; Katoh, Motonobu; Naldini, Luigi; Dickson, George; Messina, Graziella; Oshimura, Mitsuo; Cossu, Giulio; Tedesco, Francesco Saverio

    2018-02-01

    Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Exceptional complex chromosomal rearrangements in three generations.

    PubMed

    Kartapradja, Hannie; Marzuki, Nanis Sacharina; Pertile, Mark D; Francis, David; Suciati, Lita Putri; Anggaratri, Helena Woro; Ambarwati, Debby Dwi; Idris, Firman Prathama; Lesmana, Harry; Trimarsanto, Hidayat; Paramayuda, Chrysantine; Harahap, Alida Roswita

    2015-01-01

    We report an exceptional complex chromosomal rearrangement (CCR) found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband's mother, which was confirmed using the whole chromosome painting (WCP) FISH. High resolution whole genome microarray analysis of DNA from the proband's mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother's and grandmother's CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  7. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    PubMed

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  8. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

    PubMed Central

    Matsubara, Kazumi; Tarui, Hiroshi; Toriba, Michihisa; Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Agata, Kiyokazu; Matsuda, Yoichi

    2006-01-01

    All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids. PMID:17110446

  9. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  10. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations

    PubMed Central

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland

    2018-01-01

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. PMID:29759113

  11. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

    PubMed

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi

    2018-05-08

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.

  12. Small Molecule Disrupts Abnormal Gene Fusion Associated with Leukemia | Center for Cancer Research

    Cancer.gov

    Rare chromosomal abnormalities, called chromosomal translocations, in which part of a chromosome breaks off and becomes attached to another chromosome, can result in the generation of chimeric proteins. These aberrant proteins have unpredictable, and sometimes harmful, functions, including uncontrolled cell growth that can lead to cancer. One type of translocation, in which a portion of the gene encoding nucleoporin 98 (NUP98)—one of about 50 proteins comprising the nuclear pore complex through which proteins are shuttled into and out of the nucleus—fuses with another gene, has been shown to result in improper histone modifications. These abnormalities alter the gene expression patterns of certain types of hematopoietic, or blood-forming, stem cells, resulting primarily in overexpression of the Hoxa7, Hoxa9,and Hoxa10 genes. NUP98 chromosomal translocations have been associated with many types of leukemia, including acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic myeloid leukemia in blast crisis (CML-bc), and myelodysplastic syndrome (MDS).

  13. Detection of structural and numerical chomosomal abnormalities by ACM-FISH analysis in sperm of oligozoospermic infertility patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, T E; Brinkworth, M H; Hill, F

    Modern reproductive technologies are enabling the treatment of infertile men with severe disturbances of spermatogenesis. The possibility of elevated frequencies of genetically and chromosomally defective sperm has become an issue of concern with the increased usage of intracytoplasmic sperm injection (ICSI), which can enable men with severely impaired sperm production to father children. Several papers have been published about aneuploidy in oligozoospermic patients, but relatively little is known about chromosome structural aberrations in the sperm of these patients. We examined sperm from infertile, oligozoospermic individuals for structural and numerical chromosomal abnormalities using a multicolor ACM FISH assay that utilizes DNAmore » probes specific for three regions of chromosome 1 to detect human sperm that carry numerical chromosomal abnormalities plus two categories of structural aberrations: duplications and deletions of 1pter and 1cen, and chromosomal breaks within the 1cen-1q12 region. There was a significant increase in the average frequencies of sperm with duplications and deletions in the infertility patients compared with the healthy concurrent controls. There was also a significantly elevated level of breaks within the 1cen-1q12 region. There was no evidence for an increase in chromosome-1 disomy, or in diploidy. Our data reveal that oligozoospermia is associated with chromosomal structural abnormalities suggesting that, oligozoospermic men carry a higher burden of transmissible, chromosome damage. The findings raise the possibility of elevated levels of transmissible chromosomal defects following ICSI treatment.« less

  14. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains

    PubMed Central

    Nichols, Bailey; Takeda, Shin’ichi; Yokota, Toshifumi

    2015-01-01

    Dystrophin-glycoprotein complex (DGC) is an important structural unit in skeletal muscle that connects the cytoskeleton (f-actin) of a muscle fiber to the extracellular matrix (ECM). Several muscular dystrophies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, congenital muscular dystrophies (dystroglycanopathies), and limb-girdle muscular dystrophies (sarcoglycanopathies), are caused by mutations in the different DGC components. Although many early studies indicated DGC plays a crucial mechanical role in maintaining the structural integrity of skeletal muscle, recent studies identified novel roles of DGC. Beyond a mechanical role, these DGC members play important signaling roles and act as a scaffold for various signaling pathways. For example, neuronal nitric oxide synthase (nNOS), which is localized at the muscle membrane by DGC members (dystrophin and syntrophins), plays an important role in the regulation of the blood flow during exercise. DGC also plays important roles at the neuromuscular junction (NMJ) and in the brain. In this review, we will focus on recently identified roles of DGC particularly in exercise and the brain. PMID:26230713

  15. Chromosomal analysis of myelodysplastic syndromes among atomic bomb survivors in Nagasaki.

    PubMed

    Horai, Makiko; Satoh, Shinya; Matsuo, Masatoshi; Iwanaga, Masako; Horio, Kensuke; Jo, Tatsuro; Takasaki, Yumi; Kawaguchi, Yasuhisa; Tsushima, Hideki; Yoshida, Shinichiro; Taguchi, Masataka; Itonaga, Hidehiro; Sawayama, Yasushi; Taguchi, Jun; Imaizumi, Yoshitaka; Hata, Tomoko; Moriuchi, Yukiyoshi; Haase, Detlef; Yoshiura, Koh-Ichiro; Miyazaki, Yasushi

    2018-02-01

    The myelodysplastic syndromes (MDS) are clonal haematopoietic disorders that develop de novo and also secondary to chemotherapy and/or radiation therapy. We previously demonstrated that the risk of MDS is increased among atomic bomb survivors with significant correlation to radiation dose; however, the clinical characteristics of these survivors have not been well analysed. In this study, we investigated chromosomal abnormalities of MDS among survivors. The frequency of abnormal karyotypes was significantly higher, with more very poor risk karyotypes, according to the revised International Prognostic Scoring System, among those exposed close to the hypocentre compared with unexposed cases. However, abnormal karyotype frequency did not reflect the prognosis of exposed cases with respect to distance from the hypocentre. In addition, there was no difference in prognosis between exposed and unexposed cases. Among proximally exposed cases (<1·5 km from the hypocentre), chromosomal translocations and inversions were more frequent, and the frequency of structural alterations in chromosomes 3, 8, and 11 was significantly increased compared with unexposed cases. These results suggest that chromosomal alterations in MDS among survivors have different features compared with those in de novo or therapy-related MDS. Detailed molecular study is warranted. © 2017 John Wiley & Sons Ltd.

  16. Myelodysplastic syndrome with trisomy 8 associated with Behçet syndrome: an immunologic link to a karyotypic abnormality.

    PubMed

    Thachil, Jecko V; Salim, Rahuman; Field, Anne; Moots, Robert; Bolton-Maggs, Paula

    2008-03-01

    Myelodysplastic syndrome (MDS) in children is often associated with chromosomal anomalies and trisomy 8 is a characteristic karyotypic feature in up to 20% of the cases. Behçet disease is a rare multisystem inflammatory disorder characterized by recurrent mouth and genital ulcers. MDS with trisomy 8 has been observed in adult patients with Behçet syndrome with some cases developing prior to the clinical manifestations of the latter. We present a female with a similar association and explain the importance of identifying the coexisting conditions. The immunological abnormalities, which may be observed in MDS and their possible mechanisms, are also discussed. (c) 2007 Wiley-Liss, Inc.

  17. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy

    PubMed Central

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively. PMID:26536238

  18. Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    2001-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis.

    PubMed

    Koren-Michowitz, Maya; Hardan, Izhar; Berghoff, Janina; Yshoev, Galina; Amariglio, Ninette; Rechavi, Gideon; Nagler, Arnon; Trakhtenbrot, Luba

    2007-10-08

    Ploidy status and chromosomal aberrations involving chromosome 13q and the immunoglobulin heavy chain locus (IgH) are important prognostic features in multiple myeloma (MM). However, conventional cytogenetic studies are often not reveling and determination of plasma cells (PC) ploidy status in MM is technically difficult. We have used a combined cell morphology and interphase FISH (I-FISH) analysis in 184 consecutive BM samples from 136 MM patients for the diagnosis of chromosome 13q deletion [del (13q)] and IgH abnormalities. We have found a high prevalence (37%) of near-tetraploid (NT) PC in the BM samples studied. NT status of PC was verified with DNA index (DI) measurements. del (13q) was found in 69% and a total absence of one IgH copy (loss of IgH) in 20% of NT samples. We have shown that the presence of del (13q) and loss of IgH can be masked in NT cases: in 12 NT samples originally identified as normal for del (13q) the abnormality was obscured in the majority of plasma cells due to the presence of NT. Similarly, loss of IgH was masked in four samples with a large population of NT cells. Moreover, in one case the appearance of a 100% tetraploidy during disease progression masked the presence of del (13q), originally present, and could therefore falsely appear as disappearance of this prognostic marker. In conclusion, we have shown that a combination of three abnormalities, i.e., del (13q), loss of IgH and NT, all of potential prognostic significance, can be overlooked unless NT is specifically searched for and ruled out. Therefore, we suggest that a search for NT should be added to the routine BM assessment in MM patients.

  20. Chromosome behaviour in Rhoeo spathacea var. variegata.

    PubMed

    Lin, Y J

    1980-01-01

    Rhoeo spathacea var. variegata is unusual in that its twelve chromosomes are arranged in a ring at meiosis. The order of the chromosomes has been established, and each chromosome arm has been designated a letter in accordance with the segmental interchange theory. Chromosomes are often irregularly orientated at metaphase I. Chromosomes at anaphase I are generally distributed equally (6-6, 58.75%) although not necessarily balanced. Due to adjacent distribution, 7-5 distribution at anaphase I was frequently observed (24.17%), and due to lagging, 6-1-5 and 5-2-5 distributions were also observed (10.83% and 3.33% respectively). Three types of abnormal distribution, 8-4, 7-1-4 and 6-2-4 were observed very infrequently (2.92% total), and their possible origins are discussed. Irregularities, such as adjacent distribution and lagging, undoubtedly reduce the fertility of the plant because of the resulting unbalanced gametes.

  1. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  2. [Clinical features of patients with Becker muscular dystrophy and deletions of the rod domain of dystrophin gene].

    PubMed

    Wang, Yanyun; Zhu, Yuling; Yang, Juan; Li, Yaqin; Sun, Jiangwen; Zhan, Yixin; Zhang, Cheng

    2018-02-10

    OBJECTIVE To explore the clinical features of patients carrying deletions of the rod domain of the dystrophin gene. METHODS Clinical data of 12 Chinese patients with Becker muscular dystrophy (BMD) and such deletions was reviewed. RESULTS Most patients complained of muscle weakness of lower limbs. Two patients had muscle cramps, one had increased creatine kinase (CK) level, and one had dilated cardiomyopathy. CONCLUSION Compared with DMD, the clinical features of BMD are much more variable, particularly for those carrying deletions of the rod domain of the dystrophin gene. Muscular weakness may not be the sole complaint of BMD. The diagnosis of BMD cannot be excluded by moderately elevated CK. For male patients with dilated cardiomyopathy, the possibility of BMD should be considered.

  3. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    PubMed

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  4. Chromosomal Abnormalities Are Major Prognostic Factors in Elderly Patients With Multiple Myeloma: The Intergroupe Francophone du Myélome Experience

    PubMed Central

    Avet-Loiseau, Hervé; Hulin, Cyrille; Campion, Loic; Rodon, Philippe; Marit, Gerald; Attal, Michel; Royer, Bruno; Dib, Mamoun; Voillat, Laurent; Bouscary, Didier; Caillot, Denis; Wetterwald, Marc; Pegourie, Brigitte; Lepeu, Gerard; Corront, Bernadette; Karlin, Lionel; Stoppa, Anne-Marie; Fuzibet, Jean-Gabriel; Delbrel, Xavier; Guilhot, Francois; Kolb, Brigitte; Decaux, Olivier; Lamy, Thierry; Garderet, Laurent; Allangba, Olivier; Lifermann, Francois; Anglaret, Bruno; Moreau, Philippe; Harousseau, Jean-Luc; Facon, Thierry

    2013-01-01

    Purpose Chromosomal abnormalities, especially t(4;14) and del(17p), are major prognostic factors in patients with multiple myeloma (MM). However, this has been especially demonstrated in patients age < 66 years treated with intensive approaches. The goal of this study was to address this issue in elderly patients treated with conventional-dose chemotherapy. Patients and Methods To answer this important question, we retrospectively analyzed a series of 1,890 patients (median age, 72 years; range, 66 to 94 years), including 1,095 with updated data on treatment modalities and survival. Results This large study first showed that the incidence of t(4;14) was not uniform over age, with a marked decrease in the oldest patients. Second, it showed that both t(4;14) and del(17p) retained their prognostic value in elderly patients treated with melphalan and prednisone–based chemotherapy. Conclusion t(4;14) and del(17p) are major prognostic factors in elderly patients with MM, both for progression-free and overall survival, indicating that these two abnormalities should be investigated at diagnosis of MM, regardless of age. PMID:23796999

  5. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species

    PubMed Central

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-01-01

    Abstract Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world’s sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05–79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep’s recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on

  6. Rapid Y degeneration and dosage compensation in plant sex chromosomes

    PubMed Central

    Papadopulos, Alexander S. T.; Chester, Michael; Ridout, Kate; Filatov, Dmitry A.

    2015-01-01

    The nonrecombining regions of animal Y chromosomes are known to undergo genetic degeneration, but previous work has failed to reveal large-scale gene degeneration on plant Y chromosomes. Here, we uncover rapid and extensive degeneration of Y-linked genes in a plant species, Silene latifolia, that evolved sex chromosomes de novo in the last 10 million years. Previous transcriptome-based studies of this species missed unexpressed, degenerate Y-linked genes. To identify sex-linked genes, regardless of their expression, we sequenced male and female genomes of S. latifolia and integrated the genomic contigs with a high-density genetic map. This revealed that 45% of Y-linked genes are not expressed, and 23% are interrupted by premature stop codons. This contrasts with X-linked genes, in which only 1.3% of genes contained stop codons and 4.3% of genes were not expressed in males. Loss of functional Y-linked genes is partly compensated for by gene-specific up-regulation of X-linked genes. Our results demonstrate that the rate of genetic degeneration of Y-linked genes in S. latifolia is as fast as in animals, and that the evolutionary trajectories of sex chromosomes are similar in the two kingdoms. PMID:26438872

  7. Dystrophin Is Required for the Normal Function of the Cardio-Protective KATP Channel in Cardiomyocytes

    PubMed Central

    Graciotti, Laura; Becker, Jodi; Granata, Anna Luisa; Procopio, Antonio Domenico; Tessarollo, Lino; Fulgenzi, Gianluca

    2011-01-01

    Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients. PMID:22066028

  8. Dosage Compensation of the Sex Chromosomes

    PubMed Central

    Disteche, Christine M.

    2013-01-01

    Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302

  9. Fetal microchimeric cells in a fetus-treats-its-mother paradigm do not contribute to dystrophin production in serially parous mdx females.

    PubMed

    Seppanen, Elke Jane; Hodgson, Samantha Susan; Khosrotehrani, Kiarash; Bou-Gharios, George; Fisk, Nicholas M

    2012-10-10

    Throughout every pregnancy, genetically distinct fetal microchimeric stem/progenitor cells (FMCs) engraft in the mother, persist long after delivery, and may home to damaged maternal tissues. Phenotypically normal fetal lymphoid progenitors have been described to develop in immunodeficient mothers in a fetus-treats-its-mother paradigm. Since stem cells contribute to muscle repair, we assessed this paradigm in the mdx mouse model of Duchenne muscular dystrophy. mdx females were bred serially to either ROSAeGFP males or mdx males to obtain postpartum microchimeras that received either wild-type FMCs or dystrophin-deficient FMCs through serial gestations. To enhance regeneration, notexin was injected into the tibialis anterior of postpartum mice. FMCs were detected by qPCR at a higher frequency in injected compared to noninjected side muscle (P=0.02). However, the number of dystrophin-positive fibers was similar in mothers delivering wild-type compared to mdx pups. In addition, there was no correlation between FMC detection and percentage dystrophin, and no GFP+ve FMCs were identified that expressed dystrophin. In 10/11 animals, GFP+ve FMCs were detected by immunohistochemistry, of which 60% expressed CD45 with 96% outside the basal lamina defining myofiber contours. Finally we confirmed lack of FMC contribution to statellite cells in postpartum mdx females mated with Myf5-LacZ males. We conclude that the FMC contribution to regenerating muscles is insufficient to have a functional impact.

