Science.gov

Sample records for chronic inflammation immune

  1. Microbiota, Immune Subversion, and Chronic Inflammation

    PubMed Central

    Kramer, Carolyn D.; Genco, Caroline Attardo

    2017-01-01

    Several host-adapted pathogens and commensals have evolved mechanisms to evade the host innate immune system inducing a state of low-grade inflammation. Epidemiological studies have also documented the association of a subset of these microorganisms with chronic inflammatory disorders. In this review, we summarize recent studies demonstrating the role of the microbiota in chronic inflammatory diseases and discuss how specific microorganisms subvert or inhibit protective signaling normally induced by toll-like receptors (TLRs). We highlight our work on the oral pathogen Porphyromonas gingivalis and discuss the role of microbial modulation of lipid A structures in evasion of TLR4 signaling and resulting systemic immunopathology associated with atherosclerosis. P. gingivalis intrinsically expresses underacylated lipid A moieties and can modify the phosphorylation of lipid A, leading to altered TLR4 signaling. Using P. gingivalis mutant strains expressing distinct lipid A moieties, we demonstrated that expression of antagonist lipid A was associated with P. gingivalis-mediated systemic inflammation and immunopathology, whereas strains expressing agonist lipid A exhibited modest systemic inflammation. Likewise, mice deficient in TLR4 were more susceptible to vascular inflammation after oral infection with P. gingivalis wild-type strain compared to mice possessing functional TLR4. Collectively, our studies support a role for P. gingivalis-mediated dysregulation of innate and adaptive responses resulting in immunopathology and systemic inflammation. We propose that anti-TLR4 interventions must be designed with caution, given the balance between the protective and destructive roles of TLR signaling in response to microbiota and associated immunopathologies. PMID:28348558

  2. Chronic immune activation and inflammation as the cause of malignancy

    PubMed Central

    O'Byrne, K J; Dalgleish, A G

    2001-01-01

    Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11506482

  3. Epithelial NEMO links innate immunity to chronic intestinal inflammation.

    PubMed

    Nenci, Arianna; Becker, Christoph; Wullaert, Andy; Gareus, Ralph; van Loo, Geert; Danese, Silvio; Huth, Marion; Nikolaev, Alexei; Neufert, Clemens; Madison, Blair; Gumucio, Deborah; Neurath, Markus F; Pasparakis, Manolis

    2007-03-29

    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract

  4. Disruption of immune regulation by microbial pathogens and resulting chronic inflammation.

    PubMed

    Barth, Kenneth; Remick, Daniel G; Genco, Caroline A

    2013-07-01

    Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation.

  5. The Jeremiah Metzger Lecture: Inflammation, Immune Modulators, and Chronic Disease.

    PubMed

    Dubois, Raymond N

    2015-01-01

    Chronic inflammation is a risk factor for many different diseases. It is clear that inflammation is associated with degenerative brain diseases, obesity, metabolic syndrome, cardiovascular disease, diabetes, and cancer. Throughout the past 100 years, changes in the causes of death in the US have been dramatic. The most recent data indicate that cardiovascular disease and cancer are now responsible for 63% of mortality in the US population. Although progression of these diseases is related to diet, lifestyle, and genetic factors, a common but often unrecognized link is the presence of underlying chronic inflammation. As of 2014, 83.6 million people were living with some form of cardiovascular disease, 29.1 million people have been diagnosed with diabetes, 14 million people carried the diagnosis of cancer, and 5.2 million people were living with Alzheimer disease. These diseases are a huge burden on our health care system and all have been associated with chronic inflammation.

  6. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications.

    PubMed

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal

    2016-01-01

    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.

  7. Basal inflammation and innate immune response in chronic multisite musculoskeletal pain.

    PubMed

    Generaal, Ellen; Vogelzangs, Nicole; Macfarlane, Gary J; Geenen, Rinie; Smit, Johannes H; Dekker, Joost; Penninx, Brenda W J H

    2014-08-01

    Dysregulation of the immune system may play a role in chronic pain, although study findings are inconsistent. This cross-sectional study examined whether basal inflammatory markers and the innate immune response are associated with the presence and severity of chronic multisite musculoskeletal pain. Data were used on 1632 subjects of the Netherlands Study of Depression and Anxiety. The Chronic Pain Grade questionnaire was used to determine the presence and severity of chronic multisite musculoskeletal pain. Subjects were categorized in a chronic multisite musculoskeletal pain group (n=754) and a control group (n=878). Blood levels of the basal inflammatory markers C-reactive protein, interleukin-6, and tumor necrosis factor-alpha were determined. To obtain a measure of the innate immune response, 13 inflammatory markers were assessed after lipopolysaccharide (LPS) stimulation in a subsample (n=707). Subjects with chronic multisite musculoskeletal pain showed elevated levels of basal inflammatory markers compared with controls, but statistical significance was lost after adjustment for lifestyle and disease variables. For some LPS-stimulated inflammatory markers, we did find elevated levels in subjects with chronic multisite musculoskeletal pain both before and after adjustment for covariates. Pain severity was not associated with inflammation within chronic pain subjects. An enhanced innate immune response in chronic multisite musculoskeletal pain may be examined as a potential biomarker for the onset or perpetuation of chronic pain.

  8. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection.

    PubMed

    Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan

    2015-06-01

    Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.

  9. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    PubMed

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  10. Chronic immune activation and inflammation in the pathogenesis of AIDS and cancer.

    PubMed

    Dalgleish, Angus G; O'Byrne, Ken J

    2002-01-01

    Infection with the human immunodeficiency virus (HIV) invariably leads to the development of acquired immunodeficiency syndrome (AIDS) in most infected humans, yet does so rarely, if at all, in HIV-infected chimpanzees. The differences between the two species are not due to differences in cellular receptors or an inability of the chimpanzee to be infected, but rather to the lack of pan-immune activation in the infected primate. This results in reduced apoptotic death in CD4+ T-helper lymphocytes and a lower viral load. In humans the degree of chronic immune activation correlates with virus load and clinical outcome with high immune activation leading to high viral loads and the more rapid progression to AIDS and death. The type of immune perturbation seen in HIV-associated AIDS is similar to that of chronic graft-versus-host disease (GVHD) where reduced cell-mediated immune (CMI) responses occur early in the course of the disease and where humoral responses (HI) predominate. A reduced CMI response occurs in a number of chronic infectious diseases, including tuberculosis and leishmaniasis. More recently, it has become increasingly apparent that the CMI response is suppressed in virtually all malignant diseases, including melanoma and colorectal and prostate cancer. This raises the possibility that, as the malignant process develops, the cancer cells evolve to subvert the CMI response. Moreover, the reduced CMI response seen in colorectal cancer (CRC) patients is completely reversed following curative surgery strongly supporting the hypothesis that CRC can suppress the systemic immune response. Wound healing, ovulation, embryo implantation, and fetal growth are all associated with suppressed CMI and neovascularization (the formation of new blood vessels) or angiogenesis (the formation of new blood vessels from an existing vasculature). If unresolved, wound healing results in chronic inflammation, which can give rise to the phenomenon of "scar cancers." Indeed all the

  11. Monocyte and plasma expression of TAM ligand and receptor in renal failure: Links to unregulated immunity and chronic inflammation.

    PubMed

    Lee, Iris J; Hilliard, Brendan A; Ulas, Mehriban; Yu, Daohai; Vangala, Chandan; Rao, Swati; Lee, Jean; Gadegbeku, Crystal A; Cohen, Philip L

    2015-06-01

    Chronic inflammation is increased in patients with chronic kidney disease (CKD) and contributes to cardiovascular morbidity and mortality. Specific immune mechanisms and pathways that drive and maintain chronic inflammation in CKD are not well described. The TAM ligands (Gas6 and protein S) and receptors (Axl and Mer) have been recently recognized as playing a prominent role in immune regulation. The receptors exist in both soluble and cell-bound forms; the soluble receptors (sAxl and sMer) are believed to compete with the bound receptors and thus inhibit their function. In this study, we determined the expression of cell-bound and soluble TAM proteins in patients with CKD. CKD patients had significantly lower expression of Mer in monocytes, yet increased expression of soluble TAM receptors sAxl and sMer in plasma compared to controls. The metalloproteinase ADAM 17, responsible for cleavage of Mer to its soluble form, was increased in patient monocytes. Elevated levels of soluble TAM receptors were more evident in patients with progressive renal failure. These observations suggest that functional deficiency of TAM receptor-mediated regulation of inflammation may contribute to chronic inflammation in patients with CKD.

  12. Quercetin, Inflammation and Immunity

    PubMed Central

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-01-01

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity. PMID:26999194

  13. Quercetin, Inflammation and Immunity.

    PubMed

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-15

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  14. The Role of Platelet-Activating Factor in Chronic Inflammation, Immune Activation, and Comorbidities Associated with HIV Infection

    PubMed Central

    Kelesidis, Theodoros; Papakonstantinou, Vasiliki; Detopoulou, Paraskevi; Fragopoulou, Elizabeth; Chini, Maria; Lazanas, Marios C.; Antonopoulou, Smaragdi

    2016-01-01

    With the advent of highly effective antiretroviral therapy, cardiovascular disease has become an important cause of morbidity and mortality among people with treated HIV-1, but the pathogenesis is unclear. Platelet-activating factor is a potent lipid mediator of inflammation that has immunomodulatory effects and a pivotal role in the pathogenesis of inflammatory disorders and cardiovascular disease. Limited scientific evidence suggests that the platelet-activating factor pathway may be a mechanistic link between HIV-1 infection, systemic inflammation, and immune activation that contribute to pathogenesis of chronic HIV-related comorbidities, including cardiovascular disease and HIV-associated neurocognitive disorders. In this review, we examine the mechanisms by which the cross-talk between HIV-1, immune dysregulation, inflammation, and perturbations in the platelet-activating factor pathway may directly affect HIV-1 immunopathogenesis. Understanding the role of platelet-activating factor in HIV-1 infection may pave the way for further studies to explore therapeutic interventions, such as diet, that can modify platelet-activating factor activity and use of platelet-activating factor inhibitors that might improve the prognosis of HIV-1 infected patients. PMID:26616844

  15. The linkage between inflammation and immune tolerance: interfering with inflammation in cancer.

    PubMed

    Rogovskii, Vladimir Stanislavovich

    2017-01-09

    Inflammation is linked to immune tolerance. In pregnancy and in immune privileged organs constitutive low-grade inflammation is required for maintaining immunological tolerance. Apart from immune tolerance in normality, there is the phenomenon of immune tolerance in cancer which mediates tumor escape from the immune system. It is widely accepted that, in many situations, chronic inflammation critically contributes to cancer. Like other types of immune tolerance, tumor-induced tolerance is also mediated by inflammation. In this review, the main mechanisms that link inflammation and tolerance are considered. We discuss drug targets that are in use to interfere with inflammation in cancer.

  16. Hyperglycemia, tumorigenesis, and chronic inflammation.

    PubMed

    Chang, Shu-Chun; Yang, Wei-Chung Vivian

    2016-12-01

    Hyperglycemia is the most prominent sign that characterizes diabetes. Hyperglycemia favors malignant cell growth by providing energy to cancer cells. Clinical studies also showed an increased risk of diabetes being associated with different types of cancers. In addition, poorly regulated glucose metabolism in diabetic patients is often found with increased levels of chronic inflammatory markers, e.g., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and emerging evidence has highlighted activation of the immune response in the progression and development of cancer cells. Therefore, uncontrolled proinflammatory responses could conceivably create a chronic inflammatory state, promoting a tumor-favorable microenvironment and potentially triggering immune overactivation and cancer growth. To further understand how hyperglycemia contributes to immune overactivation, the tumor microenvironment and the development of chronic inflammation-associated tumors may provide insights into tumor biology and immunology. This paper provides a brief introduction to hyperglycemia-associated diseases, followed by a comprehensive overview of the current findings of regulatory molecular mechanisms of glycosylation on proteoglycans in the extracellular matrix under hyperglycemic conditions. Then, the authors discuss the role of hyperglycemia in tumorigenesis (particularly in prostate, liver, colorectal, and pancreatic cancers), as well as the contribution of hyperglycemia to chronic inflammation. The authors end with a brief discussion on the future perspectives of hyperglycemia/tumorigenesis and potential applications of alternative/effective therapeutic strategies for hyperglycemia-associated cancers.

  17. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model

    PubMed Central

    MA, XIAOJUAN; MA, XIUMIN; MA, ZHIXING; WANG, JING; SUN, ZHAN; YU, WENYAN; LI, FENGSEN; DING, JIANBING

    2014-01-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation. PMID:25289025

  18. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model.

    PubMed

    Ma, Xiaojuan; Ma, Xiumin; Ma, Zhixing; Wang, Jing; Sun, Zhan; Yu, Wenyan; Li, Fengsen; Ding, Jianbing

    2014-11-01

    The Uygur herb, Hyssopus officinalis L., has been demonstrated to affect the levels of a number of cytokines in asthmatic mice, including interleukin-4, -6 and -17 and interferon-γ. In the present study, the effect of Hyssopus officinalis L. on airway immune regulation and airway inflammation was investigated in a mouse model of chronic asthma. A total of 32 BALB/c mice were randomly divided into four groups, which included the normal, chronic asthmatic, dexamethasone treatment and Hyssopus officinalis L.treatment groups. Mice were sensitized and challenged with ovalbumin to establish an asthma model and the ratio of eosinophils (EOS) in the bronchoalveolar lavage fluid (BALF) was determined. In addition, the levels of immunoglobulin (Ig)E and IgG were detected using an enzyme-linked immunosorbent assay. The degree of airway mucus secretion was observed using the periodic acid-Schiff stain method. The results demonstrated that the ratio of EOS in the BALF and the level of serum IgE in the chronic asthmatic and dexamethasone treatment groups increased, while the level of serum IgG decreased, when compared with the normal group. In addition, excessive secretion of airway mucus was observed in these two groups. However, the EOS ratio in the BALF and the levels of serum IgE and IgG in the Hyssopus officinalis L. treatment group were similar to the results observed in the normal group. In conclusion, Hyssopus officinalis L. not only plays an anti-inflammatory role by inhibiting the invasion of EOS and decreasing the levels of IgE, but also affects immune regulation.

  19. Innate lymphoid cells in inflammation and immunity.

    PubMed

    McKenzie, Andrew N J; Spits, Hergen; Eberl, Gerard

    2014-09-18

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.

  20. Chronic Inflammation in Skin Malignancies

    PubMed Central

    Tang, Lihua

    2016-01-01

    Chronic inflammation is linked to the development and progression of multiple cancers, including those of the lung, stomach, liver, colon, breast and skin. Inflammation not only drives the oncogenic transformation of epithelial cells under the stress of chronic infection and autoimmune diseases, but also promotes the growth, progression and metastatic spread of cancers. Tumor-infiltrating inflammatory cells are comprised of a diverse population of myeloid and immune cell types, including monocytes, macrophages, dendritic cells, T and B cells, and others. Different myeloid and lymphoid cells within tumor microenvironment exert diverse, often contradicting, effects during skin cancer development and progression. The nature of tumor-immune interaction determines the rate of cancer progression and the outcome of cancer treatment. Inflammatory environment within skin tumor also inhibits naturally occurring anti-tumor immunity and limits the efficacy of cancer immunotherapy. In this article we aim to give an overview on the mechanism by which inflammation interferes with the development and therapeutic intervention of cancers, especially those of the skin.

  1. Inflammation in Chronic Wounds

    PubMed Central

    Zhao, Ruilong; Liang, Helena; Clarke, Elizabeth; Jackson, Christopher; Xue, Meilang

    2016-01-01

    Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research. PMID:27973441

  2. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Innate immune responses in plants

    PubMed Central

    Schulze-Lefert, P

    2010-01-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  3. Monocyte trafficking in acute and chronic inflammation.

    PubMed

    Ingersoll, Molly A; Platt, Andrew M; Potteaux, Stephane; Randolph, Gwendalyn J

    2011-10-01

    Environmental signals at the site of inflammation mediate rapid monocyte mobilization and dictate differentiation programs whereby these cells give rise to macrophages or dendritic cells. Monocytes participate in tissue healing, clearance of pathogens and dead cells, and initiation of adaptive immunity. However, recruited monocytes can also contribute to the pathogenesis of infection and chronic inflammatory disease, such as atherosclerosis. Here, we explore monocyte trafficking in the context of acute inflammation, relying predominantly on data from microbial infection models. These mechanisms will be compared to monocyte trafficking during chronic inflammation in experimental models of atherosclerosis. Recent developments suggest that monocyte trafficking shares common themes in diverse inflammatory diseases; however, important differences exist between monocyte migratory pathways in acute and chronic inflammation.

  4. Prebiotics in Chronic Intestinal Inflammation

    PubMed Central

    Looijer–van Langen, Mirjam A.C.; Dieleman, Levinus A.

    2016-01-01

    Prebiotics are nondigestible fermentable fibers that are reported to have health benefits for the host. Older as well as more recent studies show beneficial effects in experimental colitis and lately also in human inflammatory bowel diseases (IBD), such as Crohn’s disease, ulcerative colitis, and chronic pouchitis. In this review we give an overview of the benefits of prebiotics in rodent IBD models and in IBD patients and discuss their possible protective mechanisms. Commensal intestinal bacteria induce and perpetuate chronic intestinal inflammation, whereas others are protective. However, most of the current medications are directed against the exaggerated proinflammatory immune response of the host, some of them toxic and costly. Feeding prebiotics changes the composition of the intestinal microflora toward more protective intestinal bacteria and alters systemic and mucosal immune responses of the host. Therapy for IBD targeting intestinal bacteria and their function is just emerging. Prebiotics have the promise to be relatively safe, inexpensive, and easy to administer. Unraveling their protective mechanisms will help to develop rational applications of prebiotics. However, the initial promising results with dietary prebiotics in preclinical trials as well as small studies in human IBD will need to be confirmed in large randomized controlled clinical trials. PMID:18831524

  5. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases

    PubMed Central

    Oschman, James L; Chevalier, Gaétan; Brown, Richard

    2015-01-01

    Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. PMID:25848315

  6. Obesity, inflammation and the immune system.

    PubMed

    de Heredia, Fátima Pérez; Gómez-Martínez, Sonia; Marcos, Ascensión

    2012-05-01

    Obesity shares with most chronic diseases the presence of an inflammatory component, which accounts for the development of metabolic disease and other associated health alterations. This inflammatory state is reflected in increased circulating levels of pro-inflammatory proteins, and it occurs not only in adults but also in adolescents and children. The chronic inflammatory response has its origin in the links existing between the adipose tissue and the immune system. Obesity, like other states of malnutrition, is known to impair the immune function, altering leucocyte counts as well as cell-mediated immune responses. In addition, evidence has arisen that an altered immune function contributes to the pathogenesis of obesity. This review attempts to briefly comment on the various plausible explanations that have been proposed for the phenomenon: (1) the obesity-associated increase in the production of leptin (pro-inflammatory) and the reduction in adiponectin (anti-inflammatory) seem to affect the activation of immune cells; (2) NEFA can induce inflammation through various mechanisms (such as modulation of adipokine production or activation of Toll-like receptors); (3) nutrient excess and adipocyte expansion trigger endoplasmic reticulum stress; and (4) hypoxia occurring in hypertrophied adipose tissue stimulates the expression of inflammatory genes and activates immune cells. Interestingly, data suggest a greater impact of visceral adipose tissue and central obesity, rather than total body fat, on the inflammatory process. In summary, there is a positive feedback loop between local inflammation in adipose tissue and altered immune response in obesity, both contributing to the development of related metabolic complications.

  7. Immunosuppression associated with chronic inflammation in the tumor microenvironment

    PubMed Central

    Wang, Dingzhi; DuBois, Raymond N.

    2015-01-01

    Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways. PMID:26354776

  8. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Immune therapies of type 1 diabetes: new opportunities based on the hygiene hypothesis

    PubMed Central

    Chatenoud, L; You, S; Okada, H; Kuhn, C; Michaud, B; Bach, J-F

    2010-01-01

    Insulin-dependent (type 1) diabetes is a prototypic organ-specific autoimmune disease resulting from the selective destruction of insulin-secreting β cells within pancreatic islets of Langerhans by an immune-mediated inflammation involving autoreactive CD4+ and CD8+ T lymphocytes which infiltrate pancreatic islets. Current treatment is substitutive, i.e. chronic use of exogenous insulin which, in spite of significant advances, is still associated with major constraints (multiple daily injections, risks of hypoglycaemia) and lack of effectiveness over the long term in preventing severe degenerative complications. Finding a cure for autoimmune diabetes by establishing effective immune-based therapies is a real medical health challenge, as the disease incidence increases steadily in industrialized countries. As the disease affects mainly children and young adults, any candidate immune therapy must therefore be safe and avoid a sustained depression of immune responses with the attendant problems of recurrent infection and drug toxicity. Thus, inducing or restoring immune tolerance to target autoantigens, controlling the pathogenic response while preserving the host reactivity to exogenous/unrelated antigens, appears to be the ideal approach. Our objective is to review the major progress accomplished over the last 20 years towards that aim. In addition, we would like to present another interesting possibility to access new preventive strategies based on the ‘hygiene hypothesis’, which proposes a causal link between the increasing incidence of autoimmune diseases, including diabetes, and the decrease of the infectious burden. The underlying rationale is to identify microbial-derived compounds mediating the protective activity of infections which could be developed therapeutically. PMID:20415859

  9. Parainflammation, chronic inflammation and age-related macular degeneration

    PubMed Central

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  10. Autophagy in infection, inflammation, and immunity

    PubMed Central

    Saitoh, Tatsuya; Akira, Shizuo

    2017-01-01

    Preface Autophagy is a fundamental cell biological pathway affecting immunity. Whereas autophagy is an antimicrobial effector of conventional pattern recognition receptors (PRRs), autophagic adaptors termed SLRs represent a new subset of PRRs and provide the mechanistic basis for autophagic elimination of intracellular microbes. Autophagy controls inflammation via regulatory interactions with innate immunity signalling, by removing endogenous inflammasome agonists, and thorough effects on secretion of immune mediators. Autophagy contributes to antigen presentation, T cell homeostasis, and affects T cell repertories and polarization including Th17 inflammation. Here, we review the above relationships organized into four principal roles of autophagy in infection, inflammation, and immunity. PMID:24064518

  11. Immune aging, dysmetabolism, and inflammation in neurological diseases

    PubMed Central

    Deleidi, Michela; Jäggle, Madeline; Rubino, Graziella

    2015-01-01

    As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders. PMID:26089771

  12. Lymphocyte 'homing' and chronic inflammation.

    PubMed

    Sakai, Yasuhiro; Kobayashi, Motohiro

    2015-07-01

    Chronic inflammation is a response to prolonged exposure to injurious stimuli that harm and destroy tissues and promote lymphocyte infiltration into inflamed sites. Following progressive accumulation of lymphocytes, the histology of inflamed tissue begins to resemble that of peripheral lymphoid organs, which can be referred to as lymphoid neogenesis or formation of tertiary lymphoid tissues. Lymphocyte recruitment to inflamed tissues is also reminiscent of lymphocyte homing to peripheral lymphoid organs. In the latter, under physiological conditions, homing receptors expressed on lymphocytes adhere to vascular addressin expressed on high endothelial venules (HEVs), initiating a lymphocyte migration process composed of sequential adhesive interactions. Intriguingly, in chronic inflammation, HEV-like vessels are induced de novo, despite the fact that the inflamed site is not originally lymphoid tissue, and these vessels contribute to lymphocyte recruitment in a manner similar to physiological lymphocyte homing. In this review, we first describe physiological lymphocyte homing mechanisms focusing on vascular addressins. We then describe HEV-like vessel-mediated pathogenesis seen in various chronic inflammatory disorders such as Helicobacter pylori gastritis, inflammatory bowel disease (IBD), autoimmune pancreatitis and sclerosing sialadenitis, as well as chronic inflammatory cell neoplasm MALT lymphoma, with reference to our work and that of others.

  13. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2006-03-01

    420:860. 5. Kusmartsev , S., and D. I. Gabrilovich. 2002. Immature myeloid cells and cancer- associated immune suppression. Cancer Immunol Immunother 51...166:5398. 20. Kusmartsev , S. A., Y. Li, and S. H. Chen. 2000. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation...Chronic inflammation and cancer. On- cology 16: 217–226. 4. Coussens, L. M., and Z. Werb. 2002. Inflammation and cancer. Nature 420: 860–867. 5. Kusmartsev

  14. Fruit polyphenols, immunity and inflammation.

    PubMed

    González-Gallego, Javier; García-Mediavilla, M Victoria; Sánchez-Campos, Sonia; Tuñón, María J

    2010-10-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables and beverages derived from plants. These molecules have been reported to possess a wide range of activities in the prevention of common diseases, including CHD, cancer, neurodegenerative diseases, gastrointestinal disorders and others. The effects appear to be related to the various biological/pharmacological activities of flavonoids. A large number of publications suggest immunomodulatory and anti-inflammatory properties of these compounds. However, almost all studies are in vitro studies with limited research on animal models and scarce data from human studies. The majority of in vitro research has been carried out with single flavonoids, generally aglycones, at rather supraphysiological concentrations. Few studies have investigated the anti-inflammatory effects of physiologically attainable flavonoid concentrations in healthy subjects, and more epidemiological studies and prospective randomised trials are still required. This review summarises evidence for the effects of fruit and tea flavonoids and their metabolites in inflammation and immunity. Mechanisms of effect are discussed, including those on enzyme function and regulation of gene and protein expression. Animal work is included, and evidence from epidemiological studies and human intervention trials is reviewed. Biological relevance and functional benefits of the reported effects, such as resistance to infection or exercise performance, are also discussed.

  15. The role of adipokines in chronic inflammation

    PubMed Central

    Mancuso, Peter

    2016-01-01

    Adipose tissue has traditionally been defined as connective tissue that stores excess calories in the form of triacylglycerol. However, the physiologic functions attributed to adipose tissue are expanding, and it is now well established that adipose tissue is an endocrine gland. Among the endocrine factors elaborated by adipose tissue are the adipokines; hormones, similar in structure to cytokines, produced by adipose tissue in response to changes in adipocyte triacylglycerol storage and local and systemic inflammation. They inform the host regarding long-term energy storage and have a profound influence on reproductive function, blood pressure regulation, energy homeostasis, the immune response, and many other physiologic processes. The adipokines possess pro- and anti-inflammatory properties and play a critical role in integrating systemic metabolism with immune function. In calorie restriction and starvation, proinflammatory adipokines decline and anti-inflammatory adipokines increase, which informs the host of energy deficits and contributes to the suppression of immune function. In individuals with normal metabolic status, there is a balance of pro- and anti-inflammatory adipokines. This balance shifts to favor proinflammatory mediators as adipose tissue expands during the development of obesity. As a consequence, the proinflammatory status of adipose tissue contributes to a chronic low-grade state of inflammation and metabolic disorders associated with obesity. These disturbances are associated with an increased risk of metabolic disease, type 2 diabetes, cardiovascular disease, and many other pathological conditions. This review focuses on the impact of energy homeostasis on the adipokines in immune function. PMID:27529061

  16. The role of adipokines in chronic inflammation.

    PubMed

    Mancuso, Peter

    2016-01-01

    Adipose tissue has traditionally been defined as connective tissue that stores excess calories in the form of triacylglycerol. However, the physiologic functions attributed to adipose tissue are expanding, and it is now well established that adipose tissue is an endocrine gland. Among the endocrine factors elaborated by adipose tissue are the adipokines; hormones, similar in structure to cytokines, produced by adipose tissue in response to changes in adipocyte triacylglycerol storage and local and systemic inflammation. They inform the host regarding long-term energy storage and have a profound influence on reproductive function, blood pressure regulation, energy homeostasis, the immune response, and many other physiologic processes. The adipokines possess pro- and anti-inflammatory properties and play a critical role in integrating systemic metabolism with immune function. In calorie restriction and starvation, proinflammatory adipokines decline and anti-inflammatory adipokines increase, which informs the host of energy deficits and contributes to the suppression of immune function. In individuals with normal metabolic status, there is a balance of pro- and anti-inflammatory adipokines. This balance shifts to favor proinflammatory mediators as adipose tissue expands during the development of obesity. As a consequence, the proinflammatory status of adipose tissue contributes to a chronic low-grade state of inflammation and metabolic disorders associated with obesity. These disturbances are associated with an increased risk of metabolic disease, type 2 diabetes, cardiovascular disease, and many other pathological conditions. This review focuses on the impact of energy homeostasis on the adipokines in immune function.

  17. The unfolded protein response in immunity and inflammation

    PubMed Central

    Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J.; Blumberg, Richard S.

    2017-01-01

    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803

  18. Inflammation in chronic venous ulcers.

    PubMed

    Raffetto, J D

    2013-03-01

    Chronic venous ulcers (CVUs) occur in approximately 1% of the general population. Risk factors for chronic venous disease (CVD) include heredity, age, female sex and obesity. Although not restricted to the elderly, the prevalence of CVD, especially leg ulcers, increases with age. CVD has a considerable impact on health-care resources. It has been estimated that venous ulcers cause the loss of approximately two million working days and incur treatment costs of approximately $3 billion per year in the USA. Overall, CVD has been estimated to account for 1-3% of the total health-care budgets in countries with developed health-care systems. The pathophysiology of dermal abnormalities in CVU is reflective of a complex interplay that involves sustained venous hypertension, inflammation, changes in microcirculation, cytokine and matrix metalloproteinase (MMP) activation, resulting in altered cellular function and delayed wound healing.

  19. Susceptibility to chronic inflammation: an update.

    PubMed

    Nasef, Noha Ahmed; Mehta, Sunali; Ferguson, Lynnette R

    2017-03-01

    Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.

  20. Inflammation and immune response in COPD: where do we stand?

    PubMed

    Rovina, Nikoletta; Koutsoukou, Antonia; Koulouris, Nikolaos G

    2013-01-01

    Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs) to release "danger signal". These signals act as ligands to Toll-like receptors (TLRs), triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs). Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  1. Inflammation, immune activation, and cardiovascular disease in HIV.

    PubMed

    Nou, Eric; Lo, Janet; Grinspoon, Steven K

    2016-06-19

    Cardiovascular disease is one of the leading causes of morbidity and mortality in people living with HIV. Several epidemiological studies have shown an increased risk of myocardial infarction and stroke compared to uninfected controls. Although traditional risk factors contribute to this increased risk of cardiovascular disease, HIV-specific mechanisms likely also play a role. Systemic inflammation has been linked to cardiovascular disease in several populations suffering from chronic inflammation, including people living with HIV. Although antiretroviral therapy reduces immune activation, levels of inflammatory markers remain elevated compared to uninfected controls. The causes of this sustained immune response are likely multifactorial and incompletely understood. In this review, we summarize the evidence describing the relationship between inflammation and cardiovascular disease and discuss potential anti-inflammatory treatment options for cardiometabolic disease in people living with HIV.

  2. Parainflammation, chronic inflammation, and age-related macular degeneration.

    PubMed

    Chen, Mei; Xu, Heping

    2015-11-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.

  3. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  4. Immunity and inflammation in neurodegenerative diseases

    PubMed Central

    Cappellano, Giuseppe; Carecchio, Miryam; Fleetwood, Thomas; Magistrelli, Luca; Cantello, Roberto; Dianzani, Umberto; Comi, Cristoforo

    2013-01-01

    Immune reactions inside the central nervous system are finely regulated, thanks to the presence of several checkpoints that have the fundamental purpose to preserve this fragile tissue form harmful events. The current knowledge on the role of neuroinflammation and neuro-immune interactions in the fields of multiple sclerosis, Alzheimer’s disease and Parkinson’s disease is reviewed. Moreover, a focus on the potential role of both active and passive immunotherapy is provided. Finally, we propose a common perspective, which implies that, under pathological conditions, inflammation may exert both detrimental and protective functions, depending on local factors and the timing of immune activation and shutting-off systems. PMID:23844334

  5. Anemia of Inflammation and Chronic Disease

    MedlinePlus

    Anemia of Inflammation and Chronic Disease National Hematologic Diseases Information Service What is anemia? Anemia is a condition in which a person has ... also cause low blood iron levels. People with anemia may feel tired because their blood does not ...

  6. Inflammation, immunity, and vaccines for Helicobacter pylori infection.

    PubMed

    Velin, Dominique; Straubinger, Kathrin; Gerhard, Markus

    2016-09-01

    The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children.

  7. Neural reflexes in inflammation and immunity

    PubMed Central

    2012-01-01

    The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit. PMID:22665702

  8. Chronic Inflammation and γδ T Cells

    PubMed Central

    Fay, Nathan S.; Larson, Emily C.; Jameson, Julie M.

    2016-01-01

    The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programed to mobilize the host innate and adaptive immune responses. Included among these immune cells are gamma delta T lymphocytes (γδ T cells) that are unique in their T cell receptor usage, location, and functions in the body. Stress reception by γδ T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces γδ T cell activation. Once activated, γδ T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon γδ T cell activation. Pathogenesis of many chronic inflammatory diseases involves γδ T cells; some of which are exacerbated by their presence, while others are improved. γδ T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial γδ T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts γδ T cell function. Future studies will be important to understand how this balance is achieved. PMID:27303404

  9. Environmental immune disruptors, inflammation and cancer risk

    PubMed Central

    Thompson, Patricia A.; Khatami, Mahin; Baglole, Carolyn J.; Sun, Jun; Harris, Shelley; Moon, Eun-Yi; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Brown, Dustin; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth; Woodrick, Jordan; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Hamid, Roslida A.; Lowe, Leroy; Guarnieri, Tiziana

    2015-01-01

    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented. PMID:26106141

  10. Environmental immune disruptors, inflammation and cancer risk.

    PubMed

    Thompson, Patricia A; Khatami, Mahin; Baglole, Carolyn J; Sun, Jun; Harris, Shelley A; Moon, Eun-Yi; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Brown, Dustin G; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Ryan, Elizabeth P; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Amedei, Amedeo; Hamid, Roslida A; Lowe, Leroy; Guarnieri, Tiziana; Bisson, William H

    2015-06-01

    An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.

  11. HCV-related hepatocellular carcinoma: From chronic inflammation to cancer.

    PubMed

    Castello, Giuseppe; Scala, Stefania; Palmieri, Giuseppe; Curley, Steven A; Izzo, Francesco

    2010-03-01

    Hepatitis C virus (HCV) infection is a worldwide health problem because of its incidence and pathogenicity. It might evolve into chronic disease, cirrhosis, and/or hepatocellular carcinoma (HCC) and the outcome is mainly determined by the host immune response. For viral clearance, combined innate and adaptive immune responses are required; resolution requires a vigorous, durable, polyclonal CD4(+) and CD8(+) T-cell response, with an increase in virus-specific CD8(+) T cells or cytotoxic T lymphocytes. Failure of efficient immune response can lead to chronic inflammation, tissue remodeling through cell growth, apoptosis and/or necrosis and induction of oxidative stress. Development of fibrosis and/or cirrhosis plus a microenvironment conducive to genomic instability mutations will promote neoplastic transformation. System governance derives from cellular (regulatory cells) and humoral (cytokines and chemokines) immune networks. Therefore, HCC pathogenesis may be a model to study the disease progression from chronic inflammation to cancer allowing design of new strategies targeting the immune response, thereby modifying disease outcome.

  12. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.

    PubMed

    Huang, Zhi; Rose, Aaron H; Hoffmann, Peter R

    2012-04-01

    Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensive article, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed.

  13. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut.

    PubMed

    Bashir, Arif; Miskeen, Abid Yousuf; Hazari, Younis Mohammad; Asrafuzzaman, Syed; Fazili, Khalid Majid

    2016-03-01

    Fusobacterium nucleatum is an identified proinflammatory autochthonous bacterium implicated in human colorectal cancer. It is also abundantly found in patients suffering from chronic gut inflammation (inflammatory bowel disease), consequently contributing to the pathogenesis of colorectal cancer. Majority of the studies have reported that colorectal tumors/colorectal adenocarcinomas are highly enriched with F. nucleatum compared to noninvolved adjacent colonic tissue. During the course of multistep development of colorectal cancer, tumors have evolved many mechanisms to resist the antitumor immune response. One of such favorite ploy is providing access to pathogenic bacteria, especially F. nucleatum in the colorectal tumor microenvironment, wherein both (colorectal tumors and F. nucleatum) exert profound effect on each other, consequently attracting tumor-permissive myeloid-derived suppressor cells, suppressing cytotoxic CD8+ T cells and inhibiting NK cell-mediated cancer cell killing. In this review, we have primarily focused on how this bug modulates the immune response, consequently rendering the antitumor immune cells inactive.

  14. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E

    2016-03-01

    Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.

  15. Heme on innate immunity and inflammation

    PubMed Central

    Dutra, Fabianno F.; Bozza, Marcelo T.

    2014-01-01

    Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prosthetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion, and hemorrhage. The plasma scavenger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavenge heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce reactive oxygen species generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review, we will discuss the mechanisms behind heme-induced cytotoxicity and inflammation and the consequences of these events on different tissues and diseases. PMID:24904418

  16. Current perspectives of molecular pathways involved in chronic inflammation-mediated breast cancer.

    PubMed

    Suman, Shankar; Sharma, Pradeep Kumar; Rai, Girish; Mishra, Sanjay; Arora, Deepika; Gupta, Prachi; Shukla, Yogeshwer

    2016-04-08

    Inflammation has multifaceted role in cancer progression including initiation, promotion and invasion by affecting the immune surveillance and associated signaling pathways. Inflammation facilitates the over-expression of cytokines, chemokines and growth factors involved in progression of different cancers including breast cancer progression. Deregulation of biological processes such as oxidative stress, angiogenesis, and autophagy elicit favorable immune response towards chronic inflammation. Apart from the role in carcinogenesis, chronic inflammation also favors the emergence of drug resistance clones by inducing the growth of breast cancer stem-like cells. Immunomodulation mediated by cytokines, chemokines and several other growth factors present in the tumor microenvironment regulate chronic inflammatory response and alter crosstalk among various signaling pathways such as NF-κB, Nrf-2, JAK-STAT, Akt and MAPKs involved in the progression of breast cancer. In this review, we focused on cellular and molecular processes involved in chronic inflammation, crosstalk among different signaling pathways and their association in breast cancer pathogenesis.

  17. Radiation, Inflammation, and Immune Responses in Cancer

    PubMed Central

    Multhoff, Gabriele; Radons, Jürgen

    2012-01-01

    Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673

  18. Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation.

    PubMed

    Jarrott, Bevyn; Williams, Spencer J

    2016-03-01

    It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit 'priming' leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.

  19. Sleep, immunity and inflammation in gastrointestinal disorders

    PubMed Central

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-01-01

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients. PMID:24409051

  20. Sleep, immunity and inflammation in gastrointestinal disorders.

    PubMed

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  1. Inflammation and cachexia in chronic kidney disease.

    PubMed

    Cheung, Wai W; Paik, Kyung Hoon; Mak, Robert H

    2010-04-01

    Chronic inflammation is associated with cachexia and increased mortality risk in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Inflammation suppresses appetite and causes the loss of protein stores. In CKD patients, increased serum levels of pro-inflammatory cytokines may be caused by reduced renal function, volume overload, oxidative or carbonyl stress, decreased levels of antioxidants, increased susceptibility to infection in uremia, and the presence of comorbid conditions. Cachexia is brought about by the synergistic combination of a dramatic decrease in appetite and an increase in the catabolism of fat and lean body mass. Pro-inflammatory cytokines act on the central nervous system to alter appetite and energy metabolism and to provide a signal-through the nuclear factor-kappaB and ATP-ubiquitin-dependent proteolytic pathways-that causes muscle wasting. Further research into the molecular pathways leading to inflammation and cachexia may lead to novel therapeutic therapies for this devastating and potentially fatal complication of chronic disease.

  2. Innate immunity and inflammation: a transcriptional paradigm.

    PubMed

    Hawiger, J

    2001-01-01

    The innate immune response and the process of inflammation are interwoven. Excessive and continuing cytokine production in response to bacterial lipopolysacharides (LPS) or superantigens is a hallmark of the systemic inflammatory response (IR), which can be life-threatening. Dissemination of these bacterial products induces waves of proinflammatory cytokines that cause vascular injury and multiple organ dysfunction. Both LPS and superantigens induce signaling to the nucleus in mononuclear phagocytes and T cells, respectively. These signaling pathways are mediated by NF-kappaB and other stress-responsive transcription factors (SRTFs), which play a critical role in reprogramming gene expression. The nuclear import of NF-kappaB allows transcriptional activation of over 100 genes that encode mediators of inflammatory and immune responses. We have developed a novel method to block nuclear import of NF-kappaB through cell-permeable peptide transduction in monocytes, macrophages, T lymphocytes, and endothelial cells. Strikingly, a cell-permeable peptide that antagonizes nuclear import of NF-kappaB and other SRTFs, suppressed the systemic production of proinflammatory cytokines (TNFalpha and interferon gamma) in mice challenged with a lethal dose of LPS, and increased their survival by at least 90%. Thus, systemic inflammatory responses are critically dependent on the transcriptional activation ofcytokine genes that are controlled by NF-kappaB and other SRTFs.

  3. Inflammation and Bone Destruction in Arthritis: Synergistic Activity of Immune and Mesenchymal Cells in Joints

    PubMed Central

    Komatsu, Noriko; Takayanagi, Hiroshi

    2012-01-01

    Rheumatoid arthritis (RA) is an immune-mediated disease of the joints that is characterized by chronic inflammation and synovial hyperplasia that eventually lead to cartilage and bone destruction. Synovial fibroblasts are mesenchymal cells recognized as a key cell population in RA due to their hyperproliferative and hypersensitive properties in the inflammatory milieu and hyperproduction of both inflammatory cytokines and matrix-degrading enzymes. On the immune cell side, a wealth of evidence has shown that CD4+T-cells, especially IL-17 producing helper T (Th17) cells, play a prominent role, particularly in the initiation of systemic immune response in RA. However, it is still unclear how the local chronic inflammation in the joint is elicited by a systemic immune response. Recent studies have shed light on the importance of the interaction between immune and mesenchymal cells in joints including synovial fibroblasts. In particular, mesenchymal cells contribute to the Th17-mediated chronic inflammation in RA by promoting the migration of Th17 cells to the inflamed site and then the homeostatic proliferation and concomitant increase in IL-17 production. In addition, recent progress in osteoimmunology has provided new insight into the pathogenesis of the bone destruction which takes place in RA. Th17-related cytokines have been shown to enhance osteoclastogenesis, mainly via synovial fibroblasts. Thus, mesenchymal cells are a determinant of the development of RA that links the systemic immune response and the local disorder in the joints. In addition, the interaction of immune and mesenchymal cells plays a key role in both the chronic inflammation and bone destruction seen in RA. Elucidation of the precise events involved in this interaction will lead to a better understanding of the mechanisms by which chronic inflammation and bone destruction in joint results from a systemic immune response, and also will help provide a molecular basis for novel therapeutic

  4. Systemic Effects of Inflammation on Health during Chronic HIV Infection

    PubMed Central

    Deeks, Steven G.; Tracy, Russell; Douek, Daniel C.

    2014-01-01

    Combination antiretroviral therapy for HIV infection improves immune function and eliminates the risk of AIDS-related complications, but does not restore full health. HIV-infected adults have excess risk of cardiovascular, liver, kidney, bone and neurologic diseases. Many markers of inflammation are elevated in HIV disease and strongly predictive of the risk of morbidity and mortality. A conceptual model has emerged to explain this syndrome of diseases where HIV-mediated destruction of gut mucosa leads to local and systemic inflammation. Translocated microbial products then pass through the liver, contributing to hepatic damage, impaired microbial clearance and impaired protein synthesis. Chronic activation of monocytes and altered liver protein synthesis subsequently contribute to a hypercoagulable state. The combined effect of systemic inflammation and excess clotting on tissue function leads to end-organ disease. Multiple therapeutic interventions designed to reverse these pathways are now being tested in the clinic. It is likely that knowledge gained on how inflammation affect health in HIV disease could have implications for our understanding of other chronic inflammatory diseases and the biology of aging. PMID:24138880

  5. Immune Mechanisms of Chronic Rhinosinusitis

    PubMed Central

    2016-01-01

    Chronic rhinosinusitis (CRS) is a common inflammatory disease that results in a significant decrease in patient quality of life and a large economic burden. However, the lack of population-based epidemiologic studies and robust model systems has made it difficult to fully elucidate the key inflammatory pathways that drive the chronic inflammatory responses observed in CRS. This review will highlight the wide variety of factors that likely contribute to CRS disease pathogenesis. Defects in the innate immune function of the airway epithelium, including decreases in barrier function, mucociliary clearance, and production of antimicrobial peptides, all likely play a role in the initial inflammatory response. Subsequent recruitment and activation of eosinophils, mast cells, and innate lymphoid cells (ILCs) further contributes to the chronic inflammatory response and directly activates adaptive immune cells, including T and B cells. However, development of new tools and model systems is still needed to further understand the chronicity of this inflammatory response and which specific factors are necessary or sufficient to drive CRS pathogenesis. Such studies will be critical for the development of improved therapeutic strategies aimed at treating this highly prevalent and costly disease. PMID:26677109

  6. Role of Histomorphology and Chronic Inflammation Score in Chronic Dacryocystitis

    PubMed Central

    Chakrabarti, Sudipta; Banerjee, Manas; Pal, Debashis

    2016-01-01

    Introduction Diseases of lacrimal drainage system account for nearly 3% of visits to eye clinic. Chronic dacryocystitis is a frequently encountered disorder among these patients. Histomorphology of specimens obtained after Dacryocystorhinostomy (DCR) is a pertinent indicator of prognostic outcome. Aim The aim of the study was to evaluate histopathology of specimens obtained after DCR and to elucidate patterns and score of chronic inflammation encountered. Materials and Methods The study was conducted for a period of one year. Total of 50 patients who were clinically diagnosed as Chronic Dacryocystitis and underwent DCR were included. Following DCR, specimens of lacrimal sac, nasal mucous membrane and nasal bone were collected. Histopathological slides were examined for chronic inflammatory cell infiltration, fibrosis and capillary proliferation and were graded according to severity, in each specimen. A Chronic Inflammation Score (CIS) was recorded for each case. Results The average age of patients was 39.04±14.22 years and their age ranged between 13 and 62 years. There were 28 (56%) females and 22 (44%) males in the study group. The nasal bone did not reveal any abnormality in any case. The nasal mucous membrane showed mild chronic inflammatory cell infiltration in 46 (92%) cases and moderate degree in 4 (8%) patients. Chronic inflammation with granulation tissue formation was noted in lacrimal sacs of all patients. The CIS revealed that 14 (28%) cases belonged to “mild” group, 26 (52%) to “moderate” group and 10 (20%) to “severe” category. Conclusion The inclusion of CIS in histomorphological evaluation of DCR specimens is recommended since it is one of the parameters that influence course of the disease. PMID:27630848

  7. Immunity, inflammation, and cancer: an eternal fight between good and evil

    PubMed Central

    Shalapour, Shabnam; Karin, Michael

    2015-01-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches. PMID:26325032

  8. Immunity, inflammation, and cancer: an eternal fight between good and evil.

    PubMed

    Shalapour, Shabnam; Karin, Michael

    2015-09-01

    Cancer development and its response to therapy are strongly influenced by innate and adaptive immunity, which either promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome. Chronic inflammation promotes tumor development, progression, and metastatic dissemination, as well as treatment resistance. However, cancer development and malignant progression are also associated with accumulation of genetic alterations and loss of normal regulatory processes, which cause expression of tumor-specific antigens and tumor-associated antigens (TAAs) that can activate antitumor immune responses. Although signals that trigger acute inflammatory reactions often stimulate dendritic cell maturation and antigen presentation, chronic inflammation can be immunosuppressive. This antagonism between inflammation and immunity also affects the outcome of cancer treatment and needs to be considered when designing new therapeutic approaches.

