Science.gov

Sample records for chronic clostridium difficile

  1. Chronic septic arthritis and osteomyelitis in a prosthetic knee joint due to Clostridium difficile.

    PubMed

    Pron, B; Merckx, J; Touzet, P; Ferroni, A; Poyart, C; Berche, P; Gaillard, J L

    1995-07-01

    A case of chronic septic arthritis and osteomyelitis in a prosthetic knee joint due to Clostridium difficile is reported. A knee prosthesis was installed in a 16-year-old boy for surgical treatment of an osteosarcoma of the femur. Later, the patient suffered a traumatic closed fracture of his patella, and a sterile fluid was aspirated. One month later, the joint displayed inflammation. Culture of the articular fluid yielded a nontoxigenic Clostridium difficile strain. Despite several attempts using conservative medical treatment with penicillins and ornidazole, Clostridium difficile strains with the same antibiotic susceptibility pattern were repeatedly isolated from the joint over an eight-month period. The foreign material was then ablated, and finally, the patient's leg was amputated one year after Clostridium difficile was first isolated. The possible sources of contamination in our case and other reported cases of extraintestinal infection due to Clostridium difficile are discussed.

  2. Clostridium Difficile Infections

    MedlinePlus

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Nausea Abdominal pain or tenderness You might get C. difficile disease if you have an illness that ...

  3. Clostridium difficile and C. difficile Toxin Testing

    MedlinePlus

    ... C diff antigen; GDH Formal name: Clostridium difficile Culture; C. difficile Toxin, A and B; C. difficile Cytotoxin Assay; Glutamate Dehydrogenase Test Related tests: Stool Culture ; O&P At a Glance Test Sample The ...

  4. Clostridium difficile

    MedlinePlus

    ... Health Issues Conditions Abdominal ADHD Allergies & Asthma Autism Cancer Chest & Lungs Chronic Conditions Cleft & Craniofacial Developmental Disabilities Ear Nose & Throat Emotional Problems Eyes Fever From Insects or Animals Genitals and Urinary Tract Glands & Growth ...

  5. Clostridium difficile Infection

    PubMed Central

    Heinlen, Latisha; Ballard, Jimmy D.

    2010-01-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in Europe and North America and is a serious re-emerging pathogen. Recent outbreaks have led to increasing morbidity and mortality and have been associated with a new strain (BI/NAP1/027) of C. difficile that produces more toxin than historical strains. With the increasing incidence of C. difficile infection, clinicians have also seen a change in the epidemiology with increased infections in previously low-risk populations. This chapter highlights the current knowledge on C. difficile virulence, human disease, epidemic outbreaks, and optimal treatment strategies. PMID:20697257

  6. Clostridium difficile colitis.

    PubMed

    Trnka, Y M; Lamont, J T

    1984-01-01

    Clostridium difficile has become one of the commonest pathogens of the lower intestinal tract. This organism appears unique in that infection almost always occurs during or after antibiotic therapy, suggesting that some component of the normal microflora prevents colonization by C. difficile. Once it has overgrown in the colon, C. difficile releases several toxins which cause tissue damage and diarrhea. Infection can range from a simple self-limited diarrheal illness to fulminant colitis with perforation and megacolon. Assay of stool filtrates reveals the presence of cytotoxin in nearly all patients with antibiotic-associated pseudomembranous colitis, and in approximately one third to one half of those with less severe infections. Effective therapy is available in the form of oral vancomycin, although the expense of this antibiotic has led to the use of oral metronidazole or bacitracin, which appear to be equally efficacious and considerably cheaper. Although we have learned a great deal about C. difficile in the past decade, a number of fascinating puzzles remain. We know very little about the immune response to this organism or its toxin, or whether a vaccine might someday be feasible. Similarly, we have very little insight into what effects antibodies exert on the normal colonic flora and how these effects allow C. difficile infection in a small percentage of patients. Studies of this pathogen will undoubtedly lead to a fuller understanding of the enormously complex and still mysterious microbial ferment which lives within our gastrointestinal tract. PMID:6369936

  7. Clostridium difficile in paediatric populations

    PubMed Central

    Allen, Upton D

    2014-01-01

    An increase in Clostridium difficile infection incidence has been observed among hospitalized children in the United States. The present statement, targeted at clinicians caring for infants and children in community and institutional settings, summarizes the relevant information relating to the role of C difficile in childhood diarrhea and provides recommendations for diagnosis, prevention and treatment. Significant differences between adult and paediatric risk factors and disease are discussed, along with emerging therapies. The relationship between age and disease severity in children with a newly emergent and more fluoroqinolone-resistant strain of C difficile (North American Pulse-field type-1 [NAP1]) remains unknown. The importance of antimicrobial stewardship as a preventive strategy is highlighted. This statement replaces a previous Canadian Paediatric Society position statement on C difficile published in 2000. PMID:24627655

  8. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  9. Fidaxomicin: in Clostridium difficile infection.

    PubMed

    Duggan, Sean T

    2011-12-24

    Fidaxomicin is a first-in-class macrocyclic antibacterial that primarily demonstrates activity against species of clostridia, predominantly Clostridium difficile, while having limited or no activity against normal faecal microflora. Fidaxomicin is minimally absorbed following oral administration and is excreted almost solely in the faeces. Fidaxomicin displayed a high level of antibacterial activity against C. difficile in vitro, with a minimum inhibitory concentration required to inhibit 90% of C. difficile strains of 0.125-0.5 μg/mL, and was ≈2- to 8-fold more active than vancomycin or metronidazole. Fidaxomicin demonstrated a prolonged postantibiotic effect against C. difficile relative to vancomycin and metronidazole. In two randomized, double-blind, phase III trials, oral fidaxomicin 200 mg every 12 hours for 10 days was no less effective than oral vancomycin 125 mg every 6 hours for 10 days in the treatment of C. difficile infection, based on noninferiority analyses of clinical cure rates (primary endpoint). Fidaxomicin therapy was associated with a significantly lower rate of recurrence, as well as a significantly higher rate of global cure (i.e. sustained clinical response; resolution of diarrhoea without recurrence) compared with vancomycin therapy in the two clinical trials. Fidaxomicin was generally well tolerated in patients with C. difficile infection, with a tolerability profile generally similar to that of vancomycin.

  10. Clostridium difficile: clinical disease and diagnosis.

    PubMed Central

    Knoop, F C; Owens, M; Crocker, I C

    1993-01-01

    Clostridium difficile is an opportunistic pathogen that causes a spectrum of disease ranging from antibiotic-associated diarrhea to pseudomembranous colitis. Although the disease was first described in 1893, the etiologic agent was not isolated and identified until 1978. Since clinical and pathological features of C. difficile-associated disease are not easily distinguished from those of other gastrointestinal diseases, including ulcerative colitis, chronic inflammatory bowel disease, and Crohn's disease, diagnostic methods have relied on either isolation and identification of the microorganism or direct detection of bacterial antigens or toxins in stool specimens. The current review focuses on the sensitivity, specificity, and practical use of several diagnostic tests, including methods for culture of the etiologic agent, cellular cytotoxicity assays, latex agglutination tests, enzyme immunoassay systems, counterimmunoelectrophoresis, fluorescent-antibody assays, and polymerase chain reactions. PMID:8358706

  11. Genomic diversity of Clostridium difficile strains.

    PubMed

    Janezic, Sandra; Rupnik, Maja

    2015-05-01

    Approaches to exploring Clostridium difficile genomic diversity have ranged from molecular typing methods to use of comparative genome microarrays and whole genome sequence comparisons. The C. difficile population structure is clonal and distributed into six clades, which correlate well with MLST STs (multilocus sequence types) and PCR ribotypes. However, toxigenic strains and strains with increased virulence are distributed throughout several clades. Here we summarize studies on C. difficile genomic diversity, with emphasis on phylogenetic aspects, epidemiological aspect and variability of some virulence factors.

  12. Environmental interventions to control Clostridium difficile.

    PubMed

    Loo, Vivian G

    2015-03-01

    The control of Clostridium difficile infection is paramount. C difficile spores are difficult to eradicate and can survive on surfaces for prolonged periods of time. Hand washing with either plain or antimicrobial soap is effective in removing C difficile spores from hands. Patients should be placed in private rooms and under contact precautions to prevent transmission to other patients. Regular hospital germicides are not sporicidal and hypochlorite solutions are required for surface disinfection. In outbreak situations, a multifaceted approach is required. PMID:25573675

  13. Clostridium difficile in poultry and poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  14. The Challenge of Clostridium difficile Infection.

    PubMed

    Olson, David C; Scobey, Martin W

    2016-01-01

    Clostridium difficile infection is a major problem in the United States, resulting in significant morbidity, mortality, and financial costs to the health care system. This commentary provides an update regarding the epidemiology, diagnosis, current recommended management, and challenges surrounding C. difficile infection. PMID:27154892

  15. Clinical impact of Clostridium difficile colonization.

    PubMed

    Hung, Yuan-Pin; Lee, Jen-Chieh; Lin, Hsiao-Ju; Liu, Hsiao-Chieh; Wu, Yi-Hui; Tsai, Pei-Jane; Ko, Wen-Chien

    2015-06-01

    Clostridium difficile can cause antibiotic-associated diarrhea in hospitalized patients. Asymptomatic colonization by C. difficile is common during the neonatal period and early infancy, ranging from 21% to 48%, and in childhood. The colonization rate of C. difficile in adult hospitalized patients shows geographic variation, ranging from 4.4% to 23.2%. Asymptomatic carriage in neonates caused no further disease in many studies, whereas adult patients colonized with toxigenic C. difficile were prone to the subsequent development of C. difficile-associated diarrhea (CDAD). However, the carriage of nontoxigenic C. difficile strains appears to prevent CDAD in hamsters and humans. Risk factors for C. difficile colonization include recent hospitalization, exposure to antimicrobial agents or gastric acid-suppressing drugs (such as proton-pump inhibitors and H2 blockers), a history of CDAD or cytomegalovirus infection, the presence of an underlying illness, receipt of immunosuppressants, the presence of antibodies against toxin B, and Toll-like receptor 4 polymorphisms. Asymptomatic C. difficile carriers are associated with significant skin and environmental contamination, similar to those with CDAD, and contact isolation and hand-washing practices should therefore be employed as infection control policies for the prevention of C. difficile spread. Treating patients with asymptomatic C. difficile colonization with metronidazole or vancomycin is not suggested by the currently available evidence. In conclusion, asymptomatic C. difficile colonization may lead to skin and environmental contamination by C. difficile, but more attention should be paid to the clinical impact of those with C. difficile colonization.

  16. Inducing and Quantifying Clostridium difficile Spore Formation.

    PubMed

    Shen, Aimee; Fimlaid, Kelly A; Pishdadian, Keyan

    2016-01-01

    The Gram-positive nosocomial pathogen Clostridium difficile induces sporulation during growth in the gastrointestinal tract. Sporulation is necessary for this obligate anaerobe to form metabolically dormant spores that can resist antibiotic treatment, survive exit from the mammalian host, and transmit C. difficile infections. In this chapter, we describe a method for inducing C. difficile sporulation in vitro. This method can be used to study sporulation and maximize spore purification yields for a number of C. difficile strain backgrounds. We also describe procedures for visualizing spore formation using phase-contrast microscopy and for quantifying the efficiency of sporulation using heat resistance as a measure of functional spore formation. PMID:27507338

  17. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  18. Genomic diversity of Clostridium difficile strains.

    PubMed

    Janezic, Sandra; Rupnik, Maja

    2015-05-01

    Approaches to exploring Clostridium difficile genomic diversity have ranged from molecular typing methods to use of comparative genome microarrays and whole genome sequence comparisons. The C. difficile population structure is clonal and distributed into six clades, which correlate well with MLST STs (multilocus sequence types) and PCR ribotypes. However, toxigenic strains and strains with increased virulence are distributed throughout several clades. Here we summarize studies on C. difficile genomic diversity, with emphasis on phylogenetic aspects, epidemiological aspect and variability of some virulence factors. PMID:25700631

  19. Diagnostic pitfalls in Clostridium difficile infection.

    PubMed

    Planche, Tim; Wilcox, Mark H

    2015-03-01

    Accurate diagnosis of Clostridium difficile infection (CDI) is important not only for patient care but also for epidemiology and disease research. As it is not possible clinically to reliably differentiate CDI from other causes of health care-associated diarrhea, the laboratory confirmation of CDI is essential. Rapid commercial assays, including nucleic acid amplification tests and immunoassays for C difficile toxin and glutamate dehydrogenase, have largely superseded the use of older assays. Although assays that detect the presence of free C difficile toxin in feces are less frequently positive than tests for organism, they are preferable for the detection of CDI.

  20. Review of Clostridium difficile-associated diseases.

    PubMed

    McFarland, L V; Stamm, W E

    1986-06-01

    Clostridium difficile has recently become recognized as an important nosocomial pathogen. This review summarizes what is known about the isolation of the organism, the spectrum of clinical disease, virulence factors, treatments, and methods of prevention. Risk factors for C. difficile disease are also discussed. The most important risk factor is the use of certain antibiotics (ampicillin, cephalosporins, and clindamycin). C. difficile is associated with 96% to 100% of cases of pseudomembraneous colitis, 60% to 75% of antibiotic-associated cases of colitis, and 11% to 33% of antibiotic-associated cases of diarrhea. Other risk factors include gastrointestinal manipulations, advanced age, female sex, inflammatory bowel disease, cancer chemotherapy, and renal disorders. Hospital outbreaks of C. difficile disease are examined. Data from nosocomial outbreaks support transmission of C. difficile by contaminated fomites and hand carriage by hospital personnel.

  1. Isolating and Purifying Clostridium difficile Spores.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2016-01-01

    The ability for the obligate anaerobe, Clostridium difficile to form a metabolically dormant spore is critical for the survival of this organism outside of the host. This spore form is resistant to a myriad of environmental stresses, including heat, desiccation, and exposure to disinfectants and antimicrobials. These intrinsic properties of spores allow C. difficile to survive long-term in an oxygenated environment, to be easily transmitted from host-to-host, and to persist within the host following antibiotic treatment. Because of the importance of the spore form to the C. difficile life cycle and treatment and prevention of C. difficile infection (CDI), the isolation and purification of spores are necessary to study the mechanisms of sporulation and germination, investigate spore properties and resistances, and for use in animal models of CDI. Here we provide basic protocols, in vitro growth conditions, and additional considerations for purifying C. difficile spores for a variety of downstream applications. PMID:27507337

  2. Acquisition of Clostridium difficile by piglets.

    PubMed

    Hopman, N E M; Keessen, E C; Harmanus, C; Sanders, I M J G; van Leengoed, L A M G; Kuijper, E J; Lipman, L J A

    2011-04-21

    Clostridium difficile is recognized as an important cause of nosocomial diarrhoea in humans especially in association with administration of antibiotics. In pigs, C. difficile can cause neonatal enteritis and can be isolated from faeces from both diseased and healthy animals. The presented prospective study describes how soon C. difficile can be isolated from newborn piglets after normal parturition and how C. difficile spreads within a pig farm. Six sows, their farrowing crates and their litters at one farm were sampled until C. difficile was found in all piglets. Within 48 h after birth, all 71 piglets became positive for C. difficile (two piglets were already positive within 1h post partum), all sows became positive within 113 h after parturition and the farrowing crates were found intermittently positive. C. difficile could also be detected in air samples and in samples of teats of the sows. All isolates belonged to PCR ribotype 078. Twenty-one C. difficile ribotype 078 isolates, found at the farm, were further analyzed by MLVA (multiple-locus variable-number tandem repeat analysis) and belonged to one clonal complex, except one isolate. To be sure that piglets were not born already infected with C. difficile ribotype 078, 38 caesarean derived piglets were sampled immediately after surgery. All piglets tested negative at delivery and stayed negative for C. difficile ribotype 078 during the 21 days in which they were kept in sterile incubators. This study shows that C. difficile ribotype 078 spreads easily between sows, piglets and the environment. Vertical transmission of C. difficile ribotype 078 was not found and is very unlikely to occur.

  3. Models for the study of Clostridium difficile infection.

    PubMed

    Best, Emma L; Freeman, Jane; Wilcox, Mark H

    2012-01-01

    Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies. PMID:22555466

  4. Molecular epidemiology of endemic Clostridium difficile infection.

    PubMed Central

    Fawley, W. N.; Wilcox, M. H.

    2001-01-01

    This is the first study to provide a comprehensive insight into the molecular epidemiology of endemic Clostridium difficile and particularly that associated with a recently recognized epidemic strain. We DNA fingerprinted all C. difficile isolates from the stools of patients with symptomatic antibiotic-associated diarrhoea and from repeated samples of the inanimate ward environment on two elderly medicine hospital wards over a 22-month period. Notably, C. difficile was not recoverable from either ward immediately before opening, but was found on both wards within 1-3 weeks of opening, and the level of environmental contamination rose markedly during the first 6 months of the study period. C. difficile infection (CDI) incidence data correlated significantly with the prevalence of environmental C. difficile on ward B (r = 0.76, P < 0.05) but not on ward A (r = 0.26, P > 0.05). We found that RAPD and RS-PCR typing had similar discriminatory power, although, despite fingerprinting over 200 C. difficile isolates, we identified only six distinct types. Only two distinct C. difficile strains were identified as causing both patient infection and ward contamination. Attempts to determine whether infected patients or contaminated environments are the prime source for cross-infection by C. difficile had limited success, as over 90% of C. difficile isolates were the UK epidemic clone. However, a non-epidemic strain caused a cluster of six cases of CDI, but was only isolated from the environment after the sixth patient became symptomatic. The initial absence of this strain from the environment implies patient-to-patient and/or staff-to-patient spread. In general, routine cleaning with detergent was unsuccessful at removing C. difficile from the environment. Understanding the epidemiology and virulence of prevalent strains is important if CDI is to be successfully controlled. PMID:11467790

  5. Clostridium difficile PCR Ribotypes in Calves, Canada

    PubMed Central

    Stämpfli, Henry R.; Duffield, Todd; Peregrine, Andrew S.; Trotz-Williams, Lise A.; Arroyo, Luis G.; Brazier, Jon S.; Weese, J. Scott

    2006-01-01

    We investigated Clostridium difficile in calves and the similarity between bovine and human C. difficile PCR ribotypes by conducting a case-control study of calves from 102 dairy farms in Canada. Fecal samples from 144 calves with diarrhea and 134 control calves were cultured for C. difficile and tested with an ELISA for C. difficile toxins A and B. C. difficile was isolated from 31 of 278 calves: 11 (7.6%) of 144 with diarrhea and 20 (14.9%) of 134 controls (p = 0.009). Toxins were detected in calf feces from 58 (56.8%) of 102 farms, 57 (39.6%) of 144 calves with diarrhea, and 28 (20.9%) of 134 controls (p = 0.0002). PCR ribotyping of 31 isolates showed 8 distinct patterns; 7 have been identified in humans, 2 of which have been associated with outbreaks of severe disease (PCR types 017 and 027). C. difficile may be associated with calf diarrhea, and cattle may be reservoirs of C. difficile for humans. PMID:17283624

  6. An Update on Clostridium difficile Toxinotyping

    PubMed Central

    Janezic, Sandra

    2015-01-01

    Toxinotyping is a PCR-restriction fragment length polymorphism (RFLP)-based method for differentiation of Clostridium difficile strains according to the changes in the pathogenicity locus (PaLoc), a region coding for toxins A and B. Toxinotypes are a heterogenous group of strains that are important in the development of molecular diagnostic tests and vaccines and are a good basis for C. difficile phylogenetic studies. Here we describe an overview of the 34 currently known toxinotypes (I to XXXIV) and some changes in nomenclature. PMID:26511734

  7. Characterization of Functional Prophages in Clostridium difficile.

    PubMed

    Sekulović, Ognjen; Fortier, Louis-Charles

    2016-01-01

    Bacteriophages (phages) are present in almost, if not all ecosystems. Some of these bacterial viruses are present as latent "prophages," either integrated within the chromosome of their host, or as episomal DNAs. Since prophages are ubiquitous throughout the bacterial world, there has been a sustained interest in trying to understand their contribution to the biology of their host. Clostridium difficile is no exception to that rule and with the recent release of hundreds of bacterial genome sequences, there has been a growing interest in trying to identify and classify these prophages. Besides their identification in bacterial genomes, there is also growing interest in determining the functionality of C. difficile prophages, i.e., their capacity to escape their host and reinfect a different strain, thereby promoting genomic evolution and horizontal transfer of genes through transduction, for example of antibiotic resistance genes. There is also some interest in using therapeutic phages to fight C. difficile infections.The objective of this chapter is to share with the broader C. difficile research community the expertise we developed in the study of C. difficile temperate phages. In this chapter, we describe a general "pipeline" comprising a series of experiments that we use in our lab to identify, induce, isolate, propagate, and characterize prophages. Our aim is to provide readers with the necessary basic tools to start studying C. difficile phages. PMID:27507339

  8. Action of nitroheterocyclic drugs against Clostridium difficile

    PubMed Central

    Kumar, Manish; Adhikari, Sudip; Hurdle, Julian G.

    2014-01-01

    The nitroheterocyclic classes of drugs have a long history of use in treating anaerobic infections, as exemplified by metronidazole as a first-line treatment for mild-to-moderate Clostridium difficile infection (CDI). Since direct comparisons of the three major classes of nitroheterocyclic drugs (i.e. nitroimidazole, nitazoxanide and nitrofurans) and nitrosating agents against C. difficile are under-examined, in this study their actions against C. difficile were compared. Results show that whilst transient resistance occurs to metronidazole and nitazoxanide, stable resistance arises to nitrofurans upon serial passage. All compounds killed C. difficile at high concentrations in addition to the host defence nitrosating agent S-nitrosoglutathione (GSNO). This suggests that GSNO killing of C. difficile contributes to its efficacy in murine CDI. Although nitric oxide production could not be detected for the nitroheterocyclic drugs, the cellular response to metronidazole and nitrofurans has some overlap with the response to GSNO, causing significant upregulation of the hybrid-cluster protein Hcp that responds to nitrosative stress. These findings provide new insights into the action of nitroheterocyclic drugs against C. difficile. PMID:25129314

  9. Secretome analysis of Clostridium difficile strains.

    PubMed

    Boetzkes, Alexander; Felkel, Katharina Wiebke; Zeiser, Johannes; Jochim, Nelli; Just, Ingo; Pich, Andreas

    2012-08-01

    Clostridium difficile causes infections ranging from mild C. difficile-associated diarrhea to severe pseudomembranous colitis. Since 2003 new hypervirulent C. difficile strains (PCR ribotype 027) emerged characterized by a dramatically increased mortality. The secretomes of the three C. difficile strains CDR20291, CD196, and CD630 were analyzed and compared. Proteins were separated and analyzed by means of SDS--PAGE and LC-MS. MS data were analyzed using Mascot and proteins were checked for export signals with SecretomeP and SignalP. LC-MS analysis revealed 158 different proteins in the supernatant of C. difficile. Most of the identified proteins originate from the cytoplasm. Thirty-two proteins in CDR20291, 36 in CD196 and 26 in CD630 were identified to be secreted by C. difficile strains. Those were mainly S-layer proteins, substrate-binding proteins of ABC-transporters, cell wall hydrolases, pilin and unknown hypothetical proteins. Toxin A and toxin B were identified after growth in brain heart infusion medium using immunological techniques. The ADP-ribosyltransferase-binding component protein, which is a part of the binary toxin CDT, was only identified in the hypervirulent ribotype 027 strains. Further proteins that are secreted specifically by hypervirulent strains were identified. PMID:22398929

  10. [New aspects on Clostridium difficile infection].

    PubMed

    von Müller, Lutz

    2016-08-01

    Clostridium difficile infection (CDI) is a frequent and complex disease which is influenced by the repertoire of bacterial virulence factors, by host immunity and by the intestinal microbiome. These complex interaction opens a number of options which may be used for treatment in the future. One example for new treatment options is fecal microbiota transplantation (FMT). Driven by C. difficile related research activities the knowledge of protective microorganism is increasing and it may be assumed that bacteriotherapy by next-generation probiotics may be used very soon also for other diseases. Very often, CDI reflects to the clinician that antibiotic therapy is associated with side effects. Therefore, C. difficile is the guilty conscience which helps to implement targeted and restrictive antibiotic use in the daily practice. PMID:27509341

  11. Persistent and Recurrent Clostridium difficile Colitis

    PubMed Central

    Cole, Shola A.; Stahl, Thomas J.

    2015-01-01

    Clostridium difficile infection (CDI) is the most frequent cause of nosocomial diarrhea. It has become a significant dilemma in the treatment of patients, and causes increasing morbidity that, in extreme cases, may result in death. Persistent and recurrent disease hamper attempts at eradication of this infection. Escalating levels of treatment and novel therapeutics are being utilized and developed to treat CDI. Further trials are warranted to definitively determine what protocols can be used to treat persistent and recurrent disease. PMID:26034401

  12. Type IV pili promote early biofilm formation by Clostridium difficile.

    PubMed

    Maldarelli, Grace A; Piepenbrink, Kurt H; Scott, Alison J; Freiberg, Jeffrey A; Song, Yang; Achermann, Yvonne; Ernst, Robert K; Shirtliff, Mark E; Sundberg, Eric J; Donnenberg, Michael S; von Rosenvinge, Erik C

    2016-08-01

    Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI. PMID:27369898

  13. Fecal Microbiota Transplantation for Clostridium difficile-Associated Diarrhea.

    PubMed

    Cohen, Nathaniel A; Ben Ami, Ronen; Guzner-Gur, Hanan; Santo, Moshe E; Halpern, Zamir; Maharshak, Nitsan

    2015-08-01

    Clostridium difficile-associated diarrhea is a problem most hospital-based physicians will face in their career. This review aims to refresh current knowledge with regard to Clostridium difficile infection and bring physicians up to date with the latest developments in the growing field of fecal microbiota transplantation, the benefits it offers, and the promise this and other developments hold for the future.

  14. Clostridium difficile associated infection, diarrhea and colitis

    PubMed Central

    Hookman, Perry; Barkin, Jamie S

    2009-01-01

    A new, hypervirulent strain of Clostridium difficile, called NAP1/BI/027, has been implicated in C. difficile outbreaks associated with increased morbidity and mortality since the early 2000s. The epidemic strain is resistant to fluoroquinolones in vitro, which was infrequent prior to 2001. The name of this strain reflects its characteristics, demonstrated by different typing methods: pulsed-field gel electrophoresis (NAP1), restriction endonuclease analysis (BI) and polymerase chain reaction (027). In 2004 and 2005, the US Centers for Disease Control and Prevention (CDC) emphasized that the risk of C. difficile-associated diarrhea (CDAD) is increased, not only by the usual factors, including antibiotic exposure, but also gastrointestinal surgery/manipulation, prolonged length of stay in a healthcare setting, serious underlying illness, immune-compromising conditions, and aging. Patients on proton pump inhibitors (PPIs) have an elevated risk, as do peripartum women and heart transplant recipients. Before 2002, toxic megacolon in C. difficile-associated colitis (CDAC), was rare, but its incidence has increased dramatically. Up to two-thirds of hospitalized patients may be infected with C. difficile. Asymptomatic carriers admitted to healthcare facilities can transmit the organism to other susceptible patients, thereby becoming vectors. Fulminant colitis is reported more frequently during outbreaks of C. difficile infection in patients with inflammatory bowel disease (IBD). C. difficile infection with IBD carries a higher mortality than without underlying IBD. This article reviews the latest information on C. difficile infection, including presentation, vulnerable hosts and choice of antibiotics, alternative therapies, and probiotics and immunotherapy. We review contact precautions for patients with known or suspected C. difficile-associated disease. Healthcare institutions require accurate and rapid diagnosis for early detection of possible outbreaks, to initiate

  15. Clostridium difficile infection in horses: a review.

    PubMed

    Diab, S S; Songer, G; Uzal, F A

    2013-11-29

    Clostridium difficile is considered one of the most important causes of diarrhea and enterocolitis in horses. Foals and adult horses are equally susceptible to the infection. The highly resistant spore of C. difficile is the infectious unit of transmission, which occurs primarily via the fecal-oral route, with sources of infection including equine feces, contaminated soil, animal hospitals, and feces of other animals. Two major risk factors for the development of C. difficile associated disease (CDAD) in adult horses are hospitalization and antimicrobial treatment, although sporadically, cases of CDAD can occur in horses that have not received antimicrobials or been hospitalized. The most common antibiotics associated with CDAD in horses are erythromycin, trimethoprim/sulfonamides, β-lactam antimicrobials, clindamycin, rifampicin, and gentamicin. Clinical signs and intestinal lesions of CDAD infection are not specific and they cannot be used to distinguish infections by C. difficile from infections by other agents, such as Clostridium perfringens or Salmonella sp. The distribution of lesions throughout the intestinal tract seems to be age-dependent. Small intestine is invariably affected, and colon and cecum may or may not have lesions in foals<1-month old. Naturally acquired disease in older foals and adult horses has a more aboral distribution, affecting colon and sometimes cecum, but rarely the small intestine. Detection of toxin A, toxin B or both in intestinal contents or feces is considered the most reliable diagnostic criterion for CDAD in horses. Isolation of toxigenic strains of C. difficile from horses with intestinal disease is highly suggestive of CDAD. A better understanding of pathogenesis, reservoirs of infection, and vaccines and other methods of control is needed. Also further studies are recommended to investigate other possible predisposing factors and/or etiological agents of enteric diseases of horses. PMID:23642413

  16. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  17. Metronidazole Resistance in Clostridium difficile Is Heterogeneous▿

    PubMed Central

    Peláez, T.; Cercenado, E.; Alcalá, L.; Marín, M.; Martín-López, A.; Martínez-Alarcón, J.; Catalán, P.; Sánchez-Somolinos, M.; Bouza, E.

    2008-01-01

    At our institution, the prevalence of clinical isolates of Clostridium difficile with resistance to metronidazole is 6.3%. We observed that initial metronidazole MICs of 16 to 64 mg/liter against toxigenic, primary fresh C. difficile isolates, as determined by agar dilution, decreased to 0.125 mg/liter after the isolates were thawed. In this study, we examined the possibility of heterogeneous or inducible resistance. Totals of 14 metronidazole-resistant and 10 metronidazole-susceptible clinical isolates of toxigenic C. difficile were studied. The isolates were investigated for the presence of nim genes by PCR. After the isolates were thawed, susceptibility testing was done by agar dilution, by disc diffusion using a 5-μg metronidazole disc, and by the Etest method. An experiment for determining the effect of prolonged exposure to metronidazole was applied to all resistant isolates and to susceptible control strains. None of the isolates presented the nim genes. All initially metronidazole-resistant C. difficile isolates became susceptible after thawing; however, they presented slow-growing subpopulations within the inhibition zones of both the disk and the Etest strip. All metronidazole-susceptible isolates remained homogeneously susceptible by both methods. After prolonged exposure in vitro to metronidazole, no zone of inhibition was found around the 5-μg disk in any of the metronidazole-resistant isolates, and the MICs as determined by the Etest method ranged from 0.125 to >256 mg/liter, with colonies growing inside the inhibition zone. Our results indicate that (i) resistance to metronidazole was not due to the presence of nim genes, (ii) resistance to metronidazole in toxigenic C. difficile isolates is heterogeneous, and (iii) prolonged exposure to metronidazole can select for in vitro resistance. We recommend routine performance of the disk diffusion method (5-μg metronidazole disk) with primary fresh C. difficile isolates in order to ensure that

  18. Clostridium difficile Is an Autotrophic Bacterial Pathogen

    PubMed Central

    Köpke, Michael; Straub, Melanie; Dürre, Peter

    2013-01-01

    During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile. PMID:23626782

  19. Prevention of Clostridium difficile Infection With Probiotics.

    PubMed

    Evans, Charlesnika T; Johnson, Stuart

    2015-05-15

    Despite advances in the diagnosis and treatment of Clostridium difficile infection (CDI) and prevention efforts to reduce the spread of C. difficile, CDI remains a significant challenge to healthcare systems worldwide. Further advances in prevention of CDI may need to focus on those who continue to be exposed to the organism and who are susceptible. Interventions directed toward this susceptible population, particularly hospitalized patients who receive antibiotics, may be effective. There is moderate evidence on the effectiveness of probiotics to prevent primary CDI, but there are few data to support use in secondary prevention of recurrent CDI. This review discusses the literature available on the use of probiotics to prevent primary and secondary CDI.

  20. Blastocystis sp. Infection Mimicking Clostridium Difficile Colitis.

    PubMed

    Gil, Gaby S; Chaudhari, Shobhana; Shady, Ahmed; Caballes, Ana; Hong, Joe

    2016-01-01

    We report an unusual case of severe diarrhea related to Blastocystis sp. infection in a patient with end stage renal disease on hemodialysis. The patient was admitted due to profuse diarrhea associated with fever and leukocytosis. Pertinent stool work-up such as leukocytes in stool, stool culture, clostridium difficile toxin B PCR, and serology for hepatitis A, hepatitis B, and hepatitis C and cytomegalovirus screening were all negative. Ova and parasite stool examination revealed Blastocystis sp. The patient was given intravenous metronidazole with clinical improvement by day three and total resolution of symptoms by day ten. PMID:27247810

  1. Antibodies for Treatment of Clostridium difficile Infection

    PubMed Central

    Wilcox, Mark H.

    2014-01-01

    Antibodies for the treatment of Clostridium difficile infection (CDI) have been demonstrated to be effective in the research and clinical environments. Early uncertainties about molecular and treatment modalities now appear to have converged upon the systemic dosing of mixtures of human IgG1. Although multiple examples of high-potency monoclonal antibodies (MAbs) exist, significant difficulties were initially encountered in their discovery. This minireview describes historical and contemporary MAbs and highlights differences between the most potent MAbs, which may offer insight into the pathogenesis and treatment of CDI. PMID:24789799

  2. Clostridium difficile infection and fecal bacteriotherapy.

    PubMed

    Mitchell, Indya; Shropshire, Kasheena; Ruel, Jennifer

    2013-01-01

    Clostridium difficile, also called "C. diff," is a gram-positive bacillus associated with nosocomial infections involving diarrhea, most often seen in developing countries. The severity of C. diff-associated diarrhea varies tremendously from mild and self-limiting to fulminant and life-threatening. C. diff has become an extremely important pathogen in community health but can be minimized with attention to proper hygiene. This article presents a case study regarding the treatment and management options of C. diff infection using a recent update of clinical guidelines for patient management.

  3. Multilocus sequence typing for Clostridium difficile.

    PubMed

    Lemée, Ludovic; Pons, Jean-Louis

    2010-01-01

    Multilocus sequence typing (MLST), a nucleotide sequence-based characterization of allelic polymorphism of housekeeping genes, has been proposed as a new approach for population and evolutionary genetics and global epidemiology of bacterial pathogens. MLST provides unambiguous sequence data that can be generated from various laboratories and should be shared in a common web database. Here are presented most of materials, methods, and programs or software necessary to perform MLST on Clostridium difficile.We also describe an example of an MLST scheme for C. difficile based on sequence analysis of six housekeeping gene loci and use a set of 74 C. difficile isolates from various hosts, geographic sources, and PCR-toxigenic types (A+B+, A-B+, and A-B-). Thirty-two "sequence types" (ST) are defined from the combination of allelic data, which correlate well with toxigenic types. The estimation of linkage disequilibrium between loci reveals a clonal population structure. Mutational evolution of C. difficile is characterized, with point mutation generating new alleles at a frequency eightfold higher than recombinational exchange. Phylogenetic analysis shows that human and animal isolates do not cluster in distinct lineages, and that no hypervirulent lineage can be characterized within the population of toxigenic human isolates studied (strains from pseudomembranous colitis and antibiotic-associated diarrhea do not cluster in distinct lineages). However, all A-B+ variant isolates belong to a divergent but very homogeneous lineage in the population studied.An MLST database specific for this species is now hosted at the web site of the Institut Pasteur Paris. Since MLST data reflect evolutionary genetics of the species, they could be used as typing markers, possibly in combination with virulence genes data, for long-term global epidemiology of C. difficile.

  4. Tea and Recurrent Clostridium difficile Infection

    PubMed Central

    Starley, Brad; Galagan, Jack Carl; Yabes, Joseph Michael; Evans, Sara

    2016-01-01

    Background and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI). Methods. In this cross-sectional survey, consecutive patients diagnosed with CDI were identified by electronic medical records. Colitis symptoms and positive Clostridium difficile assay were confirmed. Health-care onset-health-care facility associated CDI was excluded. Food surveys were mailed to 411 patients. Survey responses served as the primary outcome measure. Spearman's rank correlation identified risk factors for CDI recurrence. Results. Surveys were returned by 68 patients. Nineteen patients experienced CDI recurrence. Compared to patients without CDI recurrence, patients with CDI recurrence had more antibiotics prescribed preceding their infection (p = 0.003). Greater numbers of the latter also listed tea (p = 0.002), coffee (p = 0.013), and eggs (p = 0.013), on their 24-hour food recall. Logistic regression identified tea as the only food risk factor for CDI recurrence (adjusted OR: 5.71; 95% CI: 1.26–25.89). Conclusion. The present results indicate a possible association between tea and CDI recurrence. Additional studies are needed to characterize and confirm this association. PMID:27651790

  5. Tea and Recurrent Clostridium difficile Infection.

    PubMed

    Oman Evans Ii, Martin; Starley, Brad; Galagan, Jack Carl; Yabes, Joseph Michael; Evans, Sara; Salama, Joseph John

    2016-01-01

    Background and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI). Methods. In this cross-sectional survey, consecutive patients diagnosed with CDI were identified by electronic medical records. Colitis symptoms and positive Clostridium difficile assay were confirmed. Health-care onset-health-care facility associated CDI was excluded. Food surveys were mailed to 411 patients. Survey responses served as the primary outcome measure. Spearman's rank correlation identified risk factors for CDI recurrence. Results. Surveys were returned by 68 patients. Nineteen patients experienced CDI recurrence. Compared to patients without CDI recurrence, patients with CDI recurrence had more antibiotics prescribed preceding their infection (p = 0.003). Greater numbers of the latter also listed tea (p = 0.002), coffee (p = 0.013), and eggs (p = 0.013), on their 24-hour food recall. Logistic regression identified tea as the only food risk factor for CDI recurrence (adjusted OR: 5.71; 95% CI: 1.26-25.89). Conclusion. The present results indicate a possible association between tea and CDI recurrence. Additional studies are needed to characterize and confirm this association.

  6. Tea and Recurrent Clostridium difficile Infection.

    PubMed

    Oman Evans Ii, Martin; Starley, Brad; Galagan, Jack Carl; Yabes, Joseph Michael; Evans, Sara; Salama, Joseph John

    2016-01-01

    Background and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI). Methods. In this cross-sectional survey, consecutive patients diagnosed with CDI were identified by electronic medical records. Colitis symptoms and positive Clostridium difficile assay were confirmed. Health-care onset-health-care facility associated CDI was excluded. Food surveys were mailed to 411 patients. Survey responses served as the primary outcome measure. Spearman's rank correlation identified risk factors for CDI recurrence. Results. Surveys were returned by 68 patients. Nineteen patients experienced CDI recurrence. Compared to patients without CDI recurrence, patients with CDI recurrence had more antibiotics prescribed preceding their infection (p = 0.003). Greater numbers of the latter also listed tea (p = 0.002), coffee (p = 0.013), and eggs (p = 0.013), on their 24-hour food recall. Logistic regression identified tea as the only food risk factor for CDI recurrence (adjusted OR: 5.71; 95% CI: 1.26-25.89). Conclusion. The present results indicate a possible association between tea and CDI recurrence. Additional studies are needed to characterize and confirm this association. PMID:27651790

  7. Tea and Recurrent Clostridium difficile Infection

    PubMed Central

    Starley, Brad; Galagan, Jack Carl; Yabes, Joseph Michael; Evans, Sara

    2016-01-01

    Background and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI). Methods. In this cross-sectional survey, consecutive patients diagnosed with CDI were identified by electronic medical records. Colitis symptoms and positive Clostridium difficile assay were confirmed. Health-care onset-health-care facility associated CDI was excluded. Food surveys were mailed to 411 patients. Survey responses served as the primary outcome measure. Spearman's rank correlation identified risk factors for CDI recurrence. Results. Surveys were returned by 68 patients. Nineteen patients experienced CDI recurrence. Compared to patients without CDI recurrence, patients with CDI recurrence had more antibiotics prescribed preceding their infection (p = 0.003). Greater numbers of the latter also listed tea (p = 0.002), coffee (p = 0.013), and eggs (p = 0.013), on their 24-hour food recall. Logistic regression identified tea as the only food risk factor for CDI recurrence (adjusted OR: 5.71; 95% CI: 1.26–25.89). Conclusion. The present results indicate a possible association between tea and CDI recurrence. Additional studies are needed to characterize and confirm this association.

  8. A prediction model for Clostridium difficile recurrence

    PubMed Central

    LaBarbera, Francis D.; Nikiforov, Ivan; Parvathenani, Arvin; Pramil, Varsha; Gorrepati, Subhash

    2015-01-01

    Background Clostridium difficile infection (CDI) is a growing problem in the community and hospital setting. Its incidence has been on the rise over the past two decades, and it is quickly becoming a major concern for the health care system. High rate of recurrence is one of the major hurdles in the successful treatment of C. difficile infection. There have been few studies that have looked at patterns of recurrence. The studies currently available have shown a number of risk factors associated with C. difficile recurrence (CDR); however, there is little consensus on the impact of most of the identified risk factors. Methods Our study was a retrospective chart review of 198 patients diagnosed with CDI via Polymerase Chain Reaction (PCR) from January 2009 to Jun 2013. In our study, we decided to use a machine learning algorithm called the Random Forest (RF) to analyze all of the factors proposed to be associated with CDR. This model is capable of making predictions based on a large number of variables, and has outperformed numerous other models and statistical methods. Results We came up with a model that was able to accurately predict the CDR with a sensitivity of 83.3%, specificity of 63.1%, and area under curve of 82.6%. Like other similar studies that have used the RF model, we also had very impressive results. Conclusions We hope that in the future, machine learning algorithms, such as the RF, will see a wider application. PMID:25656667

  9. Purification and characterization of Clostridium difficile toxin.

    PubMed Central

    Rolfe, R D; Finegold, S M

    1979-01-01

    Recent evidence indicates that toxigenic Clostridium difficile strains are a major cause of antimicrobial-associated ileocecitis in laboratory animals and pseudomembranous colitis in humans. C. difficile ATCC 9689 was cultivated in a synthetic medium to which 3% ultrafiltrated proteose peptone was added. Purification of the toxin from broth filtrate was accomplished through ultrafiltration (100,000 nominal-molecular-weight-limit membrane), precipitation with 75% (NH4)2SO4, and chromatographic separation using Bio-Gel A 5m followed by ion-exchange chromatography on a diethylaminoethyl-Sephadex A-25 column. The purified toxin displayed only one band on polyacrylamide gel electrophoresis, and approximately 170 pg was cytopathic for human amnion cells. The isolated toxin was neutralized by Clostridium sordelli antitoxin, heat labile (56 degrees C for 30 min), and inactivated at pH 4 and 9; it had an isoelectric point of 5.0, increased vascular permeability in rabbits, and caused ileocecitis in hamsters when injected intracecally. Treatment of the toxin with trypsin, chymotrypsin, pronase, amylase, or ethylmercurithiosalicylate caused inactivation, whereas lipase had no effect. By gel filtration, its molecular weight was estimated as 530,000. Upon reduction and denaturation, the toxin dissociated into 185,000- and 50,000-molecular-weight components, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extensive dissociation yielded only the 50,000-molecular-weight component. The toxin appears to be protoplasmic and is released into the surrounding environment upon autolysis of the cells. Attempts to correlate specific enzymatic activity with the toxin have been unsuccessful. These studies will help delineate the role of C. difficile toxin in antimicrobial-associated colitis and diarrhea. Images PMID:478634

  10. Evaluation of Clostridium difficile in dogs and the household environment.

    PubMed

    Weese, J S; Finley, R; Reid-Smith, R R; Janecko, N; Rousseau, J

    2010-08-01

    Clostridium difficile may be an emerging community-associated pathogen but little is known about its sources of exposure. This study evaluated C. difficile contamination in households and colonization of pets. C. difficile was isolated from 44/836 (5.3%) sites in 26/84 (31%) households. Ribotype 027 was the most common (25%) environmental strain. C. difficile was isolated from 14/139 (10%) dogs. Living with an immunocompromised individual was associated with C. difficile colonization in dogs. All toxigenic strains identified in pets have been isolated from humans in Ontario. C. difficile was isolated concurrently from dogs and the environment in four households, but in all cases canine and environmental ribotypes were different. C. difficile was relatively common in households, suggesting that exposure to this pathogen may be a regular event. There was no evidence that dogs are a significant source of household C. difficile contamination.

  11. Flooding and Clostridium difficile infection: a case-crossover analysis

    EPA Science Inventory

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospttalized and/or receiving antibiotics; however, community­ associated infections affecting otherwise healthy individuals have become more ...

  12. Intravenous Immunoglobulin in the Treatment of Severe Clostridium Difficile Colitis

    PubMed Central

    Shah, Nihar; Shaaban, Hamid; Spira, Robert; Slim, Jihad; Boghossian, Jack

    2014-01-01

    Intravenous immunoglobulin (IVIG) has been utilized in patients with recurrent and refractory Clostridium difficile colitis. It is increasingly being used in patients with initial clinical presentation of severe colitis. Herein, we report a case of severe C. Difficile colitis successfully treated with IVIG with a review of the medical literature to identify the optimal timing and clinical characteristics for this treatment strategy. PMID:24926170

  13. Small Molecules Take A Big Step Against Clostridium difficile.

    PubMed

    Beilhartz, Greg L; Tam, John; Melnyk, Roman A

    2015-12-01

    Effective treatment of Clostridium difficile infections demands a shift away from antibiotics towards toxin-neutralizing agents. Work by Bender et al., using a drug that attenuates toxin action in vivo without affecting bacterial survival, demonstrates the exciting potential of small molecules as a new modality in the fight against C. difficile. PMID:26547239

  14. Acute oxalate nephropathy associated with Clostridium difficile colitis.

    PubMed

    Cohen-Bucay, Abraham; Garimella, Pranav; Ezeokonkwo, Chukwudi; Bijol, Vanesa; Strom, James A; Jaber, Bertrand L

    2014-01-01

    We report the case of a 69-year-old man who presented with acute kidney injury in the setting of community-acquired Clostridium difficile-associated diarrhea and biopsy-proven acute oxalate nephropathy. We discuss potential mechanisms, including increased colonic permeability to oxalate. We conclude that C difficile-associated diarrhea is a potential cause of acute oxalate nephropathy. PMID:24183111

  15. PREVALENCE OF CLOSTRIDIUM DIFFICILE IN AN INTEGRATED SWINE OPERATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Isolation of C. difficile was performed u...

  16. Isolation of Clostridium difficile from healthy food animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Clostridium difficile-associated disease is increasingly reported and studies indicate that food animals may be sources of human infections. Methods: The presence of C. difficile in 345 swine fecal, 1,325 dairy cattle fecal, and 371 dairy environmental samples were examined. Two isolati...

  17. Fecal microbiota transplantation in the treatment of Clostridium difficile infections.

    PubMed

    Austin, Matthew; Mellow, Mark; Tierney, William M

    2014-06-01

    In recent years, Clostridium difficile infections have become more frequent, more severe, more refractory to standard treatment, and more likely to recur. Current antibiotic treatment regimens for Clostridium difficile infection alter the normal gut flora, which provide colonization resistance against Clostridium difficile. Over the past few years, there has been a marked increase in the knowledge of the gut microbiota and its role in health maintenance and disease causation. This has, fortuitously, coincided with the use of a unique microbial replacement therapy, fecal microbiota transplantation, in the treatment of patients with multiple recurrent Clostridium difficile infections. We briefly review current knowledge of the gut microbiota's functions. We then review the indications for use of fecal microbiota transplantation in Clostridium difficile infection, the techniques employed, and results of treatment. Fecal microbiota transplantation has been shown to be efficacious for patients with multiply recurrent Clostridium difficile infections (reported cure rates of 90%), with an excellent short-term safety profile, and has been included in the American College of Gastroenterology treatment guidelines for this troublesome disease.

  18. Antimicrobial susceptibilities of canine Clostridium difficile and Clostridium perfringens isolates to commonly utilized antimicrobial drugs.

    PubMed

    Marks, Stanley L; Kather, Elizabeth J

    2003-06-24

    Clostridium difficile and Clostridium perfringens are anaerobic, Gram-positive bacilli that are common causes of enteritis and enterotoxemias in both domestic animals and humans. Both organisms have been associated with acute and chronic large and small bowel diarrhea, and acute hemorrhagic diarrheal syndrome in the dog. The objective of this study was to determine the in vitro antimicrobial susceptibilities of canine C. difficile and C. perfringens isolates in an effort to optimize antimicrobial therapy for dogs with clostridial-associated diarrhea. The minimum inhibitory concentrations (MIC) of antibiotics recommended for treating C. difficile (metronidazole, vancomycin) and C. perfringens-associated diarrhea in the dog (ampicillin, erythromycin, metronidazole, tetracycline, tylosin) were determined for 70 canine fecal C. difficile isolates and 131 C. perfringens isolates. All C. difficile isolates tested had an MIC of or=256 microg/ml for both erythromycin and tylosin. A third C. perfringens isolate had an MIC of 32 microg/ml for metronidazole. Based on the results of this study, ampicillin, erythromycin, metronidazole, and tylosin appear to be effective antibiotics for the treatment of C. perfringens-associated diarrhea, although resistant strains do exist. However, because there is limited information regarding breakpoints for veterinary anaerobes, and because intestinal concentrations are not known, in vitro results should be interpreted with caution. PMID:12742714

  19. Role of probiotics in antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, and recurrent Clostridium difficile-associated diarrhea.

    PubMed

    Surawicz, Christina M

    2008-07-01

    The role of probiotics in the prevention and treatment of antibiotic-associated diarrhea, Clostridium difficile diarrhea, and recurrent C. difficile diarrhea is reviewed. Various probiotics have variable efficacy. More studies are needed to define further their efficacies, roles, and indications.

  20. CRISPR Diversity and Microevolution in Clostridium difficile.

    PubMed

    Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe

    2016-01-01

    Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes.

  1. CRISPR Diversity and Microevolution in Clostridium difficile.

    PubMed

    Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe

    2016-01-01

    Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538

  2. Asymptomatic Clostridium difficile Colonisation and Onward Transmission

    PubMed Central

    Eyre, David W.; Griffiths, David; Vaughan, Alison; Golubchik, Tanya; Acharya, Milind; O’Connor, Lily; Crook, Derrick W.

    2013-01-01

    Introduction Combined genotyping/whole genome sequencing and epidemiological data suggest that in endemic settings only a minority of Clostridium difficile infection, CDI, is acquired from other cases. Asymptomatic patients are a potential source for many unexplained cases. Methods We prospectively screened a cohort of medical inpatients in a UK teaching hospital for asymptomatic C. difficile carriage using stool culture. Electronic and questionnaire data were used to determine risk factors for asymptomatic carriage by logistic regression. Carriage isolates were compared with all hospital/community CDI cases from the same geographic region, from 12 months before the study to 3 months after, using whole genome sequencing and hospital admission data, assessing particularly for evidence of onward transmission from asymptomatic cases. Results Of 227 participants recruited, 132 provided ≥1 stool samples for testing. 18 participants were culture-positive for C. difficile, 14/132(11%) on their first sample. Independent risk factors for asymptomatic carriage were patient reported loose/frequent stool (but not meeting CDI criteria of ≥3 unformed stools in 24 hours), previous overnight hospital stay within 6 months, and steroid/immunosuppressant medication in the last 6 months (all p≤0.02). Surprisingly antibiotic exposure in the last 6 months was independently associated with decreased risk of carriage (p = 0.005). The same risk factors were identified excluding participants reporting frequent/loose stool. 13/18(72%) asymptomatically colonised patients carried toxigenic strains from common disease-causing lineages found in cases. Several plausible transmission events to asymptomatic carriers were identified, but in this relatively small study no clear evidence of onward transmission from an asymptomatic case was seen. Conclusions Transmission events from any one asymptomatic carrier are likely to be relatively rare, but as asymptomatic carriage is common, it may

  3. The Changing Epidemiology of Clostridium difficile Infections

    PubMed Central

    Freeman, J.; Bauer, M. P.; Baines, S. D.; Corver, J.; Fawley, W. N.; Goorhuis, B.; Kuijper, E. J.; Wilcox, M. H.

    2010-01-01

    Summary: The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI. These changes have been driven to a major degree by the emergence and epidemic spread of a novel strain, known as PCR ribotype 027 (sometimes referred to as BI/NAP1/027). We review the evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI, and the similarities and differences between data from various countries and continents. Community-acquired CDI has also emerged, although the evidence for this as a distinct new entity is less clear. There are new data on the etiology of and potential risk factors for CDI; controversial issues include specific antimicrobial agents, gastric acid suppressants, potential animal and food sources of C. difficile, and the effect of the use of alcohol-based hand hygiene agents. PMID:20610822

  4. The Antimicrobial Stewardship Approach to Combating Clostridium Difficile

    PubMed Central

    Wenzler, Eric; Mulugeta, Surafel G.; Danziger, Larry H.

    2015-01-01

    Clostridium difficile remains a major public health threat and continues to contribute to excess morbidity, mortality and healthcare costs. Antimicrobial stewardship programs have demonstrated success in combating C. difficile, primarily through antibiotic restrictive strategies. As the incidence and prevalence of C. difficile associate disease continues to increase both in the hospital and community setting, additional stewardship approaches are needed. This manuscript reviews stewardship interventions that have been successful against C. difficile associated disease and proposes future tactics that antimicrobial stewardship programs may employ to develop a more global approach to combat this difficult pathogen. PMID:27025621

  5. The Antimicrobial Stewardship Approach to Combating Clostridium Difficile.

    PubMed

    Wenzler, Eric; Mulugeta, Surafel G; Danziger, Larry H

    2015-06-17

    Clostridium difficile remains a major public health threat and continues to contribute to excess morbidity, mortality and healthcare costs. Antimicrobial stewardship programs have demonstrated success in combating C. difficile, primarily through antibiotic restrictive strategies. As the incidence and prevalence of C. difficile associate disease continues to increase both in the hospital and community setting, additional stewardship approaches are needed. This manuscript reviews stewardship interventions that have been successful against C. difficile associated disease and proposes future tactics that antimicrobial stewardship programs may employ to develop a more global approach to combat this difficult pathogen.

  6. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  7. Identification of toxigenic Clostridium difficile by the polymerase chain reaction.

    PubMed Central

    Kato, N; Ou, C Y; Kato, H; Bartley, S L; Brown, V K; Dowell, V R; Ueno, K

    1991-01-01

    Toxigenic strains of Clostridium difficile are causative agents of pseudomembranous colitis and antimicrobial agent-associated diarrhea and colitis. The toxigenicity is routinely assayed by using highly sensitive cell cultures. We used a simple and rapid polymerase chain reaction (PCR) assay to differentiate toxigenic and nontoxigenic strains of C. difficile. Two sets of oligonucleotide primer pairs derived from nonrepeating sequences of the toxin A gene were used to amplify 546- and 252-bp DNA fragments. A primer pair derived from repeating sequences of the toxin A gene was used to amplify a 1,266-bp DNA product. Amplified products were visualized by polyacrylamide gel electrophoresis followed by ethidium bromide staining. All 35 cytotoxic strains of C. difficile tested generated the expected amplified DNA. In contrast, none of the 26 noncytotoxic strains tested gave positive results. Although the toxins of C. difficile have been demonstrated to cross-react serologically with the toxins of Clostridium sordellii, we did not detect any amplified DNA in two cytotoxic strains or seven noncytotoxic strains of C. sordellii. PCR was negative in all 30 strains of 20 other Clostridium species. Southern hybridization of HindIII-digested genomic DNA by use of subgenomic probes showed a single hybridization band in toxigenic strains but not in nontoxigenic strains. PCR appears to be a sensitive and specific assay for the rapid identification of toxigenic C. difficile. Nontoxigenic C. difficile appeared to lack the C. difficile toxin A gene. Images PMID:1993763

  8. Anti-Clostridium difficile bovine immunoglobulin concentrate inhibits cytotoxicity and enterotoxicity of C. difficile toxins.

    PubMed Central

    Kelly, C P; Pothoulakis, C; Vavva, F; Castagliuolo, I; Bostwick, E F; O'Keane, J C; Keates, S; LaMont, J T

    1996-01-01

    Clostridium difficile diarrhea and colitis result from the actions of bacterial exotoxins on the colonic mucosa. This study examined the ability of hyperimmune bovine colostral antibodies to neutralize the biological effects of these toxins. Anti-C. difficile bovine immunoglobulin concentrate was prepared from the colostral milk of Holstein cows previously immunized with C. difficile toxoids. The anti-C. difficile bovine immunoglobulin concentrate contained high levels of bovine immunoglobulin G specific for C. difficile toxins A and B, as evaluated by enzyme-linked immunosorbent assay. Anti-C. difficile bovine immunoglobulin concentrate neutralized the cytotoxic effects of purified toxin A and toxin B on cultured human fibroblasts, whereas control bovine immunoglobulin concentrate had little toxin-neutralizing activity. Anti-C. difficile bovine immunoglobulin concentrate also blocked the binding of toxin A to its enterocyte receptor and inhibited the enterotoxic effects of C. difficile toxins on the rat ileum, as measured by an increased rat ileal loop weight/length ratio (63% inhibition; P < 0.01), increased mannitol permeability (92% inhibition; P < 0.01), and histologic grading of enteritis (P < 0.01 versus nonimmune bovine immunoglobulin concentrate). Thus, anti-C. difficile bovine immunoglobulin concentrate neutralizes the cytotoxic effects of C. difficile toxins in vitro and inhibits their enterotoxic effects in vivo. This agent may be clinically useful in the prevention and treatment of C. difficile diarrhea and colitis. PMID:8834883

  9. Crystal structure of Clostridium difficile toxin A.

    PubMed

    Chumbler, Nicole M; Rutherford, Stacey A; Zhang, Zhifen; Farrow, Melissa A; Lisher, John P; Farquhar, Erik; Giedroc, David P; Spiller, Benjamin W; Melnyk, Roman A; Lacy, D Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon(1,2). The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host(3,4). The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  10. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  11. Rapid and reliable diagnostic algorithm for detection of Clostridium difficile.

    PubMed

    Fenner, Lukas; Widmer, Andreas F; Goy, Gisela; Rudin, Sonja; Frei, Reno

    2008-01-01

    We evaluated a two-step algorithm for detection of Clostridium difficile in 1,468 stool specimens. First, specimens were screened by an immunoassay for C. difficile glutamate dehydrogenase antigen (C.DIFF CHEK-60). Second, screen-positive specimens underwent toxin testing by a rapid toxin A/B assay (TOX A/B QUIK CHEK); toxin-negative specimens were subjected to stool culture. This algorithm allowed final results for 92% of specimens with a turnaround time of 4 h.

  12. Clostridium difficile Infection in the Intensive Care Unit

    PubMed Central

    Riddle, David J.; Dubberke, Erik R.

    2009-01-01

    Synopsis Clostridium difficile infection (CDI) is becoming more common worldwide. The morbidity and mortality associated with C. difficile is also increasing at an alarming rate. Critically ill patients are at particularly high risk for this disease due to the prevalence of multiple risk factors in the patient population. Treatment of C. difficile continues to be a difficult problem in patients with severe or recurrent disease. This article seeks to provide a broad understanding of CDI in the intensive care unit, with special emphasis on risk factor identification, treatment options, and disease prevention. PMID:19665092

  13. Clostridium difficile in a children's hospital: assessment of environmental contamination.

    PubMed

    Warrack, Simone; Duster, Megan; Van Hoof, Sarah; Schmitz, Michelle; Safdar, Nasia

    2014-07-01

    Clostridium difficile infection (CDI) is the most frequent infectious cause of health care-associated diarrhea. Three cases of CDI, in children age 2, 3, and 14 years, occurred in the hematology/oncology ward of our children's hospital over 48 hours. We aimed to assess environmental contamination with C difficile in the shared areas of this unit, and to determine whether person-to-person transmission occurred. C difficile was recovered from 5 of 18 samples (28%). We compared C difficile isolated from each patient and the environment using pulsed-field gel electrophoresis, and found that none of the patient strains matched any of the others, and that none matched any strains recovered from the environment, suggesting that person-to-person transmission had not occurred. We found that C difficile was prevalent in the environment throughout shared areas of the children's hospital unit. Molecular typing to identify mechanisms of transmission is useful for devising appropriate interventions.