  10. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses.

    PubMed

    Yan, Liying; Huang, Lei; Xu, Liya; Huang, Jin; Ma, Fei; Zhu, Xiaohui; Tang, Yaqiong; Liu, Mingshan; Lian, Ying; Liu, Ping; Li, Rong; Lu, Sijia; Tang, Fuchou; Qiao, Jie; Xie, X Sunney

    2015-12-29

    In vitro fertilization (IVF), preimplantation genetic diagnosis (PGD), and preimplantation genetic screening (PGS) help patients to select embryos free of monogenic diseases and aneuploidy (chromosome abnormality). Next-generation sequencing (NGS) methods, while experiencing a rapid cost reduction, have improved the precision of PGD/PGS. However, the precision of PGD has been limited by the false-positive and false-negative single-nucleotide variations (SNVs), which are not acceptable in IVF and can be circumvented by linkage analyses, such as short tandem repeats or karyomapping. It is noteworthy that existing methods of detecting SNV/copy number variation (CNV) and linkage analysis often require separate procedures for the same embryo. Here we report an NGS-based PGD/PGS procedure that can simultaneously detect a single-gene disorder and aneuploidy and is capable of linkage analysis in a cost-effective way. This method, called "mutated allele revealed by sequencing with aneuploidy and linkage analyses" (MARSALA), involves multiple annealing and looping-based amplification cycles (MALBAC) for single-cell whole-genome amplification. Aneuploidy is determined by CNVs, whereas SNVs associated with the monogenic diseases are detected by PCR amplification of the MALBAC product. The false-positive and -negative SNVs are avoided by an NGS-based linkage analysis. Two healthy babies, free of the monogenic diseases of their parents, were born after such embryo selection. The monogenic diseases originated from a single base mutation on the autosome and the X-chromosome of the disease-carrying father and mother, respectively.

  11. A nucleolar protein RRS1 contributes to chromosome congression.

    PubMed

    Gambe, Arni E; Matsunaga, Sachihiro; Takata, Hideaki; Ono-Maniwa, Rika; Baba, Akiko; Uchiyama, Susumu; Fukui, Kiichi

    2009-06-18

    We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression.

  12. Sex-linked recessive

    MedlinePlus

    X-linked recessive diseases most often occur in males. Males have only one X chromosome. A single recessive ... half of the XY gene pair in the male. However, the Y chromosome doesn't contain most ...

  13. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria

    PubMed Central

    Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.

    2015-01-01

    X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817

  14. DOT1L regulates dystrophin expression and is critical for cardiac function

    PubMed Central

    Nguyen, Anh T.; Xiao, Bin; Neppl, Ronald L.; Kallin, Eric M.; Li, Juan; Chen, Taiping; Wang, Da-Zhi; Xiao, Xiao; Zhang, Yi

    2011-01-01

    Histone methylation plays an important role in regulating gene expression. One such methylation occurs at Lys 79 of histone H3 (H3K79) and is catalyzed by the yeast DOT1 (disruptor of telomeric silencing) and its mammalian homolog, DOT1L. Previous studies have demonstrated that germline disruption of Dot1L in mice resulted in embryonic lethality. Here we report that cardiac-specific knockout of Dot1L results in increased mortality rate with chamber dilation, increased cardiomyocyte cell death, systolic dysfunction, and conduction abnormalities. These phenotypes mimic those exhibited in patients with dilated cardiomyopathy (DCM). Mechanistic studies reveal that DOT1L performs its function in cardiomyocytes through regulating Dystrophin (Dmd) transcription and, consequently, stability of the Dystrophin–glycoprotein complex important for cardiomyocyte viability. Importantly, expression of a miniDmd can largely rescue the DCM phenotypes, indicating that Dmd is a major target mediating DOT1L function in cardiomyocytes. Interestingly, analysis of available gene expression data sets indicates that DOT1L is down-regulated in idiopathic DCM patient samples compared with normal controls. Therefore, our study not only establishes a critical role for DOT1L-mediated H3K79 methylation in cardiomyocyte function, but also reveals the mechanism underlying the role of DOT1L in DCM. In addition, our study may open new avenues for the diagnosis and treatment of human heart disease. PMID:21289070

  15. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing.

    PubMed

    Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali

    2016-04-01

    To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  16. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    PubMed Central

    Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis. PMID:24455347

  17. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    PubMed

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  18. Amplifications of chromosomal region 20q13 as a prognostic indicator in breast cancer

    DOEpatents

    Gray, Joe W.; Collins, Colin; Pinkel, Daniel; Kallioniemi, Olli-Pekka; Tanner, Minna M.

    1998-01-01

    The present invention relates to in situ hybridization methods for the identification of new chromosomal abnormalities associated with various diseases. In particular, it provides probes which are specific to a region of amplification in chromosome 20.

  19. Becker muscular dystrophy-like myopathy regarded as so-called "fatty muscular dystrophy" in a pig: a case report and its diagnostic method.

    PubMed

    Horiuchi, Noriyuki; Aihara, Naoyuki; Mizutani, Hiroshi; Kousaka, Shinichi; Nagafuchi, Tsuneyuki; Ochiai, Mariko; Ochiai, Kazuhiko; Kobayashi, Yoshiyasu; Furuoka, Hidefumi; Asai, Tetsuo; Oishi, Koji

    2014-03-01

    We describe a case of human Becker muscular dystrophy (BMD)-like myopathy that was characterized by the declined stainability of dystrophin at sarcolemma in a pig and the immunostaining for dystrophin on the formalin-fixed, paraffin-embedded (FFPE) tissue. The present case was found in a meat inspection center. The pig looked appeared healthy at the ante-mortem inspection. Muscular abnormalities were detected after carcass dressing as pale, discolored skeletal muscles with prominent fat infiltrations and considered so-called "fatty muscular dystrophy". Microscopic examination revealed following characteristics: diffused fat infiltration into the skeletal muscle and degeneration and regeneration of the remaining skeletal muscle fibers. Any lesions that were suspected of neurogenic atrophy, traumatic muscular degeneration, glycogen storage disease or other porcine muscular disorders were not observed. The immunostaining for dystrophin was conducted and confirmed to be applicable on FFPE porcine muscular tissues and revealed diminished stainability of dystrophin at the sarcolemma in the present case. Based on the histological observations and immunostaining results, the present case was diagnosed with BMD-like myopathy associated with dystrophin abnormality in a pig. Although the genetic properties were not clear, the present BMD-like myopathy implied the occurrence of dystrophinopathy in pigs. To the best of our knowledge, this is the first report of a natural case of myopathy associated with dystrophin abnormalities in a pig.

  20. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement

    PubMed Central

    Ohno, Yuko; Ogiyama, Yuki; Kubota, Yoshino; Kubo, Takuya; Ishii, Kojiro

    2016-01-01

    The centromeres of many eukaryotic chromosomes are established epigenetically on potentially variable tandem repeats; hence, these chromosomes are at risk of being acentric. We reported previously that artificially created acentric chromosomes in the fission yeast Schizosaccharomyces pombe can be rescued by end-to-end fusion with functional chromosomes. Here, we show that most acentric/functional chromosome fusion events in S. pombe cells harbouring an acentric chromosome I differed from the non-homologous end-joining-mediated rearrangements that result in deleterious dicentric fusions in normal cells, and were elicited by a previously unidentified homologous recombination (HR) event between chromosome end-associated sequences. The subtelomere repeats associated with the non-fusogenic ends were also destabilized in the surviving cells, suggesting a causal link between general subtelomere destabilization and acentric/functional chromosome fusion. A mutational analysis indicated that a non-canonical HR pathway was involved in the rearrangement. These findings are indicative of a latent mechanism that conditionally induces general subtelomere instability, presumably in the face of accidental centromere loss events, resulting in rescue of the fatal acentric chromosomes by interchromosomal HR. PMID:26433224

  1. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed Central

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-01-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype. Images Figure 2 Figure 3 PMID:1384329

  2. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    PubMed

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  3. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.

    PubMed

    Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu

    2015-01-13

    Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy

    PubMed Central

    Allen, David G.; Whitehead, Nicholas P.; Froehner, Stanley C.

    2015-01-01

    Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca2+-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca2+ entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145

  5. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice

    PubMed Central

    Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto

    1999-01-01

    Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457

  6. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  7. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  8. Natural selection reduced diversity on human y chromosomes.

    PubMed

    Wilson Sayres, Melissa A; Lohmueller, Kirk E; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area.

  9. Natural Selection Reduced Diversity on Human Y Chromosomes

    PubMed Central

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  10. Genetic analysis in a variant of limb girdle muscular dystrophy in an inbred aboriginal community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, C.R.; Nylen, E.G.; Halliday, W.

    1994-09-01

    Limb girdle muscular dystrophy (LGMD) is a heterogeneous group of disorders with variable inheritance patterns, age-of-onset, rates of progression and patterns of muscle involvement. To date, 4 different chromosomal assignments have been described; LGMD1 to chromosome 5q, LGMD2 to chromosome 15q, SCARMD to chromosome 13q and a fourth locus on chromosome 2p. Because of this genetic heterogeneity, only large unambiguous multiplex families which are clearly linked to a particular locus can be utilized in a genetic analysis. We now report preliminary findings in a large highly inbred aboriginal kindred with 8 probands (5 females, 3 males) from 6 nuclear familiesmore » with a progressive LMD. All presented in their mid- to late teens with gait disturbances. At time of presentation all except one had both proximal as well as distal muscle involvement, facial muscle sparing, CK levels 25 to 100 times normal (3762-20,400 U/l), dystrophic muscle biopsies and normal dystrophin and dystrophin-associated glycoprotein expression. We have studied the segregation of highly informative microsatellite markers for FBN1, D15S132 and the gene for thrombospondin on chromosome 15q and D2S134, D2S136, D2S147, and D2S166 on chromosome 2. Linkage to chromosome 15q has been excluded and two-point lod scores are not significant as yet to either confirm or exclude linkage to chromosome 2p. However, visual inspection reveals that affected individuals are not consistently homozygous for the chromosome 2p markers as would be predicted in such an inbred population. Clinically, SCARMD is unlikely and if the locus on chromosomes 2p and 5q can also be excluded, a genome-wide search using evenly spaced microsatellites will be initiated. A second geographically distinct aboriginal kindred with a similar clinical phenotype has now also been identified.« less

  11. An Ethyl-Nitrosourea-Induced Point Mutation in Phex Causes Exon Skipping, X-Linked Hypophosphatemia, and Rickets

    PubMed Central

    Carpinelli, Marina R.; Wicks, Ian P.; Sims, Natalie A.; O’Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J.; Bahlo, Melanie; Alexander, Warren S.; Hilton, Douglas J.

    2002-01-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G1) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease. PMID:12414538

  12. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets.

    PubMed

    Carpinelli, Marina R; Wicks, Ian P; Sims, Natalie A; O'Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J; Bahlo, Melanie; Alexander, Warren S; Hilton, Douglas J

    2002-11-01

    We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.

  13. The association between sperm sex chromosome disomy and semen concentration, motility and morphology.

    PubMed

    McAuliffe, M E; Williams, P L; Korrick, S A; Dadd, R; Perry, M J

    2012-10-01

    Is there an association between sex chromosome disomy and semen concentration, motility and morphology? Higher rates of XY disomy were associated with a significant increase in abnormal semen parameters, particularly low semen concentration. Although some prior studies have shown associations between sperm chromosomal abnormalities and reduced semen quality, results of others are inconsistent. Definitive findings have been limited by small sample sizes and lack of adjustment for potential confounders. Cross-sectional study of men from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. With a sample of 192 men, multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei. Sperm concentration and motility were measured using computer-assisted sperm analysis; morphology was scored using strict criteria. Logistic regression models were used to evaluate the odds of abnormal semen parameters [as defined by World Health Organization (WHO)] as a function of sperm sex chromosome disomy. The median percentage disomy was 0.3 for XX and YY, 0.9 for XY and 1.6 for total sex chromosome disomy. Men who had abnormalities in all three semen parameters had significantly higher median rates of XX, XY and total sex chromosome disomy than controls with normal semen parameters (0.43 versus 0.25%, 1.36 versus 0.87% and 2.37 versus 1.52%, respectively, all P< 0.05). In logistic regression models, each 0.1% increase in XY disomy was associated with a 7% increase (odds ratio: 1.07, 95% confidence interval: 1.02-1.13) in the odds of having below normal semen concentration (<20 million/ml) after adjustment for age, smoking status and abstinence time. Increases in XX, YY and total sex chromosome disomy were not associated with an increase in the odds of a man having abnormal semen parameters. In addition, autosomal chromosome disomy

  14. The association between sperm sex chromosome disomy and semen concentration, motility and morphology

    PubMed Central

    McAuliffe, M.E.; Williams, P.L.; Korrick, S.A.; Dadd, R.; Perry, M.J.

    2012-01-01

    STUDY QUESTION Is there an association between sex chromosome disomy and semen concentration, motility and morphology? SUMMARY ANSWER Higher rates of XY disomy were associated with a significant increase in abnormal semen parameters, particularly low semen concentration. WHAT IS KNOWN ALREADY Although some prior studies have shown associations between sperm chromosomal abnormalities and reduced semen quality, results of others are inconsistent. Definitive findings have been limited by small sample sizes and lack of adjustment for potential confounders. STUDY DESIGN, SIZE AND DURATION Cross-sectional study of men from subfertile couples presenting at the Massachusetts General Hospital Fertility Clinic from January 2000 to May 2003. PARTICIPANTS/MATERIALS, SETTING, METHODS With a sample of 192 men, multiprobe fluorescence in situ hybridization for chromosomes X, Y and 18 was used to determine XX, YY, XY and total sex chromosome disomy in sperm nuclei. Sperm concentration and motility were measured using computer-assisted sperm analysis; morphology was scored using strict criteria. Logistic regression models were used to evaluate the odds of abnormal semen parameters [as defined by World Health Organization (WHO)] as a function of sperm sex chromosome disomy. MAIN RESULTS AND THE ROLE OF CHANCE The median percentage disomy was 0.3 for XX and YY, 0.9 for XY and 1.6 for total sex chromosome disomy. Men who had abnormalities in all three semen parameters had significantly higher median rates of XX, XY and total sex chromosome disomy than controls with normal semen parameters (0.43 versus 0.25%, 1.36 versus 0.87% and 2.37 versus 1.52%, respectively, all P< 0.05). In logistic regression models, each 0.1% increase in XY disomy was associated with a 7% increase (odds ratio: 1.07, 95% confidence interval: 1.02–1.13) in the odds of having below normal semen concentration (<20 million/ml) after adjustment for age, smoking status and abstinence time. Increases in XX, YY and

  15. TMAP/CKAP2 is essential for proper chromosome segregation.

    PubMed

    Hong, Kyung Uk; Kim, Eunhee; Bae, Chang-Dae; Park, Joobae

    2009-01-15

    Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton associated protein 2 (CKAP2), is a novel mitotic spindle-associated protein which is frequently up-regulated in various malignances. However, its cellular functions remain unknown. Previous reports suggested that the cellular functions of TMAP/CKAP2 pertain to regulation of the dynamics and assembly of the mitotic spindle. To investigate its role in mitosis, we studied the effects of siRNA-mediated depletion of TMAP/CKAP2 in cultured mammalian cells. Unexpectedly, TMAP/CKAP2 knockdown did not result in significant alterations of the spindle apparatus. However, TMAP/CKAP2-depleted cells often exhibited abnormal nuclear morphologies, which were accompanied by abnormal organization of the nuclear lamina, and chromatin bridge formation between two daughter cell nuclei. Time lapse video microscopy revealed that the changes in nuclear morphology and chromatin bridge formations observed in TMAP/CKAP2-depleted cells are the result of defects in chromosome segregation. Consistent with this, the spindle checkpoint activity was significantly reduced in TMAP/CKAP2-depleted cells. Moreover, chromosome missegregation induced by depletion of TMAP/CKAP2 ultimately resulted in reduced cell viability and increased chromosomal instability. Our present findings demonstrate that TMAP/CKAP2 is essential for proper chromosome segregation and for maintaining genomic stability.