  9. Immune activation by histones: plusses and minuses in inflammation.

    PubMed

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems.

  10. Chronic Thromboembolic Pulmonary Hypertension Associated with Chronic Inflammation.

    PubMed

    Kuse, Naoyuki; Abe, Shinji; Kuribayashi, Hidehiko; Fukuda, Asami; Kusunoki, Yuji; Narato, Ritsuko; Saito, Hitoshi; Gemma, Akihiko

    2016-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is one of the leading causes of severe pulmonary hypertension. According to previously reported studies in the pertinent literature, chronic inflammatory conditions may be implicated in the development of CTEPH. We herein describe the case of a 56-year-old woman who was diagnosed with CTEPH in association with chronic infection. The patient had experienced five episodes of pneumonia in the five years prior to the diagnosis of CTEPH. Blood tests from the previous five years of outpatient follow-up demonstrated that the C-reactive protein level was slightly elevated. This case suggests that a relationship exists between chronic inflammation and CTEPH, and furthermore, may contribute towards elucidating the pathophysiology of CTEPH.

  11. Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions

    NASA Astrophysics Data System (ADS)

    Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano

    2005-02-01

    Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-α or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.

  12. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma

    PubMed Central

    Kimbara, Shiro; Kondo, Shunsuke

    2016-01-01

    Pancreatic adenocarcinoma (PAC) is one of the most deadly malignant neoplasms, and the efficacy of conventional cytotoxic chemotherapy is far from satisfactory. Recent research studies have revealed that immunosuppression and inflammation are associated with oncogenesis, as well as tumor development, invasion, and metastasis in PAC. Thus, immunosuppression-related signaling, especially that involving immune checkpoint and inflammation, has emerged as novel treatment targets for PAC. However, PAC is an immune-resistant tumor, and it is still unclear whether immune checkpoint or anti-inflammation therapies would be an ideal strategy. In this article, we will review immune checkpoint and inflammation as potential targets, as well as clinical trials and the prospects for immunotherapy in PAC. PMID:27672267

  13. Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern.

    PubMed

    Raman, Kripa; Wang, Huaqing; Troncone, Michael J; Khan, Waliul I; Pare, Guillaume; Terry, Jefferson

    2015-01-01

    Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level

  14. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    PubMed Central

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674

  15. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation.

    PubMed

    Pruimboom, Leo; Raison, Charles L; Muskiet, Frits A J

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.

  16. Lymphangiogenesis in chronic inflammation in the testis.

    PubMed

    Hirai, Shuichi; Naito, Munekazu; Terayama, Hayato; Qu, Ning; Kuerban, Maimaiti; Musha, Muhetaerjiang; Itoh, Masahiro

    2013-01-01

    Lymphangiogenesis occurs in various organs under inflammatory conditions. Recently, it was demonstrated that activated macrophages play an important role in the process of lymphangiogenesis. However, lymphangiogenesis during testicular inflammation has not yet been studied. Here, we investigated lymphangiogenesis in experimental autoimmune orchitis, a immunologic male infertility model, in mice. Histological changes were observed using immunohistochemical staining with the monoclonal antibodies against F4/80 (mature macrophage marker), lymph vessel endothelium HA-receptor 1 (LYVE-1) (lymphatic endothelial cells marker) and CD31 (endothelial cells marker). The expression of angiogenesis and lymphangiogenesis factors, such as vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF-D and TNF-α, which are secreted by activated macrophages, were examined using real-time RT-PCR. The results showed that lymphangiogenesis occurred along the undersurface of the tunica albuginea but not into the interstitium proper between the seminiferous tubules (STs) during the orchitis. It was noted that some F4/80-positive macrophages expressed LYVE-1 at the undersurface of the tunica albuginea and also in the testicular interstitium proper. RT-PCR analysis revealed that the expressions of VEGF-A, VEGF-D and TNF-α were significantly increased but that of VEGF-C remained unchanged in the inflammatory testes. This study suggests that testicular macrophages are involved in the specific lymphangiogenesis in the chronic inflammation.

  17. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.

    PubMed

    Aoshiba, Kazutetsu; Tsuji, Takao; Yamaguchi, Kazuhiro; Itoh, Masayuki; Nakamura, Hiroyuki

    2013-12-01

    Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.

  18. Chronic Placental Inflammation in Twin Pregnancies

    PubMed Central

    Bang, Heejin; Bae, Go Eun; Park, Ha Young; Kim, Yeon Mee; Choi, Suk-Joo; Oh, Soo-young; Roh, Cheong-Rae; Kim, Jung-Sun

    2015-01-01

    Background: Chronic placental inflammation, such as villitis of unknown etiology (VUE) and chronic chorioamnionitis (CCA), is considered a placental manifestation of maternal anti-fetal rejection. The aim of this study is to investigate its frequency in twin pregnancies compared to singleton pregnancies. Methods: Three hundred twin placentas and 1,270 singleton placentas were consecutively collected at a tertiary medical center in Seoul, Republic of Korea from 2009 to 2012. Hematoxylin and eosin sections of tissue samples (full-thickness placental disc and chorioamniotic membranes) were reviewed. Results: Non-basal VUE was more frequent in twin placentas than in singleton placentas (6.0% vs 3.2%, p < .05). In preterm birth, CCA was found less frequently in twin placentas than in singleton placentas (9.6% vs 14.8%, p < .05), reaching its peak at an earlier gestational age in twin placentas (29–32 weeks) than in singleton placentas (33–36 weeks). CCA was more frequent in twin pregnancies with babies of a different sex than with those with the same sex (13.8% vs 6.9%, p=.052). Separate dichorionic diamniotic twin placentas were affected by chronic deciduitis more frequently than singleton placentas (16.9% vs 9.7%, p<.05). Conclusions: The higher frequency of non-basal VUE in twin placentas and of CCA in twin placentas with different fetal sex supports the hypothesis that the underlying pathophysiological mechanism is maternal anti-fetal rejection related to increased fetal antigens in twin pregnancies. The peak of CCA at an earlier gestational age in twin placentas than in singleton placentas suggests that CCA is influenced by placental maturation. PMID:26459409

  19. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology.

    PubMed

    Sansbury, Brian E; Spite, Matthew

    2016-06-24

    Acute inflammation is a host-protective response that is mounted in response to tissue injury and infection. Initiated and perpetuated by exogenous and endogenous mediators, acute inflammation must be resolved for tissue repair to proceed and for homeostasis to be restored. Resolution of inflammation is an actively regulated process governed by an array of mediators as diverse as those that initiate inflammation. Among these, resolvins have emerged as a genus of evolutionarily conserved proresolving mediators that act on specific cellular receptors to regulate leukocyte trafficking and blunt production of inflammatory mediators, while also promoting clearance of dead cells and tissue repair. Given that chronic unresolved inflammation is emerging as a central causative factor in the development of cardiovascular diseases, an understanding of the endogenous processes that govern normal resolution of acute inflammation is critical for determining why sterile maladaptive cardiovascular inflammation perpetuates. Here, we provide an overview of the process of resolution with a focus on the enzymatic biosynthesis and receptor-dependent actions of resolvins and related proresolving mediators in immunity, thrombosis, and vascular biology. We discuss how nutritional and current therapeutic approaches modulate resolution and propose that harnessing resolution concepts could potentially lead to the development of new approaches for treating chronic cardiovascular inflammation in a manner that is not host disruptive.

  20. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance.

    PubMed

    Winer, Shawn; Winer, Daniel A

    2012-09-01

    Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.

  1. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  2. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    PubMed

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  3. Leptin in the regulation of immunity, inflammation, and hematopoiesis.

    PubMed

    Fantuzzi, G; Faggioni, R

    2000-10-01

    Leptin, the product of the ob gene, is a pleiotropic molecule that regulates food intake as well as metabolic and endocrine functions. Leptin also plays a regulatory role in immunity, inflammation, and hematopoiesis. Alterations in immune and inflammatory responses are present in leptin- or leptin-receptor-deficient animals, as well as during starvation and malnutrition, two conditions characterized by low levels of circulating leptin. Both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines. Leptin exerts proliferative and antiapoptotic activities in a variety of cell types, including T lymphocytes, leukemia cells, and hematopoietic progenitors. Leptin also affects cytokine production, the activation of monocytes/macrophages, wound healing, angiogenesis, and hematopoiesis. Moreover, leptin production is acutely increased during infection and inflammation. This review focuses on the role of leptin in the modulation of the innate immune response, inflammation, and hematopoiesis.

  4. Negative regulatory responses to metabolically triggered inflammation impair renal epithelial immunity in diabetes mellitus.

    PubMed

    Chen, Nelson K F; Chong, Tsung Wen; Loh, Hwai-Liang; Lim, Kiat Hon; Gan, Valerie H L; Wang, Marian; Kon, Oi Lian

    2013-05-01

    Diabetes mellitus is characterized by chronic inflammation and increased risk of infections, particularly of tissues exposed to the external environment. However, the causal molecular mechanisms that affect immune cells and their functions in diabetes are unclear. Here we show, by transcript and protein analyses, signatures of glucose-induced tissue damage, chronic inflammation, oxidative stress, and dysregulated expression of multiple inflammation- and immunity-related molecules in diabetic kidneys compared with non-diabetic controls. Abnormal signaling involving cytokines, G-protein coupled receptors, protein kinase C isoforms, mitogen-activated protein kinases, nuclear factor-κB (NFκB), and Toll-like receptors (TLR) were evident. These were accompanied by overexpression of negative regulators of NFκB, TLR, and other proinflammatory pathways, e.g., A20, SOCS1, IRAK-M, IκBα, Triad3A, Tollip, SIGIRR, and ST2L. Anti-inflammatory and immunomodulatory molecules, e.g., IL-10, IL-4, and TSLP that favor TH2 responses were strongly induced. These molecular indicators of immune dysfunction led us to detect the cryptic presence of bacteria and human cytomegalovirus in more than one third of kidneys of diabetic subjects but none in non-diabetic kidneys. Similar signaling abnormalities could be induced in primary human renal tubular epithelial (but not mesangial) cell cultures exposed to high glucose, proinflammatory cytokines and methylglyoxal, and were reversed by combined pharmacological treatment with an antioxidant and a PKC inhibitor. Our results suggest that diabetes impairs epithelial immunity as a consequence of chronic and inappropriate activation of counter-regulatory immune responses, which are otherwise physiological protective mechanisms against inflammation. The immune abnormalities and cryptic renal infections described here may contribute to progression of diabetic nephropathy.

  5. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2007-03-01

    population of inflammation-induced MDSC . Reducing inflammation by blocking the IL-1 signaling pathway (IL-1R-/-) reduces tumor growth and metastatic...Suppressor Cells ( MDSC ). These cells have potent immunosuppressive activity and inhibit both innate and adaptive immunity by inhibiting T cell activation... MDSC by inducing a phenotypically and functionally distinct population of MDSC , which are more potent suppressors of CD8+ T cells. Using mice

  6. Age-Related Macular Degeneration in the Aspect of Chronic Low-Grade Inflammation (Pathophysiological ParaInflammation)

    PubMed Central

    Nita, Małgorzata; Ascaso, Francisco J.; Huerva, Valentín

    2014-01-01

    The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation) process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH) and facilitates chronic inflammation mediated by C-reactive protein (CRP). Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2) and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages); however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages). PMID:25214719

  7. Curcumin, inflammation, and chronic diseases: how are they linked?

    PubMed

    He, Yan; Yue, Yuan; Zheng, Xi; Zhang, Kun; Chen, Shaohua; Du, Zhiyun

    2015-05-20

    It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  8. Radiation triggering immune response and inflammation.

    PubMed

    Hekim, Nezih; Cetin, Zafer; Nikitaki, Zacharenia; Cort, Aysegul; Saygili, Eyup Ilker

    2015-11-28

    Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.

  9. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis

    PubMed Central

    Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2015-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis. PMID:26193368

  10. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis.

    PubMed

    Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2015-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis.

  11. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration.

    PubMed

    Patejdl, Robert; Penner, Iris K; Noack, Thomas K; Zettl, Uwe K

    2016-03-01

    Multiple sclerosis (MS) is an immune mediated disease of the central nervous system (CNS) and the leading cause of non-traumatic disability among young and middle-aged adults in the western world. One of its most prevalent and debilitating symptoms is fatigue. Despite the general acceptance of the idea of an immune pathogenesis of MS itself, the role of autoimmunity in the course of MS-fatigue is a matter of debate. Both immune-related processes (acute inflammation, chronic inflammation, immune-mediated neurodegeneration, immune-mediated alterations of endocrine functions related to fatigue) and presumably non-immune-mediated disturbances and factors (sleep disturbances, depression, cognitive alterations, chronic infections, adverse effects of medications) contribute to the clinical picture. Data from in vitro and animal experiments has provided evidence for a role of cytokines as IL-1 and TNF-alpha. This association could not be verified directly in blood samples from humans whereas whole blood stimulation protocols gave some indirect evidence for a role of cytokines in MS-fatigue. MRI being able to detect acute and chronic immune mediated damage to the CNS could depict that global atrophy of gray or white matter does not correlate with fatigue. Rather, distinctive clusters of lesions and atrophy at different locations, mostly bifrontal or in subcortical structures, correlate specifically with fatigue. Regardless of the difficulties in pinpointing the immunogenesis of MS-fatigue, an important role of autoimmunity is strongly supported by an indirect route: A growing amount of data shows that the highly effective immunotherapeutics which have been introduced to MS-treatment over the last years effectively and sustainably stabilize and ameliorate fatigue in parallel to their dampening effects on the neuroinflammatory process. This review summarizes the existing data on the relation between inflammation, patterns of CNS-lesions and the effects of immunotherapeutics

  12. Immune Suppression and Inflammation in the Progression of Breast Cancer

    DTIC Science & Technology

    2008-03-01

    and cancer: back to Virchow? Lancet 2001;357:539-45. 4. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. 5. Kusmartsev S...Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 2001;166:5398-406. 40. Kusmartsev S...cancer. Nature 420:860- 867. 5. Kusmartsev , S., and D. I. Gabrilovich. 2002. Immature myeloid cells and cancer- associated immune suppression. Cancer

  13. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection.

    PubMed

    Lugade, Amit A; Bogner, Paul N; Thatcher, Thomas H; Sime, Patricia J; Phipps, Richard P; Thanavala, Yasmin

    2014-06-01

    The detrimental impact of tobacco on human health is clearly recognized, and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease are susceptible to recurrent respiratory infections with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. Because mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study, to our knowledge, to investigate chronic infection and the generation of adaptive immune responses to NTHI after chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of Abs against outer-membrane lipoprotein P6, with impaired IgG1, IgG2a, and IgA class switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke-exposed mice exhibited a similar defect in the generation of adaptive immunity after immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes chronic obstructive pulmonary disease patients to recurrent infections, leading to exacerbations and contributing to mortality.

  14. The paradox of the immune response in HIV infection: when inflammation becomes harmful.

    PubMed

    Ipp, Hayley; Zemlin, Annalise

    2013-02-01

    HIV-infection is associated with ongoing activation of the immune system and persistent inflammation. These are key driving forces in the loss of CD4+ T cells, progression to AIDS and development of non-HIV-related complications such as cardiovascular disease and certain cancers. Diseases associated with accelerated aging are increasing in incidence despite good anti-retroviral therapy (ART). The common underlying mechanism appears to be chronic inflammation. HIV-specific mechanisms as well as non-specific generalized responses to infection contribute to the chronic and aberrant activation of the immune system. An early loss of gut mucosal integrity, the pro-inflammatory cytokine milieu, co-infections and later, marked destruction of lymph node architecture are all factors contributing to the ongoing activation of both the innate and adaptive immune systems. These factors paradoxically promote CD4+ T cell loss, both by providing additional substrate for viral infection in the form of activated CD4+ T cells, as well as by priming non-infected 'bystander' CD4+ T cells for death by apoptosis. However, the relative contributions of each of these mechanisms to ongoing immune activation remain to be determined. Cost-effective markers of inflammation and selective anti-inflammatory agents are important fields of current and future research.

  15. Chronic pediatric pulmonary disease and primary humoral antibody based immune disease.

    PubMed

    Dosanjh, A

    2011-04-01

    Chronic inflammation of the larger airways is a common occurrence in children. A number of factors such as younger age, premature birth, male gender, exposure to environmental smoke or pollution, and crowded housing can increase a child's susceptibility to chronic lung disease. Chronic bronchitis may be caused by an underlying humoral immunodeficiency if the clinical course is recurrent or prolonged. Primary humoral immunodeficiency accounts for approximately 70% of all immunodeficiencies. The differential of chronic bronchitis also includes Cystic Fibrosis, ciliary defects and immune cellular and phagocytic defects. This review will summarize the most common humoral antibody based immune based deficiencies associated with chronic pulmonary disease.

  16. Homing of immune cells: role in homeostasis and intestinal inflammation.

    PubMed

    Hart, Ailsa L; Ng, Siew C; Mann, Elizabeth; Al-Hassi, Hafid Omar; Bernardo, David; Knight, Stella C

    2010-11-01

    Rather like a satellite navigation system directing a vehicle to a particular destination defined by post-code, immune cells have homing molecules or "immune post-codes" enabling them to be recruited to specific organs, such as the intestine or skin. An efficient system would be designed such that the site of entry of an antigen influences the homing of effector T cells back to the appropriate organ. For example, to mount an immune response against an intestinal pathogen, T cells with a propensity to home to the gut to clear the infection would be induced. In health, there is such a sophisticated and finely tuned system in operation, enabling an appropriate balance of immune activity in different anatomical compartments. In disease states such as inflammatory bowel disease (IBD), which is characterized by intestinal inflammation and often an inflammatory process involving other organs such as skin, joints, liver, and eye, there is accumulating evidence that there is malfunction of this immune cell trafficking system. The clinical importance of dysregulated immune cell trafficking in IBD is reflected in recently proven efficacious therapies that target trafficking pathways such as natalizumab, an α4 integrin antibody, and Traficet-EN, a chemokine receptor-9 (CCR9) antagonist. Here we review the mechanisms involved in the homing of immune cells to different tissues, in particular the intestine, and focus on alterations in immune cell homing pathways in IBD. Unraveling the mechanisms underlying the immune post-code system would assist in achieving the goal of tissue-specific immunotherapy.

  17. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    NASA Astrophysics Data System (ADS)

    Shipkowski, Kelly Anne

    The field of nanotechnology is continually advancing, and increasing amounts of consumer goods are being produced using engineered nanomaterials (ENMs). The health risks of occupational and/or consumer exposure to ENMs are not completely understood, although significant research indicates that pulmonary exposure to nanomaterials induces toxic effects in the lungs of exposed animals. Multi-walled carbon nanotubes (MWCNTs) are a specific category of ENMs and consist of sheets of graphene rolled into cylinders that are multiple layers thick in order to strengthen their rigidity. MWCNTs have a fiber-like shape, similar to that of asbestos, which allows for a high aspect ratio and makes them difficult to clear from the lung. Studies with rodent models have demonstrated that pulmonary exposure to ENMs, in particular MWCNTs, results in acute lung inflammation and the subsequent development of chronic fibrosis, suggesting a potential human health risk to individuals involved in the manufacturing of products utilizing these nanomaterials. Induction of IL-1beta secretion via activation of the inflammasome is a prime mechanism of MWCNT-induced inflammation. The inflammasome is a multi-protein scaffold found in a variety of cell types that forms in response to a variety of immune signals, including particulates. Sensitization with allergens, such as house dust mite (HDM), increases levels of the T helper 2 (Th2) cytokines IL-4 and IL-13 in mice and in humans, and there is particular cause for concern in cases of MWCNT exposure in individuals with pre-existing allergic airway disease, such as asthma. MWCNT exposure exacerbates airway inflammation and fibrosis in animal models of pre-existing allergic asthma, suggesting that individuals suffering from asthma are more susceptible to the toxic pulmonary effects of MWCNT exposure. Asthma is an exceptionally prominent human disease, and therefore the goal of this research was to better understand how pre-existing allergic airway

  18. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    PubMed Central

    Licastro, Federico; Candore, Giuseppina; Lio, Domenico; Porcellini, Elisa; Colonna-Romano, Giuseppina; Franceschi, Claudio; Caruso, Calogero

    2005-01-01

    The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival

  19. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection.

    PubMed

    Walduck, Anna; Andersen, Leif P; Raghavan, Sukanya

    2015-09-01

    During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.

  20. A mouse model for pathogen-induced chronic inflammation at local and systemic sites.

    PubMed

    Papadopoulos, George; Kramer, Carolyn D; Slocum, Connie S; Weinberg, Ellen O; Hua, Ning; Gudino, Cynthia V; Hamilton, James A; Genco, Caroline A

    2014-08-08

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  1. Resolvin D1 Reduces Emphysema and Chronic Inflammation

    PubMed Central

    Hsiao, Hsi-Min; Thatcher, Thomas H.; Colas, Romain A.; Serhan, Charles N.; Phipps, Richard P.; Sime, Patricia J.

    2016-01-01

    Chronic obstructive pulmonary disease is characterized, in part, by chronic inflammation that persists even after smoking cessation, suggesting that a failure to resolve inflammation plays an important role in the pathogenesis of the disease. It is widely recognized that the resolution of inflammation is an active process, governed by specialized proresolving lipid mediators, including lipoxins, resolvins, maresins, and protectins. Here, we report that proresolving signaling and metabolic pathways are disrupted in lung tissue from patients with chronic obstructive pulmonary disease, suggesting that supplementation with proresolving lipid mediators might reduce the development of emphysema by controlling chronic inflammation. Groups of mice were exposed long-term to cigarette smoke and treated with the proresolving mediator resolvin D1. Resolvin D1 was associated with a reduced development of cigarette smoke–induced emphysema and airspace enlargement, with concurrent reductions in inflammation, oxidative stress, and cell death. Interestingly, resolvin D1 did not promote the differentiation of M2 macrophages and did not promote tissue fibrosis. Taken together, our results suggest that cigarette smoking disrupts endogenous proresolving pathways and that supplementation with specialized proresolving lipid mediators is an important therapeutic strategy in chronic lung disease, especially if endogenous specialized proresolving lipid mediator signaling is impaired. PMID:26468975

  2. Thrombophilia in patients with chronic immune thrombocytopenia.

    PubMed

    Wong, Raymond S M; Bakshi, Kalpana; Brainsky, Andres

    2015-01-01

    An increased risk of thromboembolic events among patients with chronic immune thrombocytopenia has been reported but is still not fully understood. A thrombophilia panel (factors suspected/known to denote a thrombophilic state or indicate activation of the clotting cascade) was measured in previously treated patients with chronic immune thrombocytopenia enrolled in an eltrombopag trial to assess potential thrombophilia risk markers. Of 167 patients, 136 (81%) had abnormal levels of at least 1 known or suspected thrombosis risk marker or coagulation cascade activation marker. Six patients reported thromboembolic events, and all of these patients had at least two abnormal analytes in the thrombophilia panel. The presence of multiple baseline thrombophilia risk markers support the theory that chronic immune thrombocytopenia is a pro-thrombotic disease.

  3. How metabolism generates signals during innate immunity and inflammation.

    PubMed

    McGettrick, Anne F; O'Neill, Luke A J

    2013-08-09

    The interplay between immunity, inflammation, and metabolic changes is a growing field of research. Toll-like receptors and NOD-like receptors are families of innate immune receptors, and their role in the human immune response is well documented. Exciting new evidence is emerging with regard to their role in the regulation of metabolism and the activation of inflammatory pathways during the progression of metabolic disorders such as type 2 diabetes and atherosclerosis. The proinflammatory cytokine IL-1β appears to play a central role in these disorders. There is also evidence that metabolites such as NAD(+) (acting via deacetylases such as SIRT1 and SIRT2) and succinate (which regulates hypoxia-inducible factor 1α) are signals that regulate innate immunity. In addition, the extracellular overproduction of metabolites such as uric acid and cholesterol crystals acts as a signal sensed by NLRP3, leading to the production of IL-1β. These observations cast new light on the role of metabolism during host defense and inflammation.

  4. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment

    PubMed Central

    Deakin, Julia; Lennox, Belinda R; Yolken, Robert; Jones, Peter B

    2015-01-01

    Complex interactions between the immune system and the brain might have important aetiological and therapeutic implications for neuropsychiatric brain disorders. A possible association between schizophrenia and the immune system was postulated over a century ago, and is supported by epidemiological and genetic studies pointing to links with infection and inflammation. Contrary to the traditional view that the brain is an immunologically privileged site shielded behind the blood–brain barrier, studies in the past 20 years have noted complex interactions between the immune system, systemic inflammation, and the brain, which can lead to changes in mood, cognition, and behaviour. In this Review, we describe some of the important areas of research regarding innate and adaptive immune response in schizophrenia and related psychotic disorders that, we think, will be of interest to psychiatric clinicians and researchers. We discuss potential mechanisms and therapeutic implications of these findings, including studies of anti-inflammatory drugs in schizophrenia, describe areas for development, and offer testable hypotheses for future investigations. PMID:26359903

  5. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    DTIC Science & Technology

    2014-09-01

    system to assess suppressive activity and mechanisms of MSCs that more closely models the cellular and immunological interactions that are thought to...inflammation could be produced only in mice with a dysregulated immune system (Figure 2). Although these studies delayed the start of experiments...that occur between human MSCs and mouse immune cells in our mouse model of IBD, we have developed a xenogeneic in vitro system to quantify these

  6. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation.

    PubMed

    Cleary, Daniel R; Heinricher, Mary M

    2013-06-01

    Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. We used intraplantar injection of complete Freund's adjuvant to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute vs chronic inflammation. Heat-evoked and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after complete Freund's adjuvant injection (acute) or 3 to 10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from those in control subjects, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the antinociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain.

  7. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  8. Inflammation and repair processes in chronic obstructive pulmonary disease.

    PubMed

    Rennard, S I

    1999-11-01

    COPD is characterized by chronic inflammation and injury of both the airways and the parenchymal structures of the lung. These processes are associated with ongoing repair. Whether repair leads to restoration of normal tissue architecture or to altered tissue structure with loss of function depends on complex interrelationships of a variety of interacting mediators. The possibility that repair processes can be modulated by exogenous agents raises the possibility that therapeutic strategies aimed at repair can be effective. Such strategies offer tremendous promise both for slowing the relentlessly progressive natural history which most often characterizes COPD and, possibly, for restoring lung function. Rennard SI. Inflammation and repair processes in chronic obstructive pulmonary disease.

  9. Age-Associated Chronic Diseases Require Age-Old Medicine: Role of Chronic Inflammation

    PubMed Central

    Prasad, Sahdeo; Sung, Bokyung; Aggarwal, Bharat B.

    2012-01-01

    Most chronic diseases - such as cancer, cardiovascular disease (CVD), Alzheimer disease, Parkinson disease, arthritis, diabetes and obesity - are becoming leading causes of disability and death all over the world. Some of the most common causes of these age-associated chronic diseases are lack of physical activity, poor nutrition, tobacco use, and excessive alcohol consumption. All the risk factors linked to these chronic diseases have been shown to up-regulate inflammation. Therefore, downregulation of inflammation-associated risk factors could prevent or delay these age-associated diseases. Although modern science has developed several drugs for treating chronic diseases, most of these drugs are enormously expensive and are associated with serious side effects and morbidity. In this review, we present evidence on how chronic inflammation leads to age-associated chronic disease. Furthermore, we discuss diet and lifestyle as solutions for age-associated chronic disease. PMID:22178471

  10. Gastrointestinal inflammation and associated immune activation in schizophrenia

    PubMed Central

    Severance, Emily G.; Alaedini, Armin; Yang, Shuojia; Halling, Meredith; Gressitt, Kristin L.; Stallings, Cassie R.; Origoni, Andrea E.; Vaughan, Crystal; Khushalani, Sunil; Leweke, F. Markus; Dickerson, Faith B.; Yolken, Robert H.

    2014-01-01

    Immune factors are implicated in normal brain development and in brain disorder pathogenesis. Pathogen infection and food antigen penetration across gastrointestinal barriers are means by which environmental factors might affect immune-related neurodevelopment. Here, we test if gastrointestinal inflammation is associated with schizophrenia and therefore, might contribute to bloodstream entry of potentially neurotropic milk and gluten exorphins and/or immune activation by food antigens. IgG antibodies to Saccharomyces cerevisiae (ASCA, a marker of intestinal inflammation), bovine milk casein, wheat-derived gluten, and 6 infectious agents were assayed. Cohort 1 included 193 with non-recent onset schizophrenia, 67 with recent onset schizophrenia and 207 non-psychiatric controls. Cohort 2 included 103 with first episode schizophrenia, 40 of whom were antipsychotic-naïve. ASCA markers were significantly elevated and correlated with food antigen antibodies in recent onset and non-recent onset schizophrenia compared to controls (p ≤ 0.00001–0.004) and in unmedicated individuals with first episode schizophrenia compared to those receiving antipsychotics (p ≤ 0.05–0.01). Elevated ASCA levels were especially evident in non-recent onset females (p ≤ 0.009), recent onset males (p ≤ 0.01) and in antipsychotic-naïve males (p ≤ 0.03). Anti-food antigen antibodies were correlated to antibodies against Toxoplasma gondii, an intestinally-infectious pathogen, particularly in males with recent onset schizophrenia (p ≤ 0.002). In conclusion, gastrointestinal inflammation is a relevant pathology in schizophrenia, appears to occur in the absence of but may be modified by antipsychotics, and may link food antigen sensitivity and microbial infection as sources of immune activation in mental illness. PMID:22446142

  11. Age-related macular degeneration in the aspect of chronic low-grade inflammation (pathophysiological parainflammation).

    PubMed

    Nita, Małgorzata; Grzybowski, Andrzej; Ascaso, Francisco J; Huerva, Valentín

    2014-01-01

    The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation) process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH) and facilitates chronic inflammation mediated by C-reactive protein (CRP). Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2) and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages); however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages).

  12. Chlamydia pneumoniae Infection in Mice Induces Chronic Lung Inflammation, iBALT Formation, and Fibrosis

    PubMed Central

    Jupelli, Madhulika; Shimada, Kenichi; Chiba, Norika; Slepenkin, Anatoly; Alsabeh, Randa; Jones, Heather D.; Peterson, Ellena; Chen, Shuang

    2013-01-01

    Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis. PMID:24204830

  13. Adipocytes Properties and Crosstalk with Immune System in Obesity-related Inflammation.

    PubMed

    Maurizi, Giulia; Della Guardia, Lucio; Maurizi, Angela; Poloni, Antonella

    2017-02-09

    Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders. This article is protected by copyright. All rights reserved.

  14. Innate Immunity and Inflammation in NAFLD/NASH.

    PubMed

    Arrese, Marco; Cabrera, Daniel; Kalergis, Alexis M; Feldstein, Ariel E

    2016-05-01

    Inflammation and hepatocyte injury and death are the hallmarks of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), which is a currently burgeoning public health problem. Innate immune activation is a key factor in triggering and amplifying hepatic inflammation in NAFLD/NASH. Thus, identification of the underlying mechanisms by which immune cells in the liver recognize cell damage signals or the presence of pathogens or pathogen-derived factors that activate them is relevant from a therapeutic perspective. In this review, we present new insights into the factors promoting the inflammatory response in NASH including sterile cell death processes resulting from lipotoxicity in hepatocytes as well as into the altered gut-liver axis function, which involves translocation of bacterial products into portal circulation as a result of gut leakiness. We further delineate the key immune cell types involved and how they recognize both damage-associated molecular patterns or pathogen-associated molecular patterns through binding of surface-expressed pattern recognition receptors, which initiate signaling cascades leading to injury amplification. The relevance of modulating these inflammatory signaling pathways as potential novel therapeutic strategies for the treatment of NASH is summarized.

  15. Cellular and humoral immunity in chronic equine laminitis.

    PubMed

    Steelman, Samantha M; Johnson, Daisy; Wagner, Bettina; Stokes, Ashleym; Chowdhary, Bhanu P

    2013-06-15

    Chronic equine laminitis causes persistent pain and lameness in affected animals and often necessitates euthanasia when pain management strategies become ineffective. Published studies as well as anecdotal reports suggest that this chronic inflammatory disease is associated with systemic alterations in immune responsiveness, perhaps involving an autoimmune component. We investigated this broad hypothesis by measuring a variety of immune indicators in healthy control horses (CON) and horses with chronic laminitis (LMN). We found that white blood cells from LMN horses produced more IFNγ than did cells from CON horses when stimulated in vitro with polyinosinic-polycytidylic acid [poly(I:C)], possibly due to an elevated number of circulating monocytes. No differences between groups were observed in plasma concentrations of IgG, IgA, IgM, IgE, or rheumatoid factor. Laminar tissue from LMN horses expressed elevated levels of keratinocyte damage-related genes as well as inflammatory cytokines and chemokines, which corresponded with a modest amount of neutrophil infiltration as shown by histological staining of fixed tissue and accumulation of neutrophil elastase protein. Taken together, our results do not support the hypothesis of an autoimmune component in chronic laminitis, although the strong induction of neutrophil chemokines and the presence of tissue neutrophils suggests that this cell type is likely involved in perpetuating the inflammation and tissue damage associated with this disease.

  16. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation

    PubMed Central

    Hermouet, Sylvie; Bigot-Corbel, Edith; Gardie, Betty

    2015-01-01

    Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation. PMID:26538820

  17. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation.

    PubMed

    Hermouet, Sylvie; Bigot-Corbel, Edith; Gardie, Betty

    2015-01-01

    Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation.

  18. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients.

    PubMed

    Siribamrungwong, Monchai; Yothasamutr, Kasemsuk; Puangpanngam, Kutchaporn

    2014-06-01

    Chronic systemic inflammation, a non traditional risk factor of cardiovascular diseases, is associated with increasing mortality in chronic kidney disease, especially peritoneal dialysis patients. Periodontitis is a potential treatable source of systemic inflammation in peritoneal dialysis patients. Clinical periodontal status was evaluated in 32 stable chronic peritoneal dialysis patients by plaque index and periodontal disease index. Hematologic, blood chemical, nutritional, and dialysis-related data as well as highly sensitive C-reactive protein were analyzed before and after periodontal treatment. At baseline, high sensitive C-reactive protein positively correlated with the clinical periodontal status (plaque index; r = 0.57, P < 0.01, periodontal disease index; r = 0.56, P < 0.01). After completion of periodontal therapy, clinical periodontal indexes were significantly lower and high sensitivity C-reactive protein significantly decreased from 2.93 to 2.21 mg/L. Moreover, blood urea nitrogen increased from 47.33 to 51.8 mg/dL, reflecting nutritional status improvement. Erythropoietin dosage requirement decreased from 8000 to 6000 units/week while hemoglobin level was stable. Periodontitis is an important source of chronic systemic inflammation in peritoneal dialysis patients. Treatment of periodontal diseases can improve systemic inflammation, nutritional status and erythropoietin responsiveness in peritoneal dialysis patients.

  19. Effect of selected triterpenoids on chronic dermal inflammation.

    PubMed

    Máñez, S; Recio, M C; Giner, R M; Ríos, J L

    1997-09-03

    The activity of four natural triterpenoids on a 12-O-tetradecanoylphorbol-13-acetate multiple-dose model of skin chronic inflammation was studied. Erythrodiol and ursolic acid were significantly effective. The most important features concerning structure-activity relationship and previous data on the effect of these triterpenoids on other inflammatory conditions are discussed.

  20. Possible contribution of chronic inflammation in the induction of cancer in rheumatic diseases.

    PubMed

    Cutolo, Maurizio; Paolino, Sabrina; Pizzorni, Carmen

    2014-01-01

    Several chronic inflammatory conditions and autoimmune diseases involving different organs and tissues have been found at risk of progression to cancer. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide products, and matricellular proteins are closely involved in premalignant and malignant transition of cells almost always in a background of chronic inflammation. Interestingly, epigenetic perturbations (i.e. miRNA aberrations, altered DNA methylation) together with important steroid hormone metabolic changes (i.e. oestrogens), or the altered vitamin D concentrations that may unbalance the immune / inflammatory response, have been found linked to the risk and severity in several chronic inflammatory conditions, as well as in cancer. In particular, it is evident, that not only the parent oestrogen but also oestrogen metabolites should be taken into account when this process is evaluated, specially the formation of catecholoestrogen metabolites, that are capable of forming either stable or depurinating DNA adducts, which can cause extensive DNA damage. It is interesting that today the successful treatment of several chronic immune/inflammatory rheumatic diseases is obtained also by using medications initially developed for their use in oncology. The circadian increase of growth factors, specially during the late night, in both chronic inflammation and in cancer patients, as well as the presence of oestrogen-regulated circadian mechanisms, suggests further important links.

  1. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  2. Chronic paroxysmal hemicrania presenting as recurrent orbital inflammation.

    PubMed

    Vishwanath, Mandagere R; Jain, Arpita; Carley, Fiona

    2006-04-01

    Patients with chronic headache associated with ocular symptoms regularly seek ophthalmologists' opinions. We report an unusual case of chronic paroxysmal hemicrania (CPH), a rare but well-described variant of cluster headache in a female presenting to an eye department with recurrent episodes of severe unilateral periorbital swelling with a chronic history of headaches. Clinical features, review of literature, and therapeutic response to indomethacin helped to establish the diagnosis as CPH. This is the first report of severe orbital inflammation with CPH to our knowledge.

  3. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review)

    PubMed Central

    FERNANDES, JOSÉ VERÍSSIMO; DE MEDEIROS FERNANDES, THALES ALLYRIO ARAÚJO; DE AZEVEDO, JENNER CHRYSTIAN VERÍSSIMO; COBUCCI, RICARDO NEY OLIVEIRA; DE CARVALHO, MARIA GORETTI FREIRE; ANDRADE, VANIA SOUSA; DE ARAÚJO, JOSÉLIO MARIA GALVÃO

    2015-01-01

    Inflammation is a defense strategy against invading agents and harmful molecules that is activated immediately following a stimulus, and involves the release of cytokines and chemokines, which activate the innate immune response. These mediators act together to increase blood flow and vascular permeability, facilitating recruitment of effector cells to the site of injury. Following resolution of the injury and removal of the stimulus, inflammation is disabled, but if the stimulus persists, inflammation becomes chronic and is strongly associated with cancer. This is likely to be due to the fact that the inflammation leads to a wound that does not heal, requiring a constant renewal of cells, which increases the risk of neoplastic transformation. Debris from phagocytosis, including the reactive species of oxygen and nitrogen that cause damage to DNA already damaged by the leukotrienes and prostaglandins, has an impact on inflammation and various carcinogenic routes. There is an association between chronic inflammation, persistent infection and cancer, where oncogenic action is mediated by autocrine and paracrine signals, causing changes in somatic cells under the influence of the microbial genome or of epigenetic factors. Among the infectious agents associated with cancer, certain genotypes of human papillomavirus (HPV) stand out. HPV is responsible for virtually all cases of cervical cancer and a lower proportion of cancers of the vagina, vulva, anus, penis and a number of extragenital cancers. In the present review, recent advances in the mechanisms involved in the inflammatory response are presented with their participation in the process of carcinogenesis, emphasizing the role of chronic inflammation in the development of HPV-induced cervical cancer. PMID:25663851

  4. The TIPE (TNFAIP8) family in inflammation, immunity, and cancer.

    PubMed

    Lou, Yunwei; Liu, Suxia

    2011-10-01

    Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 or TIPE) family are recently identified proteins which are important for maintaining immune homeostasis. The mammalian TNFAIP8 family consists of four members: TNFAIP8, the first identified member of this family, TNFAIP8L1 (TNF-alpha-induced protein 8-like 1, TIPE1), TIPE2, and TIPE3, which share high degrees of sequence homology and involve in proliferation, inflammation, and cell death. Among the members, TNFAIP8 is considered to be associated with carcinogenesis, TIPE2 is an essential negative regulator of both innate and adaptive immunity and the depletion of TIPE2 would cause serve inflammatory disease. Whereas, little is known about TIPE1 and TIPE3.

  5. Diabetes mellitus, exocrine pancreatic deficiency, hypertrichosis, hyperpigmentation, and chronic inflammation: confirmation of a syndrome.

    PubMed

    Hussain, Khalid; Padidela, Raja; Kapoor, Ritika R; James, Chela; Banerjee, Kausik; Harper, John; Wilson, Louise C; Hennekam, Raoul C M

    2009-05-01

    Type 1 diabetes mellitus is characterized by dysregulation of the immune system leading to inflammation and selective destruction of pancreatic beta cells. Mild to moderate pancreatic exocrine insufficiency is found in patients with type 1 diabetes. Diabetes mellitus may also be part of a syndrome occasionally involving hair and skin abnormalities. We report our observations on two siblings with insulin-dependent diabetes, severe exocrine pancreatic deficiency, pigmented hypertrichotic skin patches with induration and chronic inflammation. The first sibling presented at the age of 9 months with hypertrichosis and hyperpigmentation, particularly on her back and legs and then developed diabetes mellitus at the age of 4 yr. The second sibling presented with exactly the same clinical features but at a later age of 12 yr. Both siblings had severe pancreatic exocrine deficiency with chronic persistent inflammation. Some of the clinical features in these siblings resemble those described by Prendiville et al. although our patients had additional features. The chronic inflammatory response in both siblings is highly suggestive of some form of immune dysregulation. The presence of consanguinity in the parents and similarity of clinical features in the siblings are suggestive of a novel autoimmune disorder, possibly secondary to autosomal recessive inheritance.

  6. Inflammation on the Mind: Visualizing Immunity in the Central Nervous System

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time. PMID:19521688

  7. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis.

    PubMed

    Gold, Stefan M; Irwin, Michael R

    2006-08-01

    There is strong evidence that depression involves alterations in multiple aspects of immunity that may contribute to the development or exacerbation of a number of medical disorders and also may play a role in the pathophysiology of depressive symptoms. Accordingly, aggressive management of depressive disorders in medically ill populations or individuals at risk for disease may improve disease outcome or prevent disease development. On the other hand, in light of data suggesting that immune processes may interact with the pathophysiologic pathways known to contribute to depression, novel approaches to the treatment of depression may target relevant aspects of the immune response. Taken together, the data provide compelling evidence that a psychoimmunologic frame of reference may have profound implications regarding the consequences and treatment of depression. In addition, this approach may be used to investigate the possibility that peripheral and central production of cytokines may account for neuropsychiatric symptoms in inflammatory diseases. This article summarizes evidence for a cytokine-mediated pathogenesis of depression and fatigue in MS. The effects of central inflammatory processes may account for some of the behavioral symptoms seen in patients who have MS that cannot be explained by psychosocial factors or CNS damage. This immune-mediated hypothesis is supported by indirect evidence from experimental and clinical studies of the effect of cytokines on behavior, which have found that both peripheral and central cytokines may cause depressive symptoms. Emerging clinical data from patients who have MS support an association of central inflammation (as measured by MRI) and inflammatory markers with depressive symptoms and fatigue. Based on the literature reviewed in this article, subtypes of MS fatigue and depression may exist that are caused by different pathogenetic mechanisms, including inflammation and CNS damage as well as psychosocial factors or

  8. Immune regulation during chronic visceral leishmaniasis.

    PubMed

    Faleiro, Rebecca J; Kumar, Rajiv; Hafner, Louise M; Engwerda, Christian R

    2014-07-01

    Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.