  14. Clostridium difficile-associated reactive arthritis in two children.

    PubMed

    Löffler, Helga A; Pron, Benedicte; Mouy, Richard; Wulffraat, Nico M; Prieur, Anne-Marie

    2004-01-01

    In adults, reactive arthritis (ReA) following Clostridium difficile-enterocolitis has been documented. In children, only one case of C. difficile-associated ReA has been reported. We now describe two other cases of ReA associated with C. difficile in children. The characteristics of ReA due to C. difficile appear to be similar in adults and children. Both children show polyarthritis after an episode of diarrhoea with positive stool cultures for C. difficile. Arthritis is asymmetrical with a self-limiting course. Nonsteroidal antiinflammatory drug (NSAID) therapy is sufficient. One case is remarkable because of its prolonged course of ReA despite NSAID therapy, and its association with the presence of HLA-B27 antigen. PMID:14769523

  15. Comparative analysis of different methods to detect Clostridium difficile infection.

    PubMed

    Calderaro, Adriana; Buttrini, Mirko; Martinelli, Monica; Gorrini, Chiara; Montecchini, Sara; Medici, Maria Cristina; Arcangeletti, Maria Cristina; De Conto, Flora; Covan, Silvia; Chezzi, Carlo

    2013-01-01

    The increased incidence and severity of Clostridium difficile infection, particularly in North America and Europe, have brought renewed focus on the most appropriate method to detect C. difficile and/or its toxins in stools. This prospective study evaluated the usefulness of the Illumigene TM C. difficile assay in diagnostic practice for the detection of toxigenic C. difficile DNA in clinical samples. A total of 88 out of 306 stool samples analysed were positive both by Illumigene and the combination of toxigenic C. difficile culture (TC) and immunochromatographic assay (IC) with a concordance of 100%. Of the 218 samples negative by the combination of TC and IC, 204 were negative also by Illumigene with a concordance of 93.57%. In our experience, compared to conventional assays Illumigene assay proved to be easy to perform, accurate and prompt giving results within 1 hour at a cost of 28 euro per sample. PMID:23435816

  16. Enzyme-linked immunosorbent assay for Clostridium difficile toxin A.

    PubMed Central

    Lyerly, D M; Sullivan, N M; Wilkins, T D

    1983-01-01

    Antibodies against Clostridium difficile toxin A were purified by affinity chromatography from antiserum prepared against crude C. difficile toxin preparations. The affinity-purified antibody preparation was free of detectable amounts of antibodies to other C. difficile antigens, as demonstrated by crossed immunoelectrophoresis, and specifically neutralized the cytotoxicity of toxin A. An indirect enzyme-linked immunosorbent assay (ELISA) was subsequently developed using the antibody preparation for the specific detection of toxin A. The ELISA, which could detect 1 ng (5 ng/ml) of toxin A, was used to quantitate the toxin in the culture supernatant fluids of strains of C. difficile. The ELISA values for toxin A closely correlated with the toxin A and B cytotoxic titers of the supernatant fluids. In addition, toxin A was detected by ELISA in human fecal specimens from persons with antibiotic-associated colitis, demonstrating that this toxin is produced during C. difficile colitis. Images PMID:6338036

  17. Clostridium difficile-associated reactive arthritis in two children.

    PubMed

    Löffler, Helga A; Pron, Benedicte; Mouy, Richard; Wulffraat, Nico M; Prieur, Anne-Marie

    2004-01-01

    In adults, reactive arthritis (ReA) following Clostridium difficile-enterocolitis has been documented. In children, only one case of C. difficile-associated ReA has been reported. We now describe two other cases of ReA associated with C. difficile in children. The characteristics of ReA due to C. difficile appear to be similar in adults and children. Both children show polyarthritis after an episode of diarrhoea with positive stool cultures for C. difficile. Arthritis is asymmetrical with a self-limiting course. Nonsteroidal antiinflammatory drug (NSAID) therapy is sufficient. One case is remarkable because of its prolonged course of ReA despite NSAID therapy, and its association with the presence of HLA-B27 antigen.

  18. Role of obesity and adipose tissue-derived cytokine leptin during Clostridium difficile infection.

    PubMed

    Madan, Rajat; Petri, William A

    2015-08-01

    Obesity is among the most pressing health concerns in the world since it is increasingly common even in the developing world, and is clearly associated with increased risk for chronic debilitating diseases and death. Furthermore, obesity can influence the pathogenesis of infectious diseases by affecting the balance of pathogen clearance and pathological inflammation. The mechanisms that result in enhanced inflammation in obese individuals are poorly understood. Clostridium difficile is a major cause of nosocomial infections worldwide. Recent studies have shown that obesity is associated with increased risk of C. difficile infections. In this review, we will discuss our current knowledge of the role of obesity in determining risk of C. difficile infections, and focus on the role of the adipose tissue-derived cytokine leptin in C. difficile infections.

  19. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. Clostridium difficile can also inhabit healthy food animals and transmi...

  20. Evaluation of the Cepheid Xpert C. difficile/Epi and meridian bioscience illumigene C. difficile assays for detecting Clostridium difficile ribotype 033 strains.

    PubMed

    Androga, Grace O; McGovern, Alan M; Elliott, Briony; Chang, Barbara J; Perkins, Timothy T; Foster, Niki F; Riley, Thomas V

    2015-03-01

    Clostridium difficile PCR ribotype 033 (RT033) is found in the gastrointestinal tracts of production animals and, occasionally, humans. The illumigene C. difficile assay (Meridian Bioscience, Inc.) failed to detect any of 52 C. difficile RT033 isolates, while all strains signaled positive for the binary toxin genes but were reported as negative for C. difficile by the Xpert C. difficile/Epi assay (Cepheid).

  1. Using a Novel Lysin To Help Control Clostridium difficile Infections

    PubMed Central

    Wang, Qiong; Euler, Chad W.; Delaune, Aurelia

    2015-01-01

    As a consequence of excessive antibiotic therapies in hospitalized patients, Clostridium difficile, a Gram-positive anaerobic spore-forming intestinal pathogen, is the leading cause of hospital-acquired diarrhea and colitis. Drug treatments for these diseases are often complicated by antibiotic-resistant strains and a high frequency of treatment failures and relapse; therefore, novel nonantibiotic approaches may prove to be more effective. In this study, we recombinantly expressed a prophage lysin identified from a C. difficile strain, CD630, which we named PlyCD. PlyCD was found to have lytic activity against specific C. difficile strains. However, the recombinantly expressed catalytic domain of this protein, PlyCD1–174, displayed significantly greater lytic activity (>4-log kill) and a broader lytic spectrum against C. difficile strains while still retaining a high degree of specificity toward C. difficile versus commensal clostridia and other bacterial species. Our data also indicated that noneffective doses of vancomycin and PlyCD1–174 when combined in vitro could be significantly more bactericidal against C. difficile. In an ex vivo treatment model of mouse colon infection, we found that PlyCD1–174 functioned in the presence of intestinal contents, significantly decreasing colonizing C. difficile compared to controls. Together, these data suggest that PlyCD1–174 has potential as a novel therapeutic for clinical application against C. difficile infection, either alone or in combination with other preexisting treatments to improve their efficacy. PMID:26392484

  2. Immunogenicity and protective efficacy of Clostridium difficile spore proteins.

    PubMed

    Ghose, Chandrabali; Eugenis, Ioannis; Edwards, Adrianne N; Sun, Xingmin; McBride, Shonna M; Ho, David D

    2016-02-01

    Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins. PMID:26688279

  3. Discovery of Selective Inhibitors of the Clostridium difficile Dehydroquinate Dehydratase

    PubMed Central

    Anderson, Wayne F.; Caffrey, Michael; Lavie, Arnon

    2014-01-01

    A vibrant and healthy gut flora is essential for preventing the proliferation of Clostridium difficile, a pathogenic bacterium that causes severe gastrointestinal symptoms. In fact, most C. difficile infections (CDIs) occur after broad-spectrum antibiotic treatment, which, by eradicating the commensal gut bacteria, allows its spores to proliferate. Hence, a C. difficile specific antibiotic that spares the gut flora would be highly beneficial in treating CDI. Towards this goal, we set out to discover small molecule inhibitors of the C. difficile enzyme dehydroquinate dehydratase (DHQD). DHQD is the 3rd of seven enzymes that compose the shikimate pathway, a metabolic pathway absent in humans, and is present in bacteria as two phylogenetically and mechanistically distinct types. Using a high-throughput screen we identified three compounds that inhibited the type I C. difficile DHQD but not the type II DHQD from Bacteroides thetaiotaomicron, a highly represented commensal gut bacterial species. Kinetic analysis revealed that the compounds inhibit the C. difficile enzyme with Ki values ranging from 10 to 20 µM. Unexpectedly, kinetic and biophysical studies demonstrate that inhibitors also exhibit selectivity between type I DHQDs, inhibiting the C. difficile but not the highly homologous Salmonella enterica DHQD. Therefore, the three identified compounds seem to be promising lead compounds for the development of C. difficile specific antibiotics. PMID:24586713

  4. Varied prevalence of Clostridium difficile in an integrated swine operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006 and to compare our isolates to other animal and human isolates. Preliminary results are based on 131 C. d...

  5. Clostridium difficile prevalence in an integrated swine operation in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been an epidemic of human disease in North America caused by the bacterium Clostridium difficile (Cd). It appears to be a new strain that is more virulent than previous strains, produces more toxins, and causes more severe disease (McDonald et al., 2005). The origin of the new s...

  6. Clostridium difficile in retail meat and processing plants in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  7. Clostridium difficile in mixed populations of animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Since 2003, there has been an emergence of BI/NAP1 strain of Clostridium difficile (Cd) in North American hospitals. The origins of this epidemic strain have yet to be determined. However, PFGE analysis has shown ~80% similarity between this strain and some swine isolates. The objecti...

  8. Clostridium difficile from healthy food animals: Optimized isolation and prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolation methods were compared for isolation of Clostridium difficile from food animal feces. The single alcohol shock method (SS) used selective enrichment in cycloserine-cefoxitin fructose broth supplemented with 0.1% sodium taurocholate (TCCFB) followed by alcohol shock and isolation on tryp...

  9. Effective Sequestration of Clostridium difficile Protein Toxins by Calcium Aluminosilicate.

    PubMed

    Sturino, Joseph M; Pokusaeva, Karina; Carpenter, Robert

    2015-12-01

    Clostridium difficile is a leading cause of antibiotic-associated diarrhea and the etiologic agent responsible for C. difficile infection. Toxin A (TcdA) and toxin B (TcdB) are nearly indispensable virulence factors for Clostridium difficile pathogenesis. Given the toxin-centric mechanism by which C. difficile pathogenesis occurs, the selective sequestration with neutralization of TcdA and TcdB by nonantibiotic agents represents a novel mode of action to prevent or treat C. difficile-associated disease. In this preclinical study, we used quantitative enzyme immunoassays to determine the extent by which a novel drug, calcium aluminosilicate uniform particle size nonswelling M-1 (CAS UPSN M-1), is capable of sequestering TcdA and TcdB in vitro. The following major findings were derived from the present study. First, we show that CAS UPSN M-1 efficiently sequestered both TcdA and TcdB to undetectable levels. Second, we show that CAS UPSN M-1's affinity for TcdA is greater than its affinity for TcdB. Last, we show that CAS UPSN M-1 exhibited limited binding affinity for nontarget proteins. Taken together, these results suggest that ingestion of calcium aluminosilicate might protect gastrointestinal tissues from antibiotic- or chemotherapy-induced C. difficile infection by neutralizing the cytotoxic and proinflammatory effects of luminal TcdA and TcdB.

  10. [Clostridium difficile infecion--diagnostics, prevention and treatment].

    PubMed

    Piekarska, Marta; Wandałowicz, Alicja D; Miigoć, Henryka

    2014-04-01

    Clostridium difficile is the most common cause of an antibiotic-associated diarrhoea. Frequency of Clostridium difficile infections (CDI) increased in the last decade. This study presents current preventive measure i.e. hand washing, disposable gloves. Additionally, the article presents diagnostic methods: detection glutamine dehydrogenase (GDH), toxins A and B, cytotoxicity neutralization test, polymerase chain reaction methods (PCR) i.e. nucleic acid amplification test (NAAT) and stool culture. Moreover available methods of treatment were presented depending on severity of CDI e.i. metronidazole, vancomycin, fidaxomicin, rifaximin. Furthermore, the review provides information about alternative methods of treatment in view of new hypervirulent strains of C. difficile and increasing resistance to commonly used antibiotics, including: fuscid acid, bacitracin, probiotics, non-toxigenic strains, immunoglobulins, monoclonal antibodies, vaccines, toxins binders and fecal transplant. PMID:24868904

  11. Effectiveness of hand hygiene for removal of Clostridium difficile spores from hands.

    PubMed

    Edmonds, Sarah L; Zapka, Carrie; Kasper, Douglas; Gerber, Robert; McCormack, Robert; Macinga, David; Johnson, Stuart; Sambol, Susan; Fricker, Christopher; Arbogast, James; Gerding, Dale N

    2013-03-01

    This study determined whether surrogate organisms can predict activity against Clostridium difficile spores and compared the efficacy of hand hygiene preparations against C. difficile. Our data suggest that surrogate organisms were not predictive of C. difficile spore removal. Four preparations were significantly more effective than tap water at removing C. difficile. PMID:23388366

  12. Interactions Between the Gastrointestinal Microbiome and Clostridium difficile.

    PubMed

    Theriot, Casey M; Young, Vincent B

    2015-01-01

    Antibiotics have significant and long-lasting effects on the intestinal microbiota and consequently reduce colonization resistance against pathogens, including Clostridium difficile. By altering the community structure of the gut microbiome, antibiotics alter the intestinal metabolome, which includes both host- and microbe-derived metabolites. The mechanisms by which antibiotics reduce colonization resistance against C. difficile are unknown yet important for development of preventative and therapeutic approaches against this pathogen. This review focuses on how antibiotics alter the structure of the gut microbiota and how this alters microbial metabolism in the intestine. Interactions between gut microbial products and C. difficile spore germination, growth, and toxin production are discussed. New bacterial therapies to restore changes in bacteria-driven intestinal metabolism following antibiotics will have important applications for treatment and prevention of C. difficile infection.

  13. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938.

    PubMed

    Lawson, Paul A; Citron, Diane M; Tyrrell, Kerin L; Finegold, Sydney M

    2016-08-01

    The recent proposal by Lawson and Rainey (2015) to restrict the genus Clostridium to Clostridium butyricum and related species has ramifications for the members of the genera that fall outside this clade that should not be considered as Clostridium sensu stricto. One such organism of profound medical importance is Clostridioides difficile that is a major cause of hospital-acquired diarrhea and mortality in individuals. Based on 16S rRNA gene sequence analysis, the closest relative of Clostridium difficile is Clostridium mangenotii with a 94.7% similarity value and both are located within the family Peptostreptococcaceae that is phylogenetically far removed from C. butyricum and other members of Clostridium sensu stricto. Clostridium difficile is Clostridium mangenotii each produce abundant H2 gas when grown in PYG broth and also produce a range of straight and branched chain saturated and unsaturated fatty acids with C16:0 as a major product. The cell wall peptidoglycan contains meso-DAP as the diagnostic diamino acid. Based on phenotypic, chemotaxonomic and phylogenetic analyses, novel genus Clostridioides gen. nov. is proposed for Clostridium difficile as Clostridioides difficile gen. nov. comb. nov. and that Clostridium mangenotii be transferred to this genus as Clostridioides mangenotii comb. nov. The type species of Clostridioides is Clostridioides difficile.

  14. The Burden of Clostridium difficile after Cervical Spine Surgery.

    PubMed

    Guzman, Javier Z; Skovrlj, Branko; Rothenberg, Edward S; Lu, Young; McAnany, Steven; Cho, Samuel K; Hecht, Andrew C; Qureshi, Sheeraz A

    2016-06-01

    Study Design Retrospective database analysis. Objective The purpose of this study is to investigate incidence, comorbidities, and impact on health care resources of Clostridium difficile infection after cervical spine surgery. Methods A total of 1,602,130 cervical spine surgeries from the Nationwide Inpatient Sample database from 2002 to 2011 were included. Patients were included for study based on International Classification of Diseases Ninth Revision, Clinical Modification procedural codes for cervical spine surgery for degenerative spine diagnoses. Baseline patient characteristics were determined. Multivariable analyses assessed factors associated with increased incidence of C. difficile and risk of mortality. Results Incidence of C. difficile infection in postoperative cervical spine surgery hospitalizations is 0.08%, significantly increased since 2002 (p < 0.0001). The odds of postoperative C. difficile infection were significantly increased in patients with comorbidities such as congestive heart failure, renal failure, and perivascular disease. Circumferential cervical fusion (odds ratio [OR] = 2.93, p < 0.0001) increased the likelihood of developing C. difficile infection after degenerative cervical spine surgery. C. difficile infection after cervical spine surgery results in extended length of stay (p < 0.0001) and increased hospital costs (p < 0.0001). Mortality rate in patients who develop C. difficile after cervical spine surgery is nearly 8% versus 0.19% otherwise (p < 0.0001). Moreover, multivariate analysis revealed C. difficile to be a significant predictor of inpatient mortality (OR = 3.99, p < 0.0001). Conclusions C. difficile increases the risk of in-hospital mortality and costs approximately $6,830,695 per year to manage in patients undergoing elective cervical spine surgery. Patients with comorbidities such as renal failure or congestive heart failure have increased probability of developing infection

  15. The Burden of Clostridium difficile after Cervical Spine Surgery.

    PubMed

    Guzman, Javier Z; Skovrlj, Branko; Rothenberg, Edward S; Lu, Young; McAnany, Steven; Cho, Samuel K; Hecht, Andrew C; Qureshi, Sheeraz A

    2016-06-01

    Study Design Retrospective database analysis. Objective The purpose of this study is to investigate incidence, comorbidities, and impact on health care resources of Clostridium difficile infection after cervical spine surgery. Methods A total of 1,602,130 cervical spine surgeries from the Nationwide Inpatient Sample database from 2002 to 2011 were included. Patients were included for study based on International Classification of Diseases Ninth Revision, Clinical Modification procedural codes for cervical spine surgery for degenerative spine diagnoses. Baseline patient characteristics were determined. Multivariable analyses assessed factors associated with increased incidence of C. difficile and risk of mortality. Results Incidence of C. difficile infection in postoperative cervical spine surgery hospitalizations is 0.08%, significantly increased since 2002 (p < 0.0001). The odds of postoperative C. difficile infection were significantly increased in patients with comorbidities such as congestive heart failure, renal failure, and perivascular disease. Circumferential cervical fusion (odds ratio [OR] = 2.93, p < 0.0001) increased the likelihood of developing C. difficile infection after degenerative cervical spine surgery. C. difficile infection after cervical spine surgery results in extended length of stay (p < 0.0001) and increased hospital costs (p < 0.0001). Mortality rate in patients who develop C. difficile after cervical spine surgery is nearly 8% versus 0.19% otherwise (p < 0.0001). Moreover, multivariate analysis revealed C. difficile to be a significant predictor of inpatient mortality (OR = 3.99, p < 0.0001). Conclusions C. difficile increases the risk of in-hospital mortality and costs approximately $6,830,695 per year to manage in patients undergoing elective cervical spine surgery. Patients with comorbidities such as renal failure or congestive heart failure have increased probability of developing infection

  16. Antibiotic profiling of Clostridium difficile ribotype 176--A multidrug resistant relative to C. difficile ribotype 027.

    PubMed

    Krutova, Marcela; Matejkova, Jana; Tkadlec, Jan; Nyc, Otakar

    2015-12-01

    Antibiotic profiling of twenty Czech Clostridium difficile PCR-ribotype 176 isolates revealed a high level of resistance to erythromycin, ciprofloxacin and moxifloxacin (n = 20) and to rifampicin (n = 13). Accumulation of resistance mechanisms to multiple antibiotics highlight that PCR-ribotype 176 belong to problematic epidemic strains.

  17. Human Clostridium difficile infection: altered mucus production and composition

    PubMed Central

    Engevik, Melinda A.; Yacyshyn, Mary Beth; Engevik, Kristen A.; Wang, Jiang; Darien, Benjamin; Hassett, Daniel J.; Yacyshyn, Bruce R.

    2014-01-01

    The majority of antibiotic-induced diarrhea is caused by Clostridium difficile (C. difficile). Hospitalizations for C. difficile infection (CDI) have tripled in the last decade, emphasizing the need to better understand how the organism colonizes the intestine and maintain infection. The mucus provides an interface for bacterial-host interactions and changes in intestinal mucus have been linked host health. To assess mucus production and composition in healthy and CDI patients, the main mucins MUC1 and MUC2 and mucus oligosaccharides were examined. Compared with healthy subjects, CDI patients demonstrated decreased MUC2 with no changes in surface MUC1. Although MUC1 did not change at the level of the epithelia, MUC1 was the primary constituent of secreted mucus in CDI patients. CDI mucus also exhibited decreased N-acetylgalactosamine (GalNAc), increased N-acetylglucosamine (GlcNAc), and increased terminal galactose residues. Increased galactose in CDI specimens is of particular interest since terminal galactose sugars are known as C. difficile toxin A receptor in animals. In vitro, C. difficile is capable of metabolizing fucose, mannose, galactose, GlcNAc, and GalNAc for growth under healthy stool conditions (low Na+ concentration, pH 6.0). Injection of C. difficile into human intestinal organoids (HIOs) demonstrated that C. difficile alone is sufficient to reduce MUC2 production but is not capable of altering host mucus oligosaccharide composition. We also demonstrate that C. difficile binds preferentially to mucus extracted from CDI patients compared with healthy subjects. Our results provide insight into a mechanism of C. difficile colonization and may provide novel target(s) for the development of alternative therapeutic agents. PMID:25552581

  18. Fate of ingested Clostridium difficile spores in mice.

    PubMed

    Howerton, Amber; Patra, Manomita; Abel-Santos, Ernesto

    2013-01-01

    Clostridium difficile infection (CDI) is a leading cause of antibiotic-associated diarrhea, a major nosocomial complication. The infective form of C. difficile is the spore, a dormant and resistant structure that forms under stress. Although spore germination is the first committed step in CDI onset, the temporal and spatial distribution of ingested C. difficile spores is not clearly understood. We recently reported that CamSA, a synthetic bile salt analog, inhibits C. difficile spore germination in vitro and in vivo. In this study, we took advantage of the anti-germination activity of bile salts to determine the fate of ingested C. difficile spores. We tested four different bile salts for efficacy in preventing CDI. Since CamSA was the only anti-germinant tested able to prevent signs of CDI, we characterized CamSa's in vitro stability, distribution, and cytotoxicity. We report that CamSA is stable to simulated gastrointestinal (GI) environments, but will be degraded by members of the natural microbiota found in a healthy gut. Our data suggest that CamSA will not be systemically available, but instead will be localized to the GI tract. Since in vitro pharmacological parameters were acceptable, CamSA was used to probe the mouse model of CDI. By varying the timing of CamSA dosage, we estimated that C. difficile spores germinated and established infection less than 10 hours after ingestion. We also showed that ingested C. difficile spores rapidly transited through the GI tract and accumulated in the colon and cecum of CamSA-treated mice. From there, C. difficile spores were slowly shed over a 96-hour period. To our knowledge, this is the first report of using molecular probes to obtain disease progression information for C. difficile infection. PMID:24023628

  19. Mapping Interactions between Germinants and Clostridium difficile Spores ▿

    PubMed Central

    Howerton, Amber; Ramirez, Norma; Abel-Santos, Ernesto

    2011-01-01

    Germination of Clostridium difficile spores is the first required step in establishing C. difficile-associated disease (CDAD). Taurocholate (a bile salt) and glycine (an amino acid) have been shown to be important germinants of C. difficile spores. In the present study, we tested a series of glycine and taurocholate analogs for the ability to induce or inhibit C. difficile spore germination. Testing of glycine analogs revealed that both the carboxy and amino groups are important epitopes for recognition and that the glycine binding site can accommodate compounds with more widely separated termini. The C. difficile germination machinery also recognizes other hydrophobic amino acids. In general, linear alkyl side chains are better activators of spore germination than their branched analogs. However, l-phenylalanine and l-arginine are also good germinants and are probably recognized by distinct binding sites. Testing of taurocholate analogs revealed that the 12-hydroxyl group of taurocholate is necessary, but not sufficient, to activate spore germination. In contrast, the 6- and 7-hydroxyl groups are required for inhibition of C. difficile spore germination. Similarly, C. difficile spores are able to detect taurocholate analogs with shorter, but not longer, alkyl amino sulfonic acid side chains. Furthermore, the sulfonic acid group can be partially substituted with other acidic groups. Finally, a taurocholate analog with an m-aminobenzenesulfonic acid side chain is a strong inhibitor of C. difficile spore germination. In conclusion, C. difficile spores recognize both amino acids and taurocholate through multiple interactions that are required to bind the germinants and/or activate the germination machinery. PMID:20971909

  20. Treatment of Clostridium difficile infection: recent trial results

    PubMed Central

    Lewis, Sarah S; Anderson, Deverick J

    2014-01-01

    Clostridium difficile is a major cause of infection worldwide and is associated with increasing morbidity and mortality in vulnerable patient populations. Metronidazole and oral vancomycin are the currently recommended therapies for the treatment of C. difficile infection (CDI) but are associated with unacceptably high rates of disease recurrence. Novel therapies for the treatment of CDI and prevention of recurrent CDI are urgently needed. Important developments in the treatment of CDI are currently underway and include: novel antibacterial agents with narrower antimicrobial spectra of activity, manipulation of the gut microbiota and enhancement of the host antibody immune response. PMID:25525499

  1. Comparison of the Verigene Clostridium difficile, Simplexa C. difficile Universal Direct, BD MAX Cdiff, and Xpert C. difficile assays for the detection of toxigenic C. difficile.

    PubMed

    Gilbreath, Jeremy J; Verma, Punam; Abbott, April N; Butler-Wu, Susan M

    2014-09-01

    We compared the Verigene Clostridium difficile test (Nanosphere, Northbrook, IL, USA), the Simplexa C. difficile Universal Direct (Focus Diagnostics, Cypress, CA, USA), the BD MAX Cdiff (Becton Dickinson, Franklin Lakes, NJ, USA), and the Xpert C. difficile (Cepheid, Sunnyvale, CA, USA) assays for the detection of toxigenic C. difficile. One hundred and ninety deidentified, remnant diarrheal specimens were included in this study. After resolution of discordant results by toxigenic culture, the Xpert C. difficile assay displayed the highest sensitivity (100%), with a specificity of 98.8%. The sensitivity and specificity were 95.2% and 99.4% and 87% and 100% for the Verigene CDF and Simplexa Universal Direct assays, respectively. Finally, the BD MAX assay showed a sensitivity of 87% and a specificity of 98.8%. Despite differences in the overall performance of these assays, these results support the routine use of these platforms for the detection of toxigenic C. difficile in the clinical laboratory.

  2. [Fecal microbiota transplantation, a novel therapy for recurrent Clostridium difficile infection].

    PubMed

    Terveer, E M; van Beurden, Y H; Kuijper, E J; Keller, J J

    2016-09-01

    Clostridium difficile infection is caused by a disturbance of the gut microbiota, often resulting from the use of antibiotics. Among a sub group of patients with this disorder, treatment with antibiotics is not effective. They develop a chronic, recurrent infection. Such patients can be treated with a fecal microbiota transplantation (FMT), or fecal transplantation. The crucial steps for safe application of fecal transplantation are central donor selection and screening. To optimise safety and to guarantee the availability of donor feces for fecal transplantation, the Nederlandse Donor Feces Bank (Dutch Donor Feces Bank) was established. At this facility, ready-to-use, screened donor feces can be ordered for patients with (recurrent) Clostridium difficile infections, who can then be treated at their own hospital. PMID:27643493

  3. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays.

    PubMed

    Pancholi, P; Kelly, C; Raczkowski, M; Balada-Llasat, J M

    2012-04-01

    Clostridium difficile is the most important cause of nosocomial diarrhea. Several laboratory techniques are available to detect C. difficile toxins or the genes that encode them in fecal samples. We evaluated the Xpert C. difficile and Xpert C. difficile/Epi (Cepheid, CA) that detect the toxin B gene (tcdB) and tcdB, cdt, and a deletion in tcdC associated with the 027/NAP1/BI strain, respectively, by real-time PCR, and the Illumigene C. difficile (Meridian Bioscience, Inc.) that detects the toxin A gene (tcdA) by loop-mediated isothermal amplification in stool specimens. Toxigenic culture was used as the reference method for discrepant stool specimens. Two hundred prospective and fifty retrospective diarrheal stool specimens were tested simultaneously by the cell cytotoxin neutralization assay (CCNA) and the Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. Of the 200 prospective stools tested, 10.5% (n = 23) were determined to be positive by CCNA, 17.5% (n = 35) were determined to be positive by Illumigene C. difficile, and 21.5% (n = 43) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 50 retrospective stools, previously determined to be positive by CCNA, 94% (n = 47) were determined to be positive by Illumigene C. difficile and 100% (n = 50) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 11 discrepant results (i.e., negative by Illumigene C. difficile but positive by Xpert C. difficile and Xpert C. difficile/Epi), all were determined to be positive by the toxigenic culture. A total of 21% of the isolates were presumptively identified by the Xpert C. difficile/Epi as the 027/NAP1/BI strain. The Xpert C. difficile and Xpert C. difficile/Epi assays were the most sensitive, rapid, and easy-to use assays for the detection of toxigenic C. difficile in stool specimens. PMID:22278839

  4. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays.

    PubMed

    Pancholi, P; Kelly, C; Raczkowski, M; Balada-Llasat, J M

    2012-04-01

    Clostridium difficile is the most important cause of nosocomial diarrhea. Several laboratory techniques are available to detect C. difficile toxins or the genes that encode them in fecal samples. We evaluated the Xpert C. difficile and Xpert C. difficile/Epi (Cepheid, CA) that detect the toxin B gene (tcdB) and tcdB, cdt, and a deletion in tcdC associated with the 027/NAP1/BI strain, respectively, by real-time PCR, and the Illumigene C. difficile (Meridian Bioscience, Inc.) that detects the toxin A gene (tcdA) by loop-mediated isothermal amplification in stool specimens. Toxigenic culture was used as the reference method for discrepant stool specimens. Two hundred prospective and fifty retrospective diarrheal stool specimens were tested simultaneously by the cell cytotoxin neutralization assay (CCNA) and the Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. Of the 200 prospective stools tested, 10.5% (n = 23) were determined to be positive by CCNA, 17.5% (n = 35) were determined to be positive by Illumigene C. difficile, and 21.5% (n = 43) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 50 retrospective stools, previously determined to be positive by CCNA, 94% (n = 47) were determined to be positive by Illumigene C. difficile and 100% (n = 50) were determined to be positive by Xpert C. difficile and Xpert C. difficile/Epi. Of the 11 discrepant results (i.e., negative by Illumigene C. difficile but positive by Xpert C. difficile and Xpert C. difficile/Epi), all were determined to be positive by the toxigenic culture. A total of 21% of the isolates were presumptively identified by the Xpert C. difficile/Epi as the 027/NAP1/BI strain. The Xpert C. difficile and Xpert C. difficile/Epi assays were the most sensitive, rapid, and easy-to use assays for the detection of toxigenic C. difficile in stool specimens.

  5. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia.

  6. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis

    PubMed Central

    Lin, Cynthia J.; Wade, Timothy J.; Hilborn, Elizabeth D.

    2015-01-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0–6 days, 7–13 days, 14–20 days, and 21–27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19–64 years), ER and outpatient visits for C. difficile infection were elevated during the 7–13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01–10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change. PMID:26090609

  7. Flooding and Clostridium difficile Infection: A Case-Crossover Analysis.

    PubMed

    Lin, Cynthia J; Wade, Timothy J; Hilborn, Elizabeth D

    2015-06-01

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospitalized and/or receiving antibiotics; however, community-associated infections affecting otherwise healthy individuals have become more commonly reported. A case-crossover study was used to assess emergency room (ER) and outpatient visits for C. difficile infection following flood events in Massachusetts from 2003 through 2007. Exposure status was based on whether or not a flood occurred prior to the case/control date during the following risk periods: 0-6 days, 7-13 days, 14-20 days, and 21-27 days. Fixed-effects logistic regression was used to estimate the risk of diagnosis with C. difficile infection following a flood. There were 129 flood events and 1575 diagnoses of C. difficile infection. Among working age adults (19-64 years), ER and outpatient visits for C. difficile infection were elevated during the 7-13 days following a flood (Odds Ratio, OR = 1.69; 95% Confidence Interval, CI: 0.84, 3.37). This association was more substantial among males (OR = 3.21; 95% CI: 1.01-10.19). Associations during other risk periods were not observed (p < 0.05). Although we were unable to differentiate community-associated versus nosocomial infections, a potential increase in C. difficile infections should be considered as more flooding is projected due to climate change.

  8. Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization.

    PubMed

    Zhang, Lihua; Dong, Danfeng; Jiang, Cen; Li, Zhen; Wang, Xuefeng; Peng, Yibing

    2015-08-01

    Clostridium difficile is well recognized as the common pathogen of nosocomial diarrhea, meanwhile, asymptomatic colonization with C. difficile in part of the population has also drawn public attention. Although gut microbiota is known to play an important role in the pathogenesis of C. difficile infection (CDI), whether there is any alteration of gut microbial composition in asymptomatic C. difficile carriers hasn't been clearly described. The purpose of this study was to explore the differences in gut microbiome among CDI patients, asymptomatic C. difficile carriers and healthy individuals. We performed fecal microbiota analysis on the samples of eight CDI patients, eight asymptomatic C. difficile carriers and nine healthy subjects using 16S rRNA gene pyrosequencing. CDI patients and asymptomatic carriers showed reduced microbial richness and diversity compared with healthy subjects, accompanied with a paucity of phylum Bacteroidetes and Firmicutes as well as an overabundance of Proteobacteria. Some normally commensal bacteria, especially butyrate producers, were significantly depleted in CDI patients and asymptomatic carriers. Furthermore, the differences observed in microbial community structure between CDI patients and asymptomatic carriers suggested that the gut microbiota may be a potential factor of disease state for CDI. Our study demonstrates the characterization and diversity of gut microbiota in CDI and asymptomatic C. difficile colonization, which will provide new ideas for surveillance of the disease state and development of microbiota-targeted agents for CDI prevention and treatment.

  9. Nosocomial outbreak of Clostridium difficile diarrhea in a pediatric service.

    PubMed

    Ferroni, A; Merckx, J; Ancelle, T; Pron, B; Abachin, E; Barbut, F; Larzul, J; Rigault, P; Berche, P; Gaillard, J L

    1997-12-01

    An outbreak of nosocomial diarrhea that occurred in a pediatric orthopedic service between 1 December 1993 and 15 April 1994 is reported. A total of 37 patients (mean age, 9.6 years; range, 2 months-19.3 years) were involved in the outbreak, including six patients with bacteriologically documented Clostridium difficile infection. A multivariate analysis identified lincomycin treatment for at least three days as the only significant risk factor. Stool samples from four asymptomatic patients were also positive for Clostridium difficile and its cytotoxins. Isolates from all patients belonged to serogroup C, were highly resistant to lincomycin, and exhibited the same restriction pattern by pulsed-field gel electrophoresis. The outbreak ended after treatment with lincomycin was discontinued and hygiene control measures were implemented. PMID:9495676

  10. Diagnostic trends in Clostridium difficile detection in Finnish microbiology laboratories.

    PubMed

    Könönen, Eija; Rasinperä, Marja; Virolainen, Anni; Mentula, Silja; Lyytikäinen, Outi

    2009-12-01

    Due to increased interest directed to Clostridium difficile-associated infections, a questionnaire survey of laboratory diagnostics of toxin-producing C. difficile was conducted in Finland in June 2006. Different aspects pertaining to C. difficile diagnosis, such as requests and criteria used for testing, methods used for its detection, yearly changes in diagnostics since 1996, and the total number of investigations positive for C. difficile in 2005, were asked in the questionnaire, which was sent to 32 clinical microbiology laboratories, including all hospital-affiliated and the relevant private clinical microbiology laboratories in Finland. The situation was updated by phone and email correspondence in September 2008. In June 2006, 28 (88%) laboratories responded to the questionnaire survey; 24 of them reported routinely testing requested stool specimens for C. difficile. Main laboratory methods included toxin detection (21/24; 88%) and/or anaerobic culture (19/24; 79%). In June 2006, 18 (86%) of the 21 laboratories detecting toxins directly from feces, from the isolate, or both used methods for both toxin A (TcdA) and B (TcdB), whereas only one laboratory did so in 1996. By September 2008, all of the 23 laboratories performing diagnostics for C. difficile used methods for both TcdA and TcdB. In 2006, the number of specimens processed per 100,000 population varied remarkably between different hospital districts. In conclusion, culturing C. difficile is common and there has been a favorable shift in toxin detection practice in Finnish clinical microbiology laboratories. However, the variability in diagnostic activity reported in 2006 creates a challenge for national monitoring of the epidemiology of C. difficile and related diseases.

  11. Fidaxomicin in Clostridium difficile infection: latest evidence and clinical guidance

    PubMed Central

    2014-01-01

    The incidence of Clostridium difficile infection (CDI) has risen 400% in the last decade. It currently ranks as the third most common nosocomial infection. CDI has now crossed over as a community-acquired infection. The major failing of current therapeutic options for the management of CDI is recurrence of disease after the completion of treatment. Fidaxomicin has been proven to be superior to vancomycin in successful sustained clinical response to therapy. Improved outcomes may be due to reduced collateral damage to the gut microflora by fidaxomicin, bactericidal activity, inhibition of Clostridial toxin formation and inhibition of new sporulation. This superiority is maintained in groups previously reported as being at high risk for CDI recurrence including those: with relapsed infection after a single treatment course; on concomitant antibiotic therapy; aged >65 years; with cancer; and with chronic renal insufficiency. Because the acquisition cost of fidaxomicin far exceeds that of metronidazole or vancomycin, in order to rationally utilize this agent, it should be targeted to those populations who are at high risk for relapse and in whom the drug has demonstrated superiority. In this manuscript is reviewed the changing epidemiology of CDI, current treatment options for this infection, proposed benefits of fidaxomicin over currently available antimicrobial options, available analysis of cost effectiveness of the drug, and is given recommendations for judicious use of the drug based upon the available published literature. PMID:24587892

  12. Fecal microbiota transplantation for the management of Clostridium difficile infection.

    PubMed

    Rao, Krishna; Young, Vincent B

    2015-03-01

    This article discusses the use of fecal microbiota transplantation (FMT) for the treatment of recurrent Clostridium difficile infection (CDI). The disruption of the normal gut microbiota is central to the pathogenesis of CDI, and disruption persists in recurrent disease. The use of FMT for recurrent CDI is characterized by a high response rate and short term safety is excellent, although the long-term effects of FMT are as yet unknown.

  13. Prevalence and Risk Factors for Asymptomatic Clostridium difficile Carriage

    PubMed Central

    Alasmari, Faisal; Seiler, Sondra M.; Hink, Tiffany; Burnham, Carey-Ann D.; Dubberke, Erik R.

    2014-01-01

    Background. Clostridium difficile infection (CDI) incidence has increased dramatically over the last decade. Recent studies suggest that asymptomatic carriers may be an important reservoir of C. difficile in healthcare settings. We sought to identify the prevalence and risk factors for asymptomatic C. difficile carriage on admission to the hospital. Methods. Patients admitted to Barnes-Jewish Hospital without diarrhea were enrolled from June 2010 through October 2011. Demographic information and healthcare and medication exposures 90 days prior to admission were collected. Stool specimens or rectal swabs were collected within 48 hours of admission and stored at −30°C until cultured. Clostridium difficile isolates were typed and compared with isolates from patients with CDI. Results. A stool/swab specimen was obtained for 259 enrolled subjects on admission. Two hundred four (79%) were not colonized, 40 (15%) had toxigenic C. difficile (TCD), and 15 (6%) had nontoxigenic C. difficile. There were no differences between TCD-colonized and -uncolonized subjects for age (mean, 56 vs 58 years; P = .46), comorbidities, admission from another healthcare facility (33% vs 24%; P = .23), or recent hospitalization (50% vs 50%; P = .43). There were no differences in antimicrobial exposures in the 90 days prior to admission (55% vs 56%; P = .91). Asymptomatic carriers were colonized with strains similar to strains from patients with CDI, but the relative proportions were different. Conclusions. There was a high prevalence of TCD colonization on admission. In contrast to past studies, TCD colonization was not associated with recent antimicrobial or healthcare exposures. Additional investigation is needed to determine the role of asymptomatic TCD carriers on hospital-onset CDI incidence. PMID:24755858

  14. Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile

    PubMed Central

    Pye, Hayley; Kohoutova, Darina; Mosse, Charles A.; Yahioglu, Gokhan; Stamati, Ioanna; Deonarain, Mahendra; Battah, Sinan; Ready, Derren; Allan, Elaine; Mullany, Peter; Lovat, Laurence B.

    2015-01-01

    Background Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections. Methods PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29. Results Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT. Conclusion This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon. PMID:26313448

  15. Clostridium difficile ribotypes in humans and animals in Brazil.

    PubMed

    Silva, Rodrigo Otávio Silveira; Rupnik, Maja; Diniz, Amanda Nádia; Vilela, Eduardo Garcia; Lobato, Francisco Carlos Faria

    2015-12-01

    Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies about C. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficile ribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen. PMID:26676318

  16. The potential for emerging therapeutic options for Clostridium difficile infection.

    PubMed

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  17. How to eradicate Clostridium difficile from the environment.

    PubMed

    Barbut, F

    2015-04-01

    During the last decade, Clostridium difficile has emerged as a major cause of healthcare-associated diarrhoea and death. Transmission of this spore-forming bacterium is thought to occur via the hands of healthcare providers or via the contaminated environment. Therefore, enhanced environmental cleaning/disinfection of the rooms housing C. difficile-infected patients is warranted. Guidelines from various scientific bodies have been published. They recommend performing environmental decontamination of rooms of patients with C. difficile infection (CDI) using hypochlorite (diluted 1/10) or a sporicidal product. Compliance with cleaning and disinfection is a critical point and is often suboptimal. Novel 'no-touch' methods for room disinfection have recently been introduced. Ultraviolet (UV) light or hydrogen peroxide systems are most widely used. In-vitro studies suggest that hydrogen peroxide vapour (from 30% hydrogen peroxide) methods achieve a >6 log10 reduction in C. difficile spores placed on carriers, and that aerosolized hydrogen peroxide systems (from 5% to 6% hydrogen peroxide) achieve ∼4 log10 reduction, whereas UV-based methods achieve ∼2 log10 reduction. Very few studies have assessed the impact of these devices on the transmission of C. difficile. Major limitations of these devices include the fact that they can only be used after the patient's discharge, because patients and staff must be removed from the room. The new no-touch methods for room disinfection supplement, but do not replace, daily cleaning. PMID:25638358

  18. The potential for emerging therapeutic options for Clostridium difficile infection

    PubMed Central

    Mathur, Harsh; Rea, Mary C; Cotter, Paul D; Ross, R Paul; Hill, Colin

    2014-01-01

    Clostridium difficile is mainly a nosocomial pathogen and is a significant cause of antibiotic-associated diarrhea. It is also implicated in the majority of cases of pseudomembranous colitis. Recently, advancements in next generation sequencing technology (NGS) have highlighted the extent of damage to the gut microbiota caused by broad-spectrum antibiotics, often resulting in C. difficile infection (CDI). Currently the treatment of choice for CDI involves the use of metronidazole and vancomycin. However, recurrence and relapse of CDI, even after rounds of metronidazole/vancomycin administration is a problem that must be addressed. The efficacy of alternative antibiotics such as fidaxomicin, rifaximin, nitazoxanide, ramoplanin and tigecycline, as well as faecal microbiota transplantation has been assessed and some have yielded positive outcomes against C. difficile. Some bacteriocins have also shown promising effects against C. difficile in recent years. In light of this, the potential for emerging treatment options and efficacy of anti-C. difficile vaccines are discussed in this review. PMID:25564777

  19. Reprofiled anthelmintics abate hypervirulent stationary-phase Clostridium difficile.

    PubMed

    Gooyit, Major; Janda, Kim D

    2016-01-01

    Prolonged use of broad-spectrum antibiotics disrupts the indigenous gut microbiota, which consequently enables toxigenic Clostridium difficile species to proliferate and cause infection. The burden of C. difficile infections was exacerbated with the outbreak of hypervirulent strains that produce copious amounts of enterotoxins and spores. In recent past, membrane-active agents have generated a surge of interest due to their bactericidal property with a low propensity for resistance. In this study, we capitalized on the antimicrobial property and low oral bioavailability of salicylanilide anthelmintics (closantel, rafoxanide, niclosamide, oxyclozanide) to target the gut pathogen. By broth microdilution techniques, we determined the MIC values of the anthelmintics against 16 C. difficile isolates of defined PCR-ribotype. The anthelmintics broadly inhibited C. difficile growth in vitro via a membrane depolarization mechanism. Interestingly, the salicylanilides were bactericidal against logarithmic- and stationary-phase cultures of the BI/NAP1/027 strain 4118. The salicylanilides were poorly active against select gut commensals (Bacteroides, Bifidobacterium and Lactobacillus species), and were non-hemolytic and non-toxic to mammalian cell lines HepG2 and HEK 293T/17 within the range of their in vitro MICs and MBCs. The salicylanilide anthelmintics exhibit desirable properties for repositioning as anti-C. difficile agents. PMID:27633064

  20. How to eradicate Clostridium difficile from the environment.

    PubMed

    Barbut, F

    2015-04-01

    During the last decade, Clostridium difficile has emerged as a major cause of healthcare-associated diarrhoea and death. Transmission of this spore-forming bacterium is thought to occur via the hands of healthcare providers or via the contaminated environment. Therefore, enhanced environmental cleaning/disinfection of the rooms housing C. difficile-infected patients is warranted. Guidelines from various scientific bodies have been published. They recommend performing environmental decontamination of rooms of patients with C. difficile infection (CDI) using hypochlorite (diluted 1/10) or a sporicidal product. Compliance with cleaning and disinfection is a critical point and is often suboptimal. Novel 'no-touch' methods for room disinfection have recently been introduced. Ultraviolet (UV) light or hydrogen peroxide systems are most widely used. In-vitro studies suggest that hydrogen peroxide vapour (from 30% hydrogen peroxide) methods achieve a >6 log10 reduction in C. difficile spores placed on carriers, and that aerosolized hydrogen peroxide systems (from 5% to 6% hydrogen peroxide) achieve ∼4 log10 reduction, whereas UV-based methods achieve ∼2 log10 reduction. Very few studies have assessed the impact of these devices on the transmission of C. difficile. Major limitations of these devices include the fact that they can only be used after the patient's discharge, because patients and staff must be removed from the room. The new no-touch methods for room disinfection supplement, but do not replace, daily cleaning.

  1. Reprofiled anthelmintics abate hypervirulent stationary-phase Clostridium difficile.

    PubMed

    Gooyit, Major; Janda, Kim D

    2016-09-16

    Prolonged use of broad-spectrum antibiotics disrupts the indigenous gut microbiota, which consequently enables toxigenic Clostridium difficile species to proliferate and cause infection. The burden of C. difficile infections was exacerbated with the outbreak of hypervirulent strains that produce copious amounts of enterotoxins and spores. In recent past, membrane-active agents have generated a surge of interest due to their bactericidal property with a low propensity for resistance. In this study, we capitalized on the antimicrobial property and low oral bioavailability of salicylanilide anthelmintics (closantel, rafoxanide, niclosamide, oxyclozanide) to target the gut pathogen. By broth microdilution techniques, we determined the MIC values of the anthelmintics against 16 C. difficile isolates of defined PCR-ribotype. The anthelmintics broadly inhibited C. difficile growth in vitro via a membrane depolarization mechanism. Interestingly, the salicylanilides were bactericidal against logarithmic- and stationary-phase cultures of the BI/NAP1/027 strain 4118. The salicylanilides were poorly active against select gut commensals (Bacteroides, Bifidobacterium and Lactobacillus species), and were non-hemolytic and non-toxic to mammalian cell lines HepG2 and HEK 293T/17 within the range of their in vitro MICs and MBCs. The salicylanilide anthelmintics exhibit desirable properties for repositioning as anti-C. difficile agents.

  2. Reprofiled anthelmintics abate hypervirulent stationary-phase Clostridium difficile

    PubMed Central

    Gooyit, Major; Janda, Kim D.

    2016-01-01

    Prolonged use of broad-spectrum antibiotics disrupts the indigenous gut microbiota, which consequently enables toxigenic Clostridium difficile species to proliferate and cause infection. The burden of C. difficile infections was exacerbated with the outbreak of hypervirulent strains that produce copious amounts of enterotoxins and spores. In recent past, membrane-active agents have generated a surge of interest due to their bactericidal property with a low propensity for resistance. In this study, we capitalized on the antimicrobial property and low oral bioavailability of salicylanilide anthelmintics (closantel, rafoxanide, niclosamide, oxyclozanide) to target the gut pathogen. By broth microdilution techniques, we determined the MIC values of the anthelmintics against 16 C. difficile isolates of defined PCR-ribotype. The anthelmintics broadly inhibited C. difficile growth in vitro via a membrane depolarization mechanism. Interestingly, the salicylanilides were bactericidal against logarithmic- and stationary-phase cultures of the BI/NAP1/027 strain 4118. The salicylanilides were poorly active against select gut commensals (Bacteroides, Bifidobacterium and Lactobacillus species), and were non-hemolytic and non-toxic to mammalian cell lines HepG2 and HEK 293T/17 within the range of their in vitro MICs and MBCs. The salicylanilide anthelmintics exhibit desirable properties for repositioning as anti-C. difficile agents. PMID:27633064

  3. A bundle strategy including patient hand hygiene to decrease clostridium difficile infections.

    PubMed

    Pokrywka, Marian; Feigel, Jody; Douglas, Barbara; Grossberger, Susan; Hensler, Amelia; Hensler, Amelia; Weber, David

    2014-01-01

    Prevention strategies for Clostridium difficile infection traditionally have addressed barrier precautions, environmental disinfection, and health care worker hand hygiene. When applied as a bundle, this approach has been used widely as an evidence-based strategy to prevent hospital-acquired C. difficile infection. Expanding the bundle to include patient hand hygiene is a nurse-driven approach to prevent C. difficile transmission.

  4. Successful Treatment of Peritoneal Dialysis Catheter-Related Polymicrobial Peritonitis Involving Clostridium difficile

    PubMed Central

    Malhotra, Prashant; Juretschko, Stefan

    2015-01-01

    Clostridium difficile is one of the most common nosocomial pathogens and the cause of pseudomembranous colitis in cases of prior antimicrobial exposure. Extraintestinal manifestations of C. difficile are uncommon and rarely reported. We report the first successfully treated case of catheter-related C. difficile peritonitis in a patient undergoing peritoneal dialysis. PMID:26378285

  5. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17

    PubMed Central

    Riccobono, E.; Di Pilato, V.; Della Malva, N.; Meini, S.; Ciraolo, F.; Torricelli, F.

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  6. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17.

    PubMed

    Riccobono, E; Di Pilato, V; Della Malva, N; Meini, S; Ciraolo, F; Torricelli, F; Rossolini, G M

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  7. Routine detection of Clostridium difficile in Western Australia.

    PubMed

    Collins, Deirdre A; Riley, Thomas V

    2016-02-01

    Despite increasing infection rates, Clostridium difficile is not currently routinely tested for in all diarrhoeal faecal specimens in Australia. In July 2014, all diarrhoeal specimens submitted to a diagnostic laboratory in Western Australia were surveyed to determine the true prevalence of C. difficile. In total, 1010 diarrhoeal non-duplicate faecal specimens were received during the month. Testing for C. difficile was requested, or the criteria for a C. difficile investigation were met, for 678 specimens which were investigated by PCR for the tcdB gene using the BD MAX platform, followed by toxigenic culture on PCR-positive samples. The remaining 332 specimens, with either no C. difficile test request or the criteria for a C. difficile investigation were not met, were examined by toxigenic culture. All isolates were PCR ribotyped. C. difficile was the most commonly detected diarrhoeal pathogen among all specimens. The overall prevalence of C. difficile in all 1010 specimens was 6.4%; 7.2% in the routinely tested group, and 4.8% in the non-requested group. The proportion of non-requested positive detections among all cases was 24.6%. Community-onset infection was present in 50.8% of all cases. The median age of all CDI cases was 60.0 years and the age range in CDI patients in the routine group was 0.6-96.6 years (median 72.7 years), compared to 0.2-2.3 years (median 0.8 years) in the non-requested group. The most common ribotype (RT) found was RT 014/020 (34.1% in the routine group, 43.8% in the non-requested group), followed by RTs 002, 056, 005 and 018. While the routine testing group and the non-requested group differed markedly in age and patient classification, C. difficile was the most common cause of diarrhoea in hospitals and the community in Western Australia. The significance of finding C. difficile in the community paediatric population requires further study.

  8. Prevalence and diversity of toxigenic Clostridium perfringens and Clostridium difficile among swine herds in the midwest.

    PubMed

    Baker, Ashley A; Davis, Ellen; Rehberger, Thomas; Rosener, Daniel

    2010-05-01

    Clostridium perfringens and Clostridium difficile are associated with scours in the neonatal piglet and are an economic concern in swine production. The objective of this study was to characterize the prevalence and diversity of C. perfringens and C. difficile isolates obtained from scouring neonatal piglets in a large integrated production system, as well as in smaller independently owned regional farms. Rectal swabs were collected from 333 pigs at 11 sites in an integrated swine production system and from an additional 180 pigs at 16 regional farms located throughout the Midwest. C. perfringens was isolated from 89.8% of the pigs swabbed at the integrated sites, and C. difficile was isolated from 57.7% of these pigs. Of the pigs from the regional farms sampled, 95.6% were positive for isolation of C. perfringens and 27.2% were positive for C. difficile. Toxigenic isolates were typed using random amplified polymorphic DNA (RAPD) PCR, and were placed in four dendrograms for C. perfringens and C. difficile populations isolated from the integrated sites and regional farms. Diversity indices showed that there was greater diversity in C. difficile populations and in populations isolated from the regional farms. A subset of isolates from the C. difficile dendrograms were further toxinotyped by amplification of the pathogenicity locus and subsequent digestion by HincII, AccI, and EcoRI. Of the 45 isolates typed, 44 were determined to be toxinotype V. The results of this study illustrate the diversity of C. perfringens and C. difficile isolates and the prevalence of these pathogens in swine production sites.

  9. Clostridium difficile Enterocolitis and Reactive Arthritis: A Case Report and Review of the Literature.

    PubMed

    Cappella, Michela; Pugliese, Fabrizio; Zucchini, Andrea; Marchetti, Federico

    2016-01-01

    Reactive arthritis is a rare complication of Clostridium difficile enterocolitis, especially in children. We review the 6 pediatric cases published in the English and non-English literature and discuss their clinical presentation, outcome, treatment, and pathophysiology. We also report the seventh case of Clostridium difficile reactive arthritis in a 6-year-old boy who was treated with amoxicillin-clavulanate for 10 days because of an upper respiratory infection. After the antibiotic course, the child developed at the same time diarrhea with positive stool culture for Clostridium difficile and an asymmetric polyarthritis. Nonsteroidal anti-inflammatory drugs and metronidazole completely resolved the pain, joint swelling, and diarrhea. After twelve months of follow-up there has been no recurrence. This report confirms the self-limiting course of Clostridium difficile reactive arthritis. Clostridium difficile testing in children with gastrointestinal symptoms and acute onset of joint pain should be always considered. PMID:27190666

  10. Clostridium difficile Enterocolitis and Reactive Arthritis: A Case Report and Review of the Literature

    PubMed Central

    Cappella, Michela; Pugliese, Fabrizio; Zucchini, Andrea; Marchetti, Federico

    2016-01-01

    Reactive arthritis is a rare complication of Clostridium difficile enterocolitis, especially in children. We review the 6 pediatric cases published in the English and non-English literature and discuss their clinical presentation, outcome, treatment, and pathophysiology. We also report the seventh case of Clostridium difficile reactive arthritis in a 6-year-old boy who was treated with amoxicillin-clavulanate for 10 days because of an upper respiratory infection. After the antibiotic course, the child developed at the same time diarrhea with positive stool culture for Clostridium difficile and an asymmetric polyarthritis. Nonsteroidal anti-inflammatory drugs and metronidazole completely resolved the pain, joint swelling, and diarrhea. After twelve months of follow-up there has been no recurrence. This report confirms the self-limiting course of Clostridium difficile reactive arthritis. Clostridium difficile testing in children with gastrointestinal symptoms and acute onset of joint pain should be always considered. PMID:27190666

  11. Clostridium difficile Enterocolitis and Reactive Arthritis: A Case Report and Review of the Literature.

    PubMed

    Cappella, Michela; Pugliese, Fabrizio; Zucchini, Andrea; Marchetti, Federico

    2016-01-01

    Reactive arthritis is a rare complication of Clostridium difficile enterocolitis, especially in children. We review the 6 pediatric cases published in the English and non-English literature and discuss their clinical presentation, outcome, treatment, and pathophysiology. We also report the seventh case of Clostridium difficile reactive arthritis in a 6-year-old boy who was treated with amoxicillin-clavulanate for 10 days because of an upper respiratory infection. After the antibiotic course, the child developed at the same time diarrhea with positive stool culture for Clostridium difficile and an asymmetric polyarthritis. Nonsteroidal anti-inflammatory drugs and metronidazole completely resolved the pain, joint swelling, and diarrhea. After twelve months of follow-up there has been no recurrence. This report confirms the self-limiting course of Clostridium difficile reactive arthritis. Clostridium difficile testing in children with gastrointestinal symptoms and acute onset of joint pain should be always considered.

  12. Comparison of Multilocus Sequence Typing and the Xpert C. difficile/Epi Assay for Identification of Clostridium difficile 027/NAP1/BI.

    PubMed

    McMillen, Tracy; Kamboj, Mini; Babady, N Esther

    2016-03-01

    Clostridium difficile 027/NAP1/BI is the most common C. difficile strain in the United States. The Xpert C. difficile/Epi assay allows rapid, presumptive identification of C. difficile NAP1. We compared Xpert C. difficile/Epi to multilocus sequence typing for identification of C. difficile NAP1 and found "very good" agreement at 97.9% (κ = 0.86; 95% confidence interval, 0.80 to 0.91).

  13. Laboratory detection of Clostridium difficile in piglets in Australia.

    PubMed

    Knight, Daniel R; Squire, Michele M; Riley, Thomas V

    2014-11-01

    Clostridium difficile is a well-known enteric pathogen of humans and the causative agent of high-morbidity enteritis in piglets aged 1 to 7 days. C. difficile prevalence in Australian piglets is as high as 70%. The current diagnostic assays have been validated only for human infections, and there are no published studies assessing their performance in Australian piglets. We evaluated the suitability of five assays for detecting C. difficile in 157 specimens of piglet feces. The assays included a loop-mediated isothermal amplification (LMIA)-PCR for tcdA (illumigene C. difficile; Meridian), a real-time PCR for tcdB (GeneOhm Cdiff; Becton Dickinson), two-component enzyme immunoassays (EIA) for C. difficile glutamate dehydrogenase (GDH) (EIA-GDH) and TcdA/TcdB (EIA-TcdA/TcdB) (C. diff Quik Chek; Alere), and direct culture (DC) (C. difficile chromID agar; bioMérieux). The assays for detection of the organism were compared against enrichment culture (EC), and assays for detection of toxins/toxin genes were compared against EC followed by PCR for toxin genes (toxigenic EC [TEC]). The recovery of C. difficile by EC was 39.5% (n = 62/157), and TEC revealed that 58.1% (n = 36/62) of isolates were positive for at least one toxin gene (tcdA/tcdB). Compared with those for EC/TEC, the sensitivities, specificities, positive predictive values, and negative predictive values were, respectively, as follows: DC, 91.9, 100.0, 100.0, and 95.0%; EIA-GDH, 41.9, 92.6, 78.8, and 71.0%; EIA-TcdA/TcdB, 5.6, 99.2, 66.7, and 77.9%; real-time PCR, 42.9, 96.7, 78.9, and 85.4% and LMIA-PCR, 25.0, 95.9, 64.3, and 81.1%. The performance of the molecular methods was poor, suggesting that the current commercially available assays for diagnosis of C. difficile in humans are not suitable for use in piglets. C. difficile recovery by the DC provides a cost-effective alternative.

  14. Laboratory Detection of Clostridium difficile in Piglets in Australia

    PubMed Central

    Knight, Daniel R.; Squire, Michele M.

    2014-01-01

    Clostridium difficile is a well-known enteric pathogen of humans and the causative agent of high-morbidity enteritis in piglets aged 1 to 7 days. C. difficile prevalence in Australian piglets is as high as 70%. The current diagnostic assays have been validated only for human infections, and there are no published studies assessing their performance in Australian piglets. We evaluated the suitability of five assays for detecting C. difficile in 157 specimens of piglet feces. The assays included a loop-mediated isothermal amplification (LMIA)-PCR for tcdA (illumigene C. difficile; Meridian), a real-time PCR for tcdB (GeneOhm Cdiff; Becton Dickinson), two-component enzyme immunoassays (EIA) for C. difficile glutamate dehydrogenase (GDH) (EIA-GDH) and TcdA/TcdB (EIA-TcdA/TcdB) (C. diff Quik Chek; Alere), and direct culture (DC) (C. difficile chromID agar; bioMérieux). The assays for detection of the organism were compared against enrichment culture (EC), and assays for detection of toxins/toxin genes were compared against EC followed by PCR for toxin genes (toxigenic EC [TEC]). The recovery of C. difficile by EC was 39.5% (n = 62/157), and TEC revealed that 58.1% (n = 36/62) of isolates were positive for at least one toxin gene (tcdA/tcdB). Compared with those for EC/TEC, the sensitivities, specificities, positive predictive values, and negative predictive values were, respectively, as follows: DC, 91.9, 100.0, 100.0, and 95.0%; EIA-GDH, 41.9, 92.6, 78.8, and 71.0%; EIA-TcdA/TcdB, 5.6, 99.2, 66.7, and 77.9%; real-time PCR, 42.9, 96.7, 78.9, and 85.4% and LMIA-PCR, 25.0, 95.9, 64.3, and 81.1%. The performance of the molecular methods was poor, suggesting that the current commercially available assays for diagnosis of C. difficile in humans are not suitable for use in piglets. C. difficile recovery by the DC provides a cost-effective alternative. PMID:25122859

  15. The LexA regulated genes of the Clostridium difficile

    PubMed Central

    2014-01-01

    Background The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the in silico LexA regulon in Clostridium difficile, an important human pathogen. Results We grouped thirty C. difficile strains from different ribotypes and toxinotypes into three clusters according to lexA gene/protein variability. We applied in silico analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in C. difficile. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: lexA, recA, ruvCA and uvrBA, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance. Conclusions Results presented here suggest that in C. difficile LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our in vitro results indicate that in C. difficile inactivation of LexA repressor depends on repressor`s dissociation from the operators. We report that the repressor`s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in C. difficile. PMID:24713082

  16. Efficacy of decontaminants and disinfectants against Clostridium difficile.

    PubMed

    Vohra, Prerna; Poxton, Ian R

    2011-08-01

    Clostridium difficile is a common nosocomial pathogen transmitted mainly via its spores. These spores can remain viable on contaminated surfaces for several months and are resistant to most commonly used cleaning agents. Thus, effective decontamination of the environment is essential in preventing the transmission of C. difficile in health-care establishments. However, this emphasis on decontamination must also be extended to laboratories due to risk of exposure of staff to potentially virulent strains. Though few cases of laboratory-acquired infection have been reported, the threat of infection by C. difficile in the laboratory is real. Our aim was to test the efficacy of four disinfectants, Actichlor, MicroSol 3+, TriGene Advance and Virkon, and one laboratory decontaminant, Decon 90, against vegetative cells and spores of C. difficile. Five strains were selected for the study: the three most commonly encountered epidemic strains in Scotland, PCR ribotypes 106, 001 and 027, and control strains 630 and VPI 10463. MICs were determined by agar dilution and broth microdilution. All the agents tested inhibited the growth of vegetative cells of the selected strains at concentrations below the recommended working concentrations. Additionally, their effect on spores was determined by exposing the spores of these strains to different concentrations of the agents for different periods of time. For some of the agents, an exposure of 10 min was required for sporicidal activity. Further, only Actichlor was able to bring about a 3 log(10) reduction in spore numbers under clean and dirty conditions. It was also the only agent that decontaminated different hard, non-porous surfaces artificially contaminated with C. difficile spores. However, this too required an exposure time of more than 2 min and up to 10 min. In conclusion, only the chlorine-releasing agent Actichlor was found to be suitable for the elimination of C. difficile spores from the environment, making it the agent

  17. Clostridium difficile ribotypes in humans and animals in Brazil

    PubMed Central

    Silva, Rodrigo Otávio Silveira; Rupnik, Maja; Diniz, Amanda Nádia; Vilela, Eduardo Garcia; Lobato, Francisco Carlos Faria

    2015-01-01

    Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies aboutC. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficileribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen. PMID:26676318

  18. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis.