  16. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression.

    PubMed

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-11-01

    Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male-specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y-chromosomal short tandem repeats (Y-STRs) loci. The collected biologic samples from 271 offenders with impulsive aggressive behavior and 492 healthy individuals without impulsive aggressive behavior were amplified by PowerPlex R Y23 PCR System and the resultant products were separated by electrophoresis and further genotyped. Then, comparisons in allele and haplotype frequencies of the selected 22 Y-STRs were made in the two groups. Our results showed that there were significant differences in allele frequencies at DYS448 and DYS456 between offenders and controls ( p  < .05). Univariate analysis further revealed significant frequency differences for alleles 18 and 22 at DYS448 (0.18 vs 0.27, compared to the controls, p  = .003, OR=0.57,95% CI=0.39-0.82; 0.03 vs 0.01, compared to the controls, p  = .003, OR=7.45, 95% CI=1.57-35.35, respectively) and for allele 17 at DYS456 (0.07 vs 0.14, compared to the controls, p  = .006, OR=0.48, 95% CI =0.28-0.82) between two groups. Interestingly, the frequency of haploid haplotype 22-15 on the DYS448-DYS456 (DYS448-DYS456-22-15) was significantly higher in offenders than in controls (0.033 vs 0.004, compared to the control, p  = .001, OR = 8.42, 95%CI =1.81-39.24). Moreover, there were no significant differences in allele frequencies of other Y-STRs loci between two groups. Furthermore, the unconditional logistic regression analysis confirmed that alleles 18 and 22 at DYS448 and allele 17 at DYS456 are associated with male impulsive aggression. However, the DYS448-DYS456-22-15 is less related to impulsive aggression. Our results suggest a link between Y-chromosomal allele types and male

  17. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    PubMed Central

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  18. Chromosome stickiness impairs meiosis and influences reproductive success in Panicum maximum (Poaceae) hybrid plants.

    PubMed

    Pessim, C; Pagliarini, M S; Silva, N; Jank, L

    2015-04-28

    Chromosome stickiness has been studied in several species of higher plants and is characterized by sticky clumps of chromatin resulting in sterility. Chromosome stickiness was recorded in Panicum maximum hybrid plants that were cultivated in the field. In the meiocytes affected, chromosomes clumped into amorphous masses that did not orient themselves on the equatorial plate, and anaphase I disjunction failed to occur. After a normal cytokinesis, the masses of chromatin were divided between both daughter cells. Metaphase and anaphase of the second division also did not occur, and after the second cytokinesis, polyads were formed. This abnormality arose spontaneously. Abnormalities that cause male sterility are an important tool for obtaining hybrid seeds in plant breeding. This is the first report of an abnormality affecting pollen viability in P. maximum. This finding can open a new opportunity in the breeding program of this species that is devoted to hybridization where manual cross-pollination is difficult and time consuming.

  19. Birth and death of genes linked to chromosomal inversion

    PubMed Central

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  20. Partial trisomy of chromosome 22 resulting from a supernumerary marker chromosome 22 in a child with features of cat eye syndrome.

    PubMed

    Bélien, Valérie; Gérard-Blanluet, Marion; Serero, Stéphane; Le Dû, Nathalie; Baumann, Clarisse; Jacquemont, Marie-Line; Dupont, Céline; Krabchi, Kada; Drunat, Séverine; Elbez, Annie; Janaud, Jean-Claude; Benzacken, Brigitte; Verloes, Alain; Tabet, Anne-Claude; Aboura, Azzedine

    2008-07-15

    Small supernumerary marker chromosomes are present in about 0.05% of the human population. In approximately 28% of persons with these markers (excluding the approximately 60% derived from one of the acrocentric chromosomes), an abnormal phenotype is observed. We report on a 3-month-old girl with intrauterine growth retardation, craniofacial features, hypotonia, partial coloboma of iris and total anomalous pulmonary venous return. Cytogenetic analysis showed the presence of a supernumerary marker chromosome, identified by fluorescence in situ hybridization as part of chromosome 22, and conferring a proximal partial trisomy 22q22.21, not encompassing the DiGeorge critical region (RP11-154H4 + , TBX1-). This observation adds new information relevant to cat eye syndrome and partial trisomy of 22q. 2008 Wiley-Liss, Inc.

  1. Wolfram syndrome maps to distal human chromosome 4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polymeropoulos, M.H.; Swift, R.; Swift, M.

    Wolfram syndrome (MIM 222300) is an autosomal recessive disorder defined by the occurrence of diabetes mellitus and progressive bilateral optic atrophy. Wolfram syndrome homozygotes develop widespread nervous system abnormalities; in particular, they exhibit severe behavioral difficulties that often lead to suicide attempts or psychiatric hospitalizations. The Wolfram syndrome gene also predisposes heterozygous carriers to psychiatric disorders. Since these heterozygotes are common in the general population, the Wolfram syndrome gene may contribute significantly to the overall burden of psychiatric illness. Based on a linkage analysis of 11 families segregating for this syndrome, using microsatellite repeat polymorphisms throughout the human genome, wemore » found the Wolfram syndrome gene to be linked to markers on the short arm of human chromosome 4, with Zmax=6.46 at {theta}=0.02 for marker D4S431.« less

  2. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study.

    PubMed

    Wang, Yan; Cao, Li; Liang, Dong; Meng, Lulu; Wu, Yun; Qiao, Fengchang; Ji, Xiuqing; Luo, Chunyu; Zhang, Jingjing; Xu, Tianhui; Yu, Bin; Wang, Leilei; Wang, Ting; Pan, Qiong; Ma, Dingyuan; Hu, Ping; Xu, Zhengfeng

    2018-02-01

    Currently, chromosomal microarray analysis is considered the first-tier test in pediatric care and prenatal diagnosis. However, the diagnostic yield of chromosomal microarray analysis for prenatal diagnosis of congenital heart disease has not been evaluated based on a large cohort. Our aim was to evaluate the clinical utility of chromosomal microarray as the first-tier test for chromosomal abnormalities in fetuses with congenital heart disease. In this prospective study, 602 prenatal cases of congenital heart disease were investigated using single nucleotide polymorphism array over a 5-year period. Overall, pathogenic chromosomal abnormalities were identified in 125 (20.8%) of 602 prenatal cases of congenital heart disease, with 52.0% of them being numerical chromosomal abnormalities. The detection rates of likely pathogenic copy number variations and variants of uncertain significance were 1.3% and 6.0%, respectively. The detection rate of pathogenic chromosomal abnormalities in congenital heart disease plus additional structural anomalies (48.9% vs 14.3%, P < .0001) or intrauterine growth retardation group (50.0% vs 14.3%, P = .044) was significantly higher than that in isolated congenital heart disease group. Additionally, the detection rate in congenital heart disease with additional structural anomalies group was significantly higher than that in congenital heart disease with soft markers group (48.9% vs 19.8%, P < .0001). No significant difference was observed in the detection rates between congenital heart disease with additional structural anomalies and congenital heart disease with intrauterine growth retardation groups (48.9% vs 50.0%), congenital heart disease with soft markers and congenital heart disease with intrauterine growth retardation groups (19.8% vs 50.0%), or congenital heart disease with soft markers and isolated congenital heart disease groups (19.8% vs 14.3%). The detection rate in fetuses with congenital heart disease plus mild

  3. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer.

    PubMed

    Chaligné, Ronan; Popova, Tatiana; Mendoza-Parra, Marco-Antonio; Saleem, Mohamed-Ashick M; Gentien, David; Ban, Kristen; Piolot, Tristan; Leroy, Olivier; Mariani, Odette; Gronemeyer, Hinrich; Vincent-Salomon, Anne; Stern, Marc-Henri; Heard, Edith

    2015-04-01

    Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer. © 2015 Chaligné et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Twenty years of endocrinologic treatment in transsexualism: analyzing the role of chromosomal analysis and hormonal profiling in the diagnostic work-up.

    PubMed

    Auer, Matthias K; Fuss, Johannes; Stalla, Guenter K; Athanasoulia, Anastasia P

    2013-10-01

    To demonstrate that adequate pubertal history, physical examination, and a basal hormone profile is sufficient to exclude disorders of sexual development (DSD) in adult transsexuals and that chromosomal analysis could be omitted in cases of unremarkable hormonal profile and pubertal history. Retrospective chart analysis. Endocrine outpatient clinic of a psychiatric research institute. A total of 475 subjects (302 male-to-female transsexuals [MtF], 173 female-to-male transsexuals [FtM]). Data from 323 (192 MtF/131 FtM) were collected for hormonal and pubertal abnormalities. Information regarding chromosomal analysis was available for 270 patients (165 MtF/105 FtM). None. Pubertal abnormalities, menstrual cycle, and hormonal irregularities in relation to chromosomal analysis conducted by karyotype or hair root analysis. In the MtF group, 5.2% of the patients reported pubertal irregularities and 5.7% hormonal abnormalities, and in the FtM group 3.8% and 19.1%, respectively. Overall chromosomal abnormality in both groups was 1.5% (2.9% in the FtM and 0.6% in the MtF group). The aneuploidies found included one gonosomal aneuploidy (45,X[10]/47,XXX[6]/46,XX[98]), two Robertsonian translocations (45,XXder(14;22)(q10;q10)), and one Klinefelter syndrome (47,XXY) that had already been diagnosed in puberty. Our data show a low incidence of chromosomal abnormalities and thus question routine chromosomal analysis at the baseline evaluation of transsexualism, and suggest that it be considered only in cases of abnormal history or hormonal examination. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy.

    PubMed

    Barbash, I M; Cecchini, S; Faranesh, A Z; Virag, T; Li, L; Yang, Y; Hoyt, R F; Kornegay, J N; Bogan, J R; Garcia, L; Lederman, R J; Kotin, R M

    2013-03-01

    Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were administered with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with magnetic resonance imaging (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a 3-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.

  6. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

    USDA-ARS?s Scientific Manuscript database

    This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome ...

  7. Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat

    USDA-ARS?s Scientific Manuscript database

    The widely effective and linked rust resistance genes Yr47 and Lr52 were previously mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population t...

  8. Human gastrin-releasing peptide gene is located on chromosome 18.

    PubMed

    Naylor, S L; Sakaguchi, A Y; Spindel, E; Chin, W W

    1987-01-01

    Gastrin-releasing peptide (GRP), a bombesin-like peptide, increases plasma levels of gastrin, pancreatic polypeptide, glucagon, gastric inhibitory peptide, and insulin. GRP is produced in large quantities by small-cell lung cancer and acts as a growth factor for these cells. To determine if chromosomal changes in small-cell lung cancer are related to the expression of GRP, we chromosomally mapped the gene using human-mouse somatic cell hybrids. Twenty hybrids, characterized for human chromosomes, were analyzed by Southern filter hybridization of DNA digested with EcoRI. Human DNA cut with EcoRI yields a major band of 6.8 kb and a minor band of 11.3 kb. The 6.8 kb band segregated concordantly with chromosome 18 and the marker peptidase A. The chromosome 3 abnormalities seen in small-cell lung cancer do not correlate with the chromosomal location of GRP, suggesting that the elevated expression of this gene may be due to mechanisms other than chromosomal rearrangement.

  9. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.

    PubMed

    Montiel, Eugenia E; Badenhorst, Daleen; Lee, Ling S; Literman, Robert; Trifonov, Vladimir; Valenzuela, Nicole

    2016-01-01

    Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes. © 2016 S. Karger AG, Basel.

  10. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization.

    PubMed

    Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.

  11. Reversal of an ancient sex chromosome to an autosome in Drosophila.

    PubMed

    Vicoso, Beatriz; Bachtrog, Doris

    2013-07-18

    Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.

  12. Affective traits of psychopathy are linked to white-matter abnormalities in impulsive male offenders.

    PubMed

    Vermeij, Anouk; Kempes, Maaike M; Cima, Maaike J; Mars, Rogier B; Brazil, Inti A

    2018-04-26

    Psychopathy is a personality disorder typified by lack of empathy and impulsive antisocial behavior. Psychopathic traits may partly relate to disrupted connections between brain regions. The aim of the present study was to link abnormalities in microstructural integrity of white-matter tracts to the severity of different psychopathic traits in 15 male offenders with impulse control problems and 10 without impulse control problems. Psychopathic traits were assessed using the Psychopathy Checklist-revised (PCL-R). Diffusion-weighted MRI was used to examine white-matter tracts. Fractional anisotropy (FA), an index of white-matter integrity, was calculated for each voxel. Clusters of voxels showing a significant relationship with psychopathy severity were submitted to probabilistic tractography. No significant correlations between psychopathy severity and FA were present in the whole group of impulsive and nonimpulsive offenders. In impulsive offenders, interpersonal-affective traits (PCL-R Factor 1) were negatively correlated with FA in the anterior and posterior temporal lobe and orbitofrontal area. Further analyses indicated that elevated affective traits (PCL-R Facet 2) were specifically related to reduced FA in the right temporal lobe. Our findings suggest that white-matter abnormalities in temporal and frontotemporal tracts may be linked to the interpersonal-affective deficits of psychopathy in offenders with relatively severe impulse control problems. Our study offers novel insights into the relationships between the four facets of psychopathy and disrupted structural connectivity, and may provide new leads for further characterization of different subtypes of antisocial populations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L.

    PubMed

    Kumar, Sanjay

    2010-01-01

    The widespread use of the herbicides for weed control and crop productivity in modern agriculture exert a threat on economically important crops by way of cytological damage to the cells of the crop plant or side effects, if any, induced by the herbicides. In the present communication, author describes the effects of 2,4-D and Isoproturon on chromosomal morphology in mitotic cells of Triticum aestivum L. The wheat seedlings were treated with range of concentrations (50-1200 ppm) of 2,4-D and Isoproturon for 72 h at room temperature. In the mitotic cells, twelve distinct chromosome structure abnormalities were observed over control. The observed irregularities were stickiness, c-mitosis, multipolar chromosomes with or without spindles, fragments and bridges, lagging chromosomes, unequal distribution of chromosomes, over contracted chromosomes, unoriented chromosomes, star shaped arrangement of the chromosomes, increased cell size and failure of cell plate formation. The abnormalities like stickiness, fragments, bridges, lagging or dysjunction, unequal distribution and over contracted chromosomes meet frequently.

  14. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  15. The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment.

    PubMed

    Chang, Natasha C; Sincennes, Marie-Claude; Chevalier, Fabien P; Brun, Caroline E; Lacaria, Melanie; Segalés, Jessica; Muñoz-Cánoves, Pura; Ming, Hong; Rudnicki, Michael A

    2018-05-03

    Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through β1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/β1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    PubMed

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  17. Chromosomal abnormalities: subgroup analysis by maternal age and perinatal features in zhejiang province of China, 2011-2015.

    PubMed

    Zhang, Xiao-Hui; Qiu, Li-Qian; Ye, Ying-Hui; Xu, Jian

    2017-05-12

    Recently, the prevalence of chromosomal abnormalities (CA) increased as the increasing proportion of mothers with advanced age. We aimed to explore the prevalence of CA in relation to maternal age and perinatal features. A retrospective study was performed based on provincial birth defects surveillance data. The relative risk (RR) and 95% confidence interval (CI) were used to calculate maternal age-specific rates of CA. Socio-demographic characteristics of mothers and perinatal features were listed. The total prevalence of CA was 6.38 per 10,000 births, which increased per 10,000 births linearly from 4.02 in 2011 to 9.13 in 2015 (x 2 line-trend =52.69, p < 0.001). During this period, the prevalence for CA per 10,000 births among women over 35 years old increased from 15.34 in 2011 to 33.82 in 2015 (x 2 line-trend =115121.6, p < 0.001). The RR for overall CA, trisomy 21(T21), trisomy 18(T18) and others in mothers 35 years or older were 6.64 (95% CI 5.55 ~ 7.93), 6.83 (95% CI 5.63 ~ 8.30), 4.06 (95% CI 2.09 ~ 7.90) and 7.54 (95% CI 4.02 ~ 14.11) respectively in comparison to mothers aged 25-29 years old. The stillbirths rate for total CA was 76.45%. T21 and T18 were strongly associated with multiple anomalies, especially congenital heart abnormalities. The prevalence of CA increased as maternal age increased. Cases with CA were associated with other congenital defects and high mortality risk.