  9. Herbal Formula, PM014, Attenuates Lung Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lee, Hyojung; Kim, Youngeun; Kim, Hye Jin; Park, Soojin; Jang, Young Pyo; Jung, Sungki; Jung, Heejae; Bae, Hyunsu

    2012-01-01

    Chronic obstructive pulmonary disease (COPD), which is characterized by airway obstruction, leads to, as the two major forms of COPD, chronic bronchitis and emphysema. This study was conducted to evaluate the effects of herbal formula, PM014, in a murine model of COPD. Balb/c mice were treated once with each herb extract in PM014 or PM014 mixture via an oral injection. Lipopolysaccharide (LPS) or elastase/LPS were administrated to the mice to induce a disease that resembles COPD. PM014 treatment significantly attenuated the increased accumulation of immune cells in bronchoalveolar lavage fluid (BALF) compared to control mice. In addition, the TNF-α and IL-6 levels in BALF were decreased in the PM014 mice. Furthermore, histological analysis demonstrated that PM014 attenuated the hazardous effects of lung inflammation. These data suggest that PM014 exerts beneficial effects against forms of COPD such as lung inflammation. PMID:22778777

  10. Long QT Syndrome: An Emerging Role for Inflammation and Immunity

    PubMed Central

    Lazzerini, Pietro Enea; Capecchi, Pier Leopoldo; Laghi-Pasini, Franco

    2015-01-01

    The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy. PMID:26798623

  11. Physical activity, by enhancing parasympathetic tone and activating the cholinergic anti-inflammatory pathway, is a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases.

    PubMed

    Lujan, Heidi L; DiCarlo, Stephen E

    2013-05-01

    Chronic diseases are the leading cause of death in the world and chronic inflammation is a key contributor to many chronic diseases. Accordingly, interventions that reduce inflammation may be effective in treating multiple adverse chronic conditions. In this context, physical activity is documented to reduce systemic low-grade inflammation and is acknowledged as an anti-inflammatory intervention. Furthermore, physically active individuals are at a lower risk of developing chronic diseases. However the mechanisms mediating this anti-inflammatory phenotype and range of health benefits are unknown. We hypothesize that the "cholinergic anti-inflammatory pathway" (CAP) mediates the anti-inflammatory phenotype and range of health benefits associated with physical activity. The CAP is an endogenous, physiological mechanism by which acetylcholine from the vagus nerve, interacts with the innate immune system to modulate and restrain the inflammatory cascade. Importantly, higher levels of physical activity are associated with enhanced parasympathetic (vagal) tone and lower levels of C-reactive protein, a marker of low-grade inflammation. Accordingly, physical activity, by enhancing parasympathetic tone and activating the CAP, may be a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases.

  12. Mast cells in chronic inflammation, pelvic pain and depression in women.

    PubMed

    Graziottin, Alessandra; Skaper, Stephen D; Fusco, Mariella

    2014-07-01

    Inflammatory and neuroinflammatory processes are increasingly recognized as critical pathophysiologic steps in the development of multiple chronic diseases and in the etiology of persistent pain and depression. Mast cells are immune cells now viewed as cellular sensors in inflammation and immunity. When stimulated, mast cells release an array of mediators to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, and may also regulate the activity of other immune cells, including central microglia. New evidence supports the involvement of peripheral and central mast cells in the development of pain processes as well as in the transition from acute, to chronic and neuropathic pain. That behavioral and endocrine states can increase the number and activation of peripheral and brain mast cells suggests that mast cells represent the immune cells that peripherally and centrally coordinate inflammatory processes in neuropsychiatric diseases such as depression and anxiety which are associated with chronic pelvic pain. Given that increasing evidence supports the activated mast cell as a director of common inflammatory pathways/mechanisms contributing to chronic and neuropathic pelvic pain and comorbid neuropsychiatric diseases, mast cells may be considered a viable target for the multifactorial management of both pain and depression.

  13. Innate Immune Responses and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Schleimer, Robert P.

    2005-01-01

    Innate immune responses appear to be partially responsible for maintaining inflammation and tissue destruction in chronic obstructive pulmonary disease. In the early stages of the disease in smokers, the airways are bombarded with large quantities of particulate material, and activation of phagocytic cells results in the release of many of the mediators believed to remodel the airways. Ironically, failure of the innate immune defense system, either by inherited deficiency or as a result of chronic smoke inhalation, is likely to result in increased susceptibility to infectious disease and exacerbations of chronic obstructive pulmonary disease. It is well known that deficiencies in the production of collectins, pentraxins, and complement can lead to increased infections, and several studies indicate that deficiency in one or another innate defense component is associated with increased exacerbations. Corticosteroids reduce exacerbations in part because of their ability to boost the production of innate host-defense molecules. Therapeutic approaches that stimulate the generation of antimicrobial molecules in the lungs might be able to reduce disease exacerbations. PMID:16267360

  14. Subclinical intestinal inflammation in chronic granulomatous disease patients.

    PubMed

    Broides, Arnon; Sagi, Orli; Pinsk, Vered; Levy, Jacov; Yerushalmi, Baruch

    2016-02-01

    Chronic granulomatous disease is a primary immunodeficiency caused by impaired neutrophil production of reactive oxygen species. Non-infectious colitis is common in chronic granulomatous disease, and high levels of antimicrobial antibodies that are associated with Crohn's disease are common even without colitis. Fecal calprotectin concentration is a marker for intestinal inflammation. We sought to determine whether subclinical intestinal inflammation occurs in asymptomatic chronic granulomatous disease patients. Asymptomatic chronic granulomatous disease patients without overt gastrointestinal symptoms suggestive of colitis at the time of enrollment were studied for fecal calprotectin concentration, antibodies associated with Crohn's disease and systemic inflammatory markers. Eight patients were included, aged 54-176 months. In 7/8 (87.5 %) fecal calprotectin concentration was normal (<50) and elevated (137 mg/kg) in only one patient. This patient later developed colitis. In 7/8 (87.5 %) anti-Saccharomyces cerevisiae antibody was positive. C-reactive protein, albumin, complete blood count and p-anti-neutrophil cytoplasmic antibody were normal in all 8 patients. Subclinical colitis is not evident in most asymptomatic chronic granulomatous disease patients; however, in some patients, fecal calprotectin concentration may be elevated, possibly indicating the presence of subclinical colitis and predicting the occurrence of clinically relevant colitis. Serum anti-Saccharomyces cerevisiae antibody concentrations do not seem to correlate with fecal calprotectin concentration in asymptomatic chronic granulomatous disease patients.

  15. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation.

    PubMed

    Pauly, John L; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps.

  16. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  17. Chronic Inflammation and Cytokines in the Tumor Microenvironment

    PubMed Central

    Landskron, Glauben; De la Fuente, Marjorie; Thuwajit, Peti; Thuwajit, Chanitra; Hermoso, Marcela A.

    2014-01-01

    Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma. PMID:24901008

  18. Insulin-like growth factor-1 endues monocytes with immune suppressive ability to inhibit inflammation in the intestine

    PubMed Central

    Ge, Rong-Ti; Mo, Li-Hua; Wu, Ruijin; Liu, Jiang-Qi; Zhang, Huan-Ping; Liu, Zhigang; Liu, Zhanju; Yang, Ping-Chang

    2015-01-01

    The pathogenesis of some chronic inflammation such as inflammatory bowel disease is unclear. Insulin-like growth factor-1 (IGF1) has active immune regulatory capability. This study aims to investigate into the mechanism by which IGF1 modulates the monocyte (Mo) properties to inhibit immune inflammation in the intestine. In this study, the production of IGF1 by intestinal epithelial cells was evaluated by real time RT-PCR and Western blotting. Mos were analyzed by flow cytometry. A mouse colitis model was created with trinitrobenzene sulfonic acid. The results showed that mouse IECs produced IGF1, which could be up regulated by exposure to CpG-ODN (CpG-oligodeoxynueleotides) in the culture. Culture the CpG-ODN-primed IEC cells and Mos or exposure of Mos to IGF1 in the culture induced the Mos to express IL-10. The IGF1-primed Mos showed the immune suppressive effect on inhibiting the immune inflammation in the mouse colon. In conclusion, the IGF1-primed Mos are capable of suppressing immune inflammation in the intestine. PMID:25588622

  19. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model

    PubMed Central

    Ludewig, Burkhard; Freigang, Stefan; Jäggi, Martin; Kurrer, Michael O.; Pei, Yao-Chang; Vlk, Lenka; Odermatt, Bernhard; Zinkernagel, Rolf M.; Hengartner, Hans

    2000-01-01

    Arterial inflammatory responses are thought to be a significant component of atherosclerotic disease. We describe here, using a transgenic approach, the mutual perpetuation of immune-mediated arterial inflammation and cholesterol-induced atherosclerosis. Mice expressing the bacterial transgene β-galactosidase exclusively in cardiomyocytes and in smooth muscle cells in lung arteries and the aorta (SM-LacZ), and hypercholesterolemic apolipoprotein E-deficient SM-LacZ mice (SM-LacZ/apoE−/−) developed myocarditis and arteritis after immunization with dendritic cells presenting a β-galactosidase-derived immunogenic peptide. Hypercholesterolemia amplified acute arteritis and perpetuated chronic arterial inflammation in SM-LacZ/apoE−/− mice, but had no major impact on acute myocarditis or the subsequent development of dilated cardiomyopathy. Conversely, arteritis significantly accelerated cholesterol-induced atherosclerosis. Taken together, these data demonstrate that the linkage of immune-mediated arteritis and hypercholesterolemia favors initiation and maintenance of atherosclerotic lesion formation. Therapeutic strategies to prevent or disrupt such self-perpetuating vicious circles may be crucial for the successful treatment of atherosclerosis. PMID:11050173

  20. IRF5 controls both acute and chronic inflammation.

    PubMed

    Weiss, Miriam; Byrne, Adam J; Blazek, Katrina; Saliba, David G; Pease, James E; Perocheau, Dany; Feldmann, Marc; Udalova, Irina A

    2015-09-01

    Whereas the importance of macrophages in chronic inflammatory diseases is well recognized, there is an increasing awareness that neutrophils may also play an important role. In addition to the well-documented heterogeneity of macrophage phenotypes and functions, neutrophils also show remarkable phenotypic diversity among tissues. Understanding the molecular pathways that control this heterogeneity should provide abundant scope for the generation of more specific and effective therapeutics. We have shown that the transcription factor IFN regulatory factor 5 (IRF5) polarizes macrophages toward an inflammatory phenotype. IRF5 is also expressed in other myeloid cells, including neutrophils, where it was linked to neutrophil function. In this study we explored the role of IRF5 in models of acute inflammation, including antigen-induced inflammatory arthritis and lung injury, both involving an extensive influx of neutrophils. Mice lacking IRF5 accumulate far fewer neutrophils at the site of inflammation due to the reduced levels of chemokines important for neutrophil recruitment, such as the chemokine (C-X-C motif) ligand 1. Furthermore we found that neutrophils express little IRF5 in the joints and that their migratory properties are not affected by the IRF5 deficiency. These studies extend prior ones suggesting that inhibiting IRF5 might be useful for chronic macrophage-induced inflammation and suggest that IRF5 blockade would ameliorate more acute forms of inflammation, including lung injury.

  1. Regenerative potential of human muscle stem cells in chronic inflammation

    PubMed Central

    2011-01-01

    Introduction Chronic inflammation is a profound systemic modification of the cellular microenvironment which could affect survival, repair and maintenance of muscle stem cells. The aim of this study was to define the role of chronic inflammation on the regenerative potential of satellite cells in human muscle. Methods As a model for chronic inflammation, 11 patients suffering from rheumatoid arthritis (RA) were included together with 16 patients with osteoarthritis (OA) as controls. The mean age of both groups was 64 years, with more females in the RA group compared to the OA group. During elective knee replacement surgery, a muscle biopsy was taken from the distal musculus vastus medialis. Cell populations from four RA and eight OA patients were used for extensive phenotyping because these cell populations showed no spontaneous differentiation and myogenic purity greater than 75% after explantation. Results After mononuclear cell explantation, myogenic purity, viability, proliferation index, number of colonies, myogenic colonies, growth speed, maximum number of population doublings and fusion index were not different between RA and OA patients. Furthermore, the expression of proteins involved in replicative and stress-induced premature senescence and apoptosis, including p16, p21, p53, hTERT and cleaved caspase-3, was not different between RA and OA patients. Mean telomere length was shorter in the RA group compared to the OA group. Conclusions In the present study we found evidence that chronic inflammation in RA does not affect the in vitro regenerative potential of human satellite cells. Identification of mechanisms influencing muscle regeneration by modulation of its microenvironment may, therefore, be more appropriate. PMID:22171690

  2. Effect of systemic inflammation on level of ferritin seminal in chronic renal male patient undergoing hemodialysis

    PubMed Central

    2014-01-01

    Background Most hemodialysis patients present with chronic systemic inflammation characterized by the elevation of serum C-reactive protein (CRP) levels and/or the production of proinflammatory interleukins by the immune system in response to the hemodialysis process. Plasma ferritin(PF) is one of the parameters used to correct anemia. An PF level of >500 ng/mL is not recommended for correction of anemia because of the uncertainty of whether these levels are elevated because of anemia or a mere reaction to inflammation. we aimed to study the effects of inflammation on seminal ferritin (SF) levels and hypothesized that SF is not affected because of the testicular immune privilege. Methods A prospective prevalence study was conducted at the Department of Hemodialysis of the University Hospital of Brasília (HuB) between June 2010 and July 2011. The sample included 60 chronic renal patients undergoing hemodialysis and 20 control subjects from the health promotion general outpatient clinic. All participants were males aged 18–60 years. Inflammation was assessed through serum CRP levels, and the testicular condition was determined by measuring sex hormone levels. In the patient group, inflammation was considered to be present when CRP was >5 mg/L (n = 27) and absent when CRP was ≤5 mg/L (n = 33). Control group (n = 20) CRP was ≤1 mg/L. Blood and semen were collected via arm venoclysis and after voluntary masturbation, respectively. CRP was measured by turbidimetry; PF, SF, and sex hormone levels by immunochemoluminescence. Statistical significance was set at p < 0.05. Results There was no significant difference in mean SF levels among patients with inflammation (295.34 ± 145.39 ng/mL), those without inflammation (324.42 ± 145.51 mg/mL), and controls (335.70 ± 075.90 ng/mL; p = 0.49). There was no correlation between mean SF and PF levels in the patients with and without inflammation). All participants were eugonadal with mean

  3. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging.

    PubMed

    De la Fuente, Mónica; Miquel, Jaime

    2009-01-01

    The aging process is one of the best examples of the effects of a deterioration of homeostasis, since aging is accompanied by an impairment of the physiological systems including the homeostatic systems such as the immune system. We propose an integrative theory of aging providing answers to the how (oxidation), where first (mitochondria of differentiated cells) and why (pleiotropic genes) this process occurs. In agreement with this oxidation-mitochondrial theory of aging, we have observed that the age-related changes of immune functions have as their basis an oxidative and inflammatory stress situation, which has among its intracellular mechanisms the activation of NFkappaB in immune cells. Moreover, we have also observed that several functions of immune cells are good markers of biological age and predictors of longevity. Based on the above we have proposed the theory of oxidation-inflammation as the main cause of aging. Accordingly, the chronic oxidative stress that appears with age affects all cells and especially those of the regulatory systems, such as the nervous, endocrine and immune systems and the communication between them. This fact prevents an adequate homeostasis and, therefore, the preservation of health. We have also proposed a key involvement of the immune system in the aging process of the organism, concretely in the rate of aging, since there is a relation between the redox state and functional capacity of the immune cells and the longevity of individuals. Moreover, the role of the immune system in senescence could be of universal application. A confirmation of the central role of the immune system in oxi-inflamm-aging is that the administration of adequate amounts of antioxidants in the diet, improves the immune functions, decreasing their oxidative stress, and consequently increases the longevity of the subjects.

  4. Rethinking inflammation: neural circuits in the regulation of immunity

    PubMed Central

    Olofsson, Peder S.; Rosas-Ballina, Mauricio; Levine, Yaakov A.; Tracey, Kevin J.

    2015-01-01

    Summary Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4+ T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field. PMID:22725962

  5. Fat-Associated Lymphoid Clusters in Inflammation and Immunity

    PubMed Central

    Cruz-Migoni, Sara; Caamaño, Jorge

    2016-01-01

    Fat-associated lymphoid clusters (FALCs) are atypical lymphoid tissues that were originally identified in mouse and human mesenteries due to that they contain a high number of type 2 innate lymphoid cells/nuocytes/natural helper cells. FALCs are located on adipose tissues in mucosal surfaces such as the mediastinum, pericardium, and gonadal fat. Importantly, these clusters contain B1, B2 and T lymphocytes as well as myeloid and other innate immune cell populations. The developmental cues of FALC formation have started to emerge, showing that these clusters depend on a different set of molecules and cells than secondary lymphoid tissues for their formation. Here, we review the current knowledge on FALC formation, and we compare FALCs and omental milky spots and their responses to inflammation. PMID:28066422

  6. The Interplay between NLRs and Autophagy in Immunity and Inflammation

    PubMed Central

    Carneiro, Leticia A. M.; Travassos, Leonardo H.

    2013-01-01

    Since they were first described as cytosolic sensors of microbial molecules a decade ago, the Nod-like receptors (NLRs) have been shown to have many different and important roles in various aspects of immune and inflammatory responses, ranging from antimicrobial mechanisms to control of adaptive responses. In this review, we focus on the interplay between NLRs and autophagy, an evolutionarily conserved mechanism that is crucial for homeostasis and has recently been shown to be involved in the protective response against infections. Furthermore, the association between mutations of NLRs as well as proteins that form the autophagic machinery and inflammatory diseases such as Crohn’s disease highlight the importance of these proteins and their interactions in the regulation of inflammation. PMID:24273538

  7. [Association of ocular inflammation and innate immune response].

    PubMed

    Sonoda, Koh-Hei

    2008-03-01

    Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and

  8. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients

    PubMed Central

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT

  9. Pathophysiological implications between chronic inflammation and the development of diabetes and obesity.

    PubMed

    González-Chávez, Antonio; Elizondo-Argueta, Sandra; Gutiérrez-Reyes, Gabriela; León-Pedroza, José Israel

    2011-01-01

    The different theories about the mechanisms involved in the development of metabolic disease and its complications converge in the presence of an etiologic chronic proinflammatory state. Chronic inflammation is, at present, the central pathophysiological mechanism involved in the genesis of metabolic diseases. The multiple interactions between the immune system, adipose tissue, the vascular wall and the pancreas are the issues addressed in this review, focusing on specific intracellular and molecular aspects that may become new therapeutic targets. These lead to a proinflammatory, prothrombotic state as well as to proapoptotic endothelial damage that allows the development of atherosclerosis and, consequently, cardiovascular disease. The multiple immunopathological processes associated with the etiology and pathophysiology of different chronic diseases is still in the process of being fully elucidated, allowing the development of new therapeutic targets.

  10. Immune Cell Responses and Mucosal Barrier Disruptions in Chronic Rhinosinusitis

    PubMed Central

    Khalmuratova, Roza; Park, Jong-Wan

    2017-01-01

    Chronic rhinosinusitis (CRS) is one of the most common presentations of upper airway illness and severely affects patient quality of life. Its frequency is not surprising given levels of environmental exposure to microbes, pollutants, and allergens. Inflammatory cells, inflammatory cytokine and chemokine production, and airway remodeling have been detected in the sinonasal mucosae of CRS patients, although the precise pathophysiological mechanisms causing such persistent inflammation remain unclear. Given its high prevalence and considerable associated morbidity, continued research into CRS is necessary to increase our understanding of factors likely to contribute to its pathogenesis, and facilitate the development of novel therapeutic strategies to improve treatment. The purpose of this review is to summarize the current state of knowledge regarding immune cell responses and epithelial alterations in CRS. PMID:28261021

  11. Inhalation of Environmental Stressors & Chronic Inflammation: Autoimmunity and Neurodegeneration

    PubMed Central

    Gomez-Mejiba, Sandra E.; Zhai, Zili; Akram, Hammad; Pye, Quentin N.; Hensley, Kenneth; Kurien, Biji T.; Scofield, R. Hal; Ramirez, Dario C.

    2009-01-01

    Human life expectancy and welfare has decreased because of the increase in environmental stressors in the air. An environmental stressor is a natural or human-made component present in our environment that upon reaching an organic system produces a coordinated response. This response usually involves a modification of the metabolism and physiology of the system. Inhaled environmental stressors damage the airways and lung parenchyma, producing irritation, recruitment of inflammatory cells, and oxidative modification of biomolecules. Oxidatively modified biomolecules, their degradation products, and adducts with other biomolecules can reach the systemic circulation, and when found in higher concentrations than normal they are considered to be biomarkers of systemic oxidative stress and inflammation. We classify them as metabolic stressors because they are not inert compounds; indeed, they amplify the inflammatory response by inducing inflammation in the lung and other organs. Thus the lung is not only the target for environmental stressors, but it is also the source of a number of metabolic stressors that can induce and worsen pre-existing chronic inflammation. Metabolic stressors produced in the lung have a number of effects in tissues other than the lung, such as the brain, and they can also abrogate the mechanisms of immunotolerance. In this review, we discuss recent published evidence that suggests that inflammation in the lung is an important connection between air pollution and chronic inflammatory diseases such as autoimmunity and neurodegeneration, and we highlight the critical role of metabolic stressors produced in the lung. The understanding of this relationship between inhaled environmental pollutants and systemic inflammation will help us to: 1) understand the molecular mechanism of environment-associated diseases, and 2) find new biomarkers that will help us prevent the exposure of susceptible individuals and/or design novel therapies. PMID:18977456

  12. Immune complex–FcγR interaction modulates monocyte/macrophage molecules involved in inflammation and immune response

    PubMed Central

    BARRIONUEVO, P; BEIGIER-BOMPADRE, M; FERNANDEZ, G C; GOMEZ, S; ALVES-ROSA, M F; PALERMO, M S; ISTURIZ, M A

    2003-01-01

    The interaction between receptors for the Fc portion of IgG (FcγRs) from monocytes/macrophages and immune complexes (IC) triggers regulatory and effector functions. Recently, we have demonstrated that IC exert a drastic inhibition of basal and IFN-γ-induced expression of MHC class II on human monocytes. Taking into account that the regulation of MHC class II molecules is a crucial event in the immune response, in this report we extend our previous studies analysing the effect of STAT-1 phosphorylation in the down-regulatory process, the fate of the intracellular pool of MHC class II molecules and the effect of complement on MHC class II down-regulation induced by IC. We also studied the effect of IC on the expression of MHC class II (I-Ad) in macrophages using a mouse model of chronic inflammation. We demonstrate that IC induce a depletion not only on surface expressed but also on intracellular MHC class II content and that IC-induced down-regulation of MHC class II is not mediated by the inhibition of STAT-1 phosphorylation. On the other hand, the effect of IC is not specific for the down-regulation of MHC class II, for it could be restricted to other molecules involved in inflammatory processes. Our experiments also show that the activation of the complement system could be a crucial step on the regulation of the effect of IC on MHC class II expression. In agreement with our in vitro experiments using human monocytes, IC treatment reduces the expression of MHC class II in a mouse model of chronic inflammation. PMID:12869025

  13. Intravenous immune globulin in chronic lymphocytic leukaemia.

    PubMed Central

    Gamm, H; Huber, C; Chapel, H; Lee, M; Ries, F; Dicato, M A

    1994-01-01

    The most common complication of chronic lymphocytic leukaemia (CLL) is infection, which occurs mainly in advanced stages of disease or in those patients with hypogammaglobulinaemia. Intravenous immune globulin (IVIG) has been shown to be a useful prophylactic therapy against infections in such patients. A randomized, double-blind study on 36 patients receiving either 500 mg/kg or 250 mg/kg IVIG every 4 weeks was undertaken to determine the dose regimen required. There was no significant difference in the two treatment groups and we found that CLL patients were equally protected with low-dose IVIG. PMID:8033428

  14. Therapies targeting innate immunity for fighting inflammation in atherosclerosis.

    PubMed

    Mendel, Itzhak; Yacov, Niva; Harats, Dror; Breitbart, Eyal

    2015-01-01

    Atherosclerosis is a smoldering disease of the vasculature that can lead to the occlusion of the arteries, resulting in ischemia of the heart and brain. For many years, the asserted underlying mechanism of atherosclerosis, supported by its epidemiology, was based on the "cholesterol hypothesis" that people with high blood cholesterol are at higher risk of developing cardiovascular disease. This hypothesis instigated a vigorous search for treatment that yielded the generation of statins, which specifically reduce LDL cholesterol. Since then, statins have revolutionized the way people are treated for the prevention of atherosclerosis. Nonetheless, despite this potent class of drugs, cardiovascular disease continues to be the leading cause of death in many parts of the world, suggesting that additional mechanisms are involved in disease pathogenesis. Intensive research has revealed that the atherosclerotic plaque is enriched with leukocytes, and that macrophages constitute the majority of immune cells in the lesion. Monocytes/macrophages are now recognized as the prime immune cells involved in the development of atherosclerosis and are implicated to affect the size, composition and vulnerability of the atherosclerotic plaque. While many of the macrophage-derived pro-inflammatory mechanisms associated with atherogenesis have been characterized, such as cell adhesion, cytokine production and protease secretion, there is a dearth of drugs that specifically target innate immunity for treating patients with atherosclerosis. This review presents pre-clinical studies, and in most cases following clinical trials with antagonists and agonists that have been designed to counteract inflammation in atherosclerosis and associated diseases, highlighting targets expressed predominantly in monocytes.

  15. Systemic inflammation after inspiratory loading in chronic obstructive pulmonary disease

    PubMed Central

    Fuster, Antonia; Sauleda, Jaume; Sala, Ernest; Barceló, Bernardí; Pons, Jaume; Carrera, Miguel; Noguera, Aina; Togores, Bernat; Agustí, Alvar GN

    2008-01-01

    Objective Patients with chronic obstructive pulmonary disease (COPD) present systemic inflammation. Strenuous resistive breathing induces systemic inflammation in healthy subjects. We hypothesized that the increased respiratory load that characterizes COPD can contribute to systemic inflammation in these patients. Patients and methods To test this hypothesis, we compared leukocyte numbers and levels of circulating cytokines (tumor necrosis factor alpha [TNFα], interleukin-1β [IL-1β], IL-6, IL-8, and IL-10), before and 1 hour after maximal incremental inspiratory loading in 13 patients with stable COPD (forced expiratory volume in one second [FEV1] 29 ± 2.5% ref) and in 8 healthy sedentary subjects (FEV1 98 ± 5% ref). Results We found that: (1) at baseline, patients with COPD showed higher leukocyte counts and IL-8 levels than controls (p < 0.01); and, (2) one hour after maximal inspiratory loading these values were unchanged, except for IL-10, which increased in controls (p < 0.05) but not in patients with COPD. Conclusions This study confirms the presence of systemic inflammation in COPD, shows that maximal inspiratory loading does not increase the levels of pro-inflammatory cytokines (IL-1β, IL-8) in COPD patients or controls, but suggests that the former may be unable to mount an appropriate systemic anti-inflammatory response to exercise. PMID:18488438

  16. Toxic stress, inflammation and symptomatology of chronic complications in diabetes

    PubMed Central

    Downs, Charles A; Faulkner, Melissa Spezia

    2015-01-01

    Diabetes affects at least 382 million people worldwide and the incidence is expected to reach 592 million by 2035. The incidence of diabetes in youth is skyrocketing as evidenced by a 21% increase in type 1 diabetes and a 30.5% increase in type 2 diabetes in the United States between 2001 and 2009. The effects of toxic stress, the culmination of biological and environmental interactions, on the development of diabetes complications is gaining attention. Stress impacts the hypothalamus-pituitary-adrenal axis and contributes to inflammation, a key biological contributor to the pathogenesis of diabetes and its associated complications. This review provides an overview of common diabetic complications such as neuropathy, cognitive decline, depression, nephropathy and cardiovascular disease. The review also provides a discussion of the role of inflammation and stress in the development and progression of chronic complications of diabetes, associated symptomatology and importance of early identification of symptoms of depression, fatigue, exercise intolerance and pain. PMID:25987953

  17. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression

    PubMed Central

    Lundy, Steven K.; Lukacs, Nicholas W.

    2012-01-01

    Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways. PMID:23429492

  18. Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation.

    PubMed

    Nagaraja, Sridevi; Wallqvist, Anders; Reifman, Jaques; Mitrophanov, Alexander Y

    2014-02-15

    Chronic inflammation is rapidly becoming recognized as a key contributor to numerous pathologies. Despite detailed investigations, understanding of the molecular mechanisms regulating inflammation is incomplete. Knowledge of such critical regulatory processes and informative indicators of chronic inflammation is necessary for efficacious therapeutic interventions and diagnostic support to clinicians. We used a computational modeling approach to elucidate the critical factors responsible for chronic inflammation and to identify robust molecular indicators of chronic inflammatory conditions. Our kinetic model successfully captured experimentally observed cell and cytokine dynamics for both acute and chronic inflammatory responses. Using sensitivity analysis, we identified macrophage influx and efflux rate modulation as the strongest inducing factor of chronic inflammation for a wide range of scenarios. Moreover, our model predicted that, among all major inflammatory mediators, IL-6, TGF-β, and PDGF may generally be considered the most sensitive and robust indicators of chronic inflammation, which is supported by existing, but limited, experimental evidence.

  19. The cutaneous vascular system in chronic skin inflammation

    PubMed Central

    Huggenberger, Reto; Detmar, Michael

    2011-01-01

    The blood and lymphatic vasculature play an important role in skin homeostasis. Angiogenesis and lymphangiogenesis – the growth of new vessels from existing ones - have received tremendous interest because of their role in promoting cancer spread. However, there is increasing evidence that both vessel types also play a major role in acute and chronic inflammatory disorders. Vessels change their phenotype in inflammation (vascular remodeling). In inflamed skin, vascular remodeling consists of a hyperpermeable, enlarged network of vessels with increased blood flow, and influx of inflammatory cells. During chronic inflammation, the activated endothelium expresses adhesion molecules, cytokines, and other molecules that lead to leukocyte rolling, attachment and migration into the skin. Recent studies reveal that inhibition of blood vessel activation exerts potent anti-inflammatory properties. Thus, anti-angiogenic drugs might be used to treat inflammatory conditions. In particular, topical application of anti-angiogenic drugs might be ideally suited to circumvent the adverse effects of systemic therapy with angiogenesis inhibitors. Our recent results indicate that stimulation of lymphatic vessel growth and function unexpectedly represents a novel approach for treating chronic inflammatory disorders. PMID:22076324

  20. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer.

    PubMed

    Kryczek, Ilona; Wu, Ke; Zhao, Ende; Wei, Shuang; Vatan, Linhua; Szeliga, Wojciech; Huang, Emina; Greenson, Joel; Chang, Alfred; Roliński, Jacek; Radwan, Piotr; Fang, Jingyuan; Wang, Guobin; Zou, Weiping

    2011-04-01

    Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.

  1. Role of the gut microbiota in age-related chronic inflammation.

    PubMed

    Rehman, Tayyab

    2012-12-01

    Changing demographics have made aging and age-related chronic diseases an enormous and growing biomedical and societal challenge. The biological processes of aging may involve a role for the gut microbiota. Aspects of host physiology such as immune homeostasis and energy balance are profoundly influenced by the microbiota. Immune dysregulation characterizes old age and constitutes a major pathomechanism underlying frailty and age-associated chronic diseases. A growing body of literature implicates age-related perturbations in the gut microbial ecology as contributing to a global inflammatory state in the elderly. A better understanding of the nature and determinants of the host-microbe relationship in old age has the potential to translate into strategies that promote healthy aging and extend life span. This review summarizes our current understanding of the configuration of the age-related gut microbiota and its likely role in determining the immune phenotype in the elderly. It also highlights the specific components of the microbiota that can be targeted to modulate the age-related chronic inflammation.

  2. Immune mediators of chronic pelvic pain syndrome

    PubMed Central

    Murphy, Stephen F.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2016-01-01

    The cause of chronic pelvic pain syndrome (CPPS) has yet to be established. Since the late 1980s, cytokine, chemokine, and immunological classification studies using human samples have focused on identifying biomarkers for CPPS, but no diagnostically beneficial biomarkers have been identified, and these studies have done little to deepen our understanding of the mechanisms underlying chronic prostatic pain. Given the large number of men thought to be affected by this condition and the ineffective nature of current treatments, there is a pressing need to elucidate these mechanisms. Prostatitis types IIIa and IIIb are classified according to the presence of pain without concurrent presence of bacteria; however, it is becoming more evident that, although levels of bacteria are not directly associated with levels of pain, the presence of bacteria might act as the initiating factor that drives primary activation of mast-cell-mediated inflammation in the prostate. Mast cell activation is also known to suppress regulatory T cell (Treg) control of self-tolerance and also activate neural sensitization. This combination of established autoimmunity coupled with peripheral and central neural sensitization can result in the development of multiple symptoms, including pelvic pain and bladder irritation. Identifying these mechanisms as central mediators in CPPS offers new insight into the prospective treatment of the disease. PMID:24686526

  3. IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation

    PubMed Central

    Mayo, Lior; Cunha, Andre Pires Da; Madi, Asaf; Beynon, Vanessa; Yang, Zhiping; Alvarez, Jorge I.; Prat, Alexandre; Sobel, Raymond A.; Kobzik, Lester; Lassmann, Hans; Quintana, Francisco J.

    2016-01-01

    See Winger and Zamvil (doi:10.1093/brain/aww121) for a scientific commentary on this article. The innate immune system plays a central role in the chronic central nervous system inflammation that drives neurological disability in progressive forms of multiple sclerosis, for which there are no effective treatments. The mucosal immune system is a unique tolerogenic organ that provides a physiological approach for the induction of regulatory T cells. Here we report that nasal administration of CD3-specific antibody ameliorates disease in a progressive animal model of multiple sclerosis. This effect is IL-10-dependent and is mediated by the induction of regulatory T cells that share a similar transcriptional profile to Tr1 regulatory cells and that suppress the astrocyte inflammatory transcriptional program. Treatment results in an attenuated inflammatory milieu in the central nervous system, decreased microglia activation, reduced recruitment of peripheral monocytes, stabilization of the blood–brain barrier and less neurodegeneration. These findings suggest a new therapeutic approach for the treatment of progressive forms of multiple sclerosis and potentially other types of chronic central nervous system inflammation. PMID:27246324

  4. HIV Infection and Compromised Mucosal Immunity: Oral Manifestations and Systemic Inflammation

    PubMed Central

    Heron, Samantha E.; Elahi, Shokrollah

    2017-01-01

    . Therefore, unraveling how HIV compromises the integrity of the oral mucosal tissues and innate immune components of the oral cavity and its association with induction of chronic inflammation are critical for the development of effective preventive interventions and therapeutic strategies. PMID:28326084

  5. Predomination of IL-17-producing tryptase-positive/chymase-positive mast cells in azoospermic chronic testicular inflammation.

    PubMed

    Chen, S-J; Duan, Y-G; Haidl, G; Allam, J-P

    2016-08-01

    Chronic testicular inflammation and infection have been regarded as important factors in the pathogenesis of azoospermia. As key effector cells in innate and adaptive immune system, mast cells (MCs) were observed in inflammation and autoimmune disease. Furthermore, increased expression of tryptase-positive MCs has been reported in testicular disorders associated with male infertility/subfertility. However, little is known about the potential relationship between MCs and chronic testicular inflammation in azoospermic patients. Moreover, the preferential expression of MCs' subtypes in testis of these patients is still far from being understood. Thus, this study aimed to investigate characteristics of testicular MCs as well as their subtypes in azoospermic men with chronic testicular inflammation (AZI, n = 5) by immunohistochemical techniques. Our results showed significant increase of MCs in AZI, and more importantly, considerable numbers of tryptase-positive/chymase-positive MCs could also be demonstrated in AZI, when compared to control groups representing azoospermia without chronic testicular inflammation (AZW, n = 5) and normal spermatogenesis (NT, n = 5) respectively. Most interestingly, immunofluorescence staining revealed autoimmune-associated interleukin (IL)-17-producing MCs in AZI, whereas co-expression of MC markers with tumour necrosis factor (TNF)-α, IL-10 and IL-1β could not be detected. In conclusion, AZI is associated with significant increase of tryptase-positive/chymase-positive MCs expressing IL-17, and these MCs might contribute to the pathogenesis of AZI.

  6. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  7. Runx3 at the interface of immunity, inflammation and cancer.

    PubMed

    Lotem, Joseph; Levanon, Ditsa; Negreanu, Varda; Bauer, Omri; Hantisteanu, Shay; Dicken, Joseph; Groner, Yoram

    2015-04-01

    Inactivation of tumor suppressor genes (TSG) in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago claims arose that the RUNX3 member of the RUNX transcription factor family is a major TSG inactivated in gastric cancer, a postulate extended later to other cancers. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. Here we critically re-appraise this paradigm in light of recent high-throughput, quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models. Collectively, these studies unequivocally demonstrate that RUNX3 is not a bona fide cell-autonomous TSG. Accordingly, RUNX3 is not recognized as a TSG and is not included among the 2000 cancer genes listed in the "Cancer Gene Census" or "Network for Cancer Genes" repositories. In contrast, RUNX3 does play important functions in immunity and inflammation and may thereby indirectly influence epithelial tumor development.

  8. STATs in cancer inflammation and immunity: a leading role for STAT3.

    PubMed

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2009-11-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.

  9. STATs in cancer inflammation and immunity: a leading role for STAT3

    PubMed Central

    Yu, Hua; Pardoll, Drew; Jove, Richard

    2016-01-01

    Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-κB (NF-κB) and interleukin-6 (IL-6)–GP130–Janus kinase (JAK) pathways, and by opposing STAT1- and NF-κB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy. PMID:19851315

  10. Sex influence on chronic intestinal inflammation in Helicobacter hepaticus-infected A/JCr mice.

    PubMed

    Livingston, Robert S; Myles, Mathew H; Livingston, Beth A; Criley, Jennifer M; Franklin, Craig L

    2004-06-01

    Helicobacter hepaticus is a bacterial pathogen of mice that has been reported to cause chronic intestinal inflammation in A/JCr, germfree Swiss Webster, and immunodeficient mice. To the authors' knowledge, the influence of sex on development of chronic intestinal inflammation in H. hepaticus-infected mice has not been investigated. The purposes of the study reported here were to determine whether severity of intestinal inflammation differs between male and female A/JCr mice chronically infected with H. hepaticus and to characterize the mucosal immune response in these mice. The cecum of male and female A/JCr mice infected with H. hepaticus for 1 month and 3 months was objectively evaluated histologically for intestinal disease. Also, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was done to measure interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin 4 (IL-4), IL-10, macrophage inflammatory protein-1alpha (MIP-1alpha), interferon-inducible protein of 10 kDa (IP-10), and monokine induced by gamma interferon (MIG) mRNA values in the cecal tissue of these mice. Significant differences in cecal lesion scores were not present at 1 month after infection. However, infected female mice had significantly up-regulated expression of cecal IL-10, MIP-1alpha, IP-10, and MIG mRNA compared with that in uninfected females, and expression of IL-10 and MIP-1alpha was significantly greater than that detected in infected male mice (P < or = 0.05). At 3 months after infection, cecal lesion scores were significantly (P < or = 0.05) increased in female and male mice compared with uninfected controls, and infected female mice had significantly (P < or = 0.05) higher cecal lesion scores than did infected male mice. In addition, infected females had significant (P < or = 0.05) increases in cecal IFN-gamma, TNF-alpha, IL-10, MIP-1alpha, IP-10, and MIG mRNA values compared with values in uninfected females and infected males

  11. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer.

    PubMed

    Liu, Wenli; Rodgers, Griffin P

    2016-06-01

    Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.

  12. Natural history of chronic hepatitis B virus infection from infancy to adult life - the mechanism of inflammation triggering and long-term impacts.

    PubMed

    Wu, Jia-Feng; Chang, Mei-Hwei

    2015-10-20

    Chronic hepatitis B virus (HBV) infection in endemic areas usually starts since infancy and early childhood and persists lifelong. The clinical course varies among different chronic infected subjects. Majority of chronic HBV infected children present with immune-tolerant status initially, experience the immune clearance phase with various degree of liver injury during or beyond puberty, and then enter the inactive phase after hepatitis B e antigen (HBeAg) seroconversion. Part of them may have HBV DNA titers elevation with hepatitis flare after HBeAg seroconversion, the so call HBeAg-negative hepatitis flare. Liver cirrhosis, and even hepatocellular carcinoma may develop afterward.The complex course of chronic HBV infection is associated with the age/route of viral acquisition, host factors such as immune and endocrine factors, viral factors, and host-viral interactions. The adrenarche and puberty onset modulate the start of immune clearance and the severity of liver inflammation in chronic HBV infected children. The genotype and phenotype of human cytokines, innate immunity, and human leukocyte antigens are also associated with the onset of immune clearance of HBV and severity of inflammation. Immune escape HBV mutant strains, emerged during the immune clearance phase under host immune surveillance, may cause different impacts on viral biosynthesis, host immune responses, and clinical course.Early events in childhood during chronic HBV infection may serve as important predictors for the later outcome in adulthood. Understanding the mechanisms triggering liver inflammation and their long-term impacts may enhance the development of better and earlier therapeutic strategies for patients with chronic HBV infection.

  13. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    PubMed

    Verinaud, Liana; Lopes, Stefanie Costa Pinto; Prado, Isabel Cristina Naranjo; Zanucoli, Fábio; Alves da Costa, Thiago; Di Gangi, Rosária; Issayama, Luidy Kazuo; Carvalho, Ana Carolina; Bonfanti, Amanda Pires; Niederauer, Guilherme Francio; Duran, Nelson; Costa, Fábio Trindade Maranhão; Oliveira, Alexandre Leite Rodrigues; Höfling, Maria Alice da Cruz; Machado, Dagmar Ruth Stach; Thomé, Rodolfo

    2015-01-01

    Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola), a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg) via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE)-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+). We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation) and stimulation of regulatory T cells (in chronic inflammation). New studies must be conducted in order to

  14. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells

    PubMed Central

    Verinaud, Liana; Lopes, Stefanie Costa Pinto; Prado, Isabel Cristina Naranjo; Zanucoli, Fábio; Alves da Costa, Thiago; Di Gangi, Rosária; Issayama, Luidy Kazuo; Carvalho, Ana Carolina; Bonfanti, Amanda Pires; Niederauer, Guilherme Francio; Duran, Nelson; Costa, Fábio Trindade Maranhão; Oliveira, Alexandre Leite Rodrigues; Höfling, Maria Alice da Cruz; Machado, Dagmar Ruth Stach; Thomé, Rodolfo

    2015-01-01

    Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola), a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg) via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE)-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+). We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation) and stimulation of regulatory T cells (in chronic inflammation). New studies must be conducted in order to

  15. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C

    PubMed Central

    Thabet, Khaled; Asimakopoulos, Anastasia; Shojaei, Maryam; Romero-Gomez, Manuel; Mangia, Alessandra; Irving, William L.; Berg, Thomas; Dore, Gregory J.; Grønbæk, Henning; Sheridan, David; Abate, Maria Lorena; Bugianesi, Elisabetta; Weltman, Martin; Mollison, Lindsay; Cheng, Wendy; Riordan, Stephen; Fischer, Janett; Spengler, Ulrich; Nattermann, Jacob; Wahid, Ahmed; Rojas, Angela; White, Rose; Douglas, Mark W.; McLeod, Duncan; Powell, Elizabeth; Liddle, Christopher; van der Poorten, David; George, Jacob; Eslam, Mohammed; Gallego-Duran, Rocio; Applegate, Tanya; Bassendine, Margaret; Rosso, Chiara; Mezzabotta, Lavinia; Leung, Reynold; Malik, Barbara; Matthews, Gail; Grebely, Jason; Fragomeli, Vincenzo; Jonsson, Julie R.; Santaro, Rosanna

    2016-01-01

    Cirrhosis likely shares common pathophysiological pathways despite arising from a variety of liver diseases. A recent GWAS identified rs641738, a polymorphism in the MBOAT7 locus, as being associated with the development of alcoholic cirrhosis. Here we explore the role of this variant on liver inflammation and fibrosis in two cohorts of patients with chronic hepatitis C. In 2,051 patients, rs641738 associated with severe hepatic inflammation and increased risk of fibrosis, as well as fast fibrosis progression. At functional level, rs641738 associated with MBOAT7 transcript and protein levels in liver and blood, and with serum inflammatory, oxidative stress and macrophage activation markers. MBOAT7 was expressed in immune cell subsets, implying a role in hepatic inflammation. We conclude that the MBOAT7 rs641738 polymorphism is a novel risk variant for liver inflammation in hepatitis C, and thereby for liver fibrosis. PMID:27630043

  16. Immune exhaustion during chronic infections in cattle

    PubMed Central

    KONNAI, Satoru; MURATA, Shiro; OHASHI, Kazuhiko

    2016-01-01

    Recently, dysfunction of antigen-specific T cells is well documented as T-cell exhaustion and has been defined by the loss of effector functions during chronic infections and cancer in human. The exhausted T cells are characterized phenotypically by the surface expression of immunoinhibitory receptors, such as programmed death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and cytotoxic T-lymphocyte antigen 4 (CTLA-4). However, there is still a fundamental lack of knowledge about the immunoinhibitory receptors in the fields of veterinary medicine. In particular, very little is known about mechanism of T cell dysfunction in chronic infection in cattle. Recent our studies have revealed that immunoinhibitory molecules including PD-1/ programmed death-ligand 1 (PD-L1) play critical roles in immune exhaustion and disease progression in case of bovine leukemia virus (BLV) infection, Johne’s disease and bovine anaplasmosis. This review includes some recent data from us. PMID:27725355

  17. Immune Response to Tissue Restricted Self-Antigens Induces Airway Inflammation and Fibrosis Following Murine Lung Transplantation

    PubMed Central

    Subramanian, V.; Ramachandran, S.; Banan, B.; Bharat, A.; Wang, X.; Benshoff, N.; Kreisel, D.; Gelman, A. E.; Mohanakumar, T.