    PubMed

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  19. A review of the economics of treating Clostridium difficile infection.

    PubMed

    Mergenhagen, Kari A; Wojciechowski, Amy L; Paladino, Joseph A

    2014-07-01

    Clostridium difficile infection (CDI) is a costly result of antibiotic use, responsible for an estimated 14,000 deaths annually in the USA according to the Centers for Disease Control and Prevention. Annual costs attributable to CDI are in excess of $US 1 billion. This review summarizes appropriate utilization of prevention and treatment methods for CDI that have the potential to reduce the economic and humanistic costs of the disease. Some cost-effective strategies to prevent CDI include screening and isolation of hospital admissions based on C. difficile carriage to reduce transmission in the inpatient setting, and probiotics, which are potentially efficacious in preventing CDI in the appropriate patient population. The most extensively studied agents for treatment of CDI are metronidazole, vancomycin, and fidaxomicin. Most economic comparisons between metronidazole and vancomycin favor vancomycin, especially with the emergence of metronidazole-resistant C. difficile strains. Metronidazole can only be recommended for mild disease. Moderate to severe CDI should be treated with vancomycin, preferably the compounded oral solution, which provides the most cost-effective therapeutic option. Fidaxomicin offers a clinically effective and potentially cost-effective alternative for treating moderate CDI in patients who do not have the NAP1/BI/027 strain of C. difficile. Probiotics and fecal microbiota transplant have variable efficacy and the US FDA does not currently regulate the content; the potential economic advantages of these treatment modalities are currently unknown.

  20. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission.

    PubMed

    Martin, Jessica S H; Monaghan, Tanya M; Wilcox, Mark H

    2016-04-01

    Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI. PMID:26956066

  1. Clostridium difficile in Crete, Greece: epidemiology, microbiology and clinical disease.

    PubMed

    Samonis, G; Vardakas, K Z; Tansarli, G S; Dimopoulou, D; Papadimitriou, G; Kofteridis, D P; Maraki, S; Karanika, M; Falagas, M E

    2016-01-01

    We studied the epidemiology and microbiology of Clostridium difficile and the characteristics of patients with C. difficile infection (CDI) in Crete in three groups of hospitalized patients with diarrhoea: group 1 [positive culture and positive toxin by enzyme immunoassay (EIA)]; group 2 (positive culture, negative toxin); group 3 (negative culture, negative toxin). Patients in group 1 were designated as those with definitive CDI (20 patients for whom data was available) and matched with cases in group 2 (40 patients) and group 3 (40 patients). C. difficile grew from 6% (263/4379) of stool specimens; 14·4% of these had positive EIA, of which 3% were resistant to metronidazole. Three isolates had decreased vancomycin susceptibility. Patients in groups 1 and 2 received more antibiotics (P = 0·03) and had more infectious episodes (P = 0·03) than patients in group 3 prior to diarrhoea. Antibiotic administration for C. difficile did not differ between groups 1 and 2. Mortality was similar in all three groups (10%, 12·5% and 5%, P = 0·49). CDI frequency was low in the University Hospital of Crete and isolates were susceptible to metronidazole and vancomycin.

  2. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    PubMed Central

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  3. Investigation of potentially pathogenic Clostridium difficile contamination in household environs.

    PubMed

    Alam, M Jahangir; Anu, Ananna; Walk, Seth T; Garey, Kevin W

    2014-06-01

    As Clostridium difficile spores are resistant to many household cleaning products, the potential for community household contamination is high. The purpose of this study was to assess the prevalence of toxigenic C. difficile from environmental sources from a large urban area. Three to 5 household items or environmental dust was collected from 30 houses in Houston, Texas. A total of 127 environmental samples were collected from shoe bottoms (n = 63), bathroom surfaces (n = 15), house floor dusts (n = 12), or other household surfaces (n = 37). Forty one of 127 samples (32.3%) grew C. difficile. All 41 isolates were positive for toxin A and B genes and no isolate was positive for binary toxin genes. Shoe bottom swab samples had the highest percent of positive samples (25/63; 39.7%) followed by bathroom/toilet surfaces (5/15; 33.3%), house floor dust (4/12; 33.3%), and other surface swabs (7/37; 18.9%). Strains were grouped into 25 different ribotypes, the most prevalent type was 001 (5 strains). In conclusion, a high rate of environmental contamination of C. difficile was observed from community households from a large urban area.

  4. Metronidazole-triazole conjugates: Activity against Clostridium difficile and parasites

    PubMed Central

    Jarrad, Angie M.; Karoli, Tomislav; Debnath, Anjan; Tay, Chin Yen; Huang, Johnny X.; Kaeslin, Geraldine; Elliott, Alysha G.; Miyamoto, Yukiko; Ramu, Soumya; Kavanagh, Angela M.; Zuegg, Johannes; Eckmann, Lars; Blaskovich, Mark A.T.; Cooper, Matthew A.

    2015-01-01

    Metronidazole has been used clinically for over 50 years as an antiparasitic and broad-spectrum antibacterial agent effective against anaerobic bacteria. However resistance to metronidazole in parasites and bacteria has been reported, and improved second-generation metronidazole analogues are needed. The copper catalysed Huigsen azide-alkyne 1,3-dipolar cycloaddition offers a way to efficiently assemble new libraries of metronidazole analogues. Several new metronidazole-triazole conjugates (Mtz-triazoles) have been identified with excellent broad spectrum antimicrobial and antiparasitic activity targeting Clostridium difficile, Entamoeba histolytica and Giardia lamblia. Cross resistance to metronidazole was observed against stable metronidazole resistant C. difficile and G. lamblia strains. However for the most potent Mtz-triazoles, the activity remained in a therapeutically relevant window. PMID:26117821

  5. Integration of metabolism and virulence in Clostridium difficile.

    PubMed

    Bouillaut, Laurent; Dubois, Thomas; Sonenshein, Abraham L; Dupuy, Bruno

    2015-05-01

    Synthesis of the major toxin proteins of the diarrheal pathogen, Clostridium difficile, is dependent on the activity of TcdR, an initiation (sigma) factor of RNA polymerase. The synthesis of TcdR and the activation of toxin gene expression are responsive to multiple components in the bacterium's nutritional environment, such as the presence of certain sugars, amino acids, and fatty acids. This review summarizes current knowledge about the mechanisms responsible for repression of toxin synthesis when glucose or branched-chain amino acids or proline are in excess and the pathways that lead to synthesis of butyrate, an activator of toxin synthesis. The regulatory proteins implicated in these mechanisms also play key roles in modulating bacterial metabolic pathways, suggesting that C. difficile pathogenesis is intimately connected to the bacterium's metabolic state.

  6. Probiotics and Antibiotic-Associated Diarrhea and Clostridium difficile Infection

    NASA Astrophysics Data System (ADS)

    Surawicz, Christina M.

    Diarrhea is a common side effect of antibiotics. Antibiotics can cause diarrhea in 5-25% of individuals who take them but its occurrence is unpredictable. Diarrhea due to antibiotics is called antibiotic-associated diarrhea (AAD). Diarrhea may be mild and resolve when antibiotics are discontinued, or it may be more severe. The most severe form of AAD is caused by overgrowth of Clostridium difficile which can cause severe diarrhea, colitis, pseudomembranous colitis, or even fatal toxic megacolon. Rates of diarrhea vary with the specific antibiotic as well as with the individual susceptibility.

  7. The potential of probiotics to prevent Clostridium difficile infection.

    PubMed

    Allen, Stephen J

    2015-03-01

    Exposure to antibiotics is the major risk factor for Clostridium difficile diarrhea (CDD), suggesting that impairment of colonization resistance due to depletion of the gut flora is a significant underlying disease susceptibility factor. Many properties of probiotic organisms indicate that they may be able to replenish the depleted gut flora and restore colonization resistance. However, despite numerous clinical trials, the evidence base for probiotics in the prevention of CDD remains weak. A recent large trial of a multistrain, high-dose probiotic did not show clear evidence of efficacy. The role of probiotics in the prevention of CDD remains unclear.

  8. Community-Acquired Clostridium Difficile Infection: Awareness and Clinical Implications

    PubMed Central

    Juneau, Cheryl; Mendias, Elnora (Nonie) P.; Wagal, Nihas; Loeffelholz, Michael; Savidge, Tor; Croisant, Sharon; Dann, Sara

    2013-01-01

    The epidemiology of Clostridium difficile infection (CDI) is changing. CDI, usually depicted as a nosocomial infection in the elderly, is now occurring in community-dwelling persons who are younger and otherwise dissimilar. A more virulent isolate (North American Pulsed Field type 1 (NAP1) associated with increased morbidity and mortality, has been identified. In 2005, similar strains were associated with severe disease in community-dwelling patients at a rate of 7.6/100,000. Screening patients with potential CDI symptoms and implementing preventative measures, including judicious use of antibiotics, can reduce disease burden. PMID:23814528

  9. Optimizing the Laboratory Diagnosis of Clostridium difficile Infection.

    PubMed

    Gilligan, Peter H

    2015-06-01

    The best laboratory diagnostic approach to detect Clostridium difficile infection (CDI) is the subject of ongoing debate. In the United States, nucleic acid amplification tests (NAAT) have become the most widely used tests for making this diagnosis. Detection of toxin in stool may be a better predictor of CDI disease and severity. Laboratories that have switched from toxin-based to NAAT-based methods have significantly higher CDI detection rates. The important issue is whether all NAAT-positive patients have CDI or at least some of those patients are excretors of the organism and do not have clinical disease.

  10. First Australian isolation of epidemic Clostridium difficile PCR ribotype 027.

    PubMed

    Riley, Thomas V; Thean, Sarah; Hool, Graham; Golledge, Clayton L

    2009-06-15

    We report the first isolation in Australia of a hypervirulent epidemic strain of Clostridium difficile, PCR ribotype 027. It was isolated from a 43-year-old woman with a permanent ileostomy, who appears to have been infected while travelling in the United States. The isolate was positive for toxin A, toxin B and binary toxin, and resistant to fluoroquinolone antimicrobials, and had characteristic deletions in the tcdC gene. All diagnostic laboratories and health care facilities in Australia should now be on high alert for this organism. PMID:19527210

  11. Hand hygiene is crucial to combat Clostridium difficile.

    PubMed

    2014-09-01

    Patients with Clostridium difficile infection (CDI) can contaminate the environment with spores that are able to survive for months. A previous room occupant with CDI is a significant risk factor for developing the infection. Room cleaning with commonly used disinfectants will not kill spores. Sodium hypochlorite and hydrogen peroxide are effective but correct concentration and contact time are important. Hand hygiene is a crucial element in preventing infection. In the UK, there is a clear recommendation for handwashing, rather than alcohol-based hand rub, when caring for patients with CDI. PMID:25258234

  12. Alteration of the intestinal microbiome: fecal microbiota transplant and probiotics for Clostridium difficile and beyond.

    PubMed

    Vindigni, Stephen M; Broussard, Elizabeth K; Surawicz, Christina M

    2013-09-01

    Clostridium difficile infection is increasingly common with a high risk of recurrence despite antibiotic treatment. In cases of recurrent C. difficile infection, fecal microbiota transplant (FMT) is a highly effective treatment option promoting the restoration of normal gut microbiota. Furthermore, preliminary uncontrolled evidence demonstrates possible benefit of FMT in the management of some cases of inflammatory bowel disease and chronic constipation. In addition to presenting an overview of FMT, we discuss the role of probiotics, a more common approach to modifying the intestinal microbiome. Probiotics have been utilized broadly for many disease processes, including gastrointestinal, cardiovascular and allergic disease settings, although with limited and inconsistent results. Multiple potential areas for research are also identified.

  13. Diagnostic testing for Clostridium difficile in Italian microbiological laboratories.

    PubMed

    Spigaglia, Patrizia; Barbanti, Fabrizio; Morandi, Matteo; Moro, Maria Luisa; Mastrantonio, Paola

    2016-02-01

    A laboratory diagnosis survey of Clostridium difficile infection (CDI) was performed in Italy in 2012-2013. Questionnaires from 278 healthcare settings from 15 regions of Italy were collected and analysed. Eighty seven percent of the laboratories declared to routinely perform CDI diagnosis, 99% of them only after the clinician's request. Among the 216 laboratories providing information on the size of the hospitals in which they were located, 65 had more than 500 beds (large hospitals), while 151 had less than 500 beds (small hospitals). The average percentage of positive tests for C. difficile toxins was 12.2%. Almost half of the laboratories (42%) used immunoenzymatic assay (EIA) for Tox A/B as a stand-alone method, while only 34% used an algorithm for CDI as indicated by the European guidelines. A low percentage of laboratories performed molecular assays or C. difficile culture, 25% and 29%, respectively. Most laboratories (161/278) declared to type C. difficile strains, the majority in collaboration with a reference laboratory. Among the 103 C. difficile clinical isolates collected during the study, 31 different PCR-ribotypes were identified. PCR-ribotype 356/607 (27%) was predominant, followed by 018 (12%). These two PCR-ribotypes show 87.5% of similarity in ribotyping profile. PCR-ribotypes 027 and 078 represented 8% and 4% of the strains, respectively. Four PCR-ribotypes (027, 033, 078 and 126) were positive for the binary toxin CDT. In particular, PCR-ribotype 033 produces only CDT, and it has recently been associated with symptomatic cases. The majority of strains were multidrug resistant. In particular, all strains PCR-ribotypes 356/607 and 018 were resistant to moxifloxacin, rifampicin, erythromycin and clindamycin. The results obtained highlight the need to raise awareness to the microbiological diagnosis of CDI among clinicians and to implement and harmonize diagnostic methods for CDI in Italian laboratories in the perspective of a future national

  14. Advances in molecular surveillance of Clostridium difficile in Bulgaria.

    PubMed

    Dobreva, Elina G; Ivanov, Ivan N; Vathcheva-Dobrevska, Rossitza S; Ivanova, Katucha I; Asseva, Galina D; Petrov, Petar K; Kantardjiev, Todor V

    2013-09-01

    The increasing incidence of Clostridium difficile infection (CDI) in Bulgaria has indicated the need to implement better surveillance approaches. The aim of the present work was to improve the current surveillance of CDI in Bulgaria by introducing innovative methods for identification and typing. One hundred and twenty stool samples obtained from 108 patients were studied over 4 years from which 32 C. difficile isolates were obtained. An innovative duplex EvaGreen real-time PCR assay based on simultaneous detection of the gluD and tcdB genes was developed for rapid C. difficile identification. Four toxigenic profiles were distinguished by PCR: A(+)B(+)CDT(-) (53.1 %, 17/32), A(-)B(+)CDT(-) (28.1 %, 9/32), A(+)B(+)CDT(+) (9.4 %, 3/32) and A(-)B(-)CDT(-) (9.4 %, 3/32). PCR ribotyping and multilocus variable number of tandem repeat analysis (MLVA7) were used for molecular characterization of the isolates. In total, nine distinct ribotypes were confirmed and the most prevalent for Bulgarian hospitals was 017 followed by 014/020, together accounting for 44 % of all isolates. Eighteen per cent of the isolates (6/32) did not match any of the 25 reference ribotypes available in this study. Twenty-four MLVA7 genotypes were detected among the clinical C. difficile isolates, distributed as follows: five for 017 ribotype, two for 014/020, 001, 002, 012 and 046 each, and one each for ribotypes 023, 070 and 078. The correlation between the typing methods was significant and allowed the identification of several clonal complexes. These results suggest that most C. difficile cases in the eight Bulgarian hospitals studied were associated with isolates belonging to the outbreak ribotypes 017 and 014/20, which are widely distributed in Europe. The real-time PCR protocol for simultaneous detection of gluD and tcdB proved to be very effective and improved C. difficile identification and confirmation of clinical C. difficile isolates. PMID:23598377

  15. Evaluation of the Qiagen artus C. difficile QS-RGQ Kit for Detection of Clostridium difficile Toxins A and B in Clinical Stool Specimens.

    PubMed

    Jazmati, Nathalie; Wiegel, Pia; Ličanin, Božica; Plum, Georg

    2015-06-01

    We compared the Qiagen artus C. difficile QS-RGQ kit, a new nucleic acid amplification test for the detection of Clostridium difficile toxins in stool specimens, with the Cepheid Xpert C. difficile test. The sensitivity, specificity, positive predictive value, and negative predictive value for the Qiagen artus C. difficile QS-RGQ test were 100%, 89.5%, 60.9%, and 100%, and those for the Cepheid Xpert C. difficile test were 100%, 90%, 62.2%, and 100%, respectively.

  16. A case of reactive arthritis due to Clostridium difficile colitis.

    PubMed

    Essenmacher, Alex C; Khurram, Nazish; Bismack, Gregory T

    2016-01-01

    Reactive arthritis is an acute, aseptic, inflammatory arthropathy following an infectious process but removed from the site of primary infection. It is often attributed to genitourinary and enteric pathogens, such as Chlamydia, Salmonella, Shigella, Campylobacter, and Yersinia, in susceptible individuals. An uncommon and less recognized cause of this disease is preceding colonic infection with Clostridium difficile, an organism associated with pseudomembranous colitis and diarrhea in hospitalized patients and those recently exposed to antibiotics. Recognition of this association may be complicated by non-specific presentation of diarrhea, the interval between gastrointestinal and arthritic symptoms, and the wide differential in mono- and oligoarthritis. We present the case of a 61-year-old, hospitalized patient recently treated for C. difficile colitis who developed sudden, non-traumatic, right knee pain and swelling. Physical examination and radiographs disclosed joint effusion, and sterile aspiration produced cloudy fluid with predominant neutrophils and no growth on cultures. Diagnostic accuracy is enhanced by contemporaneous laboratory investigations excluding other entities such as gout and rheumatoid arthritis and other infections that typically precede reactive arthritis. Contribution of Clostridium infection to reactive arthritis is an obscure association frequently difficult to prove, but this organism is warranted inclusion in the differential of reactive arthritis. PMID:26908381

  17. A case of reactive arthritis due to Clostridium difficile colitis

    PubMed Central

    Essenmacher, Alex C.; Khurram, Nazish; Bismack, Gregory T.

    2016-01-01

    Reactive arthritis is an acute, aseptic, inflammatory arthropathy following an infectious process but removed from the site of primary infection. It is often attributed to genitourinary and enteric pathogens, such as Chlamydia, Salmonella, Shigella, Campylobacter, and Yersinia, in susceptible individuals. An uncommon and less recognized cause of this disease is preceding colonic infection with Clostridium difficile, an organism associated with pseudomembranous colitis and diarrhea in hospitalized patients and those recently exposed to antibiotics. Recognition of this association may be complicated by non-specific presentation of diarrhea, the interval between gastrointestinal and arthritic symptoms, and the wide differential in mono- and oligoarthritis. We present the case of a 61-year-old, hospitalized patient recently treated for C. difficile colitis who developed sudden, non-traumatic, right knee pain and swelling. Physical examination and radiographs disclosed joint effusion, and sterile aspiration produced cloudy fluid with predominant neutrophils and no growth on cultures. Diagnostic accuracy is enhanced by contemporaneous laboratory investigations excluding other entities such as gout and rheumatoid arthritis and other infections that typically precede reactive arthritis. Contribution of Clostridium infection to reactive arthritis is an obscure association frequently difficult to prove, but this organism is warranted inclusion in the differential of reactive arthritis. PMID:26908381

  18. Clostridium Difficile Infection and Takotsubo Cardiomyopathy: Is There a Relation?

    PubMed Central

    Virk, Hafeez Ul Hassan; Inayat, Faisal

    2016-01-01

    Context: Takotsubo cardiomyopathy (TCM) mimics acute coronary syndrome and is accompanied by reversible left ventricular apical ballooning in the absence of angiographically significant coronary artery stenosis. It is a transient condition that typically precedes physical or emotional triggers. Case Report: We describe the case of a 65-year-old woman who presented to our institution with symptomatic Clostridium difficile infection. 24 hours after admission, the patient complained of severe, retrosternal chest pain. Electrocardiogram showed diffuse elevation of ST-segment in the chest leads; however, coronary angiography demonstrated normal coronary arteries. Therein, an echocardiography was performed, which revealed apical ballooning and hypercontractile base with global left ventricular hypokinesis. These features were consistent with TCM. The patient was managed conservatively. Repeat echocardiogram 2 weeks later showed resolution of heart failure. Conclusion: To our research, this is the first report of TCM caused by C. difficile infection. Clinicians involved in the care of patients with C. difficile infection must be aware of this complication and should consider TCM in those who develop atypical chest pain. PMID:27583241

  19. Advances in the Microbiome: Applications to Clostridium difficile Infection

    PubMed Central

    Culligan, Eamonn P.; Sleator, Roy D.

    2016-01-01

    Clostridium difficile is a major cause of morbidity and mortality worldwide, causing over 400,000 infections and approximately 29,000 deaths in the United States alone each year. C. difficile is the most common cause of nosocomial diarrhoea in the developed world, and, in recent years, the emergence of hyper-virulent (mainly ribotypes 027 and 078, sometimes characterised by increased toxin production), epidemic strains and an increase in the number of community-acquired infections has caused further concern. Antibiotic therapy with metronidazole, vancomycin or fidaxomicin is the primary treatment for C. difficile infection (CDI). However, CDI is unique, in that, antibiotic use is also a major risk factor for acquiring CDI or recurrent CDI due to disruption of the normal gut microbiota. Therefore, there is an urgent need for alternative, non-antibiotic therapeutics to treat or prevent CDI. Here, we review a number of such potential treatments which have emerged from advances in the field of microbiome research. PMID:27657145

  20. Clostridium difficile infection: a review of current and emerging therapies

    PubMed Central

    Ofosu, Andrew

    2016-01-01

    Clostridium difficile (C. difficile) infection (CDI) is the most common cause of ­healthcare-associated infections in US hospitals. The epidemic strain NAP1/BI/ribotype 027 accounts for outbreaks worldwide, with increasing mortality and severity. CDI is acquired from an endogenous source or from spores in the environment, most easily acquired during the hospital stay. The use of antimicrobials disrupts the intestinal microflora enabling C. difficile to proliferate in the colon and produce toxins. Clinical diagnosis in symptomatic patients requires toxin detection from stool specimens and rarely in combination with stool culture to increase sensitivity. However, stool culture is essential for epidemiological studies. Oral metronidazole is the recommended therapy for milder cases of CDI and oral vancomycin or fidaxomicin for more severe cases. Treatment of first recurrence involves the use of the same therapy used in the initial CDI. In the event of a second recurrence oral vancomycin often given in a tapered dose or intermittently, or fidaxomicin may be used. Fecal transplantation is playing an immense role in therapy of recurrent CDI with remarkable results. Fulminant colitis and toxic megacolon warrant surgical intervention. Novel approaches including new antibiotics and immunotherapy against CDI or its toxins appear to be of potential value. PMID:27065726

  1. Advances in the Microbiome: Applications to Clostridium difficile Infection.

    PubMed

    Culligan, Eamonn P; Sleator, Roy D

    2016-01-01

    Clostridium difficile is a major cause of morbidity and mortality worldwide, causing over 400,000 infections and approximately 29,000 deaths in the United States alone each year. C. difficile is the most common cause of nosocomial diarrhoea in the developed world, and, in recent years, the emergence of hyper-virulent (mainly ribotypes 027 and 078, sometimes characterised by increased toxin production), epidemic strains and an increase in the number of community-acquired infections has caused further concern. Antibiotic therapy with metronidazole, vancomycin or fidaxomicin is the primary treatment for C. difficile infection (CDI). However, CDI is unique, in that, antibiotic use is also a major risk factor for acquiring CDI or recurrent CDI due to disruption of the normal gut microbiota. Therefore, there is an urgent need for alternative, non-antibiotic therapeutics to treat or prevent CDI. Here, we review a number of such potential treatments which have emerged from advances in the field of microbiome research. PMID:27657145

  2. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  3. Quantifying Transmission of Clostridium difficile within and outside Healthcare Settings

    PubMed Central

    Olsen, Margaret A.; Dubberke, Erik R.; Galvani, Alison P.; Townsend, Jeffrey P.

    2016-01-01

    To quantify the effect of hospital and community-based transmission and control measures on Clostridium difficile infection (CDI), we constructed a transmission model within and between hospital, community, and long-term care-facility settings. By parameterizing the model from national databases and calibrating it to C. difficile prevalence and CDI incidence, we found that hospitalized patients with CDI transmit C. difficile at a rate 15 (95% CI 7.2–32) times that of asymptomatic patients. Long-term care facility residents transmit at a rate of 27% (95% CI 13%–51%) that of hospitalized patients, and persons in the community at a rate of 0.1% (95% CI 0.062%–0.2%) that of hospitalized patients. Despite lower transmission rates for asymptomatic carriers and community sources, these transmission routes have a substantial effect on hospital-onset CDI because of the larger reservoir of hospitalized carriers and persons in the community. Asymptomatic carriers and community sources should be accounted for when designing and evaluating control interventions. PMID:26982504

  4. Diversity and Evolution in the Genome of Clostridium difficile.

    PubMed

    Knight, Daniel R; Elliott, Briony; Chang, Barbara J; Perkins, Timothy T; Riley, Thomas V

    2015-07-01

    Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  5. Aerial dissemination of Clostridium difficile on a pig farm and its environment.

    PubMed

    Keessen, E C; Donswijk, C J; Hol, S P; Hermanus, C; Kuijper, E J; Lipman, L J A

    2011-11-01

    Clostridium difficile is increasingly recognized as an important enteropathogen in both humans and animals. The finding of C. difficile in air samples in hospitals suggests a role for aerial dissemination in the transmission of human C. difficile infection. The present study was designed to investigate the occurrence of airborne C. difficile in, and nearby a pig farm with a high prevalence of C. difficile. Airborne colony counts in the farrowing pens peaked on the moments shortly after or during personnel activity in the pens (P=0.043 (farrowing pens 1, 2), P=0.034 (farrowing pen 2)). A decrease in airborne C. difficile colony counts was observed parallel to aging of the piglets. Airborne C. difficile was detected up to 20 m distant from the farm. This study showed widespread aerial dissemination of C. difficile on a pig farm that was positively associated with personnel activity. PMID:22014605

  6. Importance of Glutamate Dehydrogenase (GDH) in Clostridium difficile Colonization In Vivo

    PubMed Central

    Girinathan, Brintha Parasumanna; Braun, Sterling; Sirigireddy, Apoorva Reddy; Lopez, Jose Espinola; Govind, Revathi

    2016-01-01

    Clostridium difficile is the principal cause of antibiotic-associated diarrhea. Major metabolic requirements for colonization and expansion of C. difficile after microbiota disturbance have not been fully determined. In this study, we show that glutamate utilization is important for C. difficile to establish itself in the animal gut. When the gluD gene, which codes for glutamate dehydrogenase (GDH), was disrupted, the mutant C. difficile was unable to colonize and cause disease in a hamster model. Further, from the complementation experiment it appears that extracellular GDH may be playing a role in promoting C. difficile colonization and disease progression. Quantification of free amino acids in the hamster gut during C. difficile infection showed that glutamate is among preferred amino acids utilized by C. difficile during its expansion. This study provides evidence of the importance of glutamate metabolism for C. difficile pathogenesis. PMID:27467167

  7. Clostridium difficile carriage in healthy pregnant women in China.

    PubMed

    Ye, Guang-yong; Li, Na; Chen, Yun-Bo; Lv, Tao; Shen, Ping; Gu, Si-Lan; Fang, Yun-Hui; Li, Lan-Juan

    2016-02-01

    Infection with Clostridium difficile has been shown to have particularly poor outcomes for pregnant women, including an increased risk of death. The purpose of this study was to investigate the prevalence, genotypic distribution, and characterization of C. difficile strains isolated from pregnant women without diarrhea in China. As part of this study, 3.7% (37 out of 1009) of samples acquired from pregnant females tested positive for C. difficile. Of these positive samples, 27.0% (10) were toxigenic isolates containing both toxin A and toxin B genes (A+B+), 13.5% (5) of the variant strains contained the toxin B gene (A-B+) only, while the rest were non-toxigenic isolates (59.5%, 22 isolates). Among the non-pregnant women without diarrhea tested, 1.4% (9 of 651) contained toxigenic isolates (all of which were A+B+). Sixteen different sequence types (STs) were isolated during the course of this study. ST-37 (ribotype 017) and ST-54 (ribotype 012) were the most frequent toxigenic types observed in pregnant women. All strains showed susceptibility to the antibiotics metronidazole and vancomycin. The resistance rates of toxigenic C. difficile strains isolated from pregnant females to clindamycin, erythromycin, moxifloxacin, levofloxacin, and rifampicin were 20%, 46.7%, 13.6%, 46.7% and 13.3%, respectively. There was no significant difference between resistance rates of toxigenic and non-toxigenic strains with respect to their susceptibility to these antibiotics. However, when compared with the same data from non-pregnant women, toxigenic strains from pregnant women showed lower resistance rates to clindamycin (P < 0.05).

  8. DNA microarray-based PCR ribotyping of Clostridium difficile.

    PubMed

    Schneeberg, Alexander; Ehricht, Ralf; Slickers, Peter; Baier, Vico; Neubauer, Heinrich; Zimmermann, Stefan; Rabold, Denise; Lübke-Becker, Antina; Seyboldt, Christian

    2015-02-01

    This study presents a DNA microarray-based assay for fast and simple PCR ribotyping of Clostridium difficile strains. Hybridization probes were designed to query the modularly structured intergenic spacer region (ISR), which is also the template for conventional and PCR ribotyping with subsequent capillary gel electrophoresis (seq-PCR) ribotyping. The probes were derived from sequences available in GenBank as well as from theoretical ISR module combinations. A database of reference hybridization patterns was set up from a collection of 142 well-characterized C. difficile isolates representing 48 seq-PCR ribotypes. The reference hybridization patterns calculated by the arithmetic mean were compared using a similarity matrix analysis. The 48 investigated seq-PCR ribotypes revealed 27 array profiles that were clearly distinguishable. The most frequent human-pathogenic ribotypes 001, 014/020, 027, and 078/126 were discriminated by the microarray. C. difficile strains related to 078/126 (033, 045/FLI01, 078, 126, 126/FLI01, 413, 413/FLI01, 598, 620, 652, and 660) and 014/020 (014, 020, and 449) showed similar hybridization patterns, confirming their genetic relatedness, which was previously reported. A panel of 50 C. difficile field isolates was tested by seq-PCR ribotyping and the DNA microarray-based assay in parallel. Taking into account that the current version of the microarray does not discriminate some closely related seq-PCR ribotypes, all isolates were typed correctly. Moreover, seq-PCR ribotypes without reference profiles available in the database (ribotype 009 and 5 new types) were correctly recognized as new ribotypes, confirming the performance and expansion potential of the microarray.

  9. Outbreak of Clostridium difficile Infections at an Outpatient Hemodialysis Facility—Michigan, 2012–2013

    PubMed Central

    See, Isaac; Bagchi, Suparna; Booth, Stephanie; Scholz, Daniel; Geller, Andrew I.; Anderson, Lydia; Moulton-Meissner, Heather; Finks, Jennie L.; Kelley, Karen; Gould, Carolyn V.; Patel, Priti R.

    2015-01-01

    Investigation of an outbreak of Clostridium difficile infection (CDI) at a hemodialysis facility revealed evidence that limited intra-facility transmission occurred despite adherence to published infection control standards for dialysis clinics. Outpatient dialysis facilities should consider CDI prevention, including environmental disinfection for C. difficile, when formulating their infection control plans. PMID:25913501

  10. Effect of hospital disinfectants on spores of clinical Brazilian Clostridium difficile strains.

    PubMed

    Ferreira, Thaís Gonçalves; Barbosa, Thaís Flecher; Teixeira, Felipe Lopes; Ferreira, Eliane de Oliveira; Duarte, Rafael Silva; Domingues, Regina Maria Cavalcanti Pilotto; de Paula, Geraldo Renato

    2013-08-01

    The aim of this study was to evaluate the sporicidal activity of hospital disinfectants against spores of two Brazilian Clostridium difficile ribotypes and the BI/NAP1/027. Our results showed that CloroRio(®) and Cidex Opa(®) were the most efficient agents for eliminating spores of C difficile.

  11. Complete Genome Sequence of the Hypervirulent Bacterium Clostridium difficile Strain G46, Ribotype 027

    PubMed Central

    Gaulton, Tom; Rose, Graham; Baybayan, Primo; Hall, Richard; Freeman, Jane; Turton, Jane; Picton, Steve; Korlach, Jonas; Gharbia, Saheer; Shah, Haroun

    2015-01-01

    Clostridium difficile is one of the leading causes of antibiotic-associated diarrhea in health care facilities worldwide. Here, we report the genome sequence of C. difficile strain G46, ribotype 027, isolated from an outbreak in Glamorgan, Wales, in 2006. PMID:25814591

  12. Survey of Clostridium difficile in retail seafood in College Station, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America with the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  13. Transfer of Clostridium difficile Genetic Elements Conferring Resistance to Macrolide-Lincosamide-Streptogramin B (MLSB) Antibiotics.

    PubMed

    Barbanti, Fabrizio; Wasels, François; Spigaglia, Patrizia

    2016-01-01

    Molecular analysis is an important tool to investigate Clostridium difficile resistance to macrolide-lincosamide-streptogramin B (MLSB). In particular, the protocols described in this chapter have been designed to investigate the genetic organization of erm(B)-containing elements and to evaluate the capability of these elements to transfer in C. difficile recipient strains using filter mating assay. PMID:27507342

  14. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  15. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  16. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  17. Dentists, antibiotics and Clostridium difficile-associated disease.

    PubMed

    Beacher, N; Sweeney, M P; Bagg, J

    2015-09-25

    Dentists prescribe significant volumes of antimicrobial drugs within primary care settings. There is good evidence that many of the prescriptions are not justified by current clinical guidance and that that there is considerable misuse of these drugs in dentistry. One of the risks associated with antibiotic administration is Clostridium difficile-associated disease (CDAD), an entity of which many healthcare workers, including dentists, have little knowledge or understanding. This review seeks to identify the extent and nature of the problem and provides an up to date summary of current views on CDAD, with particular reference to community acquired disease. As for all healthcare workers, scrupulous attention to standard infection control procedures and reducing inappropriate antibiotic prescribing are essential to reduce the risks of CDAD, prevent emergence of further resistant strains of microorganisms and maintain the value of the arsenal of antibiotics currently available to us.

  18. Recurrent Clostridium difficile Infection: From Colonization to Cure

    PubMed Central

    Shields, Kelsey; Araujo-Castillo, Roger V.; Theethira, Thimmaiah G.; Alonso, Carolyn D.; Kelly, Ciaran

    2015-01-01

    Clostridium difficile infection (CDI) is increasingly prevalent, dangerous and challenging to prevent and manage. Despite intense national and international attention the incidence of primary and of recurrent CDI (PCDI and RCDI, respectively) have risen rapidly throughout the past decade. Of major concern is the increase in cases of RCDI resulting in substantial morbidity, morality and economic burden. RCDI management remains challenging as there is no uniformly effective therapy, no firm consensus on optimal treatment, and reliable data regarding RCDI-specific treatment options is scant. Novel therapeutic strategies are critically needed to rapidly, accurately, and effectively identify and treat patients with, or at-risk for, RCDI. In this review we consider the factors implicated in the epidemiology, pathogenesis and clinical presentation of RCDI, evaluate current management options for RCDI and explore novel and emerging therapies. PMID:25930686

  19. Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity

    SciTech Connect

    Pruitt, Rory N.; Chumbler, Nicole M.; Rutherford, Stacey A.; Farrow, Melissa A.; Friedman, David B.; Spiller, Ben; Lacy, D. Borden

    2012-03-28

    The principle virulence factors in Clostridium difficile pathogenesis are TcdA and TcdB, homologous glucosyltransferases capable of inactivating small GTPases within the host cell. We present crystal structures of the TcdA glucosyltransferase domain in the presence and absence of the co-substrate UDP-glucose. Although the enzymatic core is similar to that of TcdB, the proposed GTPase-binding surface differs significantly. We show that TcdA is comparable with TcdB in its modification of Rho family substrates and that, unlike TcdB, TcdA is also capable of modifying Rap family GTPases both in vitro and in cells. The glucosyltransferase activities of both toxins are reduced in the context of the holotoxin but can be restored with autoproteolytic activation and glucosyltransferase domain release. These studies highlight the importance of cellular activation in determining the array of substrates available to the toxins once delivered into the cell.

  20. [Diarrhea associated with Clostridium difficile in the elderly: new perspectives].

    PubMed

    Pareja-Sierra, Teresa

    2014-01-01

    Infection due to Clostridium difficile is currently the main cause of hospital acquired gastrointestinal disease. Its prevalence in the elderly population is higher due to there being many associated risk factors in this age group, such as comorbidity, frequent exposure to the healthcare or residential home setting, immunosenescence, greater consumption of antibiotics, and antiacids. The diagnostic techniques have notably improved in the last few years, which could also account for an increase in its diagnosis. The new expert consensus recommendations propose stratifying the clinical situation of the patient in order to choose the treatment option. Therapeutic options have recently been included in the new Clinical Guidelines, such as flidaxomicin or fecal transplants, with encouraging results, particularly for the control of frequent recurrences.

  1. Clostridium difficile Genome Editing Using pyrE Alleles.

    PubMed

    Ehsaan, Muhammad; Kuehne, Sarah A; Minton, Nigel P

    2016-01-01

    Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. PMID:27507332

  2. Structural Insight into the Clostridium difficile Ethanolamine Utilisation Microcompartment

    PubMed Central

    Faulds-Pain, Alexandra; Lewis, Richard J.; Marles-Wright, Jon

    2012-01-01

    Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen. PMID:23144756

  3. Antimicrobial susceptibility of equine and environmental isolates of Clostridium difficile.

    PubMed

    Båverud, V; Gunnarsson, A; Karlsson, M; Franklin, A

    2004-01-01

    The antimicrobial susceptibility of 50 Clostridium difficile isolates, 36 of them from horse feces and 14 from environmental sites, was determined by broth microdilution. The antimicrobial agents tested were avilamycin, cephalothin, chloramphenicol, clindamycin, erythromycin, gentamicin, neomycin, oxacillin, oxytetracycline, penicillin, spiramycin, streptomycin, trimethoprim/sulfamethoxazole, vancomycin, and virginiamycin. All isolates were susceptible to vancomycin (MIC 16 microg/ml), oxytetracycline (MIC >/=32 microg/ml), spiramycin (MIC > 16 microg/ml), and virginiamycin (MIC 8-16 microg/ml) were higher for 18 isolates. Those were mainly isolated from horses at animal hospitals and further from environmental sites at a stud farm. In contrast, all isolates, except one, from healthy foals had low MICs of erythromycin, spiramycin, virginiamycin, and oxytetracycline. The isolates from soil in public parks had also low MICs of these antimicrobial agents. Broth microdilution appeared both reliable and reproducible for susceptibility testing of C. difficile. The method was also readily performed and the MIC endpoints were easily read.

  4. Antimicrobial susceptibility of equine and environmental isolates of Clostridium difficile.

    PubMed

    Båverud, V; Gunnarsson, A; Karlsson, M; Franklin, A

    2004-01-01

    The antimicrobial susceptibility of 50 Clostridium difficile isolates, 36 of them from horse feces and 14 from environmental sites, was determined by broth microdilution. The antimicrobial agents tested were avilamycin, cephalothin, chloramphenicol, clindamycin, erythromycin, gentamicin, neomycin, oxacillin, oxytetracycline, penicillin, spiramycin, streptomycin, trimethoprim/sulfamethoxazole, vancomycin, and virginiamycin. All isolates were susceptible to vancomycin (MIC 16 microg/ml), oxytetracycline (MIC >/=32 microg/ml), spiramycin (MIC > 16 microg/ml), and virginiamycin (MIC 8-16 microg/ml) were higher for 18 isolates. Those were mainly isolated from horses at animal hospitals and further from environmental sites at a stud farm. In contrast, all isolates, except one, from healthy foals had low MICs of erythromycin, spiramycin, virginiamycin, and oxytetracycline. The isolates from soil in public parks had also low MICs of these antimicrobial agents. Broth microdilution appeared both reliable and reproducible for susceptibility testing of C. difficile. The method was also readily performed and the MIC endpoints were easily read. PMID:15140395

  5. Fecal microbiota transplantation for the treatment of Clostridium difficile infection.

    PubMed

    Rao, Krishna; Safdar, Nasia

    2016-01-01

    Clostridium difficile, a major cause of healthcare-associated diarrhea due to perturbation of the normal gastrointestinal microbiome, is responsible for significant morbidity, mortality, and healthcare expenditures. The incidence and severity of C difficile infection (CDI) is increasing, and recurrent disease is common. Recurrent infection can be difficult to manage with conventional antibiotic therapy. Fecal microbiota transplantation (FMT), which involves instillation of stool from a healthy donor into the gastrointestinal tract of the patient, restores the gut microbiome to a healthy state. FMT has emerged as a promising new treatment for CDI. There are limited data on FMT for treatment of primary CDI, but FMT appears safe and effective for recurrent CDI. The safety and efficacy of FMT in patients with severe primary or severe recurrent CDI has not been established. Patients with inflammatory bowel disease (IBD) who undergo FMT for CDI may be at increased risk of IBD flare, and caution should be exercised with use of FMT in that population. The long-term safety of FMT is unknown; thus, rigorously conducted prospective studies are needed.

  6. Clostridium difficile PCR Ribotype 018, a Successful Epidemic Genotype

    PubMed Central

    Trovato, Alberto; Bianchini, Valentina; Biancardi, Anna; Cichero, Paola; Mazzotti, Maria; Nizzero, Paola; Moro, Matteo; Ossi, Cristina; Scarpellini, Paolo

    2015-01-01

    Clostridium difficile infection (CDI) became a public health problem for the global spreading of the so-called hypervirulent PCR ribotypes (RTs) 027 and 078, associated with increases in the transmission and severity of the disease. However, especially in Europe, several RTs are prevalent, and the concept of hypervirulence is currently debated. We investigated the toxin and resistance profiles and the genetic relatedness of 312 C. difficile strains isolated in a large Italian teaching hospital during a 5-year period. We evaluated the role of CDI-related antibiotic consumption and infection control practices on the RT predominance in association with their molecular features and transmission capacity. Excluding secondary cases due to nosocomial transmission, RT018 was the predominant genotype (42.4%) followed by RT078 (13.6%), while RT027 accounted for 0.8% of the strains. RT078 was most frequently isolated from patients in intensive care units. Its prevalence significantly increased over time, but its transmission capacity was very low. In contrast, RT018 was highly transmissible and accounted for 95.7% of the secondary cases. Patients with the RT018 genotype were significantly older than those with RT078 and other RTs, indicating an association between epidemic RT and age. We provide here the first epidemiological evidence to consider RT018 as a successful epidemic genotype that deserves more attention in clinical practice. PMID:26041894

  7. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era

    PubMed Central

    Polage, Christopher R.; Gyorke, Clare E.; Kennedy, Michael A.; Leslie, Jhansi L.; Chin, David L.; Wang, Susan; Nguyen, Hien H.; Huang, Bin; Tang, Yi-Wei; Lee, Lenora W.; Kim, Kyoungmi; Taylor, Sandra; Romano, Patrick S.; Panacek, Edward A.; Goodell, Parker B.; Solnick, Jay V.; Cohen, Stuart H.

    2016-01-01

    IMPORTANCE Clostridium difficile is a major cause of health care–associated infection, but disagreement between diagnostic tests is an ongoing barrier to clinical decision making and public health reporting. Molecular tests are increasingly used to diagnose C difficile infection (CDI), but many molecular test-positive patients lack toxins that historically defined disease, making it unclear if they need treatment. OBJECTIVE To determine the natural history and need for treatment of patients who are toxin immunoassay negative and polymerase chain reaction (PCR) positive (Tox−/PCR+) for CDI. DESIGN, SETTING, AND PARTICIPANTS Prospective observational cohort study at a single academic medical center among 1416 hospitalized adults tested for C difficile toxins 72 hours or longer after admission between December 1, 2010, and October 20, 2012. The analysis was conducted in stages with revisions from April 27, 2013, to January 13, 2015. MAIN OUTCOMES AND MEASURES Patients undergoing C difficile testing were grouped by US Food and Drug Administration–approved toxin and PCR tests as Tox+/PCR+, Tox−/PCR+, or Tox−/PCR−. Toxin results were reported clinically. Polymerase chain reaction results were not reported. The main study outcomes were duration of diarrhea during up to 14 days of treatment, rate of CDI-related complications (ie, colectomy, megacolon, or intensive care unit care) and CDI-related death within 30 days. RESULTS Twenty-one percent (293 of 1416) of hospitalized adults tested for C difficile were positive by PCR, but 44.7% (131 of 293) had toxins detected by the clinical toxin test. At baseline, Tox−/PCR+ patients had lower C difficile bacterial load and less antibiotic exposure, fecal inflammation, and diarrhea than Tox+/PCR+ patients (P < .001 for all). The median duration of diarrhea was shorter in Tox−/PCR+ patients (2 days; interquartile range, 1-4 days) than in Tox+/PCR+ patients (3 days; interquartile range, 1-6 days) (P = .003) and was

  8. Portrait Toxigenic Clostridium difficile assay, an isothermal amplification assay detects toxigenic C. difficile in clinical stool specimens.

    PubMed

    Denys, Gerald A

    2014-01-01

    The Portrait Toxigenic Clostridium difficile assay is a rapid, qualitative assay for the detection of the tcdB gene of C. difficile in stool specimens from patients suspected of C. difficile infections, and received 510(k) clearance by the US FDA in March 2012. The Portrait Toxigenic C. difficile assay combines novel blocked-primer-mediated helicase-dependent multiplex amplification (bpHDA) technology and chip-based detection in an automated sample-to-result format. The assay requires minimal sample preparation and results are available within 90 min. In a multicenter evaluation, the Portrait Toxigenic C. difficile assay had a sensitivity of 98.2% and specificity of 92.8% compared with toxigenic culture. A comparative study between the Portrait Toxigenic C. difficile assay and three FDA-cleared molecular assays for the detection of toxigenic C. difficile exhibited a high degree of agreement (93.8-97.5%). The Portrait Toxigenic C. difficile assay provides a simple, cost-effective method with broad applicability to panel-based approaches, potentially simplifying workflow.

  9. Fecal microbiota transplantation via nasogastric tube for recurrent clostridium difficile infection in pediatric patients.

    PubMed

    Kronman, Matthew P; Nielson, Heather J; Adler, Amanda L; Giefer, Matthew J; Wahbeh, Ghassan; Singh, Namita; Zerr, Danielle M; Suskind, David L

    2015-01-01

    Fecal microbiota transplantation (FMT) is a safe and effective therapy for adults with recurrent Clostridium difficile colitis, but data regarding FMT in children are limited and focus on colonoscopic administration of FMT. We present 10 consecutive children who received FMT via nasogastric tube for treatment of recurrent C difficile infection. Median age was 5.4 years, and 30% were receiving simultaneous immunosuppression. Median follow-up was 44 days, and 90% of patients resolved their C difficile infection; one patient relapsed 2 months later after receiving antibiotics. FMT via nasogastric tube appears safe, well tolerated, and effective in treating pediatric recurrent C difficile colitis.

  10. Multicenter Evaluation of the Verigene Clostridium difficile Nucleic Acid Assay

    PubMed Central

    Buchan, Blake W.; Tan, Sokha; Stamper, Paul D.; Riebe, Katherine M.; Pancholi, Preeti; Kelly, Cheryl; Rao, Arundhati; Fader, Robert; Cavagnolo, Robert; Watson, Wendy; Goering, Richard V.; Trevino, Ernest A.; Weissfeld, Alice S.; Ledeboer, Nathan A.

    2013-01-01

    The Verigene Clostridium difficile Nucleic Acid test (Verigene CDF test) (Nanosphere, Northbrook, IL) is a multiplex qualitative PCR assay that utilizes a nanoparticle-based array hybridization method to detect C. difficile tcdA and tcdB in fecal specimens. In addition, the assay detects binary toxin gene sequences and the single base pair deletion at nucleotide 117 (Δ 117) in tcdC to provide a presumptive identification of the epidemic strain 027/NAP1/BI (referred to here as ribotype 027). This study compared the Verigene CDF test with anaerobic direct and enriched toxigenic culture on stool specimens from symptomatic patients among five geographically diverse laboratories within the United States. The Verigene CDF test was performed according to the manufacturer's instructions, and the reference methods performed by a central laboratory included direct culture onto cycloserine cefoxitin fructose agar (CCFA) and enriched culture using cycloserine cefoxitin mannitol broth with taurocholate and lysozyme. Recovered isolates were identified as C. difficile using gas liquid chromatography and were tested for toxin using a cell culture cytotoxicity neutralization assay. Strains belonging to ribotype 027 were determined by PCR ribotyping and bidirectional sequencing for Δ 117 in tcdC. A total of 1,875 specimens were evaluable. Of these, 275 specimens (14.7%) were culture positive by either direct or enriched culture methods. Compared to direct culture alone, the overall sensitivity, specificity, positive predictive value, and negative predictive value for the Verigene CDF test were 98.7%, 87.5%, 42%, and 99.9%, respectively. Compared to combined direct and enriched culture results, the sensitivity, specificity, positive predictive value, and negative predictive values of the Verigene CDF test were 90.9%, 92.5%, 67.6%, and 98.3%, respectively. Of the 250 concordantly culture-positive specimens, 59 (23.6%) were flagged as “hypervirulent”; 53 were confirmed as

  11. Clostridium beijerinckii and Clostridium difficile Detoxify Methylglyoxal by a Novel Mechanism Involving Glycerol Dehydrogenase

    PubMed Central

    Liyanage, Hemachandra; Kashket, Shelby; Young, Michael; Kashket, Eva R.

    2001-01-01

    In contrast to gram-negative bacteria, little is known about the mechanisms by which gram-positive bacteria degrade the toxic metabolic intermediate methylglyoxal (MG). Clostridium beijerinckii BR54, a Tn1545 insertion mutant of the NCIMB 8052 strain, formed cultures that contained significantly more (free) MG than wild-type cultures. Moreover, BR54 was more sensitive to growth inhibition by added MG than the wild type, suggesting that it has a reduced ability to degrade MG. The single copy of Tn1545 in this strain lies just downstream from gldA, encoding glycerol dehydrogenase. As a result of antisense RNA production, cell extracts of BR54 possess significantly less glycerol dehydrogenase activity than wild-type cell extracts (H. Liyanage, M. Young, and E. R. Kashket, J. Mol. Microbiol. Biotechnol. 2:87–93, 2000). Inactivation of gldA in both C. beijerinckii and Clostridium difficile gave rise to pinpoint colonies that could not be subcultured, indicating that glycerol dehydrogenase performs an essential function in both organisms. We propose that this role is detoxification of MG. To our knowledge, this is the first report of targeted gene disruption in the C. difficile chromosome. PMID:11319074

  12. Diagnosis of Clostridium difficile Infection: an Ongoing Conundrum for Clinicians and for Clinical Laboratories

    PubMed Central

    Carroll, Karen C.

    2013-01-01

    SUMMARY Clostridium difficile is a formidable nosocomial and community-acquired pathogen, causing clinical presentations ranging from asymptomatic colonization to self-limiting diarrhea to toxic megacolon and fulminant colitis. Since the early 2000s, the incidence of C. difficile disease has increased dramatically, and this is thought to be due to the emergence of new strain types. For many years, the mainstay of C. difficile disease diagnosis was enzyme immunoassays for detection of the C. difficile toxin(s), although it is now generally accepted that these assays lack sensitivity. A number of molecular assays are commercially available for the detection of C. difficile. This review covers the history and biology of C. difficile and provides an in-depth discussion of the laboratory methods used for the diagnosis of C. difficile infection (CDI). In addition, strain typing methods for C. difficile and the evolving epidemiology of colonization and infection with this organism are discussed. Finally, considerations for diagnosing C. difficile disease in special patient populations, such as children, oncology patients, transplant patients, and patients with inflammatory bowel disease, are described. As detection of C. difficile in clinical specimens does not always equate with disease, the diagnosis of C. difficile infection continues to be a challenge for both laboratories and clinicians. PMID:23824374

  13. Clonal Spread of a Clostridium difficile Strain with a Complete Set of Toxin A, Toxin B, and Binary Toxin Genes among Polish Patients with Clostridium difficile-Associated Diarrhea

    PubMed Central

    Pituch, Hanna; Kreft, Deborah; Obuch-Woszczatyński, Piotr; Wultańska, Dorota; Meisel-Mikołajczyk, Felicja; Łuczak, Mirosław; van Belkum, Alex

    2005-01-01

    Clinically relevant Clostridium difficile strains usually produce toxins A and B. Some C. difficile strains can produce an additional binary toxin. We report clonality among five strains carrying all toxin genes from Polish patients with C. difficile-associated diarrhea. In another strain, possible recombination between binary toxin genes is documented. PMID:15635019

  14. Prevalence of Clostridium difficile in uncooked ground meat products from Pittsburgh, Pennsylvania.

    PubMed

    Curry, Scott R; Marsh, Jane W; Schlackman, Jessica L; Harrison, Lee H

    2012-06-01

    The prevalence of Clostridium difficile in retail meat samples has varied widely. The food supply may be a source for C. difficile infections. A total of 102 ground meat and sausage samples from 3 grocers in Pittsburgh, PA, were cultured for C. difficile. Brand A pork sausages were resampled between May 2011 and January 2012. Two out of 102 (2.0%) meat products initially sampled were positive for C. difficile; both were pork sausage from brand A from the same processing facility (facility A). On subsequent sampling of brand A products, 10/19 samples from processing facility A and 1/10 samples from 3 other facilities were positive for C. difficile. The isolates recovered were inferred ribotype 078, comprising 6 genotypes. The prevalence of C. difficile in retail meat may not be as high as previously reported in North America. When contamination occurs, it may be related to events at processing facilities.

  15. Clostridium difficile Drug Pipeline: Challenges in Discovery and Development of New Agents

    PubMed Central

    2015-01-01

    In the past decade Clostridium difficile has become a bacterial pathogen of global significance. Epidemic strains have spread throughout hospitals, while community acquired infections and other sources ensure a constant inoculation of spores into hospitals. In response to the increasing medical burden, a new C. difficile antibiotic, fidaxomicin, was approved in 2011 for the treatment of C. difficile-associated diarrhea. Rudimentary fecal transplants are also being trialed as effective treatments. Despite these advances, therapies that are more effective against C. difficile spores and less damaging to the resident gastrointestinal microbiome and that reduce recurrent disease are still desperately needed. However, bringing a new treatment for C. difficile infection to market involves particular challenges. This review covers the current drug discovery pipeline, including both small molecule and biologic therapies, and highlights the challenges associated with in vitro and in vivo models of C. difficile infection for drug screening and lead optimization. PMID:25760275

  16. Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany.

    PubMed

    Arvand, M; Hauri, A M; Zaiss, N H; Witte, W; Bettge-Weller, G

    2009-01-01

    From January 2008 to April 2009, 72 cases of severe Clostridium difficile infection were reported from 18 different districts in the state of Hesse, Germany. A total of 41 C. difficile isolates from 41 patients were subjected to PCR ribotyping. PCR ribotype (RT) 027 was the most prevalent strain accounting for 24 of 41 (59%) of typed isolates, followed by RT 001 (eight isolates, 20%), RT 017 and 042 (two isolates each), and RT 003, 066, 078, 081, and RKI-034 (one isolate each). Eighteen patients had died within 30 days after admission. C. difficile was reported as underlying cause of or contributing to death in 14 patients, indicating a case fatality rate of 19%. The patients with lethal outcome attributable to C. difficile were 59-89 years-old (median 78 years). Ribotyping results were available for seven isolates associated with lethal outcome, which were identified as RT 027 in three and as RT 001 and 017 in two cases each. Our data suggest that C. difficile RT 027 is prevalent in some hospitals in Hesse and that, in addition to the possibly more virulent RT 027, other toxigenic C. difficile strains like RT 001 and 017 are associated with lethal C. difficile infections in this region. PMID:19941785

  17. Performance of chromID Clostridium difficile agar compared with BBL C. difficile selective agar for detection of C. difficile in stool specimens.

    PubMed

    Han, Sang Bong; Chang, Jiyoung; Shin, Sang Hyun; Park, Kang Gyun; Lee, Gun Dong; Park, Yong Gyu; Park, Yeon-Joon

    2014-09-01

    We evaluated the performance of a new chromogenic medium for detection of Clostridium difficile, chromID C. difficile agar (CDIF; bioMérieux, France), by comparison with BBL C. difficile Selective Agar (CDSA; Becton Dickinson and Company, USA). After heat pre-treatment (80℃, 5 min), 185 diarrheal stool samples were inoculated onto the two media types and incubated anaerobically for 24 hr and 48 hr for CDIF and for 48 hr and 72 hr for CDSA. All typical colonies on each medium were examined by Gram staining, and the gram-positive rods confirmed to contain the tpi gene by PCR were identified as C. difficile. C. difficile was recovered from 36 samples by using a combination of the two media. The sensitivity with CDIF 48 hr was highest (100%) and was significantly higher than that with CDIF 24 hr (58.3%; P<0.001), because samples with a low burden of C. difficile tended to require prolonged incubation up to 48 hr (P<0.001). The specificity of CDIF 24 hr and CDIF 48 hr (99.3% and 90.6%, respectively) was significantly higher than that of CDSA 48 hr and CDSA 72 hr (72.5% and 67.1%, respectively; P<0.001). CDIF was effective for detecting C. difficile in heat-pretreated stool specimens, thus reducing unnecessary testing for toxin production in non-C. difficile isolates and turnaround time.

  18. Role of Microbiota and Innate Immunity in Recurrent Clostridium difficile Infection

    PubMed Central

    Bibbò, Stefano; Lopetuso, Loris Riccardo; Ianiro, Gianluca; Di Rienzo, Teresa; Gasbarrini, Antonio

    2014-01-01

    Recurrent Clostridium difficile infection represents a burdensome clinical issue whose epidemiology is increasing worldwide. The pathogenesis is not yet completely known. Recent observations suggest that the alteration of the intestinal microbiota and impaired innate immunity may play a leading role in the development of recurrent infection. Various factors can cause dysbiosis. The causes most involved in the process are antibiotics, NSAIDs, acid suppressing therapies, and age. Gut microbiota impairment can favor Clostridium difficile infection through several mechanisms, such as the alteration of fermentative metabolism (especially SCFAs), the alteration of bile acid metabolism, and the imbalance of antimicrobial substances production. These factors alter the intestinal homeostasis promoting the development of an ecological niche for Clostridium difficile and of the modulation of immune response. Moreover, the intestinal dysbiosis can promote a proinflammatory environment, whereas Clostridium difficile itself modulates the innate immunity through both toxin-dependent and toxin-independent mechanisms. In this narrative review, we discuss how the intestinal microbiota modifications and the modulation of innate immune response can lead to and exacerbate Clostridium difficile infection. PMID:24995345

  19. Treatment of relapsing Clostridium difficile infection using fecal microbiota transplantation

    PubMed Central

    Pathak, Rahul; Enuh, Hill Ambrose; Patel, Anish; Wickremesinghe, Prasanna

    2014-01-01

    Background Clostridium difficile infection (CDI) has become a global concern over the last decade. In the United States, CDI escalated in incidence from 1996 to 2005 from 31 to 64/100,000. In 2010, there were 500,000 cases of CDI with an estimated mortality up to 20,000 cases a year. The significance of this problem is evident from the hospital costs of over 3 billion dollars annually. Fecal microbiota transplant (FMT) was first described in 1958 and since then about 500 cases have been published in literature in various small series and case reports. This procedure has been reported mainly from centers outside of the United States and acceptance of the practice has been difficult. Recently the US Food and Drug Administration (FDA) labeled FMT as a biological drug; as a result, guidelines will soon be required to help establish it as a mainstream treatment. More US experience needs to be reported to popularize this procedure here and form guidelines. Method We did a retrospective review of our series of patients with relapsing CDI who were treated with FMT over a 3-year period. We present our experience with FMT at a community hospital as a retrospective review and describe our procedure. Results There were a total of 12 patients who underwent FMT for relapsing C. difficile. Only one patient failed to respond and required a second FMT. There were no complications associated with the transplant and all patients had resolution of symptoms within 48 hours of FMT. Conclusion FMT is a cheap, easily available, effective therapy for recurrent CDI; it can be safely performed in a community hospital setting with similar results. PMID:24421645

  20. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  1. Impact of toxigenic Clostridium difficile polymerase chain reaction testing on the clinical microbiology laboratory and inpatient epidemiology.