  18. X-linked cardiomyopathy is heterogeneous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, M.J.; Sillence, D.O.; Mulley, J.C.

    Two major loci of X-linked cardiomyopathy have been mapped by linkage analysis. The gene for X-linked dilated cardiomyopathy (XLCM) is mapped to the dystrophin locus at Xp21, while Barth syndrome has been localised to distal Xq28. XLCM usually presents in juvenile males with no skeletal disease but decreased dystrophin in cardiac muscle. Barth syndrome most often presents in infants and is characterized by skeletal myopathy, short stature and neutropenia in association with cardiomyopathy of variable severity. Prior to carrier or prenatal diagnosis in a family, delineation of the cardiomyopathy locus involved is essential. We report the linkage mapping of amore » large kindred in which several male infants have died with hypertrophic cardiomyopathy. There is a family history of unexplained death of infant males less than 6 months old over 4 generations. Features of Barth syndrome such as short stature, skeletal myopathy and neutropenia have not been observed. Genotyping at 10 marker loci in Xq28 has revealed significant pairwise lod scores with the cardiomyopathy phenotype at DXS52 (Z=2.21 at {theta}=0.0), at markers p26 and p39 near DXS15 (Z=2.30 at {theta}=0.0) and at F8C (Z=2.24 at {theta}=0.0). A recombinant detected with DXS296 defines the proximal limit to the localization. No recombinants were detected at any of the loci distal to DXS296. The most distal marker in Xq28, DXS1108, is within 500 kb of the telomere. As the gene in this family is localized to Xq28, it is possible that this disorder is an allelic variant at the Barth syndrome locus.« less

  19. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma1

    PubMed Central

    Yang, Hong Wei; Kim, Tae-Min; Song, Sydney S; Shrinath, Nihal; Park, Richard; Kalamarides, Michel; Park, Peter J; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2012-01-01

    Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas. PMID:22355270

  20. Chromosome analysis in embryos from young patients with previous parity.

    PubMed

    Kilani, Z; Magli, Mc; Qaddomi, E; Ferraretti, Ap; Shaban, M; Crippa, A; Haj Hassan, L; Shenfield, F; Gianaroli, L

    2014-09-01

    This study included 173 young couples of proven fertility who had previously undergone preimplantation genetic screening for chromosomes X and Y for family balancing. Several months later, when the outcome of the pregnancies was already known, the blastomeres from the corresponding embryos transferred were reanalysed by fluorescence in-situ hybridization (FISH) for chromosomes 13, 16, 18, 21, 22 with the aim of investigating correlation with embryo viability and the level of FISH sensitivity (embryos confirmed to be euploid). According to the results, informative in 152 couples, the proportion of euploid embryos was significantly lower in 53 nonpregnant women when compared with 99 women with term pregnancy (49% versus 75% respectively, P < 0.001). In addition, in 21 nonpregnant patients, all embryos transferred were found to be chromosomally abnormal. The level of FISH sensitivity was calculated in the group of term pregnancies where the number of euploid embryos was expected to exceed or match with the number of babies born. The resulting false-negative rate was 4.0% per patient and 1.9% per embryo. These findings confirmed the limited prediction power of embryo morphology on implantation but also the relevance of chromosomal abnormalities in causing embryo demise. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Scope for more genetic testing in learning disability. Case report of an inherited duplication on the X-chromosome.

    PubMed

    Robertshaw, B A; MacPherson, J

    2006-08-01

    There have been major advances in the past few years in our understanding of the X-linked learning disabilities. The most common of these is the fragile-X syndrome, but the number of other gene defects that are now recognised to be linked with learning disability is increasing year on year. We describe one family displaying a family displaying a rare X-linked abnormality. Repeat genetic testing was requested for a family member with mild learning disability when, following chromosomal analysis for her brother, it became known that he had a genetic defect. The genetic defect 46, Xdup(X) (p22.13 p22.31) was identified. To our knowledge this is the first time this precise configuration has been demonstrated. We conclude that genetic testing for individuals with learning disability is worthwhile, even when there may be only a low index of suspicion.

  2. Electrophoresis of phosphoglycerate kinase-2 to determine testicular damage induced by ethylene glycol monomethyl ether and sterility associated with chromosomal abnormality.

    PubMed

    Koizumi, A; Hamade, N; Arai, M; Takatoku, M; Yasuhiko, W; Tsukada, M; Kamiyama, S

    1990-01-01

    Phosphoglycerate kinase (PGK, EC 2.7.2.3), which is expressed specifically in sperm and spermatids, is an enzyme in the Embden-Meyerhof pathway that converts glucose to pyruvate. We developed an electrophoresis method to determine relative PGK-2 quantity and applied it to evaluate spermatogenesis activity. In the ethylene glycol monomethyl ether (EGME)-induced testicular toxicity, relative PGK-2 quantity had not decreased until 4 weeks of exposure. Mean relative PGK-2 quantities, defined as PGK-2 quantity over PGK-1 quantity in a pooled spleen sample (+/- SD) were: 1.43 +/- 0.32 for control animals (N = 10); 1.67 +/- 0.24 for the group exposed at 500 mg/kg for 5 days (N = 6); 1.85 +/- 0.58 for the group exposed at 500 mg/kg for 2 weeks (N = 6); 0.09 +/- 0.06 for the group exposed at 500 mg/kg for 4 weeks (N = 6); not detectable in animals exposed at 500 mg/kg for 5 weeks (N = 7); 0.208 +/- 0.103 for the group exposed at 250 mg/kg for 5 weeks (N = 6); and 1.35 +/- 0.38 for the group exposed at 125 mg/kg for 5 weeks (N = 6). These relative quantities showed a good correlation with sperm/spermatid counts (r = 0.823, p less than 0.01) and histological findings. These findings suggest that EGME has toxicity on primary spermatocytes and spermatogonia. In the case of sterility associated with a chromosomal abnormality (chromosomal translocation between chromosome X and 16), relative PGK-2 quantity was not detected in any of the seven adult (12 weeks of age) mice, although many primary spermatocytes were detected by histological examination.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Four small supernumerary marker chromosomes derived from chromosomes 6, 8, 11 and 12 in a patient with minimal clinical abnormalities: a case report

    PubMed Central

    2010-01-01

    Introduction Small supernumerary marker chromosomes are still a problem in cytogenetic diagnostic and genetic counseling. This holds especially true for the rare cases with multiple small supernumerary marker chromosomes. Most such cases are reported to be clinically severely affected due to the chromosomal imbalances induced by the presence of small supernumerary marker chromosomes. Here we report the first case of a patient having four different small supernumerary marker chromosomes which, apart from slight developmental retardation in youth and non-malignant hyperpigmentation, presented no other clinical signs. Case presentation Our patient was a 30-year-old Caucasian man, delivered by caesarean section because of macrosomy. At birth he presented with bilateral cryptorchidism but no other birth defects. At age of around two years he showed psychomotor delay and a bilateral convergent strabismus. Later he had slight learning difficulties, with normal social behavior and now lives an independent life as an adult. Apart from hypogenitalism, he has multiple hyperpigmented nevi all over his body, short feet with pes cavus and claw toes. At age of 30 years, cytogenetic and molecular cytogenetic analysis revealed a karyotype of 50,XY,+min(6)(:p11.1-> q11.1:),+min(8)(:p11.1->q11.1:),+min(11)(:p11.11->q11:),+min(12)(:p11.2~12->q10:), leading overall to a small partial trisomy in 12p11.1~12.1. Conclusions Including this case, four single case reports are available in the literature with a karyotype 50,XN,+4mar. For prenatally detected multiple small supernumerary marker chromosomes in particular we learn from this case that such a cytogenetic condition may be correlated with a positive clinical outcome. PMID:20682055

  4. [A case of pervasive developmental disorder with chromosomal translocation (X; 4) (p11; q13)].

    PubMed

    Azzoni, A; Raja, M

    2006-01-01

    , he was involuntary admitted to a psychiatric intensive care unit. He was hostile, uncooperative, and violent. Magnetic resonance imaging of brain was normal, Wechsler Adult Intelligence Scale IQ score was 96 (total), 108 (verbal), 80 (non verbal), and Standard Progressive Matrices score was 44/60, chromosomal examination [banding R (RBG)] revealed an apparently balanced translocation 46, XY, t (X; 4) (p11; q13). The patient was treated with risperidone (8 mg/day) and valproate (1500-2000 mg/day) with improvement. Psychotic symptoms, hostility and violence vanished. Amazingly, his behaviour and attitude became normal. Very early onset of symptoms, absence of negative signs, and dysmorphic features suggesting an underlying medical disease do not support the diagnosis of schizophrenia. The diagnosis of pervasive developmental disorder, not otherwise specified, could be made, considering the delay in the development of spoken language, the large discordance between verbal and non verbal WAIS IQ score, the presence of stereotypy, abnormal facial features, and motor clumsiness. The late onset of symptoms precludes the diagnosis of autism, while the delay in language does not permit the diagnosis of Asperger's disorder. The lack of information on his biological relatives did not permit us to assess the presence of genetic, physical or mental abnormalities in his family. Therefore, the causal relationship between the chromosomal translocation and the psychiatric disorder is uncertain in this patient. Similar genetic abnormalities found in patients affected by neuropsychiatric disorders could confirm an etiological link.

  5. Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in a dose-dependent manner through modulation of dystrophin.

    PubMed

    Albuquerque-Pontes, Gianna Móes; Casalechi, Heliodora Leão; Tomazoni, Shaiane Silva; Serra, Andrey Jorge; Ferreira, Cheila de Sousa Bacelar; Brito, Rodrigo Barbosa de Oliveira; de Melo, Brunno Lemes; Vanin, Adriane Aver; Monteiro, Kadma Karênina Damasceno Soares; Dellê, Humberto; Frigo, Lucio; Marcos, Rodrigo Labat; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2018-05-01

    This study aimed to analyze the protective effects of photobiomodulation therapy (PBMT) with combination of low-level laser therapy (LLLT) and light emitting diode therapy (LEDT) on skeletal muscle tissue to delay dystrophy progression in mdx mice (DMD mdx ). To this aim, mice were randomly divided into five different experimental groups: wild type (WT), placebo-control (DMD mdx ), PBMT with doses of 1 J (DMD mdx ), 3 J (DMD mdx ), and 10 J (DMD mdx ). PBMT was performed employing a cluster probe with 9 diodes (1 x 905nm super-pulsed laser diode; 4 x 875nm infrared LEDs; and 4 x 640nm red LEDs, manufactured by Multi Radiance Medical®, Solon - OH, USA), 3 times a week for 14 weeks. PBMT was applied on a single point (tibialis anterior muscle-bilaterally). We analyzed functional performance, muscle morphology, and gene and protein expression of dystrophin. PBMT with a 10 J dose significantly improved (p < 0.001) functional performance compared to all other experimental groups. Muscle morphology was improved by all PBMT doses, with better outcomes with the 3 and 10 J doses. Gene expression of dystrophin was significantly increased with 3 J (p < 0.01) and 10 J (p < 0.01) doses when compared to placebo-control group. Regarding protein expression of dystrophin, 3 J (p < 0.001) and 10 J (p < 0.05) doses also significantly showed increase compared to placebo-control group. We conclude that PBMT can mainly preserve muscle morphology and improve muscular function of mdx mice through modulation of gene and protein expression of dystrophin. Furthermore, since PBMT is a non-pharmacological treatment which does not present side effects and is easy to handle, it can be seen as a promising tool for treating Duchenne's muscular dystrophy.

  6. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    PubMed

    Janghra, Narinder; Morgan, Jennifer E; Sewry, Caroline A; Wilson, Francis X; Davies, Kay E; Muntoni, Francesco; Tinsley, Jonathon

    2016-01-01

    Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify

  7. A Duchenne Muscular Dystrophy Gene Hot Spot Mutation in Dystrophin-Deficient Cavalier King Charles Spaniels Is Amenable to Exon 51 Skipping

    PubMed Central

    Walmsley, Gemma L.; Arechavala-Gomeza, Virginia; Fernandez-Fuente, Marta; Burke, Margaret M.; Nagel, Nicole; Holder, Angela; Stanley, Rachael; Chandler, Kate; Marks, Stanley L.; Muntoni, Francesco; Shelton, G. Diane; Piercy, Richard J.

    2010-01-01

    Background Duchenne muscular dystrophy (DMD), which afflicts 1 in 3500 boys, is one of the most common genetic disorders of children. This fatal degenerative condition is caused by an absence or deficiency of dystrophin in striated muscle. Most affected patients have inherited or spontaneous deletions in the dystrophin gene that disrupt the reading frame resulting in unstable truncated products. For these patients, restoration of the reading frame via antisense oligonucleotide-mediated exon skipping is a promising therapeutic approach. The major DMD deletion “hot spot” is found between exons 45 and 53, and skipping exon 51 in particular is predicted to ameliorate the dystrophic phenotype in the greatest number of patients. Currently the mdx mouse is the most widely used animal model of DMD, although its mild phenotype limits its suitability in clinical trials. The Golden Retriever muscular dystrophy (GRMD) model has a severe phenotype, but due to its large size, is expensive to use. Both these models have mutations in regions of the dystrophin gene distant from the commonly mutated DMD “hot spot”. Methodology/Principal Findings Here we describe the severe phenotype, histopathological findings, and molecular analysis of Cavalier King Charles Spaniels with dystrophin-deficient muscular dystrophy (CKCS-MD). The dogs harbour a missense mutation in the 5′ donor splice site of exon 50 that results in deletion of exon 50 in mRNA transcripts and a predicted premature truncation of the translated protein. Antisense oligonucleotide-mediated skipping of exon 51 in cultured myoblasts from an affected dog restored the reading frame and protein expression. Conclusions/Significance Given the small size of the breed, the amiable temperament and the nature of the mutation, we propose that CKCS-MD is a valuable new model for clinical trials of antisense oligonucleotide-induced exon skipping and other therapeutic approaches for DMD. PMID:20072625

  8. A sexy spin on nonrandom chromosome segregation.

    PubMed

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2.

    PubMed

    Skare, Øivind; Lie, Rolv T; Haaland, Øystein A; Gjerdevik, Miriam; Romanowska, Julia; Gjessing, Håkon K; Jugessur, Astanand

    2018-01-01

    Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" ( DMD , Xp21.2-p21.1), "Fibroblast growth factor 13" ( FGF13 , Xq26.3-q27.1) and "EGF-like domain multiple 6" ( EGFL6 , Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6 , the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" ( OFD1 ) and "Midline 1" ( MID1 )]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust

  10. Origin of the chromosomal radiation of Madeiran house mice: a microsatellite analysis of metacentric chromosomes

    PubMed Central

    Förster, D W; Mathias, M L; Britton-Davidian, J; Searle, J B

    2013-01-01

    Chromosome races of Mus musculus domesticus are characterised by particular sets of metacentric chromosomes formed by Robertsonian fusions and whole-arm reciprocal translocations. The Atlantic island of Madeira is inhabited by six chromosome races of house mice with 6–9 pairs of metacentric chromosomes. Three of these races are characterised by the metacentric 3.8 also found elsewhere in the distribution of M. m. domesticus, including Denmark and Spain. We investigated the possibility that metacentric 3.8 was introduced to Madeira during the initial colonisation, as this could have ‘seeded' the cascade of chromosomal mutation that is the basis of the extraordinary chromosomal radiation observed on the island. Variation at 24 microsatellite loci mapping to three different chromosomal regions (proximal, interstitial and distal) of mouse chromosomes 3 and 8 was investigated in 179 mice from Madeira, Denmark, Portugal, Spain, Italy and Scotland. Analyses of microsatellite loci closely linked to the centromeres of these chromosomes (‘proximal loci') do not support a common evolutionary origin of metacentric 3.8 among Madeiran, Danish and Spanish mouse populations. Our results suggest that Madeiran mice are genetically more similar to standard karyotype mice from Portugal than to metacentric mice from elsewhere. There is expected to be an interruption to gene flow between hybridising metacentric races on Madeira, particularly in the chromosomal regions close to the rearrangement breakpoints. Consistent with this, relating to differentiation involving chromosomes 3 and 8 on Madeira, we found greater genetic structure among races for proximal than interstitial or distal loci. PMID:23232832

  11. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  12. Banding studies on chromosomes in diffuse histiocytic lymphomas: correlation of 14q+ marker chromosome with cytology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuhara, S.; Rowley, J.D.; Variakojis, D.