    2014-01-01

    Immune responses against lung-associated self-antigens (self-Ags) are hypothesized to play a role in the development of chronic lung graft rejection. We determined whether immune responses to lung self-Ags, K-alpha-1-tubulin (Kα1T) and Collagen V (Col-V) in the absence of alloimmunity, could promote airway inflammation and fibrosis. Following syngeneic murine orthotopic lung transplantation (LTx) we administered antibodies (Abs) to either Kα1T or Col-V or in combination to both of these self-Ags. As compared to recipients of isotype control Abs Kα1T Abs and/or Col-V Abs-treated recipients had marked lung graft cellular infiltration and bronchiolar fibrosis, This inflammation was also associated the accumulation of Kα1T and Col-V specific IFN-γ+ and IL-17+ T cells. Notably, the administration of Abs to Kα1T led to cellular and humoral immune responses to Col-V prior to development of fibrosis, and vice versa, indicating that epitope spreading can occur rapidly in an alloantigen independent manner. Collectively, these data support a model of chronic lung transplant rejection where the progressive loss of self-tolerance through epitope spreading promotes airway fibrosis. Strategies that target autoreactive Abs may be useful to inhibit chronic rejection of lung grafts. PMID:25220332

  18. Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    PubMed Central

    Matsuzaki, Hidenori; Maeda, Megumi; Lee, Suni; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Yamamoto, Shoko; Hatayama, Tamayo; Kojima, Yoko; Tabata, Rika; Kishimoto, Takumi; Hiratsuka, Junichi; Otsuki, Takemi

    2012-01-01

    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos. PMID:22500091

  19. Subgrouping Chronic Fatigue Syndrome Patients By Genetic and Immune Profiling

    DTIC Science & Technology

    2015-12-01

    Award Number: W81XWH-12-1-0388 TITLE: Subgrouping Chronic Fatigue Syndrome Patients by Genetic and Immune Profiling PRINCIPAL INVESTIGATOR: Dr...SUBTITLE Subgrouping Chronic Fatigue Syndrome Patients By Genetic And Immune Profiling 5a. CONTRACT NUMBER W81XWH-12-1-0388 5b. GRANT NUMBER 5c...tested by two novel methods (CyTOF-phosphoflow and HLA Typing, respectively) to help us better understand the roles of immune responses and genetics

  20. Immunosuppressive monocytes: possible homeostatic mechanism to restrain chronic intestinal inflammation

    PubMed Central

    Kurmaeva, Elvira; Bhattacharya, Dhruva; Goodman, Wendy; Omenetti, Sara; Merendino, Amber; Berney, Seth; Pizarro, Theresa; Ostanin, Dmitry V.

    2014-01-01

    Chronic colitis is accompanied by extensive myelopoiesis and accumulation of CD11b+Gr-1+ cells in spleens and secondary lymphoid tissues. Although cells with similar phenotype have been described in cancer, chronic infection, or autoimmunity, where they were associated with suppression of T cell responses, little is known regarding how these cells affect CD4 T cell responses in the context of chronic intestinal inflammation. Therefore, we undertook this study to characterize the interplay between colitis-induced myeloid cells and CD4 T cell. Within the CD11b+Gr-1+ population, only monocytes (Ly6GnegLy6Chigh) but not other myeloid cell subsets suppressed proliferation and production of cytokines by CD4 T cells. Suppression was mediated by cell-contact, NO and partially by IFN-γ and PGs. Interestingly, Ly6Chigh MDCs, isolated from colitic colons, showed up-regulation of iNOS and arginase-1 and were more potent suppressors than those isolated from spleen. On a single-cell level, MDCs inhibited Th1 responses but enhanced generation of foxp3+ T cells. MDCs, cocultured with activated/Teffs, isolated from inflamed colons under hypoxic (1% O2) conditions typical for the inflamed intestine, suppressed proliferation but not their production of proinflammatory cytokines and chemokines. Taken together, expansion of monocytes and MDCs and activation of their suppressive properties may represent a homeostatic mechanism aimed at restraining excessive T cell activation during chronic inflammatory settings. The contribution of immunosuppressive monocytes/MDCs to chronic colitis and their role in shaping T cell responses in vivo require further investigation. PMID:24696357

  1. Subgrouping Chronic Fatigue Syndrome Patients by Genetic and Immune Profiling

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0388 TITLE: Subgrouping Chronic Fatigue Syndrome Patients by Genetic and Immune Profiling...2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Subgrouping Chronic Fatigue Syndrome Patients By Genetic And Immune Profiling 5b. GRANT...at the HLA level that makes you more susceptible to have Chronic Fatigue Syndrome (CFS) or any differences between the cases and controls. In order

  2. The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation

    PubMed Central

    Valin, Alvaro; Pablos, José L.

    2015-01-01

    Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response. PMID:26501341

  3. Mouse model of intrauterine inflammation: sex-specific differences in long-term neurologic and immune sequelae.

    PubMed

    Dada, Tahani; Rosenzweig, Jason M; Al Shammary, Mofeedah; Firdaus, Wance; Al Rebh, Shorouq; Borbiev, Talaibek; Tekes, Aylin; Zhang, Jiangyang; Alqahtani, Eman; Mori, Susumu; Pletnikov, Mikhail V; Johnston, Michael V; Burd, Irina

    2014-05-01

    Preterm infants, especially those that are exposed to prenatal intrauterine infection or inflammation, are at a major risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. We have previously shown in a mouse model that there is an acute fetal brain insult associated with intrauterine inflammation. The objectives of this study were: (1) to elucidate long-term (into adolescence and adulthood) neurological outcomes by assessing neurobehavioral development, MRI, immunohistochemistry and flow cytometry of cells of immune origin and (2) to determine whether there are any sex-specific differences in brain development associated with intrauterine inflammation. Our results have shown that prenatal exposure appeared to lead to changes in MRI and behavior patterns throughout the neonatal period and during adulthood. Furthermore, we observed chronic brain inflammation in the offspring, with persistence of microglial activation and increased numbers of macrophages in the brain, ultimately resulting in neuronal loss. Moreover, our study highlights the sex-specific differences in long-term sequelae. This study, while extending the growing literature of adverse neurologic outcomes following exposure to inflammation during early development, presents novel findings in the context of intrauterine inflammation.

  4. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    PubMed Central

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  5. Biomarkers of inflammation in persons with chronic tetraplegia.

    PubMed

    Radulovic, Miroslav; Bauman, William A; Wecht, Jill M; LaFountaine, Michael; Kahn, Nighat; Hobson, Joshua; Singh, Kamaldeep; Renzi, Christopher; Yen, Christina; Schilero, Gregory J

    2015-05-14

    In addition to lung volume restriction, individuals with chronic tetraplegia exhibit reduced airway caliber and bronchodilator responsiveness similar to persons with asthma. In asthma, airflow obstruction is closely linked to airway inflammation. Conversely, little is known regarding the airway inflammatory response in tetraplegia. To compare levels of biomarkers of inflammation in exhaled breath condensate (EBC) and serum in subjects with chronic tetraplegia, mild asthma, and able-bodied controls.Prospective, observational pilot study. Thirty-four subjects participated: tetraplegia (n = 12), asthma (n = 12), controls (n = 10). Biomarkers in EBC [8-isoprostane (8-IP), leukotriene B4 (LT-B4), prostaglandin E2 (PG-E2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6)] and serum (8-IP, LT-B4, TNF-α, IL-6) were determined using commercially available EIA kits (Cayman Chemical Company, Ann Arbor, MI). Separate, one-way ANOVA with Bonferroni's post-hoc analyses were performed to determine group differences in demographic and dependent variables [EBC and serum biomarkers, fractional exhaled nitric oxide (FeNO), pulmonary function parameters, and specific airway conductance (sGaw)]. The tetraplegia group had significantly elevated 8-IP levels in EBC compared to the asthma (68 ± 38 versus 21 ± 13 pg ml(-1); p < 0.001) and control groups (22 ± 13 pg ml(-1); p < 0.01), respectively. FeNO levels were significantly elevated in the asthma compared to the control group (26 ± 18 versus 11 ± 4 ppb; p < 0.05), and trended higher than levels in the tetraplegia group (15 ± 6; p = 0.08). Levels of serum biomarkers did not differ significantly among groups. Through analysis of EBC, levels of 8-IP were significantly elevated compared to levels found in individuals with mild asthma and healthy controls. Further studies are needed to extend upon these preliminary findings that suggest the presence of airway inflammation in subjects with chronic tetraplegia, and how this

  6. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation

    PubMed Central

    Juvet, Stephen; Scott, Jeremy A.; Chow, Chung-Wai

    2017-01-01

    Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma. PMID:28107345

  7. Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Sukumaran, Siddharth; Nie, Jing; Jusko, William J.; DuBois, Debra C.; Almon, Richard R.

    2011-01-01

    Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose

  8. Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats.

    PubMed

    Chen, J; Winston, J H; Sarna, S K

    2013-09-17

    The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. We used dextran sodium sulfate (DSS) to induce ulcerative colitis-like inflammation and a 9-day heterotypic chronic stress protocol in rats. DSS upregulated Nav1.8 mRNA in colon-responsive dorsal root ganglion (DRG) neurons, TRPV1 in colonic muscularis externae (ME) and BDNF in spinal cord without affecting the spike frequency in spinal afferents or VMR to CRD. By contrast, chronic stress did not induce inflammation but it downregulated Kv1.1 and Kv1.4 mRNA in DRG neurons, and upregulated TRPA1 and nerve growth factor in ME, which mediated the increase of spike frequency and VMR to CRD. Chronic stress following inflammation exacerbated spike frequency in spinal afferent neurons. TRPA1 antagonist suppressed the sensitization of afferent neurons. DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation.

  9. DNA Damage: From Chronic Inflammation to Age-Related Deterioration

    PubMed Central

    Ioannidou, Anna; Goulielmaki, Evi; Garinis, George A.

    2016-01-01

    To lessen the “wear and tear” of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression. PMID:27826317

  10. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation.

    PubMed

    McPhee, Joseph B; Schertzer, Jonathan D

    2015-12-01

    The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.

  11. SY 17-2 INFLAMMATION, IMMUNITY AND HYPERTENSION.

    PubMed

    Harrison, David

    2016-09-01

    Hypertension remains an enormous health care burden that affects one third of the population. Despite its prevalence the cause of most cases of hypertension remains unknown. Our laboratory has defined a novel mechanism for hypertension involving adaptive immunity. We found that mice lacking lymphocytes (RAG-1 mice) develop blunted hypertensive responses to a variety of stimuli including chronic angiotensin II infusion, DOCA-salt challenge and norepinephrine infusion. Adoptive transfer of T cells, but not B cells, restores the hypertensive responses to these stimuli. Hypertension is associated with the infiltration of T cells into the kidney and vasculature, where they release cytokines, including IFN-g, IL-17A, and TNFa, which promote sodium retention, vasoconstriction and oxidative injury. Recently, we have found that angiotensin II has striking effects on dendritic cells (DCs), promoting their propensity to activate T cells. Our data indicate that angiotensin II infusion increases DC superoxide production by 5-fold and causes a striking accumulation isoketals, oxidized products of arachidonic acid in these cells. These form covalent bonds to lysines of proteins and these modified proteins become immunogenic. Several isoketal scavengers, including 2-hydroxybenzylamine (2-HOBA) prevent DC activation, the ability of DCs to stimulate T cell proliferation and prevent hypertension. This is most prevalent in monocyte-derived DCs that are CD11c/CD11b/MHCII positive. The precise mechanism for formation of these cells is under investigation. A major impetus for immune cell activation seems to be increased sympathetic outflow, stimulated by the central actions of angiotensin II. By lesioning the AV3 V region of the forebrain of mice or inactivating the NADPH oxidase in the subfornical organ using Cre Lox technology, we have prevented the central actions of angiotensin II and found that this inhibits both T cell activation and hypertension. Renal denervation likewise

  12. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Green tea proposes anti-inflammatory properties which may attenuate chronic inflammation-induced fibrosis of vessels. This study evaluated whether green tea polyphenols (GTP) can avert fibrosis or vascular disruption along with mechanisms in rats with chronic inflammation. Treatments: Fo...

  13. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation

    PubMed Central

    Barone, Francesca; Gardner, David H.; Nayar, Saba; Steinthal, Nathalie; Buckley, Christopher D.; Luther, Sanjiv A.

    2016-01-01

    Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies. PMID:27877173

  14. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation.

    PubMed

    Barone, Francesca; Gardner, David H; Nayar, Saba; Steinthal, Nathalie; Buckley, Christopher D; Luther, Sanjiv A

    2016-01-01

    Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.

  15. Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration

    PubMed Central

    Levy, Olivier; Calippe, Bertrand; Lavalette, Sophie; Hu, Shulong J; Raoul, William; Dominguez, Elisa; Housset, Michael; Paques, Michel; Sahel, José-Alain; Bemelmans, Alexis-Pierre; Combadiere, Christophe; Guillonneau, Xavier; Sennlaub, Florian

    2015-01-01

    Physiologically, the retinal pigment epithelium (RPE) expresses immunosuppressive signals such as FAS ligand (FASL), which prevents the accumulation of leukocytes in the subretinal space. Age-related macular degeneration (AMD) is associated with a breakdown of the subretinal immunosuppressive environment and chronic accumulation of mononuclear phagocytes (MPs). We show that subretinal MPs in AMD patients accumulate on the RPE and express high levels of APOE. MPs of Cx3cr1−/− mice that develop MP accumulation on the RPE, photoreceptor degeneration, and increased choroidal neovascularization similarly express high levels of APOE. ApoE deletion in Cx3cr1−/− mice prevents pathogenic age- and stress-induced subretinal MP accumulation. We demonstrate that increased APOE levels induce IL-6 in MPs via the activation of the TLR2-CD14-dependent innate immunity receptor cluster. IL-6 in turn represses RPE FasL expression and prolongs subretinal MP survival. This mechanism may account, in part, for the MP accumulation observed in Cx3cr1−/− mice. Our results underline the inflammatory role of APOE in sterile inflammation in the immunosuppressive subretinal space. They provide rationale for the implication of IL-6 in AMD and open avenues toward therapies inhibiting pathogenic chronic inflammation in late AMD. PMID:25604058

  16. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection.

    PubMed

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2011-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  17. The Impact of Inflammation and Immune Activation on B Cell Differentiation during HIV-1 Infection

    PubMed Central

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2012-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells. PMID:22566879

  18. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    PubMed

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  19. Chronic inflammation of the peritoneum and vagina: review of its significance, immunologic pathogenesis, investigation and rationale for treatment.

    PubMed

    Thomson, John C

    2005-07-01

    Chronic inflammation is not an infrequent histologic finding in symptomatic gynecologic patients. It is present in 14.6% of peritoneal biopsies in women with chronic pelvic pain in whom no other cause of pain is evident. It is found in almost all vaginal biopsies in noninfected women with dyspareunia and discharge of vaginal mucosal origin. It represents a local immunologically activated inflammatory disorder. When investigations are car ried out as to whether it is a local representation of a systemic disorder, numerous systemic inflammatory and autoimmune disorders are discovered. A study of chronic pain reveals that the immune system is intimately involved in the production, conduction and exacerbation of pain and of its clinicalfeatures, such as hyperalgesia and allodynia. Immune modification using local steroids and disease-modifying antirheumatic drugs, such as hydroxychloroquine, are known to inhibit inflammatory cells and cytokines, such as interleukin-1, interleukin-6 and tumor necrosis factor, which are responsible for pain and tissue damage. These drugs are found to be effective in the treatment of chronic pelvic pain when of an inflammatory nature and for symptomatic chronic inflammation of the vagina.

  20. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome.

    PubMed

    Morris, Gerwyn; Maes, Michael

    2013-12-01

    This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors. Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve. Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis. This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this

  1. Sympathetic neural-immune interactions regulate hematopoiesis, thermoregulation and inflammation in mammals.

    PubMed

    Madden, Kelley S

    2017-01-01

    This review will highlight recently discovered mechanisms underlying sympathetic nervous system (SNS) regulation of the immune system in hematopoiesis, thermogenesis, and inflammation. This work in mammals illuminates potential mechanisms by which the nervous and immune systems may interact in invertebrate and early vertebrate species and allow diverse organisms to thrive under varying and extreme conditions and ultimately improve survival.

  2. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies.

    PubMed

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-03

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  3. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    PubMed Central

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-01-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms. PMID:27808112

  4. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  5. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS).

    PubMed

    Pittock, Sean J; Debruyne, Jan; Krecke, Karl N; Giannini, Caterina; van den Ameele, Jelle; De Herdt, Veerle; McKeon, Andrew; Fealey, Robert D; Weinshenker, Brian G; Aksamit, Allen J; Krueger, Bruce R; Shuster, Elizabeth A; Keegan, B Mark

    2010-09-01

    The classification and pathological mechanisms of many central nervous system inflammatory diseases remain uncertain. In this article we report eight patients with a clinically and radiologically distinct pontine-predominant encephalomyelitis we have named 'chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids' (CLIPPERS). The patients were assessed clinically, radiologically and pathologically at Mayo Clinic, USA and Ghent University Hospital, Belgium from 1999 to 2009. Median follow-up duration from clinical onset was 22 months (range 7-144 months). Patients underwent extensive laboratory (serum and cerebrospinal fluid), radiological and pathological testing (conjunctival, transbronchial and brain biopsies) to search for causes of an inflammatory central nervous system disorder. All eight patients (five female, three male) presented with episodic diplopia or facial paresthesias with subsequent brainstem and occasionally myelopathic symptoms and had a favourable initial response to high dose glucocorticosteroids. All patients had symmetric curvilinear gadolinium enhancement peppering the pons and extending variably into the medulla, brachium pontis, cerebellum, midbrain and occasionally spinal cord. Radiological improvement accompanied clinical response to glucocorticosteroids. Patients routinely worsened following glucocorticosteroid taper and required chronic glucocorticosteroid or other immunosuppressive therapy. Neuropathology of biopsy material from four patients demonstrated white matter perivascular, predominantly T lymphocytic, infiltrate without granulomas, infection, lymphoma or vasculitis. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids is a definable, chronic inflammatory central nervous system disorder amenable to immunosuppressive treatment. The T cell predominant inflammatory pathology in affected central nervous system lesions and the clinical and radiological

  6. Chronic inflammation-associated genomic instability paves the way for human esophageal carcinogenesis

    PubMed Central

    Tian, Dongping; Lei, Zhijin; Chen, Donglin; Xu, Zexin; Su, Min

    2016-01-01

    Chronic inflammation is associated with increased risk of cancer development, whereas the link between chronic inflammation and esophageal carcinogenesis is still obscure heretofore. This study aimed to investigate the relationship between chronic inflammation and DNA damage, as well as the possible role of DNA damage in esophageal carcinogenic process. Endoscopic esophageal biopsies from 109 individuals from Chaoshan littoral, a high-risk region for esophageal squamous cell carcinoma (ESCC), were examined to evaluate the association between chronic inflammation and histological severity, while additional 204 esophageal non-tumor samples from patients with ESCC were collected. Immunohistochemistry was performed to detect the oxidative DNA damage and DNA double-strand breaks (DSBs). Significantly positive correlation was observed between degree of chronic inflammation and esophageal precursor lesions (rs = 0.37, P < 0.01). Immunohistochemical analysis showed that oxidative DNA damage level was positively correlated with the degree of chronic inflammation (rs = 0.21, P < 0.05). Moreover, the level of oxidative DNA damage positively correlated with histological severity (rs = 0.49, P < 0.01). We found that the extent of DSBs was progressively increased with inflammation degree (P < 0.01) and the progression of precancerous lesions (P < 0.001). Collectively, these findings provide evidence linking chronic inflammation-associated genomic instability with esophageal carcinogenesis and suggest possibilities for early detection and intervention of esophageal carcinogenesis. PMID:27028857

  7. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-07-14

    Autophagy, a cellular waste disposal process, has well-established tumor-suppressive properties. New studies indicate that, in addition to its cell-autonomous anti-tumorigenic functions, autophagy inhibits cancer development by orchestrating inflammation and immunity. While attenuating tumor-promoting inflammation, autophagy enhances the processing and presentation of tumor antigens and thereby stimulates anti-tumor immunity. Although cancer cells can escape immunosurveillance by tuning down autophagy, certain chemotherapeutic agents with immunogenic properties may enhance anti-tumor immunity by inducing autophagic cell death. Understanding the intricate and complex relationships within this troika and how they are affected by autophagy enhancing drugs should improve the efficacy of cancer immunotherapy.

  8. [State of local immunity in patients with chronic generalized parodontitis].

    PubMed

    Schmidt, D V; Schmagel; Mozgovaia, L A; Beliaeva, O V

    2008-01-01

    The aim of this work was the determination of the state of local immunity in periodontal complex in patients with chronic generalized periodontitis (CGP). 96 individuals were examined (mean age 43.6+/-1.2 years). All the patients were divided into 2 groups: basic group with CGP patients (76 persons) and comparative group - individuals with intact periodontium (20 persons). To evaluate local immunity in dentogingival fluids the determination of concentrations of IgG, IgM, and IgA immunoglobulins has been used, as well as TNF-alpha, IL-1, IL-6, IL-8, INF-gamma, IL-1ra, IL-10, and IL-4 cytokines, and also factors controlling the state of bone tissue, namely, osteoprotegerine (OPG), and RANK-ligand. In gingival fluid of CGP patients the increase in both pro-, and anti-inflammatory mediators with indication to Th2-deviation (decrease of INF-gamma level and elevation of IL-4 level) was observed. CGP patients exhibited in their periodontal complex marked increase of IgG, IgM, and IgA concentrations that apparently evidenced to the consequence of local polyclonal activation of B-lymphocytes. Gingival fluid of CGP patients showed the elevation of RANKL, TNF-alpha, and IL-1 levels, and the decrease in OPG concentration that could be the reason for osteoclast activation and subsequent destruction of bone tissue. In case of CGP in the zone of periodontium developed inflammation that is characterized by elevated level of IL-8 and predominance of neutrophil number over the quantity of other types of leukocytes.

  9. Blood Biomarkers of Chronic Inflammation in Gulf War Illness

    PubMed Central

    Johnson, Gerhard J.; Slater, Billie C. S.; Leis, Linda A.; Rector, Thomas S.; Bach, Ronald R.

    2016-01-01

    Background More than twenty years following the end of the 1990–1991 Gulf War it is estimated that approximately 300,000 veterans of this conflict suffer from an unexplained chronic, multi-system disorder known as Gulf War Illness (GWI). The etiology of GWI may be exposure to chemical toxins, but it remains only partially defined, and its case definition is based only on symptoms. Objective criteria for the diagnosis of GWI are urgently needed for diagnosis and therapeutic research. Objective This study was designed to determine if blood biomarkers could provide objective criteria to assist diagnosis of GWI. Design A surveillance study of 85 Gulf War Veteran volunteers identified from the Department of Veterans Affairs Minnesota Gulf War registry was performed. All subjects were deployed to the Gulf War. Fifty seven subjects had GWI defined by CDC criteria, and 28 did not have symptomatic criteria for a diagnosis of GWI. Statistical analyses were performed on peripheral blood counts and assays of 61 plasma proteins using the Mann-Whitney rank sum test to compare biomarker distributions and stepwise logistic regression to formulate a diagnostic model. Results Lymphocyte, monocyte, neutrophil, and platelet counts were higher in GWI subjects. Six serum proteins associated with inflammation were significantly different in GWI subjects. A diagnostic model of three biomarkers—lymphocytes, monocytes, and C reactive protein—had a predicted probability of 90% (CI 76–90%) for diagnosing GWI when the probability of having GWI was above 70%. Significance The results of the current study indicate that inflammation is a component of the pathobiology of GWI. Analysis of the data resulted in a model utilizing three readily measurable biomarkers that appears to significantly augment the symptom-based case definition of GWI. These new observations are highly relevant to the diagnosis of GWI, and to therapeutic trials. PMID:27352030

  10. Stunting Is Characterized by Chronic Inflammation in Zimbabwean Infants

    PubMed Central

    Prendergast, Andrew J.; Rukobo, Sandra; Chasekwa, Bernard; Mutasa, Kuda; Ntozini, Robert; Mbuya, Mduduzi N. N.; Jones, Andrew; Moulton, Lawrence H.; Stoltzfus, Rebecca J.; Humphrey, Jean H.

    2014-01-01

    associated with stunting. These findings suggest that an extensive enteropathy occurs during infancy and that low-grade chronic inflammation may impair infant growth. PMID:24558364

  11. Depression and immunity: inflammation and depressive symptoms in multiple sclerosis.

    PubMed

    Gold, Stefan M; Irwin, Michael R

    2009-05-01

    An increasing body of evidence suggests that patients who have major depressive disorder show alterations in immunologic markers including increases in proinflammatory cytokine activity and inflammation. Inflammation of the central nervous system is a pathologic hallmark of multiple sclerosis (MS). Patients affected by this disease also show a high incidence of depression. Accumulating evidence from animal studies suggests that some aspects of depression and fatigue in MS may be linked to inflammatory markers. This article reviews the current knowledge in the field and illustrates how the sickness behavior model may be applied to investigate depressive symptoms in inflammatory neurologic diseases.

  12. Noncoding RNAs and chronic inflammation: Micro-managing the fire within.

    PubMed

    Alexander, Margaret; O'Connell, Ryan M

    2015-09-01

    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age-associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets.

  13. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system.

  14. Role of the Microbiota in Immunity and inflammation

    PubMed Central

    Belkaid, Yasmine; Hand, Timothy

    2014-01-01

    The microbiota plays a fundamental role on the induction, training and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally this immune system–microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries overuse of antibiotics, changes in diet, and elimination of constitutive partners such as nematodes has selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. PMID:24679531

  15. Immune inflammation indicators and implication for immune modulation strategies in advanced hepatocellular carcinoma patients receiving sorafenib

    PubMed Central

    Gardini, Andrea Casadei; Scarpi, Emanuela; Faloppi, Luca; Scartozzi, Mario; Silvestris, Nicola; Santini, Daniele; de Stefano, Giorgio; Marisi, Giorgia; Negri, Francesca V.; Foschi, Francesco Giuseppe; Valgiusti, Martina; Ercolani, Giorgio; Frassineti, Giovanni Luca

    2016-01-01

    We evalueted a systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) with the aim to explored their prognostic value in patients with advanced hepatocellular carcinoma (HCC) treated with sorafenib. 56 advanced HCC patients receiving sorafenib were available for our analysis. Lymphocyte, neutrophil and platelet were measured before beginning of treatment and after one month. Patient with SII ≥ 360 showed lower median PFS (2.6 vs. 3.9 months, P < 0.026) and OS (5.6 vs. 13.9 months, P = 0.027) with respect to patients with SII < 360. NLR ≥ 3 had a lower median PFS (2.6 vs. 3.3 months, P < 0.049) but not OS (5.6 vs. 13.9 months, P = 0.062) than those with NLR < 3. After adjusting for clinical covariates SII and NLR remained an independent prognostic factor for OS. The SII and NLR represent potential prognostic indicator in patients with advanced HCC treated with sorafenib. PMID:27613839

  16. Odor Signals of Immune Activation and CNS Inflammation

    DTIC Science & Technology

    2014-12-01

    injury. Using an animal model, we first trained biosensor mice to distinguish between urine odors from lipopolysaccharide-treated and control mice...Lipopolysaccharide (LPS) is a general elicitor of inflammation. Trained biosensors could distinguish between the odors of LPS-treated and control...injury (LFPI) or surgery without brain injury were employed as urine donors. Biosensors trained to discriminate LPS-treated mouse odors from

  17. Reduced Lung Function in a Chronic Asthma Model Is Associated with Prolonged Inflammation, but Independent of Peribronchial Fibrosis

    PubMed Central

    Koerner-Rettberg, Cordula; Doths, Sandra; Stroet, Anke; Schwarze, Jürgen

    2008-01-01

    Background In asthma, mechanisms contributing to chronicity remain to be determined. Recent models of sensitisation with prolonged airway allergen challenges reproduce typical features of chronic asthma. However, the interplay between inflammation, structural changes and lung function is poorly understood. This study was performed to delineate functional, structural and immunological airway changes after cessation of long term challenges to elucidate factors contributing to the development of prolonged lung function changes. Methodology/Principal Findings Mice sensitised systemically were consecutively challenged intranasally with ovalbumin for two or eight weeks. After the end of challenges, lung function, airway inflammation, features of airway remodelling, local T-cell cytokines and systemic ovalbumin-specific antibodies were monitored. Long term challenges resulted in airway hyperresponsiveness lasting 2 weeks and reduced baseline lung function for 6 weeks after their cessation. In contrast, these changes resolved within one week after short term challenges. Prolonged transforming growth factor beta (TGF-β)1 production and marked peribronchial fibrosis were only induced by long term challenges. Importantly, fibrosis became apparent only after the onset of lung function changes and outlasted them. Further, long term challenges led to prolonged and intense airway inflammation with marked lymphocytosis, but moderate eosinophilia, sustained IL-5 production and ovalbumin-specific IgG2a antibodies, the latter suggesting a Th1 component to the immune response. In contrast, following short term challenges airway inflammation was dominated by eosinophils and associated with a strong, but transient IL-13 response. Conclusions Prolonged lung function changes after long term allergen challenges seem to develop and resolve independently of the persistent peribronchial fibrosis. They are more closely associated with intense airway inflammation, marked lymphocytosis

  18. Inflammatory Bowel Diseases: When Natural Friends Turn into Enemies—The Importance of CpG Motifs of Bacterial DNA in Intestinal Homeostasis and Chronic Intestinal Inflammation

    PubMed Central

    Obermeier, Florian; Hofmann, Claudia; Falk, Werner

    2010-01-01

    From numerous studies during the last years it became evident that bacteria and bacterial constituents play a decisive role both in the maintenance of intestinal immune homeostasis as well as in the development and perpetuation of chronic intestinal inflammation. In this review we focus on the role of bacterial DNA which is a potent immunomodulatory component of the bacterial flora. Bacterial DNA has been shown to be protective against experimental colitis. In contrast bacterial DNA essentially contributes to the perpetuation of an already established chronic intestinal inflammation in a Toll-like receptor (TLR)9-dependent manner. This dichotomic action may be explained by a different activation status of essential regulators of TLR signaling like Glycogen synthase kinase 3-β (GSK3-β) depending on the pre-activation status of the intestinal immune system. In this review we suggest that regulators of TLR signaling may be interesting therapeutic targets in IBD aiming at the restoration of intestinal immune homeostasis. PMID:21188217

  19. The Oral Cavity and Age: A Site of Chronic Inflammation?

    PubMed Central

    Bäck, Magnus; Hlawaty, Hanna; Labat, Carlos; Michel, Jean-Baptiste; Brink, Charles

    2007-01-01

    Background Aging may be accompanied by a low grade chronic up-regulation of inflammatory mediators. A variety of endogenous locally released mediators as well as inflammatory cells have been reported in the human oral cavity. The aim of this investigation was to determine the presence of different classes of inflammatory mediators in human saliva and correlate the levels with age. Methodology and Principal Findings Unstimulated whole buccal salivary samples were obtained in the morning from 94 healthy volunteers within 30 minutes after waking. None of the participants had taken aspirin in the week prior to the saliva collection. Lysozyme activity, eicosanoid levels (prostaglandin E2 and leukotriene B4) and MMP-9 activity were measured. The antimicrobial activity (lysozyme activity) was not correlated with age whereas PGE2 levels were markedly correlated with age (r = 0.29; P<0.05; n = 56). Saliva from healthy subjects (≤40 years) compared with data derived from older volunteers (>40 years) demonstrated a significant increase in the mean values for PGE2 and MMP-9 activity with age. In addition, significant correlations were observed between LTB4 and PGE2 (r = 0.28; P<0.05; n = 56) and between LTB4 levels and MMP-9 activity in smokers (r = 0.78; P<0.001; n = 15). Conclusions/Significance The presence of significant levels and activity of inflammatory mediators in saliva suggests that the oral cavity of healthy subjects may be in a constant low state of inflammation associated with age. PMID:18159234

  20. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation?

    PubMed Central

    Fox, Lisa; Hegde, Subramanya

    2010-01-01

    Natural killer T cells are an innate population of T lymphocytes that recognize antigens derived from host lipids and glycolipids. In this review, we focus on how these unique T cells are positioned to influence both acute and chronic inflammatory processes through their early recruitment to sites of inflammation, interactions with myeloid antigen presenting cells, and recognition of lipids associated with inflammation. PMID:20850561

  1. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression

    PubMed Central

    DeNardo, David G; Coussens, Lisa M

    2007-01-01

    Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed that immune cells functionally regulate epithelial cancer development and progression. Moreover, accumulated clinical and experimental data indicate that the outcome of an immune response toward an evolving breast neoplasm is largely determined by the type of immune response elicited. Acute tumor-directed immune responses involving cytolytic T lymphocytes appear to protect against tumor development, whereas immune responses involving chronic activation of humoral immunity, infiltration by Th2 cells, and protumor-polarized innate inflammatory cells result in the promotion of tumor development and disease progression. Herein we review this body of literature and summarize important new findings revealing the paradoxical role of innate and adaptive leukocytes as regulators of breast carcinogenesis. PMID:17705880

  2. Ab interno laser sclerostomy in aphakic patients with glaucoma and chronic inflammation.

    PubMed

    Wilson, R P; Javitt, J C

    1990-08-15

    Five patients with aphakia, glaucoma, and chronic inflammation were treated with ab interno sclerostomy by using the continuous wave Nd:YAG laser focused through a sapphire probe. After a follow-up period of 24 to 28 months, three of five patients had good intraocular pressure control. The sclerostomy failed in one patient when it was occluded by vitreous. The second failure was attributed to closure of the sclerostomy because of chronic intraocular inflammation.

  3. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi.

    PubMed

    Tupin, Emmanuel; Benhnia, Mohammed Rafii-El-Idrissi; Kinjo, Yuki; Patsey, Rebeca; Lena, Christopher J; Haller, Matthew C; Caimano, Melissa J; Imamura, Masakazu; Wong, Chi-Huey; Crotty, Shane; Radolf, Justin D; Sellati, Timothy J; Kronenberg, Mitchell

    2008-12-16

    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR alpha chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Valpha14i NKT cell-deficient (Jalpha18(-/-)) BALB/c mice. On tick inoculation with B. burgdorferi, Jalpha18(-/-) mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Valpha14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Valpha14i NKT cells. Valpha14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNgamma in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Valpha14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution.

  4. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia

    PubMed Central

    Kiernan, Elizabeth A.; Smith, Stephanie M. C.; Mitchell, Gordon S.

    2016-01-01

    Abstract Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH‐induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia–reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro‐inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH‐induced release of damage‐associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll‐like receptors activate mitogen‐activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH‐induced neuropathology in patients with sleep disordered breathing. PMID:26890698

  5. Contribution of Defective PS Recognition and Efferocytosis to Chronic Inflammation and Autoimmunity

    PubMed Central

    Kimani, Stanley Gititu; Geng, Ke; Kasikara, Canan; Kumar, Sushil; Sriram, Ganapathy; Wu, Yi; Birge, Raymond B.

    2014-01-01

    The rapid and efficient clearance of apoptotic cells results in the elimination of auto-antigens and provides a strong anti-inflammatory and immunosuppressive signal to prevent autoimmunity. While professional and non-professional phagocytes utilize a wide array of surface receptors to recognize apoptotic cells, the recognition of phosphatidylserine (PS) on apoptotic cells by PS receptors on phagocytes is the emblematic signal for efferocytosis in metazoans. PS-dependent efferocytosis is associated with the production of anti-inflammatory factors such as IL-10 and TGF-β that function, in part, to maintain tolerance to auto-antigens. In contrast, when apoptotic cells fail to be recognized and processed for degradation, auto-antigens persist, such as self-nucleic acids, which can trigger immune activation leading to autoantibody production and autoimmunity. Despite the fact that genetic mouse models clearly demonstrate that loss of PS receptors can lead to age-dependent auto-immune diseases reminiscent of systemic lupus erythematosus (SLE), the link between PS and defective clearance in chronic inflammation and human autoimmunity is not well delineated. In this perspective, we review emerging questions developing in the field that may be of relevance to SLE and human autoimmunity. PMID:25426118

  6. Immune Activation and Cardiovascular Disease in Chronic HIV Infection

    PubMed Central

    Longenecker, Chris T.; Sullivan, Claire; Baker, Jason V.

    2016-01-01

    Purpose of review To describe the potential contribution of immune activation in the pathogenesis of HIV-associated cardiovascular disease (CVD)—a leading cause of morbidity and mortality among HIV positive persons with access to antiretroviral therapy (ART). Recent findings We review recent literature that suggests abnormalities in both adaptive and innate immunity contributes to CVD risk among persons with HIV infection. In particular, potentially atherogenic T-cell mechanisms include persistent high-level T-cell activation (and associated pro-inflammatory mechanisms), as well as the presence of co-pathogens (e.g., CMV) providing an ongoing stimulus for cytotoxic T-cell responses. More recent data has then emphasized the potential impact of monocyte/macrophage-mediated inflammation and injury within atherosclerotic lesions. The pathology driving innate immune activation many not fully reverse with ART treatment, highlighting the need for interventions that target inflammation as a CVD prevention strategy. Summary Premature CVD among persons with HIV infection is due, in part, to persistent abnormalities in immune activation and systemic inflammation despite viral suppression. Prevention strategies for persons with HIV infection include those that target traditional CVD risk factors as well as newer candidate treatments with potential immunomodulatory benefits. PMID:26599166

  7. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression

    PubMed Central

    Koelwyn, Graeme J.; Wennerberg, Erik; Demaria, Sandra; Jones, Lee W.

    2016-01-01

    Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer. PMID:26676894

  8. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets

    PubMed Central

    Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792

  9. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets.

    PubMed

    Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.

  10. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define “slow” or “rapid” disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  11. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo; Cosio, Manuel G; Saetta, Marina

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression.

  12. Compartmentalized intrathecal immunoglobulin synthesis during HIV infection - a model of chronic CNS inflammation?

    PubMed

    Bonnan, Mickael; Barroso, Bruno; Demasles, Stéphanie; Krim, Elsa; Marasescu, Raluca; Miquel, Marie

    2015-08-15

    HIV infects the central nervous system (CNS) during primary infection and persists in resident macrophages. CNS infection initiates a strong local immune response that fails to control the virus but is responsible for by-stander lesions involved in neurocognitive disorders. Although highly active anti-retroviral therapy now offers an almost complete control of CNS viral proliferation, low-grade CNS inflammation persists. This review focuses on HIV-induced intrathecal immunoglobulin (Ig) synthesis. Intrathecal Ig synthesis early occurs in more than three-quarters of patients in response to viral infection of the CNS and persists throughout the course of the disease. Viral antigens are targeted but this specific response accounts for <5% of the whole intrathecal synthesis. Although the nature and mechanisms leading to non-specific synthesis are unknown, this prominent proportion is comparable to that observed in various CNS viral infections. Cerebrospinal fluid-floating antibody-secreting cells account for a minority of the whole synthesis, which mainly takes place in perivascular inflammatory infiltrates of the CNS parenchyma. B-cell traffic and lineage across the blood-brain-barrier have not yet been described. We review common technical pitfalls and update the pending questions in the field. Moreover, since HIV infection is associated with an intrathecal chronic oligoclonal (and mostly non-specific) Ig synthesis and associates with low-grade axonal lesions, this could be an interesting model of the chronic intrathecal synthesis occurring during multiple sclerosis.

  13. Innate and Adaptive Immunity Synergize to Trigger Inflammation in the Mammary Gland

    PubMed Central

    Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B.

    2016-01-01

    The mammary gland is able to detect and react to bacterial intrusion through innate immunity mechanisms, but mammary inflammation can also result from antigen-specific adaptive immunity. We postulated that innate and adaptive immune responses could synergize to trigger inflammation in the mammary gland. To test this hypothesis, we immunized cows with the model antigen ovalbumin and challenged the sensitized animals with either Escherichia coli lipopolysaccharide (LPS) as innate immunity agonist, ovalbumin as adaptive immunity agonist, or both agonists in three different udder quarters of lactating cows. There was a significant amplification of the initial milk leukocytosis in the quarters challenged with the two agonists compared to leukocytosis in quarters challenged with LPS or ovalbumin alone. This synergistic response occurred only with the cows that developed the ovalbumin-specific inflammatory response, and there were significant correlations between milk leukocytosis and production of IL-17A and IFN-γ in a whole-blood ovalbumin stimulation assay. The antigen-specific response induced substantial concentrations of IL-17A and IFN-γ in milk contrary to the response to LPS. Such a synergy at the onset of the reaction of the mammary gland suggests that induction of antigen-specific immune response with bacterial antigens could improve the initial immune response to infection, hence reducing the bacterial load and contributing to protection. PMID:27100324

  14. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  15. IFN-γ differentially regulates subsets of Gr-1(+)CD11b(+) myeloid cells in chronic inflammation.

    PubMed

    Zhan, Xiaoxia; Fang, Yimin; Hu, Shengfeng; Wu, Yongjian; Yang, Kun; Liao, Chunxin; Zhang, Yuanqing; Huang, Xi; Wu, Minhao

    2015-08-01

    During chronic inflammation, prolonged over-reactive immune response may lead to tissue destruction, while immune suppression hinders tissue repair and pathogen elimination. Therefore, precise regulation of the immune response is needed to avoid immuno-pathology. Interferon-gamma (IFN-γ) is widely used in clinical treatment of inflammatory diseases. However, the underlying mechanism remains unclear. Here, we evaluated the role of IFN-γ on CD11b(+)Gr-1(+) myeloid cell differentiation and function, using a heat-killed Mycobacterium bovis BCG-induced chronic inflammation model. After challenge with heat-killed BCG, two subpopulations of CD11b(+)Gr-1(+) myeloid cells were generated in the mouse spleen. Phenotypical, morphological and functional analysis indicated that the CD11b(+)Gr-1(high) Ly6G(high) Ly6C(low) subset was neutrophil-like myeloid-derived inducer cells (N-MDICs), which promoted T cell activation, while the other subset was CD11b(+)Gr-1(low) Ly6G(neg) Ly6C(high) monocyte-like myeloid-derived suppressor cells (M-MDSCs) that displayed extensive suppressor function. IFN-γ treatment dampened N-MDICs-mediated T cell activation through up-regulating T cell suppressive mediators, reactive oxygen species (ROS) and arginase I. While for M-MDSCs, IFN-γ reduced their suppressing activity by decreasing the arginase activity. Our study provides evidence that IFN-γ balances the over-reactive vs compromised immune response through different regulation of distinct myeloid subsets, and therefore displays significant therapeutic potential for effective immuno-therapy of chronic inflammatory diseases.

  16. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis

    PubMed Central

    Yang, XueZhi; Chang, Yan; Wei, Wei

    2016-01-01

    Inflammation, as a feature of rheumatoid arthritis (RA), leads to the activation of endothelial cells (ECs). Activated ECs induce atherosclerosis through an increased expression of leukocyte adhesion molecules. Endothelial dysfunction (ED) is recognized as a failure of endothelial repair mechanisms. It is also an early preclinical marker of atherosclerosis and is commonly found in RA patients. RA is now established as an independent cardiovascular risk factor, while mechanistic determinants of ED in RA are still poorly understood. An expanding body of study has shown that EC at a site of RA is both active participant and regulator of inflammatory process. Over the last decade, a role for endothelial dysfunction in RA associated with cardiovascular disease (CVD) has been hypothesized. At the same time, several maintenance drugs targeting this phenomenon have been tested, which has promising results. Assessment of endothelial function may be a useful tool to identify and monitor RA patients. PMID:27122657

  17. The role of stromal cells in the persistence of chronic inflammation

    PubMed Central

    Naylor, A J; Filer, A; Buckley, C D

    2013-01-01

    Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation. PMID:23199320

  18. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis

    PubMed Central

    Liu, Fangwei; Dai, Wujing; Li, Chao; Lu, Xiaowei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion. PMID:27354007

  19. Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis.

    PubMed

    Lin, Runhua; Xiao, Dejun; Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min

    2015-02-20

    Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (P<0.001). Immunohistochemical analysis demonstrated that DNA damage response was parallel with the chronic inflammation degrees from normal to severe inflammation (P<0.05). We found that DNA damage response was progressively increased with the progression of precancerous lesions (P<0.05). These findings provide pathological evidence that persistent chronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.

  20. Chronic Inflammation in an Anophthalmic Socket due to a Room Temperature Vulcanized Silicone Implant

    PubMed Central

    Galindo-Ferreiro, Alicia; AlGhafri, Laila; Elkhamary, Sahar M.; Maktabi, Azza; Gálvez-Ruiz, Alberto; Galindo-Alonso, Julio; Schellini Proff, Silvana

    2016-01-01

    Two case reports are used to illustrate the signs and symptoms, complications and treatments of chronic socket inflammation due to intraorbital implants. The ophthalmic examination, surgeries and treatments are documented. Two anophthalmic cases that underwent enucleation and multiple orbital surgeries to enhance the anophthalmic socket volume developed pain, intense discharge and contracted cavities with chronic inflammation in the socket which was nonresponsive to medical therapy. Computed tomography indicated a hypodense foreign body in both cases causing an intense inflammatory reaction. The implants were removed by excisional surgery and a room temperature vulcanized silicone implant was retrieved in both cases. Socket inflammation resolved in both cases after implant removal. An intraorbital inflammatory reaction against an intraorbital implant can cause chronic socket inflammation in patients with a history of multiple surgeries. Diagnosis requires imaging and the definitive treatment is implant removal. PMID:27462246

  1. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator.