    PubMed

    Napierala, Maureen; Munson, Erik; Skonieczny, Patrice; Rodriguez, Sonia; Riederer, Nancy; Land, Gayle; Luzinski, Mary; Block, Denise; Hryciuk, Jeanne E

    2013-08-01

    Conversion from Clostridium difficile toxin A/B EIA to tcdB polymerase chain reaction for diagnosis of C. difficile infection (CDI) resulted in significant decreases in laboratory testing volume and largely unchanged C. difficile toxin detection rates. Decreases in healthcare-associated CDI rates (P ≤ 0.05) reflected a clinical practice benefit of this conversion.

  2. Clostridium difficile from food and surface samples in a Belgian nursing home: an unlikely source of contamination.

    PubMed

    Rodriguez, C; Korsak, N; Taminiau, B; Avesani, V; Van Broeck, J; Brach, P; Delmée, M; Daube, G

    2015-04-01

    This study investigates the contamination of foods and surfaces with Clostridium difficile in a single nursing home. C. difficile PCR-ribotype 078 was found in one food sample and in none of the tested surfaces. These results indicate that food and surfaces are an unlikely source of C. difficile infection in this setting.

  3. Clostridium difficile infection in Chilean patients submitted to hematopoietic stem cell transplantation

    PubMed Central

    Pilcante, Javier; Rojas, Patricio; Ernst, Daniel; Sarmiento, Mauricio; Ocqueteau, Mauricio; Bertin, Pablo; García, Maria; Rodriguez, Maria; Jara, Veronica; Ajenjo, Maria; Ramirez, Pablo

    2015-01-01

    Introduction Patients submitted to hematopoietic stem cell transplantation have an increased risk of Clostridium difficile infection and multiple risk factors have been identified. Published reports have indicated an incidence from 9% to 30% of transplant patients however to date there is no information about infection in these patients in Chile. Methods A retrospective analysis was performed of patients who developed C. difficile infection after hematopoietic stem cell transplantations from 2000 to 2013. Statistical analysis used the Statistical Package for the Social Sciences software. Results Two hundred and fifty patients were studied (mean age: 39 years; range: 17–69), with 147 (59%) receiving allogeneic transplants and 103 (41%) receiving autologous transplants. One hundred and ninety-two (77%) patients had diarrhea, with 25 (10%) cases of C. difficile infection being confirmed. Twenty infected patients had undergone allogeneic transplants, of which ten had acute lymphoblastic leukemia, three had acute myeloid leukemia and seven had other diseases (myelodysplastic syndrome, chronic myeloid leukemia, severe aplastic anemia). In the autologous transplant group, five patients had C. difficile infection; two had multiple myeloma, one had amyloidosis, one had acute myeloid leukemia and one had germinal carcinoma. The overall incidence of C. difficile infection was 4% within the first week, 6.4% in the first month and 10% in one year, with no difference in overall survival between infected and non-infected groups (72.0% vs. 67.6%, respectively; p-value = 0.56). Patients infected after allogeneic transplants had a slower time to neutrophil engraftment compared to non-infected patients (17.5 vs. 14.9 days, respectively; p-value = 0.008). In the autologous transplant group there was no significant difference in the neutrophil engraftment time between infected and non-infected patients (12.5 days vs. 11.8 days, respectively; p-value = 0.71). In the allogeneic

  4. Virulence factors of Clostridium difficile and their role during infection.

    PubMed

    Janoir, Claire

    2016-02-01

    Clostridium difficile is the prominent etiological agent of healthcare-associated diarrhea. The disease symptoms range from mild diarrhea to life-threatening pseudomembranous colitis. The main risk factor for developing an infection after contamination by the resistant spores is the disruption of the gut microbiota, allowing the spores to germinate. The colonization of the gut is likely to be governed by the bacterial resistance to the host response and the bacterial adhesion to the mucosa. To date, several putative adhesins have been identified, most of them displaying MSCRAMM function, and studies of adhesin mutants have clearly underlined the multi-factorial feature of C. difficile adhesion to the host. Flagella have also been involved in the colonisation process, but their role depends on the tested strains. The clinical signs are mainly due to two large glucosylating toxins, TcdA and TcdB, which are essential for the disease manifestations. The importance of each toxin differs according to strains and experimental conditions, but TcdB seems to be the prominent one, as showed by mutant studies and the natural occurrence of pathogenic strains that do not produce TcdA. The role of the ADP ribosylating binary toxin expressed by some strains, including epidemic lineages, is not clearly established, although it has been related to higher morbidity and mortality. Production of low level of the glucosylating toxins and of the binary toxin seems to promote adhesion to host cells. Expression of the tcdA and tcdB genes is under the control of the second messenger c-di-GMP. This is also the case for other virulence factors, in particular for flagellar, pili type IV and some adhesin genes. Indeed, several studies using knock-out mutants suggest that C. difficile may undergo a switch between the adhesion phenotype and the motility phenotype during the course of infection, regulated by the c-di-GMP intracellular level. In vivo, this could result in biofilm formation that

  5. Outcome of ICU patients with Clostridium difficile infection

    PubMed Central

    2012-01-01

    Introduction As data from Clostridium difficile infection (CDI) in intensive care unit (ICU) are still scarce, our objectives were to assess the morbidity and mortality of ICU-acquired CDI. Methods We compared patients with ICU-acquired CDI (watery or unformed stools occurring ≥ 72 hours after ICU admission with a stool sample positive for C. difficile toxin A or B) with two groups of controls hospitalized at the same time in the same unit. The first control group comprised patients with ICU-acquired diarrhea occurring ≥ 72 hours after ICU admission with a stool sample negative for C. difficile and for toxin A or B. The second group comprised patients without any diarrhea. Results Among 5,260 patients, 512 patients developed one episode of diarrhea. Among them, 69 (13.5%) had a CDI; 10 (14.5%) of them were community-acquired, contrasting with 12 (17.4%) that were hospital-acquired and 47 (68%) that were ICU-acquired. A pseudomembranous colitis was associated in 24/47 (51%) ICU patients. The median delay between diagnosis and metronidazole administration was one day (25th Quartile; 75th Quartile (0; 2) days). The case-fatality rate for patients with ICU-acquired CDI was 10/47 (21.5%), as compared to 112/443 (25.3%) for patients with negative tests. Neither the crude mortality (cause specific hazard ratio; CSHR = 0.70, 95% confidence interval; CI 0.36 to 1.35, P = 0.3) nor the adjusted mortality to confounding variables (CSHR = 0.81, 95% CI 0.4 to 1.64, P = 0.6) were significantly different between CDI patients and diarrheic patients without CDI. Compared to the general ICU population, neither the crude mortality (SHR = 0.64, 95% CI 0.34 to 1.21, P = 0.17), nor the mortality adjusted to confounding variables (CSHR = 0.71, 95% confidence interval (CI) 0.38 to 1.35, P = 0.3), were significantly different between the two groups. The estimated increase in the duration of stay due to CDI was 8.0 days ± 9.3 days, (P = 0.4) in comparison to the diarrheic population

  6. Occurrence of Clostridium difficile in two types of wastewater treatment plants.

    PubMed

    Nikaeen, Mahnaz; Aghili Dehnavi, Hajar; Hssanzadeh, Akbar; Jalali, Mohammad

    2015-07-01

    Wastewater is a potential environmental source of Clostridium difficile, although a direct link with community-acquired C. difficile infection (CA-CDI) in humans has not yet been established. The present study was performed to determine the occurrence of C. difficile in two types of wastewater treatment plants (WWTPs) in Isfahan, Iran. A total of 95 samples were taken from a conventional activated sludge treatment plant and a waste stabilization ponds system, and analyzed for the presence of C. difficile. C. difficile was found in 13.6% (3/22) of digested sludge samples. However, no C. difficile was detected in inlet and outlet samples or in raw sludge of activated sludge. C. difficile was also detected in 5% (2/40) of the samples from waste stabilization ponds. Polymerase chain reaction (PCR) analysis showed that all strains of C. difficile detected were toxigenic (tcdB gene positive). This study shows that C. difficile was present in WWTPs, which might constitute a potential source of community-acquired C. difficile infection.

  7. Probiotics for the treatment of Clostridium difficile associated disease

    PubMed Central

    Fitzpatrick, Leo R

    2013-01-01

    The purpose of this review paper is to update the current and potential future role of probiotics for Clostridium difficile-associated disease (CDAD). Included in this review, is an update on the testing of newer probiotics (e.g., Bacillus coagulans GBI-30, 6086) in animal models of CDAD. There is a focus on the modulation of signal transduction pathways (i.e., transcription factors like cAMP response element-binding, activator protein 1, and nuclear factor kappa B), as well as the inhibition of certain kinases (e.g., p38 mitogen activated protein kinases) by probiotics. Inhibition of signal transduction by probiotics, such as Saccharomyces boulardii, result in multiple effects on intestinal fluid secretion, neutrophil influx into the colon, inflammation, and colonocyte apoptosis that may positively impact CDAD. Recent clinical approaches with probiotics, for the prevention of primary and recurrent CDAD, are also summarized in this review paper. Future directions for the treatment of CDAD by probiotics are also mentioned in this review. In particular, the use of multi-strain probiotic formulations such as Ecologic® AAD and VSL #3® may represent a rationale pharmacological approach, particularly as adjunctive therapies for CDAD. Understanding the mechanistic basis of CDAD, and how probiotics interfere at ceratin steps in the pathogenic process, may also present the opportunity to design other multi-strain probiotics that could have a future impact on CDAD. PMID:23946887

  8. The Systemic Inflammatory Response to Clostridium difficile Infection

    PubMed Central

    Rao, Krishna; Erb-Downward, John R.; Walk, Seth T.; Micic, Dejan; Falkowski, Nicole; Santhosh, Kavitha; Mogle, Jill A.; Ring, Cathrin; Young, Vincent B.; Huffnagle, Gary B.; Aronoff, David M.

    2014-01-01

    Background The systemic inflammatory response to Clostridium difficile infection (CDI) is incompletely defined, particularly for patients with severe disease. Methods Analysis of 315 blood samples from 78 inpatients with CDI (cases), 100 inpatients with diarrhea without CDI (inpatient controls), and 137 asymptomatic outpatient controls without CDI was performed. Serum or plasma was obtained from subjects at the time of CDI testing or shortly thereafter. Severe cases had intensive care unit admission, colectomy, or death due to CDI within 30 days after diagnosis. Thirty different circulating inflammatory mediators were quantified using an antibody-linked bead array. Principal component analysis (PCA), multivariate analysis of variance (MANOVA), and logistic regression were used for analysis. Results Based on MANOVA, cases had a significantly different inflammatory profile from outpatient controls but not from inpatient controls. In logistic regression, only chemokine (C-C motif) ligand 5 (CCL5) levels were associated with cases vs. inpatient controls. Several mediators were associated with cases vs. outpatient controls, especially hepatocyte growth factor, CCL5, and epithelial growth factor (inversely associated). Eight cases were severe and associated with elevations in IL-8, IL-6, and eotaxin. Conclusions A broad systemic inflammatory response occurs during CDI and severe cases appear to differ from non-severe infections. PMID:24643077

  9. Clostridium difficile infection in a French university hospital

    PubMed Central

    Khanafer, Nagham; Oltra, Luc; Hulin, Monique; Dauwalder, Olivier; Vandenesch, Francois; Vanhems, Philippe

    2016-01-01

    Abstract The epidemiology of Clostridium difficile infection (CDI) has changed with an increase in incidence and severity. Prospective surveillance was therefore implemented in a French university hospital to monitor the characteristics of patients at risk and to recognize local trends. Between 2007 and 2014, all hospitalized patients (≥18 years) with CDI were included. During the survey, the mean incidence rate of CDI was 2.9 per 10,000 hospital-days. In all, 590 patients were included. Most of the episodes were healthcare-associated (76.1%). The remaining cases were community-acquired (18.1%) and unknown (5.9%). The comparison with healthcare-associated cases showed that the community-acquired group had a lower rate of antimicrobial exposure (P < 0.001), proton pump inhibitor (P < 0.001), and immunosuppressive drugs (P = 0.02). Over the study period, death occurred in 61 patients (10.3%), with 18 (29.5%) being related to CDI according to the physician in charge of the patient. Active surveillance of CDI is required to obtain an accurate picture of the real dimensions of CDI. PMID:27281101

  10. Survey of Clostridium difficile infection surveillance systems in Europe, 2011.

    PubMed

    Kola, Axel; Wiuff, Camilla; Akerlund, Thomas; van Benthem, Birgit H; Coignard, Bruno; Lyytikäinen, Outi; Weitzel-Kage, Doris; Suetens, Carl; Wilcox, Mark H; Kuijper, Ed J; Gastmeier, Petra

    2016-07-21

    To develop a European surveillance protocol for Clostridium difficile infection (CDI), existing national CDI surveillance systems were assessed in 2011. A web-based electronic form was provided for all national coordinators of the European CDI Surveillance Network (ECDIS-Net). Of 35 national coordinators approached, 33 from 31 European countries replied. Surveillance of CDI was in place in 14 of the 31 countries, comprising 18 different nationwide systems. Three of 14 countries with CDI surveillance used public health notification of cases as the route of reporting, and in another three, reporting was limited to public health notification of cases of severe CDI. The CDI definitions published by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the European Centre for Disease Prevention and Control (ECDC) were widely used, but there were differing definitions to distinguish between community- and healthcare-associated cases. All CDI surveillance systems except one reported annual national CDI rates (calculated as number of cases per patient-days). Only four surveillance systems regularly integrated microbiological data (typing and susceptibility testing results). Surveillance methods varied considerably between countries, which emphasises the need for a harmonised European protocol to allow consistent monitoring of the CDI epidemiology at European level. The results of this survey were used to develop a harmonised EU-wide hospital-based CDI surveillance protocol. PMID:27469420

  11. Sporicidal activity of two disinfectants against Clostridium difficile spores.

    PubMed

    Wheeldon, L J; Worthington, T; Hilton, A C; Lambert, P A; Elliott, T S J

    The sporicidal activity of an odour-free peracetic acid-based disinfectant (Wofasteril) and a widely-used dichloroisocyanurate preparation (Chlor-clean) was assessed against spores of the hyper-virulent strain of Clostridium difficile (ribotype 027), in the presence and absence of organic matter. In environmentally clean conditions, dichloroisocyanurate achieved a >3 log10 reduction in 3 minutes, but a minimum contact time of 9 minutes was required to reduce the viable spore load to below detection levels. Peracetic acid achieved a >3 log10 reduction in 30 minutes and was overall significantly less effective (P<0.05). However, in the presence of organic matter - which reflects the true clinical environment - there was no significant difference between the sporicidal activity of dichloroisocyanurate and peracetic acid over a 60-minute period (P=0.188). Given the greater occupational health hazards generally associated with chlorine-releasing agents, odour-free peracetic acid-based disinfectants may offer a suitable alternative for environmental disinfection.

  12. Cost-effectiveness in Clostridium difficile treatment decision-making

    PubMed Central

    Nuijten, Mark JC; Keller, Josbert J; Visser, Caroline E; Redekop, Ken; Claassen, Eric; Speelman, Peter; Pronk, Marja H

    2015-01-01

    AIM: To develop a framework for the clinical and health economic assessment for management of Clostridium difficile infection (CDI). METHODS: CDI has vast economic consequences emphasizing the need for innovative and cost effective solutions, which were aim of this study. A guidance model was developed for coverage decisions and guideline development in CDI. The model included pharmacotherapy with oral metronidazole or oral vancomycin, which is the mainstay for pharmacological treatment of CDI and is recommended by most treatment guidelines. RESULTS: A design for a patient-based cost-effectiveness model was developed, which can be used to estimate the cost-effectiveness of current and future treatment strategies in CDI. Patient-based outcomes were extrapolated to the population by including factors like, e.g., person-to-person transmission, isolation precautions and closing and cleaning wards of hospitals. CONCLUSION: The proposed framework for a population-based CDI model may be used for clinical and health economic assessments of CDI guidelines and coverage decisions for emerging treatments for CDI. PMID:26601096

  13. Evaluation of the Qiagen artus C. difficile QS-RGQ Kit for Detection of Clostridium difficile Toxins A and B in Clinical Stool Specimens

    PubMed Central

    Wiegel, Pia; Ličanin, Božica; Plum, Georg

    2015-01-01

    We compared the Qiagen artus C. difficile QS-RGQ kit, a new nucleic acid amplification test for the detection of Clostridium difficile toxins in stool specimens, with the Cepheid Xpert C. difficile test. The sensitivity, specificity, positive predictive value, and negative predictive value for the Qiagen artus C. difficile QS-RGQ test were 100%, 89.5%, 60.9%, and 100%, and those for the Cepheid Xpert C. difficile test were 100%, 90%, 62.2%, and 100%, respectively. PMID:25809977

  14. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania.

    PubMed

    Varshney, Jyotika B; Very, Katherine J; Williams, Jen L; Hegarty, John P; Stewart, David B; Lumadue, Jeanne; Venkitanarayanan, Kumar; Jayarao, Bhushan M

    2014-10-01

    A study was conducted to determine the prevalence of Clostridium difficile and characterize C. difficile isolates from human stool and retail grocery meat samples. Human stool samples (n=317) were obtained from a clinical laboratory and meat samples (n=303) were collected from 8 retail grocery stores from October 2011 through September 2012 from Centre County of Pennsylvania and were examined for C. difficile. C. difficile was isolated from 16.7% of stool samples (n=317) and 6.9%, 11.5%, 14.5%, and 7.8% of beef (n=72), pork (n=78), turkey (n=76), and chicken (n=77) samples, respectively. Six different toxin gene profiles were detected in all human and meat isolates of C. difficile based on the presence or absence of toxin genes tcdA, tcdB, and cdtA and cdtB. Interestingly, 75.6% of the human C. difficile isolates lacked any deletion in the tcdC gene (139-bp), whereas a 39-bp deletion was observed in 61.3% of the C. difficile strains isolated from meat samples. C. difficile from meat samples were more susceptible to clindamycin, moxifloxacin, vancomycin, and metronidazole than C. difficile isolates from human samples. Twenty-five different ribotypes were identified in human and meat C. difficile isolates. In conclusion, significant genotypic and phenotypic differences were observed between human and meat isolates of C. difficile; however, a few C. difficile isolates from meat-in particular ribotypes 078, PA01, PA05, PA16, and PA22 with unique profiles (toxin gene, tcdC gene size and antimicrobial resistance profiles)-were similar to human C. difficile isolates.

  15. Inhibitory Effect of Epigallocatechin Gallate on the Virulence of Clostridium difficile PCR Ribotype 027.

    PubMed

    Yun, Bohyun; Oh, Seunghan; Song, Minyu; Hong, Young-Shick; Park, Sungsu; Park, Dong-June; Griffiths, Mansel W; Oh, Sejong

    2015-12-01

    Clostridium difficile infection (CDI) is the most prevalent cause of health-care-associated infections. CDI-related health-care costs and deaths are both increasing annually on a global scale. C. difficile have been reported in food products in Canada, Europe, and the United States; however, the systematic transmission of C. difficile between humans and animals is yet to be understood. Because of the limitations of current therapeutic options, there is a need for the development of new patient treatments. Epigallocatechin gallate (EGCG) is a major catechin compound found in green tea extracts and exhibits antioxidant and antimicrobial activities. This study was conducted to investigate the inhibitory effects of EGCG on the expression of virulence genes in C. difficile and in C. difficile-associated diseases by inhibition of quorum sensing. The protein expression of autoinducer-2 (AI-2) was evaluated by AI-2 activity. EGCG at various concentrations had an inhibitory effect on AI-2 production, especially at 10 μg/mL. EGCG also significantly repressed the transcription of virulence genes, including luxS and tcdA, and prolonged the survival of Caenorhabditis elegans infected with C. difficile. Furthermore, treatment with EGCG effectively protected C. difficile-infected mice from C. difficile-induced death. Histological analysis of the colon and cecum of these mice revealed that EGCG protected tissues of the lower intestinal tract from damage. EGCG exerted growth-inhibitory and bactericidal activities on C. difficile in C. difficile-infected mice. Our results suggest that EGCG has significant antipathogenic effects on C. difficile and can be used to prevent or treat C. difficile-associated diseases or C. difficile infections.

  16. Inhibitory Effect of Epigallocatechin Gallate on the Virulence of Clostridium difficile PCR Ribotype 027.

    PubMed

    Yun, Bohyun; Oh, Seunghan; Song, Minyu; Hong, Young-Shick; Park, Sungsu; Park, Dong-June; Griffiths, Mansel W; Oh, Sejong

    2015-12-01

    Clostridium difficile infection (CDI) is the most prevalent cause of health-care-associated infections. CDI-related health-care costs and deaths are both increasing annually on a global scale. C. difficile have been reported in food products in Canada, Europe, and the United States; however, the systematic transmission of C. difficile between humans and animals is yet to be understood. Because of the limitations of current therapeutic options, there is a need for the development of new patient treatments. Epigallocatechin gallate (EGCG) is a major catechin compound found in green tea extracts and exhibits antioxidant and antimicrobial activities. This study was conducted to investigate the inhibitory effects of EGCG on the expression of virulence genes in C. difficile and in C. difficile-associated diseases by inhibition of quorum sensing. The protein expression of autoinducer-2 (AI-2) was evaluated by AI-2 activity. EGCG at various concentrations had an inhibitory effect on AI-2 production, especially at 10 μg/mL. EGCG also significantly repressed the transcription of virulence genes, including luxS and tcdA, and prolonged the survival of Caenorhabditis elegans infected with C. difficile. Furthermore, treatment with EGCG effectively protected C. difficile-infected mice from C. difficile-induced death. Histological analysis of the colon and cecum of these mice revealed that EGCG protected tissues of the lower intestinal tract from damage. EGCG exerted growth-inhibitory and bactericidal activities on C. difficile in C. difficile-infected mice. Our results suggest that EGCG has significant antipathogenic effects on C. difficile and can be used to prevent or treat C. difficile-associated diseases or C. difficile infections. PMID:26556797

  17. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d'Ivoire and their antimicrobial susceptibility.

    PubMed

    Kouassi, Kra Athanase; Dadie, Adjéhi Thomas; N'Guessan, Kouadio Florent; Dje, Koffi Marcellin; Loukou, Yao Guillaume

    2014-08-01

    The aim of this study was to evaluate the prevalence of Clostridium difficile and Clostridium perfringens in cooked beef sold in the streets in Côte d'Ivoire and their antimicrobial susceptibility. A total of 395 kidney and flesh samples of cooked beef were collected from vendors at Abidjan and subjected to C. difficile and C. perfringens isolation and identification by using biochemical tests, API 20A system and PCR detection. Subsequently, the antimicrobial susceptibility test was performed for confirmed isolates. Our results showed the prevalence of 12.4% for C. difficile (11.04% in kidney and 13.45% in flesh) and 5.06% for C. perfringens (2.32% in kidney and 7.17% in flesh). Metronidazole and vancomycin remained the most potent antimicrobial agents against C. difficile while metronidazole and penicillin G were the most potent agents against C. perfringens. The resistance rates to tetracycline, doxycycline, chloramphenicol and erythromycin against C. difficile and C. perfringens isolates ranged from 2.05% to 8.16% and from 20% to 50%, respectively. Among all antimicrobial agents tested against C. difficile, percentages of resistance to quinolones ciprofloxacin, norfloxacin and nalidixic acid as well as to gentamicin and cefotaxime were the highest. Eight resistant phenotypes were defined for C. difficile isolates and eleven resistant phenotypes for C. perfringens isolates. Clindamycin/gentamicin/cefotaxime/ciprofloxacin/norfloxacin/nalidixic acid resistance was the most common phenotype for C. difficile (55.10% of isolates) while norfloxacin/nalidixic acid resistance was the most common phenotype for C. perfringens (20% of isolates).

  18. More than 50% of Clostridium difficile Isolates from Pet Dogs in Flagstaff, USA, Carry Toxigenic Genotypes

    PubMed Central

    Stone, Nathan E.; Sidak-Loftis, Lindsay C.; Sahl, Jason W.; Vazquez, Adam J.; Wiggins, Kristin B.; Gillece, John D.; Hicks, Nathan D.; Schupp, James M.; Busch, Joseph D.; Keim, Paul; Wagner, David M.

    2016-01-01

    Nosocomial acquisition of Clostridium difficile is well documented, yet recent studies have highlighted the importance of community acquired infections and identified community associated reservoirs for this pathogen. Multiple studies have implicated companion pets and farm animals as possible sources of community acquired C. difficile infections in humans. To explore the potential role of pet dogs in human C. difficile infections we systematically collected canine fecal samples (n = 197) in Flagstaff, AZ. Additionally, nineteen fecal samples were collected at a local veterinary clinic from diarrheic dogs. We used these combined samples to investigate important questions regarding C. difficile colonization in pet canines: 1) What is the prevalence and diversity of C. difficile in this companion pet population, and 2) Do C. difficile isolates collected from canines genetically overlap with isolates that cause disease in humans? We used a two-step sequence typing approach, including multilocus sequence typing to determine the overall genetic diversity of C. difficile present in Flagstaff canines, and whole-genome sequencing to assess the fine-scale diversity patterns within identical multilocus sequence types from isolates obtained within and among multiple canine hosts. We detected C. difficile in 17% of the canine fecal samples with 10% containing toxigenic strains that are known to cause human disease. Sequencing analyses revealed similar genotypes in dogs and humans. These findings suggest that companion pets are a potential source of community acquired C. difficile infections in humans. PMID:27723795

  19. Clostridium difficile in the Long-Term Care Facility: Prevention and Management

    PubMed Central

    Jump, Robin L. P.; Donskey, Curtis J.

    2014-01-01

    Residents of long-term care facilities are at high risk for Clostridium difficile infection due to frequent antibiotic exposure in a population already rendered vulnerable to infection due to advanced age, multiple comorbid conditions and communal living conditions. Moreover, asymptomatic carriage of toxigenic C. difficile and recurrent infections are prevalent in this population. Here, we discuss epidemiology and management of C. difficile infection among residents of long-term care facilities. Also, recognizing that both the population and culture differs significantly from that of hospitals, we also address prevention strategies specific to LTCFs. PMID:25685657

  20. In vivo lysogenization of a Clostridium difficile bacteriophage ΦCD119

    PubMed Central

    Govind, Revathi; Fralick, Joe A.; Rolfe, Rial D.

    2011-01-01

    Clostridium difficile is a nosocomial pathogen identified as the cause of antibiotic associated diarrhea and colitis. In this study, we have documented the lysogeny of a C. difficile bacteriophage in hamsters during C. difficile infection. The lysogens isolated from the hamsters were toxin typed and their phage integration site was confirmed by PCR. Through toxin ELISA it was found that the toxin production in the in vivo isolated lysogens was affected due to ΦCD119 lysogenization as in the case of in vitro isolated ΦCD119 lysogens. Together our findings indicate that a baceriophage can lysogenize its C. difficile host even during the infection process and highlights the importance of lysogeny of C. difficile phages as an evolutionary adaptation for survival. PMID:21664468

  1. Laboratory identification of anaerobic bacteria isolated on Clostridium difficile selective medium.

    PubMed

    Rodriguez, Cristina; Warszawski, Nathalie; Korsak, Nicolas; Taminiau, Bernard; Van Broeck, Johan; Delmée, Michel; Daube, Georges

    2016-06-01

    Despite increasing interest in the bacterium, the methodology for Clostridium difficile recovery has not yet been standardized. Cycloserine-cefoxitin fructose taurocholate (CCFT) has historically been the most used medium for C. difficile isolation from human, animal, environmental, and food samples, and presumptive identification is usually based on colony morphologies. However, CCFT is not totally selective. This study describes the recovery of 24 bacteria species belonging to 10 different genera other than C. difficile, present in the environment and foods of a retirement establishment that were not inhibited in the C. difficile selective medium. These findings provide insight for further environmental and food studies as well as for the isolation of C. difficile on supplemented CCFT.

  2. Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile.

    PubMed

    McBride, Shonna M; Sonenshein, Abraham L

    2011-01-01

    Clostridium difficile causes chronic intestinal disease, yet little is understood about how the bacterium interacts with and survives in the host. To colonize the intestine and cause persistent disease, the bacterium must circumvent killing by host innate immune factors, such as cationic antimicrobial peptides (CAMPs). In this study, we investigated the effect of model CAMPs on growth and found that C. difficile is not only sensitive to these compounds but also responds to low levels of CAMPs by expressing genes that lead to CAMP resistance. By plating the bacterium on medium containing the CAMP nisin, we isolated a mutant capable of growing in three times the inhibitory concentration of CAMPs. This mutant also showed increased resistance to the CAMPs gallidermin and polymyxin B, demonstrating tolerance to different types of antimicrobial peptides. We identified the mutated gene responsible for the resistance phenotype as CD1352. This gene encodes a putative orphan histidine kinase that lies adjacent to a predicted ABC transporter operon (CD1349 to CD1351). Transcriptional analysis of the ABC transporter genes revealed that this operon was upregulated in the presence of nisin in wild-type cells and was more highly expressed in the CD1352 mutant. The insertional disruption of the CD1349 gene resulted in significant decreases in resistance to the CAMPs nisin and gallidermin but not polymyxin B. Because of their role in cationic antimicrobial peptide resistance, we propose the designation cprABC for genes CD1349 to CD1351 and cprK for the CD1352 gene. These results provide the first evidence of a C. difficile gene associated with antimicrobial peptide resistance. PMID:20974818

  3. Persistence of Clostridium difficile RT 237 infection in a Western Australian piggery.

    PubMed

    Moono, Peter; Putsathit, Papanin; Knight, Daniel R; Squire, Michele M; Hampson, David J; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is commonly associated with healthcare-related infections in humans, and is an emerging pathogen in food animal species. There is potential for transmission of C. difficile from animals or animal products to humans. This study aimed to determine if C. difficile RT 237 had persisted in a Western Australian piggery or if there had been a temporal change in C. difficile diversity. C. difficile carriage in litters with and without diarrhea was investigated, as was the acquisition of C. difficile over time using cohort surveys. Rectal swabs were obtained from piglets aged 1-10 days to determine prevalence of C. difficile carriage and samples were obtained from 20 piglets on days 1, 7, 13, 20, and 42 of life to determine duration of shedding. Isolation of C. difficile from feces was achieved by selective enrichment culture. All isolates were characterized by standard molecular typing. Antimicrobial susceptibility testing was performed on selected isolates (n = 29). Diarrheic piglets were more likely to shed C. difficile than the non-diseased (p = 0.0124, χ2). In the cohort study, C. difficile was isolated from 40% samples on day 1, 50% on day 7, 20% on day 13, and 0% on days 20 and 42. All isolates were RT 237 and no antimicrobial resistance was detected. The decline of shedding of C. difficile to zero has public health implications because slaughter age pigs have a low likelihood of spreading C. difficile to consumers via pig meat.

  4. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A

    PubMed Central

    Liu, Ji; Ma, Yi; Sun, Chun-Li

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  5. High Mobility Group Box1 Protein Is Involved in Endoplasmic Reticulum Stress Induced by Clostridium difficile Toxin A.

    PubMed

    Liu, Ji; Ma, Yi; Sun, Chun-Li; Li, Shan; Wang, Ju-Fang

    2016-01-01

    High Mobility Group Box1 (HMGB1), a damage-associated inflammatory factor, plays an important role in the pathogenesis of numerous chronic inflammatory and autoimmune diseases. In this study, the role of the HMGB1 in TcdA-induced ER stress was identified. Clostridium difficile toxin A is one of the major virulence factors of C. difficile infection (CDI) and has been proved to induce apoptotic cell death through ER stress. Our results showed that HMGB1 might play an important role in the TcdA-induced ER stress and unfolded protein response. HMGB1 activated molecular markers and induced the C/EBP homologous protein upregulation (CHOP). This study may provide the essential information for better understanding of the molecular mechanisms involved in CDI. PMID:27579314

  6. Clostridium difficile toxin A binding to human intestinal epithelial cells.

    PubMed

    Smith, J A; Cooke, D L; Hyde, S; Borriello, S P; Long, R G

    1997-11-01

    Clostridium difficile radiolabelled toxin A ([3H]-toxin A) bound to human duodenal and colonic epithelial cells isolated from endoscopic biopsies. Binding was greater at 4 degrees C than 37 degrees C, consistent with the thermal binding characteristic of toxin A to a carbohydrate moiety. At 37 degrees C colonic cells bound significantly more [3H]-toxin A than duodenal cells. The amount of [3H]-toxin A binding varied considerably between individuals. [3H]-toxin A was displaced by unlabelled toxin A by 50% for duodenal cells and 70% for colonic cells with 94.3 nM unlabelled toxin A. Low non-displacable binding was observed in some samples at 4 degrees C and 37 degrees C, suggesting that these cells came from individuals incapable of specifically binding toxin. Pre-treating cells with alpha- or beta-galactosidases to cleave terminal alpha- and beta-galactose residues reduced [3H]-toxin A binding. There was also a reduction in [3H]-toxin A binding after heat treating cells, which is suggestive of protein binding. The reduction in binding varied between individuals. The reduction of [3H]-toxin A binding, after the removal of beta-linked galactose units, implicates these as components of the receptor and adds credence to the idea that the Lewis X, Y and I antigens may be involved in toxin A binding to human intestinal epithelial cells. However, because the Lewis antigens do not possess terminal alpha-galactose units, the reduction in binding after alpha-galactosidase treatment suggests that other receptors may be involved in toxin A binding to some human intestinal cells. These data are the first demonstration of direct toxin A binding to human intestinal epithelial cells.

  7. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice.

    PubMed Central

    Su, W J; Waechter, M J; Bourlioux, P; Dolegeal, M; Fourniat, J; Mahuzier, G

    1987-01-01

    Clostridium difficile is an agent involved in the development of antibiotic-associated pseudomembranous colitis. The purpose of this work was to investigate the role of volatile fatty acids (VFAs) in resistance to colonization by C. difficile by using a gnotobiotic animal model. Accordingly, germfree mice were associated with different hamster flora, and the VFAs in their cecal contents were measured by gas chromatography. The results showed that VFAs were produced mainly by the intestinal flora, especially by the strictly anaerobic bacteria. In these associated mice, the concentrations of acetic, propionic, and butyric acids were higher than those of other acids, but at pH 6.8 the MICs of these three acids in vitro for C. difficile were more than 200 mu eq/ml. In gnotobiotic mice monoassociated with C. difficile and in the isolated ceca of these mice, VFAs did not inhibit the growth of C. difficile. In gnotobiotic mice which were diassociated with C. difficile and C. butyricum and given drinking water with a lactose concentration of 20%, the cecal contents included about the same amount of butyric acid as did those of the monoassociated mice, although the population of C. difficile remained the same. Therefore, it is suggested that VFAs alone cannot inhibit intestinal colonization by C. difficile and that, consequently, other inhibitory mechanisms are also present. PMID:3596806

  8. The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea.

    PubMed

    Tae, Chung Hyun; Jung, Sung-Ae; Song, Hyun Joo; Kim, Seong-Eun; Choi, Hee Jung; Lee, Miae; Hwang, Yusun; Kim, Heejung; Lee, Kyungwon

    2009-06-01

    Clostridium difficile (C. difficile) is a common causative agent of pseudomembranous colitis (PMC). C. difficile-associated diarrhea (CDAD) ranges from mild diarrhea to life threatening PMC. Recently, a highly virulent strain of C. difficile polymerase chain reaction ribotype 027 was found in North America, Europe, and Japan. A 52-yr-old woman with anti-tuberculosis medication and neurogenic bladder due to traffic accident experienced five episodes of C. difficile PMC after taking antibiotics for pneumonia along with septic shock and acute renal failure. She was readmitted to the intensive care unit and treated with oral vancomycin with refractory of oral metronidazole, inotropics and probiotics for over 60 days. C. difficile isolated both at the first and the last admission was identified as C. difficile ribotype 027 by ribotyping, toxinotyping, and tcdC gene sequencing, which turned out the same pathogen as the epidemic hypervirulent B1/NAP1 strain. This is the first case of C. difficile PCR ribotype 027 in Korea. After discharge, she was maintained on probiotics and rifaximin for 3 weeks. She had no relapse for 6 months. PMID:19543521

  9. Susceptibility of Clostridium difficile isolates from a Phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection

    PubMed Central

    Gerding, D. N.; Hecht, D. W.; Louie, T.; Nord, C. E.; Talbot, G. H.; Cornely, O. A.; Buitrago, M.; Best, E.; Sambol, S.; Osmolski, J. R.; Kracker, H.; Locher, H. H.; Charef, P.; Wilcox, M.

    2016-01-01

    Objectives The aim of this study was to evaluate the susceptibilities of Clostridium difficile isolates to cadazolid, a novel antibiotic for the treatment of C. difficile infection. Methods Ribotyping and susceptibilities were determined for C. difficile isolates from a multicentre, double-blind, Phase 2 study of oral cadazolid in patients with C. difficile infection (NCT01222702, ClinicalTrials.gov; EudraCT 2010-020941-29, European Clinical Trials Database). Patients were randomized to receive 250, 500 or 1000 mg of cadazolid twice daily or 125 mg of vancomycin four times daily, for 10 days. MICs of cadazolid, vancomycin, fidaxomicin, linezolid and moxifloxacin were determined at baseline for all patients and post-baseline for patients with clinical failure or recurrence, using the agar dilution method. Results Seventy-eight of 84 patients had an evaluable toxigenic C. difficile isolate at baseline. The most frequent PCR ribotype was 027 (15.4%). Cadazolid MICs for baseline isolates (including epidemic strain 027) ranged from 0.06 to 0.25 mg/L. Baseline cadazolid MICs were similar to those of fidaxomicin and lower than those of vancomycin, linezolid and moxifloxacin. For each clinical outcome group (clinical cure, clinical failure, sustained clinical response and clinical failure or recurrence), the baseline cadazolid MIC range was 0.06–0.25 mg/L. Mean (min–max) cadazolid faecal concentration (μg/g) on day 5 was 884 (101–2710), 1706 (204–4230) and 3226 (1481–12 600) for the doses 250, 500 and 1000 mg, respectively. Conclusions For all cadazolid doses, the faecal concentration was in excess of several thousand-fold the MIC90 for C. difficile. The MIC of cadazolid for all C. difficile isolates, including epidemic strains, was low and in the same narrow range regardless of treatment outcome. PMID:26433782

  10. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms.

    PubMed

    Bandelj, Petra; Blagus, Rok; Briski, France; Frlic, Olga; Vergles Rataj, Aleksandra; Rupnik, Maja; Ocepek, Matjaz; Vengust, Modest

    2016-03-12

    Farm animals have been suggested to play an important role in the epidemiology of Clostridium difficile infection (CDI) in the community. The purpose of this study was to evaluate risk factors associated with C. difficile dissemination in family dairy farms, which are the most common farming model in the European Union. Environmental samples and fecal samples from cows and calves were collected repeatedly over a 1 year period on 20 mid-size family dairy farms. Clostridium difficile was detected in cattle feces on all farms using qPCR. The average prevalence between farms was 10% (0-44.4%) and 35.7% (3.7-66.7%) in cows and calves, respectively. Bacterial culture yielded 103 C. difficile isolates from cattle and 61 from the environment. Most C. difficile isolates were PCR-ribotype 033. A univariate mixed effect model analysis of risk factors associated dietary changes with increasing C. difficile prevalence in cows (P = 0.0004); and dietary changes (P = 0.004), breeding Simmental cattle (P = 0.001), mastitis (P = 0.003) and antibiotic treatment (P = 0.003) in calves. Multivariate analysis of risk factors found that dietary changes in cows (P = 0.0001) and calves (P = 0.002) increase C. difficile prevalence; mastitis was identified as a risk factor in calves (P = 0.001). This study shows that C. difficile is common on dairy farms and that shedding is more influenced by farm management than environmental factors. Based on molecular typing of C. difficile isolates, it could also be concluded that family dairy farms are currently not contributing to increased CDI incidence.

  11. Risk Factors for Acquisition and Loss of Clostridium difficile Colonization in Hospitalized Patients

    PubMed Central

    Reske, Kimberly A.; Seiler, Sondra; Hink, Tiffany; Kwon, Jennie H.

    2015-01-01

    Asymptomatic colonization may contribute to Clostridium difficile transmission. Few data identify which patients are at risk for colonization. We performed a prospective cohort study of C. difficile colonization and risk factors for C. difficile acquisition and loss in hospitalized patients. Patients admitted to medical or surgical wards at a tertiary care hospital were enrolled; interviews and chart review were performed to determine patient demographics, C. difficile infection (CDI) history, medications, and health care exposures. Stool samples/rectal swabs were collected at enrollment and discharge; stool samples from clinical laboratory tests were also included. Samples were cultured for C. difficile, and the isolates were tested for toxins A and B and ribotyped. Chi-square tests and univariate logistic regression were used for the analyses. Two hundred thirty-five patients were enrolled. Of the patients, 21% were colonized with C. difficile (toxigenic and nontoxigenic) at admission and 24% at discharge. Ribotype 027 accounted for 6% of the strains at admission and 12% at discharge. Of the patients colonized at admission, 78% were also colonized at discharge. Cephalosporin use was associated with C. difficile acquisition (47% of patients who acquired C. difficile versus 25% of patients who did not; P = 0.03). β-lactam–β-lactamase inhibitor combinations were associated with a loss of C. difficile colonization (36% of patients who lost C. difficile colonization versus 8% of patients colonized at both admission and discharge; P = 0.04), as was metronidazole (27% versus 3%; P = 0.03). Antibiotic use affects the epidemiology of asymptomatic C. difficile colonization, including acquisition and loss, and it requires additional study. PMID:25987626

  12. State Law Mandates for Reporting of Healthcare-Associated Clostridium difficile Infections in Hospitals

    PubMed Central

    Reagan, Julie; Herzig, Carolyn T.A.; Pogorzelska-Maziarz, Monika; Dick, Andrew W.; Stone, Patricia W.; Divya Srinath, JD

    2015-01-01

    US state and territorial laws were reviewed to identify Clostridium difficile infection reporting mandates. Twenty states require reporting either under state law or by incorporating federal Centers for Medicare & Medicaid Services' reporting requirements. Although state law mandates are more common, the incorporation of federal reporting requirements has been increasing. PMID:25695178

  13. Flooding and Health Care Visits for Clostridium Difficile Infection: A Case-Crossover Analysis

    EPA Science Inventory

    Floods can contaminate potable water and other resources, thus increasing the potential for fecal-oral transmission of pathogens. Clostridium difficile is a bacterium that can spread by water and cause acute gastrointestinal illness. It often affects older adults who are hospital...

  14. Contamination of the Hospital Environment From Potential Clostridium difficile Excretors Without Active Infection.

    PubMed

    Biswas, Jason S; Patel, Amita; Otter, Jonathan A; van Kleef, Esther; Goldenberg, Simon D

    2015-08-01

    Clostridium difficile was recovered from 33 (34%) of 98 rooms of patients who were excretors compared with 36 (49%) of 73 rooms of patients with active infection. Not all laboratory algorithms can distinguish between these 2 groups, yet both may be a significant source for ongoing transmission.

  15. Synergistic inhibition of Clostridium difficile with nisin-lysozyme combination treatment.

    PubMed

    Chai, Changhoon; Lee, Kyung-Soo; Oh, Se-Wook

    2015-08-01

    Clostridium difficile vegetative cells were not inhibited completely after a 120-min treatment with 40 nM nisin or 0.8 mM lysozyme. However, these cells were completely inhibited after only a 30-min incubation with both 20 nM nisin and 0.2 mM lysozyme.

  16. State law mandates for reporting of healthcare-associated Clostridium difficile infections in hospitals.

    PubMed

    Reagan, Julie; Herzig, Carolyn T A; Pogorzelska-Maziarz, Monika; Dick, Andrew W; Stone, Patricia W; Divya Srinath, Jd

    2015-03-01

    US state and territorial laws were reviewed to identify Clostridium difficile infection reporting mandates. Twenty states require reporting either under state law or by incorporating federal Centers for Medicare & Medicaid Services' reporting requirements. Although state law mandates are more common, the incorporation of federal reporting requirements has been increasing.

  17. Gut check: Clostridium difficile testing and treatment in the molecular testing era.

    PubMed

    Buckel, Whitney R; Avdic, Edina; Carroll, Karen C; Gunaseelan, Vidhya; Hadhazy, Eric; Cosgrove, Sara E

    2015-02-01

    We evaluated the impact of nursing education and stewardship interventions on Clostridium difficile testing and treatment appropriateness. Diarrhea documentation increased for those with positive tests (45% to 70%); pretreatment laxative use decreased (50% to 19%). Appropriate treatment increased for severe infection (57% to 93%), but all asymptomatically colonized patients were treated. PMID:25633006

  18. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best?

    PubMed

    Claro, Tânia; Daniels, Stephen; Humphreys, Hilary

    2014-09-01

    The recovery of Clostridium difficile spores from hospital surfaces was assessed using rayon swabs, flocked swabs, and contact plates. The contact plate method was less laborious, achieved higher recovery percentages, and detected spores at lower inocula than swabs. Rayon swabs were the least efficient method. However, further studies are required in health care settings.

  19. Prevalence of Clostridium difficile in pork and retail meat in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  20. Prevalence of Clostridium difficile from Commercial Beef Processing Plants in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile-associated disease has recently increased in both illness and relapse rates in North American and European countries. This increase has been attributed to the emergence of a toxigenic strain designated as North America pulsed-field gel electrophoresis type 1 or NAP-1. The NAP-1...

  1. Isolation and characterization of Clostridium difficile associated with beef cattle and commercially produced ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of Clostridium difficile infection has recently increased in North American and European countries. This pathogen has been isolated from retail pork, turkey, and beef products and reported associated with human illness. This increase in infections has been attributed to the emergence o...

  2. Molecular characterization and antimicrobial susceptibilities of Clostridium difficile clinical isolates from Victoria, Australia.

    PubMed

    Mackin, Kate E; Elliott, Briony; Kotsanas, Despina; Howden, Benjamin P; Carter, Glen P; Korman, Tony M; Riley, Thomas V; Rood, Julian I; Jenkin, Grant A; Lyras, Dena

    2015-08-01

    Some Australian strain types of Clostridium difficile appear unique, highlighting the global diversity of this bacterium. We examined recent and historic local isolates, finding predominantly toxinotype 0 strains, but also toxinotypes V and VIII. All isolates tested were susceptible to vancomycin and metronidazole, while moxifloxacin resistance was only detected in recent strains.

  3. Proton Pump Inhibitors and Clostridium Difficile Infection: Are We Propagating an Already Rapidly Growing Healthcare Problem?

    PubMed Central

    Patil, Rashmee; Blankenship, LeAnn

    2013-01-01

    Proton pump inhibitors (PPIs) have been associated with Clostridium difficile infection (CDI) in several recent studies. The exact mechanism through which PPIs may cause Clostridium difficile infection is not well understood. One potential mechanism to explain this association may be that elevated gastric pH levels facilitate the growth of potentially pathogenic upper and lower gastrointestinal tract flora. Although Clostridium difficile spores are acid resistant, vegetative forms are susceptible to acidity. Higher gastric PH therefore increases vegetative bacteria counts in the small and large intestine. Other potential mechanisms include impairment of leukocytes and other immune responses and antimicrobial properties of PPIs. In recent years, much research has been contributed to prove the relationship between PPIs and CDI as causal. Most studies however, fail to prove causality due to the use of antibiotics and other medications during time of initial diagnosis of CDI. PPIs continue to also be one of the most heavily prescribed drugs in our country. As primary and recurrent infection caused by Clostridium difficile continues to rise, more data must be collected to determine better treatment, overall management, and the role that PPIs may play in its propagation.

  4. Multidisciplinary Analysis of a Nontoxigenic Clostridium difficile Strain with Stable Resistance to Metronidazole

    PubMed Central

    Moura, Ines; Monot, Marc; Tani, Chiara; Barbanti, Fabrizio; Norais, Nathalie; Dupuy, Bruno; Bouza, Emilio; Mastrantonio, Paola

    2014-01-01

    Stable resistance to metronidazole in a nontoxigenic Clostridium difficile strain was investigated at both the genomic and proteomic levels. Alterations in the metabolic pathway involving the pyruvate-ferredoxin oxidoreductase were found, suggesting that reduction of metronidazole, required for its activity, may be less efficient in this strain. Proteomic studies also showed a cellular response to oxidative stress. PMID:24913157

  5. Detecting Clostridium difficile spores from inanimate surfaces of the hospital environment: which method is best?

    PubMed

    Claro, Tânia; Daniels, Stephen; Humphreys, Hilary

    2014-09-01

    The recovery of Clostridium difficile spores from hospital surfaces was assessed using rayon swabs, flocked swabs, and contact plates. The contact plate method was less laborious, achieved higher recovery percentages, and detected spores at lower inocula than swabs. Rayon swabs were the least efficient method. However, further studies are required in health care settings. PMID:25009047

  6. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms.

    PubMed

    Ghantoji, Shashank S; Stibich, Mark; Stachowiak, Julie; Cantu, Sherry; Adachi, Javier A; Raad, Issam I; Chemaly, Roy F

    2015-02-01

    The standard for Clostridium difficile surface decontamination is bleach solution at a concentration of 10 % of sodium hypochlorite. Pulsed xenon UV light (PX-UV) is a means of quickly producing germicidal UV that has been shown to be effective in reducing environmental contamination by C. difficile spores. The purpose of this study was to investigate whether PX-UV was equivalent to bleach for decontamination of surfaces in C. difficile infection isolation rooms. High-touch surfaces in rooms previously occupied by C. difficile infected patients were sampled after discharge but before and after cleaning using either bleach or non-bleach cleaning followed by 15 min of PX-UV treatment. A total of 298 samples were collected by using a moistened wipe specifically designed for the removal of spores. Prior to disinfection, the mean contamination level was 2.39 c.f.u. for bleach rooms and 22.97 for UV rooms. After disinfection, the mean level of contamination for bleach was 0.71 c.f.u. (P = 0.1380), and 1.19 c.f.u. (P = 0.0017) for PX-UV disinfected rooms. The difference in final contamination levels between the two cleaning protocols was not significantly different (P = 0.9838). PX-UV disinfection appears to be at least equivalent to bleach in the ability to decrease environmental contamination with C. difficile spores. Larger studies are needed to validate this conclusion.

  7. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms

    PubMed Central

    Ghantoji, Shashank S.; Stibich, Mark; Stachowiak, Julie; Cantu, Sherry; Adachi, Javier A.; Raad, Issam I.

    2015-01-01

    The standard for Clostridium difficile surface decontamination is bleach solution at a concentration of 10 % of sodium hypochlorite. Pulsed xenon UV light (PX-UV) is a means of quickly producing germicidal UV that has been shown to be effective in reducing environmental contamination by C. difficile spores. The purpose of this study was to investigate whether PX-UV was equivalent to bleach for decontamination of surfaces in C. difficile infection isolation rooms. High-touch surfaces in rooms previously occupied by C. difficile infected patients were sampled after discharge but before and after cleaning using either bleach or non-bleach cleaning followed by 15 min of PX-UV treatment. A total of 298 samples were collected by using a moistened wipe specifically designed for the removal of spores. Prior to disinfection, the mean contamination level was 2.39 c.f.u. for bleach rooms and 22.97 for UV rooms. After disinfection, the mean level of contamination for bleach was 0.71 c.f.u. (P = 0.1380), and 1.19 c.f.u. (P = 0.0017) for PX-UV disinfected rooms. The difference in final contamination levels between the two cleaning protocols was not significantly different (P = 0.9838). PX-UV disinfection appears to be at least equivalent to bleach in the ability to decrease environmental contamination with C. difficile spores. Larger studies are needed to validate this conclusion. PMID:25627208

  8. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    PubMed

    Schwan, Carsten; Stecher, Bärbel; Tzivelekidis, Tina; van Ham, Marco; Rohde, Manfred; Hardt, Wolf-Dietrich; Wehland, Jürgen; Aktories, Klaus

    2009-10-01

    Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  9. An update on antibody-based immunotherapies for Clostridium difficile infection

    PubMed Central

    Hussack, Greg; Tanha, Jamshid

    2016-01-01

    Clostridium difficile continues to be one of the most prevalent hospital-acquired bacterial infections in the developed world, despite the recent introduction of a novel and effective antibiotic agent (fidaxomicin). Alternative approaches under investigation to combat the anaerobic Gram-positive bacteria include fecal transplantation therapy, vaccines, and antibody-based immunotherapies. In this review, we catalog the recent advances in antibody-based approaches under development and in the clinic for the treatment of C. difficile infection. By and large, inhibitory antibodies that recognize the primary C. difficile virulence factors, toxin A and toxin B, are the most popular passive immunotherapies under investigation. We provide a detailed summary of the toxin epitopes recognized by various antitoxin antibodies and discuss general trends on toxin inhibition efficacy. In addition, antibodies to other C. difficile targets, such as surface-layer proteins, binary toxin, motility factors, and adherence and colonization factors, are introduced in this review. PMID:27536153

  10. Fecal Microbiota Transplantation for Refractory Clostridium difficile Colitis in Solid Organ Transplant Recipients

    PubMed Central

    Friedman-Moraco, R. J.; Mehta, A. K.; Lyon, G. M.; Kraft, C. S.

    2015-01-01

    Fecal microbiota transplantation (FMT) has been shown to be safe and efficacious in individuals with refractory Clostridium difficile . It has not been widely studied in individuals with immunosuppression due to concerns about infectious complications. We describe two solid organ transplant recipients, one lung and one renal, in this case report that both had resolution of their diarrhea caused by C. difficile after FMT. Both recipients required two FMTs to achieve resolution of their symptoms and neither had infectious complications. Immunosuppressed individuals are at high risk for acquisition of C. difficile and close monitoring for infectious complications after FMT is necessary, but should not preclude its use in patients with refractory disease due to C. difficile . Sequential FMT may be used to achieve cure in these patients with damaged microbiota from antibiotic use and immunosuppression. PMID:24433460

  11. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease?

    PubMed Central

    Bien, Justyna; Palagani, Vindhya

    2013-01-01

    Gut microbiota is a compilation of microorganisms dwelling in the entire mammalian gastrointestinal tract. They display a symbiotic relationship with the host contributing to its intestinal health and disease. Even a slight fluctuation in this equipoise may be deleterious to the host, leading to many pathological conditions like Clostridium difficile infection or inflammatory bowel disease (IBD). In this review, we focus on the role of microbial dysbiosis in initiation of C. difficile infection and IBD, and we also touch upon the role of specific pathogens, particularly C. difficile, as causative agents of IBD. We also discuss the molecular mechanisms activated by C. difficile that contribute to the development and exacerbation of gastrointestinal disorders. PMID:23320050

  12. Fecal microbiota transplantation for refractory Clostridium difficile colitis in solid organ transplant recipients.

    PubMed

    Friedman-Moraco, R J; Mehta, A K; Lyon, G M; Kraft, C S

    2014-02-01

    Fecal microbiota transplantation (FMT) has been shown to be safe and efficacious in individuals with refractory Clostridium difficile. It has not been widely studied in individuals with immunosuppression due to concerns about infectious complications. We describe two solid organ transplant recipients, one lung and one renal, in this case report that both had resolution of their diarrhea caused by C. difficile after FMT. Both recipients required two FMTs to achieve resolution of their symptoms and neither had infectious complications. Immunosuppressed individuals are at high risk for acquisition of C. difficile and close monitoring for infectious complications after FMT is necessary, but should not preclude its use in patients with refractory disease due to C. difficile. Sequential FMT may be used to achieve cure in these patients with damaged microbiota from antibiotic use and immunosuppression.

  13. Toxicity assessment of Clostridium difficile toxins in rodent models and protection of vaccination.

    PubMed

    Wang, Su; Rustandi, Richard R; Lancaster, Catherine; Hong, Laura G; Thiriot, David S; Xie, Jinfu; Secore, Susan; Kristopeit, Adam; Wang, Sheng-Ching; Heinrichs, Jon H

    2016-03-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea, also known as C. difficile associated diarrhea. The two major toxins, toxin A and toxin B are produced by most C. difficile bacteria, but some strains, such as BI/NAP1/027 isolates, produce a third toxin called binary toxin. The precise biological role of binary toxin is not clear but it has been shown to be a cytotoxin for Vero cells. We evaluated the toxicity of these toxins in mice and hamsters and found that binary toxin causes death in both animals similar to toxins A and B. Furthermore, immunization of mice with mutant toxoids of all three toxins provided protection upon challenge with native toxins. These results support the concept that binary toxin contributes to the pathogenicity of C. difficile and provide a method for monitoring the toxicity of binary toxin components in vaccines.

  14. Identification and characterization of the surface proteins of Clostridium difficile

    SciTech Connect

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  15. Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins.

    PubMed

    Sekulovic, Ognjen; Garneau, Julian R; Néron, Audrey; Fortier, Louis-Charles

    2014-04-01

    Clostridium difficile is a Gram-positive pathogen infecting humans and animals. Recent studies suggest that animals could represent potential reservoirs of C. difficile that could then transfer to humans. Temperate phages contribute to the evolution of most bacteria, for example, by promoting the transduction of virulence, fitness, and antibiotic resistance genes. In C. difficile, little is known about their role, mainly because suitable propagating hosts and conditions are lacking. Here we report the isolation, propagation, and preliminary characterization of nine temperate phages from animal and human C. difficile isolates. Prophages were induced by UV light from 58 C. difficile isolates of animal and human origins. Using soft agar overlays with 27 different C. difficile test strains, we isolated and further propagated nine temperate phages: two from horse isolates (ΦCD481-1 and ΦCD481-2), three from dog isolates (ΦCD505, ΦCD506, and ΦCD508), and four from human isolates (ΦCD24-2, ΦCD111, ΦCD146, and ΦCD526). Two phages are members of the Siphoviridae family (ΦCD111 and ΦCD146), while the others are Myoviridae phages. Pulsed-field gel electrophoresis and restriction enzyme analyses showed that all of the phages had unique double-stranded DNA genomes of 30 to 60 kb. Phages induced from human C. difficile isolates, especially the members of the Siphoviridae family, had a broader host range than phages from animal C. difficile isolates. Nevertheless, most of the phages could infect both human and animal strains. Phage transduction of antibiotic resistance was recently reported in C. difficile. Our findings therefore call for further investigation of the potential risk of transduction between animal and human C. difficile isolates.

  16. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children

    NASA Astrophysics Data System (ADS)

    Ling, Zongxin; Liu, Xia; Jia, Xiaoyun; Cheng, Yiwen; Luo, Yueqiu; Yuan, Li; Wang, Yuezhu; Zhao, Chunna; Guo, Shu; Li, Lanjuan; Xu, Xiwei; Xiang, Charlie

    2014-12-01

    Increasing evidence suggests that altered intestinal microbial composition and function result in an increased risk of Clostridium difficile-associated diarrhoea (CDAD); however, the specific changes of intestinal microbiota in children suffering from CDAD and their associations with C. difficile strain toxigenicity are poorly understood. High-throughput pyrosequencing showed that reduced faecal bacterial diversity and dramatic shifts of microbial composition were found in children with CDAD. The Firmicutes/Bacteroidetes ratio was increased significantly in patients with CDAD, which indicated that dysbiosis of faecal microbiota was closely associated with CDAD. C. difficile infection resulted in an increase in lactate-producing phylotypes, with a corresponding decrease in butyrate-producing bacteria. The decrease in butyrate and lactate buildup impaired intestinal colonisation resistance, which increased the susceptibility to C. difficile colonisation. Strains of C. difficile which were positive for both toxin A and toxin B reduced faecal bacterial diversity to a greater degree than strains that were only toxin B-positive, and were associated with unusually abundant Enterococcus, which implies that the C. difficile toxins have different impacts on the faecal microbiota of children. Greater understanding of the relationships between disruption of the normal faecal microbiota and colonisation with C. difficile that produces different toxins might lead to improved treatment.

  17. Prevalence of human norovirus and Clostridium difficile coinfections in adult hospitalized patients

    PubMed Central

    Stokely, Janelle N; Niendorf, Sandra; Taube, Stefan; Hoehne, Marina; Young, Vincent B; Rogers, Mary AM; Wobus, Christiane E

    2016-01-01

    Objective Human norovirus (HuNoV) and Clostridium difficile are common causes of infectious gastroenteritis in adults in the US. However, limited information is available regarding HuNoV and C. difficile coinfections. Our study was designed to evaluate the prevalence of HuNoV and C. difficile coinfections among adult patients in a hospital setting and disease symptomatology. Study design and setting For a cross-sectional analysis, 384 fecal samples were tested for the presence of C. difficile toxins from patients (n=290), whom the provider suspected of C. difficile infections. Subsequent testing was then performed for HuNoV genogroups I and II. Multinomial logistic regression was performed to determine symptoms more frequently associated with coinfections. Results The final cohort consisted of the following outcome groups: C. difficile (n=196), C. difficile + HuNoV coinfection (n=40), HuNoV only (n=12), and neither (n=136). Coinfected patients were more likely to develop nausea, gas, and abdominal pain and were more likely to seek treatment in the winter season compared with individuals not infected or infected with either pathogen alone. Conclusion Our study revealed that patients with coinfection are more likely to experience certain gastrointestinal symptoms, in particular abdominal pain, suggesting an increased severity of disease symptomatology in coinfected patients. PMID:27418856

  18. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  19. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC

    PubMed Central

    Ghose, Chandrabali; Eugenis, Ioannis; Sun, Xingmin; Edwards, Adrianne N; McBride, Shonna M; Pride, David T; Kelly, Ciarán P; Ho, David D

    2016-01-01

    Clostridium difficile is a Gram-positive bacillus and is the leading cause of toxin-mediated nosocomial diarrhea following antibiotic use. C. difficile flagella play a role in colonization, adherence, biofilm formation, and toxin production, which might contribute to the overall virulence of certain strains. Human and animal studies indicate that anti-flagella immune responses may play a role in protection against colonization by C. difficile and subsequent disease outcome. Here we report that recombinant C. difficile flagellin (FliC) is immunogenic and protective in a murine model of C. difficile infection (CDI) against a clinical C. difficile strain, UK1. Passive protection experiments using anti-FliC polyclonal serum in mice suggest this protection to be antibody-mediated. FliC immunization also was able to afford partial protection against CDI and death in hamsters following challenge with C. difficile 630Δerm. Additionally, immunization against FliC does not have an adverse effect on the normal gut flora of vaccinated hamsters as evidenced by comparing the fecal microbiome of vaccinated and control hamsters. Therefore, the use of FliC as a vaccine candidate against CDI warrants further testing. PMID:26839147

  20. High fecal IgA is associated with reduced Clostridium difficile colonization in infants.

    PubMed

    Bridgman, Sarah L; Konya, Tedd; Azad, Meghan B; Guttman, David S; Sears, Malcolm R; Becker, Allan B; Turvey, Stuart E; Mandhane, Piush J; Subbarao, Padmaja; Scott, James A; Field, Catherine J; Kozyrskyj, Anita L

    2016-09-01

    Colonization of infants with Clostridium difficile is on the rise. Although better tolerated by infants than adults, it is a risk factor for future allergic disease. The present study describes associations between infant fecal immunoglobulin A (IgA) and colonization with C. difficile in 47 infants enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) study. C. difficile colonization was observed in over half (53%) of the infants. Median IgA was lower in infants colonized with C. difficile (10.9 μg versus 25.5 μg per g protein; p = 0.18). A smaller proportion of infants with IgA in the highest tertile were colonized with C. difficile compared to the other tertiles (31.3% versus 64.5%, p = 0.03). In unadjusted analysis, odds of colonization with C. difficile was reduced by 75% (OR 0.25 95% CI 0.07, 0.91 p = 0.04) among infants with IgA in the highest tertile compared to those in the other tertiles. Following adjustment for parity, birth mode and breastfeeding, this association was even stronger (aOR 0.17, 95% CI 0.03, 0.94, p = 0.04). Our study provides evidence that high fecal IgA, independent of breastfeeding, is associated with reduced likelihood of C. difficile colonization in infancy.