    1978-11-01

    Chromosomes were studied in cells from tissues primarily involved by diffuse histiocytic lymphoma in nine patients. Two of the patients had stage II disease; their tumors were fibrotic and had no mitotic cells. One patient was in stage III, and the remaining six patients had stage IV disease. The modal chromosome number of abnormal cells from these last seven patients was hypodiploid in two, hyperdiploid in four, and near-triploid in one. Complete banding studies of six cases and partial analysis of the seventh indicate that (1) every patient had a distinct cell line with common markers, with a few cellsmore » showing minor variants; (2) although certain chromosomes (Nos. 1, 2, 3, 9, 12, and 14) were structurally affected more often than others, no markers with the same banding pattern were noted among them; and (3) the cytologic type of lymphoma could be correlated with the karyotype in all seven patients. When the Lukes and Collins classification was used, three patients whose tumors were composed predominantly of large noncleaved cells showed a 14q translocation leading to the formation of a 14q+ marker chromosome. This marker was not observed in four patients whose tumors had a majority of large cleaved cells. These preliminary results, if confirmed in a larger series of patients, will provide additional evidence that there are consistent chromosome changes associated with specific subtypes of lymphoproliferative disorders analogous to the Ph/sup 1/ chromosome in chronic myelogenous leukemia.« less

  13. Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection

    PubMed Central

    Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.

    2017-01-01

    Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522

  14. Siblings with opposite chromosome constitutions, dup(2q)/del(7q) and del(2q)/dup(7q).

    PubMed

    Shim, Sung Han; Shim, Jae Sun; Min, Kyunghoon; Lee, Hee Song; Park, Ji Eun; Park, Sang Hee; Hwang, Euna; Kim, Minyoung

    2014-01-15

    Chromosome 7q36 microdeletion syndrome is a rare genomic disorder characterized by underdevelopment of the brain, microcephaly, anomalies of the sex organs, and language problems. Developmental delay, intellectual disability, autistic spectrum disorders, BDMR syndrome, and unusual facial morphology are the key features of the chromosome 2q37 microdeletion syndrome. A genetic screening for two brothers with global developmental delay using high-resolution chromosomal analysis and subtelomeric multiplex ligation-dependent probe amplification revealed subtelomeric rearrangements on the same sites of 2q37.2 and 7q35, with reversed deletion and duplication. Both of them showed dysmorphic facial features, severe disability of physical and intellectual development, and abnormal genitalia with differential abnormalities in their phenotypes. The family did not have abnormal genetic phenotypes. According to the genetic analysis of their parents, adjacent-1 segregation from their mother's was suggested as a mechanism of their gene mutation. By comparing the phenotypes of our patients with previous reports on similar patients, we tried to obtain the information of related genes and their chromosomal locations. © 2013.

  15. Recent gene-capture on the UV sex chromosomes of the moss Ceratodon purpureus.

    PubMed

    McDaniel, Stuart F; Neubig, Kurt M; Payton, Adam C; Quatrano, Ralph S; Cove, David J

    2013-10-01

    Sex chromosomes evolve from ordinary autosomes through the expansion and subsequent degeneration of a region of suppressed recombination that is inherited through one sex. Here we investigate the relative timing of these processes in the UV sex chromosomes of the moss Ceratodon purpureus using molecular population genetic analyses of eight newly discovered sex-linked loci. In this system, recombination is suppressed on both the female-transmitted (U) sex chromosome and the male-transmitted (V) chromosome. Genes on both chromosomes therefore should show the deleterious effects of suppressed recombination and sex-limited transmission, while purifying selection should maintain homologs of genes essential for both sexes on both sex chromosomes. Based on analyses of eight sex-linked loci, we show that the nonrecombining portions of the U and V chromosomes expanded in at least two events (~0.6-1.3 MYA and ~2.8-3.5 MYA), after the divergence of C. purpureus from its dioecious sister species, Trichodon cylindricus and Cheilothela chloropus. Both U- and V-linked copies showed reduced nucleotide diversity and limited population structure, compared to autosomal loci, suggesting that the sex chromosomes experienced more recent selective sweeps that the autosomes. Collectively these results highlight the dynamic nature of gene composition and molecular evolution on nonrecombining portions of the U and V sex chromosomes. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle.

    PubMed

    Roy, Pauline; Rau, Fredérique; Ochala, Julien; Messéant, Julien; Fraysse, Bodvael; Lainé, Jeanne; Agbulut, Onnik; Butler-Browne, Gillian; Furling, Denis; Ferry, Arnaud

    2016-01-01

    The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.

  17. Defining the cause of skewed X-chromosome inactivation in X-linked mental retardation by use of a mouse model.

    PubMed

    Muers, Mary R; Sharpe, Jacqueline A; Garrick, David; Sloane-Stanley, Jacqueline; Nolan, Patrick M; Hacker, Terry; Wood, William G; Higgs, Douglas R; Gibbons, Richard J

    2007-06-01

    Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.

  18. Chromosome aberrations in T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) from healthy adults.

    PubMed

    Fukuhara, S; Hinuma, Y; Gotoh, Y I; Uchino, H

    1983-01-01

    Chromosomes were studied in cultured T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) that were obtained from five Japanese anti-ATLA seropositive healthy adults. Chromosomally abnormal cells were observed in three of the five healthy adults, and these cells were clonal in two subjects. All cells examined in one subject had rearrangements of chromosome nos. 7 and 14. Clonal cells from the second had a minute chromosome of unknown origin. A few cells in the third had nonclonal rearrangements of chromosomes. Thus, ATLA-positive T lymphocytes in some anti-ATLA seropositive healthy people have chromosome aberrations.

  19. no blokes Is Essential for Male Viability and X Chromosome Gene Expression in the Australian Sheep Blowfly.

    PubMed

    Davis, Rebecca J; Belikoff, Esther J; Scholl, Elizabeth H; Li, Fang; Scott, Maxwell J

    2018-06-18

    It has been hypothesized that the Drosophila 4 th  chromosome is derived from an ancient X chromosome [1]. In the Australian sheep blowfly, Lucilia cuprina, the heterochromatic X chromosome contains few active genes and orthologs of Drosophila X-linked genes are autosomal. Of 8 X-linked genes identified previously in L. cuprina, 6 were orthologs of Drosophila 4 th -chromosome genes [2]. The X-linked genes were expressed equally in males and females. Here we identify an additional 51 X-linked genes and show that most are dosage compensated. Orthologs of 49 of the 59 X-linked genes are on the 4 th  chromosome in D. melanogaster. Because painting of fourth (Pof) is important for expression of Drosophila 4 th -chromosome genes [3], we used Cas9 to make a loss-of-function knockin mutation in an L. cuprina Pof ortholog we call no blokes (nbl). Homozygous nbl males derived from homozygous nbl mothers die at the late pupal stage. Homozygous nbl females are viable, fertile, and live longer than heterozygous nbl females. RNA expression of most X-linked genes was reduced in homozygous nbl male pupae and to a lesser extent in nbl females compared to heterozygous siblings. The results suggest that NBL could be important for X chromosome dosage compensation in L. cuprina. NBL may also facilitate gene expression in the heterochromatic environment of the X chromosome in both sexes. This study supports the hypothesis on the origin of the Drosophila 4 th chromosome and that a POF-like protein was required for normal gene expression on the ancient X chromosome. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Birth of a new gene on the Y chromosome of Drosophila melanogaster

    PubMed Central

    Carvalho, Antonio Bernardo; Vicoso, Beatriz; Russo, Claudia A. M.; Swenor, Bonnielin; Clark, Andrew G.

    2015-01-01

    Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes. PMID:26385968

  1. The two "rules of speciation" in species with young sex chromosomes.

    PubMed

    Filatov, Dmitry A

    2018-05-21

    The two "rules of speciation," Haldane's rule (HR) and the large-X effect (LXE), are thought to be caused by recessive species incompatibilities exposed in the phenotype due to the hemizygosity of X-linked genes in the heterogametic sex. Thus, the reports of HR and the LXE in species with recently evolved non- or partially degenerate Y-chromosomes, such as Silene latifolia and its relatives, were surprising. Here, I argue that rapid species-specific degeneration of Y-linked genes and associated adjustment of expression of X-linked gametologs (dosage compensation) may lead to rapid evolution of sex-linked species incompatibilities. This process is likely to be too slow in species with old degenerate Y-chromosomes (e.g., in mammals), but Y-degeneration in species with young gene-rich sex chromosomes may be fast enough to play a significant role in speciation. To illustrate this point, I report the analysis of Y-degeneration and the associated evolution of gene expression on the X-chromosome of S. latifolia and Silene dioica, a close relative that shares the same recently evolved sex chromosomes. Despite the recent (≤1MY) divergence of the two species, ~7% of Y-linked genes have undergone degeneration in one but not the other species. This species-specific degeneration appears to drive faster expression divergence of X-linked genes, which may account for HR and the LXE reported for these species. Furthermore, I suggest that "exposure" of autosomal or sex-linked recessive species incompatibilities in the haploid plant gametophyte may mimic the presence of HR in plants. Both haploid expression and species-specific Y-degeneration need to receive more attention if we are to understand the role of these processes in speciation. © 2018 John Wiley & Sons Ltd.

  2. CENP-A regulates chromosome segregation during the first meiosis of mouse oocytes.

    PubMed

    Li, Li; Qi, Shu-Tao; Sun, Qing-Yuan; Chen, Shi-Ling

    2017-06-01

    Proper chromosome separation in both mitosis and meiosis depends on the correct connection between kinetochores of chromosomes and spindle microtubules. Kinetochore dysfunction can lead to unequal distribution of chromosomes during cell division and result in aneuploidy, thus kinetochores are critical for faithful segregation of chromosomes. Centromere protein A (CENP-A) is an important component of the inner kinetochore plate. Multiple studies in mitosis have found that deficiencies in CENP-A could result in structural and functional changes of kinetochores, leading to abnormal chromosome segregation, aneuploidy and apoptosis in cells. Here we report the expression and function of CENP-A during mouse oocyte meiosis. Our study found that microinjection of CENP-A blocking antibody resulted in errors of homologous chromosome segregation and caused aneuploidy in eggs. Thus, our findings provide evidence that CENP-A is critical for the faithful chromosome segregation during mammalian oocyte meiosis.

  3. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, J.; Terwilliger, J.D.; Bhattacharya, S.

    1990-01-01

    Multilocus linkage analysis of 62 family pedigrees with X chromosome-linked retinitis pigmentosa (XLRP) was undertaken to determine the presence of possible multiple disease loci and to reliability estimate their map location. Multilocus homogeneity tests furnish convincing evidence for the presence of two XLRP loci, the likelihood ratio being 6.4 {times} 10{sup 9}:1 in a favor of two versus a single XLRP locus and gave accurate estimates for their map location. In 60-75% of the families, location of an XLRP gene was estimated at 1 centimorgan distal to OTC, and in 25-40% of the families, an XLRP locus was located halfwaymore » between DXS14 (p58-1) and DXZ1 (Xcen), with an estimated recombination fraction of 25% between the two XLRP loci. There is also good evidence for third XLRP locus, midway between DXS28 (C7) and DXS164 (pERT87), supported by a likelihood ratio of 293:1 for three versus two XLRP loci.« less

  4. Identification of marker chromosomes in thirteen patients using FISH probing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, A.; Malafiej, P.; Preece, K.

    1994-10-15

    Fourteen marker chromosomes were studied by FISH (fluorescence in-situ hybridization) in cytogenetic preparations from 13 patients. The derived markers were identified as one isodicentric bisatellited mar(22), one fragment sized r(X), one fragment sized r(Y), one i(18p), small autosomal ring markers in three different patients derived from chromosomes 2, 8, and 8, a marker comprised of 9p and part of 9qh, and 3 bisatellited apparently monocentric markers; one of each from chromosomes 13 or 21, 14 or 22, and 15. Two fragment sized small ring markers in one patient and a small ring marker in another were negative with all twenty-twomore » different probes used. In addition, the small ring marker Y chromosome that was found in a boy with karyotype 46, X, -Y, +mar was negative with both pDXZ1 and pDYZ3. This anomaly of negative results with the battery of centromeric alphoid probes can be explained if one breakpoint for some small ring markers is very near to or within the centromere. The literature was reviewed for Distamycin A/DAPI negative small ring markers that were present as extra chromosomes. There were only single published cases of most small rings but there were three r(8) cases, two r(1) cases, two r(12) cases, and two r(20) cases, uncomplicated by the presence of other chromosome abnormalities. In pooled data, 18/23 (about 80%) were developmentally and/or phenotypically abnormal. Some patients (5/23, about 20%) with small rings were dysmorphic without intellectual handicap. Of 28 such patients with small ring markers (Distamycin/Dapi negative) in pooled data there are 6 (about 20%) with multiple markers mostly derived from different chromosomes. This is a very high figure and would suggest that the ring formation events, although involving different chromosomes, must be related and must be an indicator of the mechanism of origin of this group of markers. 14 refs., 3 figs., 3 tabs.« less

  5. X-chromosome monosomy in an infertile female llama.

    PubMed

    Hinrichs, K; Horin, S E; Buoen, L C; Zhang, T Q; Ruth, G R

    1997-05-15

    A 3-year-old female llama was examined because of a history of infertility and apparent anovulation. The llama had indifferent behavior when penned with a male, but eventually would assume sternal recumbency for breeding. On examination, the llama was underweight and small in stature. The uterine horns and ovaries could not be identified during palpation or ultrasonography per rectum, and the cervix was dilated when examined with a speculum. Chromosomal preparations of lymphocytes and skin fibroblasts were performed; all cells examined had a 73, X karyotype (X-chromosome monosomy). To our knowledge, this is the first report of a chromosomal anomaly in a llama. Signs seen in this llama were similar to those seen in mares with X-chromosome monosomy. This condition should be considered in the differential diagnosis of infertility in llamas that fail to ovulate, especially if other abnormalities such as indifferent sexual behavior and short stature are present.

  6. "Idiopathic" mental retardation and new chromosomal abnormalities

    PubMed Central

    2010-01-01

    Mental retardation is a heterogeneous condition, affecting 1-3% of general population. In the last few years, several emerging clinical entities have been described, due to the advent of newest genetic techniques, such as array Comparative Genomic Hybridization. The detection of cryptic microdeletion/microduplication abnormalities has allowed genotype-phenotype correlations, delineating recognizable syndromic conditions that are herein reviewed. With the aim to provide to Paediatricians a combined clinical and genetic approach to the child with cognitive impairment, a practical diagnostic algorithm is also illustrated. The use of microarray platforms has further reduced the percentage of "idiopathic" forms of mental retardation, previously accounted for about half of total cases. We discussed the putative pathways at the basis of remaining "pure idiopathic" forms of mental retardation, highlighting possible environmental and epigenetic mechanisms as causes of altered cognition. PMID:20152051

  7. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    PubMed

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (<1 million years old), only three showed evidence for purifying selection ( ω ≤ 0.14). Thus, although the resulting Y-linked functional gene acquisition rate (0.25 new genes per million years) is double the longer-term estimate, the fate of most new Y-linked genes is defined by rapid degeneration and pseudogenization. Our results show that Y-linked gene traffic, and the molecular mechanisms governing these transfers, can diverge rapidly between species, revealing the Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  8. Analysis of X chromosome genomic DNA sequence copy number variation associated with premature ovarian failure (POF)

    PubMed Central

    Quilter, C.R.; Karcanias, A.C.; Bagga, M.R.; Duncan, S.; Murray, A.; Conway, G.S.; Sargent, C.A.; Affara, N.A.