    PubMed

    Löbel, Madlen; Bauer, Sandra; Meisel, Christian; Eisenreich, Andreas; Kudernatsch, Robert; Tank, Juliane; Rauch, Ursula; Kühl, Uwe; Schultheiss, Heinz-Peter; Volk, Hans-Dieter; Poller, Wolfgang; Scheibenbogen, Carmen

    2012-09-01

    In this study, we performed a comprehensive analysis of the effect of CCN1 on the migration of human immune cells. The molecule CCN1, produced by fibroblasts and endothelial cells, is considered as an important matrix protein promoting tissue repair and immune cell adhesion by binding various integrins. We recently reported that CCN1 therapy is able to suppress acute inflammation in vivo. Here, we show that CCN1 binds to various immune cells including T cells, B cells, NK cells, and monocytes. The addition of CCN1 in vitro enhances both actin polymerization and transwell migration. Prolonged incubation with CCN1, however, results in the inhibition of migration of immune cells by a mechanism that involves downregulation of PI3Kγ, p38, and Akt activation. Furthermore, we observed that immune cells themselves produce constitutively CCN1 and secretion is induced by pro-inflammatory stimuli. In line with this finding, patients suffering from acute inflammation had enhanced serum levels of CCN1. These findings extend the classical concept of CCN1 as a locally produced cell matrix adhesion molecule and suggest that CCN1 plays an important role in regulating immune cell trafficking by attracting and locally immobilizing immune cells.

  2. Substance P at the Nexus of Mind and Body in Chronic Inflammation and Affective Disorders

    ERIC Educational Resources Information Center

    Rosenkranz, Melissa A.

    2007-01-01

    For decades, research has demonstrated that chronic diseases characterized by dysregulation of inflammation are particularly susceptible to exacerbation by stress and emotion. Likewise, rates of depression and anxiety are overrepresented in individuals suffering from chronic inflammatory disease. In recent years, substance P has been implicated in…

  3. Computational Approach to Characterize Causative Factors and Molecular Indicators of Chronic Wound Inflammation

    DTIC Science & Technology

    2014-01-01

    diabetes, psoriasis, atherosclerosis , rheumatoid arthritis, asthma, and chronic wounds, among many others (2, 10, 11). Despite its central role in...Animal model studies of chronic inflammation in wounds and diseases, such as obesity and atherosclerosis , have elucidated gene- and protein-level

  4. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    PubMed Central

    Neumann, Silke; Shields, Nicholas J.; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N.

    2015-01-01

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells. PMID:26690125

  5. Inflammation and Immunity in Diseases of the Arterial Tree: Players and Layers

    PubMed Central

    Libby, Peter; Hansson, Göran K.

    2014-01-01

    The hypothesis that immunity and inflammation participate in the pathogenesis of vascular diseases has now gained widespread recognition and stimulated work around the globe. Broadening knowledge has extended the recognition of the role of immune and inflammatory mechanisms to all of the layers of the artery, to all levels of the arterial tree, and implicated virtually all arms, cellular “players,” and effector molecules and pathways involved in these crucial host defenses, that turn against us in disease. We provide here a guide to a compendium series of papers that aimed to look forward, and broaden the traditional focus of immunopathogenesis of arterial disease, with the goal of integrating the “players” and the “layers” involved. While the field has advanced remarkably, much remains to be done, and this commentary also aims to highlight some of the gaps that future research should strive to close regarding the participation of inflammation and immunity in arterial diseases. PMID:25593275

  6. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    PubMed

    Cappelletti, Cristina; Galbardi, Barbara; Kapetis, Dimos; Vattemi, Gaetano; Guglielmi, Valeria; Tonin, Paola; Salerno, Franco; Morandi, Lucia; Tomelleri, Giuliano; Mantegazza, Renato; Bernasconi, Pia

    2014-01-01

    Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs). In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM), polymyositis (PM), dermatomyositis (DM) and juvenile dermatomyositis (JDM). We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1). These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  7. Effects of a flavonoid-rich juice on inflammation, oxidative stress, and immunity in elite swimmers: a metabolomics-based approach.

    PubMed

    Knab, Amy M; Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Cialdella-Kam, Lynn; Henson, Dru A; Sha, Wei

    2013-04-01

    The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post-10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days.

  8. Identification of a Lactobacillus plantarum strain that ameliorates chronic inflammation and metabolic disorders in obese and type 2 diabetic mice.

    PubMed

    Toshimitsu, T; Mochizuki, J; Ikegami, S; Itou, H

    2016-02-01

    In this study, we identified a strain of lactic acid bacteria (LAB) that induces high levels of IL-10 production by immune cells, and evaluated the ability of the strain to suppress chronic inflammation and ameliorate metabolic disorders in in vitro and in vivo models. Among a collection of LAB strains, Lactobacillus plantarum strain OLL2712 (OLL2712) induced the highest levels of IL-10 production in mouse-derived dendritic cells and peritoneal macrophages. The anti-inflammatory effects of this strain were evaluated using a co-culture system comprising RAW 264.7 and 3T3-L1 cells. We also administered heat-killed OLL2712 to obese and type 2 diabetic KKAy mice for 3 wk to evaluate the in vivo effects of the strain. The OLL2712 significantly decreased the production of proinflammatory cytokines in vitro. Likewise, the administration of OLL2712 significantly suppressed proinflammatory cytokine levels in both the visceral adipose tissue and the serum of KKAy mice, and reduced serum triglyceride concentrations. The strain also alleviated oxidative stress and adrenaline levels in the serum of KKAy mice. On the other hand, Lactobacillus gasseri strain MEP222804 (a moderate IL-10 inducer) did not ameliorate the systemic inflammation and hyperlipidemia in KKAy mice. Our results suggest that treatment with strong IL-10-inducing LAB has the potential to ameliorate metabolic disorders by suppressing chronic inflammation in the host animal.

  9. The Gut as a Source of Inflammation in Chronic Kidney Disease.

    PubMed

    Lau, Wei Ling; Kalantar-Zadeh, Kamyar; Vaziri, Nosratola D

    2015-01-01

    Chronic inflammation is a non-traditional risk factor for cardiovascular mortality in the chronic kidney disease (CKD) population. In recent years, the gastrointestinal tract has emerged as a major instigator of systemic inflammation in CKD. Postmortem studies previously discovered gut wall inflammation throughout the digestive tract in chronic dialysis patients. In CKD animals, colon wall inflammation is associated with breakdown of the epithelial tight junction barrier ('leaky gut') and translocation of bacterial DNA and endotoxin into the bloodstream. Gut bacterial DNA and endotoxin have also been detected in the serum from CKD and dialysis patients, whereby endotoxin levels increase with the CKD stage and correlate with the severity of systemic inflammation in the dialysis population. The CKD diet that is low in plant fiber and symbiotic organisms (in adherence with low potassium, low phosphorus intake) can alter the normal gut microbiome, leading to overgrowth of bacteria that produce uremic toxins such as cresyl and indoxyl molecules. The translocation of these toxins from the 'leaky gut' into the bloodstream further promotes systemic inflammation, adverse cardiovascular outcomes and CKD progression. Data are lacking on optimal fiber and yogurt consumption in CKD that would favor growth of a more symbiotic microbiome while avoiding potassium and phosphorus overload. Prebiotic and probiotic formulations have shown promise in small clinical trials, in terms of lowering serum levels of uremic toxins and improving quality of life. The evidence points to a strong relationship between intestinal inflammation and adverse outcomes in CKD, and more trials investigating gut-targeted therapeutics are needed.

  10. Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.

    PubMed

    Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-04-01

    Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P < 0.05). Former smokers were significantly heavier than current and never smokers (P < 0.001). Acute and chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations.

  11. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    PubMed Central

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury. PMID:27597803

  12. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis.

    PubMed

    Stoyanov, Evgeniy; Ludwig, Guy; Mizrahi, Lina; Olam, Devorah; Schnitzer-Perlman, Temima; Tasika, Elena; Sass, Gabriele; Tiegs, Gisa; Jiang, Yong; Nie, Ting; Kohler, James; Schinazi, Raymond F; Vertino, Paula M; Cedar, Howard; Galun, Eithan; Goldenberg, Daniel

    2015-05-10

    Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.

  13. Prostatic Inflammation Induces Fibrosis in a Mouse Model of Chronic Bacterial Infection

    PubMed Central

    Wong, Letitia; Hutson, Paul R.; Bushman, Wade

    2014-01-01

    Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show–for the first time–that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process. PMID:24950301

  14. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    PubMed Central

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  15. Vaccine- and immune-based therapy in chronic lymphocytic leukemia.

    PubMed

    Le Dieu, Rifca; Gribben, John

    2006-04-01

    B-cell chronic lymphocytic leukemia (CLL) would appear to be an ideal target of T-cell-mediated responses against the cancer cell. The cancer arises in cells that can act as antigen-presenting cells (APCs), CLL cells express tumor antigens, and the cells can be a target of the allogeneic T cells in a graft-versus-leukemia effect. Despite these potential benefits, immune responses against CLL cells have been difficult to elicit. CLL induces immune defects in the host, the tumor cells are inefficient APCs, and therapies given to patients with CLL are themselves immunosuppressive. Successful vaccination approaches in this disease will require steps to overcome these difficulties, including steps to improve the immune defects in this disease, identification of the targets of the immune response to monitor immunologic responses, and improved presentation of antigen.

  16. Resolution of chronic bacterial-induced prostatic inflammation reverses established fibrosis

    PubMed Central

    Wong, Letitia; Hutson, Paul R.; Bushman, Wade

    2014-01-01

    Background Prostatic inflammation has been suggested to contribute to the etiology of lower urinary tract symptoms by inducing fibrosis. We previously used a well-characterized mouse model of bacterial-induced prostate inflammation to demonstrate that chronic prostatic inflammation induces collagen deposition. Here, we examined stability of the newly synthesized collagen in bacterial-induced prostatic inflammation and the reversibility of fibrosis after resolution of infection and inflammation. Methods Uropathogenic E. coli 1677 was instilled transurethrally into adult C3H/HeOuJ male mice to induce chronic prostatic inflammation. Collagen was labeled by 3H-proline administration for 28 days post-inoculation and 3H-hydroxyproline incorporation measured to determine stability of the newly synthesized collagen. Inflammation score was graded using a previously established system and total collagen content was measured by picrosirius red staining quantitation and hydroxyproline content. Resolution of inflammation and reversal of collagen deposition was assessed after treatment with antibiotic enrofloxacin for two weeks on day 28 post-inoculation followed by an eight-week recovery period. Results Decay analysis of incorporated 3H-hydroxyproline revealed the half-life of newly synthesized collagen to be significantly shorter in infected/inflamed prostates than in controls. Treatment with antibiotic enrofloxacin completely eradicated bacterial infection and allowed resolution of inflammation. This was followed by marked attenuation of collagen content and correlation analysis verified a positive association between the resolution of inflammation and the reversal of collagen deposition. Conclusions These data demonstrate, for the first time, that inflammation-induced prostatic fibrosis is a reversible process. PMID:25284058

  17. Skeletal muscle response to inflammation--lessons for chronic obstructive pulmonary disease.

    PubMed

    Reid, W Darlene; Rurak, Jennifer; Harris, R Luke

    2009-10-01

    To describe how inflammation affects muscle adaptation and performance in people with chronic obstructive pulmonary disease. In chronic obstructive pulmonary disease, an increasingly sedentary lifestyle is a primary contributor to muscle dysfunction that results in a loss of mobility and independence and, ultimately, mortality. Given the systemic chronic inflammation and profound limb muscle atrophy in chronic obstructive pulmonary disease, it is tempting to speculate that the inflammatory process is deleterious to skeletal muscle. In healthy people, however, the inflammatory process initially is dominated by a destructive phase that is tightly regulated and modulates a reparative, regenerative phase. Although the inflammatory process and associated oxidative stress is more closely connected to muscle wasting in animal models of chronic obstructive pulmonary disease, the causative role of inflammation toward muscle atrophy and weakness in people with chronic obstructive pulmonary disease has not been definitively shown. Anti-inflammatory interventions aimed toward tempering muscle wasting and weakness in chronic obstructive pulmonary disease may not prove to be beneficial because of longer-term disruption of the regeneration of muscle tissue. Temporally and spatially targeted interventions aimed toward ameliorating oxidative stress, such as antioxidants, nutritional supplements, and chronic exercise training, may optimize outcomes toward maintaining muscle mass and performance.

  18. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  19. The link between unpredictable chronic mild stress model for depression and vascular inflammation?

    PubMed

    Demirtaş, Tuğçe; Utkan, Tijen; Karson, Ayşe; Yazır, Yusufhan; Bayramgürler, Dilek; Gacar, Nejat

    2014-10-01

    Inflammation has been suggested to be associated with stress-induced depression and cardiovascular dysfunction. Tumor necrosis factor alpha (TNF-α) is a major cytokine in the activation of neuroendocrine, immune, and behavioral responses. In this study, we investigated the effects of infliximab (a TNF-α inhibitor) on endothelium-dependent vascular reactivity, systemic blood pressure, and endothelial nitric oxide synthase (eNOS) immunoreactivity in the unpredictable chronic mild stress (UCMS) model of depression in rats. There was no significant change between all groups in the systemic blood pressure. In UCMS, endothelium-dependent relaxation of the smooth muscle in response to carbachol was significantly decreased with 50 % maximal response (E max) and pD2 values compared with the controls. Infliximab was able to reverse this UCMS effect. Relaxation in response to the nitric oxide (NO) donor sodium nitroprusside and papaverine and KCl-induced contractile responses was similar between groups. In UCMS, decreased expression of eNOS was detected. Moreover, there was no significant change in UCMS + infliximab group with respect to control rats. Our results suggest that tumor necrosis factor-alpha (TNF-α) could be a major mediator of vascular dysfunction associated with UCMS, leading to decreased expression of eNOS.

  20. Targeting MALT1 Proteolytic Activity in Immunity, Inflammation and Disease: Good or Bad?

    PubMed

    Demeyer, Annelies; Staal, Jens; Beyaert, Rudi

    2016-02-01

    MALT1 is a signaling protein that plays a key role in immunity, inflammation, and lymphoid malignancies. For a long time MALT1 was believed to function as a scaffold protein, providing an assembly platform for other signaling proteins. This view changed dramatically when MALT1 was also found to have proteolytic activity and a capacity to fine-tune immune responses. Preclinical studies have fostered the belief that MALT1 is a promising therapeutic target in autoimmunity and B cell lymphomas. However, recent studies have shown that mice expressing catalytically-inactive MALT1 develop multi-organ inflammation and autoimmunity, and thus have tempered this initial enthusiasm. We discuss recent findings, highlighting the urgent need for a better mechanistic and functional understanding of MALT1 in host defense and disease.

  1. Bile acids in regulation of inflammation and immunity: friend or foe?

    PubMed

    Zhu, Ci; Fuchs, Claudia D; Halilbasic, Emina; Trauner, Michael

    2016-01-01

    Apart from their pivotal role in dietary lipid absorption and cholesterol homeostasis, bile acids (BAs) are increasingly recognised as important signalling molecules in the regulation of systemic endocrine functions. As such BAs are natural ligands for several nuclear hormone receptors and G-protein-coupled receptors. Through activating various signalling pathways, BAs not only regulate their own synthesis, enterohepatic recirculation and metabolism, but also immune homeostasis. This makes BAs attractive therapeutic agents for managing metabolic and inflammatory liver disorders. Recent experimental and clinical evidence indicates that BAs exert beneficial effects in cholestatic and metabolically driven inflammatory diseases. This review elucidates how different BAs function as pathogenetic factors and potential therapeutic agents for inflammation-driven liver diseases, focusing on their role in regulation of inflammation and immunity.

  2. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration

    PubMed Central

    Selders, Gretchen S.; Fetz, Allison E.; Radic, Marko Z.; Bowlin, Gary L.

    2017-01-01

    Despite considerable recent progress in defining neutrophil functions and behaviors in tissue repair, much remains to be determined with regards to its overall role in the tissue integration of biomaterials. This article provides an overview of the neutrophil’s numerous, important roles in both inflammation and resolution, and subsequently, their role in biomaterial integration. Neutrophils function in three primary capacities: generation of oxidative bursts, release of granules and formation of neutrophil extracellular traps (NETs); these combined functions enable neutrophil involvement in inflammation, macrophage recruitment, M2 macrophage differentiation, resolution of inflammation, angiogenesis, tumor formation and immune system activation. Neutrophils exhibit great flexibility to adjust to the prevalent microenvironmental conditions in the tissue; thus, the biomaterial composition and fabrication will potentially influence neutrophil behavior following confrontation. This review serves to highlight the neutrophil’s plasticity, reiterating that neutrophils are not just simple suicidal killers, but the true maestros of resolution and regeneration. PMID:28149530

  3. Topical Cathelicidin (LL-37) an Innate Immune Peptide Induces Acute Olfactory Epithelium Inflammation in a Mouse Model

    PubMed Central

    Alt, Jeremiah A.; Qin, Xuan; Pulsipher, Abigail; Orb, Quinn; Orlandi, Richard R.; Zhang, Jianxing; Schults, Austin; Jia, Wanjian; Presson, Angela P.; Prestwich, Glenn; Oottamasathien, Siam

    2017-01-01

    Background Cathelicidin (LL-37) is an endogenous innate immune peptide that is elevated in patients with chronic rhinosinusitis (CRS). The role of LL-37 in olfactory epithelium (OE) inflammation remains unknown. We hypothesized that 1) LL-37 topically delivered would elicit profound OE inflammation, and 2) LL-37 induced inflammation is associated with increased infiltration of neutrophils and mast cells. Methods To test our hypothesis we challenged C57BL/6 mice intranasally with increasing concentrations of LL-37. At 24 hours tissues were examined histologically and scored for inflammatory cell infiltrate, edema, and secretory hyperplasia. In separate experiments, fluorescently conjugated LL-37 was instilled and tissues were examined at 0.5 and 24 hours. To test our last hypothesis, we performed tissue myeloperoxidase (MPO) assays for neutrophil activity and immunohistochemistry for tryptase to determine the mean number of mast cells per mm2. Results LL-37 caused increased inflammatory cell infiltrate, edema, and secretory cell hyperplasia of the sinonasal mucosa with higher LL-37 concentrations yielding significantly more inflammatory changes (p < 0.01). Fluorescent LL-37 demonstrated global sinonasal epithelial binding and tissue distribution. Further, higher concentrations of LL-37 led to significantly greater MPO levels with dose-dependent increases in mast cell infiltration (p < 0.01). Conclusions LL-37 has dramatic inflammatory effects in the OE mucosa that is dose-dependent. The observed inflammatory changes in the olfactory mucosa were associated with the infiltration of both neutrophils and mast cells. Our biologic model represents a new model to further investigate the role of LL-37 in OE inflammation. PMID:26346056

  4. Mammalian Antimicrobial Peptides: Promising Therapeutic Targets Against Infection and Chronic Inflammation.

    PubMed

    Dutta, Pujarini; Das, Santasabuj

    2016-01-01

    Antimicrobial peptides (AMPs) are integral components of the host innate immune system and functional throughout the plant and animal kingdoms. AMPs are short cationic molecules and lethal against a wide range of bacteria, viruses, fungi, yeast and protozoa due to their membranolytic effects on the negatively-charged microbial membranes. In addition, they exert multiple immunomodulatory roles like chemotaxis, modulation of cytokine and chemokine expression, leukocyte activation etc. Since AMPs suffer loss of microbicidal properties under serum and tissue environments, their capacity to modulate the immune system may predominates under the physiological conditions. Discovery of new antibiotics is lagging far behind the rapidly spreading drug resistance among the microorganisms. Both natural and synthetic AMPs have shown promise as 'next generation antibiotics' due to their unique mode of action, which minimises the chance of development of microbial resistance. In addition, they have therapeutic potential against non-infectious diseases like chronic inflammation and cancer. Many of the synthetic AMPs are currently undergoing clinical trials for the treatment of debilitating diseases, such as catheter-related infections, diabetic foot ulcers, chemotherapy-associated infections etc. Some of them have already entered the market as topical preparations. In this review, we synopsise the current literature of natural and synthetic AMPs in different infectious and inflammatory diseases of human microfloral habitats, especially the gastrointestinal, respiratory and genitourinary tracts and the skin. We also discuss the classification of AMPs, their mode action and antimicrobial spectrum, including the pathogen evasion mechanisms. In short, we tried to present the locus standi of AMPs in relation to human diseases and highlight the most promising synthetic peptides emerging from the clinical trials. Finally, we focused on the limitations and hurdles in terms of cost of

  5. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans

    PubMed Central

    Meydani, Simin N.; Das, Sai K.; Pieper, Carl F.; Lewis, Michael R.; Klein, Sam; Dixit, Vishwa D.; Gupta, Alok K.; Villareal, Dennis T.; Bhapkar, Manjushri; Huang, Megan; Fuss, Paul J.; Roberts, Susan B.; Holloszy, John O.; Fontana, Luigi

    2016-01-01

    Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-center, randomized clinical trial to determine CR's effect on inflammation and cell-mediated immunity, 218 healthy non-obese adults (20-50 y), were assigned 25% CR (n=143) or an ad-libitum (AL) diet (n=75), and outcomes tested at baseline, 12, and 24 months of CR. CR induced a 10.4% weight loss over the 2-y period. Relative to AL group, CR reduced circulating inflammatory markers, including total WBC and lymphocyte counts, ICAM-1 and leptin. Serum CRP and TNF-α concentrations were about 40% and 50% lower in CR group, respectively. CR had no effect on the delayed-type hypersensitivity skin response or antibody response to vaccines, nor did it cause difference in clinically significant infections. In conclusion, long-term moderate CR without malnutrition induces a significant and persistent inhibition of inflammation without impairing key in vivo indicators of cell-mediated immunity. Given the established role of these pro-inflammatory molecules in the pathogenesis of multiple chronic diseases, these CR-induced adaptations suggest a shift toward a healthy phenotype. PMID:27410480

  6. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk.

    PubMed

    Kazma, Rémi; Mefford, Joel A; Cheng, Iona; Plummer, Sarah J; Levin, Albert M; Rybicki, Benjamin A; Casey, Graham; Witte, John S

    2012-01-01

    Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02). Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition) and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2) were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects.

  7. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity.

    PubMed

    Deaglio, Silvia; Robson, Simon C

    2011-01-01

    Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.

  8. The beneficial role of anti-inflammatory dietary ingredients in attenuating markers of chronic low-grade inflammation in aging.

    PubMed

    Panickar, Kiran S; Jewell, Dennis E

    2015-08-01

    Aging in humans is associated with chronic low-grade inflammation (systemic), and this condition is sometimes referred to as "inflammaging". In general, canines also age similarly to humans, and such aging is associated with a decline in mobility, joint problems, weakened muscles and bones, reduced lean body mass, cancer, increased dermatological problems, decline in cognitive ability, reduced energy, decreased immune function, decreased renal function, and urinary incontinence. Each of these conditions is also associated with an increase in pro-inflammatory cytokines. An inflammatory state characterized by an increase in pro-inflammatory markers including but not restricted to tumor necrosis factor-α, interleukin-6, IL-1β, and C-reactive protein (CRP) is believed to contribute to or worsen a general decline in biological mechanisms responsible for physical function with aging. Nutritional management of inflammation in aging dogs is important in maintaining health. In particular, natural botanicals have bioactive components that appear to have robust anti-inflammatory effects and, when included in the diet, may contribute to a reduction in inflammation. While there are scientific data to support the anti-inflammatory effects and the efficacy of such bioactive molecules from botanicals, the clinical data are limited and more studies are needed to validate the efficacy of these ingredients. This review will summarize the role of dietary ingredients in reducing inflammatory molecules as well as review the evidence available to support the role of diet and nutrition in reducing chronic low-grade systemic inflammation in animal and human studies with a special reference to canines, where possible.

  9. Chronic beryllium disease: an updated model interaction between innate and acquired immunity

    PubMed Central

    Sawyer, Richard T.; Maier, Lisa A.

    2011-01-01

    During the last decade, there have been concerted efforts to reduce beryllium (Be) exposure in the workplace and thereby reduce potential cases of this occupational lung disorder. Despite these efforts, it is estimated that there are at least one million Be-exposed individuals in the U.S. who are potentially at risk for developing chronic beryllium disease (CBD). Previously, we reviewed the current CBD literature and proposed that CBD represents a model interaction between innate and acquired immunity (Sawyer et al., Int Immunopharmacol 2:249–261, 2002). We closed this review with a section on “future directions” that identified key gaps in our understanding of the pathogenesis of CBD. In the intervening period, progress has been made to fill in some of these gaps, and the current review will provide an update on that progress. Based on recent findings, we provide a new hypothesis to explain how Be drives sustained chronic inflammation and granuloma formation in CBD leading to progressive compromised lung function in CBD patients. This paradigm has direct implications for our understanding of the development of an immune response to Be, but is also likely applicable to other immune-mediated lung diseases of known and unknown etiology. PMID:20981472

  10. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases

    PubMed Central

    2014-01-01

    Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others). PMID:25608958

  11. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance.

    PubMed

    Gracon, Adam S A; Wilkes, David S

    2014-08-01

    Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.

  12. Immune enhancement during chronic ethanol feeding in mice - Autoimmune phenomena

    SciTech Connect

    Honchel, R.; Rhoads, C.A.; Fitzpatrick, E.A.; McClain, C.J.; Kaplan, A.M.; Cohen, D.A. )

    1991-03-11

    Chronic alcohol abuse in humans is often associated with diminished immune reactivity and enhanced susceptibility to infections. However, many alcohol-dependent individuals display signs of autoimmunity, which has been implicated in alcohol-associated liver damage. This study demonstrates that C57Bl/6 mice placed on the Lieber-DeCarli liquid ethanol diet for up to 9 weeks displayed augmented immune reactivity as compared to mice placed on an isocaloric control diet. Spleen cells were significantly more responsive to the mitogens, LPS and ConA, as early as 3 weeks after initiation of EtOH feeding and this hyperresponsiveness persisted throughout the 9 week feeding period. Similar enhancement of the mixed lymphocyte response was also seen in EtOH fed mice. The enhancement of immune responsiveness was not related to a change in the numbers or percentages of B cells, T cells, or in the CD4/CD8 T cell ratios as determined by flow cytometry. These studies indicate that under certain conditions of ethanol feeding in mice, enhancement rather than suppression of the immune system may occur. This system may be a model to evaluate possible induction of autoimmune responses during chronic ethanol abuse. Studies are underway to measure the presence of auto-antibodies in the sera of these ethanol fed mice.

  13. Live-attenuated lentivirus immunization modulates innate immunity and inflammation while protecting rhesus macaques from vaginal simian immunodeficiency virus challenge.

    PubMed

    Genescà, Meritxell; Ma, Zhong-Min; Wang, Yichuan; Assaf, Basel; Qureshi, Huma; Fritts, Linda; Huang, Ying; McChesney, Michael B; Miller, Christopher J

    2012-09-01

    Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.

  14. Quality of life is associated with chronic inflammation in schizophrenia: a cross-sectional study.

    PubMed

    Faugere, M; Micoulaud-Franchi, J A; Alessandrini, M; Richieri, R; Faget-Agius, C; Auquier, P; Lançon, C; Boyer, L

    2015-06-04

    Inflammation may play a crucial role in the pathogenesis of schizophrenia. However, the association between chronic inflammation and health outcomes in schizophrenia remains unclear, particularly for patient-reported outcomes. The aim of this study was to investigate the relationship between quality of life (QoL) and chronic inflammation assessed using C -Reactive Protein (CRP) in patients with schizophrenia. Two hundred and fifty six patients with schizophrenia were enrolled in this study. After adjusting for key socio-demographic and clinical confounding factors, patients with high levels of CRP (>3.0 mg/l) had a lower QoL than patients with normal CRP levels (OR = 0.97, 95% CI = 0.94-0.99). An investigation of the dimensions of QoL revealed that psychological well-being, physical well-being and sentimental life were the most salient features of QoL associated with CRP. Significant associations were found between lower educational level (OR = 4.15, 95% CI = 1.55-11.07), higher body mass index (OR = 1.16, 95% CI = 1.06-1.28), higher Fagerström score (OR = 1.22, 95% CI = 1.01-1.47) and high levels of CRP. After replications with longitudinal approaches, the association between QoL and chronic inflammation may offer interesting interventional prospects to act both on inflammation and QoL in patients with schizophrenia.

  15. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?

    PubMed

    Hasselbalch, Hans Carl

    2013-02-01

    The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been proposed as a trigger and driver of clonal evolution in MPNs. Herein, it is hypothesized that sustained inflammation may elicit the stem cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in the bone marrow, thereby creating a high-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a "epigenetic switch" promoting persistent inflammation. The perspectives of chronic inflammation as the driver of mutagenesis in MPNs are discussed, including early intervention with interferon-alpha2 and potent anti-inflammatory agents (e.g. JAK1-2 inhibitors, histone deacetylase inhibitors, DNA-hypomethylators and statins) to disrupt the self-perpetuating chronic inflammation state and accordingly eliminating a potential trigger of clonal evolution and disease progression with myelofibrotic and leukemic transformation.

  16. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...

  17. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats

    PubMed Central

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela

    2015-01-01

    Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  18. Use of semiconducting laser in drug-induced chronic bilateral inflammation of parotid glands

    NASA Astrophysics Data System (ADS)

    Grzesiak-Janas, Grazyna

    1997-10-01

    A case of chronic bilateral inflammation of parotid glands in a patient as a results of complication induced by the drug Ospolot in the treatment of epilepsy was presented. Apart from conventional methods a semiconducting laser was used. The laser beam had beneficial effect on elimination of pain and increase in the parotid gland secretion activity.

  19. Osteoprotective Effect of Alfacalcidol in Female Rats with Systemic Chronic Inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown that alfacalcidol (a hydroxylated form of vitamin D) mitigates glucocorticoid-induced bone loss. This study was undertaken to explore the mechanism and bone microarchitecture of alfacalcidol in rats with systemic chronic inflammation. Thirty female rats (3-month-old) assigned to ...

  20. Plasma biomarkers of chronic inflammation are elevated in overweight Mexican-American children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess body weight is associated with an accumulation of chronic, low-grade inflammation that has been implicated in the pathophysiology of various diseases. The obesity epidemic is more prevalent in certain ethnic groups. Despite this health disparity, few published studies have measured biomarke...

  1. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    PubMed

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.

  2. Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer.

    PubMed

    Brest, P; Corcelle, E A; Cesaro, A; Chargui, A; Belaïd, A; Klionsky, D J; Vouret-Craviari, V; Hebuterne, X; Hofman, P; Mograbi, B

    2010-07-01

    Inflammatory bowel diseases (IBD) are common inflammatory disorders of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD are high in North America and Europe, affecting as many as one in 500 people. These diseases are associated with high morbidity and mortality. Colorectal cancer risk is also increased in IBD, correlating with inflammation severity and duration. IBD are now recognized as complex multigenetic disorders involving at least 32 different risk loci. In 2007, two different autophagy-related genes, ATG16L1 (autophagy-related gene 16-like 1) and IRGM (immunity-related GTPase M) were shown to be specifically involved in CD susceptibility by three independent genome-wide association studies. Soon afterwards, more than forty studies confirmed the involvement of ATG16L1 and IRGM variants in CD susceptibility and gave new information on the importance of macroautophagy (hereafter referred to as autophagy) in the control of infection, inflammation, immunity and cancer. In this review, we discuss how such findings have undoubtedly changed our understanding of CD pathogenesis. A unifying autophagy model then emerges that may help in understanding the development of CD from bacterial infection, to inflammation and finally cancer. The Pandora's box is now open, releasing a wave of hope for new therapeutic strategies in treating Crohn's disease.

  3. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model.

    PubMed

    Olsson, Jan; Drott, Johanna Bergh; Laurantzon, Lovisa; Laurantzon, Oscar; Bergh, Anders; Elgh, Fredrik

    2012-01-01

    Chronic inflammation in the prostate, seen as infiltration of inflammatory cells into the prostate gland in histological samples, affects approximately half the male population without indication of prostate disease, and is almost ubiquitous in patients diagnosed with benign prostate hyperplasia and cancer. Several studies have demonstrated the gram-positive bacterium Propionibacterium acnes to be frequently present in prostate tissue from men suffering from prostate disease. P. acnes has been shown to be associated with histological inflammation in human prostatectomy specimens, and also to induce strong inflammatory response in prostate-derived tissue culture models. The present paper describes a rat model for assessment of the pathogenic potential of P. acnes in prostate. Prostate glands of Sprague Dawley rats (n = 98) were exposed via an abdominal incision and live P. acnes or, in control rats, saline were injected into the ventral and dorso-lateral lobes. Rats were sacrificed 5 days, 3 weeks, 3 months and 6 months post infection, and prostate tissue was analyzed for bacterial content and histological inflammation. Rat sera were assessed for levels of CRP and anti-P. acnes IgG. Live P. acnes could be recovered from the dorso-lateral lobes up to 3 months post infection, while the ventral lobes were cleared from bacteria at that time. In samples up to 3 months post infection, the dorso-lateral lobes exhibited intense focal inflammation. CRP and IgG levels were elevated throughout the span of the experiment, and reached maximum levels 3 weeks and 3 months post infection, respectively. We show that P. acnes have the potential to cause chronic infection in previously healthy prostate, and that the infection has potential to cause chronic histological inflammation in the infected tissue. The high prevalence of P. acnes in human prostate tissue calls for resolution of pathogenic details. The present rat model suggests that complications such as chronic

  4. The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation.

    PubMed

    Winter, Susann; Loddenkemper, Christoph; Aebischer, Anton; Räbel, Katrin; Hoffmann, Kirstin; Meyer, Thomas F; Lipp, Martin; Höpken, Uta E

    2010-11-01

    Ectopic lymphoid follicles are a key feature of chronic inflammatory autoimmune and infectious diseases, such as rheumatoid arthritis, Sjögren's syndrome, and Helicobacter pylori-induced gastritis. Homeostatic chemokines are considered to be involved in the formation of such tertiary lymphoid tissue. High expression of CXCL13 and its receptor, CXCR5, has been associated with the formation of ectopic lymphoid follicles in chronic infectious diseases. Here, we defined the role of CXCR5 in the development of mucosal tertiary lymphoid tissue and gastric inflammation in a mouse model of chronic H. pylori infection. CXCR5-deficient mice failed to develop organized gastric lymphoid follicles despite similar bacterial colonization density as infected wild-type mice. CXCR5 deficiency altered Th17 responses but not Th1-type cellular immune responses to H. pylori infection. Furthermore, CXCR5-deficient mice exhibited lower H. pylori-specific serum IgG and IgA levels and an overall decrease in chronic gastric immune responses. In conclusion, the development of mucosal tertiary ectopic follicles during chronic H. pylori infection is strongly dependent on the CXCL13/CXCR5 signaling axis, and lack of de novo lymphoid tissue formation attenuates chronic immune responses.

  5. Inflammation and Immune Regulation as Potential Drug Targets in Antidepressant Treatment

    PubMed Central

    Schmidt, Frank M.; Kirkby, Kenneth C.; Lichtblau, Nicole

    2016-01-01

    Growing evidence supports a mutual relationship between inflammation and major depression. A variety of mechanisms are outlined, indicating how inflammation may be involved in the pathogenesis, course and treatment of major depression. In particular, this review addresses 1) inflammatory cytokines as markers of depression and potential predictors of treatment response, 2) findings that cytokines interact with antidepressants and non-pharmacological antidepressive therapies, such as electroconvulsive therapy, deep brain stimulation and physical activity, 3) the influence of cytokines on the cytochrome (CYP) p450-system and drug efflux transporters, and 4) how cascades of inflammation might serve as antidepressant drug targets. A number of clinical trials have focused on agents with immunmodulatory properties in the treatment of depression, of which this review covers nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, ketamine, polyunsaturated fatty acids, statins and curcumin. A perspective is also provided on possible future immune targets for antidepressant therapy, such as toll-like receptor-inhibitors, glycogen synthase kinase-3 inhibitors, oleanolic acid analogs and minocycline. Concluding from the available data, markers of inflammation may become relevant factors for more personalised planning and prediction of response of antidepressant treatment strategies. Agents with anti-inflammatory properties have the potential to serve as clinically relevant antidepressants. Further studies are required to better define and identify subgroups of patients responsive to inflammatory agents as well as to define optimal time points for treatment onset and duration. PMID:26769225

  6. Inflammation, Innate Immunity, and the Intestinal Stromal Cell Niche: Opportunities and Challenges

    PubMed Central

    Owens, Benjamin M. J.

    2015-01-01

    Stromal cells of multiple tissues contribute to immune-mediated protective responses and, conversely, the pathological tissue changes associated with chronic inflammatory disease. However, unlike hematopoietic immune cells, tissue stromal cell populations remain poorly characterized with respect to specific surface marker expression, their ontogeny, self-renewal, and proliferative capacity within tissues and the extent to which they undergo phenotypic immunological changes during the course of an infectious or inflammatory insult. Extending our knowledge of the immunological features of stromal cells provides an exciting opportunity to further dissect the underlying biology of many important immune-mediated diseases, although several challenges remain in bringing the emerging field of stromal immunology to equivalence with the study of the hematopoietic immune cell compartment. This review highlights recent studies that have begun unraveling the complexity of tissue stromal cell function in immune responses, with a focus on the intestine, and proposes strategies for the development of the field to uncover the great potential for stromal immunology to contribute to our understanding of the fundamental pathophysiology of disease, and the opening of new therapeutic avenues in multiple chronic inflammatory conditions. PMID:26150817

  7. Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics

    PubMed Central

    Pastorelli, Luca; De Salvo, Carlo; Mercado, Joseph R.; Vecchi, Maurizio; Pizarro, Theresa T.

    2013-01-01

    The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier. PMID:24062746

  8. Immunoregulatory molecules are master regulators of inflammation during the immune response

    PubMed Central

    Sánchez-Madrid, Francisco

    2014-01-01

    The balance between pro- and anti-inflammatory signalling is critical to maintain the immune homeostasis under physiological conditions as well as for the control of inflammation in different pathological settings. Recent progress in the signalling pathways that control this balance has led to the development of novel therapeutic agents for diseases characterized by alterations in the activation/suppression of the immune response. Different molecules have a key role in the regulation of the immune system, including the receptors PD-1 (Programmed cell Death 1), CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4) and galectins; or the intracellular enzyme IDO (indoleamine 2,3-dioxygenase). In addition, other molecules as CD69, AhR (Aryl hydrocarbon Receptor), and GADD45 (Growth Arrest and DNA Damage-inducible 45) family members, have emerged as potential targets for the regulation of the activation/suppression balance of immune cells. This review offers a perspective on well-characterized as well as emergent negative immune regulatory molecules in the context of autoimmune inflammatory diseases. PMID:22819828

  9. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection

    PubMed Central

    Zelaya, Hortensia; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2016-01-01

    Influenza virus (IFV) is a major respiratory pathogen of global importance, and the cause of a high degree of morbidity and mortality, especially in high-risk populations such as infants, elderly, and immunocompromised hosts. Given its high capacity to change antigenically, acquired immunity is often not effective to limit IFV infection and therefore vaccination must be constantly redesigned to achieve effective protection. Improvement of respiratory and systemic innate immune mechanisms has been proposed to reduce the incidence and severity of IFV disease. In the last decade, several research works have demonstrated that microbes with the capacity to modulate the mucosal immune system (immunobiotics) are a potential alternative to beneficially modulate the outcome of IFV infection. This review provides an update of the current status on the modulation of respiratory immunity by orally and nasally administered immunobiotics, and their beneficial impact on IFV clearance and inflammatory-mediated lung tissue damage. In particular, we describe the research of our group that investigated the influence of immunobiotics on inflammation–coagulation interactions during IFV infection. Studies have clearly demonstrated that hostile inflammation is accompanied by dysfunctional coagulation in respiratory IFV disease, and our investigations have proved that some immunobiotic strains are able to reduce viral disease severity through their capacity to modulate the immune-coagulative responses in the respiratory tract. PMID:28066442

  10. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  11. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    PubMed

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  12. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: similarity to antigen-presenting cells.

    PubMed

    Ohtani, Haruo

    2013-02-01

    Granulomas are classified as immune or foreign body granulomas. Of these, the immune granulomas, a hallmark of granulomatous inflammation, are closely related to cell-mediated immune responses. The aim of the present study is to characterize immune granuloma cells in 33 patients with granulomatous inflammation focusing on the expression of CD205 (DEC205), a cell surface marker of antigen presenting cells, and their spatial relationship to T cells. CD205 was frequently expressed by immune granuloma cells, in contrast to foreign body granuloma cells that lacked CD205 expression. T cells were not only distributed in a lymphocyte collar around the granuloma, but also present among the granuloma cells (termed 'intra-granuloma T cells'). Intra-granuloma T cells stained positive for Ki-67 (median positivity = 9.4%) by double immunostaining for CD3 and Ki-67. This indicated the presence of proliferative stimuli within the granuloma that could activate the intra-granuloma T cells. The labeling index of Ki-67 in intra-granuloma T cells was significantly higher than that of T cells in the lymphocyte collar (P < 0.0001) or T cells in the T cell zone (paracortex) of chronic tonsillitis or reactive lymphadenitis (P = 0.002). These data indicate a close similarity between immune granulomas and antigen presenting cells.

  13. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    PubMed Central

    2012-01-01

    mechanism in other conditions related to inflammation or alterations of the immune system, such as periodontitis. PMID:23075094

  14. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice

    PubMed Central

    Meira, Lisiane B.; Bugni, James M.; Green, Stephanie L.; Lee, Chung-Wei; Pang, Bo; Borenshtein, Diana; Rickman, Barry H.; Rogers, Arlin B.; Moroski-Erkul, Catherine A.; McFaline, Jose L.; Schauer, David B.; Dedon, Peter C.; Fox, James G.; Samson, Leona D.

    2008-01-01

    Chronic inflammation increases cancer risk. While it is clear that cell signaling elicited by inflammatory cytokines promotes tumor development, the impact of DNA damage production resulting from inflammation-associated reactive oxygen and nitrogen species (RONS) on tumor development has not been directly tested. RONS induce DNA damage that can be recognized by alkyladenine DNA glycosylase (Aag) to initiate base excision repair. Using a mouse model of episodic inflammatory bowel disease by repeated administration of dextran sulfate sodium in the drinking water, we show that Aag-mediated DNA repair prevents colonic epithelial damage and reduces the severity of dextran sulfate sodium–induced colon tumorigenesis. Importantly, DNA base lesions expected to be induced by RONS and recognized by Aag accumulated to higher levels in Aag-deficient animals following stimulation of colonic inflammation. Finally, as a test of the generality of this effect we show that Aag-deficient animals display more severe gastric lesions that are precursors of gastric cancer after chronic infection with Helicobacter pylori. These data demonstrate that the repair of DNA lesions formed by RONS during chronic inflammation is important for protection against colon carcinogenesis. PMID:18521188

  15. Effect of total phenolics from Laggera alata on acute and chronic inflammation models.

    PubMed

    Wu, Yihang; Zhou, Changxin; Song, Liyan; Li, Xiangping; Shi, Shuyun; Mo, Jianxia; Chen, Haiyong; Bai, Hua; Wu, Xiumei; Zhao, Jun; Zhang, Rongping; Hao, Xiaojiang; Sun, Handong; Zhao, Yu

    2006-11-24

    The anti-inflammatory effect of total phenolics from Laggera alata (TPLA) was evaluated with various in vivo models of both acute and chronic inflammations. In the acute inflammation tests, TPLA inhibited significantly xylene-induced mouse ear oedema, carrageenan-induced rat paw oedema and acetic acid-induced mouse vascular permeability. In the carrageenan-induced rat pleurisy model, TPLA significantly suppressed inflammatory exudate and leukocyte migration, reduced the serum levels of lysozyme (LZM) and malondialdehyde (MDA), increased the serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and also decreased the contents of total protein, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the pleural exudates. In the chronic inflammation experiment, TPLA inhibited significantly cotton pellet-induced rat granuloma. These results indicated that TPLA possesses potent anti-inflammatory activity on acute and chronic inflammation models. Its anti-inflammatory mechanisms are probably associated with the inhibition of prostaglandin formation, the influence on the antioxidant systems, and the suppression of LZM release. Furthermore, the total phenolic content of Laggera alata and its main component type was quantified, and its principle components were isolated and authenticated. Acute toxicity studies revealed that TPLA up to an oral dose of 8.5 g/kg body weight was almost nontoxic in mice.

  16. Retinol binding protein 4 in relation to diet, inflammation, immunity, and cardiovascular diseases.

    PubMed

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-11-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine.

  17. Retinol Binding Protein 4 in Relation to Diet, Inflammation, Immunity, and Cardiovascular Diseases12

    PubMed Central

    Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam

    2015-01-01

    Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine. PMID:26567199

  18. The Role of Innate Immunity and Aeroallergens in Chronic Rhinosinusitis.

    PubMed

    London, Nyall R; Tharakan, Anuj; Ramanathan, Murugappan

    2016-01-01

    Allergy has been inferred to contribute to the pathophysiology of chronic rhinosinusitis (CRS) although this role is controversial and the mechanism is debated. Furthermore, the role of aeroallergens in CRS is poorly defined and has been postulated to contribute to CRS through direct penetration in the sinuses or downstream systemic consequences. Common aeroallergens implicated in chronic rhinosinusitis include air pollution/second hand smoke, dust mite and pollen [1,2,3]. One emerging potential mechanism whereby aeroallergens contribute to CRS is through sinonasal epithelial barrier disruption (fig. 1). Characterization of cytokine disruption of sinonasal epithelial cell barrier has been described including interleukin (IL)-4 and IL-13, as well as aeroallergens such as house dust mite and cigarette smoke. Recent results have demonstrated severe barrier disruption in response to direct application of either particulate matter (PM) or house dust mite (HDM) to sinonasal epithelial cells. Sinonasal epithelial barrier disruption may contribute to CRS by enabling the perpetual and chronic exposure of inflammatory allergens and stimuli. The sinonasal epithelial barrier plays a significant role in innate immune host defense. Mechanisms of innate immune defense include pattern recognition receptors (PRRs), secreted endogenous antimicrobials and inflammatory cytokines that aid in repair mechanisms including IL-33. Here we discuss recent evidence implicating aeroallergens and dysregulated host innate immune responses in the development of CRS.