  1. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC.

    PubMed

    Ghose, Chandrabali; Eugenis, Ioannis; Sun, Xingmin; Edwards, Adrianne N; McBride, Shonna M; Pride, David T; Kelly, Ciarán P; Ho, David D

    2016-01-01

    Clostridium difficile is a Gram-positive bacillus and is the leading cause of toxin-mediated nosocomial diarrhea following antibiotic use. C. difficile flagella play a role in colonization, adherence, biofilm formation, and toxin production, which might contribute to the overall virulence of certain strains. Human and animal studies indicate that anti-flagella immune responses may play a role in protection against colonization by C. difficile and subsequent disease outcome. Here we report that recombinant C. difficile flagellin (FliC) is immunogenic and protective in a murine model of C. difficile infection (CDI) against a clinical C. difficile strain, UK1. Passive protection experiments using anti-FliC polyclonal serum in mice suggest this protection to be antibody-mediated. FliC immunization also was able to afford partial protection against CDI and death in hamsters following challenge with C. difficile 630Δerm. Additionally, immunization against FliC does not have an adverse effect on the normal gut flora of vaccinated hamsters as evidenced by comparing the fecal microbiome of vaccinated and control hamsters. Therefore, the use of FliC as a vaccine candidate against CDI warrants further testing. PMID:26839147

  2. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination.

    PubMed

    Le Lay, Christophe; Dridi, Larbi; Bergeron, Michel G; Ouellette, Marc; Fliss, Ismaı L

    2016-02-01

    Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis. Several clinically isolated C. difficile strains are resistant to antibiotics other than metronidazole and vancomycin. Recently, bacteriocins of lactic acid bacteria have been proposed as an alternative or complementary treatment. The aim of this study was to investigate the inhibitory effect of nisin, a bacteriocin produced by several strains of Lactococcus lactis, against clinical isolates of C. difficile. Nisin Z obtained from culture of L. lactis subsp. lactis biovar. diacetylactis was tested along with commercial nisin A. The effect of nisin A on C. difficile spores was also examined. Nisin A and Z both inhibited the growth of all C. difficile isolates, and MICs were estimated at 6.2 μg ml(-1) for nisin Z and 0.8 μg ml(-1) for nisin A. In addition, C. difficile spores were also susceptible to nisin A (25.6 μg ml(-1)), which reduced spore viability by 40-50%. These results suggested that nisin and hence nisin-producing Lactococcus strains could be used to treat C. difficile-associated diarrhoea.

  3. Tracking Inhibitory Alterations during Interstrain Clostridium difficile Interactions by Monitoring Cell Envelope Capacitance

    PubMed Central

    2016-01-01

    Global threats arising from the increasing use of antibiotics coupled with the high recurrence rates of Clostridium difficile (C. difficile) infections (CDI) after standard antibiotic treatments highlight the role of commensal probiotic microorganisms, including nontoxigenic C. difficile (NTCD) strains in preventing CDI due to highly toxigenic C. difficile (HTCD) strains. However, optimization of the inhibitory permutations due to commensal interactions in the microbiota requires probes capable of monitoring phenotypic alterations to C. difficile cells. Herein, by monitoring the field screening behavior of the C. difficile cell envelope with respect to cytoplasmic polarization, we demonstrate that inhibition of the host-cell colonization ability of HTCD due to the S-layer alterations occurring after its co-culture with NTCD can be quantitatively tracked on the basis of the capacitance of the cell envelope of co-cultured HTCD. Furthermore, it is shown that effective inhibition requires the dynamic contact of HTCD cells with freshly secreted extracellular factors from NTCD because contact with the cell-free supernatant causes only mild inhibition. We envision a rapid method for screening the inhibitory permutations to arrest C. difficile colonization by routinely probing alterations in the HTCD dielectrophoretic frequency response due to variations in the capacitance of its cell envelope. PMID:27547818

  4. Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease.

    PubMed

    Seekatz, Anna M; Theriot, Casey M; Molloy, Caitlyn T; Wozniak, Katherine L; Bergin, Ingrid L; Young, Vincent B

    2015-10-01

    Recurrent Clostridium difficile infection (CDI) is of particular concern among health care-associated infections. The role of the microbiota in disease recovery is apparent given the success of fecal microbiota transplantation (FMT) for recurrent CDI. Here, we present a murine model of CDI relapse to further define the microbiota recovery following FMT. Cefoperazone-treated mice were infected with C. difficile 630 spores and treated with vancomycin after development of clinical disease. Vancomycin treatment suppressed both C. difficile colonization and cytotoxin titers. However, C. difficile counts increased within 7 days of completing treatment, accompanied by relapse of clinical signs. The administration of FMT immediately after vancomycin cleared C. difficile and decreased cytotoxicity within 1 week. The effects of FMT on the gut microbiota community were detectable in recipients 1-day posttransplant. Conversely, mice not treated with FMT remained persistently colonized with high levels of C. difficile, and the gut microbiota in these mice persisted at low diversity. These results suggest that full recovery of colonization resistance against C. difficile requires the restoration of a specific community structure.

  5. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC.

    PubMed

    Ghose, Chandrabali; Eugenis, Ioannis; Sun, Xingmin; Edwards, Adrianne N; McBride, Shonna M; Pride, David T; Kelly, Ciarán P; Ho, David D

    2016-02-03

    Clostridium difficile is a Gram-positive bacillus and is the leading cause of toxin-mediated nosocomial diarrhea following antibiotic use. C. difficile flagella play a role in colonization, adherence, biofilm formation, and toxin production, which might contribute to the overall virulence of certain strains. Human and animal studies indicate that anti-flagella immune responses may play a role in protection against colonization by C. difficile and subsequent disease outcome. Here we report that recombinant C. difficile flagellin (FliC) is immunogenic and protective in a murine model of C. difficile infection (CDI) against a clinical C. difficile strain, UK1. Passive protection experiments using anti-FliC polyclonal serum in mice suggest this protection to be antibody-mediated. FliC immunization also was able to afford partial protection against CDI and death in hamsters following challenge with C. difficile 630Δerm. Additionally, immunization against FliC does not have an adverse effect on the normal gut flora of vaccinated hamsters as evidenced by comparing the fecal microbiome of vaccinated and control hamsters. Therefore, the use of FliC as a vaccine candidate against CDI warrants further testing.

  6. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination.

    PubMed

    Le Lay, Christophe; Dridi, Larbi; Bergeron, Michel G; Ouellette, Marc; Fliss, Ismaı L

    2016-02-01

    Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis. Several clinically isolated C. difficile strains are resistant to antibiotics other than metronidazole and vancomycin. Recently, bacteriocins of lactic acid bacteria have been proposed as an alternative or complementary treatment. The aim of this study was to investigate the inhibitory effect of nisin, a bacteriocin produced by several strains of Lactococcus lactis, against clinical isolates of C. difficile. Nisin Z obtained from culture of L. lactis subsp. lactis biovar. diacetylactis was tested along with commercial nisin A. The effect of nisin A on C. difficile spores was also examined. Nisin A and Z both inhibited the growth of all C. difficile isolates, and MICs were estimated at 6.2 μg ml(-1) for nisin Z and 0.8 μg ml(-1) for nisin A. In addition, C. difficile spores were also susceptible to nisin A (25.6 μg ml(-1)), which reduced spore viability by 40-50%. These results suggested that nisin and hence nisin-producing Lactococcus strains could be used to treat C. difficile-associated diarrhoea. PMID:26555543

  7. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B.

    PubMed

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-04-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the "Large clostridial glycosylating toxins." These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB-together with Toxin A (TcdA)-is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn(2+) > Co(2+) > Mg(2+) > Ca(2+), Cu(2+), Zn(2+). TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn(2+) and 180 µM for Mg(2+). TcsL and TcdB further require co-stimulation by monovalent K⁺ (not by Na⁺). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K⁺ and Mg(2+) (rather than Mn(2+)) in mammalian target cells. PMID:27089365

  8. Clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile cultivated from stool samples of hospitalized patients

    PubMed Central

    Predrag, Stojanovic; Branislava, Kocic; Miodrag, Stojanovic; Biljana, Miljkovic – Selimovic; Suzana, Tasic; Natasa, Miladinovic – Tasic; Tatjana, Babic

    2012-01-01

    The aim of this study was to fortify the clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile isolated from stool samples of hospitalized patients. This survey included 80 hospitalized patients with diarrhea and positive findings of Clostridium difficile in stool samples, and 100 hospitalized patients with formed stool as a control group. Bacteriological examination of a stool samples was conducted using standard microbiological methods. Stool sample were inoculated directly on nutrient media for bacterial cultivation (blood agar using 5% sheep blood, Endo agar, selective Salmonella Shigella agar, Selenite-F broth, CIN agar and Skirrow’s medium), and to selective cycloserine-cefoxitin-fructose agar (CCFA) (Biomedics, Parg qe tehnicologico, Madrid, Spain) for isolation of Clostridium difficile. Clostridium difficile toxin was detected by ELISA-ridascreen Clostridium difficile Toxin A/B (R-Biopharm AG, Germany) and ColorPAC ToxinA test (Becton Dickinson, USA). Examination of stool specimens for the presence of parasites (causing diarrhea) was done using standard methods (conventional microscopy), commercial concentration test Paraprep S Gold kit (Dia Mondial, France) and RIDA®QUICK Cryptosporidium/Giardia Combi test (R-Biopharm AG, Germany). Examination of stool specimens for the presence of fungi (causing diarrhea) was performed by standard methods. All stool samples positive for Clostridium difficile were tested for Rota, Noro, Astro and Adeno viruses by ELISA – ridascreen (R-Biopharm AG, Germany). In this research we isolated 99 Clostridium difficile strains from 116 stool samples of 80 hospitalized patients with diarrhea. The 53 (66.25%) of patients with diarrhea were positive for toxins A and B, one (1.25%) were positive for only toxin B. Non-toxigenic Clostridium difficile isolated from samples of 26 (32.5%) patients. However, other pathogenic microorganisms of intestinal tract cultivated from samples of 16 patients

  9. Clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile cultivated from stool samples of hospitalized patients.

    PubMed

    Predrag, Stojanovic; Branislava, Kocic; Miodrag, Stojanovic; Biljana, Miljkovic-Selimovic; Suzana, Tasic; Natasa, Miladinovic-Tasic; Tatjana, Babic

    2012-01-01

    The aim of this study was to fortify the clinical importance and representation of toxigenic and non-toxigenic Clostridium difficile isolated from stool samples of hospitalized patients. This survey included 80 hospitalized patients with diarrhea and positive findings of Clostridium difficile in stool samples, and 100 hospitalized patients with formed stool as a control group. Bacteriological examination of a stool samples was conducted using standard microbiological methods. Stool sample were inoculated directly on nutrient media for bacterial cultivation (blood agar using 5% sheep blood, Endo agar, selective Salmonella Shigella agar, Selenite-F broth, CIN agar and Skirrow's medium), and to selective cycloserine-cefoxitin-fructose agar (CCFA) (Biomedics, Parg qe tehnicologico, Madrid, Spain) for isolation of Clostridium difficile. Clostridium difficile toxin was detected by ELISA-ridascreen Clostridium difficile Toxin A/B (R-Biopharm AG, Germany) and ColorPAC ToxinA test (Becton Dickinson, USA). Examination of stool specimens for the presence of parasites (causing diarrhea) was done using standard methods (conventional microscopy), commercial concentration test Paraprep S Gold kit (Dia Mondial, France) and RIDA(®)QUICK Cryptosporidium/Giardia Combi test (R-Biopharm AG, Germany). Examination of stool specimens for the presence of fungi (causing diarrhea) was performed by standard methods. All stool samples positive for Clostridium difficile were tested for Rota, Noro, Astro and Adeno viruses by ELISA - ridascreen (R-Biopharm AG, Germany). In this research we isolated 99 Clostridium difficile strains from 116 stool samples of 80 hospitalized patients with diarrhea. The 53 (66.25%) of patients with diarrhea were positive for toxins A and B, one (1.25%) were positive for only toxin B. Non-toxigenic Clostridium difficile isolated from samples of 26 (32.5%) patients. However, other pathogenic microorganisms of intestinal tract cultivated from samples of 16 patients

  10. The role of probiotics in the prevention and treatment of antibiotic-associated diarrhea and Clostridium difficile colitis.

    PubMed

    Friedman, Gerald

    2012-12-01

    Clostridium difficile colitis is the most common gastrointestinal infection, exceeding all other gastrointestinal infections combined. There has been a dramatic increase in Clostridium difficile infection (CDI) worldwide during the past decade. Antibiotic therapy is a trigger precipitating antibiotic-associated diarrhea (AAD), which may lead to CDI. The antibiotic alters the protective, diverse bacteria allowing pathogenic bacteria to cause disease. Probiotics have been effective in reducing AAD and preventing CDI.

  11. [Septic shock due to a community acquired Clostridium difficile infection. A case study and a review of the literature].

    PubMed

    Bermejo, C; Maseda, E; Salgado, P; Gabilondo, G; Gilsanz, F

    2014-04-01

    The epidemiology of Clostridium difficile infection has changed in the past decade. The incidence rate of community acquired cases has increased in patients with no typical risk factors. We present a patient who was diagnosed with community-acquired Clostridium difficile infection who presented with acute abdominal pain, and subsequently developed acute renal failure and septic shock. We describe the diagnosis, treatment and outcome and brief review of the literature.

  12. Clostridium difficile ribotype 033 colitis in a patient following broad-spectrum antibiotic treatment for KPCproducing Klebsiella pneumoniae infection, Italy.

    PubMed

    Grandesso, Stefano; Arena, Fabio; Eseme, Franklin Esoka; Panese, Sandro; Henrici De Angelis, Lucia; Spigaglia, Patrizia; Barbanti, Fabrizio; Rossolini, Gian Maria

    2016-09-01

    This report describes a case of Clostridium difficile ribotype 033 colitis in a patient treated with multiple antibiotics for KPC-producing Klebsiella pneumoniae pancreatitis. Diagnostic, clinical and therapeutic features are discussed. To the best of our knowledge, this is the first case of C. difficile ribotype 033 clinical infection reported from Italy. PMID:27602425

  13. Optimized Protocol for Simple Extraction of High-Quality Genomic DNA from Clostridium difficile for Whole-Genome Sequencing.

    PubMed

    Sim, James Heng Chiak; Anikst, Victoria; Lohith, Akshar; Pourmand, Nader; Banaei, Niaz

    2015-07-01

    Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform.

  14. Cold-air atmospheric pressure plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces.

    PubMed

    Claro, Tânia; Cahill, Orla J; O'Connor, Niall; Daniels, Stephen; Humphreys, Hilary

    2015-06-01

    Clostridium difficile spores survive for months on environmental surfaces and are highly resistant to decontamination. We evaluated the effect of cold-air plasma against C. difficile spores. The single-jet had no effect while the multi-jet achieved 2-3 log10 reductions in spore counts and may augment traditional decontamination.

  15. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection

    PubMed Central

    Baines, Simon D.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments. PMID:27025625

  16. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile

    PubMed Central

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens1. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens2. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhea, greatly increases morbidity and mortality in hospitalized patients3. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. By treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile, we correlated loss of specific bacterial taxa with development of infection. Mathematical modeling augmented by microbiota analyses of hospitalized patients identified resistance-associated bacteria common to mice and humans. Using these platforms, we determined that Clostridium scindens, a bile acid 7-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid-dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses and mathematical modeling, we identified a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk for C. difficile infection. PMID:25337874

  17. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile.

    PubMed

    Buffie, Charlie G; Bucci, Vanni; Stein, Richard R; McKenney, Peter T; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R M; Jenq, Robert R; Taur, Ying; Sander, Chris; Cross, Justin R; Toussaint, Nora C; Xavier, Joao B; Pamer, Eric G

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  18. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects

    PubMed Central

    Di Bella, Stefano; Ascenzi, Paolo; Siarakas, Steven; Petrosillo, Nicola; di Masi, Alessandra

    2016-01-01

    Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies. PMID:27153087

  19. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile

    NASA Astrophysics Data System (ADS)

    Buffie, Charlie G.; Bucci, Vanni; Stein, Richard R.; McKenney, Peter T.; Ling, Lilan; Gobourne, Asia; No, Daniel; Liu, Hui; Kinnebrew, Melissa; Viale, Agnes; Littmann, Eric; van den Brink, Marcel R. M.; Jenq, Robert R.; Taur, Ying; Sander, Chris; Cross, Justin R.; Toussaint, Nora C.; Xavier, Joao B.; Pamer, Eric G.

    2015-01-01

    The gastrointestinal tracts of mammals are colonized by hundreds of microbial species that contribute to health, including colonization resistance against intestinal pathogens. Many antibiotics destroy intestinal microbial communities and increase susceptibility to intestinal pathogens. Among these, Clostridium difficile, a major cause of antibiotic-induced diarrhoea, greatly increases morbidity and mortality in hospitalized patients. Which intestinal bacteria provide resistance to C. difficile infection and their in vivo inhibitory mechanisms remain unclear. Here we correlate loss of specific bacterial taxa with development of infection, by treating mice with different antibiotics that result in distinct microbiota changes and lead to varied susceptibility to C. difficile. Mathematical modelling augmented by analyses of the microbiota of hospitalized patients identifies resistance-associated bacteria common to mice and humans. Using these platforms, we determine that Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium, is associated with resistance to C. difficile infection and, upon administration, enhances resistance to infection in a secondary bile acid dependent fashion. Using a workflow involving mouse models, clinical studies, metagenomic analyses, and mathematical modelling, we identify a probiotic candidate that corrects a clinically relevant microbiome deficiency. These findings have implications for the rational design of targeted antimicrobials as well as microbiome-based diagnostics and therapeutics for individuals at risk of C. difficile infection.

  20. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects.

    PubMed

    Di Bella, Stefano; Ascenzi, Paolo; Siarakas, Steven; Petrosillo, Nicola; di Masi, Alessandra

    2016-01-01

    Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies. PMID:27153087

  1. [Recent epidemiology of Clostridium difficile infection in Japan].

    PubMed

    Yamagishi, Yuka; Mikamo, Hiroshige

    2015-12-01

    Clostridium difficile (C. difficile) is a major pathogen for diarrhea in hospitalized patients and because of outbreak of highly virulent strain in EU and US, increased length of hospital stay and increased numbers of severe patients and deaths have become major challenges. In recent years, transmissions through community-acquired or food-borne infections are reported. National surveillance has been already performed overseas. Guidelines for preventing C. difficile infection (CDI) is available, and education activities are promoted for preventing the infection spread. Meanwhile, in Japan, medical hospitals are reporting individual CDI incidence, however, a large-scale research has not been conducted up to the present date and therefore the entire status of CDI including infection of the highly virulent strain has yet to be revealed. This time, we performed a questionnaire-based survey at 2,537 hospitals nationwide between April 15, 2013 and May 31, 2013 to investigate CDI incidence, diagnosis and treatment. Valid responses were obtained from 321 hospitals. Regarding the annual number of CDI patients at all the hospitals, the highest group of hospitals responding "1 to 5 patients a year" was 17.8%, and the second highest group of hospitals responding "no patients a year" was 13.1%. In contrast, there was a group of hospitals with "more than 101 patients a year", which was 3.1%. This indicates that there was the difference in the CDI incidences among hospitals. According to the questionnaire results, a highest group of hospitals responding "0-20%" for CDI patients with serious complication such as toxic megacolon, gastrointestinal perforation, ileus paralytic, bacteremia, sepsis, crohn's disease, and ulcerative colitis was 62.6%, and for CDI patients with recurrence more than one, a group of hospitals answering "0 to 20%" was 56.4%, which was the highest. This suggested that there was only a small number of serious CDI patients and recurrence CDI patients in Japan

  2. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  3. Information about the Current Strain of Clostridium difficile

    MedlinePlus

    ... Buttons and Badges Additional CDC Patient Safety Websites Antibiotic Resistance Blood Safety Dialysis Safety Get Smart for Healthcare ... for C. difficile infection includes, if possible, stopping antibiotics being ... resistance in enterococci, current guidelines recommend the first-line ...

  4. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.

    PubMed

    Anosova, Natalie G; Brown, Anna M; Li, Lu; Liu, Nana; Cole, Leah E; Zhang, Jinrong; Mehta, Hersh; Kleanthous, Harry

    2013-09-01

    Clostridium difficile infection (CDI) has been identified as the leading cause of nosocomial diarrhoea and pseudomembranous colitis associated with antibiotic therapy. Recent epidemiological changes as well as increases in the number of outbreaks of strains associated with increased virulence and higher mortality rates underscore the importance of identifying alternatives to antibiotics to manage this important disease. Animal studies have clearly demonstrated the roles that toxins A and B play in gut inflammation as well as diarrhoea; therefore it is not surprising that serum anti-toxin A and B IgG are associated with protection against recurrent CDI. In humans, strong humoral toxin-specific immune responses elicited by natural C. difficile infection is associated with recovery and lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. The first generation of C. difficile vaccine that contained inactivated toxin A and B was found to be completely protective against death and diarrhoea in the hamster C. difficile challenge model. When tested in young healthy volunteers in Phase I clinical trials, this investigational vaccine was shown to be safe and immunogenic. Moreover, in a separate study this vaccine was able to prevent further relapses in three out of three patients who had previously suffered from chronic relapsing C. difficile-associated diarrhoea. Herein we examined the immunogenicity and protective activity of a next-generation Sanofi Pasteur two-component highly purified toxoid vaccine in a C. difficile hamster model. This model is widely recognized as a stringent and relevant choice for the evaluation of novel treatment strategies against C. difficile and was used in preclinical testing of the first-generation vaccine candidate. Intramuscular (i.m.) immunizations with increasing doses of this adjuvanted toxoid vaccine protected hamsters from mortality and disease symptoms in a dose-dependent manner. ELISA

  5. Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters.

    PubMed

    Anosova, Natalie G; Brown, Anna M; Li, Lu; Liu, Nana; Cole, Leah E; Zhang, Jinrong; Mehta, Hersh; Kleanthous, Harry

    2013-09-01

    Clostridium difficile infection (CDI) has been identified as the leading cause of nosocomial diarrhoea and pseudomembranous colitis associated with antibiotic therapy. Recent epidemiological changes as well as increases in the number of outbreaks of strains associated with increased virulence and higher mortality rates underscore the importance of identifying alternatives to antibiotics to manage this important disease. Animal studies have clearly demonstrated the roles that toxins A and B play in gut inflammation as well as diarrhoea; therefore it is not surprising that serum anti-toxin A and B IgG are associated with protection against recurrent CDI. In humans, strong humoral toxin-specific immune responses elicited by natural C. difficile infection is associated with recovery and lack of disease recurrence, whereas insufficient humoral responses are associated with recurrent CDI. The first generation of C. difficile vaccine that contained inactivated toxin A and B was found to be completely protective against death and diarrhoea in the hamster C. difficile challenge model. When tested in young healthy volunteers in Phase I clinical trials, this investigational vaccine was shown to be safe and immunogenic. Moreover, in a separate study this vaccine was able to prevent further relapses in three out of three patients who had previously suffered from chronic relapsing C. difficile-associated diarrhoea. Herein we examined the immunogenicity and protective activity of a next-generation Sanofi Pasteur two-component highly purified toxoid vaccine in a C. difficile hamster model. This model is widely recognized as a stringent and relevant choice for the evaluation of novel treatment strategies against C. difficile and was used in preclinical testing of the first-generation vaccine candidate. Intramuscular (i.m.) immunizations with increasing doses of this adjuvanted toxoid vaccine protected hamsters from mortality and disease symptoms in a dose-dependent manner. ELISA

  6. Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection

    PubMed Central

    Bobr, Aleh; Kuskowski, Michael A.; Johnston, Brian D.; Sadowsky, Michael J.; Khoruts, Alexander

    2016-01-01

    Recurrent Clostridium difficile infection (R-CDI) is common and difficult to treat, potentially necessitating fecal microbiota transplantation (FMT). Although C. difficile spores persist in the hospital environment and cause infection, little is known about their potential presence or importance in the household environment. Households of R-CDI subjects in the peri-FMT period and of geographically matched and age-matched controls were analyzed for the presence of C. difficile. Household environmental surfaces and fecal samples from humans and pets in the household were examined. Households of post-FMT subjects were also examined (environmental surfaces only). Participants were surveyed regarding their personal history and household cleaning habits. Species identity and molecular characteristics of presumptive C. difficile isolates from environmental and fecal samples were determined by using the Pro kit (Remel, USA), Gram staining, PCR, toxinotyping, tcdC gene sequencing, and pulsed-field gel electrophoresis (PFGE). Environmental cultures detected C. difficile on ≥1 surface in 8/8 (100%) peri-FMT households, versus 3/8 (38%) post-FMT households and 3/8 (38%) control households (P = 0.025). The most common C. difficile-positive sites were the vacuum (11/27; 41%), toilet (8/30; 27%), and bathroom sink (5/29; 17%). C. difficile was detected in 3/36 (8%) fecal samples (two R-CDI subjects and one household member). Nine (90%) of 10 households with multiple C. difficile-positive samples had a single genotype present each. In conclusion, C. difficile was found in the household environment of R-CDI patients, but whether it was found as a cause or consequence of R-CDI is unknown. If household contamination leads to R-CDI, effective decontamination may be protective. PMID:26921425

  7. Impact of clinical symptoms on interpretation of diagnostic assays for Clostridium difficile infections.

    PubMed

    Dubberke, Erik R; Han, Zhuolin; Bobo, Linda; Hink, Tiffany; Lawrence, Brenda; Copper, Susan; Hoppe-Bauer, Joan; Burnham, Carey-Ann D; Dunne, William Michael

    2011-08-01

    Asymptomatic Clostridium difficile colonization is common in hospitalized patients. Existing C. difficile assay comparisons lack data on severity of diarrhea or patient outcomes, limiting the ability to interpret their results in regard to the diagnosis of C. difficile infection (CDI). The objective of this study was to measure how including patient presentation with the C. difficile assay result impacted assay performance to diagnose CDI. Stool specimens from 150 patients that met inclusion and exclusion criteria were selected. Nine methods to detect C. difficile in stool were evaluated. All patients were interviewed prospectively to assess diarrhea severity. We then assessed how different reference standards, with and without the inclusion of patient presentation, impact the sensitivity, specificity, and positive and negative predictive values of the assays to diagnose CDI. There were minimal changes in sensitivity; however, specificity was significantly lower for the assays Tox A/B II, C. diff Chek-60, BD GeneOhm Cdiff, Xpert C. difficile, and Illumigene C. difficile and for toxigenic culture (P was <0.01 for all except Tox A/B II from fresh stool, for which the P value was 0.016) when the reference standard was recovery of toxigenic C. difficile from stool plus the presence of clinically significant diarrhea compared to when the reference standard was having at least four assays positive while ignoring diarrhea severity. There were 15 patients whose assay result was reported as negative but subsequently found to be positive by at least four assays in the comparison. None suffered from any CDI-related adverse events. In conclusion, clinical presentation is important when interpreting C. difficile diagnostic assays.

  8. Structure and function of a Clostridium difficile sortase enzyme.

    PubMed

    Chambers, Christopher J; Roberts, April K; Shone, Clifford C; Acharya, K Ravi

    2015-01-01

    Sortase enzymes are responsible for covalent anchoring of specific proteins to the peptidoglycan of the cell wall of gram-positive bacteria. In some gram-positive bacteria (e.g. Staphylococcus aureus), sortases have been found to be essential for pathogenesis and their inhibitors are under development as potential novel therapeutics. Here we provide the first report on the structural characterisation of the C. difficile sortase. An active site mutant was crystallised and its structure determined to 2.55 Å by X-ray diffraction to provide structural insight into its catalytic mechanism. In order to elucidate the role of the sortase in the cell wall biogenesis, a C. difficile sortase knockout strain was constructed by intron mutagenesis. Characterisation of this mutant led to the discovery that the putative adhesin CD0386 is anchored to the peptidoglycan of C. difficile by the sortase SrtB and that an SPKTG peptide motif is involved in the transpeptidation reaction with the C. difficile peptidoglycan. In an animal model for C. difficile infection, the SrtB mutant caused disease at a similar rate of onset as the wild type strain. In conclusion, our detailed study shows that the SrtB enzyme from C. difficile does not play an essential role in pathogenesis. PMID:25801974

  9. Clostridium difficile ribotypes in Austria: a multicenter, hospital-based survey.

    PubMed

    Indra, Alexander; Schmid, Daniela; Huhulescu, Steliana; Simons, Erica; Hell, Markus; Stickler, Karl; Allerberger, Franz

    2015-08-01

    A prospective, noninterventional survey was conducted among Clostridium difficile positive patients identified in the time period of July until October 2012 in 18 hospitals distributed across all nine Austrian provinces. Participating hospitals were asked to send stool samples or isolates from ten successive patients with C.difficile infection to the National Clostridium difficile Reference Laboratory at the Austrian Agency for Health and Food Safety for PCR-ribotyping and in vitro susceptibility testing. A total of 171 eligible patients were identified, including 73 patients with toxin-positive stool specimens and 98 patients from which C. difficile isolates were provided. Of the 159 patients with known age, 127 (74.3%) were 65 years or older, the median age was 76 years (range: 9-97 years), and the male to female ratio 2.2. Among these patients, 73% had health care-associated and 20% community-acquired C. difficile infection (indeterminable 7%). The all-cause, 30-day mortality was 8.8% (15/171). Stool samples yielded 46 different PCR-ribotypes, of which ribotypes 027 (20%), 014 (15.8%), 053 (10.5%), 078 (5.3%), and 002 (4.7%) were the five most prevalent. Ribotype 027 was found only in the provinces Vienna, Burgenland, and Lower Austria. Severe outcome of C. difficile infection was found to be associated with ribotype 053 (prevalence ratio: 3.04; 95% CI: 1.24, 7.44), not with the so-called hypervirulent ribotypes 027 and 078. All 027 and 053 isolates exhibited in vitro resistance against moxifloxacin. Fluoroquinolone use in the health care setting must be considered as a factor favoring the spread of these fluoroquinolone resistant C. difficile clones.

  10. Variations in virulence and molecular biology among emerging strains of Clostridium difficile.

    PubMed

    Hunt, Jonathan J; Ballard, Jimmy D

    2013-12-01

    Clostridium difficile is a Gram-positive, spore-forming organism which infects and colonizes the large intestine, produces potent toxins, triggers inflammation, and causes significant systemic complications. Treating C. difficile infection (CDI) has always been difficult, because the disease is both caused and resolved by antibiotic treatment. For three and a half decades, C. difficile has presented a treatment challenge to clinicians, and the situation took a turn for the worse about 10 years ago. An increase in epidemic outbreaks related to CDI was first noticed around 2003, and these outbreaks correlated with a sudden increase in the mortality rate of this illness. Further studies discovered that these changes in CDI epidemiology were associated with the rapid emergence of hypervirulent strains of C. difficile, now collectively referred to as NAP1/BI/027 strains. The discovery of new epidemic strains of C. difficile has provided a unique opportunity for retrospective and prospective studies that have sought to understand how these strains have essentially replaced more historical strains as a major cause of CDI. Moreover, detailed studies on the pathogenesis of NAP1/BI/027 strains are leading to new hypotheses on how this emerging strain causes severe disease and is more commonly associated with epidemics. In this review, we provide an overview of CDI, discuss critical mechanisms of C. difficile virulence, and explain how differences in virulence-associated factors between historical and newly emerging strains might explain the hypervirulence exhibited by this pathogen during the past decade. PMID:24296572

  11. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins

    PubMed Central

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-01-01

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB. PMID:26633511

  12. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile.

    PubMed

    Shilling, Michael; Matt, Laurie; Rubin, Evelyn; Visitacion, Mark Paul; Haller, Nairmeen A; Grey, Scott F; Woolverton, Christopher J

    2013-12-01

    Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide; in addition, the proliferation of antibiotic-resistant C. difficile is becoming a significant problem. Virgin coconut oil (VCO) has been shown previously to have the antimicrobial activity. This study evaluates the lipid components of VCO for the control of C. difficile. VCO and its most active individual fatty acids were tested to evaluate their antimicrobial effect on C. difficile in vitro. The data indicate that exposure to lauric acid (C12) was the most inhibitory to growth (P<.001), as determined by a reduction in colony-forming units per milliliter. Capric acid (C10) and caprylic acid (C8) were inhibitory to growth, but to a lesser degree. VCO did not inhibit the growth of C. difficile; however, growth was inhibited when bacterial cells were exposed to 0.15-1.2% lipolyzed coconut oil. Transmission electron microscopy (TEM) showed the disruption of both the cell membrane and the cytoplasm of cells exposed to 2 mg/mL of lauric acid. Changes in bacterial cell membrane integrity were additionally confirmed for VCO and select fatty acids using Live/Dead staining. This study demonstrates the growth inhibition of C. difficile mediated by medium-chain fatty acids derived from VCO.

  13. Risk factors for Clostridium difficile-associated diarrhea and the effectiveness of prophylactic probiotic therapy.

    PubMed

    Mizui, T; Teramachi, H; Tachi, T; Tamura, K; Shiga, H; Komada, N; Umeda, M; Koda, A; Aoyama, S; Goto, C; Tsuchiya, T

    2013-08-01

    Measures for prevention of Clostridium difficile-associated diarrhea, a common nosocomial infection, in hospital settings are urgently needed. This study was conducted to identify the risk factors contributing to C. difficile-associated diarrhea and to evaluate the clinical benefit of probiotics in its prevention. The study included 2716 patients at least 20 years old who received an injected antibiotic at any time between February 2010 and February 2011; a total of 2687 patients (98.9%) were assigned to the non-C. difficile-associated diarrhea group, and 29 patients (1.1%) were assigned to the C. difficile-associated diarrhea group. Univariate analysis revealed a significant difference between the two groups for the following factors: antibiotic therapy for > or = 8 days; enteral nutrition; intravenous hyperalimentation; fasting; proton pump inhibitor use; H2 blocker use; and serum albumin < or = 2.9g/dL (p<0.05). Multivariate logistic regression analysis revealed a significant difference between the two groups for several factors. Antibiotic therapy for > or = 8 days, intravenous hyperalimentation, proton pump inhibitor use, and H2 blocker use were therefore shown to be risk factors for C. difficile-associated diarrhea. Prophylactic probiotic therapy was not shown to suppress the occurrence of C. difficile-associated diarrhea.

  14. Variations in Virulence and Molecular Biology among Emerging Strains of Clostridium difficile

    PubMed Central

    Hunt, Jonathan J.

    2013-01-01

    SUMMARY Clostridium difficile is a Gram-positive, spore-forming organism which infects and colonizes the large intestine, produces potent toxins, triggers inflammation, and causes significant systemic complications. Treating C. difficile infection (CDI) has always been difficult, because the disease is both caused and resolved by antibiotic treatment. For three and a half decades, C. difficile has presented a treatment challenge to clinicians, and the situation took a turn for the worse about 10 years ago. An increase in epidemic outbreaks related to CDI was first noticed around 2003, and these outbreaks correlated with a sudden increase in the mortality rate of this illness. Further studies discovered that these changes in CDI epidemiology were associated with the rapid emergence of hypervirulent strains of C. difficile, now collectively referred to as NAP1/BI/027 strains. The discovery of new epidemic strains of C. difficile has provided a unique opportunity for retrospective and prospective studies that have sought to understand how these strains have essentially replaced more historical strains as a major cause of CDI. Moreover, detailed studies on the pathogenesis of NAP1/BI/027 strains are leading to new hypotheses on how this emerging strain causes severe disease and is more commonly associated with epidemics. In this review, we provide an overview of CDI, discuss critical mechanisms of C. difficile virulence, and explain how differences in virulence-associated factors between historical and newly emerging strains might explain the hypervirulence exhibited by this pathogen during the past decade. PMID:24296572

  15. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.

    PubMed

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-12-02

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB.

  16. Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis

    SciTech Connect

    Kim, K.H.; Fekety, R.; Batts, D.H.; Brown, D.; Cudmore, M.; Silva, J. Jr.; Waters, D.

    1981-01-01

    Clostridium difficile is the most important cause of antibiotic-associated colitis, but its epidemiology remains unknown. Using a selective medium for the isolation of C. difficile, cultures were obtained from the environment and contacts of hospitalized patients carrying C. difficile in their stools. In areas where carriers had diarrhea, 85 (9.3%) of 910 cultures of floors and other surfaces, especially those subject to fecal contamination, were positive. In areas where there were no known carriers, only 13 (2.6%) of 497 cultures of similar sites were positive (P less than 0.005). C difficile was isolated from hands and stools of asymptomatic hospital personnel, from sewage and soil, and from the home of a patient. Environmental isolates were toxigenic. C. difficile inoculated onto a floor persisted there for five months. Further studies are needed to document how often floor persisted there for five months. Further studies are needed to document how often C. difficile shed by patients with antibiotic-associated colitis is acquired by other persons and whether isolation precautions are capable of limiting the organism's spread.

  17. Hospital-Acquired Clostridium difficile Infections Estimating All-Cause Mortality and Length of Stay

    PubMed Central

    Lofgren, Eric T.; Cole, Stephen R.; Weber, David J.; Anderson, Deverick J.; Moehring, Rebekah W.

    2014-01-01

    Background Clostridium difficile is a health care–associated infection of increasing importance. The purpose of this study was to estimate the time until death from any cause and time until release among patients with C. difficile, comparing the burden of those in the intensive care unit (ICU) with those in the general hospital population. Methods A parametric mixture model was used to estimate event times, as well as the case-fatality ratio in ICU and non-ICU patients within a cohort of 609 adult incident cases of C. difficile in the Southeastern United States between 1 July 2009 and 31 December 2010. Results ICU patients had twice the median time to death (relative time = 1.97 [95% confidence interval (CI) = 0.96–4.01]) and nearly twice the median time to release (1.88 [1.40–2.51]) compared with non-ICU patients. ICU patients also experienced 3.4 times the odds of mortality (95% CI = 1.8–6.2). Cause-specific competing risks analysis underestimated the relative survival time until death (0.65 [0.36–1.17]) compared with the mixture model. Conclusions Patients with C. difficile in the ICU experienced higher mortality and longer lengths of stay within the hospital. ICU patients with C. difficile infection represent a population in need of particular attention, both to prevent adverse patient outcomes and to minimize transmission of C. difficile to other hospitalized patients. PMID:24815305

  18. A Diagnostic Algorithm for the Detection of Clostridium difficile-Associated Diarrhea

    PubMed Central

    Yoldaş, Özlem; Altındiş, Mustafa; Cufalı, Davut; Aşık, Gülşah; Keşli, Recep

    2016-01-01

    Background: Clostridium difficile is a common cause of hospital-acquired diarrhea, which is usually associated with previous antibiotic use. The clinical manifestations of C. difficile infection (CDI) may range from mild diarrhea to fulminant colitis. Clostridium difficile should be considered in diarrhea cases with a history of antibiotic use within the last 8 weeks (community-associated CDI) or with a hospital stay of at least 3 days, regardless of the duration of antibiotic use (hospital-acquired CDI). Aims: This study investigated the frequency of CDI in diarrheic patients and evaluated the efficacy of the triple diagnostic algorithm that is proposed here for C. difficile detection. Study Design: Cross-sectional study. Methods: In this study, we compared three methods currently employed for C. difficile detection using 95 patient stool samples: an enzyme immunoassay (EIA) for toxin A/B (C. diff Toxin A+B; Diagnostic Automation Inc.; Calabasas, CA, USA), an EIA for glutamate dehydrogenase (GDH) (C. DIFF CHEK-60TM, TechLab Inc.; Blacksburg, VA, USA), and a polymerase chain reaction (PCR)-based assay (GeneXpert® C. difficile; Cepheid, Sunnyvale, CA, USA) that detects C. difficile toxin genes and conventional methods as well. In this study, 50.5% of the patients were male, 50 patients were outpatients, 32 were from inpatient clinics and 13 patients were from the intensive care unit. Results: Of the 95 stool samples tested for GDH, 28 were positive. Six samples were positive by PCR, while nine samples were positive for toxin A/B. The hypervirulent strain NAP-1 and binary toxin was not detected. The rate of occurrence of toxigenic C. difficile was 5.1% in the samples. Cefaclor, ampicillin-sulbactam, ertapenem, and piperacillin-tazobactam were the most commonly used antibiotics by patients preceding the onset of diarrhea. Among the patients who were hospitalized in an intensive care unit for more than 7 days, 83.3% were positive for CDI by PCR screening. If the PCR

  19. Bovine immunoglobulin concentrate-Clostridium difficile retains C difficile toxin neutralising activity after passage through the human stomach and small intestine

    PubMed Central

    Warny, M; Fatimi, A; Bostwick, E; Laine, D; Lebel, F; LaMont, J; Pothoulakis, C; Kelly, C

    1999-01-01

    Background—Bovine immunoglobulin concentrate (BIC)-Clostridium difficile is prepared from the colostrum of cows immunised against C difficile toxins and contains high concentrations of neutralising IgG antitoxin. 
Aims—To determine the proportion of BIC-C difficile which survives passage through the human stomach and small intestine. 
Methods—Six volunteers with an end ileostomy took 5 g of BIC-C difficile containing 2.1 g of bovine IgG on four occasions: alone, with an antacid, during treatment with omeprazole, and within enteric coated capsules. 
Results—When BIC-C difficile was taken alone, a mean (SEM) of 1033 (232) mg of bovine IgG was recovered in the ileal fluid representing 49% of the total ingested dose. Bovine IgG recovery was not significantly increased by antacid (636 (129) mg) or omeprazole (1052 (268) mg). The enteric capsules frequently remained intact or only partially opened in the ileal effluent and free bovine IgG levels were low in this treatment group (89(101) mg). Bovine IgG recovery was higher in volunteers with shorter (less than two hours) mouth to ileum transit times (68% versus 36%, p<0.05). Specific bovine IgG against C difficile toxin A was detected in ileal fluid following oral BIC. Toxin neutralising activity was also present and correlated closely with bovine IgG levels (r=0.95, p<0.001). 
Conclusion—BIC-C difficile resists digestion in the human upper gastrointestinal tract and specific anti-C difficile toxin A binding and neutralising activity was retained. Passive oral immunotherapy with anti-C difficile BIC may be a useful non-antibiotic approach to the prevention and treatment of C difficile antibiotic associated diarrhoea and colitis. 

 Keywords: pseudomembranous colitis; toxin; diarrhoea; IgG; immunotherapy; antibiotic; Clostridium difficile PMID:9895380

  20. A quality committee's evaluation of surgical intervention for Clostridium difficile infection.

    PubMed

    Vasaly, Fran White; Reines, David

    2009-08-01

    Clostridium difficile (C diff) is an anaerobic bacterium that causes antibiotic-associated colitis, which can progress to a life-threatening illness for some patients. Clostridium difficile is highly transmissible in health care settings and has high morbidity and mortality rates. The increased prevalence of this bacterium and the consequences of infection necessitate an understanding of its transmission and use of stringent infection control practices. A two-year retrospective evaluation was performed to examine the effectiveness of a screening tool for patients requiring surgical intervention for C diff and to determine whether treatment was timely and effective. Early, aggressive surgical intervention appears to bel the single most effective treatment for fulminant C diff colitis.

  1. Fecal microbiota transplant by push enteroscopy to treat diarrhea caused by Clostridium difficile

    PubMed Central

    Ganc, Arnaldo José; Ganc, Ricardo Leite; Reimão, Sílvia Mansur; Frisoli, Alberto; Pasternak, Jacyr

    2015-01-01

    ABSTRACT Clostridium difficile is the major etiological agent of pseudomembranous colitis and is found in up to 20% of adult inpatients. The recommended treatment is antibiotic therapy with metronidazole and/or vancomycin. However, the recurrence rate may reach up to 25% and it increases in each episode. The newest alternative to treat diarrhea due to recurrent Clostridium difficile is fecal microbiota transplantation. The procedure was performed in 12 patients, with a 6-month follow-up on 10 of them. Of the ten cases, bacterial recurrence was diagnosed in only one patient, after a course of antibiotic to treat urinary tract infection, without presenting with diarrhea. The particularity of our study, besides being an unprecedented event in South America, is the way to perform the infusion of fecal microbiota by enteroscopy. PMID:26154556

  2. Ion-Exchange Chromatography to Analyze Components of a Clostridium difficile Vaccine.

    PubMed

    Rustandi, Richard R; Wang, Feng; Lancaster, Catherine; Kristopeit, Adam; Thiriot, David S; Heinrichs, Jon H

    2016-01-01

    Ion-exchange (IEX) chromatography is one of many separation techniques that can be employed to analyze proteins. The separation mechanism is based on a reversible interaction between charged amino acids of a protein to the charged ligands attached to a column at a given pH. This interaction depends on both the pI and conformation of the protein being analyzed. The proteins are eluted by increasing the salt concentration or pH gradient. Here we describe the use of this technique to characterize the charge variant heterogeneities and to monitor stability of four protein antigen components of a Clostridium difficile vaccine. Furthermore, the IEX technique can be used to monitor reversion to toxicity for formaldehyde-treated Clostridium difficile toxins.

  3. Fecal microbiota transplant by push enteroscopy to treat diarrhea caused by Clostridium difficile.

    PubMed

    Ganc, Arnaldo José; Ganc, Ricardo Leite; Reimão, Sílvia Mansur; Frisoli Junior, Alberto; Pasternak, Jacyr

    2015-01-01

    Clostridium difficile is the major etiological agent of pseudomembranous colitis and is found in up to 20% of adult inpatients. The recommended treatment is antibiotic therapy with metronidazole and/or vancomycin. However, the recurrence rate may reach up to 25% and it increases in each episode. The newest alternative to treat diarrhea due to recurrent Clostridium difficile is fecal microbiota transplantation. The procedure was performed in 12 patients, with a 6-month follow-up on 10 of them. Of the ten cases, bacterial recurrence was diagnosed in only one patient, after a course of antibiotic to treat urinary tract infection, without presenting with diarrhea. The particularity of our study, besides being an unprecedented event in South America, is the way to perform the infusion of fecal microbiota by enteroscopy.

  4. Ion-Exchange Chromatography to Analyze Components of a Clostridium difficile Vaccine.

    PubMed

    Rustandi, Richard R; Wang, Feng; Lancaster, Catherine; Kristopeit, Adam; Thiriot, David S; Heinrichs, Jon H

    2016-01-01

    Ion-exchange (IEX) chromatography is one of many separation techniques that can be employed to analyze proteins. The separation mechanism is based on a reversible interaction between charged amino acids of a protein to the charged ligands attached to a column at a given pH. This interaction depends on both the pI and conformation of the protein being analyzed. The proteins are eluted by increasing the salt concentration or pH gradient. Here we describe the use of this technique to characterize the charge variant heterogeneities and to monitor stability of four protein antigen components of a Clostridium difficile vaccine. Furthermore, the IEX technique can be used to monitor reversion to toxicity for formaldehyde-treated Clostridium difficile toxins. PMID:27507348

  5. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.

    PubMed

    Edwards, Adrianne N; Tamayo, Rita; McBride, Shonna M

    2016-06-01

    Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. PMID:26915493

  6. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection

    PubMed Central

    2016-01-01

    Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and

  7. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection.

    PubMed

    Spigaglia, Patrizia

    2016-02-01

    Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and

  8. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated. PMID:26700884

  9. Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection.

    PubMed

    Shaughnessy, Megan K; Bobr, Aleh; Kuskowski, Michael A; Johnston, Brian D; Sadowsky, Michael J; Khoruts, Alexander; Johnson, James R

    2016-05-01

    Recurrent Clostridium difficile infection (R-CDI) is common and difficult to treat, potentially necessitating fecal microbiota transplantation (FMT). Although C. difficilespores persist in the hospital environment and cause infection, little is known about their potential presence or importance in the household environment. Households of R-CDI subjects in the peri-FMT period and of geographically matched and age-matched controls were analyzed for the presence ofC. difficile Household environmental surfaces and fecal samples from humans and pets in the household were examined. Households of post-FMT subjects were also examined (environmental surfaces only). Participants were surveyed regarding their personal history and household cleaning habits. Species identity and molecular characteristics of presumptive C. difficile isolates from environmental and fecal samples were determined by using the Pro kit (Remel, USA), Gram staining, PCR, toxinotyping, tcdC gene sequencing, and pulsed-field gel electrophoresis (PFGE). Environmental cultures detected C. difficile on ≥1 surface in 8/8 (100%) peri-FMT households, versus 3/8 (38%) post-FMT households and 3/8 (38%) control households (P= 0.025). The most common C. difficile-positive sites were the vacuum (11/27; 41%), toilet (8/30; 27%), and bathroom sink (5/29; 17%).C. difficile was detected in 3/36 (8%) fecal samples (two R-CDI subjects and one household member). Nine (90%) of 10 households with multiple C. difficile-positive samples had a single genotype present each. In conclusion,C. difficile was found in the household environment of R-CDI patients, but whether it was found as a cause or consequence of R-CDI is unknown. If household contamination leads to R-CDI, effective decontamination may be protective. PMID:26921425

  10. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections.

    PubMed

    Knetsch, C W; Lawley, T D; Hensgens, M P; Corver, J; Wilcox, M W; Kuijper, E J

    2013-01-01

    Molecular typing is an essential tool to monitor Clostridium difficile infections and outbreaks within healthcare facilities. Molecular typing also plays a key role in defining the regional and global changes in circulating C. difficile types. The patterns of C. difficile types circulating within Europe (and globally) remain poorly understood, although international efforts are under way to understand the spatial and temporal patterns of C. difficile types. A complete picture is essential to properly investigate type-specific risk factors for C. difficile infections (CDI) and track long-range transmission. Currently, conventional agarose gel-based polymerase chain reaction (PCR) ribotyping is the most common typing method used in Europe to type C. difficile. Although this method has proved to be useful to study epidemiology on local, national and European level, efforts are made to replace it with capillary electrophoresis PCR ribotyping to increase pattern recognition, reproducibility and interpretation. However, this method lacks sufficient discriminatory power to study outbreaks and therefore multilocus variable-number tandem repeat analysis (MLVA) has been developed to study transmission between humans, animals and food. Sequence-based methods are increasingly being used for C. difficile fingerprinting/typing because of their ability to discriminate between highly related strains, the ease of data interpretation and transferability of data. The first studies using whole-genome single nucleotide polymorphism typing of healthcare-associated C. difficile within a clinically relevant timeframe are very promising and, although limited to select facilities because of complex data interpretation and high costs, these approaches will likely become commonly used over the coming years. PMID:23369393

  11. The potential for airborne dispersal of Clostridium difficile from symptomatic patients.

    PubMed

    Best, Emma L; Fawley, Warren N; Parnell, Peter; Wilcox, Mark H

    2010-06-01

    BACKGROUND. The high transmissibility and widespread environmental contamination by Clostridium difficile suggests the possibility of airborne dissemination of spores. We measured airborne and environmental C. difficile adjacent to patients with symptomatic C. difficile infection (CDI). METHODS. We conducted air sampling adjacent to 63 patients with CDI for 180 h in total and for 101 h in control settings. Environmental samples were obtained from surfaces adjacent to the patient and from communal areas of the ward. C. difficile isolates were characterized by ribotyping and multilocus variable-number tandem-repeat analysis to determine relatedness. RESULTS. Of the first 50 patients examined (each for 1 h), only 12% had positive air samples, most frequently those with active symptoms of CDI (10%, vs 2% for those with no symptoms). We intensively sampled the air around 10 patients with CDI symptoms, each for 10 h over 2 days, as well as a total of 346 surface sites. C. difficile was isolated from the air in the majority of these cases (7 of 10 patients tested) and from the surfaces around 9 of the patients; 60% of patients had both air and surface environments that were positive for C. difficile. Molecular characterization confirmed an epidemiological link between airborne dispersal, environmental contamination, and CDI cases. CONCLUSIONS. Aerosolization of C. difficile occurs commonly but sporadically in patients with symptomatic CDI. This may explain the widespread dissemination of epidemic strains. Our results emphasize the importance of single-room isolation as soon as possible after the onset of diarrhea to limit the dissemination of C. difficile.

  12. Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production.

    PubMed

    Drigo, Ilenia; Mazzolini, Elena; Bacchin, Cosetta; Tonon, Elena; Puiatti, Cinzia; Bano, Luca; Spigaglia, Patrizia; Barbanti, Fabrizio; Agnoletti, Fabrizio

    2015-12-31

    Clostridium difficile is an important cause of enteric disease in humans and animals. Recent studies demonstrated a genetic overlap between C. difficile isolated from animals and humans suggesting animals as possible reservoir for human pathogenic strains. This study was a preliminary investigation on the occurrence of C. difficile in rabbits raised in industrial holdings for food production and aimed to characterise isolates and estimate their antimicrobial susceptibility. C. difficile isolates were characterized by toxin profiles, toxinotyping and PCR-ribotyping. The MICs of six antibiotics were determined using E-test. Between 2007 and 2013, 285 industrial holdings (representing 40% of the national census) submitted rabbits to our laboratory for diagnostic purposes, among these holdings, groups of three to five post-weaned rabbits were sampled once by convenience. 1279 samples of caecal content were collected. The overall isolation rate of C. difficile from the enteric specimen was 3% (38/1279), with no difference among animals affected or not by enteric disorders. Among isolates 66% (25/38) were toxigenic. Sixteen different PCR-ribotypes (RTs) were identified. Among the toxigenic strains RT-014/020, RT-078 and RT-012 were found in at least three rabbit holdings. According to the ECOFF threshold, 82% (31/38) C. difficile isolates displayed a reduced susceptibility to at least one and 18% (7/38) to three tested antimicrobials. Rabbits are colonized by heterogeneous C. difficile ribotypes many of which are commonly isolated in humans. One third of isolates displayed a reduced susceptibility to MTZ, the first choice antimicrobial for human CDI treatment. According to our findings rabbits are a potential source of C. difficile for humans.

  13. Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection.

    PubMed

    Shaughnessy, Megan K; Bobr, Aleh; Kuskowski, Michael A; Johnston, Brian D; Sadowsky, Michael J; Khoruts, Alexander; Johnson, James R

    2016-05-01

    Recurrent Clostridium difficile infection (R-CDI) is common and difficult to treat, potentially necessitating fecal microbiota transplantation (FMT). Although C. difficilespores persist in the hospital environment and cause infection, little is known about their potential presence or importance in the household environment. Households of R-CDI subjects in the peri-FMT period and of geographically matched and age-matched controls were analyzed for the presence ofC. difficile Household environmental surfaces and fecal samples from humans and pets in the household were examined. Households of post-FMT subjects were also examined (environmental surfaces only). Participants were surveyed regarding their personal history and household cleaning habits. Species identity and molecular characteristics of presumptive C. difficile isolates from environmental and fecal samples were determined by using the Pro kit (Remel, USA), Gram staining, PCR, toxinotyping, tcdC gene sequencing, and pulsed-field gel electrophoresis (PFGE). Environmental cultures detected C. difficile on ≥1 surface in 8/8 (100%) peri-FMT households, versus 3/8 (38%) post-FMT households and 3/8 (38%) control households (P= 0.025). The most common C. difficile-positive sites were the vacuum (11/27; 41%), toilet (8/30; 27%), and bathroom sink (5/29; 17%).C. difficile was detected in 3/36 (8%) fecal samples (two R-CDI subjects and one household member). Nine (90%) of 10 households with multiple C. difficile-positive samples had a single genotype present each. In conclusion,C. difficile was found in the household environment of R-CDI patients, but whether it was found as a cause or consequence of R-CDI is unknown. If household contamination leads to R-CDI, effective decontamination may be protective.

  14. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated.

  15. A Clinical and Epidemiological Review of Non-toxigenic Clostridium difficile

    PubMed Central

    Natarajan, Mukil; Walk, Seth T.; Young, Vincent B.; Aronoff, David M.

    2013-01-01

    Clostridium difficile is a significant nosocomial threat to human health and is the most commonly identified cause of antibiotic associated diarrhea. The development of C. difficile colitis requires production of toxins A and/or B, but some strains do not express these proteins. These non-toxigenic C. difficile (NTCD) have garnered attention for their capacity to colonize humans and potentially reduce the risk for symptomatic colitis caused by toxigenic strains. Isolates of NTCD have been obtained from the environment as well as from animal and human sources. Studies in a hamster CDI model have demonstrated a protective effect of NTCD against toxigenic infection. The extent to which this protective effect of NTCD occurs in humans remains to be defined. Evidence for a therapeutic or preventive role for NTCD is limited but clinical prophylaxis studies are ongoing. NTCD potentially represents an exciting new tool in preventing CDI and its recurrences. PMID:23727391

  16. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027

    PubMed Central

    Gerding, Dale N.

    2015-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  17. A novel subtyping assay for detection of Clostridium difficile virulence genes.

    PubMed

    Angione, Stephanie L; Sarma, Aartik A; Novikov, Aleksey; Seward, Leah; Fieber, Jennifer H; Mermel, Leonard A; Tripathi, Anubhav

    2014-03-01

    This proof-of-concept study demonstrates the application of a novel nucleic acid detection platform to detect Clostridium difficile in subjects presenting with acute diarrheal symptoms. This method amplifies three genes associated with C. difficile infection, including genes and deletions (cdtB and tcdC) associated with hypervirulence attributed to the NAP1/027/BI strain. Amplification of DNA from the tcdB, tcdC, and cdtB genes was performed using a droplet-based sandwich platform with quantitative real-time PCR in microliter droplets to detect and identify the amplified fragments of DNA. The device and identification system are simple in design and can be integrated as a point-of-care test to help rapidly detect and identify C. difficile strains that pose significant health threats in hospitals and other health-care communities. PMID:24434086

  18. Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence.

    PubMed

    Schwan, Carsten; Kruppke, Anna S; Nölke, Thilo; Schumacher, Lucas; Koch-Nolte, Friedrich; Kudryashev, Mikhail; Stahlberg, Henning; Aktories, Klaus

    2014-02-11

    Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by the actions of Rho-glucosylating toxins A and B. Recently identified hypervirulent strains, which are associated with increased morbidity and mortality, additionally produce the actin-ADP-ribosylating toxin C. difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here we show that CDT-induced protrusions allow vesicle traffic and contain endoplasmic reticulum tubules, connected to microtubules via the calcium sensor Stim1. The toxin reroutes Rab11-positive vesicles containing fibronectin, which is involved in bacterial adherence, from basolateral to the apical membrane sides in a microtubule- and Stim1-dependent manner. The data yield a model of C. difficile adherence regulated by actin depolymerization, microtubule restructuring, subsequent Stim1-dependent Ca(2+) signaling, vesicle rerouting, and secretion of ECM proteins to increase bacterial adherence.

  19. Antimicrobial susceptibility of Clostridium difficile isolated from neonatal pigs with enteritis.

    PubMed

    Post, Karen W; Songer, J Glenn

    2004-02-01

    The minimum inhibitory concentration (MIC) of eight antimicrobial agents was determined by the agar dilution method for 80 isolates of Clostridium difficile from neonatal pigs with enteritis. MICs(50) for erythromycin, tilmicosin, and tylosin were relatively low (0.25-0.50 microg/mL), but MICs(90) (64 or > or =256 microg/mL) suggest in vivo resistance of a proportion of isolates. Susceptibility to tetracycline varied widely, with MIC(50) and MIC(90) of 8 and 32 microg/mL, respectively. The MICs(90) for tiamulin (8 microg/mL) and virginiamycin (16 microg/mL) suggest moderate susceptibility. Bacitracin and ceftiofur (MICs(90) > or =256 microg/mL) have little activity against C. difficile. Tiamulin and virginiamycin may decrease fecal shedding of C. difficile by sows, and erythromycin, tetracycline, and tylosin may be useful for treatment of infected piglets. PMID:16701500

  20. Quantitative Lipoproteomics in Clostridium difficile Reveals a Role for Lipoproteins in Sporulation.

    PubMed

    Charlton, Thomas M; Kovacs-Simon, Andrea; Michell, Stephen L; Fairweather, Neil F; Tate, Edward W

    2015-11-19

    Bacterial lipoproteins are surface exposed, anchored to the membrane by S-diacylglyceryl modification of the N-terminal cysteine thiol. They play important roles in many essential cellular processes and in bacterial pathogenesis. For example, Clostridium difficile is a Gram-positive anaerobe that causes severe gastrointestinal disease; however, its lipoproteome remains poorly characterized. Here we describe the application of metabolic tagging with alkyne-tagged lipid analogs, in combination with quantitative proteomics, to profile protein lipidation across diverse C. difficile strains and on inactivation of specific components of the lipoprotein biogenesis pathway. These studies provide the first comprehensive map of the C. difficile lipoproteome, demonstrate the existence of two active lipoprotein signal peptidases, and provide insights into lipoprotein function, implicating the lipoproteome in transmission of this pathogen.