    2013-01-01

    BACKGROUND Premature ovarian failure (POF) is a heterogeneous disease defined as amenorrhoea for >6 months before age 40, with an FSH serum level >40 mIU/ml (menopausal levels). While there is a strong genetic association with POF, familial studies have also indicated that idiopathic POF may also be genetically linked. Conventional cytogenetic analyses have identified regions of the X chromosome that are strongly associated with ovarian function, as well as several POF candidate genes. Cryptic chromosome abnormalities that have been missed might be detected by array comparative genomic hybridization. METHODS In this study, samples from 42 idiopathic POF patients were subjected to a complete end-to-end X/Y chromosome tiling path array to achieve a detailed copy number variation (CNV) analysis of X chromosome involvement in POF. The arrays also contained a 1 Mb autosomal tiling path as a reference control. Quantitative PCR for selected genes contained within the CNVs was used to confirm the majority of the changes detected. The expression pattern of some of these genes in human tissue RNA was examined by reverse transcription (RT)–PCR. RESULTS A number of CNVs were identified on both Xp and Xq, with several being shared among the POF cases. Some CNVs fall within known polymorphic CNV regions, and others span previously identified POF candidate regions and genes. CONCLUSIONS The new data reported in this study reveal further discrete X chromosome intervals not previously associated with the disease and therefore implicate new clusters of candidate genes. Further studies will be required to elucidate their involvement in POF. PMID:20570974

  9. The DNA sequence of the human X chromosome

    PubMed Central

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  10. Chromosome painting in the manatee supports Afrotheria and Paenungulata

    USGS Publications Warehouse

    Kellogg, Margaret E.; Burkett, Sandra; Dennis, Thomas R.; Stone, Gary; Gray, Brian A.; McGuire, Peter M.; Zori, Roberto T.; Stanyon, Roscoe

    2007-01-01

    There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I), present in Laurasiatheria (clade IV), only partially present in Xenarthra (10/12, clade II) and absent in Euarchontoglires (clade III). If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10/12/22 association could be one of a suite of derived associations linking afrotherian taxa.

  11. Holt-Oram syndrome and diaphragmatic hernia associate with paracentric inversion of chromosome 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eswara, M.S.; Batanian, J.R.

    1994-09-01

    Holt-Oram syndrome (HOS) consists of congenital heart disease, usually atrial septal defect, along with thumb anomalies and occasionally more extensive limb defects. Inheritance is autosomal dominant. Previous reports have associated HOS with cytogenetic abnormalities on chromosomes 4, 14 and 20. Recently a linkage study has suggested a HOS locus on chromosome 12. We describe another case of HOS with a de novo cytogenetic abnormality. On prenatal ultrasound, IUGR, oligohydramnios and left diaphragmatic hernia were noted. Following delivery, patient was placed on extra-corporeal membrane oxygenation because of severe lung hypoplasia; diaphragmatic hernia was repaired with mesh graft. He expired on daymore » 17 of life. On exam, he had subtle dysmorphic features with hypotelorism and abnormal folding of the ear lobes. He had bilateral radial aplasia, aplasia of thumbs, index and middle fingers, along with the metacarpals. On autopsy he was found to have atrial septal defect of the ostium secundum type, right side aortic arch with vascular ring formation, bicuspid pulmonic valve and severe lung hypoplasia worse on the left. Cytogenetic analysis on blood and skin showed 48,XX,inv(8)(q24.2q13). Chromosome fragility study was negative. Parental chromosomes were normal. Our observation of inv(8)q with HOS and diaphragmatic hernia may indicate genetic heterogeneity with this condition. Regulation of morphogenesis is likely under the control of a hierarchy of genes; multiple loci for conditions such as HOS would not be surprising.« less

  12. Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.

    PubMed

    Husby, Arild; Schielzeth, Holger; Forstmeier, Wolfgang; Gustafsson, Lars; Qvarnström, Anna

    2013-03-01

    Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex-linked genetic variance (h(2)z ). Of 17 traits examined, eight showed a nonzero h(2)Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex-linked genetic variance. Sexually selected traits did not show higher h(2)Z than morphological traits and there was only a weak positive relationship between h(2)Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  13. Cellular and molecular effects of nonreciprocal chromosome translocations in Saccharomyces cerevisiae

    PubMed Central

    Nikitin, Dmitri; Tosato, Valentina; Zavec, Apolonija Bedina; Bruschi, Carlo V.

    2008-01-01

    Saccharomyces cerevisiae strains harboring a nonreciprocal, bridge-induced translocation (BIT) between chromosomes VIII and XV exhibited an abnormal phenotype comprising elongated buds and multibudded, unevenly nucleated pseudohyphae. In these cells, we found evidence of molecular effects elicited by the translocation event and specific for its particular genomic location. Expression of genes flanking both translocation breakpoints increased up to five times, correlating with an increased RNA polymerase II binding to their promoters and with their histone acetylation pattern. Microarray data, CHEF, and quantitative PCR confirmed the data on the dosage of genes present on the chromosomal regions involved in the translocation, indicating that telomeric fragments were either duplicated or integrated mostly on chromosome XI. FACS analysis revealed that the majority of translocant cells were blocked in G1 phase and a few of them in G2. Some cells showed a posttranslational decrease of cyclin B1, in agreement with elongated buds diagnostic of a G2/M phase arrest. The actin1 protein was in some cases modified, possibly explaining the abnormal morphology of the cells. Together with the decrease in Rad53p and the lack of its phosphorylation, these results indicate that these cells have undergone adaptation after checkpoint-mediated G2/M arrest after chromosome translocation. These BIT translocants could serve as model systems to understand further the cellular and molecular effects of chromosome translocation and provide fundamental information on its etiology of neoplastic transformation in mammals. PMID:18599460

  14. Mechanisms of Chromosome Congression during Mitosis

    PubMed Central

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    diversity by means of tubulin post-translational modifications. This so-called “tubulin code” might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed. PMID:28218637

  15. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia.

    PubMed

    Crisan, A M; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Chronic Myeloid Leukemia's (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study's end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine kinase inhibitor treatment, ACAs = additional cytogenetic abnormalities, CCy

  16. Genomic relationships based on X chromosome markers and accuracy of genomic predictions with and without X chromosome markers

    PubMed Central

    2014-01-01

    Background Although the X chromosome is the second largest bovine chromosome, markers on the X chromosome are not used for genomic prediction in some countries and populations. In this study, we presented a method for computing genomic relationships using X chromosome markers, investigated the accuracy of imputation from a low density (7K) to the 54K SNP (single nucleotide polymorphism) panel, and compared the accuracy of genomic prediction with and without using X chromosome markers. Methods The impact of considering X chromosome markers on prediction accuracy was assessed using data from Nordic Holstein bulls and different sets of SNPs: (a) the 54K SNPs for reference and test animals, (b) SNPs imputed from the 7K to the 54K SNP panel for test animals, (c) SNPs imputed from the 7K to the 54K panel for half of the reference animals, and (d) the 7K SNP panel for all animals. Beagle and Findhap were used for imputation. GBLUP (genomic best linear unbiased prediction) models with or without X chromosome markers and with or without a residual polygenic effect were used to predict genomic breeding values for 15 traits. Results Averaged over the two imputation datasets, correlation coefficients between imputed and true genotypes for autosomal markers, pseudo-autosomal markers, and X-specific markers were 0.971, 0.831 and 0.935 when using Findhap, and 0.983, 0.856 and 0.937 when using Beagle. Estimated reliabilities of genomic predictions based on the imputed datasets using Findhap or Beagle were very close to those using the real 54K data. Genomic prediction using all markers gave slightly higher reliabilities than predictions without X chromosome markers. Based on our data which included only bulls, using a G matrix that accounted for sex-linked relationships did not improve prediction, compared with a G matrix that did not account for sex-linked relationships. A model that included a polygenic effect did not recover the loss of prediction accuracy from exclusion of X

  17. PubMed Central

    DE LOS ANGELES BEYTÍA, MARIA; VRY, JULIA; KIRSCHNER, JANBERND

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a disease linked to the X-chromosome which affects 1 in 3,600-6,000 newborn males. It is manifested by the absence of the dystrophin protein in muscle fibres, which causes progressive damage leading to death in the third decade of life. The only medication so far shown to be effective in delaying the progression of this illness are corticosteroids, which have been shown to increase muscle strength in randomised controlled studies; long-term studies have demonstrated that they prolong walking time and retard the progression of respiratory dysfunction, dilated cardiomyopathy and scoliosis. Several potential drugs are now being investigated. Genetic therapy, involving the insertion of a dystrophin gene through a vector, has proven effective in animals but not humans. Currently under clinical study is Ataluren, a molecule that binds with ribosomes and may allow the insertion of an aminoacid in the premature termination codon, and exon-skipping, which binds with RNA and excludes specific sites of RNA splicing, producing a dystrophin that is smaller but functional. There are also studies attempting to modulate other muscular proteins, such as myostatin and utrophin, to reduce symptoms. This paper does not address cardiomyopathy treatment in DMD patients. PMID:22655510

  18. Structural analysis of chromosomal rearrangements associated with the developmental mutations Ph, W19H, and Rw on mouse chromosome 5.

    PubMed Central

    Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M

    1994-01-01

    We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773

  19. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis

    PubMed Central

    Wandke, Cornelia; Barisic, Marin; Sigl, Reinhard; Rauch, Veronika; Wolf, Frank; Amaro, Ana C.; Tan, Chia H.; Pereira, Antonio J.; Kutay, Ulrike; Maiato, Helder; Meraldi, Patrick

    2012-01-01

    Chromokinesins are microtubule plus end–directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively. PMID:22945934

  20. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    PubMed

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype.

  1. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    PubMed

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  2. Oligosyndactylism Mice Have an Inversion of Chromosome 8

    PubMed Central

    Wise, Thomas L.; Pravtcheva, Dimitrina D.

    2004-01-01

    The radiation-induced mutation Oligosyndactylism (Os) is associated with limb and kidney defects in heterozygotes and with mitotic arrest and embryonic lethality in homozygotes. We reported that the cell cycle block in Os and in the 94-A/K transgene-induced mutations is due to disruption of the Anapc10 (Apc10/Doc1) gene. To understand the genetic basis of the limb and kidney abnormalities in Os mice we characterized the structural changes of chromosome 8 associated with this mutation. We demonstrate that the Os chromosome 8 has suffered two breaks that are 5 cM (∼10 Mb) apart and the internal fragment delineated by the breaks is in an inverted orientation on the mutant chromosome. While sequences in proximity to the distal break are present in an abnormal Os-specific Anapc10 hybrid transcript, transcription of these sequences in normal mice is low and difficult to detect. Transfer of the Os mutation onto an FVB/N background indicated that the absence of dominant effects in 94-A/K mice is not due to strain background effects on the mutation. Further analysis of this mutation will determine if a gene interrupted by the break or a long-range effect of the rearrangement on neighboring genes is responsible for the dominant effects of Os. PMID:15611179

  3. Pregnancy Outcome of Abnormal Nuchal Translucency: A Systematic Review.

    PubMed

    Roozbeh, Nasibeh; Azizi, Maryam; Darvish, Leili

    2017-03-01

    Nuchal Translucency (NT) is the sonographic form of subcutaneous gathering of liquid behind the foetal neck in the first trimester of pregnancy. There is association of increased NT with chromosomal and non-chromosomal abnormalities. The purpose of this systemic review was to review the pregnancy outcome of abnormal nuchal translucency. The present systematic review was conducted by searching English language articles from sources such as International Medical Sciences, Medline, Web of science, Scopus, Google Scholar, PubMed, Index Copernicus, DOAJ, EBSCO-CINAHL. Persian articles were searched from Iranmedex and SID sources. Related key words were "outcome", "pregnancy", "abnormal", and "Nuchal Translucency" (NT). All, randomized, descriptive, analytic-descriptive, case control study conducted during 1997-2015 were included. Including duplicate articles, 95 related articles were found. After reviewing article titles, 30 unrelated article and abstracts were removed, and 65 articles were evaluated of which 30 articles were duplicate. Finally 22 articles were selected for final analysis. Exclusion criteria were, case studies and reports and quasi experimental designs. This evaluation has optioned negative relationship between nuchal translucency and pregnancy result. Rate of cardiac, chromosomal and other defects are correlated with increased NT≥2.5mm. Cardiac disease which were associated to the increased NT are heart murmur, systolic organic murmur, Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD), tricuspid valve insufficiency and pulmonary valve insufficiency, Inferior Vena Cava (IVC) and Patent Ductus Arteriosus (PDA). The most common problems that related with increased NT were allergic symptoms. According to this systematic review, increased NT is associated with various foetal defects. To verify the presence of malformations, birth defect consultations with a perinatologist and additional tests are required.

  4. X-Chromosome dosage compensation.

    PubMed

    Meyer, Barbara J

    2005-06-25

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  5. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro Dystrophin Vector

    DTIC Science & Technology

    2017-09-01

    future experimental therapeutic studies in the canine model such as CRISPR -mediated gene editing, stem cell therapy, dystrophin-independent disease...There is no scientific/budget overlap with the current proposal.) CRISPR /Cas9-based gene editing for the correction of Duchenne muscular dystrophy...lab will perform in vivo gene delivery and functional outcome measurements in mice treated by AAV- CRISPR gene repair vectors and if needed will also

  6. Chromosome number, microsporogenesis, microgametogenesis, and pollen viability in the Brazilian native grass Mesosetum chaseae (Poaceae).

    PubMed

    Silva, L A C; Pagliarini, M S; Santos, S A; Silva, N; Souza, V F

    2012-11-28

    The genus Mesosetum is a primarily South American genus with 42 species. Mesosetum chaseae, regionally known as 'grama-do-cerrado', is abundant in the Pantanal Matogrossense (Brazil); it is a valuable resource for livestock and for environmental conservation. We collected specimens from the Nhecolandia sub-region of the Brazilian Pantanal, located in Corumbá, Mato Grosso do Sul, Brazil. We examined chromosome number, ploidy level, meiotic behavior, microgametogenesis, and pollen viability of 10 accessions. All the accessions were diploid, derived from x = 8, presenting 2n = 2x = 16 chromosomes. Chromosomes paired as bivalents showing, predominantly, two terminal chiasmata. Interstitial chiasmata were rare. Meiosis was quite normal producing only a few abnormal tetrads in some accessions. Microgametogenesis, after two mitotic divisions, produced three-celled pollen grains. Pollen viability was variable among plant and accessions and was not correlated with meiotic abnormalities.

  7. Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome

    PubMed Central

    Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.

    1996-01-01

    To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591

  8. Chromosome painting in the manatee supports Afrotheria and Paenungulata

    PubMed Central

    Kellogg, Margaret E; Burkett, Sandra; Dennis, Thomas R; Stone, Gary; Gray, Brian A; McGuire, Peter M; Zori, Roberto T; Stanyon, Roscoe

    2007-01-01

    Background Sirenia (manatees, dugongs and Stellar's sea cow) have no evolutionary relationship with other marine mammals, despite similarities in adaptations and body shape. Recent phylogenomic results place Sirenia in Afrotheria and with elephants and rock hyraxes in Paenungulata. Sirenia and Hyracoidea are the two afrotherian orders as yet unstudied by comparative molecular cytogenetics. Here we report on the chromosome painting of the Florida manatee. Results The human autosomal and X chromosome paints delimited a total of 44 homologous segments in the manatee genome. The synteny of nine of the 22 human autosomal chromosomes (4, 5, 6, 9, 11, 14, 17, 18 and 20) and the X chromosome were found intact in the manatee. The syntenies of other human chromosomes were disrupted in the manatee genome into two to five segments. The hybridization pattern revealed that 20 (15 unique) associations of human chromosome segments are found in the manatee genome: 1/15, 1/19, 2/3 (twice), 3/7 (twice), 3/13, 3/21, 5/21, 7/16, 8/22, 10/12 (twice), 11/20, 12/22 (three times), 14/15, 16/19 and 18/19. Conclusion There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I), present in Laurasiatheria (clade IV), only partially present in Xenarthra (10/12, clade II) and absent in Euarchontoglires (clade III). If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10/12/22 association

  9. Mutation of the XIST gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos.

    PubMed

    Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong

    2017-06-01

    XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.