    1Fig. 1. Aeroallergens and inflammatory stimuli disrupt sinonasal epithelial barrier function. These agents act to destabilize the barrier through stimulating endocytosis and destruction of cell junction proteins via oxidative stress and MyD88-dependent mechanisms. Furthermore

  19. Sonoelastography – A Useful Adjunct for Parotid Gland Ultrasound Assessment in Patients Suffering from Chronic Inflammation

    PubMed Central

    Wierzbicka, Małgorzata; Kałużny, Jarosław; Ruchała, Marek; Stajgis, Marek; Kopeć, Tomasz; Szyfter, Witold

    2014-01-01

    Background Shear wave elastography (SWE) is widely used in breast, liver, prostate and thyroid evaluations. Elastography provides additional information if used to assess parotid gland pathology. We assessed parotid glands by means of SWE to compare the parenchyma properties in different types of inflammation. Material/Methods Prospective analysis included 78 consecutive patients with parotid gland pathology: sialolithiasis (33), Stensen’s duct stenosis (15), chronic inflammation (10), and primary Sjögren syndrome (pSS) (20) treated at the Department of Otolaryngology, Head and Neck Surgery of PUMS. The primary predictor variable was type of parotid pathology, and secondary predictor variables were patient age and the duration and intensity of complaints. Ultrasound pictures were compared with elastography values of parotid parenchyma. Results Mean elasticity values for pSS (111 Kilopascals (kPa), Stensen’s duct stenosis (63 kPa), sialolithiasis (82 kPa), and chronic inflammation (77 kPa) were significantly higher than the mean value for healthy patients (24 kPa). Elasticity increased proportionally to the intensity of complaints: mild (51 kPa), moderate (78 kPa), and strong (90 kPa). Increased elasticity did not correspond with ultrasonographic pictures. In pSS the parenchyma was almost twice as stiff as in chronic inflammation (p=0.02), although subjective complaints were mostly mild or moderate, and the ultrasonographic picture did not present features of fibrosis. Conclusions Sonoelastography, by improving routine ultrasonographic assessment, might be a useful tool for parotid evaluations during the course of chronic inflammation. An extraordinarily high degree of stiffness was revealed in pSS despite lack of fibrosis by ultrasonography and moderate subjective complaints, suggesting that sonoelastography could be a valuable diagnostic tool. PMID:25398237

  20. Biology of chronic graft-vs-host disease: Immune mechanisms and progress in biomarker discovery

    PubMed Central

    Presland, Richard B

    2016-01-01

    Chronic graft-vs-host disease (cGVHD) is the leading cause of long-term morbidity and mortality following allogeneic hematopoietic stem cell transplantation. It presents as a chronic inflammatory and sclerotic autoimmune-like condition that most frequently affects the skin, oral mucosa, liver, eyes and gastrointestinal tract. Both clinical and animal studies have shown that multiple T cell subsets including Th1, Th2, Th17, T follicular helper cells and regulatory T-cells play some role in cGVHD development and progression; B cells also play an important role in the disease including the production of antibodies to HY and nuclear antigens that can cause serious tissue damage. An array of cytokines and chemokines produced by different types of immune cells also mediate tissue inflammation and damage of cGVHD target tissues such as the skin and oral cavity. Many of these same immune regulators have been studied as candidate cGVHD biomarkers. Recent studies suggest that some of these biomarkers may be useful for determining disease prognosis and planning long-term clinical follow-up of cGVHD patients. PMID:28058210

  1. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans

    PubMed Central

    2010-01-01

    Background Astaxanthin modulates immune response, inhibits cancer cell growth, reduces bacterial load and gastric inflammation, and protects against UVA-induced oxidative stress in in vitro and rodent models. Similar clinical studies in humans are unavailable. Our objective is to study the action of dietary astaxanthin in modulating immune response, oxidative status and inflammation in young healthy adult female human subjects. Methods Participants (averaged 21.5 yr) received 0, 2, or 8 mg astaxanthin (n = 14/diet) daily for 8 wk in a randomized double-blind, placebo-controlled study. Immune response was assessed on wk 0, 4 and 8, and tuberculin test performed on wk 8. Results Plasma astaxanthin increased (P < 0.01) dose-dependently after 4 or 8 wk of supplementation. Astaxanthin decreased a DNA damage biomarker after 4 wk but did not affect lipid peroxidation. Plasma C-reactive protein concentration was lower (P < 0.05) on wk 8 in subjects given 2 mg astaxanthin. Dietary astaxanthin stimulated mitogen-induced lymphoproliferation, increased natural killer cell cytotoxic activity, and increased total T and B cell subpopulations, but did not influence populations of Thelper, Tcytotoxic or natural killer cells. A higher percentage of leukocytes expressed the LFA-1 marker in subjects given 2 mg astaxanthin on wk 8. Subjects fed 2 mg astaxanthin had a higher tuberculin response than unsupplemented subjects. There was no difference in TNF and IL-2 concentrations, but plasma IFN-γ and IL-6 increased on wk 8 in subjects given 8 mg astaxanthin. Conclusion Therefore, dietary astaxanthin decreases a DNA damage biomarker and acute phase protein, and enhances immune response in young healthy females. PMID:20205737

  2. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer.

    PubMed

    Small, Annabelle Grace; Al-Baghdadi, Marwah; Quach, Alex; Hii, Charles; Ferrante, Antonio

    2016-01-01

    The B7 family-related protein, V-set and Ig domain (VSIG4) / Z39Ig / complement receptor immunoglobulin (CRIg), is a new player in the regulation of immunity to infection and inflammation. The unique features of this receptor as compared with classical complement receptors, CR3 and CR4, have heralded the emergence of new concepts in the regulation of innate and adaptive immunity. Its selective expression in tissue macrophages and dendritic cells has been considered of importance in host defence and in maintaining tolerance against self-antigens. Although a major receptor for phagocytosis of complement opsonised bacteria, its array of emerging functions which incorporates the immune suppressive and anti-inflammatory action of the receptor have now been realised. Accumulating evidence from mouse experimental models indicates a potential role for CRIg in protection against bacterial infection and inflammatory diseases, such as rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, and also in promotion of tumour growth. CRIg expression can be considered as a control point in these diseases, through which inflammatory mediators, including cytokines, act. The ability of CRIg to suppress cytotoxic T cell proliferation and function may underlie its promotion of cancer growth. Thus, the unique properties of this receptor open up new avenues for understanding of the pathways that regulate inflammation during infection, autoimmunity and cancer with the potential for new drug targets to be identified. While some complement receptors may be differently expressed in mice and humans, as well as displaying different properties, mouse CRIg has a structure and function similar to the human receptor, suggesting that extrapolation to human diseases is appropriate. Furthermore, there is emerging evidence in human conditions that CRIg may be a valuable biomarker in infection and immunity, inflammatory conditions and cancer prognosis.

  3. Anti-inflammatory modulation of chronic airway inflammation in the murine house dust mite model.

    PubMed

    Ulrich, Kristina; Hincks, Jennifer S; Walsh, Roddy; Wetterstrand, E M Caroline; Fidock, Mark D; Sreckovic, Sasha; Lamb, David J; Douglas, Garry J; Yeadon, Michael; Perros-Huguet, Christelle; Evans, Steven M

    2008-08-01

    Asthma affects 300 million people worldwide and continues to be a major cause of morbidity and mortality. Disease relevant animal models of asthma are required for benchmarking of novel therapeutic mechanisms in comparison to established clinical approaches. We demonstrate that chronic exposure of mice to house dust mite (HDM) extract results in allergic airway inflammation, that can be significantly attenuated by therapeutic intervention with phosphodiesterase 4 inhibition and corticosteroid treatment. Female BALB/c mice were administered intranasally with HDM (Dermatophagoides pteronyssinus) extract daily for five weeks, and therapeutic intervention with anti-inflammatory treatment (dexamethasone 1 mg/kg subcutaneous once daily, prednisolone 10mg/kg orally twice daily, fluticasone 3, 10 and 30 microg intranasally twice daily, roflumilast 10 mg/kg orally twice daily and intranasally 10 and 30 microg twice daily) was initiated after three weeks of exposure. Chronic HDM extract exposure resulted in significant airway inflammation, demonstrated by bronchoalveolar lavage cell infiltration and lung tissue inflammatory gene expression by TaqMan low density array. Chronic steroid treatment significantly inhibited these parameters. In addition, roflumilast caused a significant reduction in airway inflammatory cell infiltration. We have demonstrated that chronic HDM-induced allergic inflammation can be significantly ameliorated by steroid treatment, and that phosphodiesterase 4 inhibition modulates inflammatory cell infiltration. Therefore, the murine HDM model may be a useful tool for evaluating new targets for the treatment of asthma.

  4. Inflammation Enhances the Risks of Stroke and Death in Chronic Chagas Disease Patients

    PubMed Central

    Guedes, Paulo Marcos Matta; de Andrade, Cléber Mesquita; Nunes, Daniela Ferreira; de Sena Pereira, Nathalie; Queiroga, Tamyres Bernadete Dantas; Machado-Coelho, George Luiz Lins; Nascimento, Manuela Sales Lima; Do-Valle-Matta, Maria Adelaide; da Câmara, Antônia Cláudia Jácome; Chiari, Egler; Galvão, Lúcia Maria da Cunha

    2016-01-01

    Ischemic strokes have been implicated as a cause of death in Chagas disease patients. Inflammation has been recognized as a key component in all ischemic processes, including the intravascular events triggered by vessel interruption, brain damage and repair. In this study, we evaluated the association between inflammatory markers and the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease. The mRNA expression levels of cytokines, transcription factors expressed in the adaptive immune response (Th1, Th2, Th9, Th17, Th22 and regulatory T cell), and iNOS were analyzed by real-time PCR in peripheral blood mononuclear cells of chagasic patients who exhibited the indeterminate, cardiac, digestive and cardiodigestive clinical forms of the disease, and the levels of these transcripts were correlated with the DR and SR. Cardiac patients exhibited lower mRNA expression levels of GATA-3, FoxP3, AHR, IL-4, IL-9, IL-10 and IL-22 but exhibited higher expression of IFN-γ and TNF-α compared with indeterminate patients. Digestive patients showed similar levels of GATA-3, IL-4 and IL-10 than indeterminate patients. Cardiodigestive patients exhibited higher levels of TNF-α compared with indeterminate and digestive patients. Furthermore, we demonstrated that patients with high DR and SR exhibited lower GATA-3, FoxP3, and IL-10 expression and higher IFN-γ, TNF-α and iNOS mRNA expression than patients with low DR and SR. A negative correlation was observed between Foxp3 and IL-10 mRNA expression and the DR and SR. Moreover, TNF-α and iNOS expression was positively correlated with DR and SR. Our data suggest that an inflammatory imbalance in chronic Chagas disease patients is associated with a high DR and SR. This study provides a better understanding of the stroke pathobiology in the general population and might aid the development of therapeutic strategies for controlling the morbidity and mortality of Chagas disease. PMID

  5. Inflammation Enhances the Risks of Stroke and Death in Chronic Chagas Disease Patients.

    PubMed

    Guedes, Paulo Marcos Matta; de Andrade, Cléber Mesquita; Nunes, Daniela Ferreira; de Sena Pereira, Nathalie; Queiroga, Tamyres Bernadete Dantas; Machado-Coelho, George Luiz Lins; Nascimento, Manuela Sales Lima; Do-Valle-Matta, Maria Adelaide; da Câmara, Antônia Cláudia Jácome; Chiari, Egler; Galvão, Lúcia Maria da Cunha

    2016-04-01

    Ischemic strokes have been implicated as a cause of death in Chagas disease patients. Inflammation has been recognized as a key component in all ischemic processes, including the intravascular events triggered by vessel interruption, brain damage and repair. In this study, we evaluated the association between inflammatory markers and the death risk (DR) and stroke risk (SR) of patients with different clinical forms of chronic Chagas disease. The mRNA expression levels of cytokines, transcription factors expressed in the adaptive immune response (Th1, Th2, Th9, Th17, Th22 and regulatory T cell), and iNOS were analyzed by real-time PCR in peripheral blood mononuclear cells of chagasic patients who exhibited the indeterminate, cardiac, digestive and cardiodigestive clinical forms of the disease, and the levels of these transcripts were correlated with the DR and SR. Cardiac patients exhibited lower mRNA expression levels of GATA-3, FoxP3, AHR, IL-4, IL-9, IL-10 and IL-22 but exhibited higher expression of IFN-γ and TNF-α compared with indeterminate patients. Digestive patients showed similar levels of GATA-3, IL-4 and IL-10 than indeterminate patients. Cardiodigestive patients exhibited higher levels of TNF-α compared with indeterminate and digestive patients. Furthermore, we demonstrated that patients with high DR and SR exhibited lower GATA-3, FoxP3, and IL-10 expression and higher IFN-γ, TNF-α and iNOS mRNA expression than patients with low DR and SR. A negative correlation was observed between Foxp3 and IL-10 mRNA expression and the DR and SR. Moreover, TNF-α and iNOS expression was positively correlated with DR and SR. Our data suggest that an inflammatory imbalance in chronic Chagas disease patients is associated with a high DR and SR. This study provides a better understanding of the stroke pathobiology in the general population and might aid the development of therapeutic strategies for controlling the morbidity and mortality of Chagas disease.

  6. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    PubMed

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  7. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

    PubMed

    Adamczyk-Sowa, Monika; Medrek, Aldona; Madej, Paulina; Michlicka, Wirginia; Dobrakowski, Pawel

    2017-01-01

    Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis.

  8. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?

    PubMed Central

    Adamczyk-Sowa, Monika; Madej, Paulina; Michlicka, Wirginia; Dobrakowski, Pawel

    2017-01-01

    Aim. Evaluation of the impact of gut microflora on the pathophysiology of MS. Results. The etiopathogenesis of MS is not fully known. Gut microbiota may be of a great importance in the pathogenesis of MS, since recent findings suggest that substitutions of certain microbial population in the gut can lead to proinflammatory state, which can lead to MS in humans. In contrast, other commensal bacteria and their antigenic products may protect against inflammation within the central nervous system. The type of intestinal flora is affected by antibiotics, stress, or diet. The effects on MS through the intestinal microflora can also be achieved by antibiotic therapy and Lactobacillus. EAE, as an animal model of MS, indicates a strong influence of the gut microbiota on the immune system and shows that disturbances in gut physiology may contribute to the development of MS. Conclusions. The relationship between the central nervous system, the immune system, and the gut microbiota relates to the influence of microorganisms in the development of MS. A possible interaction between gut microbiota and the immune system can be perceived through regulation by the endocannabinoid system. It may offer an opportunity to understand the interaction comprised in the gut-immune-brain axis. PMID:28316999

  9. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer

    PubMed Central

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748

  10. Regulation of inflammation, autoimmunity, and infection immunity by HVEM-BTLA signaling.

    PubMed

    Shui, Jr-Wen; Steinberg, Marcos W; Kronenberg, Mitchell

    2011-04-01

    The HVEM, or TNFRSF14, is a membrane-bound receptor known to activate the NF-κB pathway, leading to the induction of proinflammatory and cell survival-promoting genes. HVEM binds several ligands that are capable of mediating costimulatory pathways, predominantly through its interaction with LIGHT (TNFSF14). However, it can also mediate coinhibitory effects, predominantly by interacting with IGSF members, BTLA or CD160. Therefore, it can function like a "molecular switch" for various activating or inhibitory functions. Furthermore, recent studies suggest the existence of bidirectional signaling with HVEM acting as a ligand for signaling through BTLA, which may act as a ligand in other contexts. Bidirectional signaling, together with new information indicating signaling in cis by cells that coexpress HVEM and its ligands, makes signaling within a HVEM-mediated network complicated, although potentially rich in biology. Accumulating in vivo evidence has shown that HVEM-mediated, coinhibitory signaling may be dominant over HVEM-mediated costimulatory signaling. In several disease models the absence of HVEM-BTLA signaling predominantly resulted in severe mucosal inflammation in the gut and lung, autoimmune-like disease, and impaired immunity during bacterial infection. Here, we will summarize the current view about how HVEM-BTLA signaling is involved in the regulation of mucosal inflammation, autoimmunity, and infection immunity.

  11. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22.

    PubMed

    Sonnenberg, Gregory F; Fouser, Lynette A; Artis, David

    2011-05-01

    The maintenance of barrier function at exposed surfaces of the mammalian body is essential for limiting exposure to environmental stimuli, preventing systemic dissemination of commensal and pathogenic microbes and retaining normal homeostasis of the entire body. Indeed, dysregulated barrier function is associated with many infectious and inflammatory diseases, including psoriasis, influenza, inflammatory bowel disease and human immunodeficiency virus, which collectively afflict millions of people worldwide. Studies have shown that interleukin 22 (IL-22) is expressed at barrier surfaces and that its expression is dysregulated in certain human diseases, which suggests a critical role in the maintenance of normal barrier homeostasis. Consistent with that, studies of mouse model systems have identified a critical role for signaling by IL-22 through its receptor (IL-22R) in the promotion of antimicrobial immunity, inflammation and tissue repair at barrier surfaces. In this review we will discuss how the expression of IL-22 and IL-22R is regulated, the functions of the IL-22-IL-22R pathway in regulating immunity, inflammation and tissue homeostasis, and the therapeutic potential of targeting this pathway in human disease.

  12. Different impairment of immune and inflammation functions in short and long-term after ischemic stroke

    PubMed Central

    Li, Wen-Xing; Qi, Fei; Liu, Jia-Qian; Li, Gong-Hua; Dai, Shao-Xing; Zhang, Tao; Cheng, Fei; Liu, Dahai; Zheng, Song Guo

    2017-01-01

    Ischemic stroke therapy and prognosis outcomes largely depend on the time periods after symptom onset. This study aims to explore the difference of global gene expression profiles and impairment of biological functions between short-term and long-term after stroke onset. We compared three short-term (3 h, 5 h and 24 h) and a long-term (6-month) gene expression levels by a multi-platform microarray data integration method. RankProd was used to calculate the differentially expressed genes between stroke patients and controls. DAVID Bioinformatics Resources was utilized to determine affected biological functions. Consensus cluster and hierarchical cluster methods were employed to compare the gene expression patterns of the commonly biological functions among these four time course groups. The results showed that severe impairment of inflammation and immune related functions in 5 h and 24 h after symptom onset. However, these functions were less affected in the 3 h and the 6-month groups. In addition, several key genes (CCL20, THBS1, EREG, and IL6 et al.) were dramatically down-regulated in 5 h and 24 h groups, whereas these genes showed no change or even a slight contrary expression in 3 h or 6-month groups. This study has identified the large differences of altered immune and inflammation functions based on gene levels between short and long-term after stroke onset. The findings provide valuable insight into the clinical practice and prognosis evaluation of ischemic stroke. PMID:28337302

  13. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    PubMed

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-09-24

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.

  14. The role of inflammation in intravenous immune globulin-mediated hemolysis.

    PubMed

    Pendergrast, Jacob; Willie-Ramharack, Kezia; Sampson, Lorna; Laroche, Vincent; Branch, Donald R

    2015-07-01

    Intravenous immune globulin (IVIG) therapy has shown great success in a number of autoimmune and inflammatory conditions and its use continues to increase worldwide. There is growing awareness of significant side effects of high-dose IVIG: however, particularly severe hemolysis in patients that are non-group O. It has been proposed that IVIG-associated hemolysis may be heralded by an existing inflammatory condition. In the work presented herein, we have provided a review of the pathophysiology of inflammation, particularly as it applies in immune-mediated red blood cell hemolysis, and a summary of previous publications that suggest an association between IVIG-mediated hemolysis and a state of existing inflammation. In addition, preliminary results from a prospective study to address the mechanism of IVIG-associated hemolysis are provided. These preliminary data support the idea of an existing inflammatory condition preceding overt hemolysis after high-dose IVIG therapy that: 1) is restricted to non-group O patients, 2) is seen when using IVIG doses of more than 2 g/kg, 3) involves an activated mononuclear phagocyte system, 4) may be presaged by a significant increase in the anti-inflammatory cytokine interleukin-1 receptor agonist, and 5) is independent of secretor status.

  15. The Role of Vitamin K in Chronic Aging Diseases: Inflammation, Cardiovascular Disease, and Osteoarthritis.

    PubMed

    Harshman, Stephanie G; Shea, M Kyla

    2016-06-01

    Vitamin K is an enzyme cofactor required for the carboxylation of vitamin K dependent proteins, several of which have been implicated in diseases of aging. Inflammation is recognized as a crucial component of many chronic aging diseases and evidence suggests vitamin K has an anti-inflammatory action that is independent of its role as an enzyme co-factor. Vitamin K-dependent proteins and inflammation have been implicated in cardiovascular disease and osteoarthritis, which are leading causes of disability and mortality in older adults. The purpose of this review is to summarize observational studies and randomized trials focused on vitamin K status and inflammation, cardiovascular disease, and osteoarthritis. Although mechanistic evidence suggests a protective role for vitamin K in these age-related conditions, the benefit of vitamin K supplementation is controversial because observational data are equivocal and the number of randomized trials is few.

  16. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation.

    PubMed

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5g/kg, 25% ethanol w/v) daily for 3days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas.

  17. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration

    NASA Astrophysics Data System (ADS)

    McConnell, George C.; Rees, Howard D.; Levey, Allan I.; Gutekunst, Claire-Anne; Gross, Robert E.; Bellamkonda, Ravi V.

    2009-10-01

    Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.

  18. Quality of life is associated with chronic inflammation in schizophrenia: a cross-sectional study

    PubMed Central

    M., Faugere; J.A., Micoulaud-Franchi; M., Alessandrini; R., Richieri; C., Faget-Agius; P., Auquier; C., Lançon; L., Boyer

    2015-01-01

    Inflammation may play a crucial role in the pathogenesis of schizophrenia. However, the association between chronic inflammation and health outcomes in schizophrenia remains unclear, particularly for patient-reported outcomes. The aim of this study was to investigate the relationship between quality of life (QoL) and chronic inflammation assessed using C -Reactive Protein (CRP) in patients with schizophrenia. Two hundred and fifty six patients with schizophrenia were enrolled in this study. After adjusting for key socio-demographic and clinical confounding factors, patients with high levels of CRP (>3.0 mg/l) had a lower QoL than patients with normal CRP levels (OR = 0.97, 95% CI = 0.94–0.99). An investigation of the dimensions of QoL revealed that psychological well-being, physical well-being and sentimental life were the most salient features of QoL associated with CRP. Significant associations were found between lower educational level (OR = 4.15, 95% CI = 1.55–11.07), higher body mass index (OR = 1.16, 95% CI = 1.06–1.28), higher Fagerström score (OR = 1.22, 95% CI = 1.01–1.47) and high levels of CRP. After replications with longitudinal approaches, the association between QoL and chronic inflammation may offer interesting interventional prospects to act both on inflammation and QoL in patients with schizophrenia. PMID:26041435

  19. Thymic involution perturbs negative selection leading to autoreactive T cells that induce chronic inflammation.

    PubMed

    Coder, Brandon D; Wang, Hongjun; Ruan, Linhui; Su, Dong-Ming

    2015-06-15

    Thymic involution and the subsequent amplified release of autoreactive T cells increase the susceptibility toward developing autoimmunity, but whether they induce chronic inflammation with advanced age remains unclear. The presence of chronic low-level proinflammatory factors in elderly individuals (termed inflammaging) is a significant risk factor for morbidity and mortality in virtually every chronic age-related disease. To determine how thymic involution leads to the persistent release and activation of autoreactive T cells capable of inducing inflammaging, we used a Foxn1 conditional knockout mouse model that induces accelerated thymic involution while maintaining a young periphery. We found that thymic involution leads to T cell activation shortly after thymic egress, which is accompanied by a chronic inflammatory phenotype consisting of cellular infiltration into non-lymphoid tissues, increased TNF-α production, and elevated serum IL-6. Autoreactive T cell clones were detected in the periphery of Foxn1 conditional knockout mice. A failure of negative selection, facilitated by decreased expression of Aire rather than impaired regulatory T cell generation, led to autoreactive T cell generation. Furthermore, the young environment can reverse age-related regulatory T cell accumulation in naturally aged mice, but not inflammatory infiltration. Taken together, these findings identify thymic involution and the persistent activation of autoreactive T cells as a contributing source of chronic inflammation (inflammaging).

  20. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model

    PubMed Central

    Wei, Qin; Bian, Yeping; Yu, Fuchao; Zhang, Qiang; Zhang, Guanghao; Li, Yang; Song, Songsong; Ren, Xiaomei; Tong, Jiayi

    2016-01-01

    Abstract Chronic intermittent hypoxia is considered to play an important role in cardiovascular pathogenesis during the development of obstructive sleep apnea (OSA). We used a well-described OSA rat model induced with simultaneous intermittent hypoxia. Male Sprague Dawley rats were individually placed into plexiglass chambers with air pressure and components were electronically controlled. The rats were exposed to intermittent hypoxia 8 hours daily for 5 weeks. The changes of cardiac structure and function were examined by ultrasound. The cardiac pathology, apoptosis, and fibrosis were analyzed by H&E staining, TUNNEL assay, and picosirius staining, respectively. The expression of inflammation and fibrosis marker genes was analyzed by quantitative real-time PCR and Western blot. Chronic intermittent hypoxia/low pressure resulted in significant increase of left ventricular internal diameters (LVIDs), end-systolic volume (ESV), end-diastolic volume (EDV), and blood lactate level and marked reduction in ejection fraction and fractional shortening. Chronic intermittent hypoxia increased TUNNEL-positive myocytes, disrupted normal arrangement of cardiac fibers, and increased Sirius stained collagen fibers. The expression levels of hypoxia induced factor (HIF)-1α, NF-kB, IL-6, and matrix metallopeptidase 2 (MMP-2) were significantly increased in the heart of rats exposed to chronic intermittent hypoxia. In conclusion, the left ventricular function was adversely affected by chronic intermittent hypoxia, which is associated with increased expression of HIF-1α and NF-kB signaling molecules and development of cardiac inflammation, apoptosis and fibrosis. PMID:27924067

  1. Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation.

    PubMed

    Langen, Ramon C J; Schols, Annemie M W J; Kelders, Marco C J M; van der Velden, Jos L J; Wouters, Emiel F M; Janssen-Heininger, Yvonne M W

    2006-12-01

    Muscle wasting and increased circulating levels of inflammatory cytokines, including TNF-alpha, are common features of chronic obstructive pulmonary disease. To investigate whether inflammation of the lung is responsible for systemic inflammation and muscle wasting, we adopted a mouse model of pulmonary inflammation resulting from directed overexpression of a TNF-alpha transgene controlled by the surfactant protein C (SP-C) promoter. Compared with wild-type mice, SP-C/TNF-alpha mice exhibited increased levels of TNF-alpha in the circulation and increased endogenous TNF-alpha expression in skeletal muscle, potentially reflecting an amplificatory response to circulating TNF-alpha. Decreased muscle and body weights observed in SP-C/TNF-alpha mice were indicative of muscle wasting. Further evaluation of the SP-C/TNF-alpha mouse musculature revealed a decreased muscle regenerative capacity, shown by attenuated myoblast proliferation and differentiation in response to reloading of disuse-atrophied muscle, which may contribute to skeletal muscle wasting. Importantly, incubation of cultured myoblasts with TNF-alpha also resulted in elevated TNF-alpha mRNA levels and inhibition of myoblast differentiation. Collectively, our results demonstrate that chronic pulmonary inflammation results in muscle wasting and impaired muscle regeneration in SP-C/TNF-alpha mice, possibly as a consequence of an amplificatory TNF-alpha expression circuit extending from the lung to skeletal muscle.

  2. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease

    PubMed Central

    George, Leena; Brightling, Christopher E.

    2016-01-01

    The chronic lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are common affecting over 500 million people worldwide and causing substantial morbidity and mortality. Asthma is typically associated with Th2-mediated eosinophilic airway inflammation, in contrast to neutrophilic inflammation observed commonly in COPD. However, there is increasing evidence that the eosinophil might play an important role in 10–40% of patients with COPD. Consistently in both asthma and COPD a sputum eosinophilia is associated with a good response to corticosteroid therapy and tailored strategies aimed to normalize sputum eosinophils reduce exacerbation frequency and severity. Advances in our understanding of the multistep paradigm of eosinophil recruitment to the airway, and the consequence of eosinophilic inflammation, has led to the development of new therapies to target these molecular pathways. In this article we discuss the mechanisms of eosinophilic trafficking, the tools to assess eosinophilic airway inflammation in asthma and COPD during stable disease and exacerbations and review current and novel anti-eosinophilic treatments. PMID:26770668

  3. Acupuncture and Immune Function in Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Randomized, Controlled Study

    PubMed Central

    Lee, Shaun Wen Huey; Liong, Men Long; Yuen, Kah Hay; Krieger, John N

    2014-01-01

    Objective The immune system has been implicated as one mechanism underlying the benefits of acupuncture therapy. Evidence suggests that acupuncture can ameliorate symptoms of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), but the association between clinical response and the immune system has not been investigated. Design/Setting We investigated 12 CP/CPPS patients participating in a prospective randomized clinical trial comparing acupuncture versus sham acupuncture for effects on cellular immunity. Blood samples were taken before the first needling and after the last of 20 treatment sessions (week 10). Patients also completed questionnaires examining their CP/CPPS symptoms and mood status at the baseline and end of study visits. Results At the end of study 8 of 12 participants (67%) were classified as treatment responders, 4 participants each from the acupuncture and sham groups. The acupuncture group averaged a 5% increase in natural killer cell levels compared to corresponding sham (-13%; p=0.03). Similarly, patients randomized to acupuncture reported a reduction in other white blood cell parameters examined, supporting the possibility that immunity might be important in the pathophysiology of CP/CPPS. Conclusions The specific effect of acupuncture on CP/CPPS remains unclear. Further research is warranted to examine the mechanisms by which acupuncture therapy may improve clinical symptoms in patients with CP/CPPS. PMID:25453515

  4. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells.

    PubMed

    Béland, Kathie; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2012-01-01

    The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.

  5. Chronic inflammation: is it the driver or is it paving the road for malignant transformation?

    PubMed Central

    Afrasiabi, Kambiz; Zhou, Yi-Hong; Fleischman, Angela

    2015-01-01

    Chronic inflammation in well-defined mouse models such as Giα2 knock out mouse has been shown to trigger formation and expansion of hypoxic niches and also leads to up regulation of NFĸB, offering cells which have adapted their genetic machinery to hypoxia a unique survival advantage. These adapted cells have been shown to acquire stem cell-like capabilities as shown by up regulation of stem cell markers. Such long lived cells become permanent residents in sub mucosa and acquire a malignant phenotype from long-term exposure to noxious environmental agents due to a barrier defect secondary to down regulation of barrier proteins such as Zo1 and Occludin. Indeed mitotic spindle disorientation in such mice has been proposed as another contributory factor to malignant transformation. Sterilization of bowel lumen of these mice through different techniques has prevented malignant transformation in the presence of chronic inflammation. These facts stand strongly against chronic inflammation as a true driver of carcinogenesis but clearly support its role in facilitating the emergence of the neoplastic clone. PMID:26124920

  6. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.

  7. [Corticosteroid hormones and angiotensin-converting enzyme in the dynamics of chronic granulomatous inflammation].

    PubMed

    Cherkasova, A P; Selyatitskaya, V G

    2013-01-01

    It was studied the contents of corticosteroid hormones in the adrenal gland, plasma and 11beta-hydroxysteroid dehydrogenase activity (11betaHSD) in the liver and kidneys, as well as the activity of angiotensin-converting enzyme (ACE) in blood plasma, lung, renal cortex and liver of male rats in the dynamics of SiO2-induced inflammation. The study showed that chronic granulomatous inflammation in rats was accompanied by an initial short-term reaction to the activation of synthesis of the main glucocorticoid hormone, followed by specific inhibition of synthesis of this hormone as well as 11betaHSD activity in the adrenal gland. Inflammation caused less pronounced changes in the functional state of the renin-angiotensin system, however, inhibition of ACE activity observed in plasma, liver and kidneys during the initial period of inflammation. Factor analysis revealed a violation of intersystem relations of hypothalamic-pituitary-adrenocortical and renin-angiotensin systems in inflammation due, probably, to the modulating influence of cytokines.

  8. Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo

    PubMed Central

    Moreira, Thais G.; Zhang, Liang; Shaulov, Lihi; Harel, Amnon; Kuss, Sharon K.; Williams, Jessica; Shelton, John; Somatilaka, Bandarigoda; Seemann, Joachim; Yang, Jue; Sakthivel, Ramanavelan; Nussenzveig, Daniel R.; Faria, Ana M. C.; Fontoura, Beatriz M. A.

    2015-01-01

    The Sec13 protein functions in various intracellular compartments including the nuclear pore complex, COPII-coated vesicles, and inside the nucleus as a transcription regulator. Here we developed a mouse model that expresses low levels of Sec13 (Sec13H/−) to assess its functions in vivo, as Sec13 knockout is lethal. These Sec13 mutant mice did not present gross defects in anatomy and physiology. However, the reduced levels of Sec13 in vivo yielded specific immunological defects. In particular, these Sec13 mutant mice showed low levels of MHC I and II expressed by macrophages, low levels of INF-γ and IL-6 expressed by stimulated T cells, and low frequencies of splenic IFN-γ+CD8+ T cells. In contrast, the levels of soluble and membrane-bound TGF-β as well as serum immunoglobulin production are high in these mice. Furthermore, frequencies of CD19+CD5-CD95+ and CD19+CD5-IL-4+ B cells were diminished in Sec13H/− mice. Upon stimulation or immunization, some of the defects observed in the naïve mutant mice were compensated. However, TGF-β expression remained high suggesting that Sec13 is a negative modulator of TGF-β expression and of its immunosuppressive functions on certain immune cells. In sum, Sec13 regulates specific expression of immune factors with key functions in inflammation. PMID:26631972

  9. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    PubMed

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions.

  10. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation.

    PubMed

    Croasdell, Amanda; Duffney, Parker F; Kim, Nina; Lacy, Shannon H; Sime, Patricia J; Phipps, Richard P

    2015-01-01

    The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  11. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity.

    PubMed

    Xie, Zhihui; Chan, Eunice C; Druey, Kirk M

    2016-03-01

    G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.

  12. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    PubMed Central

    Croasdell, Amanda; Duffney, Parker F.; Kim, Nina; Lacy, Shannon H.; Sime, Patricia J.; Phipps, Richard P.

    2015-01-01

    The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor. PMID:26713087

  13. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    PubMed Central

    Sakelliou, Alexandra; Athanailidis, Ioannis; Tsoukas, Dimitrios; Chatzinikolaou, Athanasios; Draganidis, Dimitris; Jamurtas, Athanasios Z.; Liacos, Christina; Mandalidis, Dimitrios; Stamatelopoulos, Kimon; Dimopoulos, Meletios A.; Mitrakou, Asimina

    2016-01-01

    We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation. PMID:27974950

  14. Synergistic Effect of Green Tea Polyphenols and Vitamin D on Chronic Inflammation-Induced Bone Loss in Female Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent study demonstrated a bone-protective role of green tea polyphenols (GTPs), extracted from green tea, in chronic inflammation-induced bone loss of female rats through reduction of inflammation and oxidative stress. This study further examines effects of GTPs in conjunction with vitamin D (...

  15. Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response.

    PubMed

    Zou, Ying; Lin, Jiantao; Li, Wenyang; Wu, Zhuguo; He, Zhiwei; Huang, Guoliang; Wang, Jian; Ye, Caiguo; Cheng, Xiaoyan; Ding, Congcong; Zheng, Xuebao; Chi, Honggang

    2016-12-16

    Huangqin-tang (HQT) is a traditional Chinese medicine (TCM) formula widely used for the treatment of inflammatory bowel disease in China. However, the molecular mechanisms by which HQT protects the colon are unclear. We studied the protective effects of HQT and the underlying mechanisms in an experimental mouse model and in vitro. In vivo, dextran sodium sulphate (DSS)-induced acute and chronic colitis were significantly ameliorated by HQT as gauged by phenotypic, histopathologic and inflammatory manifestations of the disease. Mechanistically, DSS-induced nuclear factor-κB (NF-κB) signalling was inhibited by HQT. Moreover, HQT-treated mice demonstrated significant changes in cell apoptosis, expression of apoptosis-associated genes such as caspase-3, bax, bcl-2, and intestinal permeability. HQT also increased occluding and zonula occludens-1 (ZO-1), inhibited cell proliferation (Ki67), and increased regulatory T cells numbers, protein expression of Foxp3 and IL-10 in the colonic tissue. In vitro, HQT down-regulated production of pro-inflammatory cytokines and supressed the NF-κB signalling pathway in lipopolysaccharides-induced RAW 264.7 macrophages. Our study suggests that HQT plays a critical role in regulating intestinal epithelial cell homeostasis, inflammation and immune response in colitis and offers novel therapeutic options in the management of inflammatory bowel disease.

  16. Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates.

    PubMed

    Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard

    2016-01-01

    Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation.

  17. Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response

    PubMed Central

    Zou, Ying; Lin, Jiantao; Li, Wenyang; Wu, Zhuguo; He, Zhiwei; Huang, Guoliang; Wang, Jian; Ye, Caiguo; Cheng, Xiaoyan; Ding, Congcong; Zheng, Xuebao; Chi, Honggang

    2016-01-01

    Huangqin-tang (HQT) is a traditional Chinese medicine (TCM) formula widely used for the treatment of inflammatory bowel disease in China. However, the molecular mechanisms by which HQT protects the colon are unclear. We studied the protective effects of HQT and the underlying mechanisms in an experimental mouse model and in vitro. In vivo, dextran sodium sulphate (DSS)-induced acute and chronic colitis were significantly ameliorated by HQT as gauged by phenotypic, histopathologic and inflammatory manifestations of the disease. Mechanistically, DSS-induced nuclear factor-κB (NF-κB) signalling was inhibited by HQT. Moreover, HQT-treated mice demonstrated significant changes in cell apoptosis, expression of apoptosis-associated genes such as caspase-3, bax, bcl-2, and intestinal permeability. HQT also increased occluding and zonula occludens-1 (ZO-1), inhibited cell proliferation (Ki67), and increased regulatory T cells numbers, protein expression of Foxp3 and IL-10 in the colonic tissue. In vitro, HQT down-regulated production of pro-inflammatory cytokines and supressed the NF-κB signalling pathway in lipopolysaccharides-induced RAW 264.7 macrophages. Our study suggests that HQT plays a critical role in regulating intestinal epithelial cell homeostasis, inflammation and immune response in colitis and offers novel therapeutic options in the management of inflammatory bowel disease. PMID:27982094

  18. Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!

    PubMed Central

    Khatami, Mahin

    2014-01-01

    Ongoing debates, misunderstandings and controversies on the role of inflammation in cancer have been extremely costly for taxpayers and cancer patients for over four decades. A reason for repeated failed clinical trials (90% ± 5 failure rates) is heavy investment on numerous genetic mutations (molecular false-flags) in the chaotic molecular landscape of site-specific cancers which are used for “targeted” therapies or “personalized” medicine. Recently, unresolved/chronic inflammation was defined as loss of balance between two tightly regulated and biologically opposing arms of acute inflammation (“Yin”–“Yang” or immune surveillance). Chronic inflammation could differentially erode architectural integrities in host immune-privileged or immune-responsive tissues as a common denominator in initiation and progression of nearly all age-associated neurodegenerative and autoimmune diseases and/or cancer. Analyses of data on our “accidental” discoveries in 1980s on models of acute and chronic inflammatory diseases in conjunctival-associated lymphoid tissues (CALTs) demonstrated at least three stages of interactions between resident (host) and recruited immune cells: (a), acute phase; activation of mast cells (MCs), IgE Abs, histamine and prostaglandin synthesis; (b), intermediate phase; down-regulation phenomenon, exhausted/degranulated MCs, heavy eosinophils (Eos) infiltrations into epithelia and goblet cells (GCs), tissue hypertrophy and neovascularization; and (c), chronic phase; induction of lymphoid hyperplasia, activated macrophages (Mϕs), increased (irregular size) B and plasma cells, loss of integrity of lymphoid tissue capsular membrane, presence of histiocytes, follicular and germinal center formation, increased ratios of local IgG1/IgG2, epithelial thickening (growth) and/or thinning (necrosis) and angiogenesis. Results are suggestive of first evidence for direct association between inflammation and identifiable phases of immune

  19. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone

    PubMed Central

    Muñoz-Durango, N.; Vecchiola, A.; Gonzalez-Gomez, L. M.; Simon, F.; Riedel, C. A.; Fardella, C. E.; Kalergis, A. M.

    2015-01-01

    The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models. PMID:26448944

  20. Modulation of Immunity and Inflammation by the Mineralocorticoid Receptor and Aldosterone.

    PubMed

    Muñoz-Durango, N; Vecchiola, A; Gonzalez-Gomez, L M; Simon, F; Riedel, C A; Fardella, C E; Kalergis, A M

    2015-01-01

    The mineralocorticoid receptor (MR) is a ligand dependent transcription factor. MR has been traditionally associated with the control of water and electrolyte homeostasis in order to keep blood pressure through aldosterone activation. However, there is growing evidence indicating that MR expression is not restricted to vascular and renal tissues, as it can be also expressed by cells of the immune system, where it responds to stimulation or antagonism, controlling immune cell function. On the other hand, aldosterone also has been associated with proinflammatory immune effects, such as the release of proinflammatory cytokines, generating oxidative stress and inducing fibrosis. The inflammatory participation of MR and aldosterone in the cardiovascular disease suggests an association with alterations in the immune system. Hypertensive patients show higher levels of proinflammatory mediators that can be modulated by MR antagonism. Although these proinflammatory properties have been observed in other autoimmune and chronic inflammatory diseases, the cellular and molecular mechanisms that mediate these effects remain unknown. Here we review and discuss the scientific work aimed at determining the immunological role of MR and aldosterone in humans, as well as animal models.

  1. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma.

    PubMed

    Nader, Manar A

    2015-12-01

    In this study the role of sitagliptin, dipeptidyl peptidase inhibitor, DPP-4, and dexamethasone in ameliorating inflammation and remodeling of chronic asthma in a mouse model were investigated. Mice sensitized to ovalbumin were chronically challenged with aerosolized antigen for 3days a week continued for 8weeks. During this period animals were treated with sitagliptin or dexamethasone daily. Assessment of inflammatory cell, oxidative markers, total nitrate/nitrite (NOx), interleukin (IL)-13, transforming growth factor-beta1 (TGF-β1) in bronchoalveolar lavage (BAL) and/or lung tissue were done. Also histopathological and immuno-histochemical analysis for lung was carried out. Compared with vehicle alone, treatment with sitagliptin or dexamethasone significantly reduced accumulation of eosinophils and chronic inflammatory cells, subepithelial collagenization, and thickening of the airway epithelium. Also both drug reduced goblet cell hyperplasia, oxidative stress, TGF-β1, IL-13 and epithelial cytoplasmic immunoreactivity for nuclear factor κ-B (NFκ-B). These data indicate that sitagliptin like dexamethasone may play a beneficial role reducing airway inflammation and remodeling in chronic murine model of asthma.

  2. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: lifestyle changes affecting the host-environment interface.

    PubMed

    Ehlers, S; Kaufmann, S H E

    2010-04-01

    In industrialized nations and high-income regions of the world, the decline of infectious diseases is paralleled by an increase in allergic, autoimmune and chronic inflammatory diseases (AACID). Changes in lifestyle in westernized societies, which impact individually and collectively on intestinal microbiota, may - at least in part - account for the AACID pandemic. Many disease genes that contribute to AACID encode pattern recognition and signalling molecules in barrier-associated cells. Interactions between gene products and environmental factors depend highly upon the host's state of maturation, the composition of the skin and gut microflora, and exposure to pollutants, antibiotics and nutrients. Inflammatory stress responses, if regulated appropriately, ensure immunity, health and relative longevity; when they are dysregulated, they can no longer be terminated appropriately and thus precipitate AACID. The 99th Dahlem Conference brought together experts of various disciplines (genetics, evolution biology, molecular biology, structural biology, cell biology, immunology, microbiology, nutrition science, epidemiology and clinical medicine) to discuss the multi-faceted relationships between infection, immunity and inflammation in barrier organs and the development of AACID. In Clinical and Experimental Immunology we are presenting a compilation of background papers that formed the basis of discussions. Controversial viewpoints and gaps in current knowledge were examined and new concepts for prevention and treatment of CID were formulated.

  3. Signs of ongoing inflammation in female patients with chronic widespread pain

    PubMed Central

    Gerdle, Björn; Ghafouri, Bijar; Ghafouri, Nazdar; Bäckryd, Emmanuel; Gordh, Torsten

    2017-01-01

    Abstract This cross-sectional study investigates the plasma inflammatory profile of chronic widespread pain (CWP) patients compared to healthy controls (CON). Rather than analyzing a relatively few substances at a time, we used a new multiplex proximity extension assay (PEA) panel that enabled the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines. Seventeen women with CWP and 21 female CON participated and a venous blood sample was drawn from all subjects. Pain intensity and pain thresholds for pressure, heat, and cold were registered. A PEA panel (92 proteins) was used to analyze the blood samples. Multivariate data analysis by projection was used in the statistical analyses. Eleven proteins significantly differentiated the CON and CWP subjects (R2 = 0.58, Q2 = 0.37, analysis of variance of cross-validated predictive residuals P = 0.006). It was not possible to significantly regress pain thresholds within each group (CON or CWP). Positive significant correlations existed between several proteins and pain intensities in CWP, but the model reliability of the regression was poor. CWP was associated with systemic low-grade inflammation. Larger studies are needed to confirm the results and to investigate which alterations are condition-specific and which are common across chronic pain conditions. The presence of inflammation could promote the spreading of pain, a hallmark sign of CWP. As it has been suggested that prevalent comorbidities to pain (e.g., depression and anxiety, poor sleep, and tiredness) also are associated with inflammation, it will be important to determine whether inflammation may be a common mediator. PMID:28248866

  4. Green tea polyphenols and 1-α-OH-vitamin D₃ attenuate chronic inflammation-induced myocardial fibrosis in female rats.