  1. The occurrence and high diversity of Clostridium difficile genotypes in rivers.

    PubMed

    Zidaric, Valerija; Beigot, Sara; Lapajne, Slavko; Rupnik, Maja

    2010-08-01

    Clostridium difficile is mainly associated with nosocomial infections but can be present also in other environments. In this study we compared three methods (culturing with and without ethanol shock and real-time PCR) for detection of C. difficile in water and have used them on a series of river water samples. C. difficile was present in 17 of 25 rivers tested (68.0%) and in 42 of 69 water samples tested (60.9%). Positive sampling sites correlated with increased population densities. Isolates were distributed into 34 PCR ribotypes, of which more than half are present also in humans and animals. PCR ribotype 014 was the predominate type (16.2% of all isolates).

  2. Characterisation of Clostridium difficile Biofilm Formation, a Role for Spo0A

    PubMed Central

    Faulds-Pain, Alexandra; Donahue, Elizabeth H.; Wren, Brendan W.

    2012-01-01

    Clostridium difficile is a Gram-positive anaerobic, spore-forming bacillus that is the leading cause of nosocomial diarrhoea worldwide. We demonstrate that C. difficile aggregates and forms biofilms in vitro on abiotic surfaces. These polymicrobial aggregates are attached to each other and to an abiotic surface by an extracellular polymeric substance (EPS). The EPS matrix provides the scaffold bonding together vegetative cells and spores, as well as forming a protective barrier for vegetative cells against oxygen stress. The master regulator of sporulation, Spo0A, may play a key role in biofilm formation, as genetic inactivation of spo0A in strain R20291 exhibits decreased biofilm formation. Our findings highlight an important attribute of C. difficile pathogenesis, which may have significant implications for infection, treatment and relapse. PMID:23236376

  3. Clinical Utility of Laboratory Detection of Clostridium difficile Strain BI/NAP1/027.

    PubMed

    Kociolek, Larry K; Gerding, Dale N

    2016-01-01

    Clostridium difficile strain BI/NAP1/027 is associated with increased C. difficile infection (CDI) rates and severity, and the efficacy of some CDI therapies may be strain dependent. Although cultured C. difficile isolates can be reliably subtyped by various methods, the long turnaround times, high cost, and limited availability of strain typing preclude their routine use. Nucleic acid amplification tests identify BI/NAP1/027 rapidly from stool, but the emergence of closely related strains compromises test specificity. Although detection of epidemiologically significant pathogens is generally useful for infection control programs, specific data supporting use of rapid detection of BI/NAP1/027 as an infection control tool are still awaited. PMID:26511742

  4. Contamination of ready-to-eat raw vegetables with Clostridium difficile in France.

    PubMed

    Eckert, Catherine; Burghoffer, Béatrice; Barbut, Frédéric

    2013-09-01

    The presence of Clostridium difficile in food like shellfish, vegetables and meat has been reported in several publications during the past few years. The objective of this study was to assess the prevalence of ready-to-eat raw vegetables contaminated with C. difficile in France. One hundred and four ready-to-eat salads and vegetables were studied. Toxigenic C. difficile strains were isolated in three samples (2.9 %): two ready-to-eat salads (one heart of lettuce and one lamb's lettuce salad) and one portion of pea sprouts. The strains belonged to three different PCR ribotypes: 001, 014/020/077 and 015. The detection thresholds for vegetative cells and spores cells varied between 1 and 3 c.f.u. in 20 g salad and between 6 and 15 c.f.u. in 20 g salad, respectively, for the method employed.

  5. Discovery and development of surotomycin for the treatment of Clostridium difficile.

    PubMed

    Knight-Connoni, Victoria; Mascio, Carmela; Chesnel, Laurent; Silverman, Jared

    2016-03-01

    The primary challenge for treating Clostridium difficile infections (CDI) is maintenance of clinical response after the end of treatment (sustained clinical response). Disease recurrence following a positive clinical response occurs in approximately 6-25 % of patients after the first episode and in up to 65 % for subsequent recurrences. Surotomycin, a novel cyclic lipopeptide antibiotic with a core derived by Streptomyces roseosporus fermentation, disrupts C. difficile cellular membrane activity in both logarithmic and stationary phases and minimally disturbs normal gastrointestinal microbiota because of its lack of activity against Gram-negative anaerobes and facultative anaerobes. Preclinical and clinical evidence indicate that surotomycin has low oral bioavailability, allowing gastrointestinal tract concentrations to greatly exceed its minimum inhibitory concentration for C. difficile. Surotomycin is well tolerated and effective in hamster models of CDI. Phase 2 clinical evidence suggests that surotomycin (250 mg twice daily) is an effective CDI treatment, with statistically lower recurrence rates than vancomycin.

  6. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.

    PubMed

    Bordeleau, Eric; Burrus, Vincent

    2015-11-01

    The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile.

  7. Mechanisms of hypervirulent Clostridium difficile ribotype 027 displacement of endemic strains: an epidemiological model.

    PubMed

    Yakob, Laith; Riley, Thomas V; Paterson, David L; Marquess, John; Magalhaes, Ricardo J Soares; Furuya-Kanamori, Luis; Clements, Archie C A

    2015-07-28

    Following rapid, global clonal dominance of hypervirulent ribotypes, Clostridium difficile now constitutes the primary infectious cause of nosocomial diarrhoea. Evidence indicates at least three possible mechanisms of hypervirulence that facilitates the successful invasion of these atypical strains: 1) increased infectiousness relative to endemic strains; 2) increased symptomatic disease rate relative to endemic strains; and 3) an ability to outcompete endemic strains in the host's gut. Stochastic simulations of an infection transmission model demonstrate clear differences between the invasion potentials of C. difficile strains utilising the alternative hypervirulence mechanisms, and provide new evidence that favours certain mechanisms (1 and 2) more than others (3). Additionally, simulations illustrate that direct competition between strains (inside the host's gut) is not a prerequisite for the sudden switching that has been observed in prevailing ribotypes; previously dominant C. difficile strains can be excluded by hypervirulent ribotypes through indirect (exploitative) competition.

  8. Reduction in Clostridium difficile environmental contamination by hospitalized patients treated with fidaxomicin.

    PubMed

    Biswas, J S; Patel, A; Otter, J A; Wade, P; Newsholme, W; van Kleef, E; Goldenberg, S D

    2015-07-01

    Fidaxomicin is sporicidal and may be associated with a reduced time to resolution of diarrhoea when used to treat patients with Clostridium difficile infection (CDI). This study investigated whether fidaxomicin for treatment of all patients with CDI reduced C. difficile environmental contamination. Surfaces in the rooms of 66 hospitalized patients treated with metronidazole and/or vancomycin and 68 hospitalized patients treated with fidaxomicin were sampled. Patients treated with fidaxomicin were less likely to contaminate their environment (25/68, 36.8%) than patients treated with metronidazole and/or vancomycin (38/66 57.6%) (P = 0.02). Treatment with fidaxomicin was associated with reduced environmental contamination with C. difficile.

  9. Complicated fecal microbiota transplantation in a tetraplegic patient with severe Clostridium difficile infection.

    PubMed

    Brechmann, Thorsten; Swol, Justyna; Knop-Hammad, Veronika; Willert, Jörg; Aach, Mirko; Cruciger, Oliver; Schmiegel, Wolff; Schildhauer, Thomas A; Hamsen, Uwe

    2015-03-28

    A 65-year-old male suffering from acute spinal cord injury leading to incomplete tetraplegia presented with severe recurrent Clostridium difficile (C. difficile) infection subsequent to antibiotic treatment for pneumonia. After a history of ineffective antimicrobial therapies, including metronidazole, vancomycin, fidaxomicin, rifaximin and tigecycline, leading to several relapses, the patient underwent colonoscopic fecal microbiota transplantation from his healthy son. Four days subsequent to the procedure, the patient showed a systemic inflammation response syndrome. Without detecting an infectious cause, the patient received antimicrobial treatment, including tigecycline, metronidazole, vancomycin via polyethylene glycol and an additional enema for a period of seven days, leading to a prompt recovery and no reported C. difficile infection relapse during a 12 wk follow up. PMID:25834343

  10. Bacteriotherapy for the treatment of intestinal dysbiosis caused by Clostridium difficile infection.

    PubMed

    Adamu, Blessing O; Lawley, Trevor D

    2013-10-01

    Faecal microbiota transplantation (FMT) has been used for more than five decades to treat a variety of intestinal diseases associated with pathological imbalances within the resident microbiota, termed dysbiosis. FMT has been particularly effective for treating patients with recurrent Clostridium difficile infection who are left with few clinical options other than continued antibiotic therapy. Our increasing knowledge of the structure and function of the human intestinal microbiota and C. difficile pathogenesis has led to the understanding that FMT promotes intestinal ecological restoration and highlights the microbiota as a viable therapeutic target. However, the use of undefined faecal samples creates a barrier for widespread clinical use because of safety and aesthetic issues. An emerging concept of bacteriotherapy, the therapeutic use of a defined mixture of harmless, health-associated bacteria, holds promise for the treatment of patients with severe C. difficile infection, and possibly represents a paradigm shift for the treatment of diseases linked to intestinal dysbiosis. PMID:23866975

  11. Passive immunization of hamsters against disease caused by Clostridium difficile by use of bovine immunoglobulin G concentrate.

    PubMed Central

    Lyerly, D M; Bostwick, E F; Binion, S B; Wilkins, T D

    1991-01-01

    Gestating Holstein cows were vaccinated with Clostridium difficile toxoid prepared from the culture filtrate of a strain that produces high levels of toxins A and B and other antigens. A bovine immunoglobulin G (IgG) concentrate was prepared from colostrum collected at parturition. The results of our studies showed that hamsters treated prophylactically with the hyperimmune bovine IgG concentrate were protected against C. difficile disease. These results suggest that orally administered hyperimmune bovine IgG specific for C. difficile culture filtrate may be useful in prophylaxis against C. difficile disease. PMID:2037383

  12. Fluoroquinolone resistance does not impose a cost on the fitness of Clostridium difficile in vitro.

    PubMed

    Wasels, François; Kuehne, Sarah A; Cartman, Stephen T; Spigaglia, Patrizia; Barbanti, Fabrizio; Minton, Nigel P; Mastrantonio, Paola

    2015-03-01

    Point mutations conferring resistance to fluoroquinolones were introduced in the gyr genes of the reference strain Clostridium difficile 630. Only mutants with the substitution Thr-82→Ile in GyrA, which characterizes the hypervirulent epidemic clone III/027/NAP1, were resistant to all fluoroquinolones tested. The absence of a fitness cost in vitro for the most frequent mutations detected in resistant clinical isolates suggests that resistance will be maintained even in the absence of antibiotic pressure. PMID:25534738

  13. Microbiome manipulation with faecal microbiome transplantation as a therapeutic strategy in Clostridium difficile infection.

    PubMed

    Mullish, B H; Marchesi, J R; Thursz, M R; Williams, H R T

    2015-05-01

    Faecal microbiome transplantation (FMT) has generated huge recent interest as it presents a potential solution to a significant clinical problem--the increasing incidence of Clostridium difficile infection (CDI). In the short term, however, there remain many practical questions regarding its use, including the optimal selection of donors, material preparation and the mechanics of delivery. In the longer term, enhanced understanding of the mechanisms of action of FMT may potentiate novel therapies, such as targeted manipulation of the microbiome in CDI and beyond.

  14. Comparison of Clostridium difficile detection by monolayer and by inhibition of nucleoside uptake

    SciTech Connect

    Fuhr, J.E.; Trent, D.J.; Collmann, I.R.

    1987-02-01

    Detection and identification of Clostridium difficile toxin by traditional monolayer assay were compared with results obtained by a new procedure based on toxin-dependent inhibition of target cell uptake of a radioactive nucleoside. A high degree of correlation was noted between the two determinations. Although the new procedure was quantitative and objective, its value is seen at present as a rapid screen that may support results obtained in monolayers and as a potential assay for other, currently unidentified, toxins.

  15. Specific binding of nucleotides and NAD+ to Clostridium difficile toxin A.

    PubMed

    Lobban, M D; Borriello, S P

    1992-02-24

    Binding of nucleotides, a tetrapolyphosphate, and NAD+ to purified toxin A of Clostridium difficile was determined by monitoring changes in intrinsic fluorescence following excitation at 280 nm, and recording emissions at 340 nm. Binding was specific for concentrations over the range 5 to 100 microM for ATP, GTP, and their respective non-hydrolysable analogues AMP-PNP and Gpp(NH)p, tetrapolyphosphate and NAD+. PMID:1544441

  16. Clostridium difficile PCR ribotypes 001 and 176 - the common denominator of C. difficile infection epidemiology in the Czech Republic, 2014.

    PubMed

    Krutova, Marcela; Matejkova, Jana; Kuijper, Ed J; Drevinek, Pavel; Nyc, Otakar

    2016-07-21

    In 2014, 18 hospitals in the Czech Republic participated in a survey of the incidence of Clostridium difficile infections (CDI) in the country. The mean CDI incidence was 6.1 (standard deviation (SD):7.2) cases per 10,000 patient bed-days and 37.8 cases (SD: 41.4) per 10,000 admissions. The mean CDI testing frequency was 39.5 tests (SD: 25.4) per 10,000 patient bed-days and 255.8 tests (SD: 164.0) per 10,000 admissions. A total of 774 C. difficile isolates were investigated, of which 225 (29%) belonged to PCR ribotype 176, and 184 isolates (24%) belonged to PCR ribotype 001. Multilocus variable-number tandem repeat analysis (MLVA) revealed 27 clonal complexes formed by 84% (190/225) of PCR ribotype 176 isolates, and 14 clonal complexes formed by 77% (141/184) of PCR ribotype 001 isolates. Clonal clusters of PCR ribotypes 176 and 001 were observed in 11 and 7 hospitals, respectively. Our data demonstrate the spread of two C. difficile PCR ribotypes within 18 hospitals in the Czech Republic, stressing the importance of standardising CDI testing protocols and implementing mandatory CDI surveillance in the country. PMID:27484171

  17. Clostridium difficile PCR ribotypes 001 and 176 - the common denominator of C. difficile infection epidemiology in the Czech Republic, 2014.

    PubMed

    Krutova, Marcela; Matejkova, Jana; Kuijper, Ed J; Drevinek, Pavel; Nyc, Otakar

    2016-07-21

    In 2014, 18 hospitals in the Czech Republic participated in a survey of the incidence of Clostridium difficile infections (CDI) in the country. The mean CDI incidence was 6.1 (standard deviation (SD):7.2) cases per 10,000 patient bed-days and 37.8 cases (SD: 41.4) per 10,000 admissions. The mean CDI testing frequency was 39.5 tests (SD: 25.4) per 10,000 patient bed-days and 255.8 tests (SD: 164.0) per 10,000 admissions. A total of 774 C. difficile isolates were investigated, of which 225 (29%) belonged to PCR ribotype 176, and 184 isolates (24%) belonged to PCR ribotype 001. Multilocus variable-number tandem repeat analysis (MLVA) revealed 27 clonal complexes formed by 84% (190/225) of PCR ribotype 176 isolates, and 14 clonal complexes formed by 77% (141/184) of PCR ribotype 001 isolates. Clonal clusters of PCR ribotypes 176 and 001 were observed in 11 and 7 hospitals, respectively. Our data demonstrate the spread of two C. difficile PCR ribotypes within 18 hospitals in the Czech Republic, stressing the importance of standardising CDI testing protocols and implementing mandatory CDI surveillance in the country.

  18. Detection of Clostridium difficile in small and medium-sized wild Mammals in Southern Ontario, Canada.

    PubMed

    Jardine, Claire M; Reid-Smith, Richard J; Rousseau, Joyce; Weese, J Scott

    2013-04-01

    We sampled 325 small and medium-sized wild mammals in Ontario, Canada in 2007 and 2010 to determine the prevalence and characteristics of Clostridium difficile in wild mammals living in proximity to captive wildlife and livestock. Clostridium difficile was isolated from five of 109 animals (4.6%) on four of 25 farms (16%), but was not isolated from any of the 216 samples from raccoons (Procyon lotor) living on the grounds of the Toronto Zoo. The positive animals included two raccoons from one beef farm, one raccoon from a different beef farm, one raccoon from a swine farm, and a shrew (Blarina brevicauda) from a dairy farm. None had evidence of gastrointestinal disease. Three of the five isolates were toxinotype variants (II, IV, and XIII) that are rarely identified in humans and domestic animals. The other two were toxinotype 0, a common toxinotype in humans and animals; however, all five isolates were of different ribotypes. None of the recovered ribotypes were recognized as ribotypes present in the authors' reference library of over 3,000 human and domestic animal C. difficile isolates. Neither the public health nor the animal health relevance of these findings is clear. It is not known whether C. difficile is a pathogen of small and medium-sized wild mammals, although the susceptibility of various laboratory species suggests it could cause disease. PMID:23568920

  19. [Specific antisepsis and environmental disinfection in preventing "Clostridium difficile associated diarrhea"].

    PubMed

    Agolini, G; Protano, C; Puro, V; Raitano, A; Ferraro, F; Vitali, M

    2009-01-01

    In the last years, Clostridium difficile acquired great interest for public health because of constant increase of Clostridium difficile associated diarrhea (CDAD), especially in nosocomial field and as a consequences of its pathogenicity and virulence. Oro-faecal transmission and great environmental persistence of Clostridium difficile indicate hand hygiene of health care workers and environmental disinfection practices as key interventions for prevention and control of nosocomial CDAD. The current indications relative to the hand hygiene suggest the use of soap and water for hand washing and, to achieve a better compliance of health care workers to this treatment, the alternative use of sodium dichloroisocyanurate or alcohol-based solution or gel waterless. Regard to environmental disinfection, to avoid high concentrations of sodium hypochlorite (in the magnitude of 5.000-6.000 ppm), necessary to reduce microbic load of dirty environment, the most appropriate treatment should consist of 2 phases: preliminary cleaning with water and detergents or polyphenol, followed by treatment with solution containing 1.000 ppm available chlorine, obtained from sodium hypochlorite or sodium dichloroisocyanurate. PMID:20169831

  20. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection.

    PubMed

    Džunková, Mária; Moya, Andrés; Vázquez-Castellanos, Jorge F; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran; D'Auria, Giuseppe

    2016-01-01

    The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIg

  1. Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection

    PubMed Central

    Moya, Andrés; Vázquez-Castellanos, Jorge F.; Artacho, Alejandro; Chen, Xinhua; Kelly, Ciaran

    2016-01-01

    ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin

  2. Clostridium difficile ribotype 078 cultured from post-surgical non-healing wound in a patient carrying ribotype 014 in the intestinal tract.

    PubMed

    Nyc, Otakar; Krutova, Marcela; Kriz, Jiri; Matejkova, Jana; Bebrova, Eliska; Hysperska, Veronika; Kuijper, Ed J

    2015-11-01

    Extra-intestinal infections caused by Clostridium difficile are rare. The risk of extra-intestinal infections associated with C. difficile may be particularly relevant in environments contaminated with C. difficile spores. This paper describes the case of a non-diarrheic patient colonized with C. difficile ribotype 014 in the intestinal tract who developed a post-surgical wound infection by C. difficile ribotype 078. The infection responded to metronidazole administered first intravenously and then orally. This case indicates that C. difficile may not only be related to diarrheic diseases, but also to infections of non-healing wounds, especially in situations when C. difficile is the only isolated pathogen.

  3. The correlation between Clostridium-difficile infection and human gut concentrations of Bacteroidetes phylum and clostridial species.

    PubMed

    Goldberg, E; Amir, I; Zafran, M; Gophna, U; Samra, Z; Pitlik, S; Bishara, J

    2014-03-01

    We aimed to assess differences in bacterial intensities of Bacteroidetes phylum and different clostridial species in the human intestines with respect to C. difficile infection. Patients with a stool assay for C. difficile toxin were identified via the microbiology laboratory in our institute. Bacterial populations were quantified from stool samples of four groups of patients: Group I-patients with C. difficile associated diarrhea (CDAD); Group II-asymptomatic C. difficile carriers; Group III-patients with non-C. difficile diarrhea; Group IV-patients with no diarrhea and negative stool samples for the C. difficile toxin (control group). Stool was examined for three genes-C. difficile toxin A gene, 16S rRNA gene from Clostridium thermocellum representing other clostridial species, and 16S rRNA gene from Bacteroides fragilis representing the Bacteroidetes phylum. Fifty-nine patients underwent analysis of the stool (CDAD group 14, carriers group 14, non-C. difficile diarrhea group 16, control group 15). C. difficile concentration was highest in the CDAD group, followed by the carriers group. Higher concentrations of both clostridial species and Bacteriodetes were observed in the control and non-C. difficile diarrhea groups compared to the CDAD and carriers groups. We demonstrated an inverse association between infection with C. difficile and the abundance of Bacteroidetes phylum and other clostridial species in human intestines. Studies with larger samples and broader diagnostic procedures are needed in order to better explore and understand this association.

  4. Role of fecal Clostridium difficile load in discrepancies between toxin tests and PCR: is quantitation the next step in C. difficile testing?

    PubMed

    Leslie, J L; Cohen, S H; Solnick, J V; Polage, C R

    2012-12-01

    Direct tests for Clostridium difficile are 30-50 % more sensitive than tests for C. difficile toxins but the reasons for this discrepancy are incompletely understood. In addition to toxin degradation and strain differences, we hypothesized that C. difficile concentration could be important in determining whether toxins are detected in fecal samples. We performed standard curves on an FDA-approved real-time PCR test for the C. difficile tcdB gene (Xpert C. difficile/Epi, Cepheid) during a prospective comparison of a toxin immunoassay (Meridian Premier), PCR and toxigenic culture. Immunoassay-negative, PCR-positive samples were retested with a cell cytotoxin assay (TechLab). Among 107 PCR-positive samples, 46 (43.0 %) had toxins detected by immunoassay and an additional 18 (16.8 %) had toxin detected by the cytotoxin assay yielding 64 (59.8 %) toxin-positive and 43 (40.2 %) toxin-negative samples. Overall, toxin-negative samples with C. difficile had 10(1)-10(4) fewer DNA copies than toxin-positive samples and most discrepancies between toxin tests and PCR were associated with a significant difference in C. difficile quantity. Of the toxin-positive samples, 95 % had ≥ 4.1 log(10) C. difficile tcdB DNA copies/mL; 52 % of immunoassay-negative samples and 70 % of immunoassay and cytotoxin negative samples had <4.1 log(10) C. difficile tcdB DNA copies/mL. These findings suggest that fecal C. difficile concentration is a major determinant of toxin detection and C. difficile quantitation may add to the diagnostic value of existing test methods. Future studies are needed to validate the utility of quantitation and determine the significance of low concentrations of C. difficile in the absence of detectable toxin.

  5. Incidence and Clinical Outcomes of Clostridium difficile Infection after Treatment with Tuberculosis Medication

    PubMed Central

    Lee, Yu Mi; Huh, Kyu Chan; Yoon, Soon Man; Jang, Byung Ik; Shin, Jeong Eun; Koo, Hoon Sup; Jung, Yunho; Kim, Sae Hee; Moon, Hee Seok; Lee, Seung Woo

    2016-01-01

    Background/Aims To determine the incidence and clinical characteristics of tuberculosis (TB) medication-associated Clostridium difficile infection. Methods This multicenter study included patients from eight tertiary hospitals enrolled from 2008 to 2013. A retrospective analysis was conducted to identify the clinical features of C. difficile infection in patients who received TB medication. Results C. difficile infection developed in 54 of the 19,080 patients prescribed TB medication, representing a total incidence of infection of 2.83 cases per 1,000 adults. Fifty-one of the 54 patients (94.4%) were treated with rifampin. The patients were usually treated with oral metronidazole, which produced improvement in 47 of the 54 patients (87%). Twenty-three patients clinically improved with continuous rifampin therapy for C. difficile infection. There were no significant differences in improvement between patients treated continuously (n=21) and patients in whom treatment was discontinued (n=26). Conclusions The incidence of C. difficile infection after TB medication was not low considering the relatively low TB medication dosage compared to other antibiotics. It may not be always necessary to discontinue TB medication. Instead, decisions concerning discontinuation of TB medication should be based on TB status. PMID:26260753

  6. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.

    PubMed

    Lawley, Trevor D; Croucher, Nicholas J; Yu, Lu; Clare, Simon; Sebaihia, Mohammed; Goulding, David; Pickard, Derek J; Parkhill, Julian; Choudhary, Jyoti; Dougan, Gordon

    2009-09-01

    Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches. PMID:19542279

  7. Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells.

    PubMed

    Batah, Jameel; Denève-Larrazet, Cécile; Jolivot, Pierre-Alain; Kuehne, Sarah; Collignon, Anne; Marvaud, Jean-Christophe; Kansau, Imad

    2016-04-01

    Clostridium difficile has become the most common enteropathogen responsible for intestinal nosocomial post-antibiotic infections. This has coincided with the appearance of serious cases related to the emergence of hypervirulent strains. The toxins are the main virulence factors and elicit an inflammatory response during C. difficile infection. However, other bacterial components appear to be involved in the inflammatory process. In some pathogens, flagella play a role in pathogenesis through abnormal stimulation of the TLR5-mediated host immune response. To date, few studies have addressed this role for C. difficile flagella. In the current study, we confirm in two different epithelial cell models that C. difficile thanks to its FliC flagellin interacts with TLR5. In addition, thanks to inhibition and transcriptomic studies we demonstrate that the interaction of flagellin and TLR5 predominantly activates the NF-κB and, in a lesser degree, the MAPK pathways, via TLR5, leading to up-regulation of pro-inflammatory gene expression and synthesis of pro-inflammatory mediators. These results suggest a role for C. difficile flagella in contributing to inflammatory response in host intestinal cells. PMID:26790921

  8. Accessory Gene Regulator-1 Locus Is Essential for Virulence and Pathogenesis of Clostridium difficile

    PubMed Central

    Odo, Chioma; DuPont, Herbert L.

    2016-01-01

    ABSTRACT Clostridium difficile infection (CDI) is responsible for most of the definable cases of antibiotic- and hospital-associated diarrhea worldwide and is a frequent cause of morbidity and mortality in older patients. C. difficile, a multidrug-resistant anaerobic pathogen, causes disease by producing toxins A and B, which are controlled by an accessory gene regulator (Agr) quorum signaling system. Some C. difficile strains encode two Agr loci in their genomes, designated agr1 and agr2. The agr1 locus is present in all of the C. difficile strains sequenced to date, whereas the agr2 locus is present in a few strains. The functional roles of agr1 and agr2 in C. difficile toxin regulation and pathogenesis were unknown until now. Using allelic exchange, we deleted components of both agr loci and examined the mutants for toxin production and virulence. The results showed that the agr1 mutant cannot produce toxins A and B; toxin production can be restored by complementation with wild-type agr1. Furthermore, the agr1 mutant is able to colonize but unable to cause disease in a murine CDI model. These findings have profound implications for CDI treatment because we have uncovered a promising therapeutic target for the development of nonantibiotic drugs to treat this life-threatening emerging pathogen by targeting the toxins directly responsible for disease. PMID:27531912

  9. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen.

  10. Discovery of LFF571: An Investigational Agent for Clostridium difficile Infection

    SciTech Connect

    LaMarche, Matthew J.; Leeds, Jennifer A.; Amaral, Adam; Brewer, Jason T.; Bushell, Simon M.; Deng, Gejing; Dewhurst, Janetta M.; Ding, Jian; Dzink-Fox, JoAnne; Gamber, Gabriel; Jain, Akash; Lee, Kwangho; Lee, Lac; Lister, Troy; McKenney, David; Mullin, Steve; Osborne, Colin; Palestrant, Deborah; Patane, Michael A.; Rann, Elin M.; Sachdeva, Meena; Shao, Jian; Tiamfook, Stacey; Trzasko, Anna; Whitehead, Lewis; Yifru, Aregahegn; Yu, Donghui; Yan, Wanlin; Zhu, Qingming

    2012-11-09

    Clostridium difficile (C. difficile) is a Gram positive, anaerobic bacterium that infects the lumen of the large intestine and produces toxins. This results in a range of syndromes from mild diarrhea to severe toxic megacolon and death. Alarmingly, the prevalence and severity of C. difficile infection are increasing; thus, associated morbidity and mortality rates are rising. 4-Aminothiazolyl analogues of the antibiotic natural product GE2270 A (1) were designed, synthesized, and optimized for the treatment of C. difficile infection. The medicinal chemistry effort focused on enhancing aqueous solubility relative to that of the natural product and previous development candidates (2, 3) and improving antibacterial activity. Structure-activity relationships, cocrystallographic interactions, pharmacokinetics, and efficacy in animal models of infection were characterized. These studies identified a series of dicarboxylic acid derivatives, which enhanced solubility/efficacy profile by several orders of magnitude compared to previously studied compounds and led to the selection of LFF571 (4) as an investigational new drug for treating C. difficile infection.

  11. Inactivation of Clostridium difficile in sewage sludge by anaerobic thermophilic digestion.

    PubMed

    Xu, Changyun; Salsali, Hamidreza; Weese, Scott; Warriner, Keith

    2016-01-01

    There has been an increase in community-associated Clostridium difficile infections with biosolids derived from wastewater treatment being identified as one potential source. The current study evaluated the efficacy of thermophilic digestion in decreasing levels of C. difficile ribotype 078 associated with sewage sludge. Five isolates of C. difficile 078 were introduced (final density of 5 log CFU/g) into digested sludge and subjected to anaerobic digestion at mesophilic (36 or 42 °C) or thermophilic (55 °C) temperatures for up to 60 days. It was found that mesophilic digestion at 36 °C did not result in a significant reduction in C. difficile spore levels. In contrast, thermophilic sludge digestion reduced endospore levels at a rate of 0.19-2.68 log CFU/day, depending on the strain tested. The mechanism of lethality was indirect - by stimulating germination then inactivating the resultant vegetative cells. Acidification of sludge by adding acetic acid (6 g/L) inhibited the germination of spores regardless of the sludge digestion temperature. In conclusion, thermophilic digestion can be applied to reduce C. difficile in biosolids, thereby reducing the environmental burden of the enteric pathogen. PMID:26564276

  12. A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile

    PubMed Central

    Flint, Mike; Kalyan, Narender; Johnson, Erik; Witko, Susan E.; Kotash, Cheryl; Zhao, Ping; Megati, Shakuntala; Yurgelonis, Irina; Lee, Phillip Kwok; Matsuka, Yury V.; Severina, Elena; Deatly, Anne; Sidhu, Mini; Jansen, Kathrin U.; Minton, Nigel P.; Anderson, Annaliesa S.

    2013-01-01

    The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferase cytotoxicity determinants were introduced into recombinant plasmids and episomally expressed toxin mutants purified from C. difficile transformants. TcdA and TcdB mutants lacking glucosyltransferase and autoproteolytic processing activities were ~10 000-fold less toxic to cultured human IMR-90 cells than corresponding recombinant or native toxins. However, both mutants retained residual cytotoxicity that could be prevented by preincubating the antigens with specific antibodies or by formalin treatment. Such non-toxic formalin-treated mutant antigens were immunogenic and protective in a hamster model of infection. The remaining toxicity of untreated TcdA and TcdB mutant antigens was associated with cellular swelling, a phenotype consistent with pore-induced membrane leakage. TcdB substitution mutations previously shown to block vesicular pore formation and toxin translocation substantially reduced residual toxicity. We discuss the implications of these results for the development of a C. difficile toxoid vaccine. PMID:23629868

  13. The challenge of Clostridium difficile infection: Overview of clinical manifestations, diagnostic tools and therapeutic options.

    PubMed

    Postma, Nynke; Kiers, Dorien; Pickkers, Peter

    2015-12-01

    The most important infectious cause of antibiotic-associated diarrhoea and colitis is Clostridium difficile, which is a Gram-positive, anaerobic, spore-forming, toxin-producing bacillus. In this overview we will discuss the diagnostic and therapeutic management of patients presenting with suspected or proven C. difficile infection (CDI). The clinical spectrum varies from asymptomatic C. difficile carriers to fulminant colitis with multi-organ failure. The onset of symptoms is usually within 2 weeks after initiation of antibiotic treatment. Diagnosis is based on the combination of clinical symptoms and either a positive stool test for C. difficile toxins or endoscopic or histological findings of pseudomembranous colitis. There is no indication for treatment of asymptomatic carriers, but patients with proven CDI should be treated. Treatment consists of cessation of the provoking antibiotic treatment, secondary prevention by infection control strategies, and treatment with metronidazole or vancomycin. Treatment of recurring CDI, severe infection, the need for surgery, and novel alternative potential treatment strategies will be discussed. The concurrent increase in multiresistant colonisation and increasing numbers of asymptomatic carriers of C. difficile will lead to an increase of the situation in which patients with severe infections, treated with broad-spectrum antibiotics, will develop concurrent severe CDI. We will discuss possible therapy strategies for these patients.

  14. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.

    PubMed

    Koenigsknecht, Mark J; Theriot, Casey M; Bergin, Ingrid L; Schumacher, Cassie A; Schloss, Patrick D; Young, Vincent B

    2015-03-01

    Clostridium difficile infection (CDI) following antibiotic therapy is a major public health threat. While antibiotic disruption of the indigenous microbiota underlies the majority of cases of CDI, the early dynamics of infection in the disturbed intestinal ecosystem are poorly characterized. This study defines the dynamics of infection with C. difficile strain VPI 10463 throughout the gastrointestinal (GI) tract using a murine model of infection. After inducing susceptibility to C. difficile colonization via antibiotic administration, we followed the dynamics of spore germination, colonization, sporulation, toxin activity, and disease progression throughout the GI tract. C. difficile spores were able to germinate within 6 h postchallenge, resulting in the establishment of vegetative bacteria in the distal GI tract. Spores and cytotoxin activity were detected by 24 h postchallenge, and histopathologic colitis developed by 30 h. Within 36 h, all infected mice succumbed to infection. We correlated the establishment of infection with changes in the microbiota and bile acid profile of the small and large intestines. Antibiotic administration resulted in significant changes to the microbiota in the small and large intestines, as well as a significant shift in the abundance of primary and secondary bile acids. Ex vivo analysis suggested the small intestine as the site of spore germination. This study provides an integrated understanding of the timing and location of the events surrounding C. difficile colonization and identifies potential targets for the development of new therapeutic strategies.

  15. Toxigenic Clostridium difficile PCR ribotypes in edible marine bivalve molluscs in Italy.

    PubMed

    Troiano, Tiziana; Harmanus, Celine; Sanders, Ingrid M J G; Pasquale, Vincenzo; Dumontet, Stefano; Capuano, Federico; Romano, Vincenza; Kuijper, Ed J

    2015-09-01

    Even though food of animal sources and different foodstuffs are well known to be potentially carrier of Clostridium difficile, few data are available on the occurrence of C. difficile in seafood. This work investigated the occurrence of C. difficile in edible bivalve molluscs in southern Italy. Out of the 925 investigated samples, 3.9% contained C. difficile. Eighteen strains harboured both genes for toxins A and B whereas 1 only had toxin B gene. Binary toxin genes were found in 22.2% of the isolates. The most frequently ribotypes found were 078/126 (22.2%), 010 (19.4%), and 001 (8.3%). All isolates were susceptible to metronidazole, vancomycin, fidaxomicin, and to the new semisynthetic thiopeptide antibiotic LFF571, whereas 19.4% of them were resistant to moxifloxacin, 30.5% to clindamycin, 38.8% to erythromycin, and 100% to ciprofloxacin. This study points out that edible molluscs could be a potential source of toxigenic C. difficile ribotypes and a potential risk for human health.

  16. Survey of Clostridium difficile in retail seafood in College Station, Texas.

    PubMed

    Norman, Keri N; Harvey, Roger B; Andrews, Kathleen; Hume, Michael E; Callaway, Todd R; Anderson, Robin C; Nisbet, David J

    2014-01-01

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America with the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer to humans. The objective of the present study was to investigate the prevalence of C. difficile in retail seafood from grocery stores in College Station, Texas. C. difficile was found in 4.5% (3/67) of shellfish and finfish samples. The positive samples included one each from fresh mussel, frozen salmon and frozen shrimp. The mussel and salmon isolates were characterized as toxinotype V and pulsed-field gel electrophoresis (PFGE) type-NAP7. The shrimp isolate was identified as toxinotype XII, but had an unknown PFGE type. Susceptibilities to 11 antimicrobial agents were identical for the mussel and salmon isolates and were sensitive to eight of 11 antimicrobials (including ampicillin) and intermediate to clindamycin. However, the shrimp isolate was resistant to clindamycin and ampicillin. This study demonstrates that seafood, like other food commodities, can be contaminated by C. difficile.

  17. A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile.

    PubMed

    Donald, Robert G K; Flint, Mike; Kalyan, Narender; Johnson, Erik; Witko, Susan E; Kotash, Cheryl; Zhao, Ping; Megati, Shakuntala; Yurgelonis, Irina; Lee, Phillip Kwok; Matsuka, Yury V; Severina, Elena; Deatly, Anne; Sidhu, Mini; Jansen, Kathrin U; Minton, Nigel P; Anderson, Annaliesa S

    2013-07-01

    The Clostridium difficile toxins A and B are primarily responsible for symptoms of C. difficile associated disease and are prime targets for vaccine development. We describe a plasmid-based system for the production of genetically modified toxins in a non-sporulating strain of C. difficile that lacks the toxin genes tcdA and tcdB. TcdA and TcdB mutations targeting established glucosyltransferase cytotoxicity determinants were introduced into recombinant plasmids and episomally expressed toxin mutants purified from C. difficile transformants. TcdA and TcdB mutants lacking glucosyltransferase and autoproteolytic processing activities were ~10 000-fold less toxic to cultured human IMR-90 cells than corresponding recombinant or native toxins. However, both mutants retained residual cytotoxicity that could be prevented by preincubating the antigens with specific antibodies or by formalin treatment. Such non-toxic formalin-treated mutant antigens were immunogenic and protective in a hamster model of infection. The remaining toxicity of untreated TcdA and TcdB mutant antigens was associated with cellular swelling, a phenotype consistent with pore-induced membrane leakage. TcdB substitution mutations previously shown to block vesicular pore formation and toxin translocation substantially reduced residual toxicity. We discuss the implications of these results for the development of a C. difficile toxoid vaccine.

  18. Clostridium difficile in foods and animals: history and measures to reduce exposure.

    PubMed

    Rodriguez-Palacios, Alex; Borgmann, Stefan; Kline, Terence R; LeJeune, Jeffrey T

    2013-06-01

    Many articles have summarized the changing epidemiology of Clostridium difficile infections (CDI) in humans, but the emerging presence of C. difficile in foods and animals and possible measures to reduce human exposure to this important pathogen have been infrequently addressed. CDIs have traditionally been assumed to be restricted to health-care settings. However, recent molecular studies indicate that this is no longer the case; animals and foods might be involved in the changing epidemiology of CDIs in humans; and genome sequencing is disproving person-to-person transmission in hospitals. Although zoonotic and foodborne transmission have not been confirmed, it is evident that susceptible people can be inadvertently exposed to C. difficile from foods, animals, or their environment. Strains of epidemic clones present in humans are common in companion and food animals, raw meats, poultry products, vegetables, and ready-to-eat foods, including salads. In order to develop science-based prevention strategies, it is critical to understand how C. difficile reaches foods and humans. This review contextualizes the current understanding of CDIs in humans, animals, and foods. Based on available information, we propose a list of educational measures that could reduce the exposure of susceptible people to C. difficile. Enhanced educational efforts and behavior change targeting medical and non-medical personnel are needed.

  19. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection

    PubMed Central

    Chilton, C. H.; Crowther, G. S.; Śpiewak, K.; Brindell, M.; Singh, G.; Wilcox, M. H.; Monaghan, T. M.

    2016-01-01

    Objectives Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe3+ saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe3+ saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. Methods Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. Results In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. Conclusions Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI. PMID:26759363

  20. [Clostridium difficile diarrhea: frequency of detection in a medical center in Buenos Aires, Argentina].

    PubMed

    Fernandez Canigia, L; Nazar, J; Arce, M; Dadamio, J; Smayevsky, J; Bianchini, H

    2001-01-01

    Clostridium difficile has been recognized as the most important enteric pathogen of nosocomial antibiotic-associated diarrhea (CDAD) in adults from industrialized countries. The importance of C. difficile as a cause of diarrhea in ambulatory patients appears underestimated or under-recognized. Since the 1980's, outbreaks of CDAD have been increasingly reported, but there are few data available in Argentina. We developed a retrospective study to provide some information about CDAD in our country. From July 1998 to November 1999, a total of 245 fecal specimens from hospitalized and some ambulatory patients were tested in order to confirm the diagnosis of CDAD. C. difficile cytotoxin (toxin B) was identified by detecting its cytopathic effect on monolayers of McCoy culture cells. For culture and isolation of C. difficile, stool samples were prepared by ethanol shock prior to plating onto a selective medium which contained blood, cefoxitin and fructose. Of the 245 samples, 14 (5.8%) were identified as positive by the cell cytotoxicity assay. Using the criteria of isolation of cytotoxigenic C. difficile positivity increased to 6.5% (16 samples). Thirteen of the positive results were from hospitalized patients (81.3%) and 3 (18.7%) from outpatients. The mean age of inpatients was 72.9 years (ranging from 47 to 88). All patients had received 2 or more antimicrobial agents (most of them beta-lactams) 2 months before the appearance of diarrhea. There was one patient who had received only chemotherapy. The prevalence of CDAD in this study was less than in others previously reported. This difference may be due to the fact that not all general practitioners include testing for C. difficile when the patient with diarrhea had previously received antibiotics. More educational programs should be directed to all physicians, concerning the role of C. difficile as an important enteric pathogen in patients who have undergone treatment with antimicrobial or chemotherapeutic agents.

  1. Molecular Epidemiology of Clostridium difficile Infection in a Major Chinese Hospital: an Underrecognized Problem in Asia?

    PubMed Central

    Marriott, Clare; Liu, Wen En; Jian, Zi Juan; Gao, Qian; Ling, Thomas Kin Wah; Chow, Viola; So, Erica; Chan, Raphael; Hardy, Katie; Xu, Li; Manzoor, Susan

    2013-01-01

    Clostridium difficile infection is almost unrecognized in mainland China. We have undertaken a study in a large Chinese teaching hospital in Changsha, Hunan, China, to identify cases of C. difficile, record patient characteristics, and define the molecular epidemiology with respect to ribotype distribution and cross-infection. Between April 2009 and February 2010, we examined fecal samples from 70 hospitalized patients with diarrhea who were receiving or had received antibiotics within the previous 6 weeks. Clinical information was collected and the samples were cultured for C. difficile retrospectively. Isolates were ribotyped, and multiple-locus variable-number tandem-repeat assay (MLVA) subtyping was performed on clusters of the same ribotype. The mean age of patients from whom C. difficile was cultured was 58 years, with only 4/21 patients aged >65 years. All patients, with a single exception, had received a third-generation cephalosporin and/or a quinolone antibiotic. Twenty-one isolates of C. difficile were recovered, and seven different ribotypes were identified, the dominant types being 017 (48%), 046 (14%), and 012 (14%). We identified two clusters of cross-infection with indistinguishable isolates of ribotype 017, with evidence of spread both within and between wards. We have identified C. difficile as a possibly significant problem, with cross-infection and a distinct ribotype distribution, in a large Chinese hospital. C. difficile may be underrecognized in China, and further epidemiological studies across the country together with the introduction of routine diagnostic testing are needed to ascertain the size of this potentially significant problem. PMID:23903542

  2. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses

    PubMed Central

    Rojo, David; Gosalbes, María J; Ferrari, Rafaela; Pérez-Cobas, Ana E; Hernández, Ester; Oltra, Rosa; Buesa, Javier; Latorre, Amparo; Barbas, Coral; Ferrer, Manuel; Moya, Andrés

    2015-01-01

    Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value <0.05) among the three groups, regardless of patient characteristics, duration of the disease, antibiotic therapy and medical history. This classification is associated with differences in the production of distinct molecules with presumptive global importance in the gut environment, disease progression and inflammation. Moreover, although severe impaired metabolite production and biological deficits were associated with the carriage of C. difficile that did not produce toxins, only previously unrecognised selective features, namely, choline- and acetylputrescine-deficient gut environments, characterised the carriage of toxin-producing C. difficile. Additional results showed that the changes induced by C. difficile become marked at the highest level of the functional hierarchy, namely the metabolic activity exemplified by the gut microbial metabolome regardless of heterogeneities that commonly appear below the functional level (gut bacterial composition). We discuss possible explanations for this effect and suggest that the changes imposed by CDAD are much more defined and predictable than previously thought. PMID:25756679

  3. Reconsidering the Sporulation Characteristics of Hypervirulent Clostridium difficile BI/NAP1/027

    PubMed Central

    Cartman, Stephen T.; Minton, Nigel P.

    2011-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and a major burden to healthcare services worldwide. In recent years, C. difficile strains belonging to the BI/NAP1/027 type have become highly represented among clinical isolates. These so-called ‘hypervirulent’ strains are associated with outbreaks of increased disease severity, higher relapse rates and an expanded repertoire of antibiotic resistance. Spores, formed during sporulation, play a pivotal role in disease transmission and it has been suggested that BI/NAP1/027 strains are more prolific in terms of sporulation in vitro than ‘non-epidemic’ C. difficile types. Work in our laboratory has since provided credible evidence to the contrary suggesting that the strain-to-strain variation in C. difficile sporulation characteristics is not type-associated. However, the BI/NAP1/027 type is still widely stated to have an increased rate of sporulation. In this study, we analysed the sporulation rates of 53 C. difficile strains, the largest sample size used to-date in such a study, including 28 BI/NAP1/027 isolates. Our data confirm that significant variation exists in the rate at which different C. difficile strains form spores. However, we clearly show that the sporulation rate of the BI/NAP1/027 type was no higher than that of non-BI/NAP1/027 strains. In addition, we observed substantial variation in sporulation characteristics within the BI/NAP1/027 type. This work highlights the danger of assuming that all strains of one type behave similarly without studying adequate sample sizes. Furthermore, we stress the need for more rigorous experimental procedures in order to quantify C. difficile sporulation more accurately in the future. PMID:21949780

  4. Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species.

    PubMed

    Adams, Hannah M; Li, Xiang; Mascio, Carmela; Chesnel, Laurent; Palmer, Kelli L

    2015-07-01

    Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci.

  5. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence

    PubMed Central

    Bertolo, Lisa; Monteiro, Mario A.; Agellon, Al; Viswanathan, V. K.; Vedantam, Gayatri

    2016-01-01

    Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence. PMID:27741317

  6. Mutations Associated with Reduced Surotomycin Susceptibility in Clostridium difficile and Enterococcus Species

    PubMed Central

    Adams, Hannah M.; Li, Xiang; Mascio, Carmela; Chesnel, Laurent

    2015-01-01

    Clostridium difficile infection (CDI) is an urgent public health concern causing considerable clinical and economic burdens. CDI can be treated with antibiotics, but recurrence of the disease following successful treatment of the initial episode often occurs. Surotomycin is a rapidly bactericidal cyclic lipopeptide antibiotic that is in clinical trials for CDI treatment and that has demonstrated superiority over vancomycin in preventing CDI relapse. Surotomycin is a structural analogue of the membrane-active antibiotic daptomycin. Previously, we utilized in vitro serial passage experiments to derive C. difficile strains with reduced surotomycin susceptibilities. The parent strains used included ATCC 700057 and clinical isolates from the restriction endonuclease analysis (REA) groups BI and K. Serial passage experiments were also performed with vancomycin-resistant and vancomycin-susceptible Enterococcus faecium and Enterococcus faecalis. The goal of this study is to identify mutations associated with reduced surotomycin susceptibility in C. difficile and enterococci. Illumina sequence data generated for the parent strains and serial passage isolates were compared. We identified nonsynonymous mutations in genes coding for cardiolipin synthase in C. difficile ATCC 700057, enoyl-(acyl carrier protein) reductase II (FabK) and cell division protein FtsH2 in C. difficile REA type BI, and a PadR family transcriptional regulator in C. difficile REA type K. Among the 4 enterococcal strain pairs, 20 mutations were identified, and those mutations overlap those associated with daptomycin resistance. These data give insight into the mechanism of action of surotomycin against C. difficile, possible mechanisms for resistance emergence during clinical use, and the potential impacts of surotomycin therapy on intestinal enterococci. PMID:25941217

  7. Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum

    PubMed Central

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C.; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P.

    2014-01-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  8. Fidaxomicin inhibits Clostridium difficile toxin A-mediated enteritis in the mouse ileum.

    PubMed

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P; Pothoulakis, Charalabos

    2014-08-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  9. Nondigestible Oligosaccharides Enhance Bacterial Colonization Resistance against Clostridium difficile In Vitro

    PubMed Central

    Hopkins, Mark J.; Macfarlane, George T.

    2003-01-01

    Clostridium difficile is the principal etiologic agent of pseudomembranous colitis and is a major cause of nosocomial antibiotic-associated diarrhea. A limited degree of success in controlling C. difficile infection has been achieved by using probiotics; however, prebiotics can also be used to change bacterial community structure and metabolism in the large gut, although the effects of these carbohydrates on suppression of clostridial pathogens have not been well characterized. The aims of this study were to investigate the bifidogenicity of three nondigestible oligosaccharide (NDO) preparations in normal and antibiotic-treated fecal microbiotas in vitro and their abilities to increase barrier resistance against colonization by C. difficile by using cultural and molecular techniques. Fecal cultures from three healthy volunteers were challenged with a toxigenic strain of C. difficile, and molecular probes were used to monitor growth of the pathogen, together with growth of bifidobacterial and bacteroides populations, over a time course. Evidence of colonization resistance was assessed by determining viable bacterial counts, short-chain fatty acid formation, and cytotoxic activity. Chemostat studies were then performed to determine whether there was a direct correlation between bifidobacteria and C. difficile suppression. NDO were shown to stimulate bifidobacterial growth, and there were concomitant reductions in C. difficile populations. However, in the presence of clindamycin, activity against bifidobacteria was augmented in the presence of NDO, resulting in a further loss of colonization resistance. In the absence of clindamycin, NDO enhanced colonization resistance against C. difficile, although this could not be attributed to bifidobacterium-induced inhibitory phenomena. PMID:12676665

  10. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses.

    PubMed

    Rojo, David; Gosalbes, María J; Ferrari, Rafaela; Pérez-Cobas, Ana E; Hernández, Ester; Oltra, Rosa; Buesa, Javier; Latorre, Amparo; Barbas, Coral; Ferrer, Manuel; Moya, Andrés

    2015-10-01

    Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value <0.05) among the three groups, regardless of patient characteristics, duration of the disease, antibiotic therapy and medical history. This classification is associated with differences in the production of distinct molecules with presumptive global importance in the gut environment, disease progression and inflammation. Moreover, although severe impaired metabolite production and biological deficits were associated with the carriage of C. difficile that did not produce toxins, only previously unrecognised selective features, namely, choline- and acetylputrescine-deficient gut environments, characterised the carriage of toxin-producing C. difficile. Additional results showed that the changes induced by C. difficile become marked at the highest level of the functional hierarchy, namely the metabolic activity exemplified by the gut microbial metabolome regardless of heterogeneities that commonly appear below the functional level (gut bacterial composition). We discuss possible explanations for this effect and suggest that the changes imposed by CDAD are much more defined and predictable than previously thought.

  11. Determination of the extent of Clostridium difficile colonisation and toxin accumulation in sows and neonatal piglets.

    PubMed

    Grześkowiak, Łukasz; Zentek, Jürgen; Vahjen, Wilfried

    2016-08-01

    Clostridium difficile is an important spore-forming, opportunistic pathogen in animal husbandry and health care. In pig farming, only neonatal piglets are affected, and diarrhoea and necrotising lesions are common symptoms leading to dehydration and in some cases death. This study aimed at the assessment of the quantitative development of C. difficile colonisation in neonatal piglets by determining the shedding of spores and C. difficile toxins A (TcdA) and B (TcdB) concentrations in sow (n = 5-6) and piglet pen faeces (n = 5-6) at different time points. Spores were quantified on selective agar plates and toxins using ELISA method. C. difficile was not detected in the faeces of all but one sow during the perinatal period. Faeces of 2- and 4-day-old piglets contained 0.65 log cells/g and 5.88 log cells/g of C. difficile, respectively. Toxins were detected on day 4 at a concentration of 2.13 log ng/g (TcdA) and 2.06 log ng/g (TcdB). On day 6, concentration of C. difficile reached 6.14 log CFU/g and toxins 2.02 log ng/g (TcdA) and 2.20 log ng/g (TcdB). Two-week-old piglets showed 4.72 log CFU/g of C. difficile but toxins could not be detected. At 21 days of age, both C. difficile and toxins were undetectable. The concentration and the prevalence of C. difficile were positively associated with the prevalence of toxins in piglets. A very short time window for colonisation by C. difficile, including toxin-producing strains can be observed in neonatal piglets. The significance for animal health and the risk of a carrier status need to be addressed in future studies.

  12. Evaluation of the VIDAS glutamate dehydrogenase assay for the detection of Clostridium difficile.

    PubMed

    Shin, Bo-Moon; Lee, Eun Joo; Moon, Jung Wha; Lee, Seon Yeong

    2016-08-01

    We evaluated the performance of the VIDAS GDH assay for the detection of Clostridium difficile. In total, 350 fecal specimens collected from patients clinically suspected of having CDI were analyzed by C. difficile culture and enzyme-linked fluorescent immunoassay (VIDAS GDH); the results were compared with those of toxigenic C. difficile culture (TC), PCR (Xpert C. difficile assay), and toxin AB EIA (VIDAS CDAB). The numbers of culture-positive and culture-negative samples were 108 and 242, respectively. The concordance between the GDH assay and C. difficile culture was 90.3%. With PCR, 12 more samples were found to be positive in GDH-positive/C. difficile culture-negative specimens. Thus, the concordance between GDH assay and C. difficile culture/PCR was 93.7%. The sensitivity, specificity, positive predictive value, and negative predictive value of the VIDAS GDH assay were 97.2%, 87.2%, 77.2%, and 98.6%, respectively, based on the C. difficile culture, and 97.5%, 91.7%, 86.0%, and 98.6%, respectively, based on C. difficile culture/PCR. Positivity rates of the GDH assay were partially associated with those of semi-quantitative C. difficile cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). We evaluated the two-step or three-step algorithm using GDH assay as a first step. No toxin EIA-positive case was found among GDH-negative samples, and 60.8% (48/79) were TC- and/or PCR-positive among the GDH-positive/toxin EIA-negative samples. Thus, approximately 25% of the 350 samples required a confirmatory test (TC or PCR) in the GDH-toxin EIA algorithm, whereas only 2.3% of the total samples in GDH-PCR algorithm was discrepant and required another confirmatory test like TC.

  13. Evaluation of a new automated homogeneous PCR assay, GenomEra C. difficile, for rapid detection of Toxigenic Clostridium difficile in fecal specimens.

    PubMed

    Hirvonen, Jari J; Mentula, Silja; Kaukoranta, Suvi-Sirkku

    2013-09-01

    We evaluated a new automated homogeneous PCR assay to detect toxigenic Clostridium difficile, the GenomEra C. difficile assay (Abacus Diagnostica, Finland), with 310 diarrheal stool specimens and with a collection of 33 known clostridial and nonclostridial isolates. Results were compared with toxigenic culture results, with discrepancies being resolved by the GeneXpert C. difficile PCR assay (Cepheid). Among the 80 toxigenic culture-positive or GeneXpert C. difficile assay-positive fecal specimens, 79 were also positive with the GenomEra C. difficile assay. Additionally, one specimen was positive with the GenomEra assay but negative with the confirmatory methods. Thus, the sensitivity and specificity were 98.8% and 99.6%, respectively. With the culture collection, no false-positive or -negative results were observed. The analytical sensitivity of the GenomEra C. difficile assay was approximately 5 CFU per PCR test. The short hands-on (<5 min for 1 to 4 samples) and total turnaround (<1 h) times, together with the high positive and negative predictive values (98.8% and 99.6%, respectively), make the GenomEra C. difficile assay an excellent option for toxigenic C. difficile detection in fecal specimens.

  14. Clostridium difficile Carriage in Elderly Subjects and Associated Changes in the Intestinal Microbiota

    PubMed Central

    Rea, Mary C.; O'Sullivan, Orla; Shanahan, Fergus; O'Toole, Paul W.; Stanton, Catherine; Hill, Colin

    2012-01-01

    Clostridium difficile is an important nosocomial pathogen associated particularly with diarrheal disease in elderly individuals in hospitals and long-term care facilities. We examined the carriage rate of Clostridium difficile by culture as a function of fecal microbiota composition in elderly subjects recruited from the community, including outpatient, short-term respite, and long-term hospital stay subjects. The carriage rate ranged from 1.6% (n = 123) for subjects in the community, to 9.5% (n = 43) in outpatient settings, and increasing to 21% (n = 151) for patients in short- or long-term care in hospital. The dominant 072 ribotype was carried by 43% (12/28) of subjects, while the hypervirulent strain R027 (B1/NAP1/027) was isolated from 3 subjects (11%), 2 of whom displayed C. difficile associated diarrhea (CDAD) symptoms at the time of sampling. Emerging ribotypes with enhanced virulence (078 and 018) were also isolated from two asymptomatic subjects. Pyrosequencing of rRNA gene amplicons was used to determine the composition of the fecal microbiota as a surrogate for the microbial population structure of the distal intestine. Asymptomatic subjects (n = 20) from whom C. difficile was isolated showed no dramatic difference at the phylum or family taxonomic level compared to those that were culture negative (n = 252). However, in contrast, a marked reduction in microbial diversity at genus level was observed in patients who had been diagnosed with CDAD at the time of sampling and from whom C. difficile R027 was isolated. PMID:22162545

  15. A case of imported Clostridium difficile PCR-ribotype 027 infection within the Czech Republic which has a high prevalence of C. difficile ribotype 176.

    PubMed

    Krutova, Marcela; Nyc, Otakar; Kuijper, Ed J; Geigerova, Lenka; Matejkova, Jana; Bergerova, Tamara; Arvand, Mardjan

    2014-12-01

    The first case of Clostridium difficile RT027 infection in the Czech Republic (CZ) was identified. The patient had been hospitalised in Germany prior to moving to CZ. Multiple-Locus Variable number tandem repeat Analysis revealed a genetic relatedness between the patient's isolate and RT027 isolate collected in the German hospital.

  16. Survival of anti-Clostridium difficile bovine immunoglobulin concentrate in the human gastrointestinal tract.

    PubMed Central

    Kelly, C P; Chetham, S; Keates, S; Bostwick, E F; Roush, A M; Castagliuolo, I; LaMont, J T; Pothoulakis, C

    1997-01-01

    To be therapeutically active, oral hyperimmune bovine immunoglobulin concentrate (BIC) must survive its passage through the intestinal tract. This led us to study the gastrointestinal stability of orally administered BIC directed against Clostridium difficile toxins (BIC-C. difficile). BIC-C. difficile was stable at neutral pH in vitro but was degraded at low pH, particularly in the presence of pepsin. Healthy volunteers (n = 6) took BIC-C. difficile (45 or 8 g) as a single oral dose. Total bovine immunoglobulin G (IgG) and specific anti-C. difficile IgG were measured in the stool. BIC was given under the following conditions: in the fasting state, in the fed state, with antacid, during omeprazole therapy, or in enteric capsules (released at pH > 6). The mean fecal bovine IgG content of 3-day stool collections was similar in the fasting (536 mg; 3.8% of the ingested dose of BIC), fed (221 mg; 1.6%), and antacid (381 mg; 2.7%) groups. Omeprazole therapy was associated with increased fecal bovine IgG levels (1253 mg; 8.8%), but this difference did not reach statistical significance (P = 0.07). Administration of 8 g of BIC-C. difficile in enteric capsules resulted in substantially higher fecal bovine IgG levels (1,124 mg; 32.7% of the oral dose) than those obtained after administration of nonencapsulated BIC (22 MG; 0.6%; P = 0.004). An inverse relationship was noted between intestinal transit time and fecal bovine IgG content (R = 0.83; P = 0.04 [data from omeprazole group]). Filtrates of stool samples collected after oral administration of BIC-C. difficile neutralized the cytotoxicity of C. difficile toxins A and B, whereas control stool filtrates did not. Bovine colostral IgG undergoes partial degradation in the intestinal tract. Exposure to acidic gastric secretions and prolonged colonic transit may both contribute to IgG degradation. Nonetheless, humans taking BIC-C. difficile orally have neutralizing antitoxin activity in their stool. PMID:9021173

  17. Characterization of a Cell Surface Protein of Clostridium difficile with Adhesive Properties

    PubMed Central

    Waligora, Anne-Judith; Hennequin, Claire; Mullany, Peter; Bourlioux, Pierre; Collignon, Anne; Karjalainen, Tuomo

    2001-01-01

    Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60°C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60°C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains of C. difficile representing 11 serogroups showed that the 3′ portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase in Escherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence of C. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia. PMID:11254569

  18. Subinhibitory Concentrations of LFF571 Reduce Toxin Production by Clostridium difficile

    PubMed Central

    Sachdeva, Meena

    2014-01-01

    LFF571 is a novel semisynthetic thiopeptide antibacterial that is undergoing investigation for safety and efficacy in patients with moderate Clostridium difficile infections. LFF571 inhibits bacterial protein synthesis by interacting with elongation factor Tu (EF-Tu) and interrupting complex formation between EF-Tu and aminoacyl-tRNA. Given this mechanism of action, we hypothesized that concentrations of LFF571 below those necessary to inhibit bacterial growth would reduce steady-state toxin levels in C. difficile cultures. We investigated C. difficile growth and toxin A and B levels in the presence of LFF571, fidaxomicin, vancomycin, and metronidazole. LFF571 led to strain-dependent effects on toxin production, including decreased toxin levels after treatment with subinhibitory concentrations, and more rapid declines in toxin production than in inhibition of colony formation. Fidaxomicin, which is an RNA synthesis inhibitor, conferred a similar pattern to LFF571 with respect to toxin levels versus viable cell counts. The incubation of two toxigenic C. difficile strains with subinhibitory concentrations of vancomycin, a cell wall synthesis inhibitor, increased toxin levels in the supernatant over those of untreated cultures. A similar phenomenon was observed with one metronidazole-treated strain of C. difficile. These studies indicate that LFF571 and fidaxomicin generally result in decreased C. difficile toxin levels in culture supernatants, whereas treatment of some strains with vancomycin or metronidazole had the potential to increase toxin levels. Although the relevance of these findings remains to be studied in patients, reducing toxin levels with sub-growth-inhibitory concentrations of an antibiotic is hypothesized to be beneficial in alleviating symptoms. PMID:25512411

  19. A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins

    PubMed Central

    Ryan, Anthony; Lynch, Mark; Smith, Sinead M.; Amu, Sylvie; Nel, Hendrik J.; McCoy, Claire E.; Dowling, Jennifer K.; Draper, Eve; O'Reilly, Vincent; McCarthy, Ciara; O'Brien, Julie; Ní Eidhin, Déirdre; O'Connell, Mary J.; Keogh, Brian; Morton, Charles O.; Rogers, Thomas R.; Fallon, Padraic G.; O'Neill, Luke A.

    2011-01-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system. PMID:21738466

  20. Pharmacokinetics of LFF571 and Vancomycin in Patients with Moderate Clostridium difficile Infections

    PubMed Central

    Bhansali, Suraj G.; Mullane, Kathleen; Ting, Lillian S. L.; Leeds, Jennifer A.; Dabovic, Kristina; Praestgaard, Jens

    2014-01-01

    Clostridium difficile infection causes diarrheal disease with potentially fatal complications. Although treatments are available, including vancomycin, metronidazole, and fidaxomicin, the recurrence of disease after therapy remains a problem. LFF571 is a novel thiopeptide antibacterial that shows in vitro potency against C. difficile that is comparable to or greater than that of other clinically used antibiotics. Here, we compare the pharmacokinetics (PK) of LFF571 and vancomycin in patients with C. difficile infection as part of an early efficacy study. This multicenter, randomized, evaluator-blind, and active-controlled study evaluated the safety, efficacy, and pharmacokinetics of LFF571 in adults with primary episodes or first relapses of moderate C. difficile infections. Patients were randomized to receive 200 mg of LFF571 or 125 mg of vancomycin four times daily for 10 days. The PK parameters were calculated from drug concentrations measured in serum and fecal samples. The systemic exposure following oral administration of 200 mg of LFF571 four times per day for 10 days in patients with C. difficile infection was limited. The highest LFF571 serum concentration observed was 41.7 ng/ml, whereas the levels in feces at the end of treatment were between 107 and 12,900 μg/g. In comparison, the peak vancomycin level observed in serum was considerably higher, at 2.73 μg/ml; the levels of vancomycin in feces were not measured. Similar to healthy volunteers, patients with C. difficile infections exhibited high fecal concentrations and low serum levels of LFF571. These results are consistent with the retention of LFF571 in the lumen of the gastrointestinal tract. (This study has been registered at ClinicalTrials.gov under registration no. NCT01232595.) PMID:25534724

  1. Clostridium difficile Modulates Host Innate Immunity via Toxin-Independent and Dependent Mechanism(s)

    PubMed Central

    Jafari, Nazila V.; Kuehne, Sarah A.; Bryant, Clare E.; Elawad, Mamoun; Wren, Brendan W.; Minton, Nigel P.; Allan, Elaine; Bajaj-Elliott, Mona

    2013-01-01

    Clostridium difficile infection (CDI) is the leading cause of hospital and community-acquired antibiotic-associated diarrhoea and currently represents a significant health burden. Although the role and contribution of C. difficile toxins to disease pathogenesis is being increasingly understood, at present other facets of C. difficile-host interactions, in particular, bacterial-driven effects on host immunity remain less studied. Using an ex-vivo model of infection, we report that the human gastrointestinal mucosa elicits a rapid and significant cytokine response to C. difficile. Marked increase in IFN-γ with modest increase in IL-22 and IL-17A was noted. Significant increase in IL-8 suggested potential for neutrophil influx while presence of IL-12, IL-23, IL-1β and IL-6 was indicative of a cytokine milieu that may modulate subsequent T cell immunity. Majority of C. difficile-driven effects on murine bone-marrow-derived dendritic cell (BMDC) activation were toxin-independent; the toxins were however responsible for BMDC inflammasome activation. In contrast, human monocyte-derived DCs (mDCs) released IL-1β even in the absence of toxins suggesting host-specific mediation. Infected DC-T cell crosstalk revealed the ability of R20291 and 630 WT strains to elicit a differential DC IL-12 family cytokine milieu which culminated in significantly greater Th1 immunity in response to R20291. Interestingly, both strains induced a similar Th17 response. Elicitation of mucosal IFN-γ/IL-17A and Th1/Th17 immunity to C. difficile indicates a central role for this dual cytokine axis in establishing antimicrobial immunity to CDI. PMID:23922820

  2. Incorrect diagnosis of Clostridium difficile infection in a university hospital in Japan.

    PubMed

    Mori, Nobuaki; Yoshizawa, Sadako; Saga, Tomoo; Ishii, Yoshikazu; Murakami, Hinako; Iwata, Morihiro; Collins, Deirdre A; Riley, Thomas V; Tateda, Kazuhiro

    2015-10-01

    Physicians often fail to suspect Clostridium difficile infection (CDI) and many microbiology laboratories use suboptimal diagnostic techniques. To estimate the extent of and reasons for incorrect diagnosis of CDI in Japan, we investigated toxigenic C. difficile isolated from all stool culture samples and clinical course. Over a 12-month period in 2010, all stool culture samples (n = 975) submitted from inpatients in a university hospital in Japan were cultured for C. difficile and routine microbiological testing was conducted. In total, 177 C. difficile isolates were recovered, and 127 isolates were toxigenic. Among the toxin-A-positive/toxin-B-positive isolates, 12 were also positive for the binary toxin gene. However, clinically important ribotypes, such as 027 and 078, were not identified. A total of 58 (45.7%) cases with toxigenic C. difficile had unformed stool, and the incidence CDI was 1.6 cases per 10,000 patient-days. Of these 58 cases, 40 were not diagnosed in routine testing due to a lack of clinical suspicion (24.1%, 14/58) or a negative C. difficile toxin assay result (44.8%, 26/58). A stool toxin assay was performed in 54 patients (78.2%, 54/69) who did not have unformed stool. The present study demonstrated that a significant number of CDI cases in Japan might be overlooked or misdiagnosed in clinical practice due to a lack of clinical suspicion and limitations of microbiological testing for CDI in Japan. Providing education to promote awareness of CDI among physicians is important to improve the accuracy of diagnosis in Japan.

  3. Novel Strategies for Enhanced Removal of Persistent Bacillus anthracis Surrogates and Clostridium difficile Spores from Skin

    PubMed Central

    Nerandzic, Michelle M.; Rackaityte, Elze; Jury, Lucy A.; Eckart, Kevin; Donskey, Curtis J.

    2013-01-01

    Background Removing spores of Clostridium difficile and Bacillus anthracis from skin is challenging because they are resistant to commonly used antimicrobials and soap and water washing provides only modest efficacy. We hypothesized that hygiene interventions incorporating a sporicidal electrochemically generated hypochlorous acid solution (Vashe®) would reduce the burden of spores on skin. Methods Hands of volunteers were inoculated with non-toxigenic C. difficile spores or B. anthracis spore surrogates to assess the effectiveness of Vashe solution for reducing spores on skin. Reduction in spores was compared for Vashe hygiene interventions versus soap and water (control). To determine the effectiveness of Vashe solution for removal of C. difficile spores from the skin of patients with C. difficile infection (CDI), reductions in levels of spores on skin were compared for soap and water versus Vashe bed baths. Results Spore removal from hands was enhanced with Vashe soak (>2.5 log10 reduction) versus soap and water wash or soak (~2.0 log10 reduction; P <0.05) and Vashe wipes versus alcohol wipes (P <0.01). A combined approach of soap and water wash followed by soaking in Vashe removed >3.5 log10 spores from hands (P <0.01 compared to washing or soaking alone). Bed baths using soap and water (N =26 patients) did not reduce the percentage of positive skin cultures for CDI patients (64% before versus 57% after bathing; P =0.5), whereas bathing with Vashe solution (N =21 patients) significantly reduced skin contamination (54% before versus 8% after bathing; P =0.0001). Vashe was well-tolerated with no evidence of adverse effects on skin. Conclusions Vashe was safe and effective for reducing the burden of B. anthracis surrogates and C. difficile spores on hands. Bed baths with Vashe were effective for reducing C. difficile on skin. These findings suggest a novel strategy to reduce the burden of spores on skin. PMID:23844234

  4. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms.

    PubMed

    Thitaram, S N; Frank, J F; Siragusa, G R; Bailey, J S; Dargatz, D A; Lombard, J E; Haley, C A; Lyon, S A; Fedorka-Cray, P J

    2016-06-16

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. C. difficile can also inhabit healthy food animals and transmission to humans is possible. As a result of the complexity and cost of testing, C. difficile is rarely tested for antimicrobial susceptibility. A total of 376 C. difficile strains (94 each from swine and dairy feces, and 188 from beef cattle feces) were isolated from healthy food animals on farms during studies conducted by the National Animal Health Monitoring System. Using the Etest (AB Biodisk, Solna, Sweden), samples were tested for susceptibility to nine antimicrobials implicated as risk factors for CDAD (linezolid, amoxicillin-clavulanic acid, ampicillin, clindamycin, erythromycin, levofloxacin, metronidazole, rifampicin, and vancomycin). Vancomycin was active against all isolates of C. difficile (MIC90=3.0μg/ml) while almost all isolates (n=369; 98.1%) were resistant to levofloxacin. With the exception of vancomycin, resistance varied by animal species as follows: linezolid (8.5% resistance among swine versus 2.1 and 1.1% resistance among dairy and beef, respectively), clindamycin (56.4% resistance among swine versus 80% and 90.9% resistance among dairy and beef, respectively), and rifampicin (2.1% and 0% resistance among swine and dairy cattle isolates, respectively versus 14.3% resistance among beef isolates). Regardless of species, multiple drug resistance was observed most often to combinations of clindamycin and levofloxacin (n=195; 51.9%) and ampicillin, clindamycin and levofloxacin (n=41; 10.9%). The reason for the variability of resistance between animal species is unknown and requires further research. PMID:27043382

  5. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms.

    PubMed

    Thitaram, S N; Frank, J F; Siragusa, G R; Bailey, J S; Dargatz, D A; Lombard, J E; Haley, C A; Lyon, S A; Fedorka-Cray, P J

    2016-06-16

    Clostridium difficile is commonly associated with a spectrum of disease in humans referred to as C. difficile-associated disease (CDAD) and use of antimicrobials is considered a risk factor for development of disease in humans. C. difficile can also inhabit healthy food animals and transmission to humans is possible. As a result of the complexity and cost of testing, C. difficile is rarely tested for antimicrobial susceptibility. A total of 376 C. difficile strains (94 each from swine and dairy feces, and 188 from beef cattle feces) were isolated from healthy food animals on farms during studies conducted by the National Animal Health Monitoring System. Using the Etest (AB Biodisk, Solna, Sweden), samples were tested for susceptibility to nine antimicrobials implicated as risk factors for CDAD (linezolid, amoxicillin-clavulanic acid, ampicillin, clindamycin, erythromycin, levofloxacin, metronidazole, rifampicin, and vancomycin). Vancomycin was active against all isolates of C. difficile (MIC90=3.0μg/ml) while almost all isolates (n=369; 98.1%) were resistant to levofloxacin. With the exception of vancomycin, resistance varied by animal species as follows: linezolid (8.5% resistance among swine versus 2.1 and 1.1% resistance among dairy and beef, respectively), clindamycin (56.4% resistance among swine versus 80% and 90.9% resistance among dairy and beef, respectively), and rifampicin (2.1% and 0% resistance among swine and dairy cattle isolates, respectively versus 14.3% resistance among beef isolates). Regardless of species, multiple drug resistance was observed most often to combinations of clindamycin and levofloxacin (n=195; 51.9%) and ampicillin, clindamycin and levofloxacin (n=41; 10.9%). The reason for the variability of resistance between animal species is unknown and requires further research.

  6. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of (/sup 35/S)methionine-labeled proteins

    SciTech Connect

    Tabaqchali, S.; O'Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of (/sup 35/S)methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile.

  7. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea

    PubMed Central

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l’Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs. PMID:27532104

  8. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea.

    PubMed

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l'Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs.

  9. Single fluorophore melting curve analysis for detection of hypervirulent Clostridium difficile.

    PubMed

    Angione, Stephanie L; Croote, Derek; Leung, Joshua W; Mermel, Leonard A; Tripathi, Anubhav

    2016-01-01

    This study demonstrates a novel detection assay able to identify and subtype strains of Clostridium difficile. Primers carefully designed for melting curve analysis amplify DNA from three C. difficile genes, tcdB, tcdC and cdtB, during quantitative (q)PCR. The tcdB gene allows for confirmation of organism presence, whilst the tcdC and cdtB genes allow for differentiation of virulence status, as deletions in the tcdC gene and the concurrent presence of the cdtB gene, which produces binary toxin, are associated with hypervirulence. Following qPCR, subtyping is then achieved by automated, inline melting curve analysis using only a single intercalating dye and verified by microchip electrophoresis. This assay represents a novel means of distinguishing between toxigenic and hypervirulent C. difficile strains NAP1/027/BI and 078 ribotype, which are highly prevalent hypervirulent strains in humans. This methodology can help rapidly detect and identify C. difficile strains that impose a significant health and economic burden in hospitals and other healthcare settings. PMID:26516039

  10. The agr locus regulates virulence and colonization genes in Clostridium difficile 027.

    PubMed

    Martin, Melissa J; Clare, Simon; Goulding, David; Faulds-Pain, Alexandra; Barquist, Lars; Browne, Hilary P; Pettit, Laura; Dougan, Gordon; Lawley, Trevor D; Wren, Brendan W

    2013-08-01

    The transcriptional regulator AgrA, a member of the LytTR family of proteins, plays a key role in controlling gene expression in some Gram-positive pathogens, including Staphylococcus aureus and Enterococcus faecalis. AgrA is encoded by the agrACDB global regulatory locus, and orthologues are found within the genome of most Clostridium difficile isolates, including the epidemic lineage 027/BI/NAP1. Comparative RNA sequencing of the wild type and otherwise isogenic agrA null mutant derivatives of C. difficile R20291 revealed a network of approximately 75 differentially regulated transcripts at late exponential growth phase, including many genes associated with flagellar assembly and function, such as the major structural subunit, FliC. Other differentially regulated genes include several involved in bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) synthesis and toxin A expression. C. difficile 027 R20291 agrA mutant derivatives were poorly flagellated and exhibited reduced levels of colonization and relapses in the murine infection model. Thus, the agr locus likely plays a contributory role in the fitness and virulence potential of C. difficile strains in the 027/BI/NAP1 lineage. PMID:23772065

  11. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide

    SciTech Connect

    Bradshaw, William J.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2015-02-19

    Two structures of Cwp84, a cysteine protease from the S-layer of C. difficile, are presented after propeptide cleavage. They reveal the movement of three loops, two in the active-site groove and one on the surface of the lectin-like domain, exposing a hydrophobic pocket. In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host–pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket.

  12. Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates.

    PubMed

    Koene, M G J; Mevius, D; Wagenaar, J A; Harmanus, C; Hensgens, M P M; Meetsma, A M; Putirulan, F F; van Bergen, M A P; Kuijper, E J

    2012-08-01

    The presence and characteristics of Clostridium difficile were investigated in 839 faecal samples from seven different animal species in the Netherlands. The number of positive samples ranged from 3.4% (cattle) to 25.0% (dogs). Twenty-two different PCR ribotypes were identified. Among 96 isolates, 53% harboured toxin genes. All C. difficile isolates from pigs, cattle and poultry were toxinogenic, whereas the majority of isolates from pet animals consisted of non-toxinogenic PCR ribotypes 010 and 039. Ribotype 012 was most prevalent in cattle and ribotype 078 in pigs. No predominant ribotypes were present in horse and poultry samples. Overall, PCR ribotypes 012, 014 and 078 were the most frequently recovered toxinogenic ribotypes from animal samples. Comparison with human isolates from the Dutch Reference Laboratory for C. difficile at Leiden University Medical Centre (LUMC) showed that these types were also recovered from human hospitalized patients in 2009/2010, encompassing 0.8%, 11.4% and 9.8% of all isolates, respectively. Application of multiple-locus variable-number tandem-repeat analysis indicated a genotypic relation of animal and human ribotype 078 strains, but a clear genotypic distinction for ribotypes 012 and 014. We conclude that toxinogenic C. difficile PCR ribotypes found in animals correspond to PCR ribotypes associated with human disease in hospitalized patients in the Netherlands. Contrary to PCR ribotype 078, significant genetic differences were observed between animal and human PCR ribotype 012 and 014 isolates.

  13. Probiotics in Clostridium difficile infection: reviewing the need for a multistrain probiotic.

    PubMed

    Hell, M; Bernhofer, C; Stalzer, P; Kern, J M; Claassen, E

    2013-03-01

    In the past two years an enormous amount of molecular, genetic, metabolomic and mechanistic data on the host-bacterium interaction, a healthy gut microbiota and a possible role for probiotics in Clostridium difficile infection (CDI) has been accumulated. Also, new hypervirulent strains of C. difficile have emerged. Yet, clinical trials in CDI have been less promising than in antibiotic associated diarrhoea in general, with more meta-analysis than primary papers on CDI-clinical-trials. The fact that C. difficile is a spore former, producing at least three different toxins has not yet been incorporated in the rational design of probiotics for (recurrent) CDI. Here we postulate that the plethora of effects of C. difficile and the vast amount of data on the role of commensal gut residents and probiotics point towards a multistrain mixture of probiotics to reduce CDI, but also to limit (nosocomial) transmission and/or endogenous reinfection. On the basis of a retrospective chart review of a series of ten CDI patients where recurrence was expected, all patients on adjunctive probiotic therapy with multistrain cocktail (Ecologic®AAD/OMNiBiOTiC® 10) showed complete clinical resolution. This result, and recent success in faecal transplants in CDI treatment, are supportive for the rational design of multistrain probiotics for CDI.

  14. The mechanisms and efficacy of probiotics in the prevention of Clostridium difficile-associated diarrhoea.

    PubMed

    Parkes, Gareth C; Sanderson, Jeremy D; Whelan, Kevin

    2009-04-01

    The proportion and severity of Clostridium difficile-associated diarrhoea (CDAD) is increasing in health-care settings. Antibiotics remain the most important risk factor for CDAD, due to their limiting the ability of the gastrointestinal flora to inhibit C difficile colonisation. Probiotics have therefore been investigated for primary and secondary prophylaxis against CDAD, with varying success. This Review looks at the current literature for in-vitro and clinical evidence for probiotic use in the prevention of CDAD. Its aim is to examine the mechanisms through which probiotics interact with C difficile and its toxin, and the association of these mechanisms with the clinical evidence for probiotics in the prevention of this disease. The Review briefly describes the recent epidemiological changes in C difficile disease, and our current understanding of its pathophysiology. It looks at the safety profile of probiotics, highlighting patients groups in which their use is inappropriate, and attempts to synthesise guidance for clinicians interested in using probiotics to prevent CDAD within health-care institutions.

  15. How do Clostridium difficile infections affect nurses' everyday hospital work: A qualitative study.

    PubMed

    Guillemin, Isabelle; Marrel, Alexia; Beriot-Mathiot, Axelle; Doucet, Carole; Kazoglou, Odysseas; Luxemburger, Christine; Reygrobellet, Camille; Arnould, Benoit

    2015-05-01

    This qualitative study explored the impact of Clostridium difficile infections on nurses' everyday work in the hospital. Twelve nurses (six in France and six in the United States) were interviewed in depth using a semi-structured interview guide. Thematic analysis of the interviews was performed. Managing diarrhoea and taking precautionary measures for infection control were the two most inconvenient aspects nurses reported with C. difficile patient management. Precautions included contact isolation, hand hygiene and reorganization/coordination of nursing care and ward. Precautions were time consuming and significantly increased nurses' workload when combined with caring for patients with uncontrollable, frequent bouts of diarrhoea. Management of C. difficile infection is extremely burdensome for nurses in their everyday work and disruptive to hospital organizations as a whole. Prevention of C. difficile infections, together with coordinated team work and communication, would therefore contribute to decreasing nurses' workload and the burden to health-care facilities associated with caring for these patients.

  16. Use of mCherryOpt Fluorescent Protein in Clostridium difficile.

    PubMed

    Ransom, Eric M; Weiss, David S; Ellermeier, Craig D

    2016-01-01

    Here we describe protocols for using the red fluorescent protein mCherryOpt in Clostridium difficile. The protocols can be readily adapted to similar fluorescent proteins (FPs), such as green fluorescent protein (GFP) and cyan fluorescent protein (CFP). There are three critical considerations for using FPs in C. difficile. (1) Choosing the right color: Blue and (especially) red are preferred because C. difficile exhibits considerable yellow-green autofluorescence. (2) Codon optimization: Most FP genes in general circulation have a GC content of ~60 %, so they are not well expressed in low-GC bacteria. (3) Fixing anaerobically grown cells prior to exposure to O2: The FPs under consideration here are non-fluorescent when produced anaerobically because O2 is required to introduce double bonds into the chromophore. Fixation prevents C. difficile cells from becoming degraded during the several hours required for chromophore maturation after cells are exposed to air. Fixation can probably be omitted for studies in which maintaining cellular architecture is not important, such as using mCherryOpt to monitor gene expression. PMID:27507333

  17. Identification of toxigenic Clostridium difficile strains by using a toxin A gene-specific probe.

    PubMed Central

    Wren, B W; Clayton, C L; Castledine, N B; Tabaqchali, S

    1990-01-01

    A 4.5-kilobase PstI fragment encoding part of the toxin A gene was isolated and used as a DNA probe in colony hybridization studies with 58 toxigenic and 17 nontoxigenic Clostridium difficile strains. All 58 toxigenic strains showed positive hybridization, in contrast to the 17 nontoxigenic strains. Southern blot analysis with the toxin A gene probe showed hybridization to a single fragment of equal intensities for HindIII-digested genomic DNAs isolated from C. difficile strains of wide-ranging toxin production. The positive hybridization signals were due to fragments of heterogeneous lengths (9 to 13 kilobases) for toxigenic strains of different types but were absent for the nontoxigenic strains. These results suggest the presence of a single copy of the toxin A gene on the genome of C. difficile strains, and the wide variation of toxin expression is not a reflection of gene copy number. The lack of toxin activity for nontoxigenic strains can be explained by the absence of at least part of the toxin A gene. The toxin A gene probe was tested against clostridial strains from 18 other species, of which only toxigenic C. sordellii strains showed positive hybridization. The specificity of the toxin A gene probe for toxigenic strains may lead to improved methods for the specific identification of toxigenic C. difficile strains from clinical specimens. Images PMID:2118549

  18. Single fluorophore melting curve analysis for detection of hypervirulent Clostridium difficile.

    PubMed

    Angione, Stephanie L; Croote, Derek; Leung, Joshua W; Mermel, Leonard A; Tripathi, Anubhav

    2016-01-01

    This study demonstrates a novel detection assay able to identify and subtype strains of Clostridium difficile. Primers carefully designed for melting curve analysis amplify DNA from three C. difficile genes, tcdB, tcdC and cdtB, during quantitative (q)PCR. The tcdB gene allows for confirmation of organism presence, whilst the tcdC and cdtB genes allow for differentiation of virulence status, as deletions in the tcdC gene and the concurrent presence of the cdtB gene, which produces binary toxin, are associated with hypervirulence. Following qPCR, subtyping is then achieved by automated, inline melting curve analysis using only a single intercalating dye and verified by microchip electrophoresis. This assay represents a novel means of distinguishing between toxigenic and hypervirulent C. difficile strains NAP1/027/BI and 078 ribotype, which are highly prevalent hypervirulent strains in humans. This methodology can help rapidly detect and identify C. difficile strains that impose a significant health and economic burden in hospitals and other healthcare settings.

  19. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes.

    PubMed

    Freeman, J; Vernon, J; Morris, K; Nicholson, S; Todhunter, S; Longshaw, C; Wilcox, M H

    2015-03-01

    Clostridium difficile infection remains a major healthcare burden. Until the recent introduction of fidaxomicin, antimicrobial treatments were limited to metronidazole and vancomycin. The emergence of epidemic C. difficile PCR ribotype 027 and its potential link to decreased antibiotic susceptibility highlight the lack of large-scale antimicrobial susceptibility and epidemiological data available. We report results of epidemiological and antimicrobial susceptibility investigations of C. difficile isolates collected prior to fidaxomicin introduction, establishing important baseline data. Thirty-nine sites in 22 countries submitted a total of 953 C. difficile isolates for PCR ribotyping, toxin testing, and susceptibility testing to metronidazole, vancomycin, fidaxomicin, rifampicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, and tigecycline. Ninety-nine known ribotypes were identified. Ribotypes 027, 014, 001/072, and 078 were most frequently isolated in line with previous European studies. There was no evidence of resistance to fidaxomicin, and reduced susceptibility to metronidazole and vancomycin was also scarce. Rifampicin, moxifloxacin, and clindamycin resistance (13%, 40%, and 50% of total isolates, respectively) were evident in multiple ribotypes. There was a significant correlation between lack of ribotype diversity and greater antimicrobial resistance (measured by cumulative resistance score). Well-known epidemic ribotypes 027 and 001/072 were associated with multiple antimicrobial resistance, but high levels of resistance were also observed, particularly in 018 and closely related emergent ribotype 356 in Italy. This raises the possibility of antimicrobial exposure as the underlying reason for their appearance, and highlights the need for ongoing epidemiological and antimicrobial resistance surveillance.

  20. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains.

    PubMed

    Vuotto, Claudia; Moura, Ines; Barbanti, Fabrizio; Donelli, Gianfranco; Spigaglia, Patrizia

    2016-03-01

    Resistance mechanism to metronidazole is still poorly understood, even if the number of reports on Clostridium difficile strains with reduced susceptibility to this antibiotic is increasing. In this study, we investigated the ability of the C. difficile strains 7032994, 7032985 and 7032989, showing different susceptibility profiles to metronidazole but all belonging to the PCR ribotype 010, to form biofilm in vitro in presence and absence of subinhibitory concentrations of metronidazole. The quantitative biofilm production assay performed in presence of metronidazole revealed a significant increase in biofilm formation in both the susceptible strain 7032994 and the strain 7032985 exhibiting a reduced susceptibility to this antibiotic, while antibiotic pressure did not affect the biofilm-forming ability of the stable-resistant strain 7032989. Moreover, confocal microscopy analysis showed an abundant biofilm matrix production by the strains 7032994 and 7032885, when grown in presence of metronidazole, but not in the stable-resistant one. These results seem to demonstrate that subinhibitory concentrations of metronidazole are able to enhance the in vitro biofilm production of the above-mentioned PCR ribotype 010 C. difficile strains, susceptible or with reduced susceptibility to this antibiotic, suggesting a possible role of biofilm formation in the multifactorial mechanism of metronidazole resistance developed by C. difficile.

  1. Clostridium difficile-induced colitis in mice is independent of leukotrienes.

    PubMed

    Trindade, Bruno C; Theriot, Casey M; Leslie, Jhansi L; Carlson, Paul E; Bergin, Ingrid L; Peters-Golden, Marc; Young, Vincent B; Aronoff, David M

    2014-12-01

    Clostridium difficile is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis in healthcare settings. However, the host factors involved in the intestinal inflammatory response and pathogenesis of C. difficile infection (CDI) are largely unknown. Here we investigated the role of leukotrienes (LTs), a group of pro-inflammatory lipid mediators, in CDI. Notably, the neutrophil chemoattractant LTB4, but not cysteinyl (cys) LTs, was induced in the intestine of C57BL/6 mice infected with either C. difficile strain VPI 10463 or strain 630. Genetic or pharmacological ablation of LT production did not ameliorate C. difficile colitis or clinical signs of disease in infected mice. Histological analysis demonstrated that intestinal neutrophilic inflammation, edema and tissue damage in mice during acute and severe CDI were not modulated in the absence of LTs. In addition, CDI induced a burst of cytokines in the intestine of infected mice in a LT-independent manner. Serum levels of anti-toxin A immunoglobulin (Ig) G levels were also not modulated by endogenous LTs. Collectively, our results do not support a role for LTs in modulating host susceptibility to CDI in mice. PMID:25230329

  2. The safety of whey protein concentrate derived from the milk of cows immunized against Clostridium difficile.

    PubMed

    Young, Karen W H; Munro, Ian C; Taylor, Steve L; Veldkamp, Peter; van Dissel, Jaap T

    2007-04-01

    A whey protein concentrate prepared from the milk of cows that have been immunized against Clostridium difficile (C. difficile) and its toxins, toxin A and toxin B, is produced for use as a medical food for the dietary management of patients with C. difficile-associated diarrhea (CDAD) to prevent a relapse of the infection. The safety of anti-C. difficile whey protein concentrate (anti-CD WPC) is supported by analytical data comparing the composition of raw milk from immunized cows versus that from non-immunized cows, and the composition of anti-CD WPC versus that of regular whey protein concentrate. Additionally, a prospective clinical study was conducted in 77 patients with CDAD to demonstrate the safety of consuming anti-CD WPC to prevent relapse of the infection. This study, which included adverse event monitoring, physical examinations, and extensive hematological and biochemical assessments, showed that anti-CD WPC is safe to consume by patients with CDAD. The available analytical and clinical evidence demonstrate that anti-CD WPC is safe for use by individuals with CDAD, under the described conditions of use.

  3. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis

    PubMed Central

    Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  4. Evaluation of an automated rapid diagnostic test for detection of Clostridium difficile.

    PubMed

    Tojo, Masayoshi; Nagamatsu, Maki; Hayakawa, Kayoko; Mezaki, Kazuhisa; Kirikae, Teruo; Ohmagari, Norio

    2014-01-01

    The Verigene Clostridium difficile Nucleic Acid Test (Verigene CDF Test) (Nanosphere, Northbrook, IL, USA) is a new multiplex qualitative polymerase chain reaction (PCR) test used to detect C. difficile toxin genes in fecal specimens. To evaluate the performance of the new method, we tested 69 fecal samples from patients with suspected C. difficile infection using the Verigene CDF test, an enzyme immunoassay (EIA) and PCR following anaerobic fecal culture. The sensitivity, specificity, and accuracy of the Verigene CDF test were 96.7% (29/30), 97.4% (38/39), and 97.1% (67/69) respectively, using PCR following fecal culture as a reference method. We also analyzed the potential clinical impact of the Verigene CDF test using chart reviews of the 69 patients with suspected C. difficile infection and found that 11 of the 69 patients were incorrectly diagnosed, and the Verigene CDF test would have led to them receiving more appropriate management including practice of treatment and contact precaution, although, of the 69 patients, there are two whose samples were incorrectly identified with the Verigene CDF test. The Verigene CDF test will have a positive impact on patient care.

  5. Concurrence of Clostridium difficile toxin A enzyme-linked immunosorbent assay, fecal lactoferrin assay, and clinical criteria with C. difficile cytotoxin titer in two patient cohorts.

    PubMed Central

    Schleupner, M A; Garner, D C; Sosnowski, K M; Schleupner, C J; Barrett, L J; Silva, E; Hirsch, D; Guerrant, R L

    1995-01-01

    The accurate and sensitive diagnosis of Clostridium difficile-related diarrhea, normally treated with vancomycin, has become increasingly important in light of the emergence of dangerous new strains of vancomycin-resistant enterococci. In order to improve the threshold for C. difficile diagnosis and treatment, a number of commonly used assays for the diagnosis of C. difficile diarrhea were examined. These included an enzyme-linked immunosorbent assay for C. difficile toxin A (ToxA), a CHO cell culture assay for fecal C. difficile (cyto)toxin B, and a lactoferrin latex agglutination assay for fecal lactoferrin (LFLA). We studied 722 fecal specimens submitted by physicians for C. difficile toxin testing at the Salem, Va., Veterans' Affairs Hospital and at the University of Virginia Medical Center in Charlottesville. Charts were reviewed from 123 Veterans' Hospital patients and 114 University of Virginia patients for clinical criteria indicative of C. difficile diarrhea. An increasing titer of CHO cell cytotoxicity was correlated with an increasing likelihood of ToxA positivity (5 to 90%), LFLA positivity (39 to 77%), and clinical agreement (28 to 85%). However, some data indicate that the CHO cell cytotoxicity assay may be nonspecific when positive only at low titers. When the CHO assay result is positive at high titers, it remains the best diagnostic tool. Yet, when it is positive at a low titer, careful interpretation of the results in conjunction with other assays and the clinical setting is warranted, especially in light of new drug-resistant strains of microorganisms. PMID:7665642

  6. The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C. difficile strain.

    PubMed

    Zhang, Keshan; Zhao, Song; Wang, Yuankai; Zhu, Xuejun; Shen, Hong; Chen, Yugen; Sun, Xingmin

    2015-12-01

    Clostridium difficile CD37, a clinical isolate from the USA, does not produce toxin A, B or binary toxin. The aim of this study was to determine whether strain CD37 can protect mice against infection from a challenge with a toxigenic C. difficile strain. Three groups of mice (n = 10) were pretreated with a antibiotics cocktail for 5 days, switched to sterile water for 2 days, and given one dose of clindamycin (10 mg/kg) one day (day-1) before challenge (day 0) with a toxigenic C. difficile strain. Group 1 (CD37 + UK6) was given 10(7)C. difficile CD37 vegetative cells by gavage twice a day on days -1 and -2, followed by challenge with 10(6) spores of the toxigenic C. difficile UK6 (BI/NAPI/027) on day 0; Group 2 (UK6) was infected with 10(6)C. difficile UK6 spores on day 0; Group 3 (CD37) was challenged with 10(6) CD37 vegetative cells on day 0. Our data show that pre-inoculation of strain CD37 provided mice significant protection (survival, p < 0.001 between groups CD37 + UK6 and UK6) against subsequent infection with the strain UK6, while mice infected with CD37 only did not develop any symptoms of C. difficile infection (CDI). Our results highlight the potential use of CD37 as a therapeutic strain for the prevention of primary and recurrent CDI in humans.

  7. Clinical and laboratory characteristics of Clostridium difficile infection in patients with discordant diagnostic test results.

    PubMed

    Kaltsas, Anna; Simon, Matt; Unruh, Larissa H; Son, Crystal; Wroblewski, Danielle; Musser, Kimberlee A; Sepkowitz, Kent; Babady, N Esther; Kamboj, Mini

    2012-04-01

    The aim of this study was to compare the clinical and laboratory characteristics of Clostridium difficile infection (CDI) in patients with discordant test results for the cytotoxin assay (CYT) and PCR assays. A retrospective study from May to August 2008 and March to May 2010 was performed. CDI was diagnosed in 128 patients. PCR increased the yield of C. difficile cases by 2-fold compared to that of the CYT assay. Fifty-six cases (44%) were detected by PCR only (CYT negative). Forty-nine percent of patients with non-NAP1 strains were detected by PCR only, compared to 28% of those infected with NAP1 strains (P < 0.05). No significant differences were found in the clinical severity of illness and outcome among patients that tested positive for CDI by both tests (CYT and PCR) compared to those that tested positive by PCR only. PMID:22238444

  8. Modulation of the Surface-Layer Protein of Clostridium difficile through Cwp84 Inhibition.

    PubMed

    Gooyit, Major D; Janda, Kim D

    2016-07-01

    Cysteine protease Cwp84 is responsible for surface-layer processing in Clostridium difficile and was also shown to cleave several human extracellular matrix components in vitro. To enable the facile identification and characterization of Cwp84 inhibitors, we developed a fluorogenic 10-mer peptide based on the enzyme's natural substrate SlpA that is amenable for use in FRET-based high-throughput screening. The design of substrate-mimetic inhibitors led to epoxysuccinate 8c, which displayed an inactivation efficiency (kinact/KI) of (4.7 ± 0.3) × 10(4) M(-1) min(-1). Further evaluation of 8c demonstrated its ability to inhibit fibronectin cleavage and, more importantly, subvert surface-layer biogenesis in C. difficile. PMID:27626098

  9. Integration of erm(B)-containing elements through large chromosome fragment exchange in Clostridium difficile

    PubMed Central

    Wasels, François; Spigaglia, Patrizia; Barbanti, Fabrizio; Monot, Marc; Villa, Laura; Dupuy, Bruno; Carattoli, Alessandra; Mastrantonio, Paola

    2015-01-01

    In Clostridium difficile, erm(B) genes are located on mobile elements like Tn5398 and Tn6215. In previous studies, some of these elements were transferred by conjugation-like mechanisms, mobilized in trans by helper conjugative systems. In this study, we analyzed the genomes of several recipient strains that acquired either Tn5398 or Tn6215-like elements. We demonstrated that the integration of the transposons in the genome of the recipient cell was always due to homologous recombination events, involving exchange of large chromosomal segments. We did not observed transposon transfer to a C. difficile strain in presence of DNAse, suggesting that a possible transformation-like mechanism occurred in this recipient. PMID:26442177

  10. Defective mutations within the translocation domain of Clostridium difficile toxin B impair disease pathogenesis.

    PubMed

    Hamza, Therwa; Zhang, Zhifen; Melnyk, Roman A; Feng, Hanping

    2016-02-01

    The Clostridium difficile toxin B is one of the main virulence factors and plays an important role in the pathogenesis of C. difficile infection (CDI). We recently revealed crucial residues in the translocation domain of TcdB for the pore formation and toxin translocation. In this study, we investigated the effects of mutating a critical site involved in pore formation, Leu-1106, to residues that differ in size and polarity (Phe, Ala, Cys, Asp). We observed a broad range of effects on TcdB function in vitro consistent with the role of this site in pore formation and translocation. We show that mice challenged systemically with a lethal dose (LD100) of the most defective mutant (L1106K) showed no symptoms of disease highlighting the importance of this residue and the translocation domain in disease pathogenesis. These findings offer insights into the structure function of the toxin translocation pore, and inform novel therapeutic strategies against CDI.

  11. Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A.

    PubMed

    Cowardin, Carrie A; Jackman, Brianna M; Noor, Zannatun; Burgess, Stacey L; Feig, Andrew L; Petri, William A

    2016-08-01

    Clostridium difficile is a major, life-threatening hospital-acquired pathogen that causes mild to severe colitis in infected individuals. The tissue destruction and inflammation which characterize C. difficile infection (CDI) are primarily due to the Rho-glucosylating toxins A and B. These toxins cause epithelial cell death and induce robust inflammatory signaling by activating the transcription factor NF-κB, leading to chemokine and cytokine secretion. The toxins also activate the inflammasome complex, which leads to secretion of the pyrogenic cytokine IL-1β. In this study, we utilized glucosylation-deficient toxin A to show that activation of the inflammasome by this toxin is dependent on Rho glucosylation, confirming similar findings reported for toxin B. We also demonstrated that tissue destruction and in vivo inflammatory cytokine production are critically dependent on the enzymatic activity of toxin A, suggesting that inhibiting toxin glucosyltransferase activity may be effective in combating this refractory disease.

  12. Enhanced fermentation of mannitol and release of cytotoxin by Clostridium difficile in alkaline culture media.

    PubMed

    Kazamias, M T; Sperry, J F

    1995-06-01

    Clostridium difficile ATCC 43255 fermented less than 10% of the mannitol in a medium at pH 7; however, when the initial pH of the medium was adjusted to 8.5 or 9, about 80% of the mannitol was fermented. Cell extracts of C. difficile phosphorylated mannitol with phosphoenolpyruvate, not ATP, indicating a phosphoenolpyruvate phosphotransferase system transport phosphorylation of mannitol. The phosphorylation product was dehydrogenated by D-mannitol-1-phosphate:NAD oxidoreductase. Growth at an initial pH of 8.5 yielded cytotoxin titers of 10(7) to 10(8) in Trypticase-yeast extract-mannitol medium, wit a titer of 10(8) as early as 13 h.

  13. Evaluation of Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens

    PubMed Central

    Yoo, Sun Mee; Shin, Won Chang

    2016-01-01

    Background We evaluated the performance of four commercial nucleic acid amplification tests (NAATs: Xpert C. difficile, BD MAX Cdiff, IMDx C. difficile for Abbott m2000, and Illumigene C. difficile) for direct and rapid detection of Clostridium difficile toxin genes. Methods We compared four NAATs on the same set of 339 stool specimens (303 prospective and 36 retrospective specimens) with toxigenic culture (TC). Results Concordance rate among four NAATs was 90.3% (306/339). Based on TC results, the sensitivity and specificity were 90.0% and 92.9% for Xpert; 86.3% and 89.3% for Max; 84.3% and 94.4% for IMDx; and 82.4% and 93.7% for Illumigene, respectively. For 306 concordant cases, there were 11 TC-negative/NAATs co-positive cases and 6 TC-positive/NAATs co-negative cases. Among 33 discordant cases, 18 were only single positive in each NAAT (Xpert, 1; Max, 12; IMDx, 1; Illumigene, 4). Positivity rates of the four NAATs were associated with those of semi-quantitative cultures, which were maximized in grade 3 (>100 colony-forming unit [CFU]) compared with grade 1 (<10 CFU). Conclusions Commercial NAATs may be rapid and reliable methods for direct detection of tcdA and/or tcdB in stool specimens compared with TC. Some differences in the sensitivity of the NAATs may partly depend on the number of toxigenic C. difficile in stool specimens. PMID:26709260

  14. Tests for the diagnosis of Clostridium difficile infection: the next generation.

    PubMed

    Carroll, Karen C

    2011-08-01

    Clostridium difficile (C. difficile) causes 25-30% of cases of antibiotic associated diarrhea and most cases of pseudomembranous colitis. Patients presenting with diarrhea after hospitalization for 3 or more days should be tested for C. difficile. There are many options available for testing, each of which has inherent advantages and disadvantages. Most laboratories perform toxin testing using an enzyme immunoassay method. In general these tests have sensitivities ranging from 60 to 70% and specificities of 98%. When using these methods, symptomatic patients with negative tests should be tested by another more sensitive method. Until recently, cell culture cytotoxicity neutralization assays (CCNAs) were considered the gold standard in the U.S. A two-step algorithm using an EIA for glutamate dehydrogenase detection followed by testing positives using CCNA, offered an improved alternative until the availability of molecular assays. Although early studies that compared the GDH assay to CCNA demonstrated high sensitivity and negative predictive values, more recent comparisons to toxigenic culture and PCR have shown the sensitivity to be in the mid to high 80's. When testing using a sensitive assay, repeat testing is not cost-effective. Outbreaks caused by a toxin variant epidemic strain have renewed interest in bacterial culture. Toxigenic culture has emerged as the new gold standard against which newer assays should be compared. However, there is no agreed upon standard method for culture performance. At least 4 FDA cleared nucleic acid amplification assays are available to clinical laboratories and several of these have been well evaluated in the literature. Because these assays detect a gene that encodes toxin and not the toxin itself it is important that laboratories test only patients with diarrhea. These molecular assays have been shown to be superior to toxin EIAs, CCNA and 2-step algorithms, but not to toxigenic culture. More studies are needed to assess the

  15. A Review of Clostridium difficile Infection at the University Hospital of the West Indies, Jamaica

    PubMed Central

    Clare-Pascoe, N; Lee, MG; Murphy, T; Nicholson, A; Ferguson, TS

    2015-01-01

    ABSTRACT Objectives: This study examined the frequency of Clostridium difficile infection (CDI) among hospital admission and diarrhoeal stool samples over a six-year period. Methods: A review of all suspected cases of C difficile positive patients from 2007 to 2012 at the University Hospital of the West Indies (UHWI), Jamaica, was performed. Clostridium difficile infection was confirmed by clinical features and a positive enzyme-linked immunosorbent assay (ELISA) stool test for Clostridium Toxins A and B. The demographics, clinical features, risk factors, treatment and outcomes were also collated. Results: There were 56 patients reviewed. The most commonly affected age group was 40–59 years of age. The proportion of CDI cases per total stool samples increased from 0.5% in 2007 to 5.9% in 2010 then fell to 2.2% in 2011 but increased again to 4.3% in 2012. The proportion of cases per total UHWI admissions also increased from 0.12 cases per 1000 admissions in 2007 to 1.16 in 2010 and 1.36 in 2012 (p < 0.001). Most CDI cases were nosocomial (76% males, 48.6% females). Co-morbidities included hypertension and end-stage renal disease. Ceftazidime was the most common antibiotic associated with the development of CDI. Resolution occurred in 62.5% of patients. Duration of hospital stay was longer in males than females (≥ 21 versus < 7 days) and males had more adverse outcomes, with death in 23.8% versus 11.4%. Conclusion: There has been an increase in the frequency of CDI at UHWI with a greater than expected frequency of community acquired CDI. Increased awareness is needed of the increasing risk for CDI and measures must be taken to prevent the disease, especially in hospitalized patients. PMID:26624597

  16. The Clostridium difficile Exosporium Cysteine (CdeC)-Rich Protein Is Required for Exosporium Morphogenesis and Coat Assembly

    PubMed Central

    Barra-Carrasco, Jonathan; Olguín-Araneda, Valeria; Plaza-Garrido, Ángela; Miranda-Cárdenas, Camila; Cofré-Araneda, Glenda; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2013-01-01

    Clostridium difficile is an important nosocomial pathogen that has become a major cause of antibiotic-associated diarrhea. There is a general consensus that C. difficile spores play an important role in C. difficile pathogenesis, contributing to infection, persistence, and transmission. Evidence has demonstrated that C. difficile spores have an outermost layer, termed the exosporium, that plays some role in adherence to intestinal epithelial cells. Recently, the protein encoded by CD1067 was shown to be present in trypsin-exosporium extracts of C. difficile 630 spores. In this study, we renamed the CD1067 protein Clostridium difficile exosporium cysteine-rich protein (CdeC) and characterized its role in the structure and properties of C. difficile spores. CdeC is expressed under sporulation conditions and localizes to the C. difficile spore. Through the construction of an ΔcdeC isogenic knockout mutant derivative of C. difficile strain R20291, we demonstrated that (i) the distinctive nap layer is largely missing in ΔcdeC spores; (ii) CdeC is localized in the exosporium-like layer and is accessible to IgGs; (iii) ΔcdeC spores were more sensitive to lysozyme, ethanol, and heat treatment than wild-type spores; and (iv) despite the almost complete absence of the exosporium layer, ΔcdeC spores adhered at higher levels than wild-type spores to intestinal epithelium cell lines (i.e., HT-29 and Caco-2 cells). Collectively, these results indicate that CdeC is essential for exosporium morphogenesis and the correct assembly of the spore coat of C. difficile. PMID:23794627

  17. Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy

    PubMed Central

    Wang, Shiwei; Shen, Aimee; Setlow, Peter

    2015-01-01

    ABSTRACT The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca2+ and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease − Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection

  18. Recent Advances in the Diagnosis and Treatment of Clostridium Difficile Infection

    PubMed Central

    Avila, Meera B.; Avila, Nathaniel P.; Dupont, Andrew W.

    2016-01-01

    Clostridium difficile infection (CDI) has become the most frequently reported health care-associated infection in the United States [1]. As the incidence of CDI rises, so too does the burden it produces on health care and society. In an attempt to decrease the burden of CDI and provide the best outcomes for patients affected by CDI, there have been many recent advancements in the understanding, diagnosis, and management of CDI. In this article, we review the current recommendations regarding CDI testing and treatment strategies.

  19. Antibiotic therapy and Clostridium difficile infection – primum non nocere – first do no harm

    PubMed Central

    Crowther, Grace S; Wilcox, Mark H

    2015-01-01

    Treatment options for Clostridium difficile infection (CDI) remain limited despite this usually nosocomial infection posing an urgent threat to public health. A major paradox of the management of CDI is the use of antimicrobial agents to treat infection, which runs the risk of prolonged gut microbiota perturbation and so recurrence of infection. Here, we explore alternative CDI treatment and prevention options currently available or in development. Notably, strategies that aim to reduce the negative effects of antibiotics on gut microbiota offer the potential to alter current antimicrobial stewardship approaches to preventing CDI. PMID:26396535

  20. An In Vitro Model of the Human Colon: Studies of Intestinal Biofilms and Clostridium difficile Infection.

    PubMed

    Crowther, Grace S; Wilcox, Mark H; Chilton, Caroline H

    2016-01-01

    The in vitro gut model is an invaluable research tool to study indigenous gut microbiota communities, the behavior of pathogenic organisms, and the therapeutic and adverse effect of antimicrobial administration on these communities. The model has been validated against the intestinal contents of sudden death victims to reflect the physicochemical and microbiological conditions of the proximal to distal colon, and has been extensively used to investigate the interplay between gut microbiota populations, antibiotic exposure, and Clostridium difficile infection. More recently the gut model has been adapted to additionally model intestinal biofilm. Here we describe the structure, assembly, and application of the biofilm gut model. PMID:27507345

  1. Recent Advances in the Diagnosis and Treatment of Clostridium Difficile Infection

    PubMed Central

    Avila, Meera B.; Avila, Nathaniel P.; Dupont, Andrew W.

    2016-01-01

    Clostridium difficile infection (CDI) has become the most frequently reported health care-associated infection in the United States [1]. As the incidence of CDI rises, so too does the burden it produces on health care and society. In an attempt to decrease the burden of CDI and provide the best outcomes for patients affected by CDI, there have been many recent advancements in the understanding, diagnosis, and management of CDI. In this article, we review the current recommendations regarding CDI testing and treatment strategies. PMID:26918176

  2. The role of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea.

    PubMed

    Tart, Serina B

    2013-10-01

    For the treatment of Clostridium difficile-associated diarrhea (CDAD), metronidazole and vancomycin remain the most commonly used agents. The major advantage of metronidazole is its low cost, while the advantage of oral vancomycin is a more favorable pharmacokinetic profile. The epidemiology and clinical severity of CDAD have changed due to the emergence of a hypervirulent strain (BI/NAP1/027). In 2010, the Infectious Diseases Society of America/Society for Health Care Epidemiology of America expert panel defined severe CDAD and recommended oral vancomycin to treat these patients. Metronidazole remains the preferred agent for treatment of mild to moderate CDAD.

  3. The effect of pharmacy restriction of clindamycin on Clostridium difficile infection rates in an orthopedics ward.

    PubMed

    Cruz-Rodríguez, Nora Cecilia; Hernández-García, Raúl; Salinas-Caballero, Ana Gabriela; Pérez-Rodríguez, Edelmiro; Garza-González, Elvira; Camacho-Ortiz, Adrián

    2014-06-01

    A high consumption of clindamycin was noted in an orthopedics ward with high rates of Clostridium difficile infection (CDI). We restricted clindamycin for the entire ward. A reduction of 88% in CDI (1.07 to 0.12 × 1,000 patients-days, P = .056) and 84% for all-cause diarrhea (2.40 to 0.38 × 1,000 patients-days, P = .021) was achieved. Clindamycin was reduced 92.61% without an increase in other antibiotics. We identified high consumption of clindamycin as a risk factor for CDI.

  4. Antibiotic overuse and Clostridium difficile infections: the Indian paradox and the possible role of dietary practices.

    PubMed

    Ramakrishnan, N; Sriram, K

    2015-01-01

    Antibiotic abuse is rampant in India, such that one may expect to see an increase of Clostridium difficile infections (CDI). However, we found that the incidence of CDI in India (1.67%) is no different from that reported in USA (1.6%) using similar techniques of detection (polymerase chain reaction test). We offer a possible explanation for this paradox. It is likely that a diet rich in fiber, yogurt, and possibly turmeric may have a protective role in decreasing the incidence of CDIs in India.

  5. Impact of sink location on hand hygiene compliance for Clostridium difficile infection.

    PubMed

    Zellmer, Caroline; Blakney, Rebekah; Van Hoof, Sarah; Safdar, Nasia

    2015-04-01

    Hand hygiene with soap and water after the care of a patient with Clostridium difficile infection is essential to reduce nosocomial transmission in an outbreak situation. Factors that may pose barriers to user completion of infection prevention measures, such as hand hygiene, are of interest. We undertook a quantitative study to evaluate the relationship between sink location and compliance with handwashing among health care workers and visitors in a surgical transplant unit. We found that placement of 2 more easily visible sinks in a surgical transplant unit was associated with improved adherence to handwashing. PMID:25704256

  6. Pathogenic effects of glucosyltransferase from Clostridium difficile toxins.

    PubMed

    Zhang, Yongrong; Feng, Hanping

    2016-06-01

    The glucosyltransferase domain ofClostridium difficiletoxins modifies guanine nucleotide-binding proteins of Rho family. It is the major virulent domain of the holotoxins. Various pathogenic effects ofC. difficiletoxins in response to Rho glucosylation have been investigated including cytoskeleton damage, cell death and inflammation. The most recent studies have revealed some significant characteristics of the holotoxins that are independent of glucosylating activity. These findings arouse discussion about the role of glucosyltransferase activity in toxin pathogenesis and open up new insights for toxin mechanism study. In this review, we summarize the pathogenic effects of glucosyltransferase domain of the toxins in the past years.

  7. In vitro susceptibility of Clostridium difficile isolates from patients with antibiotic-associated diarrhea or colitis.

    PubMed Central

    Dzink, J; Bartlett, J G

    1980-01-01

    In vitro susceptibility tests were performed on 84 strains of Clostridium difficile to 11 antimicrobial agents. All isolates were from the stools of patients with antibiotic-associated diarrhea or colitis in which there was a cytopathic toxin that was neutralized by Clostridium sordellii antitoxin. Over 95% of the strains were susceptible to vancomycin, penicillin G, ampicillin, and metronidazole at concentrations of 4 microgram/ml. Susceptibility to clindamycin was variable; 60% of the strains were susceptible at 1 microgram/ml, and 9% were resistant at 128 microgram/ml. Studies of individual isolates showed that a major portion of the strains were relatively susceptible to the antimicrobial agent implicated in causing the disease. PMID:7396460

  8. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment.

    PubMed

    Tian, Tian-tian; Zhao, Jian-hong; Yang, Jing; Qiang, Cui-xin; Li, Zhi-rong; Chen, Jing; Xu, Kai-yue; Ciu, Qing-qing; Li, Ru-xin

    2016-01-01

    Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23-60 years old; and healthcare workers aged 28-80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients.

  9. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  10. Bile salt inhibition of host cell damage by Clostridium difficile toxins.

    PubMed

    Darkoh, Charles; Brown, Eric L; Kaplan, Heidi B; DuPont, Herbert L

    2013-01-01

    Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment.

  11. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

    PubMed

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride ("DQAsomes") have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2'-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription-translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We describe

  12. Bile Salt Inhibition of Host Cell Damage by Clostridium Difficile Toxins

    PubMed Central

    Darkoh, Charles; Brown, Eric L.; Kaplan, Heidi B.; DuPont, Herbert L.

    2013-01-01

    Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment. PMID:24244530

  13. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment.

    PubMed

    Tian, Tian-tian; Zhao, Jian-hong; Yang, Jing; Qiang, Cui-xin; Li, Zhi-rong; Chen, Jing; Xu, Kai-yue; Ciu, Qing-qing; Li, Ru-xin

    2016-01-01

    Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23-60 years old; and healthcare workers aged 28-80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients. PMID:27011211

  14. Epidemiology and Outcomes of Community Acquired Clostridium difficile Infections in Medicare Beneficiaries

    PubMed Central

    Collins, Courtney E; Ayturk, M Didem; Flahive, Julie M; Emhoff, Timothy A; Anderson, Frederick A; Santry, Heena P

    2014-01-01

    Background The incidence of community-acquired Clostridium difficile (CACD) is increasing in the US. Many CACD infections occur in the elderly who are predisposed to poor outcomes. We aimed to describe the epidemiology and outcomes of CACD in a nationally representative sample of Medicare beneficiaries. Study Design We queried a 5% random sample of Medicare beneficiaries (2009–2011 Part A inpatient and Part D prescription drug claims, N=864,604) for any hospital admission with a primary ICD-9 diagnosis code for C. difficile (008.45). We examined patient sociodemographic and clinical characteristics, pre-admission exposure to oral antibiotics, prior treatment with oral vancomycin or metronidazole, inpatient outcomes (colectomy, ICU stay, length of stay, mortality), and subsequent admissions for C. difficile. Results A total of 1566 (0.18%) patients were admitted with CACD. Of these, 889(56.8%) received oral antibiotics within 90 days of admission. Few were being treated with oral metronidazole (N=123, 7.8%) or vancomycin (N=13, 0.8%) at the time of admission. While 223(14%) patients required ICU admission, few (N=15, 1%) underwent colectomy. Hospital mortality was 9%. Median length of stay (LOS) among survivors was 5 days (IQR 3–8). One- fifth of survivors were re-admitted with C. difficile with a median follow up time of 393 days (IQR 129–769). Conclusions Nearly half of Medicare beneficiaries admitted with CACD have no recent antibiotic exposure. High mortality and re-admission rates suggest that the burden of C. difficile on patients and the healthcare system will increase as the US population ages. Additional efforts at primary prevention and eradication may be warranted. PMID:24755188

  15. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence.

    PubMed

    Quesada-Gómez, Carlos; López-Ureña, Diana; Acuña-Amador, Luis; Villalobos-Zúñiga, Manuel; Du, Tim; Freire, Rosemayre; Guzmán-Verri, Caterina; del Mar Gamboa-Coronado, María; Lawley, Trevor D; Moreno, Edgardo; Mulvey, Michael R; de Castro Brito, Gerly Anne; Rodríguez-Cavallini, Evelyn; Rodríguez, César; Chaves-Olarte, Esteban

    2015-04-01

    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA.

  16. Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment

    PubMed Central

    Tian, Tian-tian; Zhao, Jian-hong; Yang, Jing; Qiang, Cui-xin; Li, Zhi-rong; Chen, Jing; Xu, Kai-yue; Ciu, Qing-qing; Li, Ru-xin

    2016-01-01

    Clostridium difficile is a spore-forming, gram-positive, anaerobic bacillus that can cause C. difficile infection (CDI). However, only a few studies on the prevalence and antibiotic resistance of C. difficile in healthy individuals in China have been reported. We employed a spore enrichment culture to screen for C. difficile in the stool samples of 3699 healthy Chinese individuals who were divided into 4 groups: infants younger than 2 years of age and living at home with their parents; children aged 1 to 8 years of age and attending three different kindergarten schools; community-dwelling healthy adult aged 23–60 years old; and healthcare workers aged 28–80 years old. The C. difficile isolates were analyzed for the presence of toxin genes and typed by PCR ribotyping and multilocus sequence typing (MLST). The minimum inhibitory concentration of 8 antimicrobial agents was determined for all of the isolates using the agar dilution method. The intestinal carriage rate in the healthy children was 13.6% and ranged from 0% to 21% depending on age. The carriage rates in the 1654 community-dwelling healthy adults and 348 healthcare workers were 5.5% and 6.3%, respectively. Among the isolates, 226 were toxigenic (225 tcdA+/tcdB+ and 1 tcdA+/tcdB+ ctdA+/ctdB+). Twenty-four ribotypes were found, with the dominant type accounting for 29.7% of the isolates. The toxigenic isolates were typed into 27 MLST genotypes. All of the strains were susceptible to vancomycin, metronidazole, fidaxomicin, and rifaximin. High resistance to levofloxacin and ciprofloxacin at rates of 39.8% and 98.3%, respectively, were observed. ST37 isolates were more resistant to levofloxacin than the other STs. The PCR ribotypes and sequence types from the healthy populations were similar to those from the adult patients. PMID:27011211

  17. Contribution of Adenosine A2B Receptors in Clostridium difficile Intoxication and Infection

    PubMed Central

    Li, Yuesheng; Calabrese, Gina M.; Freire, Rosemayre S.; Zaja-Milatovic, Snjezana; van Opstal, Edward; Figler, Robert A.; Linden, Joel; Guerrant, Richard L.

    2012-01-01

    Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A2B adenosine receptors (A2BARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A2BARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A2BARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A1, A2A, A2B, and A3) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A2BAR−/− mice were treated with TcdA, with or without the selective A2BAR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A2BAR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A2BAR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A2BARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A2BARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A2BARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A2BAR activation may be a potential strategy to limit morbidity and mortality from CDI. PMID:23045479

  18. Emergence of an Outbreak-Associated Clostridium difficile Variant with Increased Virulence

    PubMed Central

    Quesada-Gómez, Carlos; López-Ureña, Diana; Acuña-Amador, Luis; Villalobos-Zúñiga, Manuel; Du, Tim; Freire, Rosemayre; Guzmán-Verri, Caterina; Gamboa-Coronado, María del Mar; Lawley, Trevor D.; Moreno, Edgardo; Mulvey, Michael R.; Brito, Gerly Anne de Castro; Rodríguez-Cavallini, Evelyn; Rodríguez, César

    2015-01-01

    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA. PMID:25653402

  19. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence.

    PubMed

    Quesada-Gómez, Carlos; López-Ureña, Diana; Acuña-Amador, Luis; Villalobos-Zúñiga, Manuel; Du, Tim; Freire, Rosemayre; Guzmán-Verri, Caterina; del Mar Gamboa-Coronado, María; Lawley, Trevor D; Moreno, Edgardo; Mulvey, Michael R; de Castro Brito, Gerly Anne; Rodríguez-Cavallini, Evelyn; Rodríguez, César; Chaves-Olarte, Esteban

    2015-04-01

    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA. PMID:25653402

  20. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; Bordeleau, Eric; Burrus, Vincent

    2015-01-01

    ABSTRACT The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called “hypervirulent” epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the

  1. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].