  10. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    PubMed

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  11. Genetics Home Reference: Y chromosome infertility

    MedlinePlus

    ... deletions" of the human Y chromosome and their relationship with male infertility. J Genet Genomics. 2008 Apr; ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  12. De novo balanced complex chromosome rearrangements involving chromosomes 1B and 3B of wheat and 1R of rye.

    PubMed

    Ren, Tianheng; Li, Zhi; Yan, Benju; Tan, Feiquan; Tang, Zongxiang; Fu, Shulan; Yang, Manyu; Ren, Zhenglong

    2016-12-01

    Complex chromosome rearrangements (CCRs) are defined as structural abnormalities involving more than two chromosome breaks, coupled with exchanges of chromosomal segments. Information on CCRs in plants is limited. In the present study, a plant (26-4) harboring translocation chromosomes 1RS.1BL and 4RS.4DL was selected from a double monosomic (1R and 4R) addition line, which was derived from the hybrid between wheat cultivar MY11 and a Chinese local rye variety. The genome of the plant with double alien translocation chromosomes in the monosomic form showed more instability than that harboring a single translocation. The CCRs involving chromosomes 1RS.1BL and 3B, which were generated de novo in this plant, showed double monosomic translocation chromosomes. A new CCR line with balanced reciprocal translocations 1RS.3BL and 3BS.1BL was developed, which presented normal morphological traits of wheat and underwent rapid growth in the field. A new 1RS.1BL translocation line was also selected from the progeny of plant 26-4. The CCRs and simple 1RS.1BL translocation lines showed significant improvement in grain yield, number of spikes per square meter, kernel number per spike, and resistance to stripe rust and powdery mildew. The CCR line exhibited better agronomic traits and adult plant resistance in the field than its sister line, which harbored a simple 1RS.1BL translocation. The CCRs are remarkable genetic resources for crop improvement.

  13. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length.

    PubMed

    Marko, John F

    2009-05-01

    The Gauss linking number (Ca) of two flexible polymer rings which are tethered to one another is investigated. For ideal random walks, mean linking-squared varies with the square root of polymer length while for self-avoiding walks, linking-squared increases logarithmically with polymer length. The free-energy cost of linking of polymer rings is therefore strongly dependent on degree of self-avoidance, i.e., on intersegment excluded volume. Scaling arguments and numerical data are used to determine the free-energy cost of fixed linking number in both the fluctuation and large-Ca regimes; for ideal random walks, for |Ca|>N;{1/4} , the free energy of catenation is found to grow proportional, variant|Ca/N;{1/4}|;{4/3} . When excluded volume interactions between segments are present, the free energy rapidly approaches a linear dependence on Gauss linking (dF/dCa approximately 3.7k_{B}T) , suggestive of a novel "catenation condensation" effect. These results are used to show that condensation of long entangled polymers along their length, so as to increase excluded volume while decreasing number of statistical segments, can drive disentanglement if a mechanism is present to permit topology change. For chromosomal DNA molecules, lengthwise condensation is therefore an effective means to bias topoisomerases to eliminate catenations between replicated chromatids. The results for mean-square catenation are also used to provide a simple approximate estimate for the "knotting length," or number of segments required to have a knot along a single circular polymer, explaining why the knotting length ranges from approximately 300 for an ideal random walk to 10;{6} for a self-avoiding walk.

  14. Trisomy 13 as a primary chromosome aberration in acute leukemia.

    PubMed

    Mertens, F; Sallerfors, B; Heim, S; Johansson, B; Kristoffersson, U; Malm, C; Mitelman, F

    1991-10-01

    Four patients with acute leukemia displayed trisomy 13 as the primary chromosome abnormality. The two patients with acute nonlymphocytic leukemia FAB-type M1 (ANLL-M1) had the karyotypes 47,XY,+13/48,XY,+13,+13 and 47,XX,+13, a patient with the hypogranular form of ANLL M3 had 47,XX,+13, and the fourth patient, who had acute undifferentiated leukemia (AUL), had the karyotype 47,XY,+13/48,XY,+8,+13. Including these four cases, a total of 24 hematologic neoplasms with an extra chromosome 13 as the sole aberration have now been reported. Except for the AUL, all have been of myeloid origin--20 ANLL, one myelodysplastic syndrome, and two chronic myeloproliferative disorders. Trisomy 13 as the sole acquired karyotypic abnormality therefore seems to be strongly associated with myeloid differentiation of the neoplastic cells and with a differentiation block leading to acute leukemia.

  15. Phenotypic Analysis of Korean Patients with Abnormal Chromosomal Microarray in Patients with Unexplained Developmental Delay/Intellectual Disability.

    PubMed

    Kim, Hyo Jeong; Park, Chang Il; Lim, Jae Woo; Lee, Gyung Min; Cho, Eunhae; Kim, Hyon J

    2018-05-01

    The present study aimed to investigate chromosomal microarray (CMA) and clinical data in patients with unexplained developmental delay/intellectual disability (DD/ID) accompanying dysmorphism, congenital anomalies, or epilepsy. We also aimed to evaluate phenotypic clues in patients with pathogenic copy number variants (CNVs). We collected clinical and CMA data from patients at Konyang University Hospital between September 2013 and October 2014. We included patients who had taken the CMA test to evaluate the etiology of unexplained DD/ID. All of the 50 patients identified had DD/ID. Thirty-nine patients had dysmorphism, 19 patients suffered from epilepsy, and 12 patients had congenital anomalies. Twenty-nine of the 50 patients (58%) showed abnormal results. Eighteen (36%) were considered to have pathogenic CNVs. Dysmorphism (p=0.028) was significantly higher in patients with pathogenic CNVs than in those with normal CMA. Two or more clinical features were presented by 61.9% (13/21) of the patients with normal CMA and by 83.3% (15/18) of the patients with pathogenic CMA. Dysmorphism can be a phenotypic clue to pathogenic CNVs. Furthermore, pathogenic CNV might be more frequently found if patients have two or more clinical features in addition to DD/ID. © Copyright: Yonsei University College of Medicine 2018.

  16. Effect of fetal exposure to bisphenol A on brain mediated by X-chromosome inactivation.

    PubMed

    Kumamoto, Takayuki; Oshio, Shigeru

    2013-01-01

    Recent studies have reported that bisphenol A (BPA) influences brain development in fetal exposure to mice. The X-chromosome codes many neurodevelopment-related genes leading to abnormal development, such as mental retardation and intellectual deficiency. For females, most of expressions of X-linked genes are regulated by X-chromosome inactivation (XCI), which occurs during fetal period, and this mechanism is regulated by Xist and its antisense, Tsix. To clarify the possibility of X-mediated effect as a mechanism of neurodevelopmental disorders by BPA, pregnant ICR mice were orally administered 0.02 or 50 mg/kg of BPA on gestational days 6 and 15. Postnatally at days 2, 4 and weeks 3 and 7, mRNA expression of XCI-regulating factors (Xist and Tsix), X-linked neurodevelopment-related genes (Fmr1, Gdi1, Nlgn3, Pak3 and Ophn1), and sexual differentiation-related genes (ERα, ERβ and AR) were examined in cerebrums of female pups. Anogenital distance (AGD) and serum estradiol were also examined. In the 50 mg/kg exposed-group, reduced Xist, Fmr1, Gdi1, Nlgn3, and Pak3 and increased Tsix were observed simultaneously. Moderately reduced Xist, Gdi1, Nlgn3 and Pak3 were observed at 0.02 mg/kg BPA. ERα, ERβ and AR expression changes, shortened AGDs and reduced estradiol levels were observed in each exposure group. Fetal exposure to BPA changed expression of XCI-regulating factors and may alter the expression levels of X-linked neurodevelopment-related genes disrupting the XCI mechanism and function. This X-mediated effect is considered one of the mechanisms of various BPA-induced neurodevelopmental disorders.

  17. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    PubMed

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36. Copyright © 2011 Wiley Periodicals, Inc.

  18. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  19. Losartan Decreases Cardiac Muscle Fibrosis and Improves Cardiac Function in Dystrophin-Deficient Mdx Mice

    PubMed Central

    Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  20. A Hierarchical Generative Framework of Language Processing: Linking Language Perception, Interpretation, and Production Abnormalities in Schizophrenia

    PubMed Central

    Brown, Meredith; Kuperberg, Gina R.

    2015-01-01

    Language and thought dysfunction are central to the schizophrenia syndrome. They are evident in the major symptoms of psychosis itself, particularly as disorganized language output (positive thought disorder) and auditory verbal hallucinations (AVHs), and they also manifest as abnormalities in both high-level semantic and contextual processing and low-level perception. However, the literatures characterizing these abnormalities have largely been separate and have sometimes provided mutually exclusive accounts of aberrant language in schizophrenia. In this review, we propose that recent generative probabilistic frameworks of language processing can provide crucial insights that link these four lines of research. We first outline neural and cognitive evidence that real-time language comprehension and production normally involve internal generative circuits that propagate probabilistic predictions to perceptual cortices — predictions that are incrementally updated based on prediction error signals as new inputs are encountered. We then explain how disruptions to these circuits may compromise communicative abilities in schizophrenia by reducing the efficiency and robustness of both high-level language processing and low-level speech perception. We also argue that such disruptions may contribute to the phenomenology of thought-disordered speech and false perceptual inferences in the language system (i.e., AVHs). This perspective suggests a number of productive avenues for future research that may elucidate not only the mechanisms of language abnormalities in schizophrenia, but also promising directions for cognitive rehabilitation. PMID:26640435

  1. Successful treatment of an infant with constitutional chromosomal abnormality and hemangiopericytoma with chemotherapy alone.

    PubMed

    Gowans, L Kate; Bentz, Michael L; DeSantes, Kenneth B; Thompson, Kate J

    2007-06-01

    Hemangiopericytoma is a rare vascular tumor, of which 5% to 10% occur in the pediatric population. Although usually benign in infants, local recurrence, metastasis, and deaths have been reported. Clonal chromosomal rearrangements have been described, most involving the long arm of chromosome 12. We report a case of a 6-month-old boy with an hemangiopericytoma of the left forearm initially incorrectly diagnosed as hemangioma. He was treated successfully with chemotherapy alone using vincristine, doxorubicin, actinomycin-D, and cyclophosphamide. Although cytogenetic analysis was not performed on his biopsy, it was later discovered that a prenatal karyotype had shown 46,XY,inv(12)(q15q24.1).

  2. Y-chromosome microdeletions are not associated with SHOX haploinsufficiency.

    PubMed

    Chianese, C; Lo Giacco, D; Tüttelmann, F; Ferlin, A; Ntostis, P; Vinci, S; Balercia, G; Ars, E; Ruiz-Castañé, E; Giglio, S; Forti, G; Kliesch, S; Krausz, C

    2013-11-01

    Are Y-chromosome microdeletions associated with SHOX haploinsufficiency, thus representing a risk of skeletal anomalies for the carriers and their male descendents? The present study shows that SHOX haploinsufficiency is unlikely to be associated with Y-chromosome microdeletions. Y-chromosome microdeletions are not commonly known as a major molecular genetic cause of any pathological condition except spermatogenic failure. However, it has been recently proposed that they are associated not only with infertility but also with anomalies in the pseudoautosomal regions (PAR), among which SHOX haploinsufficiency stands out with a frequency of 5.4% in microdeletion carriers bearing a normal karyotype. This finding implies that sons fathered by men with Y-chromosome defects will not only exhibit fertility problems, but might also suffer from SHOX-related conditions. Five European laboratories (Florence, Münster, Barcelona, Padova and Ancona), routinely performing Y-chromosome microdeletion screening, were enrolled in a multicenter study. PAR-linked and SHOX copy number variations (CNVs) were analyzed in 224 patients carrying Y-chromosome microdeletions and 112 controls with an intact Y chromosome, using customized X-chromosome-specific array-CGH platforms and/or qPCR assays for SHOX and SRY genes. Our data show that 220 out of 224 (98.2%) microdeletion carriers had a normal SHOX copy number, as did all the controls. No SHOX deletions were found in any of the examined subjects (patients as well as controls), thus excluding an association with SHOX haploinsufficiency. SHOX duplications were detected in 1.78% of patients (n = 4), of whom two had an abnormal and two a normal karyotype. This might suggest that Y-chromosome microdeletions have a higher incidence for SHOX duplications, irrespective of the patient's karyotype. However, the only clinical condition observed in our four SHOX-duplicated patients was infertility. The number of controls analyzed is rather low to

  3. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    PubMed

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  4. The Evolutionary Tempo of Sex Chromosome Degradation in Carica papaya.

    PubMed

    Wu, Meng; Moore, Richard C

    2015-06-01

    Genes on non-recombining heterogametic sex chromosomes may degrade over time through the irreversible accumulation of deleterious mutations. In papaya, the non-recombining male-specific region of the Y (MSY) consists of two evolutionary strata corresponding to chromosomal inversions occurring approximately 7.0 and 1.9 MYA. The step-wise recombination suppression between the papaya X and Y allows for a temporal examination of the degeneration progress of the young Y chromosome. Comparative evolutionary analyses of 55 X/Y gene pairs showed that Y-linked genes have more unfavorable substitutions than X-linked genes. However, this asymmetric evolutionary pattern is confined to the oldest stratum, and is only observed when recently evolved pseudogenes are included in the analysis, indicating a slow degeneration tempo of the papaya Y chromosome. Population genetic analyses of coding sequence variation of six Y-linked focal loci in the oldest evolutionary stratum detected an excess of nonsynonymous polymorphism and reduced codon bias relative to autosomal loci. However, this pattern was also observed for corresponding X-linked loci. Both the MSY and its corresponding X-specific region are pericentromeric where recombination has been shown to be greatly reduced. Like the MSY region, overall selective efficacy on the X-specific region may be reduced due to the interference of selective forces between highly linked loci, or the Hill-Robertson effect, that is accentuated in regions of low or suppressed recombination. Thus, a pattern of gene decay on the X-specific region may be explained by relaxed purifying selection and widespread genetic hitchhiking due to its pericentromeric location.

  5. Incidence, characterization and prognostic significance of chromosomal abnormalities in 640 patients with primary myelodysplastic syndromes. Grupo Cooperativo Español de Citogenética Hematológica.

    PubMed

    Solé, F; Espinet, B; Sanz, G F; Cervera, J; Calasanz, M J; Luño, E; Prieto, F; Granada, I; Hernández, J M; Cigudosa, J C; Diez, J L; Bureo, E; Marqués, M L; Arranz, E; Ríos, R; Martínez Climent, J A; Vallespí, T; Florensa, L; Woessner, S

    2000-02-01

    Recently, a consensus International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in the myelodysplastic syndromes (MDS) has been developed. However, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities for which real prognosis at present is uncertain. The main aims of this study were to evaluate in an independent series the prognostic value of the IPSS and to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in 640 patients. In univariate analyses, cases with single 1q abnormalities experienced poor survival, whereas those with trisomy 8 had a higher risk of acute leukaemic transformation than the remaining patients (P = 0.004 and P = 0.009 respectively). Patients with single del(12p) had a similar survival to patients with a normal karyotype and showed some trend for a better survival than other cases belonging to the IPSS intermediate-risk cytogenetic subgroup (P = 0.045). Multivariate analyses demonstrated that IPSS cytogenetic prognostic subgroup, proportion of bone marrow blasts and haemoglobin level were the main prognostic factors for survival, and the first two characteristics and platelet count were the best predictors of acute leukaemic transformation risk. A large international co-operative study should be carried out to clarify these findings.