    PubMed

    Shen, Chwan-Li; Samathanam, Christina; Graham, Suzanne; Dagda, Raul Y; Chyu, Ming-Chien; Dunn, Dale M

    2012-03-01

    Studies have suggested that 1-α-OH-vitamin D₃ and green tea polyphenols (GTPs) are promising dietary supplements for mitigating chronic inflammation-induced fibrosis of vessels because of their anti-inflammatory properties. This study evaluated (1) the impact of 1-α-OH-vitamin D₃ on myocardial fibrosis in female rats with chronic inflammation and (2) if 1-α-OH-vitamin D₃ and GTPs have an additive or synergistic effect to attenuate myocardial fibrosis in these female rats. A 3-month study of a 2 (no 1-α-OH-vitamin D₃ vs. 0.05 μg/kg 1-α-OH-vitamin D₃, five times per week) ×2 (no GTPs vs. 0.5% GTPs in drinking water) factorial design in lipopolysaccharide (LPS)-administered female rats was performed. Additionally, a group receiving placebo administration was used to compare with a group receiving LPS administration only to evaluate the effect of LPS. Masson's Trichrome staining evaluated myocardial fibrosis in coronary vessels and surrounding myocardium. Spleen cyclooxygenase-2 mRNA expression was determined by real-time polymerase chain reaction. Total lipid profiles were also determined. Whole blood was used for differential cell counts. Data were analyzed by two-way analysis of variance followed by mean separation procedures. At 3 months LPS administration induced myocardial fibrosis in vessels and surrounding myocardium, spleen cyclooxygenase-2 mRNA expression, and elevated leukocyte counts, whereas both 1-α-OH-vitamin D₃ administration and GTPs supplementation significantly attenuated these pro-inflammatory events. The inhibitory effects of 1-α-OH-vitamin D₃ and GTPs seem to be an individual effect, instead of an additive or synergistic effect. 1-α-OH-vitamin D₃ and GTPs lowered red blood cell counts, hematocrit, and hemoglobin. Neither 1-α-OH-vitamin D₃ nor GTPs affected lipid profiles. In summary, both 1-α-OH-vitamin D₃ administration and GTPs supplementation mitigate myocardial fibrosis through suppression of a chronic

  5. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.

    PubMed

    Schwartz, Erica S; La, Jun-Ho; Scheff, Nicole N; Davis, Brian M; Albers, Kathryn M; Gebhart, G F

    2013-03-27

    Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively.

  6. Modulation of Pseudomonas aeruginosa lipopolysaccharide-induced lung inflammation by chronic iron overload in rat.

    PubMed

    Lê, Bá Vuong; Khorsi-Cauet, Hafida; Bach, Véronique; Gay-Quéheillard, Jérôme

    2012-03-01

    Iron constitutes a critical nutrient source for bacterial growth, so iron overload is a risk factor for bacterial infections. This study aimed at investigating the role of iron overload in modulating bacterial endotoxin-induced lung inflammation. Weaning male Wistar rats were intraperitoneally injected with saline or iron sucrose [15 mg kg(-1) body weight (bw), 3 times per week, 4 weeks]. They were then intratracheally injected with Pseudomonas aeruginosa lipopolysaccharide (LPS) (5 μg kg(-1) bw) or saline. Inflammatory indices were evaluated 4 or 18 h post-LPS/saline injection. At 4 h, LPS-treated groups revealed significant increases in the majority of inflammatory parameters (LPS-binding protein (LBP), immune cell recruitment, inflammatory cytokine synthesis, myeloperoxidase activity, and alteration of alveolar-capillary permeability), as compared with control groups. At 18 h, these parameters reduced strongly with the exception for LBP content and interleukin (IL)-10. In parallel, iron acted as a modulator of immune cell recruitment; LBP, tumor necrosis factor-α, cytokine-induced neutrophil chemoattractant 3, and IL-10 synthesis; and alveolar-capillary permeability. Therefore, P. aeruginosa LPS may only act as an acute lung inflammatory molecule, and iron overload may modulate lung inflammation by enhancing different inflammatory parameters. Thus, therapy for iron overload may be a novel and efficacious approach for the prevention and treatment of bacterial lung inflammations.

  7. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway.

    PubMed

    Lucas, Kurt; Maes, Michael

    2013-08-01

    Activation of the Toll-like receptor 4 (TLR4) complex, a receptor of the innate immune system, may underpin the pathophysiology of many human diseases, including asthma, cardiovascular disorder, diabetes, obesity, metabolic syndrome, autoimmune disorders, neuroinflammatory disorders, schizophrenia, bipolar disorder, autism, clinical depression, chronic fatigue syndrome, alcohol abuse, and toluene inhalation. TLRs are pattern recognition receptors that recognize damage-associated molecular patterns and pathogen-associated molecular patterns, including lipopolysaccharide (LPS) from gram-negative bacteria. Here we focus on the environmental factors, which are known to trigger TLR4, e.g., ozone, atmosphere particulate matter, long-lived reactive oxygen intermediate, pentachlorophenol, ionizing radiation, and toluene. Activation of the TLR4 pathways may cause chronic inflammation and increased production of reactive oxygen and nitrogen species (ROS/RNS) and oxidative and nitrosative stress and therefore TLR-related diseases. This implies that drugs or substances that modify these pathways may prevent or improve the abovementioned diseases. Here we review some of the most promising drugs and agents that have the potential to attenuate TLR-mediated inflammation, e.g., anti-LPS strategies that aim to neutralize LPS (synthetic anti-LPS peptides and recombinant factor C) and TLR4/MyD88 antagonists, including eritoran, CyP, EM-163, epigallocatechin-3-gallate, 6-shogaol, cinnamon extract, N-acetylcysteine, melatonin, and molecular hydrogen. The authors posit that activation of the TLR radical (ROS/RNS) cycle is a common pathway underpinning many "civilization" disorders and that targeting the TLR radical cycle may be an effective method to treat many inflammatory disorders.

  8. Carbon-fiber microelectrode amperometry reveals sickle-cell-induced inflammation and chronic morphine effects on single mast cells.

    PubMed

    Manning, Benjamin M; Hebbel, Robert P; Gupta, Kalpna; Haynes, Christy L

    2012-03-16

    Sickle cell disease, caused by a mutation of hemoglobin, is characterized by a complex pathophysiology including an important inflammatory component. Mast cells are tissue-resident leukocytes known to influence a range of immune functions in a variety of different ways, largely through the secretion of biologically active mediators from preformed granules. However, it is not understood how mast cells influence the inflammatory environment in sickle cell disease. A notable consequence of sickle cell disease is severe pain. Therefore, morphine is often used to treat this disease. Because mast cells express opioid receptors, it is pertinent to understand how chronic morphine exposure influences mast cell function and inflammation in sickle cell disease. Herein, carbon-fiber microelectrode amperometry (CFMA) was used to monitor the secretion of immunoactive mediators from single mast cells. CFMA enabled the detection and quantification of discrete exocytotic events from single mast cells. Mast cells from two transgenic mouse models expressing human sickle hemoglobin (hBERK1 and BERK) and a control mouse expressing normal human hemoglobin (HbA-BERK) were monitored using CFMA to explore the impact of sickle-cell-induced inflammation and chronic morphine exposure on mast cell function. This work, utilizing the unique mechanistic perspective provided by CFMA, describes how mast cell function is significantly altered in hBERK1 and BERK mice, including decreased serotonin released compared to HbA-BERK controls. Furthermore, morphine was shown to significantly increase the serotonin released from HbA-BERK mast cells and demonstrated the capacity to reverse the observed sickle-cell-induced changes in mast cell function.

  9. Indoleamine 2,3-dioxygenase pathways of pathgenic inflammation and immune escape in cancer

    PubMed Central

    Prendergast, George C.; Smith, Courtney; Thomas, Sunil; Mandik-Nayak, Laura; Laury-Kleintop, Lisa; Metz, Richard; Muller, Alexander J.

    2014-01-01

    Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells (Treg) and myeloid-derived suppressor cells (MDSC), and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor AhR, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-β signaling. Small molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in GIST has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer. PMID:24711084

  10. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    SciTech Connect

    Yao Hongwei; Rahman, Irfan

    2011-07-15

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-{kappa}B), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-{kappa}B pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  11. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    PubMed Central

    Yao, Hongwei; Rahman, Irfan

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a global health problem, and current therapy for COPD is poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. Imbalance of oxidant/antioxidant balance caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g. NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervening COPD. PMID:21296096

  12. Immunity and inflammation in status epilepticus and its sequelae: possibilities for therapeutic application

    PubMed Central

    Vezzani, Annamaria; Dingledine, Raymond; Rossetti, Andrea O

    2016-01-01

    Status epilepticus (SE) is a life-threatening neurological emergency often refractory to available treatment options. It is a very heterogeneous condition in terms of clinical presentation and causes, which besides genetic, vascular and other structural causes also include CNS or severe systemic infections, sudden withdrawal from benzodiazepines or anticonvulsants and rare autoimmune etiologies. Treatment of SE is essentially based on expert opinions and antiepileptic drug treatment per se seems to have no major impact on prognosis. There is, therefore, urgent need of novel therapies that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Accumulating evidence in animal models highlights that inflammation ensuing in the brain during SE may play a determinant role in ongoing seizures and their long-term detrimental consequences, independent of an infection or auto-immune cause; this evidence encourages reconsideration of the treatment flow in SE patients. PMID:26312647

  13. Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: therapeutic implications.

    PubMed

    Candore, Giuseppina; Bulati, Matteo; Caruso, Calogero; Castiglia, Laura; Colonna-Romano, Giuseppina; Di Bona, Danilo; Duro, Giovanni; Lio, Domenico; Matranga, Domenica; Pellicanò, Mariavaleria; Rizzo, Claudia; Scapagnini, Giovanni; Vasto, Sonya

    2010-01-01

    Alzheimer disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for senile dementia. Today many countries have rising aging populations and are facing an increased prevalence of age-related diseases, such as AD, with increasing health-care costs. Understanding the pathophysiology process of AD plays a prominent role in new strategies for extending the health of the elderly population. Considering the future epidemic of AD, prevention and treatment are important goals of ongoing research. However, a better understanding of AD pathophysiology must be accomplished to make this objective feasible. In this paper, we review some hot topics concerning AD pathophysiology that have an important impact on therapeutic perspectives. Hence, we have focused our attention on inflammation, cytokines, immune response, apolipoprotein E (APOE), cholesterol, oxidative stress, as well as exploring the related therapeutic possibilities, i.e., nonsteroidal antiinflammatory drugs, cytokine blocking antibodies, immunotherapy, diet, and curcumin.

  14. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy.

    PubMed

    Cayrol, Corinne; Girard, Jean-Philippe

    2014-12-01

    IL-33 is a nuclear cytokine from the IL-1 family constitutively expressed in epithelial barrier tissues and lymphoid organs, which plays important roles in type-2 innate immunity and human asthma. Recent studies indicate that IL-33 induces production of large amounts of IL-5 and IL-13 by group 2 innate lymphoid cells (ILC2s), for initiation of allergic inflammation shortly after exposure to allergens or infection with parasites or viruses. IL-33 appears to function as an alarmin (alarm signal) rapidly released from producing cells upon cellular damage or cellular stress. In this review, we discuss the cellular sources, mode of action and regulation of IL-33, and we highlight its crucial roles in vivo with particular emphasis on results obtained using IL33-deficient mice.

  15. Toxoplasma gondii Oral Infection Induces Intestinal Inflammation and Retinochoroiditis in Mice Genetically Selected for Immune Oral Tolerance Resistance

    PubMed Central

    Dias, Raul Ramos Furtado; de Carvalho, Eulógio Carlos Queiroz; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis. PMID:25437299

  16. Toxoplasma gondii oral infection induces intestinal inflammation and retinochoroiditis in mice genetically selected for immune oral tolerance resistance.

    PubMed

    Dias, Raul Ramos Furtado; Carvalho, Eulógio Carlos Queiroz de; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis.

  17. Maternal Income during Pregnancy is Associated with Chronic Placental Inflammation at Birth.

    PubMed

    Keenan-Devlin, Lauren S; Ernst, Linda M; Ross, Kharah M; Qadir, Sameen; Grobman, William A; Holl, Jane L; Crockett, Amy; Miller, Gregory E; Borders, Ann E B

    2017-04-06

    Objective This study aims to examine whether maternal household income is associated with histological evidence of chronic placental inflammation. Study Design A total of 152 participants completed surveys of household income and consented to placenta collection at delivery and postpartum chart review for birth outcomes. Placental inflammatory lesions were evaluated via histological examination of the membranes, basal plate, and villous parenchyma by a single, experienced pathologist. Associations between household income and the presence of inflammatory lesions were adjusted for known perinatal risk factors. Results Overall, 45% of participants reporting household income below $30,000/y had chronic placental inflammation, compared with 25% of participants reporting income above $100,000 annually (odds ratio [OR] = 4.23, 95% confidence interval [CI] = 1.25, 14.28; p = 0.02). Middle-income groups showed intermediate rates of chronic inflammatory lesions, at 40% for those reporting $30,000 and 50,000 (OR = 3.60, 95% CI = 1.05, 12.53; p = 0.04) and 38% for those reporting $50,000 to 100,000 (OR = 1.57, 95% CI = 0.60, 4.14; p = 0.36). Results remained significant after adjustment for maternal age, race, and marital status. Conclusion Chronic placental inflammation is associated with maternal household income. Greater occurrence of placental lesions in low-income mothers may arise from a systemic inflammatory response to social and physical environmental factors.

  18. Ongoing liver inflammation in patients with chronic hepatitis C and sustained virological response

    PubMed Central

    Welsch, Christoph; Efinger, Mira; von Wagner, Michael; Herrmann, Eva; Zeuzem, Stefan

    2017-01-01

    Background Novel direct-acting antiviral DAA combination therapies tremendously improved sustained virologic response (SVR) rates in patients with chronic HCV infection. SVR is typically accompanied by normalization of liver enzymes, however, hepatic inflammation, i.e. persistently elevated aminotransferase levels may persist despite HCV eradication. Aim: To investigate prevalence and risk factors for ongoing hepatic inflammation after SVR in two large patient cohorts. Methods This post-hoc analysis was based on prospectively collected demographic and clinical data from 834 patients with SVR after HCV treatment with either PegIFN- or DAA-based treatment regimens from the PRAMA trial (n = 341) or patients treated at our outpatient clinic (n = 493). Results We observed an unexpected high prevalence of post-SVR inflammation, including patients who received novel IFN-free DAA-based therapies. Up to 10% of patients had ongoing elevation of aminotransferase levels and another 25% showed aminotransferase activity above the so-called healthy range. Several baseline factors were independently associated with post-SVR aminotransferase elevation. Among those, particularly male gender, advanced liver disease and markers for liver steatosis were strongly predictive for persistent ALT elevation. The use of IFN-based antiviral treatment was independently correlated with post-SVR inflammation, further supporting the overall benefit of IFN-free combination regimens. Conclusion This is the first comprehensive study on a large patient cohort investigating the prevalence and risk factors for ongoing liver inflammation after eradication of HCV. Our data show a high proportion of patients with ongoing hepatic inflammation despite HCV eradication with potential implications for the management of approximately one third of all patients upon SVR. PMID:28196130

  19. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation.

    PubMed

    Cheung, Marian C; Vaisar, Tomás; Han, Xianlin; Heinecke, Jay W; Albers, John J

    2010-08-31

    Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.

  20. Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus.

    PubMed

    Taipale, Kristian; Liikanen, Ilkka; Juhila, Juuso; Turkki, Riku; Tähtinen, Siri; Kankainen, Matti; Vassilev, Lotta; Ristimäki, Ari; Koski, Anniina; Kanerva, Anna; Diaconu, Iulia; Cerullo, Vincenzo; Vähä-Koskela, Markus; Oksanen, Minna; Linder, Nina; Joensuu, Timo; Lundin, Johan; Hemminki, Akseli

    2016-02-01

    Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.

  1. [Immune response and inflammation in Crohn disease. More detailed diagnostics and more specific drugs are soon to be available].

    PubMed

    Lindgren, S; Egesten, A

    1999-01-06

    The chronic inflammation in Crohn's disease may be caused by aggressive response to bacterial antigens normal to the gut. Genetic and environmental factors modify the inflammatory response evoked by damage to the mucosal gut barrier. Genetic factors may also determine the subsequent course of chronic inflammation. Further elucidation of the pathogenesis might improve our understanding of the heterogenous nature of Crohn's disease, thus enabling the disease to be subtyped and individualised therapy directed primarily at down-regulation of helper T-cell-1 response to be developed.

  2. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism

    PubMed Central

    2014-01-01

    Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696

  3. A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death

    PubMed Central

    Catrysse, L; Farhang Ghahremani, M; Vereecke, L; Youssef, S A; Mc Guire, C; Sze, M; Weber, A; Heikenwalder, M; de Bruin, A; Beyaert, R; van Loo, G

    2016-01-01

    An important regulator of inflammatory signalling is the ubiquitin-editing protein A20 that acts as a break on nuclear factor-κB (NF-κB) activation, but also exerts important cytoprotective functions. A20 knockout mice are cachectic and die prematurely due to excessive multi-organ inflammation. To establish the importance of A20 in liver homeostasis and pathology, we developed a novel mouse line lacking A20 specifically in liver parenchymal cells. These mice spontaneously develop chronic liver inflammation but no fibrosis or hepatocellular carcinomas, illustrating an important role for A20 in normal liver tissue homeostasis. Hepatocyte-specific A20 knockout mice show sustained NF-κB-dependent gene expression in the liver upon tumor necrosis factor (TNF) or lipopolysaccharide injection, as well as hepatocyte apoptosis and lethality upon challenge with sublethal doses of TNF, demonstrating an essential role for A20 in the protection of mice against acute liver failure. Finally, chronic liver inflammation and enhanced hepatocyte apoptosis in hepatocyte-specific A20 knockout mice was associated with increased susceptibility to chemically or high fat-diet-induced hepatocellular carcinoma development. Together, these studies establish A20 as a crucial hepatoprotective factor. PMID:27253414

  4. Adaptive Immunity, Inflammation, and Cardiovascular Complications in Type 1 and Type 2 Diabetes Mellitus

    PubMed Central

    Pedicino, Daniela; Liuzzo, Giovanna; Trotta, Francesco; Giglio, Ada Francesca; Giubilato, Simona; Martini, Francesca; Zaccardi, Francesco; Scavone, Giuseppe; Previtero, Marco; Massaro, Gianluca; Cialdella, Pio; Cardillo, Maria Teresa; Pitocco, Dario; Ghirlanda, Giovanni; Crea, Filippo

    2013-01-01

    Diabetes mellitus (DM) is a pandemics that affects more than 170 million people worldwide, associated with increased mortality and morbidity due to coronary artery disease (CAD). In type 1 (T1) DM, the main pathogenic mechanism seems to be the destruction of pancreatic β-cells mediated by autoreactive T-cells resulting in chronic insulitis, while in type 2 (T2) DM primary insulin resistance, rather than defective insulin production due to β-cell destruction, seems to be the triggering alteration. In our study, we investigated the role of systemic inflammation and T-cell subsets in T1- and T2DM and the possible mechanisms underlying the increased cardiovascular risk associated with these diseases. PMID:23762872

  5. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus.

    PubMed

    Pedicino, Daniela; Liuzzo, Giovanna; Trotta, Francesco; Giglio, Ada Francesca; Giubilato, Simona; Martini, Francesca; Zaccardi, Francesco; Scavone, Giuseppe; Previtero, Marco; Massaro, Gianluca; Cialdella, Pio; Cardillo, Maria Teresa; Pitocco, Dario; Ghirlanda, Giovanni; Crea, Filippo

    2013-01-01

    Diabetes mellitus (DM) is a pandemics that affects more than 170 million people worldwide, associated with increased mortality and morbidity due to coronary artery disease (CAD). In type 1 (T1) DM, the main pathogenic mechanism seems to be the destruction of pancreatic β -cells mediated by autoreactive T-cells resulting in chronic insulitis, while in type 2 (T2) DM primary insulin resistance, rather than defective insulin production due to β -cell destruction, seems to be the triggering alteration. In our study, we investigated the role of systemic inflammation and T-cell subsets in T1- and T2DM and the possible mechanisms underlying the increased cardiovascular risk associated with these diseases.

  6. Mechanical Stress as the Common Denominator between Chronic Inflammation, Cancer, and Alzheimer’s Disease

    PubMed Central

    Levy Nogueira, Marcel; da Veiga Moreira, Jorgelindo; Baronzio, Gian Franco; Dubois, Bruno; Steyaert, Jean-Marc; Schwartz, Laurent

    2015-01-01

    The pathogenesis of common diseases, such as Alzheimer’s disease (AD) and cancer, are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This is in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age, such as cardiomyopathy, atherosclerosis, and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD, and cancer. PMID:26442209

  7. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.

    PubMed

    Ruiz, Stacey; Pergola, Pablo E; Zager, Richard A; Vaziri, Nosratola D

    2013-06-01

    Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.

  8. Antihyperalgesic effects of δ opioid agonists in a rat model of chronic inflammation

    PubMed Central

    Fraser, Graeme L; Gaudreau, Geneviève-Anne; Clarke, Paul B S; Ménard, Daniel P; Perkins, Martin N

    2000-01-01

    Opioid receptors in the brain activate descending pain pathways to inhibit the nociceptive response to acute noxious stimuli. The aim of the present study was to clarify the role of supraspinal opioid receptors in modulating the nociceptive response to persistent inflammation in rats.Subcutaneous administration of 50 μl of complete Freund's Adjuvant (CFA) into the plantar surface of the hindpaw induced a significant decrease in paw withdrawal latency to thermal stimuli (P<0.01) at 24 h post-injection.Intracerebroventricular (i.c.v.) administration of the μ opioid receptor agonists, DAMGO and morphine, and the δ opioid receptor agonists, deltorphin II and SNC80, significantly reversed the hyperalgesic response associated with peripheral inflammation in a dose-dependent manner (P<0.0001).The μ and δ agonists also significantly attenuated the antinociceptive response to acute thermal stimulation in rats (P<0.001). However, deltorphin II and SNC80 were less potent, and in the case of SNC80 less efficacious, in modulating the response to acute thermal nociception in comparison to hyperalgesia associated with persistent inflammation.These results indicate that μ and δ opioid receptors in the brain modulate descending pain pathways to attenuate the nociceptive response to acute thermal stimuli in both normal and inflamed tissues. The heightened response to δ agonists in the hyperalgesia model suggests that δ opioid receptors in the brain are promising targets for the treatment of pain arising from chronic inflammation. PMID:10780972

  9. The role of neural inflammation in asthma and chronic obstructive pulmonary disease.

    PubMed

    Joos, Guy F; De Swert, Katelijne O; Schelfhout, Vanessa; Pauwels, Romain A

    2003-05-01

    The tachykinins substance P and neurokinin A are found within airway nerves and immune cells. They have various effects on the airways that can contribute to the changes observed in asthma and chronic obstructive pulmonary disease. Both tachykinin NK(1) and NK(2) receptors have been involved in the bronchoconstriction and the proinflammatory changes induced by substance P and neurokinin A. Tachykinin NK(1) and NK(2) receptor antagonists have activity in various animal models of allergic asthma and chronic bronchitis. It is suggested that dual NK(1)/NK(2) and triple NK(1)/NK(2)/NK(3) tachykinin receptor antagonists have potential in the treatment of obstructive airway diseases.

  10. Treatment of chronic immune-mediated neuropathies: chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy, and the Lewis-Sumner syndrome.

    PubMed

    Sederholm, Benson H

    2010-09-01

    Current treatment approaches for the management of chronic immune-mediated peripheral neuropathies are reviewed, including chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), multifocal motor neuropathy (MMN), and the Lewis-Sumner syndrome (LSS). A summary of existing evidence for commonly used treatment modalities, such as corticosteroids, intravenous immune globulin (IVIG), and plasma exchange is provided. Evidence for the use of additional immunosuppressant and immunomodulatory agents is also reviewed.

  11. Cell-mediated immune response to unrelated proteins and unspecific inflammation blocked by orally tolerated proteins.

    PubMed

    Ramos, Gustavo C; Rodrigues, Claudiney M; Azevedo, Geraldo M; Pinho, Vanessa; Carvalho, Cláudia R; Vaz, Nelson M

    2009-03-01

    Oral tolerance promotes a generalized decrease in specific immune responsiveness to proteins previously encountered via the oral route. In addition, parenteral immunization with a tolerated protein also triggers a significant reduction in the primary responsiveness to a second unrelated antigen. This is generally explained by 'innocent bystander suppression', suggesting that the transient and episodic effects of inhibitory cytokines released by contact with the tolerated antigen would block responses to the second antigen. In disagreement with this view, we have previously shown that: (i) these inhibitory effects do not require concomitance or contiguity of the injections of the two proteins; (ii) that intravenous or intragastric exposures to the tolerated antigen are not inhibitory; and (iii) that the inhibitory effect, once triggered, persists in the absence of further contact with the tolerated protein, possibly by inhibition of secondary responsiveness (immunological memory). The present work confirms that immunological memory of the second unrelated antigen is hindered by exposure to the tolerated antigen and, in addition, shows that this exposure: (i) inhibits the inflammation triggered by an unrelated antigen through the double effect of inhibiting production of leucocytes in the bone marrow and blocking their migration to inflammed sites; and (ii) significantly blocks footpaw swelling triggered by carrageenan. Taken together, these results conclusively demonstrate that inhibitory effects of parenteral injection of tolerated antigens are much more general than suggested by the 'innocent bystander suppression' hypothesis.

  12. Corticosterone, inflammation, immune status and telomere length in frigatebird nestlings facing a severe herpesvirus infection

    PubMed Central

    Sebastiano, Manrico; Eens, Marcel; Angelier, Frederic; Pineau, Kévin; Chastel, Olivier; Costantini, David

    2017-01-01

    Herpesvirus outbreaks are common in natural animal populations, but little is known about factors that favour the infection and its consequences for the organism. In this study, we examined the pathophysiological consequences of a disease probably attributable to herpesvirus infection for several markers of immune function, corticosterone, telomere length and inflammation. In addition, we assessed whether any markers used in this study might be associated with the occurrence of visible clinical signs of the disease and its impact on short-term survival perspectives. To address our questions, in spring 2015, we collected blood samples from nestlings of the magnificent frigatebird (Fregata magnificens) that were free of any clinical signs or showed visible signs of the disease. We found that the plasma concentration of haptoglobin was strongly associated with the infection status and could predict probabilities of survival. We also found that nestlings with clinical signs had lower baseline corticosterone concentrations and similar telomere length compared with healthy nestlings, whereas we did not find any association of the infection status with innate immune defenses or with nitric oxide concentration. Overall, our results suggest that the plasma concentration of haptoglobin might be a valuable tool to assess survival probabilities of frigatebird nestlings facing a herpesvirus outbreak. PMID:28070333

  13. The yin-yang of long pentraxin PTX3 in inflammation and immunity.

    PubMed

    Daigo, Kenji; Mantovani, Alberto; Bottazzi, Barbara

    2014-09-01

    Pentraxins are a family of multimeric proteins characterized by the presence of a pentraxin signature in their C-terminus region. Based on the primary structure, pentraxins are divided into short and long pentraxin: C-reactive protein (CRP) is the prototype of the short pentraxin subfamily while pentraxin 3 (PTX3) is the prototypic long pentraxin. Despite these two molecules exert similar fundamental actions in the regulation of innate immune and inflammatory responses, several differences exist between CRP and PTX3, including gene organization, protein oligomerization and expression pattern. The pathophysiological roles of PTX3 have been investigated using genetically modified mice since PTX3 gene organization and regulation are well conserved between mouse and human. Such in vivo studies figured out that PTX3 mainly have host-protective effects, even if it could also exert negative effects under certain pathophysiologic conditions. Here we will review the general properties of CRP and PTX3, emphasizing the differences between the two molecules and the regulatory functions exerted by PTX3 in innate immunity and inflammation.

  14. Markers of inflammation.

    PubMed

    Germolec, Dori R; Frawley, Rachel P; Evans, Ellen

    2010-01-01

    Inflammation is a complex and necessary component of an organism's response to biological, chemical or physical stimuli. In the acute phase, cells of the immune system migrate to the site of injury in a carefully orchestrated sequence of events that is mediated by cytokines and acute phase proteins. Depending upon the degree of injury, this acute phase may be sufficient to resolve the damage and initiate healing. Persistent inflammation as a result of prolonged exposure to stimulus or an inappropriate reaction to self molecules can lead to the chronic phase, in which tissue damage and fibrosis can occur. Chronic inflammation is reported to contribute to numerous diseases including allergy, arthritis, asthma, atherosclerosis, autoimmune diseases, diabetes, and cancer, and to conditions of aging. Hematology and clinical chemistry data from standard toxicology studies can provide an initial indication of the presence and sometimes location of inflammation in the absence of specific data on the immune tissues. These data may suggest more specific immune function assays are necessary to determine the existence or mechanism(s) of -immunomodulation. Although changes in hematology dynamics, acute phase proteins, complement factors and cytokines are common to virtually all inflammatory conditions and can be measured by a variety of techniques, individual biomarkers have yet to be strongly associated with specific pathologic events. The specific profile in a given inflammatory condition is dependent upon species, mechanisms, severity, chronicity, and capacity of the immune system to respond and adapt.

  15. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression

    PubMed Central

    2012-01-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction. PMID:22720260

  16. Enhanced 15-lipoxygenase activity and elevated eicosanoid production in kidney tumor microenvironment contribute to the inflammation and immune suppression.

    PubMed

    Kusmartsev, Sergei

    2012-03-01

    Macrophage infiltration is a hallmark in the majority of solid tumors. Our studies demonstrated that macrophages that infiltrate human renal cells carcinoma (RCC) display markedly enhanced expression and activity of 15-lipoxygenase-2 (15-LOX2). Obtained data suggest that enhanced lipoxygenase activity in tumor-associated macrophages stimulates cancer inflammation and causes immune dysfunction.

  17. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways

    PubMed Central

    Magalhães, Ana; Marcos-Pinto, Ricardo; Nairn, Alison V.; Rosa, Mitche dela; Ferreira, Rui M.; Junqueira-Neto, Susana; Freitas, Daniela; Gomes, Joana; Oliveira, Patrícia; Santos, Marta R.; Marcos, Nuno T.; Xiaogang, Wen; Figueiredo, Céu; Oliveira, Carla; Dinis-Ribeiro, Mário; Carneiro, Fátima; Moremen, Kelley W.; David, Leonor; Reis, Celso A.

    2015-01-01

    Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local proinflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity. PMID:26144047

  18. Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels

    PubMed Central

    Li, Changfei; Deng, Mengmeng; Hu, Jun; Li, Xin; Chen, Lizhao; Ju, Ying; Hao, Junli; Meng, Songdong

    2016-01-01

    Persistent inflammation in chronic hepatitis plays a major role in the development of hepatocellular carcinoma (HCC). In this study, the major inflammatory cytokines expressed in chronic hepatitis, IL-6 and TNF-α, induced a marked decrease in microRNA-122 (miR-122) levels, and miR-122 expression was downregulated in the livers of chronic hepatitis B (CHB) patients. The decrease of miR-122 caused upregulation of the proinflammatory chemokine CCL2. IL-6 and TNF-α suppressed miR-122 both by directly downregulating the transcription factor C/EBPα and indirectly upregulating c-myc, which blocks C/EBPα-mediated miR-122 transcription. In addition, IL-6 and TNF-α levels were elevated and miR-122 levels were decreased in mouse and rat models of diethylnitrosamine (DEN)-induced HCC. Restoration of miR-122 levels through delivery of agomir-122 suppressed DEN-induced hepatocarcinogenesis in mice. Our results show that inflammation-induced miR-122 downregulation in hepatitis contributes to carcinogenesis and suggest that increasing miR-122 may be an effective strategy for preventing HCC development in CHB patients. PMID:26933995

  19. Noninvasive scoring system for significant inflammation related to chronic hepatitis B

    PubMed Central

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-01-01

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (−) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (−) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system. PMID:28281521

  20. Noninvasive scoring system for significant inflammation related to chronic hepatitis B

    NASA Astrophysics Data System (ADS)

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-03-01

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (‑) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (‑) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.

  1. Noninvasive scoring system for significant inflammation related to chronic hepatitis B.

    PubMed

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-03-10

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (-) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (-) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.

  2. Analysis of local chronic inflammatory cell infiltrate combined with systemic inflammation improves prognostication in stage II colon cancer independent of standard clinicopathologic criteria.

    PubMed

    Turner, Natalie; Wong, Hui-Li; Templeton, Arnoud; Tripathy, Sagarika; Whiti Rogers, Te; Croxford, Matthew; Jones, Ian; Sinnathamby, Mathuranthakan; Desai, Jayesh; Tie, Jeanne; Bae, Susie; Christie, Michael; Gibbs, Peter; Tran, Ben

    2016-02-01

    In Stage II colon cancer, multiple independent studies have shown that a dense intratumoural immune infiltrate (local inflammation) is associated with improved outcomes, while systemic inflammation, measured by various markers, has been associated with poorer outcomes. However, previous studies have not considered the interaction between local and systemic inflammation, nor have they assessed the type of inflammatory response compared with standard clinicopathologic criteria. In order to evaluate the potential clinical utility of inflammatory markers in Stage II colon cancer, we examined local and systemic inflammation in a consecutive series of patients with resected Stage II colon cancer between 2000 and 2010 who were identified from a prospective clinical database. Increased intratumoural chronic inflammatory cell (CIC) density, as assessed by pathologist review of hematoxylin and eosin stained slides, was used to represent local inflammation. Neutrophil-to-lymphocyte ratio (NLR) >5, as calculated from pre-operative full blood counts, was used to represent systemic inflammation. In 396 eligible patients identified, there was a non-significant inverse relationship between local and systemic inflammation. Increased CIC density was significantly associated with improved overall (HR 0.45, p = 0.001) and recurrence-free survival (HR 0.37, p = 0.003). High NLR was significantly associated with poorer overall survival (HR 2.56, p < 0.001). The combination of these markers further stratified prognosis independent of standard high-risk criteria, with a dominant systemic inflammatory response (low CIC/high NLR) associated with the worst outcome (5-year overall survival 55.8%). With further validation this simple, inexpensive combined inflammatory biomarker might assist in patient selection for adjuvant chemotherapy in Stage II colon cancer.

  3. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  4. Palmitoylethanolamide inhibits rMCP-5 expression by regulating MITF activation in rat chronic granulomatous inflammation.

    PubMed

    De Filippis, Daniele; Russo, Annapina; De Stefano, Daniela; Cipriano, Mariateresa; Esposito, Davide; Grassia, Gianluca; Carnuccio, Rosa; Russo, Giulia; Iuvone, Teresa

    2014-02-15

    Chronic inflammation, a condition frequently associated with several pathologies, is characterized by angiogenic and fibrogenic responses that may account for the development of granulomatous tissue. We previously demonstrated that the chymase, rat mast cell protease-5 (rMCP-5), exhibits pro-inflammatory and pro-angiogenic properties in a model of chronic inflammation sustained by mast cells (MCs), granuloma induced by the subcutaneous carrageenan-soaked sponge implant in rat. In this study, we investigated the effects of palmitoylethanolamide (PEA), an anti-inflammatory and analgesic endogenous compound, on rMCP-5 mRNA expression and Microphtalmia-associated Transcription Factor (MITF) activation in the same model of chronic inflammation. The levels of rMCP-5 mRNA were detected using semi-quantitative RT-PCR; the protein expression of chymase and extracellular signal-regulated kinases (ERK) were analyzed by western blot; MITF/DNA binding activity and MITF phosphorylation were assessed by electrophoretic mobility shift assay (EMSA) and immunoprecipitation, respectively. The administration of PEA (200, 400 and 800 µg/ml) significantly decreased rMCP-5 mRNA and chymase protein expression induced by λ-carrageenan. These effects were associated with a significant decrease of MITF/DNA binding activity and phosphorylated MITF as well as phosphorylated ERK levels. In conclusion, our results, showing the ability of PEA to inhibit MITF activation and chymase expression in granulomatous tissue, may yield new insights into the understanding of the signaling pathways leading to MITF activation controlled by PEA.

  5. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation.

    PubMed

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-07-07

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases.

  6. Adaptive immunity against gut microbiota enhances apoE-mediated immune regulation and reduces atherosclerosis and western-diet-related inflammation

    PubMed Central

    Saita, Diego; Ferrarese, Roberto; Foglieni, Chiara; Esposito, Antonio; Canu, Tamara; Perani, Laura; Ceresola, Elisa Rita; Visconti, Laura; Burioni, Roberto; Clementi, Massimo; Canducci, Filippo

    2016-01-01

    Common features of immune-metabolic and inflammatory diseases such as metabolic syndrome, diabetes, obesity and cardiovascular diseases are an altered gut microbiota composition and a systemic pro-inflammatory state. We demonstrate that active immunization against the outer membrane protein of bacteria present in the gut enhances local and systemic immune control via apoE-mediated immune-modulation. Reduction of western-diet-associated inflammation was obtained for more than eighteen weeks after immunization. Immunized mice had reduced serum cytokine levels, reduced insulin and fasting glucose concentrations; and gene expression in both liver and visceral adipose tissue confirmed a reduced inflammatory steady-state after immunization. Moreover, both gut and atherosclerotic plaques of immunized mice showed reduced inflammatory cells and an increased M2 macrophage fraction. These results suggest that adaptive responses directed against microbes present in our microbiota have systemic beneficial consequences and demonstrate the key role of apoE in this mechanism that could be exploited to treat immune-metabolic diseases. PMID:27383250

  7. Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease.

    PubMed

    Mohammed-Ali, Zahraa; Cruz, Gaile L; Dickhout, Jeffrey G

    2015-01-01

    The chronic inflammatory response is emerging as an important therapeutic target in progressive chronic kidney disease. A key transcription factor in the induction of chronic inflammation is NF-κB. Recent studies have demonstrated that sustained activation of the unfolded protein response (UPR) can initiate this NF-κB signaling phenomenon and thereby induce chronic kidney disease progression. A key factor influencing chronic kidney disease progression is proteinuria and this condition has now been demonstrated to induce sustained UPR activation. This review details the crosstalk between the UPR and NF-κB pathways as pertinent to chronic kidney disease. We present potential tools to study this phenomenon as well as potential therapeutics that are emerging to regulate the UPR. These therapeutics may prevent inflammation specifically induced in the kidney due to proteinuria-induced sustained UPR activation.

  8. An extended chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids phenotype.

    PubMed

    Lane, Chris; Phadke, Rahul; Howard, Robin

    2014-06-25

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described central nervous system inflammatory condition. In this case report we describe a patient initially with features consistent with this syndrome, who represented with seizures (not previously reported in this syndrome) and corresponding prominent cortical involvement on imaging (also not previously noted). Owing to diagnostic uncertainty, cerebral biopsy was performed revealing histology consistent with CLIPPERS, excluding other differentials. Following a further brainstem relapse, this patient was treated with high-dose steroids, subsequently switched to a tapering oral regime and now, azathioprine, a steroid-sparing agent. She remains well on this.

  9. [CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids)].

    PubMed

    Kan, Shinichi

    2016-09-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) has been recently identified as an inflammatory central nervous system (CNS) disorder. Punctate and curvilinear gadolinium enhancement (peppering) the pons is a characteristic magnetic resonance imaging (MRI) feature of CLIPPERS. Pathogenesis of this disorder remains unknown. A specific serum or cerebrospinal fluid biomarker for this disorder is currently unknown. Whether CLIPPERS is an actual new disease or just represents overlapping symptoms from multiple diseases is still debated. Many differential diagnoses exist even when using imaging as a tool. Pre-lymphoma states, such as grade I LYG (lymphomatoid granulomatosis) and sentinel lesions of primary CNS lymphoma are the most difficult to distinguish.

  10. An extended chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids phenotype

    PubMed Central

    Lane, Chris; Phadke, Rahul; Howard, Robin

    2014-01-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described central nervous system inflammatory condition. In this case report we describe a patient initially with features consistent with this syndrome, who represented with seizures (not previously reported in this syndrome) and corresponding prominent cortical involvement on imaging (also not previously noted). Owing to diagnostic uncertainty, cerebral biopsy was performed revealing histology consistent with CLIPPERS, excluding other differentials. Following a further brainstem relapse, this patient was treated with high-dose steroids, subsequently switched to a tapering oral regime and now, azathioprine, a steroid-sparing agent. She remains well on this. PMID:24966263

  11. Interaction between Chronic Inflammation and Oral HPV Infection in the Etiology of Head and Neck Cancers

    PubMed Central

    Tezal, Mine

    2012-01-01

    Incidences of oral tongue, base of the tongue, and tonsil cancers have been increasing steadily in many parts of the world in spite of declining rates of tobacco use over the last four decades. A better understanding of the etiology, interactions between risk factors, and new approaches to prevention and treatment are necessary to change this course. This paper will present evidence supporting a potential role of chronic inflammation in the etiologies of oral human papillomavirus infection and head and neck squamous cell carcinoma, and it will discuss the implications for prevention and treatment. PMID:22518158

  12. The standardized herbal formula, PM014, ameliorated cigarette smoke-induced lung inflammation in a murine model of chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background In this study, we evaluated the anti-inflammatory effect of PM014 on cigarette smoke induced lung disease in the murine animal model of chronic obstructive pulmonary disease (COPD). Methods Mice were exposed to cigarette smoke (CS) for 2 weeks to induce COPD-like lung inflammation. Two hours prior to cigarette smoke exposure, the treatment group was administered PM014 via an oral injection. To investigate the effects of PM014, we assessed PM014 functions in vivo, including immune cell infiltration, cytokine profiles in bronchoalveolar lavage (BAL) fluid and histopathological changes in the lung. The efficacy of PM014 was compared with that of the recently developed anti-COPD drug, roflumilast. Results PM014 substantially inhibited immune cell infiltration (neutrophils, macrophages, and lymphocytes) into the airway. In addition, IL-6, TNF-α and MCP-1 were decreased in the BAL fluid of PM014-treated mice compared to cigarette smoke stimulated mice. These changes were more prominent than roflumilast treated mice. The expression of PAS-positive cells in the bronchial layer was also significantly reduced in both PM014 and roflumilast treated mice. Conclusions These data suggest that PM014 exerts strong therapeutic effects against CS induced, COPD-like lung inflammation. Therefore, this herbal medicine may represent a novel therapeutic agent for lung inflammation in general, as well as a specific agent for COPD treatment. PMID:24010767

  13. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    PubMed

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  14. Central immune alterations in passive strategy following chronic defeat stress.

    PubMed

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of α1b and α2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1β (IL-1β) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-α) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders.

  15. Distinct effects of Lactobacillus plantarum KL30B and Escherichia coli 3A1 on the induction and development of acute and chronic inflammation

    PubMed Central

    Strus, Magdalena; Okoń, Krzysztof; Nowak, Bernadeta; Pilarczyk-Zurek, Magdalena; Heczko, Piotr; Gawda, Anna; Ciszek-Lenda, Marta; Skowron, Beata; Baranowska, Agnieszka

    2016-01-01

    Objective Enteric bacteria are involved in the pathogenesis of ulcerative colitis. In experimental colitis, a breakdown of the intestinal epithelial barrier results in inflow of various gut bacteria, induction of acute inflammation and finally, progression to chronic colitis. Material and methods In the present study we compared pro-inflammatory properties of two bacterial strains isolated from human microbiome, Escherichia coli 3A1 and Lactobacillus plantarum KL30B. The study was performed using two experimental models of acute inflammation: peritonitis in mice and trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Results Both bacterial strains induced massive neutrophil infiltration upon injection into sterile peritoneal cavity. However, peritoneal exudate cells stimulated in vitro with E. coli 3A1, produced far more nitric oxide, than those stimulated with L. plantarum KL30B. Interestingly, distinct effect on the development of TNBS-induced colitis was observed after oral administration of the tested bacteria. Lactobacillus plantarum KL30B evoked strong acute colitis. On the contrary, the administration of E. coli 3A1 resulted in a progression of colitis to chronicity. Conclusions Our results show that distinct effects of bacterial administration on the development of ongoing inflammation is strain specific and depends on the final effect of cross-talk between bacteria and cells of the innate immune system. PMID:26862305

  16. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

    PubMed

    Zhao, Weiling; Robbins, Mike E C

    2009-01-01

    The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.

  17. Circulating Mediators of Inflammation and Immune Activation in AIDS-Related Non-Hodgkin Lymphoma

    PubMed Central

    Nolen, Brian M.; Breen, Elizabeth Crabb; Bream, Jay H.; Jenkins, Frank J.; Kingsley, Lawrence A.; Rinaldo, Charles R.; Lokshin, Anna E.