    PubMed

    Votava, M; Slitrová, B

    2009-02-01

    An important factor in the prevention of nosocomial outbreaks caused by Clostridium difficile ribotype 027 is the disinfection of a patient environment by reliable sporicidal disinfectants. Sporicidal activity of particular agents is tested on spores of Bacillus subtilis. Questions are brought up if the disinfectant which works on B. subtilis spores will be equally effective on the spores of C. difficile. Therefore we have compared the effects of five disinfectants available on the Czech market on the spores of collection strains of both microbes and on the spores of ten C. difficile field strains isolated from feces of hospitalized patients. The effective substances were: disinfectant No. 1 chloramine B, No. 2 chlorine dioxide, No. 3 formaldehyde and ethan-2-dion, No. 4 peracetic and acetic acids and hydrogen peroxide, No. 5 ethanol and propan-2-ol. The testing was performed using the dilution neutralization method according to (SN EN 13704, the agent reducing the number of spores by more than 3 orders was considered sporicidal. In addition to the standard time 60 min a 15-minutes exposition was used and the effect was tested also under the protein burden. Disinfectant No. 1 showed better effect on the C. difficile than B. subtilis spores, even in lower (1%) concentration. Similarly, the sensitivity of the C. difficile spores to disinfectants No. 2 and 3 was somewhat higher. The sporicidity of the disinfectant No. 4 was so high that it reduced the number of spores of all strains within 15 minutes by more than 4 orders; possible difference in the susceptibility of spores was not observed. Whereas the disinfectant No. 5 was not reliably effective on the spores of B. subtilis, surprisingly it showed the sporicidal effect on the spores of field C. difficile strains. We conclude that spores of field C. difficile strains in particular turned out to be more sensitive to disinfectants than the spores of the collection strain ofB. subtilis. Therefore B. subtilis remains

  2. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].

    PubMed

    Votava, M; Slitrová, B

    2009-02-01

    An important factor in the prevention of nosocomial outbreaks caused by Clostridium difficile ribotype 027 is the disinfection of a patient environment by reliable sporicidal disinfectants. Sporicidal activity of particular agents is tested on spores of Bacillus subtilis. Questions are brought up if the disinfectant which works on B. subtilis spores will be equally effective on the spores of C. difficile. Therefore we have compared the effects of five disinfectants available on the Czech market on the spores of collection strains of both microbes and on the spores of ten C. difficile field strains isolated from feces of hospitalized patients. The effective substances were: disinfectant No. 1 chloramine B, No. 2 chlorine dioxide, No. 3 formaldehyde and ethan-2-dion, No. 4 peracetic and acetic acids and hydrogen peroxide, No. 5 ethanol and propan-2-ol. The testing was performed using the dilution neutralization method according to (SN EN 13704, the agent reducing the number of spores by more than 3 orders was considered sporicidal. In addition to the standard time 60 min a 15-minutes exposition was used and the effect was tested also under the protein burden. Disinfectant No. 1 showed better effect on the C. difficile than B. subtilis spores, even in lower (1%) concentration. Similarly, the sensitivity of the C. difficile spores to disinfectants No. 2 and 3 was somewhat higher. The sporicidity of the disinfectant No. 4 was so high that it reduced the number of spores of all strains within 15 minutes by more than 4 orders; possible difference in the susceptibility of spores was not observed. Whereas the disinfectant No. 5 was not reliably effective on the spores of B. subtilis, surprisingly it showed the sporicidal effect on the spores of field C. difficile strains. We conclude that spores of field C. difficile strains in particular turned out to be more sensitive to disinfectants than the spores of the collection strain ofB. subtilis. Therefore B. subtilis remains

  3. Multicenter clinical evaluation of the portrait toxigenic C. difficile assay for detection of toxigenic Clostridium difficile strains in clinical stool specimens.

    PubMed

    Buchan, Blake W; Mackey, Tami-Lea A; Daly, Judy A; Alger, Garrison; Denys, Gerald A; Peterson, Lance R; Kehl, Sue C; Ledeboer, Nathan A

    2012-12-01

    We compared the Portrait Toxigenic C. difficile Assay, a new semiautomated sample-to-result molecular test, to a toxigenic bacterial culture/cell cytotoxin neutralization assay (TBC/CCNA) for the detection of toxigenic Clostridium difficile in 549 stool specimens. Stool specimens were also tested by one of three alternative FDA-cleared molecular tests for toxigenic C. difficile (Xpert C. difficile, Illumigene C. difficile, or GeneOhm Cdiff). The sensitivities and specificities of the molecular tests compared to TBC/CCNA were as follows: 98.2% and 92.8% for the Portrait assay, 100% and 91.7% for the Xpert assay, 93.3% and 95.1% for the Illumigene assay, and 97.4% and 98.5% for the GeneOhm assay, respectively. The majority of Portrait false-positive results (20/31; 64.5%) were also positive for C. difficile by an alternative molecular test, suggesting an increased sensitivity compared to the culture-based "gold standard" method. The Portrait test detected an assay input of 30 CFU in 100% of spiked samples and detected an input of 10 CFU in 96.7% of samples tested.

  4. Use of the cobas 4800 system for the rapid detection of toxigenic Clostridium difficile and methicillin-resistant Staphylococcus aureus.

    PubMed

    Moure, Raquel; Cañizares, Ángeles; Muíño, María; Lobato, Margarita; Fernández, Ana; Rodríguez, María; Gude, Maria José; Tomás, Maria; Bou, Germán

    2016-01-01

    The new cobas® Cdiff and cobas® MRSA/SA tests were compared with conventional methods for the rapid detection of toxigenic Clostridium difficile and methicillin-resistant Staphylococcus aureus. The final concordance between cobas Cdiff Test and GDH/toxin gene screening was 97.62% and between cobas MRSA/SA Test and chromogenic culture, 91.30%, respectively.

  5. Draft Genome Sequence of Clostridium difficile Strain IT1118, an Epidemic Isolate Belonging to the Emerging PCR Ribotype 018

    PubMed Central

    Wasels, François; Barbanti, Fabrizio

    2016-01-01

    Clostridium difficile PCR ribotype 018 has emerged in Italy, South Korea, and Japan, causing severe infections and outbreaks. In this study, we sequenced the genome of IT1118, an Italian clinical isolate, to clarify the molecular features contributing to the success of this epidemic type. PMID:27445391

  6. Epidemiology and factors associated with candidaemia following Clostridium difficile infection in adults within metropolitan Atlanta, 2009-2013.

    PubMed

    Vallabhaneni, S; Almendares, O; Farley, M M; Reno, J; Smith, Z T; Stein, B; Magill, S S; Smith, R M; Cleveland, A A; Lessa, F C

    2016-05-01

    We assessed prevalence of and risk factors for candidaemia following Clostridium difficile infection (CDI) using longitudinal population-based surveillance. Of 13 615 adults with CDI, 113 (0·8%) developed candidaemia in the 120 days following CDI. In a matched case-control analysis, severe CDI and CDI treatment with vancomycin + metronidazole were associated with development of candidaemia following CDI.

  7. Clostridium difficile toxin A elicits Ca(2+)-independent cytotoxic effects in cultured normal rat intestinal crypt cells.

    PubMed Central

    Fiorentini, C; Donelli, G; Nicotera, P; Thelestam, M

    1993-01-01

    In rat intestinal crypt cells, Clostridium difficile toxin A induces (i) early cytoskeletal alterations involving the whole population and (ii) late effects in 30 to 40% of the cells, consisting mainly of surface blebbing and nuclear fragmentation. All these effects were Ca2+ independent and were not abolished by protein synthesis inhibitors. Images PMID:8359922

  8. Comparison of antimicrobial susceptibility among Clostridium difficile isolated from an integrated human and swine population in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium difficile can be a major problem in hospitals because the bacterium primarily affects individuals with an altered gut flora, which largely occurs through prolonged antibiotic use. Proposed sources of increased community-acquired infections are food animals and retail meats. The objecti...

  9. Novel handwashes are superior to soap and water in removal of Clostridium difficile spores from the hands.

    PubMed

    Isaacson, Dylan; Haller, Barbara; Leslie, Hannah; Roemer, Marguerite; Winston, Lisa

    2015-05-01

    We examined the efficacy of 5 experimental handwash formulations in removing nontoxigenic Clostridium difficile spores from the hands of health care workers. Handwashing with sand resulted in an additional 0.5-log reduction in spore recovery compared with the current standard of soap and water.

  10. Novel handwashes are superior to soap and water in removal of Clostridium difficile spores from the hands.

    PubMed

    Isaacson, Dylan; Haller, Barbara; Leslie, Hannah; Roemer, Marguerite; Winston, Lisa

    2015-05-01

    We examined the efficacy of 5 experimental handwash formulations in removing nontoxigenic Clostridium difficile spores from the hands of health care workers. Handwashing with sand resulted in an additional 0.5-log reduction in spore recovery compared with the current standard of soap and water. PMID:25952050

  11. Skin and Environmental Contamination in Patients Diagnosed With Clostridium difficile Infection but Not Meeting Clinical Criteria for Testing.

    PubMed

    Kundrapu, Sirisha; Sunkesula, Venkata; Tomas, Myreen; Donskey, Curtis J

    2015-11-01

    Of 134 patients diagnosed with Clostridium difficile infection, 30 (22%) did not meet clinical criteria for testing because they lacked significant diarrhea or had alternative explanations for diarrhea and no recent antibiotic exposure. For these patients, skin and/or environmental contamination was common only in those with prior antibiotic exposure.

  12. Clostridium Difficile Infection Worsen Outcome of Hospitalized Patients with Inflammatory Bowel Disease

    PubMed Central

    Zhang, Ting; Lin, Qian-Yun; Fei, Jia-Xi; Zhang, Yan; Lin, Min-Yi; Jiang, Shuang-Hong; Wang, Pu; Chen, Ye

    2016-01-01

    The prevalence of Clostridium difficile infection (CDI) in patients suffering from inflammatory bowel disease (IBD) has increased rapidly over the past several decades in North America and Europe. However, the exact global epidemiology remains unclear because of insufficient data from developing countries. A total of 646 hospitalized adult IBD patients were enrolled; and their fresh stool specimens were obtained and used for Clostridium difficile detection. The incidence of CDI in Crohn’s disease (CD) patients (12.7%) was significantly lower than that in Ulcerative disease (UC) patients (19.3%). Among the toxin types, A+B+ strain was the most common. Length of stay, hospitalization frequency and bowel surgery rate were significantly higher in the CDI than in the non-CDI group in CD or UC patients. More patients in CDI-CD group were still in active and even clinical moderate or severe CD stage than non-CDI-CD group after 2 years of following-up. Fistula, antibiotics and infliximab usage likely increased the CDI rate in CD patients, Infliximab treatment was considered a risk factor in UC patients. CDI is an exacerbating public health issue that may influence IBD course, increase expenditures, and delay the remission of IBD patients. IBD patients with CDI require urgent attention. PMID:27417996

  13. Therapeutic Success of Rifaximin for Clostridium difficile Infection Refractory to Metronidazole and Vancomycin

    PubMed Central

    Tannous, George; Neff, Guy; Kemmer, Nyingi

    2010-01-01

    We report the case of a 46-year-old white male with confirmed Clostridium difficile infection for >4 weeks after fluoroquinolone therapy. The patient received two courses of metronidazole 500 mg three times daily (t.i.d.) during which time diarrhea resolved; however, symptoms recurred 14–15 days after treatment termination. He received a 2-week course of vancomycin 125 mg four times daily, with symptoms recurring 10 days after treatment conclusion. The patient then received a pulsed tapering schedule of vancomycin with adjunctive Saccharomyces boulardii. Diarrhea recurred 12 days after treatment completion. He received rifaximin 400 mg t.i.d. while hospitalized for diarrhea-associated complications. Symptoms resolved within 24 h. The patient received a 4-week regimen of rifaximin 400 mg orally t.i.d. after discharge. No further episodes of diarrhea were reported within 6 months after treatment termination. The present case supports the potential benefit of rifaximin for the treatment of recurrent Clostridium difficile infection. PMID:21060709

  14. Selection of Nanobodies that Block the Enzymatic and Cytotoxic Activities of the Binary Clostridium Difficile Toxin CDT

    PubMed Central

    Unger, Mandy; Eichhoff, Anna Marei; Schumacher, Lucas; Strysio, Moritz; Menzel, Stephan; Schwan, Carsten; Alzogaray, Vanina; Zylberman, Vanesa; Seman, Michel; Brandner, Johanna; Rohde, Holger; Zhu, Kai; Haag, Friedrich; Mittrücker, Hans-Willi; Goldbaum, Fernando; Aktories, Klaus; Koch-Nolte, Friedrich

    2015-01-01

    The spore-forming gut bacterium Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. The major virulence factors are two large glucosylating cytotoxins. Hypervirulent strains (e.g. ribotype 027) with higher morbidity and mortality additionally produce the binary CDT toxin (Clostridium difficile transferase) that ADP-ribosylates actin and induces microtubule-based cell protrusions. Nanobodies are robust single domain antibodies derived from camelid heavy chain antibodies. Here we report the generation of functional nanobodies against the enzymatic CDTa and the heptameric receptor binding subunit CDTb. The nanobodies were obtained from a variable-domain repertoire library isolated from llamas immunized with recombinant CDTa or CDTb. Five CDTa-specific nanobodies blocked CDTa-mediated ADP-ribosylation of actin. Three CDTa-specific and two CDTb-specific nanobodies neutralized the cytotoxicity of CDTa+b. These nanobodies hold promise as new tools for research, diagnosis and therapy of C. difficile associated disease. PMID:25597743

  15. Comparison of Three Commercial Methods for Rapid Detection of Clostridium difficile Toxins A and B from Fecal Specimens▿

    PubMed Central

    Alcalá, L.; Sánchez-Cambronero, L.; Catalán, M. P.; Sánchez-Somolinos, M.; Peláez, M. T.; Marín, M.; Bouza, E.

    2008-01-01

    Three rapid enzyme immunoassays (X/pect Clostridium difficile Toxin A/B test, Wampole Tox A/B Quik Chek, and ImmunoCard Toxins A&B) were compared for the diagnosis of Clostridium difficile infection. Of the 367 stool specimens tested, 102 (27.8%) were positive for toxigenic C. difficile when a combination of direct cytotoxicity assay and cytotoxic culture was used as the gold standard. Sensitivity/specificity values were 49.0%/95.8%, 54.9%/95.5%, and 66.7%/95.1%, respectively. The median times to test five stool specimens were 28, 30, and 24 min, respectively. The ImmunoCard test was the quickest and most sensitive test of the three enzyme immunoassays evaluated. PMID:18784313

  16. Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile

    PubMed Central

    Bordeleau, Eric; Purcell, Erin B.; Lafontaine, Daniel A.; Fortier, Louis-Charles; Tamayo, Rita

    2014-01-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile. PMID:25512308

  17. Hyperimmune Bovine Colostrum as a Novel Therapy to Combat Clostridium difficile Infection

    PubMed Central

    Sponseller, Jerlyn K.; Steele, Jennifer A.; Schmidt, Diane J.; Kim, Hyeun Bum; Beamer, Gillian; Sun, Xingmin; Tzipori, Saul

    2015-01-01

    Background. Clostridium difficile is a primary cause of antibiotic-associated diarrhea that typically develops when gut microbiota is altered. Conventional treatment for C. difficile infection (CDI) is additional antimicrobial administration, which further disrupts normal intestinal microbiota, often resulting in poor treatment outcomes. Methods. A pregnant dairy cow was repeatedly immunized with recombinant mutants of toxins A and B produced by C. difficile, and the resultant hyperimmune bovine colostrum (HBC) was evaluated for therapeutic efficacy in gnotobiotic piglets with diarrhea due to CDI. Control piglets received nonimmune colostrum. To determine the impact of HBC on gut microbiota, 1 of 2 groups of piglets transplanted with normal human gut microbiota was treated with HBC. Results. Nonimmune colostrum–treated piglets developed moderate to severe diarrhea and colitis. In contrast, HBC-treated piglets had mild or no diarrhea and mild or no colitis. Lyophilization had no detectable impact on HBC efficacy. HBC had no discernible effect on the composition of normal human gut microbiota in the porcine intestinal tract. Conclusions. HBC provides an oral, cost-effective, and safe alternative to antibiotic therapy for CDI. By preserving intestinal microbiota, HBC may be more efficacious than antibiotics. Additional studies are warranted to establish HBC as a viable immunotherapeutic agent for human use against CDI. PMID:25381448

  18. Doxycycline and Tigecycline: Two Friendly Drugs with a Low Association with Clostridium Difficile Infection

    PubMed Central

    Hung, Yuan-Pin; Lee, Jen-Chieh; Lin, Hsiao-Ju; Liu, Hsiao-Chieh; Wu, Yi-Hui; Tsai, Pei-Jane; Ko, Wen-Chien

    2015-01-01

    Clostridium difficile infection (CDI) is known to be associated with prior exposure to many classes of antibiotics. Standard therapy for CDI (i.e., metronidazole and vancomycin) is associated with high recurrence rates. Although tetracycline derivatives such as tetracycline, doxycycline or tigecycline are not the standard therapeutic choices for CDI, they may serve as an alternative or a component of combination therapy. Previous tetracycline or doxycycline usage had been shown to have less association with CDI development. Tigecycline, a broad-spectrum glycylcycline with potency against many gram-positive or gram-negative pathogens, had been successfully used to treat severe or refractory CDI. The in vitro susceptibility of C. difficile clinical isolates to tigecycline in many studies showed low minimal inhibitory concentrations. Tigecycline can suppress in vitro toxin production in both historical and hypervirulent C. difficile strains and reduce spore production in a dose-dependent manner. Tetracycline compounds such as doxycycline, minocycline, and tigecycline possess anti-inflammatory properties that are independent of their antibiotic activity and may contribute to their therapeutic effect for CDI. Although clinical data are limited, doxycycline is less likely to induce CDI, and tigecycline can be considered one of the therapeutic choices for severe or refractory CDI. PMID:27025622

  19. Cadazolid: A new hope in the treatment of Clostridium difficile infection.

    PubMed

    Kali, Arunava; Charles, Marie Victor Pravin; Srirangaraj, Srirangaraj

    2015-01-01

    Clostridium difficile infection (CDI) is a potential life-threatening consequence of antibiotic therapy. Although the risk increases with duration of treatment, it can also occur after a short treatment course. In addition to broad-spectrum antibiotics, anti-neoplastic agents, proton pump inhibitors, H(2) blockers, and several other drugs have been reported to induce intestinal dysbiosis, which is central to the pathogenesis of CDI. There is an increase in incidence and mortality attributed to CDI globally. Moreover, the epidemiology of C. difficile-associated diseases has changed significantly with an increasing occurrence of community-acquired CDI. Metronidazole and oral vancomycin are the first-line antibiotics used to treat CDI. However, metronidazole has limited effectiveness in severe cases and vancomycin use is associated with increasing risk of vancomycin resistance among Enterococcus spp. Cadazolid, a novel oxazolidinone antibiotic, has recently shown potent antimicrobial activity against C. difficile and has a lower propensity to induce resistance. The implications of its use in treating CDI have been reviewed based on current evidence.

  20. Survey of diagnostic and typing capacity for Clostridium difficile infection in Europe, 2011 and 2014.

    PubMed

    van Dorp, Sofie M; Notermans, Daan W; Alblas, Jeroen; Gastmeier, Petra; Mentula, Silja; Nagy, Elisabeth; Spigaglia, Patrizia; Ivanova, Katiusha; Fitzpatrick, Fidelma; Barbut, Frédéric; Morris, Trefor; Wilcox, Mark H; Kinross, Pete; Suetens, Carl; Kuijper, Ed J

    2016-07-21

    Suboptimal laboratory diagnostics for Clostridium difficile infection (CDI) impedes its surveillance and control across Europe. We evaluated changes in local laboratory CDI diagnostics and changes in national diagnostic and typing capacity for CDI during the European C. difficile Infection Surveillance Network (ECDIS-Net) project, through cross-sectional surveys in 33 European countries in 2011 and 2014. In 2011, 126 (61%) of a convenience sample of 206 laboratories in 31 countries completed a survey on local diagnostics. In 2014, 84 (67%) of these 126 laboratories in 26 countries completed a follow-up survey. Among laboratories that participated in both surveys, use of CDI diagnostics deemed 'optimal' or 'acceptable' increased from 19% to 46% and from 10% to 15%, respectively (p  < 0.001). The survey of national capacity was completed by national coordinators of 31 and 32 countries in 2011 and 2014, respectively. Capacity for any C. difficile typing method increased from 22/31 countries in 2011 to 26/32 countries in 2014; for PCR ribotyping from 20/31 countries to 23/32 countries, and specifically for capillary PCR ribotyping from 7/31 countries to 16/32 countries. While our study indicates improved diagnostic capability and national capacity for capillary PCR ribotyping across European laboratories between 2011 and 2014, increased use of 'optimal' diagnostics should be promoted. PMID:27469624

  1. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia.

    PubMed

    Cowardin, Carrie A; Buonomo, Erica L; Saleh, Mahmoud M; Wilson, Madeline G; Burgess, Stacey L; Kuehne, Sarah A; Schwan, Carsten; Eichhoff, Anna M; Koch-Nolte, Friedrich; Lyras, Dena; Aktories, Klaus; Minton, Nigel P; Petri, William A

    2016-01-01

    Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response. PMID:27573114

  2. Hypervirulent Clostridium difficile PCR-Ribotypes Exhibit Resistance to Widely Used Disinfectants

    PubMed Central

    Dawson, Lisa F.; Valiente, Esmeralda; Donahue, Elizabeth H.; Birchenough, George; Wren, Brendan W.

    2011-01-01

    The increased prevalence of Clostridium difficile infection (CDI) has coincided with enhanced transmissibility and severity of disease, which is often linked to two distinct clonal lineages designated PCR-ribotype 027 and 017 responsible for CDI outbreaks in the USA, Europe and Asia. We assessed sporulation and susceptibility of three PCR-ribotypes; 012, 017 and 027 to four classes of disinfectants; chlorine releasing agents (CRAs), peroxygens, quaternary ammonium compounds (QAC) and biguanides. The 017 PCR-ribotype, showed the highest sporulation frequency under these test conditions. The oxidizing biocides and CRAs were the most efficacious in decontamination of C. difficile vegetative cells and spores, the efficacy of the CRAs were concentration dependent irrespective of PCR-ribotype. However, there were differences observed in the susceptibility of the PCR-ribotypes, independent of the concentrations tested for Virkon®, Newgenn®, Proceine 40® and Hibiscrub®. Whereas, for Steri7® and Biocleanse® the difference observed between the disinfectants were dependent on both PCR-ribotype and concentration. The oxidizing agent Perasafe® was consistently efficacious across all three PCR ribotypes at varying concentrations; with a consistent five Log10 reduction in spore titre. The PCR-ribotype and concentration dependent differences in the efficacy of the disinfectants in this study indicate that disinfectant choice is a factor for llimiting the survival and transmission of C. difficile spores in healthcare settings. PMID:22039420

  3. The use of pulsed-field gel electrophoresis for genotyping of Clostridium difficile.

    PubMed

    Gebreyes, Wondwossen A; Adkins, Pamela R F

    2015-01-01

    Genotyping approaches are important for tracking infectious agents and can be used for various purposes. Pulsed-Field Gel Electrophoresis (PFGE) is among the highly discriminatory genotyping approaches commonly used for characterizing Clostridium difficile. Other genotyping methods used for C. difficile include Ribotyping, Restriction Endonuclease Assay (REA), Multilocus Variable Number Tandem Repeats (VNTR) Assay, and others. PFGE has a high discriminatory power, high reproducibility, and typeability. We utilized PFGE for typing C. difficile isolates of porcine and human origin. We used a macrorestriction fragment analysis of an intact genomic DNA using SmaI, a rare cutting restriction endonuclease. Using a Contour-Clamped Homogeneous Electric Field (CHEF) system with running conditions of 120° angle; initial switch time of 5 s; final switch time of 40 s with a run time of 18 h in a low-melting temperature agarose (Seakem Gold); and 0.5× TBE circulated in the CHEF system at 6 V/cm [CDC (2014) Pulsenet. http://www.cdc.gov/pulsenet/index.html . Accessed 22 Aug 2014] supported by 14 °C cooling module, we were able to separate very large DNA fragments (up to 2 Mb). PMID:25862051

  4. Clostridium difficile infection in patients with haematological malignant disease. Risk factors, faecal toxins and pathogenic strains.

    PubMed Central

    Heard, S. R.; Wren, B.; Barnett, M. J.; Thomas, J. M.; Tabaqchali, S.

    1988-01-01

    Two hundred and forty-eight patients from shared oncology and general medical wards were prospectively studied over a 6-month period for carriage of Clostridium difficile during an outbreak of clinical disease with an epidemic strain of the organism. Risk factors for infection were assessed. Acute leukaemia and/or its treatment were identified as significantly increasing the risk of infection. The relationship between the type of C. difficile isolated (as defined by a typing system based on the incorporation of [35S]methionine into bacterial proteins followed by gel electrophoresis), the presence of faecal toxins A and B and clinical symptoms were analysed. Carriage of the epidemic strain, type X, had a significant association with symptoms amongst oncology patients, with two thirds of these patients having detectable faecal toxin A and one third detectable faecal toxin B. During an outbreak of C. difficile-associated disease, typing the organism and assaying for both faecal toxins in symptomatic patients may be of benefit in determining which patients require specific, urgent treatment. PMID:3123260

  5. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide.

    PubMed

    Bradshaw, William J; Roberts, April K; Shone, Clifford C; Acharya, K Ravi

    2015-03-01

    In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host-pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket. PMID:25760704

  6. Toxigenic Clostridium difficile PCR Ribotypes from Wastewater Treatment Plants in Southern Switzerland

    PubMed Central

    Romano, Vincenza; Krovacek, Karel; Mauri, Federica; Demarta, Antonella; Dumontet, Stefano

    2012-01-01

    The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A+ B+ CDT+), whereas 51% showed the profile A+ B+ CDT−. Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater. PMID:22798376

  7. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.

    PubMed

    Bordeleau, Eric; Purcell, Erin B; Lafontaine, Daniel A; Fortier, Louis-Charles; Tamayo, Rita; Burrus, Vincent

    2015-03-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.

  8. Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile.

    PubMed

    Nagaro, Kristin J; Phillips, S Tyler; Cheknis, Adam K; Sambol, Susan P; Zukowski, Walter E; Johnson, Stuart; Gerding, Dale N

    2013-11-01

    Nontoxigenic Clostridium difficile (NTCD) has been shown to prevent fatal C. difficile infection in the hamster model when hamsters are challenged with standard toxigenic C. difficile strains. The purpose of this study was to determine if NTCD can prevent C. difficile infection in the hamster model when hamsters are challenged with restriction endonuclease analysis group BI C. difficile strains. Groups of 10 hamsters were given oral clindamycin, followed on day 2 by 10(6) CFU of spores of NTCD strain M3 or T7, and were challenged on day 5 with 100 CFU of spores of BI1 or BI6. To conserve animals, results for control hamsters challenged with BI1 or BI6 from the present study and controls from previous identical experiments were combined for statistical comparisons. NTCD strains M3 and T7 achieved 100% colonization and were 100% protective against challenge with BI1 (P ≤ 0.001). M3 colonized 9/10 hamsters and protected against BI6 challenge in the colonized hamsters (P = 0.0003). T7 colonized 10/10 hamsters, but following BI6 challenge, cocolonization occurred in 5 hamsters, 4 of which died, for protection of 6/10 animals (P = 0.02). NTCD colonization provides protection against challenge with toxigenic BI group strains. M3 is more effective than T7 in preventing C. difficile infection caused by the BI6 epidemic strain. Prevention of C. difficile infection caused by the epidemic BI6 strain may be more challenging than that of infections caused by historic BI1 and non-BI C. difficile strains.

  9. Comparison of two rapid assays for Clostridium difficile Common antigen and a C difficile toxin A/B assay with the cell culture neutralization assay.

    PubMed

    Reller, Megan E; Alcabasa, Romina C; Lema, Clara A; Carroll, Karen C

    2010-01-01

    We compared 3 rapid assays for Clostridium difficile with a cell culture cytotoxicity neutralization assay (CCNA). Of 600 stool samples, 46 were positive for toxigenic C difficile. Both rapid common antigen assays were highly sensitive (91.3%-100%) and, therefore, were appropriate screening tests. The rapid toxin assay had poor sensitivity (61%) but excellent specificity (99.3%). Testing stools for glutamate dehydrogenase (step 1) and those positive with a rapid toxin assay (step 2) would correctly classify 81% of submitted specimens within 2 hours, including during periods of limited staffing (evenings, nights, and weekends). CCNA could then be used as a third step to test rapid toxin-negative samples, thereby providing a final result for the remaining 19% of samples by 48 to 72 hours. The use of rapid assays as outlined could enhance timely diagnosis of C difficile.

  10. Isolation and characterization of Clostridium difficile in farm animals from slaughterhouse to retail stage in Isfahan, Iran.

    PubMed

    Esfandiari, Zahra; Weese, J Scott; Ezzatpanah, Hamid; Chamani, Mohammad; Shoaei, Parisa; Yaran, Majid; Ataei, Behrooz; Maracy, Mohammad Reza; Ansariyan, Akbar; Ebrahimi, Fatemeh; Jalali, Mohammad

    2015-10-01

    To determine the prevalence of Clostridium difficile in farm animals from slaughterhouse through to retail stage, a total of 750 samples of feces, posteviscerated and washed carcass were collected from cattle, camels, goats, and sheep in Isfahan, Iran. The overall prevalence of C. difficile in feces, posteviscerated and washed carcass were 20 (13.3%), 23 (15.3%), and 11 (7.3%), respectively; while C. difficile was isolated from 79 (26.3%) retail samples. Twenty-nine (3.8%) isolates were toxigenic, with most toxigenic isolates (n = 17, 5.6%) identified from the retail stage. All toxigenic isolates harbored tcdA and tcdB; however, all were negative for cdtB. The 29 isolates were classified into 21 different ribotypes. This study revealed evidence of existence of toxigenic C. difficile in farm animal feces and meat in Iran.

  11. Isolation and characterization of Clostridium difficile in farm animals from slaughterhouse to retail stage in Isfahan, Iran.

    PubMed

    Esfandiari, Zahra; Weese, J Scott; Ezzatpanah, Hamid; Chamani, Mohammad; Shoaei, Parisa; Yaran, Majid; Ataei, Behrooz; Maracy, Mohammad Reza; Ansariyan, Akbar; Ebrahimi, Fatemeh; Jalali, Mohammad

    2015-10-01

    To determine the prevalence of Clostridium difficile in farm animals from slaughterhouse through to retail stage, a total of 750 samples of feces, posteviscerated and washed carcass were collected from cattle, camels, goats, and sheep in Isfahan, Iran. The overall prevalence of C. difficile in feces, posteviscerated and washed carcass were 20 (13.3%), 23 (15.3%), and 11 (7.3%), respectively; while C. difficile was isolated from 79 (26.3%) retail samples. Twenty-nine (3.8%) isolates were toxigenic, with most toxigenic isolates (n = 17, 5.6%) identified from the retail stage. All toxigenic isolates harbored tcdA and tcdB; however, all were negative for cdtB. The 29 isolates were classified into 21 different ribotypes. This study revealed evidence of existence of toxigenic C. difficile in farm animal feces and meat in Iran. PMID:26440207

  12. Bacteriophage Combinations Significantly Reduce Clostridium difficile Growth In Vitro and Proliferation In Vivo

    PubMed Central

    Nale, Janet Y.; Spencer, Janice; Hargreaves, Katherine R.; Buckley, Anthony M.; Trzepiński, Przemysław

    2015-01-01

    The microbiome dysbiosis caused by antibiotic treatment has been associated with both susceptibility to and relapse of Clostridium difficile infection (CDI). Bacteriophage (phage) therapy offers target specificity and dose amplification in situ, but few studies have focused on its use in CDI treatment. This mainly reflects the lack of strictly virulent phages that target this pathogen. While it is widely accepted that temperate phages are unsuitable for therapeutic purposes due to their transduction potential, analysis of seven C. difficile phages confirmed that this impact could be curtailed by the application of multiple phage types. Here, host range analysis of six myoviruses and one siphovirus was conducted on 80 strains representing 21 major epidemic and clinically severe ribotypes. The phages had complementary coverage, lysing 18 and 62 of the ribotypes and strains tested, respectively. Single-phage treatments of ribotype 076, 014/020, and 027 strains showed an initial reduction in the bacterial load followed by the emergence of phage-resistant colonies. However, these colonies remained susceptible to infection with an unrelated phage. In contrast, specific phage combinations caused the complete lysis of C. difficile in vitro and prevented the appearance of resistant/lysogenic clones. Using a hamster model, the oral delivery of optimized phage combinations resulted in reduced C. difficile colonization at 36 h postinfection. Interestingly, free phages were recovered from the bowel at this time. In a challenge model of the disease, phage treatment delayed the onset of symptoms by 33 h compared to the time of onset of symptoms in untreated animals. These data demonstrate the therapeutic potential of phage combinations to treat CDI. PMID:26643348

  13. Clostridium difficile Isolates with High Linezolid MICs Harbor the Multiresistance Gene cfr

    PubMed Central

    Martín, Adoración; Alcalá, Luis; Cercenado, Emilia; Iglesias, Cristina; Reigadas, Elena; Bouza, Emilio

    2014-01-01

    We studied the molecular mechanisms of linezolid resistance in 9 isolates of toxigenic Clostridium difficile with high linezolid MICs. The activity of linezolid was determined against 891 clinical isolates of toxigenic C. difficile. The MIC50 and MIC90 of linezolid were 0.75 μg/ml and 1.5 μg/ml, respectively. Nine strains (1%) showed high linezolid MICs (6 μg/ml to 16 μg/ml) and also were resistant to clindamycin, erythromycin, and chloramphenicol. These strains were selected for molecular studies: sequencing of domain V of the 23 rRNA gene, detection of the cfr methyltransferase gene, and sequencing of the ribosomal protein genes rplC and rplD. Molecular relatedness between strains was assessed using PCR ribotyping and MLVA (multilocus variable-number tandem-repeat analysis) typing. The strains belonged to ribotypes 001 (2/9), 017 (6/9), and 078 (1/9). MLVA showed that strains of ribotype 001 and 017 belonged to the same clonal complex in each ribotype. We did not detect mutations in the 23S rRNA gene. The cfr gene was detected in 7 of 9 strains. Sequencing of cfr amplicons revealed a similarity of 100% to a fragment of transposon Tn6218 of C. difficile, which was annotated as a putative chloramphenicol/florfenicol resistance protein. We were unable to detect mechanisms of resistance to linezolid in the 2 strains belonging to ribotype 001. While the relevance of our results lies in the detection of the cfr gene as a possible mechanism of resistance to linezolid in C. difficile, our findings should be assessed by further investigations to characterize these possible cfr genes and their contribution to linezolid resistance. PMID:25385106

  14. Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies

    PubMed Central

    Andersen, Kasper Krogh; Strokappe, Nika M.; Hultberg, Anna; Truusalu, Kai; Smidt, Imbi; Mikelsaar, Raik-Hiio; Mikelsaar, Marika; Verrips, Theo; Hammarström, Lennart

    2015-01-01

    Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA− TcdB+ strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients. PMID:26573738

  15. Containment of Clostridium difficile infection without reduction in antimicrobial use in Hong Kong.

    PubMed

    Cheng, V C C; Chau, P H; So, S Y C; Chen, J H K; Poon, R W S; Wong, S C Y; Hung, I F N; Lee, W M; Tai, J W M; Ho, P L; Yam, W C; Yuen, K Y

    2015-07-01

    Clostridium difficile ribotype 002 with hypersporulating capacity has been increasingly identified in Hong Kong. Proactive infection control measures are important to prevent the establishment of endemicity of C. difficile ribotype 002. A total of 329 patients with healthcare-associated C. difficile infection (CDI) were recruited in our healthcare network between 1 January 2008 and 30 June 2012 in this study. The incidence rates of healthcare-associated CDI per 10,000 admissions and 10,000 patient-days increased significantly by 15.3 and 17.0%, respectively, per quarter (p < 0.001) from 2008 1Q to 2010 1Q by segmented Poisson regression. With the full implementation of enhanced infection control interventions, there was an immediate significant reduction in both healthcare-associated CDI rates per 10,000 admissions and per 10,000 patient-days by 47% (p < 0.001) in 2010 2Q, followed by a further decline of CDI per 10,000 admissions and CDI per 10,000 patient-days by -19.4 and -19.8% from 2010 2Q to 2012 2Q, respectively (p < 0.001), despite a replacement of hand washing with soap and water by alcohol-based hand rub in the healthcare network. The proportion of C. difficile ribotype 002 was not statistically different (34/177, 19.2% vs. 25/152, 16.4%, p = 0.515), and the consumption of broad-spectrum antibiotics presented as divided daily dose per 1,000 acute bed-day occupancy per quarter remained unchanged (140.9 vs. 152.3) before and after infection control interventions. Our results suggested that the reduction of healthcare-associated CDI was attributable to infection control interventions instead of replacement of ribotypes or reduction in antimicrobial selective pressure. PMID:25800414

  16. Manganese Binds to Clostridium difficile Fbp68 and Is Essential for Fibronectin Binding*

    PubMed Central

    Lin, Yi-Pin; Kuo, Chih-Jung; Koleci, Xhelil; McDonough, Sean P.; Chang, Yung-Fu

    2011-01-01

    Clostridium difficile is an etiological agent of pseudomembranous colitis and antibiotic-associated diarrhea. Adhesion is the crucial first step in bacterial infection. Thus, in addition to toxins, the importance of colonization factors in C. difficile-associated disease is recognized. In this study, we identified Fbp68, one of the colonization factors that bind to fibronectin (Fn), as a manganese-binding protein (KD = 52.70 ± 1.97 nm). Furthermore, the conformation of Fbp68 changed dramatically upon manganese binding. Manganese binding can also stabilize the structure of Fbp68 as evidenced by the increased Tm measured by thermodenatured circular dichroism and differential scanning calorimetry (CD, Tm = 58–65 °C; differential scanning calorimetry, Tm = 59–66 °C). In addition, enhanced tolerance to protease K also suggests greatly improved stability of Fbp68 through manganese binding. Fn binding activity was found to be dependent on manganese due to the lack of binding by manganese-free Fbp68 to Fn. The C-terminal 194 amino acid residues of Fbp68 (Fbp68C) were discovered to bind to the N-terminal domain of Fn (Fbp68C-NTD, KD = 233 ± 10 nm, obtained from isothermal titration calorimetry). Moreover, adhesion of C. difficile to Caco-2 cells can be partially blocked if cells are pretreated with Fbp68C, and the binding of Fbp68C on Fn siRNA-transfected cells was significantly reduced. These results raise the possibility that Fbp68 plays a key role in C. difficile adherence on host cells to initiate infection. PMID:21062746

  17. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.

    PubMed

    Mackin, Kate E; Carter, Glen P; Howarth, Pauline; Rood, Julian I; Lyras, Dena

    2013-01-01

    Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility. PMID:24236153

  18. Spo0A Differentially Regulates Toxin Production in Evolutionarily Diverse Strains of Clostridium difficile

    PubMed Central

    Mackin, Kate E.; Carter, Glen P.; Howarth, Pauline; Rood, Julian I.; Lyras, Dena

    2013-01-01

    Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility. PMID:24236153

  19. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.

    PubMed

    Mackin, Kate E; Carter, Glen P; Howarth, Pauline; Rood, Julian I; Lyras, Dena

    2013-01-01

    Clostridium difficile is an important pathogen of humans and animals, representing a significant global healthcare problem. The last decade has seen the emergence of epidemic BI/NAP1/027 and ribotype 078 isolates, associated with the onset of more severe disease and higher rates of morbidity and mortality. However, little is known about these isolates at the molecular level, partly due to difficulties in the genetic manipulation of these strains. Here we report the development of an optimised Tn916-mediated plasmid transfer system, and the use of this system to construct and complement spo0A mutants in a number of different C. difficile strain backgrounds. Spo0A is a global regulator known to control sporulation, but may also be involved in the regulation of potential virulence factors and other phenotypes. Recent studies have failed to elucidate the role of Spo0A in toxin A and toxin B production by C. difficile, with conflicting data published to date. In this study, we aimed to clarify the role of Spo0A in production of the major toxins by C. difficile. Through the construction and complementation of spo0A mutants in two ribotype 027 isolates, we demonstrate that Spo0A acts as a negative regulator of toxin A and toxin B production in this strain background. In addition, spo0A was disrupted and subsequently complemented in strain 630Δerm and, for the first time, in a ribotype 078 isolate, JGS6133. In contrast to the ribotype 027 strains, Spo0A does not appear to regulate toxin production in strain 630Δerm. In strain JGS6133, Spo0A appears to negatively regulate toxin production during early stationary phase, but has little effect on toxin expression during late stationary phase. These data suggest that Spo0A may differentially regulate toxin production in phylogenetically distinct C. difficile strain types. In addition, Spo0A may be involved in regulating some aspects of C. difficile motility.

  20. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan.

    PubMed

    Wu, Ying-Chen; Lee, Jen-Jie; Tsai, Bo-Yang; Liu, Yi-Fen; Chen, Chih-Ming; Tien, Ni; Tsai, Pei-Jane; Chen, Ter-Hsin

    2016-02-01

    Clostridium difficile is a human and animal pathogen. Recently, the incidence of community-acquired C. difficile infection has increased, and many studies have indicated that C. difficile might be food-borne. The correlation between C. difficile infection in humans and in animals has been a topic of debate. The objective of this study was to determine the genetic relatedness of C. difficile from human and pigs in Taiwan. We investigated the molecular epidemiology of C. difficile in healthy humans and pigs from 2011 to 2015. The isolation rate of C. difficile from pigs in 13 commercial farms was 49% (100/204), and a high proportion of hypervirulent (C. difficile carrying tcdA, tcdB, and cdtA/B genes and a 39-bp deletion in the tcdC gene) ribotype 078 lineage isolates (90%, 90/100; including 078, 126, 127, and 066-like isolates) were identified. In addition, the C. difficile ribotype 127 isolates from pigs typically exhibited moxifloxacin resistance (37/43; 86%). In healthy humans, the isolation rate was 4.3% (3/69), and all healthy human isolates were non-toxigenic. In particular, we compared the porcine isolates with two patient strains (ribotype 127) obtained from two hospitals in central Taiwan. The multilocus variable number tandem repeat analysis revealed a high genetic relatedness between ribotype 127 from patients and pigs. This study indicated that isolates of the ribotype 078 lineage, and especially ribotype 127, were widely distributed in pig farms and showed a high frequency of moxifloxacin resistance. The closely related ribotype 127 from patients and pigs may have had a common origin or low diversity. In conclusion, C. difficile ribotype 127 is a noteworthy pathogen in pigs and poses a potential public health threat.

  1. Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice

    PubMed Central

    Sadighi Akha, Amir A; McDermott, Andrew J; Theriot, Casey M; Carlson, Paul E; Frank, Charles R; McDonald, Roderick A; Falkowski, Nicole R; Bergin, Ingrid L; Young, Vincent B; Huffnagle, Gary B

    2015-01-01

    Our previous work has shown the significant up-regulation of Il22 and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) as part of the mucosal inflammatory response to Clostridium difficile infection in mice. Others have shown that phosphorylation of STAT3 at mucosal surfaces includes interleukin-22 (IL-22) and CD160-mediated components. The current study sought to determine the potential role(s) of IL-22 and/or CD160 in the mucosal response to C. difficile infection. Clostridium difficile-infected mice treated with anti-IL-22, anti-CD160 or a combination of the two showed significantly reduced STAT3 phosphorylation in comparison to C. difficile-infected mice that had not received either antibody. In addition, C. difficile-infected mice treated with anti-IL-22/CD160 induced a smaller set of genes, and at significantly lower levels than the untreated C. difficile-infected mice. The affected genes included pro-inflammatory chemokines and cytokines, and anti-microbial peptides. Furthermore, histopathological and flow cytometric assessments both showed a significantly reduced influx of neutrophils in C. difficile-infected mice treated with anti-IL-22/CD160. These data demonstrate that IL-22 and CD160 are together responsible for a significant fraction of the colonic STAT3 phosphorylation in C. difficile infection. They also underscore the additive effects of IL-22 and CD160 in mediating both the pro-inflammatory and pro-survival aspects of the host mucosal response in this infection. PMID:25327211

  2. A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Androga, Grace O.; Ballard, Susan A.; Howden, Benjamin P.

    2016-01-01

    ABSTRACT In the last decade, Clostridium difficile infection (CDI) has reached an epidemic state with increasing incidence and severity in both health care and community settings. Vancomycin is an important first-line therapy for CDI, and the emergence of resistance would have significant clinical consequences. In this study, we describe for the first time a vanB2 vancomycin resistance operon in C. difficile, isolated from an Australian veal calf at slaughter. The operon was carried on an ~42-kb element showing significant homology and synteny to Tn1549, a conjugative transposon linked with the emergence and global dissemination of vancomycin-resistant enterococci (VRE). Notably, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly as a result of an aberrant vanRB gene. As observed for other anaerobic species of the animal gut microbiota, C. difficile may be a reservoir of clinically important vancomycin resistance genes. IMPORTANCE In an era when the development of new antimicrobial drugs is slow, vancomycin remains the preferred antimicrobial therapy for Clostridium difficile infection (CDI), the most important health care-related infection in the world today. The emergence of resistance to vancomycin would have significant consequences in relation to treating patients with CDI. In this paper, we describe for the first time a complete set of vancomycin resistance genes in C. difficile. The genes were very similar to genes found in vancomycin-resistant enterococci (VRE) that were associated with the emergence and global dissemination of this organism. Fortunately, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly because of a small difference in one gene. However, this observation signals that we may be very close to seeing a fully vancomycin-resistant strain of C. difficile. PMID:27536735

  3. A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile.

    PubMed

    Knight, Daniel R; Androga, Grace O; Ballard, Susan A; Howden, Benjamin P; Riley, Thomas V

    2016-01-01

    In the last decade, Clostridium difficile infection (CDI) has reached an epidemic state with increasing incidence and severity in both health care and community settings. Vancomycin is an important first-line therapy for CDI, and the emergence of resistance would have significant clinical consequences. In this study, we describe for the first time a vanB2 vancomycin resistance operon in C. difficile, isolated from an Australian veal calf at slaughter. The operon was carried on an ~42-kb element showing significant homology and synteny to Tn1549, a conjugative transposon linked with the emergence and global dissemination of vancomycin-resistant enterococci (VRE). Notably, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly as a result of an aberrant vanRB gene. As observed for other anaerobic species of the animal gut microbiota, C. difficile may be a reservoir of clinically important vancomycin resistance genes. IMPORTANCE In an era when the development of new antimicrobial drugs is slow, vancomycin remains the preferred antimicrobial therapy for Clostridium difficile infection (CDI), the most important health care-related infection in the world today. The emergence of resistance to vancomycin would have significant consequences in relation to treating patients with CDI. In this paper, we describe for the first time a complete set of vancomycin resistance genes in C. difficile. The genes were very similar to genes found in vancomycin-resistant enterococci (VRE) that were associated with the emergence and global dissemination of this organism. Fortunately, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly because of a small difference in one gene. However, this observation signals that we may be very close to seeing a fully vancomycin-resistant strain of C. difficile. PMID:27536735

  4. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor

    PubMed Central

    Bhattacharjee, Disha; Francis, Michael B.; Ding, Xicheng; McAllister, Kathleen N.; Shrestha, Ritu

    2015-01-01

    ABSTRACT Clostridium difficile spore germination is essential for colonization and disease. The signals that initiate C. difficile spore germination are a combination of taurocholic acid (a bile acid) and glycine. Interestingly, the chenodeoxycholic acid class (CDCA) bile acids competitively inhibit taurocholic acid-mediated germination, suggesting that compounds that inhibit spore germination could be developed into drugs that prophylactically prevent C. difficile infection or reduce recurring disease. However, a recent report called into question the utility of such a strategy to prevent infection by describing C. difficile strains that germinated in the apparent absence of bile acids or germinated in the presence of the CDCA inhibitor. Because the mechanisms of C. difficile spore germination are beginning to be elucidated, the mechanism of germination in these particular strains could yield important information on how C. difficile spores initiate germination. Therefore, we quantified the interaction of these strains with taurocholic acid and CDCA, the rates of spore germination, the release of DPA from the spore core, and the abundance of the germinant receptor complex (CspC, CspB, and SleC). We found that strains previously observed to germinate in the absence of taurocholic acid correspond to more potent 50% effective concentrations (EC50 values; the concentrations that achieve a half-maximum germination rate) of the germinant and are still inhibited by CDCA, possibly explaining the previous observations. By comparing the germination kinetics and the abundance of proteins in the germinant receptor complex, we revised our original model for CspC-mediated activation of spore germination and propose that CspC may activate spore germination and then inhibit downstream processes. IMPORTANCE Clostridium difficile forms metabolically dormant spores that persist in the health care environment. In susceptible hosts, C. difficile spores germinate in response to certain

  5. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections.

    PubMed

    Locher, Hans H; Seiler, Peter; Chen, Xinhua; Schroeder, Susanne; Pfaff, Philippe; Enderlin, Michel; Klenk, Axel; Fournier, Elvire; Hubschwerlen, Christian; Ritz, Daniel; Kelly, Ciaran P; Keck, Wolfgang

    2014-01-01

    Clostridium difficile is a leading cause of health care-associated diarrhea with significant morbidity and mortality, and new options for the treatment of C. difficile-associated diarrhea (CDAD) are needed. Cadazolid is a new oxazolidinone-type antibiotic that is currently in clinical development for treatment of CDAD. Here, we report the in vitro and in vivo antibacterial evaluation of cadazolid against C. difficile. Cadazolid showed potent in vitro activity against C. difficile with a MIC range of 0.125 to 0.5 μg/ml, including strains resistant to linezolid and fluoroquinolones. In time-kill kinetics experiments, cadazolid showed a bactericidal effect against C. difficile isolates, with >99.9% killing in 24 h, and was more bactericidal than vancomycin. In contrast to metronidazole and vancomycin, cadazolid strongly inhibited de novo toxin A and B formation in stationary-phase cultures of toxigenic C. difficile. Cadazolid also inhibited C. difficile spore formation substantially at growth-inhibitory concentrations. In the hamster and mouse models for CDAD, cadazolid was active, conferring full protection from diarrhea and death with a potency similar to that of vancomycin. These findings support further investigations of cadazolid for the treatment of CDAD.

  6. In Vitro and In Vivo Antibacterial Evaluation of Cadazolid, a New Antibiotic for Treatment of Clostridium difficile Infections

    PubMed Central

    Seiler, Peter; Chen, Xinhua; Schroeder, Susanne; Pfaff, Philippe; Enderlin, Michel; Klenk, Axel; Fournier, Elvire; Hubschwerlen, Christian; Ritz, Daniel; Kelly, Ciaran P.; Keck, Wolfgang

    2014-01-01

    Clostridium difficile is a leading cause of health care-associated diarrhea with significant morbidity and mortality, and new options for the treatment of C. difficile-associated diarrhea (CDAD) are needed. Cadazolid is a new oxazolidinone-type antibiotic that is currently in clinical development for treatment of CDAD. Here, we report the in vitro and in vivo antibacterial evaluation of cadazolid against C. difficile. Cadazolid showed potent in vitro activity against C. difficile with a MIC range of 0.125 to 0.5 μg/ml, including strains resistant to linezolid and fluoroquinolones. In time-kill kinetics experiments, cadazolid showed a bactericidal effect against C. difficile isolates, with >99.9% killing in 24 h, and was more bactericidal than vancomycin. In contrast to metronidazole and vancomycin, cadazolid strongly inhibited de novo toxin A and B formation in stationary-phase cultures of toxigenic C. difficile. Cadazolid also inhibited C. difficile spore formation substantially at growth-inhibitory concentrations. In the hamster and mouse models for CDAD, cadazolid was active, conferring full protection from diarrhea and death with a potency similar to that of vancomycin. These findings support further investigations of cadazolid for the treatment of CDAD. PMID:24277020

  7. Diarrhoea in general practice: when should a Clostridium difficile infection be considered? Results of a nested case-control study.

    PubMed

    Hensgens, M P M; Dekkers, O M; Demeulemeester, A; Buiting, A G M; Bloembergen, P; van Benthem, B H B; Le Cessie, S; Kuijper, E J

    2014-12-01

    Clostridium difficile infections (CDIs) are frequent in hospitals, but also seem to increase in the community. Here, we aim to determine the incidence of CDI in general practice and to evaluate current testing algorithms for CDI. Three Dutch laboratories tested all unformed faeces (12,714) for C. difficile when diagnostic testing (for any enteric pathogen) was requested by a general practitioner (GP). Additionally, a nested case-control study was initiated, including 152 CDI patients and 304 age and sex-matched controls. Patients were compared using weighted multivariable logistic regression. One hundred and ninety-four samples (1.5%) were positive for C. difficile (incidence 0.67/10,000 patient years). This incidence was comparable to that of Salmonella spp. Compared with diarrhoeal controls, CDI was associated with more severe complaints, underlying diseases, antibiotic use and prior hospitalization. In our study, GPs requested a test for C. difficile in 7% of the stool samples, thereby detecting 40% of all CDIs. Dutch national recommendations advise testing for C. difficile when prior antibiotic use or hospitalization is present (18% of samples). If these recommendations were followed, 61% of all CDIs would have been detected. In conclusion, C. difficile is relatively frequent in general practice. Currently, testing for C. difficile is rare and only 40% of CDI in general practice is detected. Following recommendations that are based on traditional risk factors for CDI, would improve detection of CDI.

  8. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection.

    PubMed

    Sun, Xingmin; Hirota, Simon A

    2015-02-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of C. difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis.

  9. Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium.

    PubMed

    Rodriguez, C; Taminiau, B; Avesani, V; Van Broeck, J; Delmée, M; Daube, G

    2014-09-01

    Clostridium difficile has been isolated from food animals and meat, specially ground pork and ground beef. The recovered isolates were closely related to C. difficile human strains, indicating that animals and food are possible transmission routes of human C. difficile infection. The main objective of this study was to characterize C. difficile isolates from retail meat and to compare with human isolates recovered from hospital patients in Belgium. Raw meat (beef and pork) was obtained from the retail trade. C. difficile was recovered from 2.3% of the beef samples and from 4.7% of the pork samples. A total of 4 different PCR-ribotypes were identified with a large percentage of types 078 and 014. Resistance to moxifloxacin and erythromycin was detected. The multi-locus sequence typing (MLST) analysis showed that meat and human isolates cluster in the same lineage. This study reveals the presence of toxigenic C. difficile in retail meat in Belgium with predominance PCR-ribotypes 078 and 014, which are among the four most prevalent ribotypes of C. difficile isolated from humans in Europe.

  10. A New Type of Toxin A-Negative, Toxin B-Positive Clostridium difficile Strain Lacking a Complete tcdA Gene

    PubMed Central

    Marín, Mercedes; Martín, Adoración; Rupnik, Maja

    2014-01-01

    Toxins A and B are the main virulence factors of Clostridium difficile and are the targets for molecular diagnostic tests. Here, we describe a new toxin A-negative, toxin B-positive, binary toxin CDT (Clostridium difficile transferase)-negative (A− B+ CDT−) toxinotype (XXXII) characterized by a variant type of pathogenicity locus (PaLoc) without tcdA and with atypical organization of the PaLoc integration site. PMID:25428159

  11. Development of TaqMan-Based Quantitative PCR for Sensitive and Selective Detection of Toxigenic Clostridium difficile in Human Stools

    PubMed Central

    Kubota, Hiroyuki; Sakai, Takafumi; Gawad, Agata; Makino, Hiroshi; Akiyama, Takuya; Ishikawa, Eiji; Oishi, Kenji

    2014-01-01

    Background Clostridium difficile is the main cause of nosocomial diarrhea, but is also found in asymptomatic subjects that are potentially involved in transmission of C. difficile infection. A sensitive and accurate detection method of C. difficile, especially toxigenic strains is indispensable for the epidemiological investigation. Methods TaqMan-based quantitative-PCR (qPCR) method for targeting 16S rRNA, tcdB, and tcdA genes of C. difficile was developed. The detection limit and accuracy of qPCR were evaluated by analyzing stool samples spiked with known amounts of C. difficile. A total of 235 stool specimens collected from 82 elderly nursing home residents were examined by qPCR, and the validity was evaluated by comparing the detection result with that by C. difficile selective culture (CDSC). Results The analysis of C. difficile-spiked stools confirmed that qPCR quantified whole C. difficile (TcdA+TcdB+, TcdA−TcdB+, and TcdA−TcdB− types), TcdB-producing strains (TcdA+TcdB+ and TcdA−TcdB+ types), and TcdA-producing strains (TcdA+TcdB+ type), respectively, with a lower detection limit of 103 cells/g of stool. Of the 235 specimens examined, 12 specimens (5.1%) were C. difficile-positive by qPCR: TcdA+TcdB+ strain in six specimens and TcdA−TcdB− strain in the other six. CDSC detected C. difficile in 9 of the 12 specimens, and toxigenic types of the isolates from the 9 specimens were consistent with those identified by qPCR, supporting the validity of our qPCR method. Moreover, the qPCR examination revealed that the carriage rate of whole C. difficile and that of toxigenic strains in the 82 subjects over a 6-month period ranged from 2.4 to 6.8% and 1.2 to 3.8%, respectively. An average qPCR count of C. difficile detected was 104.5 cells/g of stool, suggesting that C. difficile constituted a very small fraction of intestinal microbiota. Conclusion Our qPCR method should be an effective tool for both clinical diagnosis and epidemiological investigation of

  12. Enhanced surveillance of Clostridium difficile infection occurring outside hospital, England, 2011 to 2013.

    PubMed

    Fawley, Warren N; Davies, Kerrie A; Morris, Trefor; Parnell, Peter; Howe, Robin; Wilcox, Mark H

    2016-07-21

    There are limited national epidemiological data for community-associated (CA)-Clostridium difficile infections (CDIs). Between March 2011 and March 2013, laboratories in England submitted to the Clostridium difficile Ribotyping Network (CDRN) up to 10 diarrhoeal faecal samples from successive patients with CA-CDI, defined here as C. difficile toxin-positive diarrhoea commencing outside hospital (or less than 48 hours after hospital admission), including those cases associated with community-based residential care, with no discharge from hospital within the previous 12 weeks. Patient demographics and C. difficile PCR ribotypes were compared for CA-CDIs in our study and presumed healthcare-associated (HA) CDIs via CDRN. Ribotype diversity indices, ranking and relative prevalences were very similar in CA- vs HA-CDIs, although ribotypes 002 (p ≤ 0.0001),020 (p = 0.009) and 056 (p < 0.0001) predominated in CA-CDIs; ribotype 027 (p = 0.01) predominated in HA-CDIs. Epidemic ribotypes 027 and 078 predominated in institutional residents with CDI (including care/nursing homes) compared with people with CDI living at home. Ribotype diversity decreased with increasing age in HA-CDIs, but not in CA-CDIs. Ribotype 078 CA-CDIs were significantly more common in elderly people (3.4% (6/174) vs 8.7% (45/519) in those aged < 65 and ≥ 65 years, respectively; p = 0.019). No antibiotics were prescribed in the previous four weeks in about twofold more CA-CDI vs HAs (38.6% (129/334) vs 20.3% (1,226/6,028); p < 0.0001). We found very similar ribotype distributions in CA- and HA-CDIs, although a few ribotypes significantly predominated in one setting. These national data emphasise the close interplay between, and likely common reservoirs for, CDIs, particularly when epidemic strains are not dominant. PMID:27487436

  13. Infection with Toxin A-Negative, Toxin B-Negative, Binary Toxin-Positive Clostridium difficile in a Young Patient with Ulcerative Colitis

    PubMed Central

    Androga, Grace O.; Hart, Julie; Foster, Niki F.; Charles, Adrian; Forbes, David

    2015-01-01

    Large clostridial toxin-negative, binary toxin-positive (A− B− CDT+) strains of Clostridium difficile are almost never associated with clinically significant C. difficile infection (CDI), possibly because such strains are not detected by most diagnostic methods. We report the isolation of an A− B− CDT+ ribotype 033 (RT033) strain of C. difficile from a young patient with ulcerative colitis and severe diarrhea. PMID:26354812

  14. Infection with Toxin A-Negative, Toxin B-Negative, Binary Toxin-Positive Clostridium difficile in a Young Patient with Ulcerative Colitis.

    PubMed

    Androga, Grace O; Hart, Julie; Foster, Niki F; Charles, Adrian; Forbes, David; Riley, Thomas V

    2015-11-01

    Large clostridial toxin-negative, binary toxin-positive (A(-) B(-) CDT(+)) strains of Clostridium difficile are almost never associated with clinically significant C. difficile infection (CDI), possibly because such strains are not detected by most diagnostic methods. We report the isolation of an A(-) B(-) CDT(+) ribotype 033 (RT033) strain of C. difficile from a young patient with ulcerative colitis and severe diarrhea.

  15. Loss of Vancomycin-Resistant Enterococcus Fecal Dominance in an Organ Transplant Patient With Clostridium difficile Colitis After Fecal Microbiota Transplant

    PubMed Central

    Stripling, Joshua; Kumar, Ranjit; Baddley, John W.; Nellore, Anoma; Dixon, Paula; Howard, Donna; Ptacek, Travis; Lefkowitz, Elliot J.; Tallaj, Jose A.; Benjamin, William H.; Morrow, Casey D.; Rodriguez, J. Martin

    2015-01-01

    We report the use of fecal microbiota transplantation in a single heart-kidney transplant recipient with recurrent Clostridium difficile, vancomycin-resistant Enterococcus (VRE) fecal dominance, and recurrent VRE infections. Fecal microbiota transplantation resulted in the reconstruction of a diverse microbiota with (1) reduced relative abundance of C difficile and VRE and (2) positive clinical outcome. PMID:26180828

  16. Loss of Vancomycin-Resistant Enterococcus Fecal Dominance in an Organ Transplant Patient With Clostridium difficile Colitis After Fecal Microbiota Transplant.

    PubMed

    Stripling, Joshua; Kumar, Ranjit; Baddley, John W; Nellore, Anoma; Dixon, Paula; Howard, Donna; Ptacek, Travis; Lefkowitz, Elliot J; Tallaj, Jose A; Benjamin, William H; Morrow, Casey D; Rodriguez, J Martin

    2015-04-01

    We report the use of fecal microbiota transplantation in a single heart-kidney transplant recipient with recurrent Clostridium difficile, vancomycin-resistant Enterococcus (VRE) fecal dominance, and recurrent VRE infections. Fecal microbiota transplantation resulted in the reconstruction of a diverse microbiota with (1) reduced relative abundance of C difficile and VRE and (2) positive clinical outcome.

  17. Comparison of the prevalence and genomic characteristics of Clostridi