  6. Condensin II Resolves Chromosomal Associations to Enable Anaphase I Segregation in Drosophila Male Meiosis

    PubMed Central

    Hartl, Tom A.; Sweeney, Sarah J.; Knepler, Peter J.; Bosco, Giovanni

    2008-01-01

    Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we demonstrate that two predicted condensin II subunits, Cap-H2 and Cap-D3, are required to promote territory formation. In mutants of either subunit, territory formation fails and chromatin is dispersed throughout the nucleus. Anaphase I is also abnormal in Cap-H2 mutants as chromatin bridges are found between segregating heterologous and homologous chromosomes. Aneuploid sperm may be generated from these defects as they occur at an elevated frequency and are genotypically consistent with anaphase I segregation defects. We propose that condensin II–mediated prophase I territory formation prevents and/or resolves heterologous chromosomal associations to alleviate their potential interference in anaphase I segregation. Furthermore, condensin II–catalyzed prophase I chromosome condensation may be necessary to resolve associations between paired homologous chromosomes of each bivalent. These persistent chromosome associations likely consist of DNA entanglements, but may be more specific as anaphase I bridging was rescued by mutations in the homolog conjunction factor teflon. We propose that the consequence of condensin II mutations is a failure to resolve heterologous and homologous associations mediated by entangled DNA and/or homolog conjunction factors. Furthermore, persistence of homologous and heterologous interchromosomal associations lead to anaphase I chromatin bridging and the generation of aneuploid gametes. PMID:18927632

  7. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Milone, Jorge H; Enrico, Alicia

    2009-12-01

    The presence of the Philadelphia chromosome is a poor prognosis factor in acute lymphoblastic leukemia (ALL), in both children and adults. Using molecular techniques of the gen bcr/abl, it is possible to detect the abnormality, in up to the 40% of adult patients. The unsatisfactory results with conventional chemotherapy schemes have determined the intensification of the treatments and the consideration of allogenic bone marrow transplants as the best therapeutic instance. The development of tyrosine kinase inhibitors have become a therapeutic improvement in the treatment of Philadelphia chromosome-positive ALL, being combined with chemotherapy schemes, only in a selected group of patients, even in therapeutic programs that include transplant.

  8. [Meiotic drive for aberrant chromosome 1 in mice is determined by a linked distorter].

    PubMed

    Agul'nik, S I; Sabantsev, I D; Orlova, G V; Ruvinskiĭ, A O

    1992-12-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from natural populations of Mus musculus. A meiotic drive favouring the aberrant chromosome was previously demonstrated for heterozygous females. The cause for this was the preferential passage of the chromosome 1 to the oocyte. Genetic analysis made it possible to identify a two-component system conditioning the deviation from equal segregation of the homologues. The system consists of the postulated distorter and a responder. The distorter is located on the chromosome 1 distally to the responder, between the 1n and Pep 3 genes, the former acting on the responder when in the trans position. Polymorphism of the distorters was manifested as variation in their effect on the meiotic drive level in the laboratory strain and mice from natural populations.

  9. Chromosomal Effects on Mutability in the P-M System of Hybrid Dysgenesis in DROSOPHILA MELANOGASTER

    PubMed Central

    Simmons, Michael J.; Raymond, John D.; Laverty, Todd R.; Doll, Rhonda F.; Raymond, Nancy C.; Kocur, Gordon J.; Drier, Eric A.

    1985-01-01

    Two manifestations of hybrid dysgenesis were studied in flies with chromosomes derived from two different P strains. In one set of experiments, the occurrence of recessive X-linked lethal mutations in the germ cells of dysgenic males was monitored. In the other, the behavior of an X-linked P-element insertion mutation, sn w, was studied in dysgenic males and also in dysgenic females. The chromosomes of one P strain were more proficient at causing dysgenesis in both sets of experiments. However, there was variation among the chromosomes of each strain in regard to the ability to induce lethals or to destabilize snw. The X chromosome, especially when it came from the stronger P strain, had a pronounced effect on both measures of dysgenesis, but in combination with the major autosomes, these effects were reduced. For the stronger P strain, the autosomes by themselves contributed significantly to the production of X-linked lethals and also had large effects on the behavior of snw, but they did not act additively on these two characters. For this strain, the effects of the autosomes on the X-linked lethal mutation rate suggest that only 1/100 P element transpositions causes a recessive lethal mutation. For the weaker P strain, the autosomes had only slight effects on the behavior of snw and appeared to have negligible effects on the X-linked lethal mutation rate. Combinations of chromosomes from either the strong or the weak P strain affected both aspects of dysgenesis in a nonadditive fashion, suggesting that the P elements on these chromosomes competed with each other for transposase, the P-encoded function that triggers P element activity. Age and sex also influenced the ability of chromosomes and combinations of chromosomes to cause dysgenesis. PMID:3934034

  10. A rare subclinical or mild type of Becker muscular dystrophy caused by a single exon 48 deletion of the dystrophin gene.

    PubMed

    Zimowski, Janusz G; Pilch, Jacek; Pawelec, Magdalena; Purzycka, Joanna K; Kubalska, Jolanta; Ziora-Jakutowicz, Karolina; Dudzińska, Magdalena; Zaremba, Jacek

    2017-08-01

    In the material of 227 families with Becker muscular dystrophy (BMD), we found nine non-consanguineous families with 17 male individuals carrying a rare mutation-a single exon 48 deletion of the dystrophin gene-who were affected with a very mild or subclinical form of BMD. They were usually detected thanks to accidental findings of elevated serum creatine phosphokinase (sCPK). A thorough clinical analysis of the carriers, both children (12) and adults (5), revealed in some of them muscle hypotonia (10/17) and/or very mild muscle weakness (9/17), as well as decreased tendon reflexes (6/17). Adults, apart from very mild muscle weakness and calf hypertrophy in some, had no significant abnormalities on neurological assessments and had good exercise tolerance. Parents of the children carriers of the exon 48 deletion are usually unaware of their children being affected, and possibly at risk of developing life-threatening cardiomyopathy. The same concerns the adult male carriers. Therefore, the authors postulate undertaking preventive measures such as cascade screening of the relatives of the probands. Newborn screening programmes of Duchenne muscular dystrophy (DMD)/BMD based on sCPK marked increase may be considered.

  11. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  12. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  13. Astrogliosis and impaired aquaporin-4 and dystrophin systems in idiopathic normal pressure hydrocephalus.

    PubMed

    Eide, P K; Hansson, H-A

    2017-06-19

    Idiopathic normal pressure hydrocephalus (iNPH) is one subtype of dementia that may improve following drainage of cerebrospinal fluid (CSF). This prospective observational study explored whether expression of the water channel aquaporin-4 (AQP4) and the anchoring molecule dystrophin 71 (Dp71) are altered at astrocytic perivascular endfeet and in adjacent neuropil of iNPH patient. Observations were related to measurements of pulsatile and static intracranial pressure (ICP). The study included iNPH patients undergoing overnight monitoring of the pulsatile/static ICP in whom a biopsy was taken from the frontal cerebral cortex during placement of the ICP sensor. Reference (Ref) biopsies were sampled from 13 patients who underwent brain surgery for epilepsy, tumours or cerebral aneurysms. The brain tissue specimens were examined by light microscopy, immunohistochemistry, densitometry and morphometry. iNPH patients responding to surgery (n = 44) had elevated pulsatile ICP, indicative of impaired intracranial compliance. As compared to the Ref patients, the cortical biopsies of iNPH patients revealed prominent astrogliosis and reduced expression of AQP4 and Dp71 immunoreactivities in the astrocytic perivascular endfeet and in parts of the adjacent neuropil. There was a significant correlation between degree of astrogliosis and reduction of AQP4 and Dp71 at astrocytic perivascular endfeet. Idiopathic normal pressure hydrocephalus patients responding to CSF diversion present with abnormal pulsatile ICP, indicative of impaired intracranial compliance. A main histopathological finding was astrogliosis and reduction of AQP4 and of Dp71 in astrocytic perivascular endfeet. We propose that the altered AQP4 and Dp71 complex contributes to the subischaemia prevalent in the brain tissue of iNPH. © 2017 British Neuropathological Society.

  14. Philadelphia chromosome-positive lymphoblastic lymphoma-Is it rare or underdiagnosed?

    PubMed

    Alshomar, Ahmad; El Fakih, Riad

    2018-06-15

    Lymphoblastic lymphomas (LBLs) are neoplasms of precursor B and T cells; they are considered in the same spectrum as precursor B and T cell acute lymphoblastic leukemia (ALL). The World Health Organization classification classifies both LBL and ALL as one disease entity. While chromosome abnormalities are well defined with all of their therapeutic and prognostic implications in ALL, these are not well studied in LBL. Here, we describe a case of Philadelphia chromosome-positive LBL and review the available literature regarding this entity. Copyright © 2018. Published by Elsevier Ltd.

  15. Prenatal diagnosis of a de novo 9p terminal chromosomal deletion in a fetus with major congenital anomalies.

    PubMed

    Hou, Wen-Chien; Chen, Chih-Ping; Hwang, Kwei-Shuai; Chen, Ying-Chieh; Lai, Yu-Ju; Tien, Chau-Yang; Su, Her-Young

    2014-12-01

    We describe a prenatal ultrasonography diagnosis of omphalocele and symbrachydactyly in a fetus and review the literature on prenatal diagnosis of 9p terminal chromosomal deletions. A 31-year-old woman (gravida 3, para 1) was referred for genetic counseling because a fetal omphalocele had been detected. Prenatal ultrasonography at 17+ weeks of gestational age revealed a singleton female fetus with biometry equivalent to 18 weeks with an omphalocele. In addition, symbrachydactyly was also noted in the right arm; the wrist bones as well as the metacarpals were missing. A chromosomal study was arranged for a congenital anomaly involving omphalocele. We obtained Giemsa-banded chromosomes from fetal tissue cells, and an abnormal male karyotype with a terminal deletion of the short arm of chromosome 9 at band 9p13 was noted. After delivery, the fetus showed omphalocele, symbrachydactyly, trigonocephaly, sex reversal, a long philtrum, low-set ears, telecanthus, and a frontal prominence. Prenatal diagnosis of abnormal ultrasound findings with omphalocele and symbrachydactyly should include the differential diagnosis of a chromosome 9p deletion. Copyright © 2014. Published by Elsevier B.V.

  16. A transcriptome-based assessment of the astrocytic dystrophin-associated complex in the developing human brain.

    PubMed

    Simon, Matthew J; Murchison, Charles; Iliff, Jeffrey J

    2018-02-01

    Astrocytes play a critical role in regulating the interface between the cerebral vasculature and the central nervous system. Contributing to this is the astrocytic endfoot domain, a specialized structure that ensheathes the entirety of the vasculature and mediates signaling between endothelial cells, pericytes, and neurons. The astrocytic endfoot has been implicated as a critical element of the glymphatic pathway, and changes in protein expression profiles in this cellular domain are linked to Alzheimer's disease pathology. Despite this, basic physiological properties of this structure remain poorly understood including the developmental timing of its formation, and the protein components that localize there to mediate its functions. Here we use human transcriptome data from male and female subjects across several developmental stages and brain regions to characterize the gene expression profile of the dystrophin-associated complex (DAC), a known structural component of the astrocytic endfoot that supports perivascular localization of the astroglial water channel aquaporin-4. Transcriptomic profiling is also used to define genes exhibiting parallel expression profiles to DAC elements, generating a pool of candidate genes that encode gene products that may contribute to the physiological function of the perivascular astrocytic endfoot domain. We found that several genes encoding transporter proteins are transcriptionally associated with DAC genes. © 2017 Wiley Periodicals, Inc.

  17. Prediction of a rare chromosomal aberration simultaneously with next generation sequencing-based comprehensive chromosome screening in human preimplantation embryos for recurrent pregnancy loss.

    PubMed

    Lee, Yi-Xuan; Chen, Chien-Wen; Lin, Yi-Hui; Tzeng, Chii-Ruey; Chen, Chi-Huang

    2018-01-01

    Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.

  18. Chromosome banding in amphibia. XXIII. Giant W sex chromosomes and extremely small genomes in Eleutherodactylus euphronides and Eleutherodactylus shrevei (Anura, Leptodactylidae).

    PubMed

    Schmid, M; Feichtinger, W; Steinlein, C; Rupprecht, A; Haaf, T; Kaiser, H

    2002-01-01

    Highly differentiated, heteromorphic ZZ female symbol /ZW male symbol sex chromosomes were found in the karyotypes of the neotropical leptodactylid frogs Eleutherodactylus euphronides and E. shrevei. The W chromosomes are the largest heterochromatic, female-specific chromosomes so far discovered in the class Amphibia. The analyses of the banding patterns with AT- and GC base-pair specific fluorochromes show that the constitutive heterochromatin in the giant W chromosomes consists of various categories of repetitive DNA sequences. The W chromosomes of both species are similar in size, morphology and banding patterns, whereas their Z chromosomes exhibit conspicuous differences. In the cell nuclei of female animals, the W chromosomes form very prominent chromatin bodies (W chromatin). DNA flow cytometric measurements demonstrate clear differences in the DNA content of male and female erythrocytes caused by the giant W chromosome, and also shows that these Eleutherodactylus genomes are among the smallest of all amphibian genomes. The importance of the heteromorphic ZW sex chromosomes for the study of Z-linked genes, the similarities and differences of the two karyotypes, and the significance of the exceptionally small genomes are discussed. Copyright 2002 S. Karger AG, Basel

  19. Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north american spiny lizards (Genus Sceloporus)?

    PubMed

    Leaché, Adam D; Banbury, Barbara L; Linkem, Charles W; de Oca, Adrián Nieto-Montes

    2016-03-22

    Resolving the short phylogenetic branches that result from rapid evolutionary diversification often requires large numbers of loci. We collected targeted sequence capture data from 585 nuclear loci (541 ultraconserved elements and 44 protein-coding genes) to estimate the phylogenetic relationships among iguanian lizards in the North American genus Sceloporus. We tested for diversification rate shifts to determine if rapid radiation in the genus is correlated with chromosomal evolution. The phylogenomic trees that we obtained for Sceloporus using concatenation and coalescent-based species tree inference provide strong support for the monophyly and interrelationships among nearly all major groups. The diversification analysis supported one rate shift on the Sceloporus phylogeny approximately 20-25 million years ago that is associated with the doubling of the speciation rate from 0.06 species/million years (Ma) to 0.15 species/Ma. The posterior probability for this rate shift occurring on the branch leading to the Sceloporus species groups exhibiting increased chromosomal diversity is high (posterior probability = 0.997). Despite high levels of gene tree discordance, we were able to estimate a phylogenomic tree for Sceloporus that solves some of the taxonomic problems caused by previous analyses of fewer loci. The taxonomic changes that we propose using this new phylogenomic tree help clarify the number and composition of the major species groups in the genus. Our study provides new evidence for a putative link between chromosomal evolution and the rapid divergence and radiation of Sceloporus across North America.

  20. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete?

    PubMed Central

    Walters, James R.; Hardcastle, Thomas J.; Jiggins, Chris D.

    2015-01-01

    The evolution of heterogametic sex chromosomes is often—but not always—accompanied by the evolution of dosage compensating mechanisms that mitigate the impact of sex-specific gene dosage on levels of gene expression. One emerging view of this process is that such mechanisms may only evolve in male-heterogametic (XY) species but not in female-heterogametic (ZW) species, which will consequently exhibit “incomplete” sex chromosome dosage compensation. However, recent results suggest that at least some Lepidoptera (moths and butterflies) may prove to be an exception to this prediction. Studies in bombycoid moths indicate the presence of a chromosome-wide epigenetic mechanism that effectively balances Z chromosome gene expression between the sexes by reducing Z-linked expression in males. In contrast, strong sex chromosome dosage effects without any reduction in male Z-linked expression were previously reported in a pyralid moth, suggesting a lack of any such dosage compensating mechanism. Here we report an analysis of sex chromosome dosage compensation in Heliconius butterflies, sampling multiple individuals for several different adult tissues (head, abdomen, leg, mouth, and antennae). Methodologically, we introduce a novel application of linear mixed-effects models to assess dosage compensation, offering a unified statistical framework that can estimate effects specific to chromosome, to sex, and their interactions (i.e., a dosage effect). Our results show substantially reduced Z-linked expression relative to autosomes in both sexes, as previously observed in bombycoid moths. This observation is consistent with an increasing body of evidence that some lepidopteran species possess an epigenetic dosage compensating mechanism that reduces Z chromosome expression in males to levels comparable with females. However, this mechanism appears to be imperfect in Heliconius, resulting in a modest dosage effect that produces an average 5–20% increase in male expression