    2014-01-01

    Background Non-Hodgkin lymphoma (NHL) is the most common AIDS-related malignancy in developed countries. An elevated risk of developing NHL persists among HIV-infected individuals in comparison to the general population despite the advent of effective antiretroviral therapy. The mechanisms underlying the development of AIDS-related NHL (A-NHL) are not fully understood, but likely involve persistent B-cell activation and inflammation. Methods This was a nested case-control study within the ongoing prospective Multicenter AIDS Cohort Study (MACS). Cases included 47 HIV-positive male subjects diagnosed with high-grade B-cell NHL. Controls were matched to each case from among participating HIV-positive males who did not develop any malignancy. Matching criteria included time HIV+ or since AIDS diagnosis, age, race and CD4+ cell count. Sera were tested for 161 serum biomarkers using multiplexed bead-based immunoassays. Results A subset of 17 biomarkers, including cytokines, chemokines, acute phase proteins, tissue remodeling agents and bone metabolic mediators was identified to be significantly altered in A-NHL cases in comparison to controls. Many of the biomarkers included in this subset were positively correlated with HIV viral load. A pathway analysis of our results revealed an extensive network of interactions between current and previously identified biomarkers. Conclusions These findings support the current hypothesis that A-NHL develops in the context of persistent immune stimulation and inflammation. Further analysis of the biomarkers identified in this report should enhance our ability to diagnose, monitor and treat this disease. PMID:24922518

  18. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  19. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation.

    PubMed

    Chapman, Karen E; Coutinho, Agnes E; Zhang, Zhenguang; Kipari, Tiina; Savill, John S; Seckl, Jonathan R

    2013-09-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.

  20. Periodontal disease: a covert source of inflammation in chronic kidney disease patients.

    PubMed

    Ismail, Gener; Dumitriu, Horia Traian; Dumitriu, Anca Silvia; Ismail, Fidan Bahtiar

    2013-01-01

    The prevalence of atherosclerotic complications (myocardial infarction, stroke, and sudden death) is increased in end-stage renal disease (ESRD) patients, especially in haemodialysis patients. Increasing evidence suggests that both in general population and in dialysis patients, systemic inflammation plays a dominant role in the pathogenesis of atherosclerotic complications. In general population, also, evidence shows that moderate to severe periodontitis can contribute to inflammatory burden by increasing serum CRP levels and may increase the prevalence of atherosclerotic events. Moreover, the results of some new interventional studies reveal that effective phase I periodontal therapy may decrease serum CRP levels, the most important acute phase protein, monitored as a systemic marker of inflammation and endothelial dysfunction as well, used as an initial predictor of atherosclerotic events. Considering that moderate to severe periodontal diseases have a higher prevalence in CKD and in dialysis population and that periodontal examination is not part of the standard medical assessment, destructive periodontitis might be an ignored source of systemic inflammation in end-stage renal disease patients and may add to the chronic inflammatory status in CKD.

  1. Toll‐like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease

    PubMed Central

    Verzola, Daniela; Bonanni, Alice; Sofia, Antonella; Montecucco, Fabrizio; D'Amato, Elena; Cademartori, Valeria; Parodi, Emanuele Luigi; Viazzi, Francesca; Venturelli, Chiara; Brunori, Giuliano

    2016-01-01

    Background Inflammation in skeletal muscle is implicated in the pathogenesis of insulin resistance and cachexia but why uremia up‐regulates pro‐inflammatory cytokines is unknown. Toll‐like receptors (TLRs) regulate locally the innate immune responses, but it is unknown whether in chronic kidney disease (CKD) TLR4 muscle signalling is altered. The aim of the study is to investigate whether in CKD muscle, TLRs had abnormal function and may be involved in transcription of pro‐inflammatory cytokine. Methods TLR4, phospho‐p65, phospho‐ikBα, tumour necrosis factor (TNF)‐α, phospho p38, Murf 1, and atrogin were studied in skeletal muscle from nondiabetic CKD stage 5 patients (n = 29) and controls (n = 14) by immunohistochemistry, western blot, and RT–PCR. Muscle cell cultures (C2C12) exposed to uremic serum were employed to study TLR4 expression (western blot and RT–PCR) and TLR‐driven signalling. TLR4 signalling was abrogated by a small molecule chemical inhibitor or TLR4 siRNA. Phospho AKT and phospho p38 were evaluated by western blot. Results CKD subjects had elevated TLR4 gene and protein expression. Also expression of NFkB, p38 MAPK and the NFkB‐regulated gene TNF‐α was increased. At multivariate analysis, TLR4 protein content was predicted by eGFR and Subjective Global Assessment, suggesting that the progressive decline in renal function and wasting mediate TLR4 activation. In C2C12, uremic serum increased TLR4 as well as TNF‐α and down‐regulated pAkt. These effects were prevented by blockade of TLR4. Conclusions CKD promotes muscle inflammation through an up‐regulation of TLR4, which may activate downward inflammatory signals such as TNF‐α and NFkB‐regulated genes. PMID:27897392

  2. Inflammation and glandular duct dilatation of the tongue from patients with chronic Chagas disease.

    PubMed

    de Lima Pereira, Sanívia Aparecida; Rodrigues, Denise Bertulucci Rocha; da Fonseca Ferraz, Mara Lúcia; da Cunha Castro, Eumenia Costa; dos Reis, Marlene Antonia; de Paula Antunes Teixeira, Vicente

    2006-01-01

    The purpose of this study was to evaluate morphologically the tongue of individuals with chronic Chagas disease (CD) in comparison to the non-chagasic ones. Twenty-four protocol cases of autopsies were selected. They were subdivided into CD patients (10 cases) and non-chagasic ones (14 cases). The morphometric analysis was accomplished for the tongue muscle and salivary glands duct lumen area. In three CD patients, perineuritis was found, and two of them showed megaesophagus and megacolon. The intensity of the inflammation in the von Ebner's glands, the tongue muscles, and the salivary glands duct lumen area was significantly higher in the CD patients. We concluded that the CD patients show salivary glands duct dilatation, which probably would have a relation with alterations in the autonomic nervous system. The inflammation found in CD patients is in accordance with that described in comparative studies on the digestive tract and heart. These morphological findings suggest that the histopathological analysis of the tongue associated with other organs, or even in an isolated manner, can add in the diagnosis and pathogenesis of the CD chronic phase.

  3. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis

    PubMed Central

    2016-01-01

    A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2) and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD), gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD). In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems. PMID:27143819

  4. Mechanisms of Chronic State of Inflammation as Mediators That Link Obese Adipose Tissue and Metabolic Syndrome

    PubMed Central

    Fuentes, Eduardo; Fuentes, Francisco; Badimon, Lina; Palomo, Iván

    2013-01-01

    The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism. PMID:23843680

  5. Diethylcarbamazine reduces chronic inflammation and fibrosis in carbon tetrachloride- (CCl₄-) induced liver injury in mice.

    PubMed

    Rocha, Sura Wanessa Santos; de França, Maria Eduarda Rocha; Rodrigues, Gabriel Barros; Barbosa, Karla Patrícia Sousa; Nunes, Ana Karolina Santana; Pastor, André Filipe; Oliveira, Anne Gabrielle Vasconcelos; Oliveira, Wilma Helena; Luna, Rayana Leal Almeida; Peixoto, Christina Alves

    2014-01-01

    This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.

  6. Skin inflammation arising from cutaneous Treg deficiency leads to impaired viral immune responses1

    PubMed Central

    Freyschmidt, Eva-Jasmin; Mathias, Clinton B.; Diaz, Natalia; MacArthur, Daniel H.; Laouar, Amale; Manjunath, Narasimhaswamy; Hofer, Matthias D.; Wurbel, Marc-Andre; Campbell, James J.; Chatila, Talal A.; Oettgen, Hans C.

    2013-01-01

    Individuals with atopic dermatitis (AD) immunized with the small pox vaccine, vaccinia virus (VV), are susceptible to eczema vaccinatum (EV), a potentially-fatal disseminated infection. Dysfunction of FoxP3+ regulatory T cells (Treg) has been implicated in the pathogenesis of AD. To test whether Treg-deficiency predisposes to EV, we percutaneously VV-infected FoxP3-deficient (FoxP3KO) mice, which completely lack FoxP3+ Treg. These animals generated both fewer VV-specific CD8+ effector T cells and interferon-γ producing CD8+ T cells than controls, had higher viral loads and exhibited abnormal Th2 polarized responses to the virus. To focus on the consequences of Treg deficiency confined to the skin, we generated mixed CCR4KO FoxP3KO bone marrow (CCR4/FoxP3) chimeras in which skin, but not other tissues or central lymphoid organs, lack Treg. Like FoxP3KO mice, the chimeras had impaired VV-specific effector T cell responses and higher viral loads. Skin cytokine expression was significantly altered in infected chimeras compared to controls. Levels of the antiviral cytokines, type I and II interferons and IL-12, were reduced whereas expression of the proinflammatory cytokines, IL-6, IL-10, TGF-β and IL-23, was increased. Importantly, infection of CCR4/FoxP3 chimeras by a non-cutaneous route (i.p.) induced immune responses comparable to controls. Our findings implicate allergic skin inflammation resulting from local Treg deficiency in the pathogenesis of EV. PMID:20548030

  7. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses.

    PubMed

    Freyschmidt, Eva-Jasmin; Mathias, Clinton B; Diaz, Natalia; MacArthur, Daniel H; Laouar, Amale; Manjunath, Narasimhaswamy; Hofer, Matthias D; Wurbel, Marc-Andre; Campbell, James J; Chatila, Talal A; Oettgen, Hans C

    2010-07-15

    Individuals with atopic dermatitis immunized with the small pox vaccine, vaccinia virus (VV), are susceptible to eczema vaccinatum (EV), a potentially fatal disseminated infection. Dysfunction of Forkhead box P3 (FoxP3)-positive regulatory T cells (Treg) has been implicated in the pathogenesis of atopic dermatitis. To test whether Treg deficiency predisposes to EV, we percutaneously VV infected FoxP3-deficient (FoxP3(KO)) mice, which completely lack FoxP3(+) Treg. These animals generated both fewer VV-specific CD8(+) effector T cells and IFN-gamma-producing CD8(+) T cells than controls, had higher viral loads, and exhibited abnormal Th2-polarized responses to the virus. To focus on the consequences of Treg deficiency confined to the skin, we generated mixed CCR4(KO) FoxP3(KO) bone marrow (CCR4/FoxP3) chimeras in which skin, but not other tissues or central lymphoid organs, lack Treg. Like FoxP3(KO) mice, the chimeras had impaired VV-specific effector T cell responses and higher viral loads. Skin cytokine expression was significantly altered in infected chimeras compared with controls. Levels of the antiviral cytokines, type I and II IFNs and IL-12, were reduced, whereas expression of the proinflammatory cytokines, IL-6, IL-10, TGF-beta, and IL-23, was increased. Importantly, infection of CCR4/FoxP3 chimeras by a noncutaneous route (i.p.) induced immune responses comparable to controls. Our findings implicate allergic skin inflammation resulting from local Treg deficiency in the pathogenesis of EV.

  8. Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I

    PubMed Central

    Gordts, Philip L.; Ellinwood, N. Matthew; Schwartz, Philip H.; Dickson, Patricia I.; Esko, Jeffrey D.; Wang, Raymond Y.

    2016-01-01

    Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for

  9. Bacterial Vaginosis and Subclinical Markers of Genital Tract Inflammation and Mucosal Immunity

    PubMed Central

    Kimble, Thomas; Herold, Betsy; Mesquita, Pedro M.M.; Fichorova, Raina N.; Dawood, Hassan Y.; Fashemi, Titilayo; Chandra, Neelima; Rabe, Lorna; Cunningham, Tina D.; Anderson, Sharon; Schwartz, Jill; Doncel, Gustavo

    2015-01-01

    Abstract Bacterial vaginosis (BV) has been linked to an increased risk of human immunodeficiency virus (HIV) acquisition and transmission in observational studies, but the underlying biological mechanisms are unknown. We measured biomarkers of subclinical vaginal inflammation, endogenous antimicrobial activity, and vaginal flora in women with BV and repeated sampling 1 week and 1 month after completion of metronidazole therapy. We also compared this cohort of women with BV to a healthy control cohort without BV. A longitudinal, open label study of 33 women with a Nugent score of 4 or higher was conducted. All women had genital swabs, cervicovaginal lavage (CVL) fluid, and cervicovaginal biopsies obtained at enrollment and received 7 days of metronidazole treatment. Repeat sampling was performed approximately 1 week and 1 month after completion of therapy. Participant's baseline samples were compared to a healthy, racially matched control group (n=13) without BV. The CVL from women with resolved BV (Nugent 0–3) had significantly higher anti-HIV activity, secretory leukocyte protease inhibitor (SLPI), and growth-related oncogene alpha (GRO-α) levels and their ectocervical tissues had significantly more CD8 cells in the epithelium. Women with persistent BV after treatment had significantly higher levels of interleukin-1β, tumor necrosis factor alpha (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) in the CVL. At study entry, participants had significantly greater numbers of CCR5+ immune cells and a higher CD4/CD8 ratio in ectocervical tissues prior to metronidazole treatment, compared to a racially matched cohort of women with a Nugent score of 0–3. These data indicate that BV is associated with changes in select soluble immune mediators, an increase in HIV target cells, and a reduction in endogenous antimicrobial activity, which may contribute to the increased risk of HIV acquisition. PMID:26204200

  10. USE OF NEUTROPHILS TO LYMPHOCYTES RATIO AS AN INFLAMMATION MARKER IN PATIENTS WITH CHRONIC TONSILLITIS.

    PubMed

    Sahin, C; Varim, C; Uyanık, M

    2016-10-01

    The aim of this study was to assess the neutrophil to lymphocyte ratio (NLR) as an inflammation marker in patients with chronic tonsillitis and to compare the NLR values to other inflammation markers, such as antistreptolysin-O (ASO), C-Reactive Protein (CRP) and erythrocyte sedimentation rate (ESR). Thirty patients aged between 4 and 15 y.o. who had undergone surgery for chronic tonsillitis were included in this retrospective study. Blood samples including haemogram, ASO, CRP and ESR were taken from the patients the day before and one month after the surgery and were analysed retrospectively. Preoperative ASO values were 170±75.5 U, CRP values were 7.6±5 mg/L, ESR values were 15.7±10 mm/H and NLR values were 0.9±0.2. Postoperative ASO values were 140.9±58.5 U, CRP values were 6.8±3.4 mg/L, ESR values were 12.5±5.4 mm/H and NLR values were 1.2±0.4. Statistically significant decreases were observed in the white blood cell count (WBC), lymphocytes, ASO and ESR results, with increase in NLR values after the surgery (p<0.05). The neutrophil and CRP values after the surgery have shown statistically insignificant decrease (p>0.05). The NLR values were compared with the ASO, CRP and ESR values, which were used as inflammation markers. Negative correlation was found between decrease in ASO and ESR and increase in the NLR values after the surgery.

  11. Inflammation as a Risk of Developing Chronic Kidney Disease in Rheumatoid Arthritis

    PubMed Central

    Kochi, Masako; Kohagura, Kentaro; Shiohira, Yoshiki; Iseki, Kunitoshi; Ohya, Yusuke

    2016-01-01

    Objective The relationship between chronic inflammation and the incidence of chronic kidney disease (CKD) remained not-clear in patients with rheumatoid arthritis (RA). This study aims to examine the relationship between persistently high C-reactive protein (CRP), a marker of inflammation, and the incidence of CKD in RA. Methods We retrospectively examined the relationship between the levels of CRP and incidence of CKD in 345 RA patients. The outcome of interest was incidence of CKD, defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and/or positive dipstick testing for proteinuria for ≥3 months. We defined high CRP, as >3.0 mg/L. On the basis of three measurements of CRP for 6-months period, patients were divided into three groups: group 1, including patients with no high CRP values; group 2, patients with transient high CRP values (once or twice) and group 3, patients with persistently high CRP values. Results During a median follow-up period of 89 months, 14% of all patients developed CKD. The cumulative incidence of CKD was 7% in group 1, 14% in group 2 and 22% in group 3 (P = 0.008, log-rank test). In a multivariate analysis, including classical risk factors for CKD, persistently high CRP was an independent predictor of the incidence of CKD (hazard ratio, 3.00; 95% confidence interval, 1.23–8.53; P = 0.01). Conclusions Persistently high CRP was a significant risk factor for the incidence of CKD. Results suggest that persistent inflammation is a marker for the high risk of CKD in RA. PMID:27537204

  12. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    PubMed

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  13. Histological Architecture Underlying Brain–Immune Cell–Cell Interactions and the Cerebral Response to Systemic Inflammation

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell–cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood–brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain–immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain–immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury. PMID:28154566

  14. Molecular visualizing and quantifying immune-associated peroxynitrite fluxes in phagocytes and mouse inflammation model.

    PubMed

    Li, Zan; Yan, Shi-Hai; Chen, Chen; Geng, Zhi-Rong; Chang, Jia-Yin; Chen, Chun-Xia; Huang, Bing-Huan; Wang, Zhi-Lin

    2017-04-15

    Reactions of peroxynitrite (ONOO(-)) with biomolecules can lead to cytotoxic and cytoprotective events. Due to the difficulty of directly and unambiguously measuring its levels, most of the beneficial effects associated with ONOO(-) in vivo remain controversial or poorly characterized. Recently, optical imaging has served as a powerful noninvasive approach to studying ONOO(-) in living systems. However, ratiometric probes for ONOO(-) are currently lacking. Herein, we report the design, synthesis, and biological evaluation of F482, a novel fluorescence indicator that relies on ONOO(-)-induced diene oxidation. The remarkable sensitivity, selectivity, and photostability of F482 enabled us to visualize basal ONOO(-) in immune-stimulated phagocyte cells and quantify its generation in phagosomes by high-throughput flow cytometry analysis. With the aid of in vivo ONOO(-) imaging in a mouse inflammation model assisted by F482, we envision that F482 will find widespread applications in the study of the ONOO(-) biology associated with physiological and pathological processes in vitro and in vivo.

  15. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis

    PubMed Central

    Solcà, Manuela S.; Andrade, Bruno B.; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R.; Khouri, Ricardo; Valenzuela, Jesus G.; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-01-01

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti–sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines. PMID:27595802

  16. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity

    PubMed Central

    Beyrau, Martina; Bodkin, Jennifer Victoria; Nourshargh, Sussan

    2012-01-01

    Leucocytes form the principal cellular components of immunity and inflammation, existing as multiple subsets defined by distinct phenotypic and functional profiles. To date, this has most notably been documented for lymphocytes and monocytes. In contrast, as neutrophils are traditionally considered, to be short-lived, terminally differentiated cells that do not re-circulate, the potential existence of distinct neutrophil subsets with functional and phenotypic heterogeneity has not been widely considered or explored. A growing body of evidence is now challenging this scenario, and there is significant evidence for the existence of different neutrophil subsets under both physiological and pathological conditions. This review will summarize the key findings that have triggered a renewed interest in neutrophil phenotypic changes, both in terms of functional implications and consequences within disease models. Special emphasis will be placed on the potential pro- and anti-inflammatory roles of neutrophil subsets, as indicated by the recent works in models of ischaemia–reperfusion injury, trauma, cancer and sepsis. PMID:23226600

  17. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis.

    PubMed

    Solcà, Manuela S; Andrade, Bruno B; Abbehusen, Melissa Moura Costa; Teixeira, Clarissa R; Khouri, Ricardo; Valenzuela, Jesus G; Kamhawi, Shaden; Bozza, Patrícia Torres; Fraga, Deborah Bittencourt Mothé; Borges, Valeria Matos; Veras, Patrícia Sampaio Tavares; Brodskyn, Claudia Ida

    2016-09-06

    Clinical manifestations in canine visceral leishmaniasis (CVL) have not been clearly associated with immunological status or disease progression. We simultaneously assessed biomarkers of inflammation, immune activation, oxidative stress, and anti-sand fly saliva IgG concentrations in dog sera with different clinical manifestations to characterize a biosignature associated with CVL severity. In a cross-sectional exploratory study, a random population of 70 dogs from an endemic area in Brazil was classified according to CVL clinical severity and parasitological evaluation. A panel of biomarkers and anti-sand fly saliva IgG were measured in canine sera. Assessment of protein expression of profile biomarkers identified a distinct biosignature that could cluster separately animal groups with different clinical scores. Increasing severity scores were associated with a gradual decrease of LTB4 and PGE2, and a gradual increase in CXCL1 and CCL2. Discriminant analyses revealed that combined assessment of LTB4, PGE2 and CXCL1 was able to distinguish dogs with different clinical scores. Dogs with the highest clinical score values also exhibited high parasite loads and higher concentrations of anti-saliva antibodies. Our findings suggest CVL clinical severity is tightly associated with a distinct inflammatory profile hallmarked by a differential expression of circulating eicosanoids and chemokines.

  18. An immune-inflammation gene expression signature in prostate tumors of smokers

    PubMed Central

    Yi, Ming; Tang, Wei; Luo, Jun; Dorsey, Tiffany H.; Stagliano, Katherine E.; Gillespie, John W.; Hudson, Robert S.; Terunuma, Atsushi; Shoe, Jennifer L.; Haines, Diana C.; Yfantis, Harris G.; Han, Misop; Martin, Damali N.; Jordan, Symone V.; Borin, James F.; Naslund, Michael J.; Alexander, Richard B.; Stephens, Robert M.; Loffredo, Christopher A.; Lee, Dong H.; Putluri, Nagireddy; Sreekumar, Arun; Hurwitz, Arthur A.; Ambs, Stefan

    2016-01-01

    Smokers develop metastatic prostate cancer more frequently than nonsmokers, suggesting that a tobacco-derived factor is driving metastatic progression. To identify smoking-induced alterations in human prostate cancer, we analyzed gene and protein expression patterns in tumors collected from current, past, and never smokers. By this route, we elucidated a distinct pattern of molecular alterations characterized by an immune and inflammation signature in tumors from current smokers that were either attenuated or absent in past and never smokers. Specifically, this signature included elevated immunoglobulin expression by tumor-infiltrating B cells, NF-κB activation, and increased chemokine expression. In an alternate approach to characterize smoking-induced oncogenic alterations, we also explored the effects of nicotine in human prostate cancer cells and prostate cancer-prone TRAMP mice. These investigations showed that nicotine increased glutamine consumption and invasiveness of cancer cells in vitro and accelerated metastatic progression in tumor-bearing TRAMP mice. Overall, our findings suggested that nicotine was sufficient to induce a phenotype resembling the epidemiology of smoking-associated prostate cancer progression, illuminating a novel candidate driver underlying metastatic prostate cancer in current smokers. PMID:26719530

  19. Basic biology and role of interleukin-17 in immunity and inflammation

    PubMed Central

    Zenobia, Camille; Hajishengallis, George

    2014-01-01

    Interleukin-17 (IL-17, also known as IL-17A) is a key cytokine that links T cell activation to neutrophil mobilization and activation. As such, IL-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of IL-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of IL-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, IL-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis, and other diseases involving bone immunopathology. Systemic treatments with anti-IL-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis, although their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered IL-17 blockers, are required to conclusively implicate IL-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease. PMID:26252407

  20. "Inflamm-aging" influences immune cell survival factors in human bone marrow.

    PubMed

    Pangrazzi, Luca; Meryk, Andreas; Naismith, Erin; Koziel, Rafal; Lair, Julian; Krismer, Martin; Trieb, Klemens; Grubeck-Loebenstein, Beatrix

    2017-03-01

    The bone marrow (BM) plays a key role in the long-term maintenance of immunological memory. However, the impact of aging on the production of survival factors for effector/memory T cells and plasma cells in the human BM has not been studied. We now show that the expression of molecules involved in the maintenance of immunological memory in the human BM changes with age. While IL-15, which protects potentially harmful CD8(+) CD28(-) senescent T cells, increases, IL-7 decreases. IL-6, which may synergize with IL-15, is also overexpressed. In contrast, a proliferation-inducing ligand, a plasma cell survival factor, is reduced. IFN-y, TNF, and ROS accumulate in the BM in old age. IL-15 and IL-6 expression are stimulated by IFN-y and correlate with ROS levels in BM mononuclear cells. Both cytokines are reduced by incubation with the ROS scavengers N-acetylcysteine and vitamin C. IL-15 and IL-6 are also overexpressed in the BM of superoxide dismutase 1 knockout mice compared to their WT counterparts. In summary, our results demonstrate the role of inflammation and oxidative stress in age-related changes of immune cell survival factors in the BM, suggesting that antioxidants may be beneficial in counteracting immunosenescence by improving immunological memory in old age.

  1. Immunology and Homeopathy. 2. Cells of the Immune System and Inflammation

    PubMed Central

    Bellavite, Paolo; Conforti, Anita; Pontarollo, Francesco; Ortolani, Riccardo

    2006-01-01

    Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as ‘similarity’ of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the ‘state-of-the-art’ of homeopathy, without final conclusions ‘for’ or ‘against’ this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now. PMID:16550219

  2. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Symbionts and immunopathology in chronic diseases: insights from evolution

    PubMed Central

    Ewald, P W

    2010-01-01

    Immunological aetiologies of disease are not generally well understood, but have been attributed to intrinsic immunological imbalances, infectious triggers or persistent infections. Evolutionary considerations lead to the formulation of three feasible categories of immunopathology for common diseases. One category of hypotheses presumes that the immune system is exposed to environmental conditions to which the individual is not well adapted. One hypothesis within this category, often referred to as the hygiene hypothesis, proposes that new more hygienic environmental conditions have generated compositions of symbionts that differ from those to which humans have been adapted. A second category of hypotheses proposes that infectious agents act as triggers of immunopathology by shifting the immune system into a self-destructive state. A third category proposes that infectious agents keep the immune in a self-destructive state by causing persistent infections. To evaluate disease causation rigorously and to determine the appropriate interventions, these three categories of causation need to considered for every disease that involves immunopathology. Assessment of the progress in understanding oncogenesis and other chronic diseases emphasizes the value of such integrated assessments. PMID:20415848

  3. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy.

    PubMed

    Abou-Khalil, Rana; Yang, Frank; Mortreux, Marie; Lieu, Shirley; Yu, Yan-Yiu; Wurmser, Maud; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph S; Colnot, Céline

    2014-02-01

    Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density, and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS (colony stimulating factor receptor 1) inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing the number of macrophages. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results

  4. The Environment-Immune Route to Chronic Disease

    EPA Science Inventory

    Specific environmental factors including chemicals, drugs, microbes and both physical and psychological factors can affect the immune system producing dysfunction and, ultimately, an increased risk ofchronic disease. Several different types of immune alterations can result from e...

  5. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma.

    PubMed

    Bunting, Melissa M; Shadie, Alexander M; Flesher, Rylie P; Nikiforova, Valentina; Garthwaite, Linda; Tedla, Nicodemus; Herbert, Cristan; Kumar, Rakesh K

    2013-01-01

    We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  6. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells

    PubMed Central

    Jovanovic, K; Siebeck, M; Gropp, R

    2014-01-01

    T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation. PMID:24981014

  7. Influence of Hepatic Inflammation on FibroScan Findings in Diagnosing Fibrosis in Patients with Chronic Hepatitis B.

    PubMed

    Zeng, Xianghua; Xu, Cheng; He, Dengming; Zhang, Huiyan; Xia, Jie; Shi, Dairong; Kong, Lingjun; He, Xiaoqin; Wang, Yuming

    2015-06-01

    Hepatic inflammation may affect the performance of FibroScan. This prospective study investigated the influence of hepatic inflammation on liver stiffness measurement (LSM) values by assessing FibroScan and liver biopsy findings in 325 patients with chronic hepatitis B. Liver fibrosis and inflammation were classified into five stages (S0-S4) and grades (G0-G4) according to the Scheuer scoring system. LSM values were correlated with fibrosis stage and inflammation grade (r = 0.479, p < 0.001, and r = 0.522, p < 0.001, respectively). Although LSM values increased in parallel with inflammation grade, no significant differences were found between patients with significant fibrosis (S2-S4) (p > 0.05). For inflammation grades G0, G1, G2 and G3, areas under receiver operating characteristic curves of FibroScan for significant fibrosis were 0.8267 (p < 0.001), 0.6956 (p < 0.001), 0.709 (p = 0.0012) and 0.6947 (p = 0.137), respectively. Inflammation has a significant influence on LSM values in patients with chronic hepatitis B with mild fibrosis, but not in those with significant fibrosis.

  8. Evaluation of chronic immune system stimulation models in growing pigs.

    PubMed

    Rakhshandeh, A; de Lange, C F M

    2012-02-01

    Two experiments (EXPs) were conducted to evaluate models of immune system stimulation (ISS) that can be used in nutrient metabolism studies in growing pigs. In EXP I, the pig's immune response to three non-pathogenic immunogens was evaluated, whereas in EXP II the pig's more general response to one of the immunogens was contrasted with observations on non-ISS pigs. In EXP I, nine growing barrows were fitted with a jugular catheter, and after recovery assigned to one of three treatments. Three immunogens were tested during a 10-day ISS period: (i) repeated injection of increasing amounts of Escherichia coli lipopolysaccharide (LPS); (ii) repeated subcutaneous injection of turpentine (TURP); and (iii) feeding grains naturally contaminated with mycotoxins (MYCO). In EXP II, 36 growing barrows were injected repeatedly with either saline (n = 12) or increasing amounts of LPS (n = 24) for 7 days (initial dose 60 μg/kg body weight). Treating pigs with TURP and LPS reduced feed intake (P < 0.02), whereas feed intake was not reduced in pigs on MYCO. Average daily gain (ADG; kg/day) of pigs on LPS (0.50) was higher than that of pigs on TURP (0.19), but lower than that of pigs on MYCO (0.61; P < 0.01). Body temperature was elevated in pigs on LPS and TURP, by 0.8°C and 0.7°C, respectively, relative to pre-ISS challenge values (39.3°C; P < 0.02), but remained unchanged in pigs on MYCO. Plasma concentrations of interleukin-1β were increased in pigs treated with LPS and TURP (56% and 55%, respectively, relative to 22.3 pg/ml for pre-ISS; P < 0.01), but not in MYCO-treated pigs. Plasma cortisol concentrations remained unchanged for pigs on MYCO and TURP, but were reduced in LPS-treated pigs (30% relative to 29.8 ng/ml for pre-ISS; P < 0.05). Red blood cell glutathione concentrations were lower in TURP-treated pigs (13% relative to 1.38 μM for pre-ISS; P < 0.05), but were unaffected in pigs on LPS and MYCO. In EXP I, TURP caused severe responses including skin ulceration and

  9. Chronic exposure to biomass fuel smoke and markers of endothelial inflammation.

    PubMed

    Caravedo, M A; Herrera, P M; Mongilardi, N; de Ferrari, A; Davila-Roman, V G; Gilman, R H; Wise, R A; Miele, C H; Miranda, J J; Checkley, W

    2016-10-01

    Indoor smoke exposure may affect cardiovascular disease (CVD) risk via lung-mediated inflammation, oxidative stress, and endothelial inflammation. We sought to explore the association between indoor smoke exposure from burning biomass fuels and a selected group of markers for endothelial inflammation. We compared serum concentrations of amyloid A protein, E-selectin, soluble intercellular adhesion molecule 1 (ICAM-1) and VCAM-1, von Willebrand factor (vWF), and high-sensitivity C-reactive protein (hs-CRP) in 228 biomass-exposed vs. 228 non-exposed participants living in Puno, Peru. Average age was 56 years (s.d. = 13), average BMI was 26.5 kg/m(2) (s.d. = 4.4), 48% were male, 59.4% completed high school, and 2% reported a physician diagnosis of CVD. In unadjusted analysis, serum levels of soluble ICAM-1 (330 vs. 302 ng/ml; P < 0.001), soluble VCAM-1 (403 vs. 362 ng/ml; P < 0.001), and E-selectin (54.2 vs. 52.7 ng/ml; P = 0.05) were increased in biomass-exposed vs. non-exposed participants, respectively, whereas serum levels of vWF (1148 vs. 1311 mU/ml; P < 0.001) and hs-CRP (2.56 vs. 3.12 mg/l; P < 0.001) were decreased, respectively. In adjusted analyses, chronic exposure to biomass fuels remained positively associated with serum levels of soluble ICAM-1 (P = 0.03) and VCAM-1 (P = 0.05) and E-selectin (P = 0.05), and remained negatively associated with serum levels of vWF (P = 0.02) and hs-CRP (P < 0.001). Daily exposure to biomass fuel smoke was associated with important differences in specific biomarkers of endothelial inflammation and may help explain accelerated atherosclerosis among those who are chronically exposed.

  10. Liver Fibrosis and Mechanisms of the Protective Action of Medicinal Plants Targeting Inflammation and the Immune Response

    PubMed Central

    Moreno-Cuevas, Jorge E.; González-Garza, María Teresa; Maldonado-Bernal, Carmen; Cruz-Vega, Delia Elva

    2015-01-01

    Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis. PMID:25954568

  11. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    PubMed Central

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  12. Association between chronic liver and colon inflammation during the development of murine syngeneic graft-versus-host disease

    PubMed Central

    Brandon, J. Anthony; Perez, Jacqueline; Jennings, C. Darrell; Cohen, Donald A.; Sindhava, V. J.; Bondada, S.; Kaplan, Alan M.

    2010-01-01

    The murine model of cyclosporine A (CsA)-induced syngeneic graft-versus-host disease (SGVHD) is a bone marrow (BM) transplantation model that develops chronic colon inflammation identical to other murine models of CD4+ T cell-mediated colitis. Interestingly, SGVHD animals develop chronic liver lesions that are similar to the early peribiliary inflammatory stages of clinical chronic liver disease, which is frequently associated with inflammatory bowel disease (IBD). Therefore, studies were initiated to investigate the chronic liver inflammation that develops in the SGVHD model. To induce SGVHD, mice were lethally irradiated, reconstituted with syngeneic BM, and treated with CsA. All of the SGVHD animals that developed colitis also develop chronic liver inflammation. Liver samples from control and SGVHD animals were monitored for tissue pathology, RNA for inflammatory mediators, and phenotypic analysis and in vitro reactivity of the inflammatory infiltrate. Diseased animals developed lesions of intrahepatic and extrahepatic bile ducts. Elevated levels of mRNA for molecules associated with chronic liver inflammation, including mucosal cellular adhesion molecule −1, the chemokines CCL25, CCL28, CCR9, and TH1- and TH17-associated cytokines were observed in livers of SGVHD mice. CD4+ T cells were localized to the peribiliary region of the livers of diseased animals, and an enhanced proliferative response of liver-associated mononuclear cells against colonic bacterial antigens was observed. The murine model of SGVHD colitis may be a valuable tool to study the entero-hepatic linkage between chronic colon inflammation and inflammatory liver disease. PMID:20634434

  13. Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis

    PubMed Central

    Ogawa, Rei

    2017-01-01

    Keloids and hypertrophic scars are caused by cutaneous injury and irritation, including trauma, insect bite, burn, surgery, vaccination, skin piercing, acne, folliculitis, chicken pox, and herpes zoster infection. Notably, superficial injuries that do not reach the reticular dermis never cause keloidal and hypertrophic scarring. This suggests that these pathological scars are due to injury to this skin layer and the subsequent aberrant wound healing therein. The latter is characterized by continuous and histologically localized inflammation. As a result, the reticular layer of keloids and hypertrophic scars contains inflammatory cells, increased numbers of fibroblasts, newly formed blood vessels, and collagen deposits. Moreover, proinflammatory factors, such as interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α are upregulated in keloid tissues, which suggests that, in patients with keloids, proinflammatory genes in the skin are sensitive to trauma. This may promote chronic inflammation, which in turn may cause the invasive growth of keloids. In addition, the upregulation of proinflammatory factors in pathological scars suggests that, rather than being skin tumors, keloids and hypertrophic scars are inflammatory disorders of skin, specifically inflammatory disorders of the reticular dermis. Various external and internal post-wounding stimuli may promote reticular inflammation. The nature of these stimuli most likely shapes the characteristics, quantity, and course of keloids and hypertrophic scars. Specifically, it is likely that the intensity, frequency, and duration of these stimuli determine how quickly the scars appear, the direction and speed of growth, and the intensity of symptoms. These proinflammatory stimuli include a variety of local, systemic, and genetic factors. These observations together suggest that the clinical differences between keloids and hypertrophic scars merely reflect differences in the intensity, frequency, and duration of

  14. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases

    PubMed Central

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2016-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  15. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis?

    PubMed

    Hasselbalch, Hans C

    2014-02-01

    A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs.

  16. Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis.

    PubMed

    Largo, Raquel; Martínez-Calatrava, María José; Sánchez-Pernaute, Olga; Marcos, M Esther; Moreno-Rubio, Juan; Aparicio, César; Egido, Jesús; Herrero-Beaumont, Gabriel

    2009-07-01

    Glucosamine sulfate (GS) is a glycosaminoglycan with anti-inflammatory and immunoregulatory properties. Here we set out to explore the effect of GS administration on markers of systemic and local inflammation in rabbits with atherosclerosis aggravated by chronic arthritis. Atherosclerosis was induced in rabbits by maintaining them on a hyperlipidemic diet after producing an endothelial lesion in the femoral arteries. Simultaneously, chronic arthritis was induced in these animals by repeated intra-articular injections of ovalbumin in previously immunized rabbits. A group of these rabbits was treated prophylactically with oral GS (500 mg.kg(-1).day(-1)), and, when the animals were killed, serum was extracted and peripheral blood mononuclear cells (PBMC) were isolated. Furthermore, the femoral arteries, thoracic aorta, and synovial membranes were examined in gene expression studies and histologically. GS administration reduced circulating levels of the C-reactive protein and of interleukin-6. GS also lowered nuclear factor-kappaB activation in PBMC, and it downregulated the expression of both the CCL2 (monocyte chemoattractant protein) and cyclooxygenase-2 genes in these cells. Lesions at the femoral wall were milder after GS treatment, as reflected by the intimal-to-media thickened ratio and the absence of aortic lesions. Indeed, GS also attenuated the histological lesions in synovial tissue. In a combined rabbit model of chronic arthritis and atherosclerosis, orally administered GS reduced the markers of inflammation in peripheral blood, as well as the femoral and synovial membrane lesions. GS also prevented the development of inflammation-associated aortic lesions. These results suggest an atheroprotective effect of GS.

  17. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments.

    PubMed

    Joosten, Leo A B; Abdollahi-Roodsaz, Shahla; Dinarello, Charles A; O'Neill, Luke; Netea, Mihai G

    2016-06-01

    In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.

  18. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance.

    PubMed

    Tarantino, Giovanni; Savastano, Silvia; Colao, Annamaria

    2010-10-14

    Non-alcoholic fatty liver disease (NAFLD), a further expression of metabolic syndrome, strictly linked to obesity and diabetes mellitus, is characterized by insulin resistance (IR), elevated serum levels of free fatty acids and fatty infiltration of the liver, which is known as hepatic steatosis. Hepatocyte apoptosis is a key feature of this disease and correlates with its severity. Free-fatty-acid-induced toxicity represents one of mechanisms for the pathogenesis of NAFLD and hormones, growth factors and adipokines influence also play a key role. This review highlights the various pathways that contribute to the development of hepatic steatosis. Circulating concentrations of inflammatory cytokines are reckoned to be the most important factor in causing and maintaining IR. Low-grade chronic inflammation is fundamental in the progression of NAFLD toward higher risk cirrhotic states.

  19. [Understanding and treatment strategy of the pathogenesis of periodontal disease based on chronic inflammation].

    PubMed

    Murakami, Tomohiko

    2016-05-01

    Prolonged inflammation continuously promotes the infiltration of macrophages in the organization and chronically induces the production of pro-inflammatory cytokines such as TNF and IL-1. In periodontal tissues, these inflammatory cytokines enhance the differentiation and activity of osteoclasts, which cause destruction of the alveolar bone. Therefore, inhibition of inflammatory cytokine production leads to the prevention or treatment of periodontal disease. IL-1 is a pro-inflammatory cytokine that strongly enhances the bone-resorbing activity of osteoclasts. Elucidation of mechanisms for the production of IL-1 is critical for understanding the pathogenesis of periodontal disease. This paper reviews recent findings of the molecular mechanisms regulating IL-1 production and focuses on inflammasome.

  20. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids following influenza vaccination.

    PubMed

    Hillesheim, Paul B; Parker, John R; Parker, Joseph C; Escott, Edward; Berger, Joseph R

    2012-06-01

    Inflammatory processes within the central nervous system are challenging for the clinician, radiologist, and pathologist alike. They often can mimic other more well-known and defined disease processes. We present the case of a patient with a newly described inflammatory process that primarily involves the pons and adjacent structures, which is called chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). An 80-year-old man presented with numbness of his right hand that ultimately progressed to involve both lower extremities and face and was associated with mild dysarthria and ataxia. He had received the influenza vaccination 2 weeks prior. The biopsy revealed primarily reactive T-cell lymphocytic infiltrates with macrophages and gliosis. Treatment required long-term immunosuppressive therapy. CLIPPERS is a recently described central nervous system inflammatory condition that should be considered in the differential diagnosis when a prominent lymphocytic inflammatory infiltrate is encountered in brainstem, spinal cord, midbrain, or cerebellar biopsies.

  1. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) after treatment for Hodgkin's lymphoma.

    PubMed

    Mashima, Kyoko; Suzuki, Shigeaki; Mori, Takehiko; Shimizu, Toshihiko; Yamada, Satoshi; Hirose, Shigemichi; Okamoto, Shinichiro; Suzuki, Norihiro

    2015-12-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare central nervous system (CNS) disorder with distinct radiological features. However, CLIPPERS may mimic CNS lymphoma, and several cases in which CLIPPERS occurred premonitory to CNS lymphoma have been reported. We report a 31-year-old man presenting with progressive gait ataxia and the characteristic MRI features of CLIPPERS. He was diagnosed with stage II Hodgkin's lymphoma at the age of 15, and we considered the possibility of newly emerged CNS lymphoma occurring in the immunosuppressive condition after the treatment of Hodgkin's lymphoma. Histological findings showed no evidence of CNS lymphoma and the neurological symptoms were resolved by steroids. Although CLIPPERS developed in the reverse order in this case, CLIPPERS should be considered in different diagnosis for CNS lymphoma.

  2. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    SciTech Connect

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A. Jay; Lantz, R. Clark; González-Cortes, Tania; Gonzalez-De Alba, Cesar; Froines, John R.; Espinosa-Fematt, Jorge A.

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  3. Effect of diethylcarbamazine on chronic hepatic inflammation induced by alcohol in C57BL/6 mice.

    PubMed

    Santos Rocha, Sura Wanessa; Silva, Bruna Santos; Gomes, Fabiana Oliveira dos Santos; Soares e Silva, Amanda Karolina; Raposo, Catarina; Barbosa, Karla Patrícia Sousa; Torres, Dilênia de Oliveira Cipriano; dos Santos, Ana Célia Oliveira; Peixoto, Christina Alves

    2012-08-15

    Some pharmacological studies showed that diethylcarbamazine (DEC) interferes with the arachidonic acid metabolism, acting as an anti-inflammatory drug. The chronic alcohol consumption activates the hepatic inflammatory response associated to T-cell activation and overproduction of pro-inflammatory cytokines. The present work analyzed the anti-inflammatory effect of DEC on hepatic cells of alcoholic mice. Thirty-two male C57BL/6 mice were equally divided in the following groups: (a) control group (C), which received only water, (b) DEC-treated group, which received 50 mg/kg for 12 day (DEC50), (c) the alcoholic group (EtOH), submitted to only alcohol and (d) the alcohol-DEC treated group (EtOH50), submitted to alcohol plus DEC treatment after the induction of chronic alcoholism for 5 weeks. Biochemical analyses were performed and liver fragments were processed for light microscopy, transmission electron microscopy, immunohistochemical and western blot. The level of AST increased significantly in alcoholic group whereas a significant reduction of serum AST was detected in the EtOH50 group. Histological and ultrastructural analysis of alcoholic group showed evident hepatocellular damage, which was strikingly reduced in the alcoholic DEC-treated group. Immunohistochemistry results revealed highly expression of inflammatory markers as MDA, NF-κB, TNF-α, IL-6, VCAM and ICAM by the hepatic cells of the EtOH group; however no immunoreactivity for any of these cytokines was detected after DEC treatment. Western blot analyses showed increased MCP-1 and iNOS expression in EtOH group, which was significantly inhibited by DEC treatment. According to the present results, DEC can be a potential drug for the treatment of chronic inflammation induced by chronic alcoholism.

  4. Is airway inflammation in chronic obstructive pulmonary disease (COPD) a risk factor for cardiovascular events?

    PubMed

    Calverley, Peter M A; Scott, Stephen

    2006-12-01

    Cardiovascular disease (CVD) is a very common cause of death in patients with chronic obstructive pulmonary disease (COPD). Smoking is a well-described risk factor for both COPD and CVD, but CVD in patients with COPD is likely to be due to other factors in addition to smoking. Inflammation may be an important common etiological link between COPD and CVD, being well described in both diseases. It is hypothesized that in COPD a "spill-over" of local airway inflammation into the systemic circulation could contribute to increased CVD in these patients. Inhaled corticosteroids (ICS) have well-documented anti-inflammatory effects and are commonly used for the treatment of COPD, but their effects on cardiovascular endpoints and all-cause mortality have only just started to be examined. A recent meta-analysis has suggested that ICS may reduce all-cause mortality in COPD by around 25%. A case-controlled study specifically examined the effects of ICS on myocardial infarction and suggested that ICS may decrease the incidence of MI by as much as 32%. A large multicenter prospective randomized trial (Towards a Revolution in COPD Health [TORCH]) is now ongoing and will examine the effect of fluticasone propionate in combination with salmeterol on all-cause mortality.

  5. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation.

    PubMed

    Nixon, John; Newbold, Paul; Mustelin, Tomas; Anderson, Gary P; Kolbeck, Roland

    2017-01-01

    Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.

  6. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome

    PubMed Central

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-01-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m−2) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. PMID:24117923

  7. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    PubMed Central

    Borges, Leandro da Silva; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig),