Science.gov

Sample records for chronic metal pollution

  1. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  2. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded. PMID:18707753

  3. Influence of diffuse and chronic metal pollution in water and sediments on edible seafoods within Ondo oil-polluted coastal region, Nigeria.

    PubMed

    Ololade, Isaac A; Lajide, Labunmi; Olumekun, Victor O; Ololade, Olusola O; Ejelonu, Benjamin C

    2011-01-01

    The bioconcentration levels of 3 non-essential elements (Pb, Cd and Ni) have been investigated in three different seafoods; Fish (Tilapia zilli), Crab (Callinectes sapidus) and periwinkle (Littorina littorea), to investigate the ecosystem health status in Ondo oil-polluted coastal region, Nigeria. The seafood samples were chosen based on their popularity as a food source and the potential of the species to contain high levels of metals based on past research results. Metal concentrations in the biota showed marked interspecific differences with C. sapidus recording the highest concentrations of all the metals. The bioconcentration factor (BCF) showed that C. sapidus and T. zilli have the greatest potential to concentrate Cd (BCF = 3-10) and Pb (BCF = 11-84) respectively. Lead uptake from both water and sediment (BCF ≈ BSAF: 0.003-0.018) were abysmally low in L. littorea as compared with other organisms. The high concentrations of Pb in fish species, effective bioaccumulation of Cd in species of crab and periwinkles, as well as very high BSAF of Ni found in species of crab indicated a strong influence from anthropogenic pollutant source on the biotic community. Oil pollution appears to be a major source of bioavailable metal contaminants for the selected biota. The study shows that C. sapidus and L. littorea can effectively compartmentalize potentially toxic metals such as Cd, Pb and Ni within their tissues. In terms of toxicity, C. sapidus had Cd concentrations greater than the 3,000 ng/g limit set by the Commission of the European Communities while Pb concentration exceeded their limits in both C. sapidus and T. zilli. All levels of Ni were below the U.S. Food and Drug Administration action levels for these metals in fish, crustaceans and shellfish. The study revealed anthropogenic enrichment of the metals studied which can possibly pose potential threats to the ecology of the area. PMID:21714630

  4. METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFPPT)

    EPA Science Inventory

    The Metal Finishing Facility Pollution Tool (MFFPPT) is being developed to allow the metal finishing industry an easy method to evaluate potential pollution prevention options. In order to reduce the quantity of pollutants generated by a process, the sources of pollutants within ...

  5. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool.

    PubMed

    Pandey, Lalit K; Bergey, Elizabeth A

    2016-04-15

    Taxonomic metrics of diatoms are regularly used for aquatic biomonitoring, including testing for heavy metal stress. In contrast, non-taxonomical parameters in diatoms are rarely assessed. In the present study, taxonomical features of diatoms, such as cell density, chlorophyll a, species richness, and the Shannon index, were reduced at severely polluted (Cu, Zn) sites compared with less polluted sites. Some non-taxonomic parameters, such as, lipid bodies (LBs) number and size, carotenoid/chlorophyll a ratios, and frustule deformities were elevated at the severely polluted sites in comparison to the less polluted sites in both the areas. Cell size diminished and motility changed from smooth to erratic with increasing Cu and Zn pollution. Some of these behavioral and physiological changes were easily assessed (e.g., motility and formation of LBs), while morphological alterations (cell wall deformities and changes in cell size) requires more time and human expertise in diatom taxonomy. These parameters were consistent across metal concentrations of sediments, in the water, and in cells. The results illustrate the usefulness of these non-taxonomic parameters in biomonitoring, especially as early warning tools for ecotoxicity assessment and testing for sublethal effects. Some of these parameters, such as cell size and cell wall deformities, can be easily incorporated into traditional protocols, although LBs and motility metrics will require more effort.

  6. Pollution by metals: Is there a relationship in glycemic control?

    PubMed

    González-Villalva, Adriana; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; Rodríguez-Lara, Vianey; García-Pelaez, Isabel; Ustarroz-Cano, Martha; López-Valdez, Nelly; Albarrán-Alonso, Juan Carlos; Fortoul, Teresa I

    2016-09-01

    There are evidences of environmental pollution and health effects. Metals are pollutants implicated in systemic toxicity. One of the least studied effects, but which is currently becoming more important, is the effect of metals on glycemic control. Metals have been implicated as causes of chronic inflammation and oxidative stress and are associated to obesity, hyperglycemia and even diabetes. Arsenic, iron, mercury, lead, cadmium and nickel have been studied as a risk factor for hyperglycemia and diabetes. There is another group of metals that causes hypoglycemia such as vanadium, chromium, zinc and magnesium by different mechanisms. Zinc, magnesium and chromium deficiency is associated with increased risk of diabetes. This review summarizes some metals involved in glycemic control and pretends to alert health professionals about considering environmental metals as an important factor that could explain the poor glycemic control in patients. Further studies are needed to understand this poorly assessed problem. PMID:27552445

  7. Chronic Effects of Air Pollution are Probably Overestimated.

    PubMed

    Boffetta, Paolo; La Vecchia, Carlo; Moolgavkar, Suresh

    2015-05-01

    Inappropriate measures of exposure, including inadequate consideration of latency in the analysis of chronic effects of air pollution, may lead to overestimation of the impact of air pollution on health effects. A relatively simple way to check the plausibility of results on chronic effects of air pollution would be to report in parallel the smoking-associated risks.

  8. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  9. Current levels of heavy metal pollution in Africa.

    PubMed

    Yabe, John; Ishizuka, Mayuni; Umemura, Takashi

    2010-10-01

    Studies of environmental pollution in Africa indicate that toxic metal pollution has reached unprecedented levels over the past decade. Human exposure to toxic metals has become a major health risk on the continent and is the subject of increasing attention from national and international environmentalists. This paper reviews data from the past decade on environmental pollution in Africa and highlights countries where most heavy metal pollutions have been reported. Characteristics of heavy metal pollution in North, West, East and Southern regions of Africa have been described, as have major sources of pollution in the different regions. This review summarizes the sites where most of the heavy metal pollution has been reported in Africa and, where applicable, presents reported levels of pollution in different environmental compartments in the context of internationally acceptable limits. Contaminations in fish and food animals as well as impacts of heavy metal pollution on humans are also described.

  10. Effects of dimethoate on spiders from metal pollution gradient.

    PubMed

    Babczyńska, Agnieszka; Wilczek, Grazyna; Migula, Paweł

    2006-11-01

    In this study, an attempt has been made to assess whether a chronic exposure to metals in habitats under a strong industrial pressure might have equipped spiders with biochemical defensive mechanisms enabling them to survive an additional chemical stress. To check this, non-web-building wolf spiders Pardosa lugubris (Lycosidae) and funnel web Agelena labyrinthica (Agelenidae) were collected at five variously polluted meadows and, under laboratory conditions, intoxicated with either single or multiple dose of dimethoate (OP pesticide). Then the activities of detoxifying (carboxylesterase: CarE, glutathione S-transferase: GST), antioxidative (selene-dependent and selene-independent glutathione peroxidases: GPOX and GSTPx) enzymes as well as acetylcholinesterase as a biomarker of exposure to OP pesticides were measured. In web-building A. labyrinthica, even a single application of the pesticide caused the inhibition of CarE, GSTPx and GPOX in individuals from less polluted sites and AChE and GST in specimens pre-exposed to high metal concentrations. Multiple intoxication, irrespectively of the site, caused significant, in comparison to controls, decrease in CarE, AChE and GSTPx activities. Actively hunting P. lugubris seem more resistant to acute pesticide intoxication, since the spiders from each site had a constant level of GST and AChE. In individuals of this species from heavily polluted sites, the inhibition caused by multiple intoxication with dimethoate was stated only for glutathione peroxidases.

  11. Chronic obstructive pulmonary disease secondary to household air pollution.

    PubMed

    Assad, Nour A; Balmes, John; Mehta, Sumi; Cheema, Umar; Sood, Akshay

    2015-06-01

    Approximately 3 billion people around the world cook and heat their homes using solid fuels in open fires and rudimentary stoves, resulting in household air pollution. Household air pollution secondary to indoor combustion of solid fuel is associated with multiple chronic obstructive pulmonary disease (COPD) outcomes. The exposure is associated with both chronic bronchitis and emphysema phenotypes of COPD as well as a distinct form of obstructive airway disease called bronchial anthracofibrosis. COPD from household air pollution differs from COPD from tobacco smoke with respect to its disproportionately greater bronchial involvement, lesser emphysematous change, greater impact on quality of life, and possibly greater oxygen desaturation and pulmonary hypertensive changes. Interventions that decrease exposure to biomass smoke may decrease the risk for incident COPD and attenuate the longitudinal decline in lung function, but more data on exposure-response relationships from well-designed longitudinal studies are needed. PMID:26024348

  12. Chronic obstructive pulmonary disease secondary to household air pollution.

    PubMed

    Assad, Nour A; Balmes, John; Mehta, Sumi; Cheema, Umar; Sood, Akshay

    2015-06-01

    Approximately 3 billion people around the world cook and heat their homes using solid fuels in open fires and rudimentary stoves, resulting in household air pollution. Household air pollution secondary to indoor combustion of solid fuel is associated with multiple chronic obstructive pulmonary disease (COPD) outcomes. The exposure is associated with both chronic bronchitis and emphysema phenotypes of COPD as well as a distinct form of obstructive airway disease called bronchial anthracofibrosis. COPD from household air pollution differs from COPD from tobacco smoke with respect to its disproportionately greater bronchial involvement, lesser emphysematous change, greater impact on quality of life, and possibly greater oxygen desaturation and pulmonary hypertensive changes. Interventions that decrease exposure to biomass smoke may decrease the risk for incident COPD and attenuate the longitudinal decline in lung function, but more data on exposure-response relationships from well-designed longitudinal studies are needed.

  13. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    PubMed

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines.

  14. Dustfall Heavy Metal Pollution During Winter in North China.

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  15. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    PubMed

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality.

  16. Metal Pollutant Exposure and Behavior Disorders: Implications for School Practices.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    1986-01-01

    The article summarizes research on relationships between low (below metal poisoning) metal exposure and childhood behavior disorders. Symptoms, assessment techniques (hair analysis), and environmental and dietary factors that may increase the risk of metal pollutant exposure are described. School programs emphasizing education and the role of…

  17. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment.

  18. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment. PMID:21608273

  19. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  20. The influence of heavy metals and predation on benthic macroinvertebrate communities from polluted and unpolluted streams

    SciTech Connect

    Clements, W.H.

    1995-12-31

    The author tested the hypothesis that benthic macroinvertebrate communities from a stream polluted by historic mining operations were tolerant of heavy metals but more susceptible to predation compared to communities from an unpolluted stream. Benthic communities obtained from reference (Cache la Poudre River) and chronically-polluted (Arkansas River) streams in Colorado were transferred to the CSU Stream Research Laboratory and placed into one of 16 stream microcosms. In the first experiment, communities in treatment streams were exposed to 220 {micro}g Zn/L, 24 {micro}g Cu/L and 2.2 {micro}g Cd/L for 10 d. In a second experiment, communities in treatment streams were exposed to predatory stoneflies (Hesperperla pacifica). Effects of metals were significantly greater on mayflies (Rhithrogena hageni, Baetis sp., Ephemerella infrequens) from the unpolluted Cache la Poudre River than from the Arkansas River. In addition, exposure to metals increased drift rate of invertebrates collected from the unpolluted stream but had no effect on invertebrates from the Arkansas River. In contrast to these results, effects of predation on survival and drift were greater for communities from the polluted stream. The results demonstrate that while macroinvertebrate populations in chronically-polluted habitats may acclimate to heavy metals, these populations are more susceptible to biotic interactions.

  1. [Chronic arsenic water pollution in the Republic of Argentina].

    PubMed

    Enrique Biagini, R

    1975-01-01

    Arsenical pollution of water supplies is a chronic problem of great medical, social and sanitary importance in Argentina. The well-known cutaneous manifestations of chronic arsenical toxicity, palmar and plantar keratoses, melanoderma and multiple epitheliomas are described. The interest which this disease has evoked in the last few years is emphasized when new arsenical areas are discovered with clinical cases of chronic arsenical intoxication. Furthermore it is shown that the high content of arsenic in drinking water may be the determining factor in the incidence of visceral neoplasms. Contrary to classic beliefs, the chronic toxic effects from arsenic may be present in young children but the palmar and plantar keratoses may be absent. The histochemical localization of the arsenic in the skin and its relation to thyroid function and the production of leukoplakia and laryngeal cancer are noted. When one analyses all the recent reports it is evident that patients with chronic arsenical intoxication must now be thoroughly studied bearing in mind the multiple localization of this carcinogenic agent.

  2. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  3. Intrinsic bioremediation potential of a chronically polluted marine coastal area.

    PubMed

    Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola

    2015-10-15

    A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided. PMID:26248825

  4. Intrinsic bioremediation potential of a chronically polluted marine coastal area.

    PubMed

    Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola

    2015-10-15

    A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided.

  5. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  6. Does metal pollution matter with C retention by rice soil?

    NASA Astrophysics Data System (ADS)

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-08-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation.

  7. Does metal pollution matter with C retention by rice soil?

    PubMed

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-08-14

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation.

  8. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  9. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea.

    PubMed

    Chen, Tian-Ran; Yu, Ke-Fu; Li, Shu; Price, Gilbert J; Shi, Qi; Wei, Gang-Jian

    2010-01-01

    We examined metal-to-calcium ratios (Fe/Ca, Mn/Ca and Zn/Ca) in the growth bands of two Porites corals from Daya Bay, South China Sea, in order to trace long-term trends in local ambient pollution levels. Although Fe and Mn did not show any obvious increasing trends over 32 years in the period 1976-2007, peak values of Fe/Ca and Mn/Ca occurred in the mid-late 1980s, temporally-coeval with the local construction of a nuclear power station. Furthermore, both corals showed rapid increases in Zn concentrations over the past 14 years (1994-2007), most likely due to increases in domestic and industrial sewage discharge. The Daya Bay corals had higher concentrations of metals than other reported corals from both pristine and seriously polluted locations, suggesting that acute (Fe and Mn) and chronic (Zn) heavy metal contamination has occurred locally over the past approximately 32 years.

  10. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.

    PubMed

    Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A

    2014-08-01

    Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services. PMID:24781304

  11. Immunotoxicology in wood mice along a heavy metal pollution gradient.

    PubMed

    Tersago, Katrien; De Coen, Wim; Scheirs, Jan; Vermeulen, Katrien; Blust, Ronny; Van Bockstaele, Dirk; Verhagen, Ron

    2004-12-01

    We carried out an immunotoxicological field study of wood mice in three populations along a heavy metal pollution gradient. Heavy metal concentrations in liver tissue indicated that exposure to silver, arsenic, cadmium, cobalt and lead decreased with increasing distance from a non-ferrous smelter. Host resistance to the endoparasite Heligmosomoides polygyrus decreased with increasing exposure, while the abundance of tick larvae and the nematode Syphacia stroma was unrelated to heavy metal exposure. Spleen mass was increased at the intermediate and the most polluted sites and was positively correlated with the number of H. polygyrus and tick larvae. Proportion of early apoptotic leukocytes increased towards the smelter and was positively related to cadmium exposure. Red and white blood cell counts and lysozyme activity showed no relationship with metal exposure. All together, our observations suggest negative effects of heavy metal exposure on the immune function of wood mice under field conditions.

  12. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  13. Mechanisms of lichen resistance to metallic pollution

    SciTech Connect

    Sarret, C.; Manceau, A.; Eybert-Berard, L.; Cuny, D.; Haluwyn, C. van; Deruelle, S.; Hazemann, J.L.; Menthonnex, J.J. |; Soldo, Y.

    1998-11-01

    Some lichens have a unique ability to grow in heavily contaminated areas due to the development of adaptative mechanisms allowing a high tolerance to metals. Here the authors report on the chemical forms of Pb and Zn in the metal hyperaccumulator Diploschistes muscorum and of Pb in the metal tolerant lichen Xanthoria parietina. The speciation of Zn and Pb has been investigated by powder X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy using the advanced third-generation synchrotron radiation source of the European synchrotron radiation facility (ESRF in Grenoble). This study reveals that in both lichens cells are protected from toxicity by complexation of heavy metals, but the strategies differ: in D. muscorum, Pb and Zn are accumulated through an enhanced synthesis of oxalate, which precipitates toxic elements as insoluble salts, whereas in X. parietina, Pb is complexed to carboxylic groups of the fungal cell walls. The authors conclude that hyperaccumulation of metals results from a reactive mechanism of organic acid production, whereas metallo-tolerance is achieved by a passive complexation to existing functional groups.

  14. Microbial treatment of metal pollution--a working biotechnology?

    PubMed

    Gadd, G M; White, C

    1993-08-01

    Some of the main processes that remove, immobilize or detoxify heavy metals and radionuclides in the natural environment result from microbial activities. These activities can be harnessed to clean up toxic metal wastes before they enter the wider environment. To date, the most successful biotechnological processes utilize biosorption and bioprecipitation, but other processes such as binding by specific macromolecules may have future potential. Technologies using these processes are currently used to control pollution from diverse sources, including smelters and mine workings.

  15. [Effects of heavy metals pollution on paddy soil aggregates composition and heavy metals distribution].

    PubMed

    Zhang, Liang-Yun; Li, Lian-Qing; Pan, Gen-Xing; Cui, Li-Qiang; Li, Hong-Lei; Wu, Xiao-Yan; Shao, Jie-Qi

    2009-11-01

    Topsoil samples were collected from a polluted and an adjacent non-polluted paddy field in the Taihu Lake region of China. Different particle size fractions of soil aggregates were separated by low-energy dispersion procedure, and their mass composition and Pb, Cd, Hg, and As concentrations were determined. Under heavy metals pollution, the mass composition of sand-sized fractions reduced, while that of clay-sized fractions increased. The concentrations of test metals in different particle size fractions differed, with the highest in < 0.002 mm fraction, followed by in 2-0.2 mm fraction. In 0.02-0.002 mm and 0.2-0.02 mm fractions, all the test metals were relatively deficient, with an enrichment index of 0.56-0.96. The present study showed that the aggregation of fine particles could be depressed by heavy metals pollution, which in turn, led to a relative increase in the mass composition of fine particles and the associated allocation of heavy metals in weakly aggregated silt particles, and further, increased the risks of heavy metals translocation from polluted farmland into water and atmosphere. Further studies should be made on the impacts of heavy metals pollution on soil biophysical and biochemical processes and related mechanisms.

  16. Heavy metal pollution among autoworkers. I. Lead.

    PubMed

    Clausen, J; Rastogi, S

    1977-08-01

    Lead pollution was evaluated in 216 individuals working in 10 garages on the Island of Funen, Denmark and related to data from biochemical and medical examinations. Clinical symptoms were recorded by means of a questionnaire. Increased blood test lead levels were foun in 59% with 9% having above 80 microgram lead/100 ml (3-86mumol/1) whole blood. Mechanics in eight out of ten garages had significantly increased blood lead levels. A decrease in delta-aminolevulinic acid dehydratase (ALAD) activity was associated with increased blood lead levels but the latter were not related to haematological changes, tobacco consumption or to length of service in the trade. Particulate lead air pollution was not the sole cause of increased blood lead levels. Raised lead values were maximal among diesel engine workers who are exposed to high pressure-resistant lubricants containing lead naphthenate. As these workers complained of skin damage, lead absorption may have occurred through the skin. Assay of lead content showed 9290 ppm in gear oil and 1500-3500 ppm in used motor oils. The data are discussed in relation to the occupational risks in auto repair shops. PMID:911691

  17. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels.

    PubMed

    Okay, Oya S; Ozmen, Murat; Güngördü, Abbas; Yılmaz, Atilla; Yakan, Sevil D; Karacık, Burak; Tutak, Bilge; Schramm, Karl-Werner

    2016-06-01

    In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation.

  18. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels.

    PubMed

    Okay, Oya S; Ozmen, Murat; Güngördü, Abbas; Yılmaz, Atilla; Yakan, Sevil D; Karacık, Burak; Tutak, Bilge; Schramm, Karl-Werner

    2016-06-01

    In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation. PMID:27188302

  19. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  20. Lake sediments as indicators of heavy-metal pollution.

    PubMed

    Förstner, U

    1976-10-01

    Heavy metals are one of the most toxic forms of environmental pollutants, constituting a threat both to aquatic life and the quality of drinking water. By analyzing lake sediments, it is possible to determine the provenance, distribution, extent, and also the possible hazards of metal contamination. Sedimentary cores, in particular, provide the means for evaluating the different influences from natural and civilizational sources; they represent a historical record of the metal accumulations which have taken place during the past decades as a result of population growth and industrial development. PMID:790198

  1. Effects of historic metal(loid) pollution on earthworm communities.

    PubMed

    Lévêque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mombo, Stéphane; Mazzia, Christophe; Foucault, Yann; Dumat, Camille

    2015-04-01

    The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).

  2. Effects of historic metal(loid) pollution on earthworm communities.

    PubMed

    Lévêque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mombo, Stéphane; Mazzia, Christophe; Foucault, Yann; Dumat, Camille

    2015-04-01

    The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1). PMID:25616191

  3. Temporal Trends in Metal Pollution: Using Bird Excrement as Indicator

    PubMed Central

    Berglund, Åsa M. M.; Rainio, Miia J.; Eeva, Tapio

    2015-01-01

    Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends. PMID:25680108

  4. Temporal trends in metal pollution: using bird excrement as indicator.

    PubMed

    Berglund, Åsa M M; Rainio, Miia J; Eeva, Tapio

    2015-01-01

    Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends. PMID:25680108

  5. Temporal trends in metal pollution: using bird excrement as indicator.

    PubMed

    Berglund, Åsa M M; Rainio, Miia J; Eeva, Tapio

    2015-01-01

    Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends.

  6. Environmental health implications of heavy metal pollution from car tires.

    PubMed

    Horner, J M

    1996-01-01

    This paper reviews the potential for environmental pollution by heavy metals from the disposal of used car tires and describes laboratory work and field research exploring the magnitude of the problem. The metals considered here are cadmium, lead, and zinc; their respective mean concentrations for ten makes of tires used in the United Kingdom ranged from 0-3.0, 8.1-22.3, and 2524-6012 ppm. The metals were extracted from tires by simulated acid-rain solutions (pH 2.5); zinc concentrations of the leachate ranged from 169-463 ppm, but cadmium and lead concentrations were negligible. A significant increase in surface soil concentrations of all three metals was measured with increasing proximity to a tire dump in West London. The respective mean concentrations of cadmium, lead, and zinc in soil at the base of the dump were 22, 1160, and 1235 ppm, indicating contamination by each metal.

  7. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  8. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  9. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  10. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  11. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review.

    PubMed

    Naser, Humood A

    2013-07-15

    The Arabian Gulf is considered among the highest anthropogenically impacted regions in the world. Heavy metals contamination in coastal and marine environments is becoming an increasingly serious threat to both the naturally stressed marine ecosystems and humans that rely on marine resources for food, industry and recreation. Heavy metals are introduced to coastal and marine environments through a variety of sources and activities including sewage and industrial effluents, brine discharges, coastal modifications and oil pollution. The present paper reviews heavy metal contamination in a variety of marine organisms, and sediments, and suggests measures for environmental management of heavy metal pollution in the Arabian Gulf. Most of the reviewed literature confirmed that heavy metal concentrations in marine organisms were generally within allowable concentrations and pose no threat to public health. Likewise, studies suggested that levels of heavy metals in marine sediments are similar or lower compared to other regions. However, localized hotspots of chronic metal pollution in areas influenced by industrial facilities, desalination plants, and oil refineries have been reported. Holistic spatial and temporal monitoring and comprehensive national and regional strategies are critical to combat and manage heavy metal pollution in the Arabian Gulf.

  12. Pollution performance of 110 kV metal oxide arresters

    SciTech Connect

    Chrzan, K.; Pohl, Z.; Grzybowski, S.; Koehler, W.

    1997-04-01

    Pollution test results of single unit 110 kV metal oxide surge arresters with porcelain housing according to the solid layer and salt fog methods are presented. During 6 hours of testing, the internal and external charge and maximum temperature along the varistor column were measured. The formation of single stable dry bands on the housing was often observed, especially during salt fog tests. In such cases, the varistor temperature can reach about 70 C. The simple electrical model of the arrester enabling calculations of voltages and currents as a function of arrester and pollution parameters is shown.

  13. [Investigation of chronic arsenic poisoning caused by high arsenic coal pollution].

    PubMed

    Zhou, D X

    1993-05-01

    This article reports the results of an investigation on environmental arsenic pollution and chronic arsenic poisoning in a rural area. Exploitation of high arsenic coal caused drinking and irrigating water to be polluted by arsenic and burning of this coal caused severe environmental arsenic pollution including air, food, soil and drinking well water. 1548 villagers in 47 villages suffered from chronic arsenic poisoning who used this coal in daily life. The polluted air and food were mainly responsible, while the polluted drinking water and skin absorption played some part in poisoning. When arsenic level in coal is as high as 100mg/kg, we should consider the possibility of environmental arsenic pollution and chronic arsenic poisoning in exposed population. The high arsenic coal's distribution is very uneven. When controlling the disease, it is important to remember monitoring the quantity of arsenic coal outside the arsenic coal mining area. PMID:8243176

  14. Microbial removal of toxic metals from a heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Nicolova, Marina; Spasova, Irena; Georgiev, Plamen; Groudev, Stoyan

    2015-04-01

    Samples of a leached cinnamonic forest soil heavily polluted with uranium and some toxic heavy metals (mainly copper, zinc and cadmium) were subjected to cleaning by means of bioleaching with acidophilic chemolithotrophic bacteria. The treatment was carried out in a green house in which several plots containing 150 kg of soil each were constructed. The effect of some essential environmental factors such as pH, humidity, temperature and contents of nutrients on the cleaning process was studied. It was found that under optimal conditions the content of pollutants were decreased below the relevant permissible levels within a period of 170 days. The soil cleaned in this way was characterized by a much higher production of biomass of different plants (alfalfa, clover, red fescue, vetch) than the untreated polluted soil.

  15. Red sea corals as biomonitors of trace metal pollution.

    PubMed

    Hanna, R G; Muir, G L

    1990-05-01

    Red Sea corals have been found to be biomonitors of trace metal pollution. A comparative study was undertaken on three species from a polluted area near a desalination plant at Jeddah (Saudi Arabia) and from an unpolluted area. The results show that corals take-up trace elements from their aquatic environment and thereby act to record changes in the composition of that environment. Variations in the composition of skeletons and soft tissues of corals have been correlated with changes in sea water composition. Three coral species, Porites lutea, Goniastrea retiformis and Pocillopora verrucosa have been analysed for Hg, Cu, Zn, Pb, Mn, Fe, Ni, Cd, V, Al, Cr, Mg, B, Ca, and Sr in both skeletal and soft tissues. Results show that corals in the polluted areas have significantly higher concentrations of trace elements compared to that of corals from unpolluted areas.

  16. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  17. Pollution prevention and waste minimization in metal finishing

    SciTech Connect

    Stimetz, C.J.

    1994-12-01

    This study was done to identify pollution prevention and waste minimization opportunities in the general plating department and the printed circuit board processing department. Recommendations for certain recycle and recovery technologies were mad in order to reduce usage of acids and the volume of heavy metal sludge that is formed at the industrial Wastewater Pretreatment Facility (IWPF). Some of these technologies discussed were acid purification, electrowinning, and ion exchange. Specific technologies are prescribed for specific processes. Those plating processes where the metals can be recovered are copper, nickel, gold, cadmium, tin, lead, and rhodium.

  18. Manila clam Venerupis philippinarum as a biomonitor to metal pollution

    NASA Astrophysics Data System (ADS)

    Wu, Huifeng; Ji, Chenglong; Wang, Qing; Liu, Xiaoli; Zhao, Jianmin; Feng, Jianghua

    2013-01-01

    The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.

  19. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease

    EPA Science Inventory

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...

  20. Metal Pollutants and Cardiovascular Disease: Mechanisms and Consequences of Exposure

    PubMed Central

    Solenkova, Natalia V.; Newman, Jonathan D.; Berger, Jeffrey S.; Thurston, George; Hochman, Judith S.; Lamas, Gervasio A.

    2014-01-01

    Introduction There is epidemiological evidence that metal contaminants may play a role in the development of atherosclerosis and its complications. Moreover, a recent clinical trial of a metal chelator had a surprisingly positive result in reducing cardiovascular events in a secondary prevention population, strengthening the link between metal exposure and cardiovascular disease (CVD). This is, therefore, an opportune moment to review evidence that exposure to metal pollutants, such as arsenic, lead, cadmium, and mercury, are significant risk factors for CVD. Methods We reviewed the English-speaking medical literature to assess and present the epidemiological evidence that 4 metals having no role in the human body (xenobiotic), mercury, lead, cadmium, and arsenic, have epidemiologic and mechanistic links to atherosclerosis and CVD. Moreover, we briefly review how the results of the Trial to Assess Chelation Therapy strengthen the link between atherosclerosis and xenobiotic metal contamination in humans. Conclusions There is strong evidence that xenobiotic metal contamination is linked to atherosclerotic disease and is a modifiable risk factor. PMID:25458643

  1. Genetic structure and diversity of animal populations exposed to metal pollution.

    PubMed

    Mussali-Galante, Patricia; Tovar-Sánchez, Efraín; Valverde, Mahara; Rojas, Emilio

    2014-01-01

    Studying the genetic diversity of wild populations that are affected by pollution provides a basis for estimating the risks of environmental contamination to both wildlife, and indirectly to humans. Such research strives to produce both a better understanding of the underlying mechanisms by which genetic diversity is affected,and the long-term effects of the pollutants involved.In this review, we summarize key aspects of the field of genetic ecotoxicology that encompasses using genetic patterns to examine metal pollutants as environmental stressors of natural animal populations. We address genetic changes that result from xenobiotic exposure versus genetic alterations that result from natural ecological processes. We also describe the relationship between metal exposure and changes in the genetic diversity of chronically exposed populations, and how the affected populations respond to environmental stress. Further, we assess the genetic diversity of animal populations that were exposed to metals, focusing on the literature that has been published since the year 2000.Our review disclosed that the most common metals found in aquatic and terrestrial ecosystems were Cd, Zn, Cu and Pb; however, differences in the occurrence between aquatic (Cd=Zn>Cu>Pb>Hg) and terrestrial (Cu>Cd>Pb>Zn>Ni)environments were observed. Several molecular markers were used to assess genetic diversity in impacted populations, the order of the most common ones of which were SSR's > allozyme > RAPD's > mtDNA sequencing> other molecular markers.Genetic diversity was reduced for nearly all animal populations that were exposed to a single metal, or a mixture of metals in aquatic ecosystems (except in Hyalella azteca, Littorina littorea, Salmo trutta, and Gobio gobio); however, the pattern was less clear when terrestrial ecosystems were analyzed.We propose that future research in the topic area of this paper emphasizes seven key areas of activity that pertain to the methodological design of genetic

  2. A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-01-15

    Metal pollution has become a great threat to organisms in the estuaries in South China. In the present study, the oysters Crassostrea sikamea were collected from one clean (Jiuzhen) and five metal polluted sites (Baijiao, Fugong, Gongqian, Jinshan and Songyu). The tissue metal concentrations in oysters indicated that the five metal sites were polluted by several metals, including Cr, Ni, Co, Cu, Zn, Ag, Cd and Pb with different patterns. Especially, Cu and Zn were the major contaminants in Baijiao, Fugong and Jinshan sites. The metabolic responses in oysters C. sikamea indicated that the metal pollutions in BJ, FG, JS and SY sites induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. However, the metal pollution in GQ site mainly influenced the osmotic regulation in the oysters C. sikamea. This study demonstrates that NMR-based metabolomics is useful to characterize metabolic responses induced by metal pollution.

  3. Assessment of Metal Pollution in Lower Torag River in Bangladesh

    NASA Astrophysics Data System (ADS)

    Zakir, H. M.; Shikazono, N.

    2008-02-01

    The study was conducted to assess the metal pollution levels in water and sediments of lower Torag River in Bangladesh. Industrial wastewaters and urban sewage from the Tongi municipal and industrial area directly discharge to this part of the rivers without any sorts of treatment. Fourteen samples each of water and sediment were collected and the distance, in between the samples was about 300 m. The results showed that the metal concentrations in the water samples greatly exceeded the standard values for the surface water quality. Organic carbon and clay content in the sediment samples were, in general, high (3.6 and 40.76%, respectively). The mean concentrations of Mn, Zn, Cr, Cu and Pb in the sediment samples were higher than the standard shale values. Although the geoaccumulation index (Igeo) for most of the heavy metals lie below grade zero but according to Igeo class some points were moderately contaminated for Zn, Cu, Cr and Pb. About 40-50% heavy metals studied showed good to excellent positive correlation with pH, EC and organic carbon of the sediments. High metal contents were found close to industrial and municipal areas and so enhanced metal concentrations are related to direct discharge of industrial sewage and municipal wastes into the river.

  4. Pollution prevention and water conservation in metals finishing operations

    SciTech Connect

    O`Shaughnessy, J.; Clark, W.; Lizotte, R.P. Jr.; Mikutel, D.

    1996-11-01

    Attleboro, Massachusetts is the headquarters of the Materials and Controls Group of Texas Instruments Incorporated (Texas Instruments). In support of their activities, Texas Instruments operates a number of metal finishing and electroplating processes. The water supply and the wastewater treatment requirements are supplied throughout the facility from a central location. Water supply quality requirements varies with each manufacturing operation. As a result, manufacturing operations are classified as either high level or a lower water quality. The facility has two methods of wastewater treatment and disposal. The first method involves hydroxide and sulfide metals precipitation prior to discharge to a surface water. The second method involves metals precipitation, filtration, and discharge via sewer to the Attleboro WTF. The facility is limited to a maximum wastewater discharge of 460,000 gallons per day to surface water under the existing National Pollution Discharge Elimination System (NPDES) permit. There is also a hydraulic flow restriction on pretreated wastewater that is discharged to the Attleboro WTF. Both of these restrictions combined with increased production could cause the facility to reach the treatment capacity. The net effect is that wastewater discharge problems are becoming restrictive to the company`s growth. This paper reviews Texas Instruments efforts to overcome these restrictions through pollution prevention and reuse practices rather than expansion of end of pipe treatment methods.

  5. Mortality from asthma and chronic bronchitis associated with changes in sulfur oxides air pollution

    SciTech Connect

    Imai, M.; Yoshida, K.; Kitabatake, M.

    1986-01-01

    Death certificates issued in Yokkaichi, Japan, during the 21 yr from 1963 until 1983 were surveyed to determine the relationship between changes in air pollution and mortality due to bronchial asthma and chronic bronchitis. The following results were obtained. In response to worsening air pollution, mortality for bronchial asthma and chronic bronchitis began to increase. Mortality due to bronchial asthma decreased immediately in response to improvement of pollution, whereas mortality due to chronic bronchitis decreased to the level in the control area 4 to 5 yr after the concentration of sulfur dioxide (SO/sub 2/) began to satisfy the ambient air quality standard. In the polluted area, mortality due to bronchial asthma in subjects who were 20 yr of age was higher during the period in which higher concentrations of sulfur oxides were prevalent.

  6. A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2015-01-15

    Metal pollution has been of great concern in the estuaries in Southern China. In this study, metabolic differences between oysters Crassostrea hongkongensis from clean and metal-polluted sites were characterized using NMR-based metabolomics. We collected oyster samples from one clean (Jiuzhen) and two metal polluted sites (Baijiao and Fugong). The metal concentrations in oyster gills indicated that both the Baijiao and Fugong sites were severely polluted by several metals, including Cr, Ni, Cu, Zn, Ag, Cd and Pb. In particular, Cu and Zn were the major contaminants from the Baijiao and Fugong sites. Compared with those oysters from the clean site (JZ), metal pollution in BJ and FG induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways, as indicated by different metabolic biomarkers. This study demonstrates that NMR-based metabolomics is a useful tool for characterizing metabolic responses induced by metal pollution.

  7. Air pollution and chronic airway diseases: what should people know and do?

    PubMed

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.

  8. Air pollution and chronic airway diseases: what should people know and do?

    PubMed Central

    Jiang, Xu-Qin; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251

  9. Comparing disproportionate exposure to acute and chronic pollution risks: a case study in Houston, Texas.

    PubMed

    Chakraborty, Jayajit; Collins, Timothy W; Grineski, Sara E; Montgomery, Marilyn C; Hernandez, Maricarmen

    2014-11-01

    While environmental justice (EJ) research in the United States has focused primarily on the social distribution of chronic pollution risks, previous empirical studies have not analyzed disparities in exposure to both chronic (long-term) and acute (short-term) pollution in the same study area. Our article addresses this limitation though a case study that compares social inequities in exposure to chronic and acute pollution risks in the Greater Houston Metropolitan Statistical Area, Texas. The study integrates estimates of chronic cancer risk associated with ambient exposure to hazardous air pollutants from the Environmental Protection Agency's National-Scale Air Toxics Assessment (2005), hazardous chemical accidents from the National Response Center's Emergency Response Notification System (2007-2011), and sociodemographic characteristics from the American Community Survey (2007-2011). Statistical analyses are based on descriptive comparisons, bivariate correlations, and locally derived spatial regression models that account for spatial dependence in the data. Results indicate that neighborhoods with a higher percentage of Hispanic residents, lower percentage of homeowners, and higher income inequality are facing significantly greater exposure to both chronic and acute pollution risks. The non-Hispanic black percentage is significantly higher in neighborhoods with greater chronic cancer risk, but lower in areas exposed to acute pollution events. Households isolated by language--those highly likely to face evacuation problems during an actual chemical disaster--tend to reside in areas facing significantly greater exposure to high-impact acute events. Our findings emphasize the growing need to examine social inequities in exposure to both chronic and acute pollution risks in future EJ research and policy.

  10. A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing

    NASA Astrophysics Data System (ADS)

    Rout, Bhimsen

    2016-06-01

    The efficacy of a miniaturized unimolecular analytic system is illustrated. The easily accessible therapeutic chromophore “temoporfin”, which responds differentially to bound metals at multiple wavelengths of Q-band absorption using chemometric analysis, expeditiously detects and discriminates a wide range of metals regarded as priority pollutants in water and hence may also be used for diagnosis of medically relevant metals in human urine. The molecule was further investigated as an electronic logic device, e.g. keypad lock device, to authorize multiple highly secure chemical passwords for information protection.

  11. A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing

    PubMed Central

    Rout, Bhimsen

    2016-01-01

    The efficacy of a miniaturized unimolecular analytic system is illustrated. The easily accessible therapeutic chromophore “temoporfin”, which responds differentially to bound metals at multiple wavelengths of Q-band absorption using chemometric analysis, expeditiously detects and discriminates a wide range of metals regarded as priority pollutants in water and hence may also be used for diagnosis of medically relevant metals in human urine. The molecule was further investigated as an electronic logic device, e.g. keypad lock device, to authorize multiple highly secure chemical passwords for information protection. PMID:27271817

  12. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  13. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  14. Metal pollutants and bioelements: retrospective of interactions between magnesium and toxic metals.

    PubMed

    Soldatovic, Danilo; Matovic, Vesna; Vujanovic, Dragana; Guiet-Bara, Andrée; Bara, Michel; Durlach, Jean

    2002-03-01

    Protection from heavy metals is a problem that has not been solved in a satisfactory manner so far. Usage of complexing agents in therapy of exposed workers results in both favorable outcome and recognized adverse effects. In the field of environmental protection, they cannot be used in practice, meaning that the risk of escape of metal pollutant from factory premises and their attack on the environnement remains present. The age of chemistry ('Chemistry, key to better living') has led to potent development of industry producing, at the same time, major problems induced by diffusion of metal pollutants, the nightmare of our times, like Camus' 'Plague'. According to the available results, it remains to be answered whether magnesium may influence this important problem, i.e. is this approaches the issue justifiable?

  15. A review of ion and metal pollutants in urban green water infrastructures.

    PubMed

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. PMID:24184546

  16. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils.

    PubMed

    van Gestel, C A; van der Waarde, J J; Derksen, J G; van der Hoek, E E; Veul, M F; Bouwens, S; Rusch, B; Kronenburg, R; Stokman, G N

    2001-07-01

    To compare the effectiveness of acute and chronic bioassays for the ecological risk assessment of polluted soils, soil samples from a site with an historical mineral oil contamination (< 50-3,300 mg oil/kg dry soil) at the Petroleum Harbour in Amsterdam, The Netherlands, were screened for ecological effects using acute and chronic bioassays. A two-step 0.001 M Ca(NO3)2 extraction at a final solution-to-soil ratio of 1:1 was used to prepare extracts for the acute bioassays. Acute bioassays (< or = 5 d) applied to the 0.001 M Ca(NO3)2 extracts from the polluted and reference soils included growth tests with bacteria (Bacillus sp.), algae (Raphidocelis subcapitata), and plants (Lactuca sativa), immobility tests with nematodes (Plectus acuminatus), springtails (Folsomia candida), and cladocerans (Daphnia magna), and the Microtox test (Vibrio fischeri). Chronic bioassays (four weeks) performed on the same soil samples included tests with L. sativa, F. candida, and earthworms (Eisenia fetida) and the bait-lamina test (substrate consumption). The acute bioassays on Microtox showed a response that corresponded with the level of oil pollution. All other acute bioassays did not show such a consistent response, probably because pollutant levels were too low to cause acute effects. All chronic bioassays showed sublethal responses according to the contaminant levels (oil and in some soils also metals). This shows that chronic bioassays on soil samples are more sensitive in assessing the toxicity of mineral oil contamination in soil than acute bioassays on soil extracts. A pilot scale bioremediation study on soils taken from the two most polluted sites and a control site showed a rapid decline of oil concentrations to reach a stable level within eight weeks. Acute bioassays applied to the soils, using Microtox, algae, and D. magna, and chronic bioassays, using plants, Collembola, earthworms, and bait-lamina consumption, in all cases showed a rapid reduction of toxicity, which

  17. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  18. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    PubMed Central

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  19. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  20. Microbial diffraction gratings as optical detectors for heavy metal pollutants

    NASA Astrophysics Data System (ADS)

    Noever, David; Matsos, Helen; Brittain, Andrew; Obenhuber, Don; Cronise, Raymond; Armstrong, Shannon

    1996-03-01

    As a significant industrial pollutant, cadmium is implicated as the cause of itai-itai disease. For biological detection of cadmium toxicity, an assay device has been developed using the motile response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 μm in diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns at high organism concentrations. The assay demonstrates a Cd+2 sensitivity better than 1 μM and a toxicity threshold to 5 μM, thus encouraging the study of these microbial cultures as viable pollution detectors. Using two-dimensional diffraction patterns within a Tetrahymena culture, the scattered light intensity varies with different organism densities (population counts). The resulting density profile correlates strongly with the toxic effects at very low dosages for cadmium (<5 ppm) and then for poison protection directly (with nickel and copper antagonists competing with cadmium absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd+2, and therefore have demonstrated the sensitivity of the optical detection system. In this way, such microbial diffraction patterns give a responsive optical measure of biological culture changes and toxicity determination in aqueous samples of heavy metals and industrial pollutants.

  1. Microbial Diffraction Gratings as Optical Detectors for Heavy Metal Pollutants

    NASA Technical Reports Server (NTRS)

    Noever, David; Matsos, Helen; Brittain, Andrew; Obenhuber, Don; Cronise, Raymond; Armstrong, Shannon

    1996-01-01

    As a significant industrial pollutant, cadmium is implicated as the cause of itai-itai disease. For biological detection of cadmium toxicity, an assay device has been developed using the motile response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 microns in diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns at high organism concentrations. The assay demonstrates a Cd(+2) sensitivity better than 1 micro-M and a toxicity threshold to 5 micro-M, thus encouraging the study of these microbial cultures as viable pollution detectors. Using two-dimensional diffraction patterns within a Tetrahymena culture, the scattered light intensity varies with different organism densities (population counts). The resulting density profile correlates strongly with the toxic effects at very low dosages for cadmium (less than 5 ppm) and then for poison protection directly (with nickel and copper antagonists competing with cadmium absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd(+2) and therefore have demonstrated the sensitivity of the optical detection system. In this way, such microbial diffraction patterns give a responsive optical measure of biological culture changes and toxicity determination in aqueous samples of heavy metals and industrial pollutants.

  2. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis.

    PubMed

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  3. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  4. Heavy Metal Pollution in Urban Soils of Sopron

    NASA Astrophysics Data System (ADS)

    Horváth, Adrienn; Bidló, András

    2014-05-01

    Keywords: anthropogenic effects, land use types, heavy metal content, polluted urban soils, GIS methods Our aim was to identify the main feedback effects between the town and its environment. In the course of our investigation we have analysed the heavy metal contents of urban soil in Sopron town in Hungary. We collected 208 samples on 104 points from 0 to 10 and from 10 to 20 cm depth in a standard network and also at industrial territories. We have been represented our results in a GIS system. We analysed the soils with Lakanen-Erviö method and we measured 24 elements but we have been focused on Co, Cd, Cu, Pb and Zn. Using the data we observed the relationship between these elements in both layers. In the downtown the acidity of soils were alkaline by the greatest number of point, therefore the pollution of these soils is not leach in deeper layers yet. The lead was very high (> 100 mg Pb/kg) in both layers on the whole area of the town. Urban soils with high copper content (among 611 mg and 1221 mg Cu/kg) have been collected from garden and viticulture areas by us. Cadmium contents were the highest (6.14 mg Cd/kg) in traffic zones, where these values could be more than 3 mg Cd/kg according to the literature. The cobalt and zinc results were under the limits. According to our measurements we founded the highest average values in the soils of parks. This could be contamination of the lead from traffic, which bind in the soil of urban green spaces. Now we could continue our examinations with the investigations of these polluted green areas, which can effect to human health.

  5. Assessment of the impact of heavy metal pollution from a ferro-nickel smelting plant using biomarkers.

    PubMed

    Tsangaris, Catherine; Papathanasiou, Evangelos; Cotou, Efthimia

    2007-02-01

    A set of biomarkers was used to assess the impact of heavy metal pollution by a ferro-nickel smelting plant in Larymna bay (North Evoikos Gulf, Greece). These included a biomarker reflecting health status of an organism (scope for growth, SFG), a cellular biomarker of heavy metal exposure (composition of metal-containing granules), and two biochemical biomarkers reflecting oxidative stress (glutathione peroxidase, GPX) and neurotoxicity (acetylcholinesterase, AChE) measured in mussels (Mytilus galloprovincialis) both native and transplanted for 1 and 6 months at the coastal area of Larymna. All biomarkers in mussels at Larymna revealed differences from mussels at a reference site, signaling effects of the increased heavy metal levels on the biota. While effects on SFG and GPX in Larymna mussels were obvious on short-term exposure and persistent during chronic exposure, only chronic exposure induced a possibly cumulative effect on AChE. To validate the causal relationship between heavy metal exposure and effects observed in Larymna, SFG, GPX, and ACHE were examined in mussels exposed to a mixture of heavy metals (Ni, Cr, and Fe) under controlled laboratory conditions. The laboratory experiment verified the causal relationship between SFG and GPX responses and heavy metals but this was not demonstrated for AChE. Results from field-collected and laboratory-exposed mussels indicated a potential of GPX as predictive biomarker of population-level effects of heavy metal exposure. PMID:16753214

  6. Assessment of the impact of heavy metal pollution from a ferro-nickel smelting plant using biomarkers.

    PubMed

    Tsangaris, Catherine; Papathanasiou, Evangelos; Cotou, Efthimia

    2007-02-01

    A set of biomarkers was used to assess the impact of heavy metal pollution by a ferro-nickel smelting plant in Larymna bay (North Evoikos Gulf, Greece). These included a biomarker reflecting health status of an organism (scope for growth, SFG), a cellular biomarker of heavy metal exposure (composition of metal-containing granules), and two biochemical biomarkers reflecting oxidative stress (glutathione peroxidase, GPX) and neurotoxicity (acetylcholinesterase, AChE) measured in mussels (Mytilus galloprovincialis) both native and transplanted for 1 and 6 months at the coastal area of Larymna. All biomarkers in mussels at Larymna revealed differences from mussels at a reference site, signaling effects of the increased heavy metal levels on the biota. While effects on SFG and GPX in Larymna mussels were obvious on short-term exposure and persistent during chronic exposure, only chronic exposure induced a possibly cumulative effect on AChE. To validate the causal relationship between heavy metal exposure and effects observed in Larymna, SFG, GPX, and ACHE were examined in mussels exposed to a mixture of heavy metals (Ni, Cr, and Fe) under controlled laboratory conditions. The laboratory experiment verified the causal relationship between SFG and GPX responses and heavy metals but this was not demonstrated for AChE. Results from field-collected and laboratory-exposed mussels indicated a potential of GPX as predictive biomarker of population-level effects of heavy metal exposure.

  7. Vascular effects of ambient pollutant particles and metals.

    PubMed

    Huang, Yuh-Chin T; Ghio, Andrew J

    2006-07-01

    Exposure to ambient pollutant particle (APP) is associated with increased cardiovascular morbidity and mortality. Recent evidence indicates that APP-induced vasoconstriction may be an important mechanism. APP constricts systemic arteries and increases blood pressure in human. APP decreases the diameter of pulmonary arterioles in animals. Intratracheal instillation of APP increases pulmonary artery resistance in isolated buffer-perfused lungs, and APP constricts isolated arterial rings. APP-induced vasoconstriction may be secondary to the release of inflammatory mediators from lung cells, which then activate vascular endothelial and smooth muscle cells. The vasoconstriction may also be caused by alterations in autonomic nervous system balance. Some soluble metals (e.g., vanadium) can produce acute vasoconstriction in in vitro and in vivo systems, and contribute to the systemic health effects of APP since they can more easily permeate the alveolar-capillary membrane than the whole particle. Both APP and its associated metals have been shown to enhance the release of endothelin 1 and reactive oxygen species, activate epithelial growth factor receptor and mitogen-activated protein kinases, and inhibit nitric oxide vasodilator activity. The vasoactive properties of APP and metals raised the possibility that patients with vascular diseases may be more susceptible to APP-induced adverse health effects, and that people who are regularly exposed to high amount of metals, e.g., vanadium contained in certain dietary and muscle-building regimens or in the air of boiler making plants, may have increased risk for vascular diseases. Understanding how metals induce vasoconstriction may lead to the development of novel vasodilator therapies for vascular diseases.

  8. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites

    PubMed Central

    Tellez, Marisa; Merchant, Mark

    2015-01-01

    Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363

  9. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites.

    PubMed

    Tellez, Marisa; Merchant, Mark

    2015-01-01

    Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363

  10. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence.

  11. Environmental geochemistry and pollution studies of Aliaga metal industry district.

    PubMed

    Sponza, Delya; Karaoglu, Nevin

    2002-02-01

    The Aliaga metal industry district located 50 km northwest of Izmir City, in Turkey, includes many metal factories. The geology of the area is represented by Mesozoic flysch deposits and Cenozoic volcano sedimentary rocks. Tectonic elements are NE-SW and NW-SE trending faults and a W-NW trending fault direction that is important for water supply. Rock, soil, stream sediment, and water samples taken at various distances from the industrial area were analyzed for Fe, Ti, Mn, Cr, Pb, Cu, Ni, Zn, and Mo. According to the results, the elements in rocks are reasonable for the range of "Clarke" values, but in the soils and stream sediment, they comprise higher values than are acceptable for agricultural activities. Toxicity analyses were carried out in the drinking artesian water of Cakmakli village and wastewater samples of the factories and river water both of which are used for irrigation of the agricultural areas in and around the investigated area. The people should, however be made aware that this waste and river water is unacceptable for agriculture. Additionally, the contamination of seawater in Nemrut Bay is probably caused by contaminated river and underground water running to the sea. The chemical and toxicity analysis of drinking water samples show that they are above accepted standards and harmful. Previous air pollution studies (funnel gas emission analyses) also show that gas emission contains high amount of dust particles with high Fe, Zn, Pb, and Cu concentrations. As a result, all elements analyzed are of great importance relative to problems concerning contamination of the soil, stream sediment, ground surface water, and air by individual metals from uncontrolled processing of some metal factories.

  12. DEVELOPMENT OF THE U.S. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL

    EPA Science Inventory

    Metal finishing processes are a type of chemical processes and can be modeled using Computer Aided Process Engineering (CAPE). Currently, the U.S. EPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a pollution prevention software tool for the meta...

  13. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  14. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution. PMID:27342589

  15. Heavy Metals Phytoextraction from the Polluted Soils of Zakamensk (Russia)

    NASA Astrophysics Data System (ADS)

    Ubugunov, V.; Dorzhonova, V.; Ubugunov, L.

    2012-04-01

    Mining and ore-dressing are one of the most serious causes of environment pollution. Last century in days of active industrialization in Russia a considerable quantity of mineral deposits has been developed. It was not given sufficient attention for ecological safety at that time. After an economic crisis connected with disorder of the USSR and a planned economy, a number of the enterprises became bankrupts and have stopped the activity. As a result the broken landscapes have not been recultivated everywhere, there were numerous wastes. The negative consequences were especially strongly manifested in areas with severe climatic conditions where environmental self-renewal occurred is slowed rather down. The degree of a waste toxicity also acted as the important factor. One of such situations has arisen in Zakamensk - an administrative center of Zakamensky area of Buryat Republic (Russia). Environmental problems of the town have arisen in connection with activity of town-forming enterprise - Dzhidinsky tungsten-molybdenum industrial complex. The enterprise has been organized in 1934 and functioned within 63 years till 1997. During enterprise operating time 3 deposits have been exploited and is created 2 large (more than 40 million tons) tails depository of technogenic sands (TS), located in immediate proximity (less than 1-2 km) from a town residential zone.Sand of tails are rather toxic, the average maintenance of heavy metals in them is (mg/kg): Cd - 42, Pb - 7500, Zn - 3160, Cu - 620, Ni - 34, Co - 44, Mn - 121, Cr - 70, Hg - 0,01, As - 13, Mo - 90. Due to the lack of knowledges on the toxicity of TS in the past century, they were actively used in the road and house construction, during the erection of dams. After scientific studies they were recommended for using as fertilizers. Besides anthropogenic sands movement, there was intensive dispersion of sand by means of water and wind erosion. As a result of natural migration sands got to the subordinated elements of

  16. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations.

  17. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy.

  18. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. PMID:25764529

  19. Sources of variation in innate immunity in great tit nestlings living along a metal pollution gradient: an individual-based approach.

    PubMed

    Vermeulen, Anke; Müller, Wendt; Matson, Kevin D; Tieleman, B Irene; Bervoets, Lieven; Eens, Marcel

    2015-03-01

    Excessive deposition of metals in the environment is a well-known example of pollution worldwide. Chronic exposure of organisms to metals can have a detrimental effect on reproduction, behavior, health and survival, due to the negative effects on components of the immune system. However, little is known about the effects of chronic sublethal metal exposure on immunity, especially for wildlife. In our study, we examined the constitutive innate immunity of great tit (Parus major) nestlings (N=234) living in four populations along a metal pollution gradient. For each nestling, we determined the individual metal concentrations (lead, cadmium, arsenic) present in the red blood cells and measured four different innate immune parameters (agglutination, lysis, haptoglobin concentrations and nitric oxide concentrations) to investigate the relationship between metal exposure and immunological condition. While we found significant differences in endogenous metal concentrations among populations with the highest concentrations closest to the pollution source, we did not observe corresponding patterns in our immune measures. However, when evaluating relationships between metal concentrations and immune parameters at the individual level, we found negative effects of lead and, to a lesser extent, arsenic and cadmium on lysis. In addition, high arsenic concentrations appear to elicit inflammation, as reflected by elevated haptoglobin concentrations. Thus despite the lack of a geographic association between pollution and immunity, this type of association was present at the individual level at a very early life stage. The high variation in metal concentrations and immune measures observed within populations indicates a high level of heterogeneity along an existing pollution gradient. Interestingly, we also found substantial within nest variation, for which the sources remain unclear, and which highlights the need of an individual-based approach.

  20. Interaction between Chronic Obstructive Pulmonary Disease (COPD) and other important health conditions and measurable air pollution

    NASA Astrophysics Data System (ADS)

    Blagev, D. P.; Mendoza, D. L.; Rea, S.; Sorensen, J.

    2015-12-01

    Adverse health effects have been associated with urban pollutant exposure arising from close proximity to highly-emitting sources and atmospheric mixing. The relative air pollution exposure dose and time effects on various diseases remains unknown. This study compares the increased risk of health complications when patients are exposed to short term high-levels of air pollution vs. longer term exposure to lower levels of air pollution. We used the electronic medical record of an integrated hospital system based in Utah, Intermountain Healthcare, to identify a cohort of patients with Chronic Obstructive Pulmonary Disease (COPD) who were seen between 2009-2014. We determined patient demographics as well as comorbidity data and healthcare utilization. To determine the approximate air pollution dose and time exposure, we used the Hestia highly-resolved emissions inventory for Salt Lake County, Utah in conjunction with emissions based on the National Emissions Inventory (NEI). Hourly emissions of CO2 and criteria air pollutants were gridded at a 0.002o x 0.002o resolution for the study years. The resulting emissions were transported using the CALPUFF and AERMOD dispersion models to estimate air pollutant concentrations at an hourly 0.002o x 0.002oresolution. Additionally, pollutant concentrations were estimated at each patient's home and work address to estimate exposure. Multivariate analysis adjusting for patient demographics, comorbidities and severity of COPD was performed to determine association between air pollution exposure and the risk of hospitalization or emergency department (ED) visit for COPD exacerbation and an equivalency estimate for air pollution exposure was developed. We noted associations with air pollution levels for each pollutant and hospitalizations and ED visits for COPD and other patient comorbidities. We also present an equivalency estimate for dose of air pollution exposure and health outcomes. This analysis compares the increased risk of

  1. Gut bacterial community structure (Porcellio scaber, Isopoda, Crustacea) as a measure of community level response to long-term and short-term metal pollution.

    PubMed

    Lapanje, Ales; Rupnik, Maja; Drobne, Damjana

    2007-04-01

    Prokaryotes are of high importance in the assessment of environmental pollution effects. Due to fast responsiveness of bacterial communities to environmental physicochemical factors, it is difficult to compare results of bacterial community investigations on the temporal and spatial scale. To reduce the effects of variable physicochemical environmental conditions on bacterial microbiota when investigating the specific impact of contaminants on bacterial communities, we investigated the bacterial community in the gut of terrestrial isopods (Porcellio scaber, Isopoda, Crustacea) from clean and metal-polluted environments. Animals were collected from a chronically mercury-polluted site, a chronically multiple metal-(Cd, Pb, Zn) polluted site, and two reference sites. In addition, animals from an unpolluted site were laboratory exposed to 5 microg Hg/g food in order to compare the effect of acute and chronic Hg exposure. The bacterial gut microbiota was investigated by temporal temperature gradient gel electrophoresis (TTGE) and clone library construction based on polymerase chain reaction amplified 16S rRNA genes. The major bacterial representatives of the emptied gut microbiota in the animals from the chronically polluted environments seemed not affected when analyzed by TTGE. The detailed bacterial community structure investigated by 16S rRNA clone library construction, however, showed that the community from the Hg-polluted site also was affected severely (242.4 operational taxonomic units [OTU] in the polluted and 650.6 OTU in the unpolluted environment). When animals were acutely exposed to mercury, changes of bacterial community structures already were seen on TTGE profiles and no additional analysis was needed. We suggest the use of P. scaber gut bacterial community structure as a measure of effects caused by both long- and short-term exposure to pollution.

  2. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  3. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  4. Efficiently Evaluating Heavy Metal Urban Soil Pollution Using an Improved Entropy-Method-Based Topsis Model.

    PubMed

    Liu, Jie; Liu, Chun; Han, Wei

    2016-10-01

    Urban soil pollution is evaluated utilizing an efficient and simple algorithmic model referred to as the entropy method-based Topsis (EMBT) model. The model focuses on pollution source position to enhance the ability to analyze sources of pollution accurately. Initial application of EMBT to urban soil pollution analysis is actually implied. The pollution degree of sampling point can be efficiently calculated by the model with the pollution degree coefficient, which is efficiently attained by first utilizing the Topsis method to determine evaluation value and then by dividing the evaluation value of the sample point by background value. The Kriging interpolation method combines coordinates of sampling points with the corresponding coefficients and facilitates the formation of heavy metal distribution profile. A case study is completed with modeling results in accordance with actual heavy metal pollution, proving accuracy and practicality of the EMBT model.

  5. Efficiently Evaluating Heavy Metal Urban Soil Pollution Using an Improved Entropy-Method-Based Topsis Model.

    PubMed

    Liu, Jie; Liu, Chun; Han, Wei

    2016-10-01

    Urban soil pollution is evaluated utilizing an efficient and simple algorithmic model referred to as the entropy method-based Topsis (EMBT) model. The model focuses on pollution source position to enhance the ability to analyze sources of pollution accurately. Initial application of EMBT to urban soil pollution analysis is actually implied. The pollution degree of sampling point can be efficiently calculated by the model with the pollution degree coefficient, which is efficiently attained by first utilizing the Topsis method to determine evaluation value and then by dividing the evaluation value of the sample point by background value. The Kriging interpolation method combines coordinates of sampling points with the corresponding coefficients and facilitates the formation of heavy metal distribution profile. A case study is completed with modeling results in accordance with actual heavy metal pollution, proving accuracy and practicality of the EMBT model. PMID:27469469

  6. Assessing the trace metal pollution in the sediments of Mahshahr Bay, Persian Gulf, via a novel pollution index.

    PubMed

    Vaezi, A R; Karbassi, A R; Fakhraee, M

    2015-10-01

    Sediment samples were collected from the Petrochemical Special Economic Zone of Mahshahr Bay, Persian Gulf, and analyzed for possible trace metal contamination by means of a chemical partitioning method. The heavy metal contents in the sediments follow the order of Al > Sr > Mn > Zn > Ni > Ba > Cr > Cu > As > Co. The degree of sediment contamination was evaluated using pollution load index (PLI), modified degree of contamination (mC d), geo-accumulation index (I geo), and enrichment factor (EF). All these indices compare present concentrations of metals to their background levels in crust and shale. In a specific area with high geological background like Mahshahr Bay, such a comparison may lead to erroneous conclusions. Due to the remarkable contribution of lithogenous fraction, as the natural component, to the bulk concentration of trace metals in the sediments of such an area, assessment of chemical hazard to the surrounding aquatic environment should not be carried out through traditional approaches. In the present study, anthropogenic portion of the metals was determined through one-step chemical sequential extraction and lithogenous portion substituted for the mean crust and shale levels in the new pollution index (RIAquatic). PLI, mC d, and I geo revealed overall low values, but EF, pollution index (I POLL), and newly developed pollution index were relatively high for all samples.

  7. [Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Hohhot].

    PubMed

    Guo, Wei; Sun, Wen-Hui; Zhao, Ren-Xin; Zhao, Wen-Jing; Fu, Rui-Ying; Zhang, Jun

    2013-04-01

    The residential areas, cultural and educational areas, city parks, commercial areas, urban roads, industrial zones, and development zones in Hohhot were selected as the research objects. Sixty-two soil samples were collected by triple subsampling technique in the seven functional zones. The aim of this study is to control the soil heavy metal pollution of Hohhot and provide the basic information. To investigate and analyze the heavy metal pollution in soil in different functional zones of Hohhot, the pollution of heavy metal was assessed with single factor pollution index and Nemerow integrated pollution index, and the pollution sources were discriminated by Principal Component Analysis. Contents of seven kinds of heavy metals were analyzed in different functional zones of Hohhot. The mean contents of heavy metals in soil samples exceeded the corresponding background values in the Inner Mongolia Autonomous Region. The mean contents of Cu and Zn were 2. 33 and 1. 85 times, respectively, as high as the soil background values of the Inner Mongolia Autonomous Region. Single factor pollution index showed that the urban soil in Hohhot has been polluted by heavy metals. The Cu pollution was the most severe in commercial areas, and the pollution degree was in the following order: Cu > Zn > Cr > Mn > As > Ni > Pb. Nemerow integrated pollution index showed that soils from the commercial areas were seriously contaminated by heavy metals. The soil of urban roads was moderately polluted. The soils from cultural and educational areas and the city parks were slightly polluted. The Nemerow integrated pollution index of the seven areas ranked as follows: commercial areas (3.03) > urban roads (2.12) > residential areas (1.98) > cultural and educational areas (1.81) > industrial zones (1.72) > development zones (1.36) > city parks (1. 28). The results of Principal Component Analysis showed that the heavy metals in soil of Hohhot came from different sources. Cr, Cu, Mn, Pb and Zn were

  8. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  9. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  10. Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient.

    PubMed

    Giska, Iwona; Babik, Wiesław; van Gestel, Cornelis A M; van Straalen, Nico M; Laskowski, Ryszard

    2015-09-01

    To what extent chemical contamination affects genetic diversity of wild populations remains an open question in ecotoxicology. Here we used a genome-wide approach (615 nuclear RADseq loci containing 3017 SNPs) and a mtDNA fragment (ATP6) to analyze the effect of long-term exposure to elevated concentrations of metals (Cd, Pb, Zn) on genetic diversity in rove beetle (Staphylinus erythropterus) populations living along a pollution gradient in Poland. In total, 96 individuals collected from six sites at increasing distance from the source of pollution were analyzed. We found weak differentiation between populations suggesting extensive gene flow. The highest genetic diversity was observed in a population inhabiting the polluted site with the highest metal availability. This may suggest increased mutation rates, possibly in relation to elevated oxidative stress levels. The polluted site could also act as an ecological sink receiving numerous migrants from neighboring populations. Despite higher genetic diversity at the most polluted site, there was no correlation between the genetic diversity and metal pollution or other soil properties. We did not find a clear genomic signature of local adaptation to metal pollution. Like in some other cases of metal tolerance in soil invertebrates, high mobility may counteract possible effects of local selective forces associated with soil pollution. PMID:25988435

  11. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca.

    PubMed

    Looi, Ley Juen; Aris, Ahmad Zaharin; Wan Johari, Wan Lutfi; Md Yusoff, Fatimah; Hashim, Zailina

    2013-09-15

    The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations ((27)Al, (75)As, (138)Ba, (9)Be, (111)Cd, (59)Co, (63)Cu, (52)Cr, (57)Fe, (55)Mn, (60)Ni, (208)Pb, (80)Se, (66)Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.

  12. Changes in Gene Expression due to Chronic Exposure to Environmental Pollutants

    PubMed Central

    Oleksiak, Marjorie F.

    2008-01-01

    Populations of the teleost fish Fundulus heteroclitus inhabit and have adapted to highly polluted Superfund sites that are contaminated with persistent toxic chemicals. Populations inhabiting different Superfund sites provide independent contrasts for studying mechanisms of toxicity and resistance due to exposure to environmental pollutants. To identify both shared and unique responses to chronic pollutant exposure, liver, metabolic gene expression in F. heteroclitus populations from each of three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) were compared to two flanking reference site populations (9 populations in total). In comparisons to their two clean reference sites, the three Superfund sites had 8 to 32% of genes with altered expression patterns. Between any two Superfund populations, up to 9 genes (4%) show a conserved response, yet among all three populations, there was no gene which had a conserved, altered pattern of expression. Across all three Superfund sites in comparison to all six reference populations, the most significant gene was fatty acid synthase. Fatty acid synthase is involved in the storage of excess energy as fat, and its lesser expression in the polluted populations suggests that the polluted populations may have limited energy stores. In contrast to previous studies of metabolic gene expression in F. heteroclitus, body weight was a significant covariate for many of the genes which could reflect accumulation and different body burdens of pollutants. Overall, the altered gene expression in these populations likely represents both induced and adaptive changes in gene expression. PMID:18929415

  13. Developing an indicator for the chronic health impact of traffic-related pollutant emissions

    SciTech Connect

    Lepicier, Veronique; Chiron, Mireille; Joumard, Robert

    2013-01-15

    The goal of this study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. This indicator must make it possible to compare different situations, for example different Urban Travel Plans, or technical innovations. Our work is based on a literature survey of methods for evaluating health impacts and, more particularly, those which relate to the atmospheric pollution caused by transport. We then define a health impact indicator based on the traffic emissions, named IISCEP for Chronic health impact indicator of pollutant emission. Here health is understood in a restricted meaning, excluding well-being. Only primary pollutants can be considered, as the inputs are emission data and an indicator must be simple. The indicator is calculated as the sum of each pollutant emission multiplied by a dispersion and exposition factor and a substance specific toxicity factor taking account of the severity. Last, two examples are shown using the IISCEP: comparison between petrol and diesel vehicles, and Nantes urban district in 2008 vs 2002. Even if it could still be improved, IISCEP is a straightforward indicator which can be used to gauge the chronic effects of inhaling primary pollutants. It can only be used in comparisons, between different scenarios or different technologies. The quality of the emissions data and the choice of the pollutants that are considered are the two essential factors that determine its validity and reliability. - Highlights: Black-Right-Pointing-Pointer The goal of the study is to develop an emission based indicator for the health impact of the air pollution caused by traffic. Black-Right-Pointing-Pointer It is based on a literature survey of methods for evaluating health impacts related to the atmospheric pollution. Black-Right-Pointing-Pointer We define a composite indicator based on the traffic emissions and on local data as dispersion conditions and population. Black-Right-Pointing-Pointer The

  14. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    EPA Science Inventory

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  15. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.

    PubMed

    Rai, Prabhat Kumar

    2010-03-01

    Metals and several physicochemical parameters, from four sampling sites in a tropical lake receiving the discharges from a thermal power plant, a coal mine and a chlor-alkali industry, were studied from 2004-2005. Pertaining to metal pollution, the site most polluted with heavy metals was Belwadah, i.e., waters and sediments had the highest concentration of all the metals examined. The reference site was characterized by the presence of low concentrations of metals in waters and in sediments. Further, several wetland plants were harvested from different sites, and simultaneously, these were assessed for their metal concentration efficiency. Following the water quality monitoring and metal concentration efficiency, two-month field phytoremediation experiments were conducted using large enclosures at the discharge point of different polluted sites of the lake. Eichhornia crassipes, Lemna minor, and Azolla pinnata were frontier metal accumulators hence selected for previously mentioned field phytoremediation experiments. During field phytoremediation experiments using aquatic macrophytes, marked percentage reduction in metals concentrations were recorded. The percentage decrease for different metals was in the range of 25-67.90% at Belwadah (with Eichhornia crassipes and Lemna minor), 25-77.14% at Dongia nala (with Eichhornia crassipes, Lemna minor, and Azolla pinnata) and 25-71.42% at Ash pond site of G.B. Pant Sagar (with Lemna minor and Azolla pinnata). Preliminary studies of polluted sites are therefore useful for improved microcosm design and for the systematic extrapolation of information from experimental ecosystems to natural ecosystems.

  16. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution.

    PubMed

    Cao, Chen; Wang, Wen-Xiong

    2016-09-01

    Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using (1)H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status. PMID:27262129

  17. Chronic exposure to volcanogenic air pollution as cause of lung injury.

    PubMed

    Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Santos

    2013-10-01

    Few studies were made regarding the pulmonary effects of exposure to volcanogenic air pollution, representing an unrecognized health risk for humans inhabiting non-eruptive volcanically active areas (10% of world human population). We tested the hypothesis whether chronic exposure to air pollution of volcanogenic origin causes lung injury, using wild mice (Mus musculus) as model. Lung injury was determined using histological morphometric parameters, inflammatory status (InfS) and the amount of black silver deposits (BSD). Mice exposed to volcanogenic air pollution have decreased percentage of alveolar space, alveolar perimeter and lung structural functionality (LSF) ratio and, increased alveolar septal thickness, amount of BSD and InfS. For the first time it is evidenced that non-eruptive active volcanism has a high potential to cause lung injury. This study also highlights the usefulness of M. musculus as bioindicator species, and of the developed biomarker of effect LSF ratio, for future animal and/or human biomonitoring programs.

  18. Environmental impact propagated by cross-system subsidy: chronic stream pollution controls riparian spider populations.

    PubMed

    Paetzold, Achim; Smith, Marian; Warren, Philip H; Maltby, Lorraine

    2011-09-01

    Resource subsidies between habitats are common and create the potential for the propagation of environmental impacts across system boundaries. However, recent understanding of the potential for subsidy-mediated cross-system impact propagations is limited and primarily based on passive flows of nutrients and detritus or short-term effects. Here, we assess the effects of sustained alterations in aquatic insect emergence (active subsidy pathway), due to chronic stream pollution, for riparian spiders. The sustained reduction in aquatic insect densities at the polluted reaches resulted in a marked decline in web spider population density and a shift in spider community composition. Our results provide the first evidence that stream pollution can control populations and community structure of terrestrial predators via sustained alterations in aquatic subsidies, emphasizing the role of subtle trophic linkages in the transmission of environmental impacts across ecosystem boundaries.

  19. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants.

    PubMed

    Reichwaldt, Elke S; Stone, Daniel; Barrington, Dani J; Sinang, Som C; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants.

  20. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants.

    PubMed

    Reichwaldt, Elke S; Stone, Daniel; Barrington, Dani J; Sinang, Som C; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  1. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants

    PubMed Central

    Reichwaldt, Elke S.; Stone, Daniel; Barrington, Dani J.; Sinang, Som C.; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a ‘high’ risk to develop Day Away From Work illness, and lakes that present a ‘low’ or ‘medium’ risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  2. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. PMID:24675443

  3. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    PubMed

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  4. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas. PMID:27011984

  5. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  6. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb)

    NASA Astrophysics Data System (ADS)

    Sánchez-Chardi, Alejandro

    2016-04-01

    The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.

  7. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    PubMed

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  8. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    PubMed

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment. PMID:18975768

  9. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms

    SciTech Connect

    Babich, H.; Stotzky, G.

    1980-10-01

    Although biotic factors greatly influence the sensitivity of microbes to pollutants, this review focuses on the other aspect of environmental toxicology, i.e., the influence of the physicochemical characteristics of the recipient environment on attenuating or potentiating the toxicity of pollutants to the resident microbiota. In addition, the characteristics of pollutants, such as their chemical form and concentration, and the interactions between pollutants will be discussed relative to their toxicity to microbes. This review will be limited to gaseous and heavy metal pollutants, although it is clearly recognized that the toxicity of other pollutants, such as polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs), insecticides (e.g., DDT, heptachlor, dieldrin), components of oil spills, etc., are also influenced by abiotic environmental factors. The pollutants discussed include: Zn, Cd, Pb, Cu, Ni, Mn, Co, Sn, Fe, Hg, Cr, As, and S.

  10. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    PubMed

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  11. Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms.

    PubMed

    Roemer, W; Hoek, G; Brunekreef, B

    1993-01-01

    The acute respiratory effects of ambient air pollution were studied in a panel of 73 children with chronic respiratory symptoms in the winter of 1990 to 1991. The participating children were selected from all children aged 6 to 12 yr in Wageningen and Bennekom, two small, nonindustrial towns in the east of the Netherlands. Peak flow was measured twice daily with MiniWright meters. A diary was used to register the occurrence of acute respiratory symptoms and medication use by the children. Exposure to air pollution was characterized by the ambient concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), black smoke (BS), and particulate matter less than 10 microns (PM10). Associations between air pollution concentrations and health outcomes were analyzed using time series analysis. During the study period an air pollution episode occurred, with moderately elevated concentrations of PM10 and SO2. There were 6 days with 24-h average PM10 concentrations in excess of the WHO suggested lowest observed effect level of 110 micrograms/m3. After adjustment for ambient temperature, there were small but statistically significant negative associations of PM10, BS, and SO2 with both morning and evening PEF. There was a consistent positive association between PM10, BS, and SO2 with the prevalence of wheeze and bronchodilator use. Overall, the observed associations suggest a mild to moderate response to these moderately elevated levels of air pollution in a group of potentially sensitive children.

  12. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  13. THE USEPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The USEPA has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current version of this tool. The presentation will...

  14. THE USEPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The USEPA has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current version of this tool. The presentation wi...

  15. IMPLEMENTATION OF THE US ENVIRONMENTAL PROTECTION AGENCY'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The United States Environmental Protection Agency has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current ver...

  16. Risk assessment of chronic poisoning among Indian metallic miners.

    PubMed

    Dhatrak, Sarang V; Nandi, Subroto S

    2009-08-01

    The estimated average daily employment in the Indian mining sector is 5,60,000, which comprises 87% in the public sector and 13% in the private sector, of which around 70,000 are working in metallic mines. The mine workers are exposed to dust of various potentially toxic substances. The common toxicants present in the mining environment are lead, mercury, cadmium, manganese, aluminium, fluoride, arsenic, etc. Inhalation and absorption through the skin are common routes of exposure. Low-dose chronic exposure of toxic substances results in the accumulation of toxicants in the body. Hence, there is a need to monitor the mining environment as well as the miners for these toxicants.

  17. Risk assessment of chronic poisoning among Indian metallic miners

    PubMed Central

    Dhatrak, Sarang V.; Nandi, Subroto S.

    2009-01-01

    The estimated average daily employment in the Indian mining sector is 5,60,000, which comprises 87% in the public sector and 13% in the private sector, of which around 70,000 are working in metallic mines. The mine workers are exposed to dust of various potentially toxic substances. The common toxicants present in the mining environment are lead, mercury, cadmium, manganese, aluminium, fluoride, arsenic, etc. Inhalation and absorption through the skin are common routes of exposure. Low-dose chronic exposure of toxic substances results in the accumulation of toxicants in the body. Hence, there is a need to monitor the mining environment as well as the miners for these toxicants. PMID:20386621

  18. Risk assessment of chronic poisoning among Indian metallic miners.

    PubMed

    Dhatrak, Sarang V; Nandi, Subroto S

    2009-08-01

    The estimated average daily employment in the Indian mining sector is 5,60,000, which comprises 87% in the public sector and 13% in the private sector, of which around 70,000 are working in metallic mines. The mine workers are exposed to dust of various potentially toxic substances. The common toxicants present in the mining environment are lead, mercury, cadmium, manganese, aluminium, fluoride, arsenic, etc. Inhalation and absorption through the skin are common routes of exposure. Low-dose chronic exposure of toxic substances results in the accumulation of toxicants in the body. Hence, there is a need to monitor the mining environment as well as the miners for these toxicants. PMID:20386621

  19. Differential Hepatic Metal and Metallothionein Levels in Three Feral Fish Species along a Metal Pollution Gradient

    PubMed Central

    Bervoets, Lieven; Knapen, Dries; De Jonge, Maarten; Van Campenhout, Karen; Blust, Ronny

    2013-01-01

    The accumulation of cadmium, copper and zinc and the induction of metallothioneins (MT) in liver of three freshwater fish species was studied. Gudgeon (Gobio gobio), roach (Rutilus rutilus) and perch (Perca fluviatilis) were captured at 6 sampling sites along a cadmium and zinc gradient and one reference site in a tributary of the Scheldt River in Flanders (Belgium). At each site up to 10 individuals per species were collected and analyzed on their general condition factor (K), hepatosomatic index (HSI) and gonadosomatic index (GSI). From each individual fish the liver was dissected and analyzed on Cd, Cu and Zn and MT-content. Although not all species were present at each site, hepatic Cd and Zn levels generally followed the pollution gradient and highest levels were measured in perch, followed by roach and gudgeon. Nevertheless also an effect of site was observed on this order. MT-levels appeared to be the highest in gudgeon although differences with the other species were not very pronounced and depended on the site. Significant relationships were found between hepatic zinc accumulation and MT levels. For each species the ratio MTtheoretical/ MTmeasured was calculated, which gives an indication of the relative capacity to induce MTs and thus immobilize the metals. Perch had the lowest capacity in inducing MTs (highest ratio). Relationships between hepatic metal levels and fish condition indices were absent or very weak. PMID:23556004

  20. Heavy metal pollution from a point source demonstrated by Mussel at Lake Balaton, Hungary

    SciTech Connect

    Balogh, K.V.

    1988-12-01

    Few studies are concerned with heavy metal pollution caused by the use of various paints in water ecosystems. In a study on the content of metals in dockyard sediments, elevated levels of Cu and Zn from antifouling paints, and Pb from anticorrosive and primer paints were reported. In the present work, a study was performed close to a sailing boat harbor of heavy metal pollution using biological samples. The concentrations of Cu, Zn, Cd and PB were determined in the organs of freshwater mussel (Unio pictorum L.) by AAS technique.

  1. Cytology of pollutant metals in marine invertebrates: A review of microanalytical applications

    SciTech Connect

    Nott, J.A. )

    1991-03-01

    x-ray microanalysis (XRMA) is customized for investigations of the metabolic and detoxification strategies of heavy metals taken by marine organisms from polluted environments. Sites of uptake, intracellular accumulation, transport and excretion are visualized, analysed and quantified. Cryopreparation techniques are required to prevent the translocation or loss from specimens of soluble metal species. In marine invertebrates, metals are detoxified by systems of chemical binding and intracellular compartmentalization. XRMA investigations have concentrated on marine molluscs and crustaceans and even within these restricted groups there are marked inter-species differences in the biochemical and cytological processes which reduce metal bioavailability. Some detoxification systems also protect the carnivores which ingest the metal-laden tissues of the prey. This results in the bioreduction of metals along a food chain. These processes are investigated by XRMA which can be tuned to observe the complex interactions which operate at all levels within and between the biota and polluted environments. 90 refs.

  2. Heavy metal pollution in coastal areas of South China: a review.

    PubMed

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit.

  3. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    PubMed Central

    Yuan, Wenzhen; Yang, Ning

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective. PMID:27803929

  4. Air pollution and emergency room admissions for chronic obstructive pulmonary disease: A 5-year study

    SciTech Connect

    Sunyer, J.; Saez, M.; Murillo, C.; Castellsague, J.; Martinez, F.; Anto, J.M. )

    1993-04-01

    An association between sulfur dioxide levels in urban air and the daily number of emergency room admissions for chronic obstructive pulmonary disease was previously reported in Barcelona, Spain, for the period 1985-1986. The present study assesses this association over a longer period of time, 1985-1989. This made it possible to carry out separate analyses for the winter and summer seasons and thus to control more adequately for weather and influenza epidemics. An increase of 25 micrograms/m3 in sulfur dioxide (24-hour average) produced adjusted changes of 6% and 9% in emergency room admissions for chronic obstructive pulmonary disease during winter and summer, respectively. For black smoke, a similar change was found during winter, although the change was smaller in summer. The association of each pollutant with chronic obstructive pulmonary disease admissions remained significant after control for the other pollutant. The present findings support the conclusion that current levels of sulfur dioxide and black smoke may have an effect on the respiratory health of susceptible persons.

  5. Heavy metal pollution in various canals originating from river Yamuna in Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sharma, P

    2003-07-01

    Heavy metal pollution due to Fe, Ni, Pb, Cd, Co and Zn in the water of major canals originating from the river Yamuna in Haryana was studied. All these metals except Zn were found to be present in the Western Yamuna Canal (WYC) exceeding the maximum permissible limits. In the Sunder branch (SB), the heavy metal concentration was relatively more. Concentrations of the metals were, however, relatively less in the highly eutrophicated waters of Agra canal and Gurgaon canal as compared to that in WYC but Fe concentration were much higher. Except Zn and Ni the metal concentrations exceeded the standard permissible limits in these canals also. PMID:15259612

  6. Heavy metal pollution in various canals originating from river Yamuna in Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sharma, P

    2003-07-01

    Heavy metal pollution due to Fe, Ni, Pb, Cd, Co and Zn in the water of major canals originating from the river Yamuna in Haryana was studied. All these metals except Zn were found to be present in the Western Yamuna Canal (WYC) exceeding the maximum permissible limits. In the Sunder branch (SB), the heavy metal concentration was relatively more. Concentrations of the metals were, however, relatively less in the highly eutrophicated waters of Agra canal and Gurgaon canal as compared to that in WYC but Fe concentration were much higher. Except Zn and Ni the metal concentrations exceeded the standard permissible limits in these canals also.

  7. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms

    SciTech Connect

    Babich, H.; Stotzky, G.

    1980-01-01

    Although biotic factors greatly influence the sensitivity of microbes to pollutants, this review focuses on the other aspect of environmental toxicology, i.e., the influence of the physicochemical characteristics of the recipient environment on attenuating or potentiating the toxicity of pollutants to the resident microbiota. In addition, the characteristics of pollutants, such as their chemical form and concentration, and the interactions between pollutants will be discussed relative to their toxicity to microbes. This review will be limited to gaseous and heavy metal pollutants, although it is clearly recognized that the toxicity of other pollutants, such as polybrominated biphenyls (PBBs) polychlorinated biphenyls (PCBs), insecticides (e.g., DDT, heptachlor, dieldrin), components of oil spills, etc., are also influenced by abiotic environmental factors. 224 references, 17 figures, 11 tables.

  8. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-05-01

    Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.

  9. Costs of living in metal polluted areas: respiration rate of the ground beetle Pterostichus oblongopunctatus from two gradients of metal pollution.

    PubMed

    Bednarska, Agnieszka J; Stachowicz, Izabela

    2013-01-01

    To address the question about costs of living in polluted areas, biomarkers linked to metabolism were measured in Pterostichus oblongopunctatus (Coleoptera: Carabidae) collected along two metal-pollution gradients in the vicinity of the two largest Polish zinc smelters: 'Bolesław' and 'Miasteczko Śląskie' in southern Poland. Both gradients covered a broad range of Zn and Cd concentrations in the humus layer (109-6151 and 1.48-71.4 mg kg(-1), respectively) and body metal concentrations increased with increasing soil metal concentrations. The whole-organism respiration rate was measured as oxygen consumption with Micro-Oxymax respirometer, and cellular energy consumption-as the activity of electron transport system, which is linked to cellular respiration rate. The significant increase in the whole-organism respiration rate with the body metal concentration was found when taking into account other factors such as body mass, gradient (or year of sampling as the beetles were collected on the gradients in different years) and the interactions: body metal concentrations × collection date, body metal concentrations × body mass, and body mass × gradient/sampling year. However, no relationships between metal concentrations in soil or body metal concentrations and the whole-organism or cellular respiration rate could be detected when using mean values per site, underlining the crucial importance of incorporating individual variability in such analyses. The observed increase of the whole-organism respiration rate with increasing body contamination with metals suggests that P. oblongopunctatus incurs energetic expenditures resulting from the necessity to facilitate metal elimination or repair of toxicant-induced damage. PMID:23090483

  10. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  11. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  12. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Sint, Thaw; Donohue, James F; Ghio, Andrew J

    2008-01-01

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air pollution particles. Current and ex-smokers account for 80 to 85% of all those with COPD. The human breathing in an urban site with a significant level of particulate matter (PM) may be exposed to 720 microg daily. A single cigarette introduces 15,000 to 40,000 microg particle into the respiratory tract of the smoker. It is subsequently confounding why such a relatively small mass of airborne PM should have any biological effect in the patient with COPD, as these individuals are repeatedly exposed to particles (with a similar size and composition) at perhaps a thousandfold the mass of ambient PM. Regarding this increased sensitivity of COPD patients to air pollution particles, there are several possible explanations for this seeming contradiction, including correlations of PM levels with other components of air pollution, an accumulation of multiple independent risk factors in a patient, changes in individual activity patterns, disparities in dosimetry between healthy subjects and COPD patients, and some unique characteristic of an ambient air pollution PM. Regardless of the underlying mechanism for the increased sensitivity of COPD patients, exposures of these individuals to elevated levels of PM should be discouraged. To provide a greater awareness of PM levels, the U.S. Environmental Protection Agency now includes levels of air pollution particles in an air quality index.

  13. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions. PMID:26162961

  14. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2015-10-01

    Climate change may alter physical, chemical and biological properties of ecosystems, affecting organisms but also the fate of chemical pollutants. This study aimed to find out how changes in climate conditions (air temperature, soil moisture content) affect the toxicity of metal-polluted soils to the soft-bodied soil organism Enchytraeus crypticus, linking enchytraeid performance with changes in soil available and body metal concentrations. Bioassays with E. crypticus were performed under different combinations of air temperature (20 and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) in dilution series of three metal-polluted soils (mine tailing, forest and watercourse). After 21 d exposure, enchytraeid reproduction was determined, and soil available (extracted with 0.01 M CaCl2) and body Cd, Cu, Pb and Zn concentrations in surviving adults were determined. In general, Cd, Pb and Zn availability decreased upon incubation under the different climate scenarios. In the watercourse soil, with initially higher available metal concentrations (678 µg Cd kg(-1), 807 µg Pb kg(-1) and 31,020 µg Zn kg(-1)), decreases were greatest at 50% WHC probably due to metal immobilization as carbonates. Enchytraeid reproduction was negatively affected by higher available metal concentrations, with reductions up to 98% in the watercourse soil compared to the control soil at 30% WHC. Bioaccumulation of Cd, Pb and Zn was higher when drier conditions were combined with the higher temperature of 25 °C. Changes in metal bioavailability and bioaccumulation explained the toxicity of soil polluted by metal mine wastes to enchytraeids under changing environmental conditions.

  15. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    PubMed

    Zannini, D; Valente, T; Rotunno, R; Giusto, R

    1977-01-01

    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages. PMID:603118

  16. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    PubMed

    Zannini, D; Valente, T; Rotunno, R; Giusto, R

    1977-01-01

    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages.

  17. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  18. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  19. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    PubMed

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  20. Lichens as monitors of aerial heavy metal pollutants in and around Kampala

    SciTech Connect

    Nyangababo, J.T.

    1987-01-01

    The use of ion exchange resins and biological materials has aroused much interest in the search for inexpensive devices for monitoring pollution. Recent investigators have shown that plants themselves may be used as indicators of aerial fallout of heavy metals. Other workers have pursued the concept of using biological materials still further, by using mosses as indicators of aerial metal depositions. Lichens possess remarkable ion-exchange properties similar to many ion-exchange resins and are therefore suitable for the collection and retention of airborne metals. Lichens have been shown to be good indicators of pollution level; a close correlation is usually found between the distribution pattern of lichen species and the trace metal content of the surrounding air. This study was undertaken to determine the degree of contamination of the Kampala, Uganda environment by heavy metals from industries and motor traffic by using lichens as and indicator device. One type of lichen species (Calyrneferes usambaricum) was used as the test plant.

  1. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  2. Spatial and temporal assessment of metal pollution in the sediments of the Qaraoun reservoir, Lebanon.

    PubMed

    Wazne, Mahmoud; Korfali, Samira

    2016-04-01

    This study reports on metal (Cd, Cr, Cu, Ni, Pb, and Zn) pollution in the sediments of the Qaraoun reservoir over a span period of 9 years (2004, 2008, and 2013) along with key major environmental indicators. This time period corresponds with the onset of the rapid economic and industrial development of the reservoir region. For the first time, this study assessed the degree of environmental pollution by using indices such as enrichment factors (EF), contamination factors (CF), pollution load index (PLI), and geoaccumulation index (I geo). Moreover, sequential extraction was used to study the operationally determined chemical forms of the metals and their spatial and temporal distribution in the sediments. Correlation coefficients were also calculated to delineate the origin and association of the metals. Total metal concentrations and the environmental indices indicated increased pollution with time. Total organic carbon data showed a remarkable and significant increase in the organic fraction in 2013 relative to previous years. The increase in the organic fraction in the sediments was accompanied with a shift in cadmium [Cd] and lead [Pb] fractionation from the carbonate fraction to the organic fraction. The enrichment of the metal in the sediments along with the increased organic content is expected to exacerbate the metal bioavailability in the reservoir.

  3. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media. PMID:23645478

  4. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    PubMed

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  5. Geochemical assessment of metal pollution and ecotoxicology in sediment cores along Karachi Coast, Pakistan.

    PubMed

    Mashiatullah, Azhar; Chaudhary, Muhammad Zaman; Ahmad, Nasir; Ahmad, Nisar; Javed, Tariq; Ghaffar, Abdul

    2015-05-01

    This paper is an attempt to compare the pollution status in two sediment cores, one from a polluted site (Ghizri Creek) and another from a relatively unpolluted site (Sandspit). Sediment cores (45 cm in length) from coastal locations were characterized in terms of grain size, sediment composition, pH, organic matter, calcium carbonate, and metal element contents. Metal elements, including Al, Ca, Cr, Co Cu, Fe, K, Mg, Mn, Ni, Pb, V, Ti, and Zn, were determined using PIXE. Grain size analysis and sediment composition demonstrated a sandy nature of both cores. Acidic trend in sediment core I was predominant from bottom to top, whereas neutral pH was observed throughout core II. TOC values varied in the range of 1.23-2.68 and 1.14-2.60% in core I and core II, respectively; however, there was an increasing trend in TOC level from bottom to top. The values of enrichment factor for Zn, Cu, Co, Ni, Pb, and Cr were slightly higher in core I than core II. The average geo-accumulation index values for core I and core II showed that sediments were moderately Co- and Pb-polluted but not polluted with Mg, Al, Ca, K, Cr, Cu, Fe, Mn, Ni, Ti, V, and Zn. The degree of contamination was however considerably higher in core I relative to core II. The pollution load index values, although showing an increasing trend from bottom to top in both cores, overall rendered the marine sediment pollution free. The metal toxicology results demonstrated that heavy metal pollution, except Cr, may pose low to moderate risk to marine biota. The sum of toxic unit values however indicated that sediment core I was relatively more polluted than that of core II.

  6. Bacterial inoculants for enhanced seed germination of Spartina densiflora: Implications for restoration of metal polluted areas.

    PubMed

    Paredes-Páliz, Karina I; Pajuelo, Eloísa; Doukkali, Bouchra; Caviedes, Miguel Ángel; Rodríguez-Llorente, Ignacio D; Mateos-Naranjo, Enrique

    2016-09-15

    The design of effective phytoremediation programs is severely hindered by poor seed germination on metal polluted soils. The possibility that inoculation with plant growth promoting rhizobacteria (PGPR) could help overcoming this problem is hypothesized. Our aim was investigating the role of PGPR in Spartina densiflora seed germination on sediments with different physicochemical characteristics and metal pollution degrees. Gram negative Pantoea agglomerans RSO6 and RSO7, and gram positive Bacillus aryabhattai RSO25, together with the consortium of the three strains, were used for independent inoculation experiments. The presence of metals (As, Cu, Pb and Zn) in sediments reduced seed germination by 80%. Inoculation with Bacillus aryabhattai RSO25 or Pantoea agglomerans RSO6 and RSO7 enhanced up to 2.5 fold the germination rate of S. densiflora in polluted sediments regarding non-inoculated controls. Moreover, the germination process was accelerated and the germination period was extended. The consortium did not achieve further improvements in seed germination.

  7. Environmental Pollution Studies in an Underdeveloped Country: (1) Heavy Metal Pollution in Ibadan, Nigeria.

    ERIC Educational Resources Information Center

    Onianwa, P. C.

    1993-01-01

    Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…

  8. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  9. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy. PMID:27363164

  10. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  11. Impact of Soil Heavy Metal Pollution on Food Safety in China

    PubMed Central

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  12. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  13. Biomonitoring of the atmospheric pollution by heavy metals in Morocco

    NASA Astrophysics Data System (ADS)

    Gaudry, A.; Senhou, A.; Chouak, A.; Cherkaoui, R.; Moutia, Z.; Lferde, M.; Elyahyaoui, A.; El Khoukhi, T.; Bounakhla, M.; Embarch, K.; Ayrault, S.; Moskura, M.

    2003-05-01

    In this study, the accumulation sensitivities of trace elements in six types of air pollution biomonitors (lichens, tree barks and a moss) are compared. Three analytical methods were used:14MeV neutron activation analysis, thermal neutron activation analysis method and X-ray fluorescence analysis. Studies of the local concentration variations versus the sizes of lichen and of their altitude of collection from grounds, revealed that a standardisation of the procedures for collecting samples was necessary.

  14. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens.

    PubMed

    State, Gabriel; Popescu, Ion V; Radulescu, Cristiana; Macris, Cristina; Stihi, Claudia; Gheboianu, Anca; Dulama, Ioana; Niţescu, Ovidiu

    2012-09-01

    Our study was dedicated to the analysis of air pollution level with metals in Dambovita County, Romania; maps of the concentration distributions for air pollutants were drawn; statistical analysis includes calculation of the background concentrations and the contamination factors. The highest values of the contamination factor CF is 63.1 ± 6.63 for mosses samples and 33.12 ± 3.96 for lichens and it indicates extreme contaminations in the surroundings of steel works and an electric plant. The comparison of the distribution maps for Cr, Cu, Fe, Ni, Pb and Zn concentrations enables the identification of the pollution sources, the limits of areas with very high levels of pollution, the comparison of the concentration gradients in some areas and the influence of woodlands on the spread of pollutants through the air.

  15. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  16. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  17. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern.

  18. Assessment of trace metal pollution in sediments and intertidal fauna at the coast of Cameroon.

    PubMed

    Ngeve, Magdalene N; Leermakers, Martine; Elskens, Marc; Kochzius, Marc

    2015-06-01

    Coastal systems act as a boundary between land and sea. Therefore, assessing pollutant concentrations at the coast will provide information on the impact that land-based anthropogenic activities have on marine ecosystems. Sediment and fauna samples from 13 stations along the whole coast of Cameroon were analyzed to assess the level of trace metal pollution in sediments and intertidal fauna. Sediments showed enrichment of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn. However, pollution of greater concern was observed for Cd, Cr, Cu, Ni, and Zn at the northern stations. Some sites recorded trace metal levels higher than recommended in sediment quality guidelines. Species diversity was low, and high bioaccumulation of trace metals was observed in biological samples. Some edible gastropod species accumulated trace metals above the safety limits of the World Health Organization, European Medicine Agency, and the US Environment Protection Agency. Although industrial pollution is significant along Cameroon's coast, natural pollution from the volcano Mount Cameroon is also of concern. PMID:25957194

  19. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient.

    PubMed

    Grześ, Irena M; Okrutniak, Mateusz; Woch, Marcin W

    2015-04-01

    In ants, intra and inter-colony variation in body size can be considerable, even in monomorphic species. It has been previously shown that size-related parameters can be environmentally sensitive. The shape of the body size distribution curve is, however, rarely investigated. In this study, we measured head widthes of the black garden ant Lasius niger workers using digital methods. The ants were sampled from 51 colonies originating from 19 sites located along a metal pollution gradient, established in a former mining area in Poland. Total zinc concentrations in random samples of small invertebrates were used as a measure of site pollution levels. We found that the skewness of head size distribution grows significantly in line with the pollution level of the site, ranging from values slightly below zero (about -0.5) in the least polluted site up to a positive value (about 1.5) in the most polluted site. This result indicates that the frequency of small ants grows as pollution levels increase. The coefficient of variation, as well as the measures of central tendency, was not related to the pollution level. Four hypotheses explaining the obtained results are proposed. The bias towards the higher frequency of small workers may result from energy limitation and/or metal toxicity, but may also have an adaptive function.

  20. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  1. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health. PMID:24289020

  2. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics.

    PubMed

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  3. The role of indoor pollution in the development and maintenance of chronic airway inflammation in children.

    PubMed

    Packeu, A; Chasseur, C; Bladt, S; Detandt, M

    2012-01-01

    Air pollution is one of the great problems of this century and it plays an important role in the increasing prevalence of chronic inflammatory problems in the upper airway in children. Since their lungs and immune system are not fully developed when exposure begins, newborns and children appear to be more sensitive to the effects of both outdoor and indoor air pollution. Furthermore, children spend most of their time indoors and are exposed more often to pollutants in indoor air. The link between health problems, chemical products and allergens (the latter mainly from cats and mites) has been extensively studied. Other important indoor contaminants are fungi, which are often present in damp buildings and can cause severe respiratory disease by producing spores, allergens, volatile irritant compounds and toxins. A proper identification of mould contamination of this kind is vital for correct diagnosis, treatment and the prevention of health problems, and improvements have been observed after the removal or cleaning of the contaminated materials and improvements to the ventilation of buildings. While a possible association between respiratory symptoms, such as rhinitis, and the presence of fungi in the indoor environment has been documented by several authors, other studies have observed no significant relationship. The development of standardised sampling, detection and diagnostic tests will be essential to understand the proper role of fungi in the indoor atmosphere and their impact on public health. PMID:23431612

  4. Metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Kerala, south India.

    PubMed

    Varghese, J; Jaya, D S

    2014-12-01

    A comprehensive study was conducted to evaluate metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Thiruvananthapuram district, Kerala using the Heavy Metal Pollution Index (HPI). Forty two groundwater samples were collected during the summer season (April 2010) and the concentration of metals Fe, Cu, Zn, Cd and Pb were analyzed. Results showed that groundwater was contaminated mainly with Fe, Cu and Pb. Correlation analysis revealed that the sources of metals in groundwater in the study area are the same, and it may be due to the leachates from the nearby Sewage Farm, Parvathy Puthanar canal and solid wastes dumped in the residential area. Of the groundwater samples studied, 47.62 % were medium and 2.68 % were classified in HPI high category. HPI was highest (41.79) in DW29, which was adjacent to the polluted Parvathy Puthanar canal and Sewage Farm. The present study points out that the metal pollution causes the degradation of groundwater quality around the Sewage Farm during the study period.

  5. Heavy metal pollution status in surface sediments of the coastal Bohai Bay.

    PubMed

    Gao, Xuelu; Chen, Chen-Tung Arthur

    2012-04-15

    Bohai Bay, the second largest bay of Bohai Sea, largely due to the huge amount of pollutants discharged into it annually and its geohydrologic condition, is considered to be one of the most polluted marine areas in China. To slow down, halt and finally reverse the environmental deterioration of Bohai Sea, some researchers have proposed to connect it with Jiaozhou Bay in the western coast of Southern Yellow Sea by digging an interbasin canal through Shandong Peninsula. In order to assess the heavy metal pollution and provide background information for such a large geoengineering scheme, surface sediments from 42 stations covering both riverine and marine regions of the northwestern coast of Bohai Bay were analyzed for heavy metal content and fractionation (Cd, Cr, Cu, Ni, Pb and Zn). Three empirically derived sediment quality guidelines were used to assess the pollution extent of these metals. The studied metals had low mobility except for Cd at all stations and Zn at some riverine stations. Although a high mobility of Cd was observed, it could hardly cause a bad effect on the environment owing to its low total concentrations. Anthropogenic influence on the accumulation of studied heavy metals in sediments of Bohai Bay was obvious, but their contents were relatively lower to date comparing with some other marine coastal areas that receive important anthropogenic inputs. Taking as a whole, surface sediments of northwestern Bohai Bay had a 21% probability of toxicity based on the mean effects range-median quotient.

  6. Metals in air pollution particles decrease whole-blood coagulation time.

    PubMed

    Sangani, Rahul G; Soukup, Joleen M; Ghio, Andrew J

    2010-07-01

    The mechanism underlying procoagulative effects of air pollution particle exposure is not known. The authors tested the postulate that (1) the water-soluble components of an air pollution particle could affect whole-blood coagulation time and (2) metals included in this fraction were responsible for this effect. Exposure to the water-soluble fraction of particulate matter (PM), at doses as low as 50 ng/ml original particle, significantly diminished the whole-blood coagulation time. Inclusion of deferoxamine prolonged coagulation time following the exposures to the water-soluble fraction, whereas equivalent doses of ferroxamine had no effect. Except for nickel, all metal sulfates shortened the whole-blood coagulation time. Iron and zinc were two metals with the greatest capacity to reduce the coagulation time, with an effect observed at 10 ng/ml. Finally, in contrast to the anticoagulants citrate and EDTA, their iron complexes were found to be procoagulative. The authors conclude that metals in the water-soluble fraction of air pollution particles decrease whole-blood coagulation time. These metals can potentially contribute to procoagulative effects observed following human exposures to air pollution particles.

  7. Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula).

    PubMed

    Dominoni, Davide M; Quetting, Michael; Partecke, Jesko

    2013-01-01

    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems.

  8. Long-term effects of chronic light pollution on seasonal functions of European blackbirds (Turdus merula).

    PubMed

    Dominoni, Davide M; Quetting, Michael; Partecke, Jesko

    2013-01-01

    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems. PMID:24376865

  9. Community response patterns: evaluating benthic invertebrate composition in metal-polluted streams.

    PubMed

    Pollard, A I; Yuan, L

    2006-04-01

    Human activities are modifying the condition and character of ecosystems at a rapid rate. Because of these rapid changes, questions concerning how ecosystems and their assemblages respond to anthropogenic stressors have been of general interest. Accurate prediction of assemblage composition in ecosystems with anthropogenic degradation requires that we assess both how assemblages respond to stressors and the generality of the responses. We ask whether assemblage composition among stream sites becomes more similar after exposure to a common stressor. Using data from biological monitoring programs in the southern Rocky Mountain ecoregion of Colorado and in West Virginia, we compare benthic invertebrate similarity and assemblage composition among sites having different levels (background, low, medium, and high) of heavy-metal pollution. Invertebrate assemblages were most similar within the background metal category, and similarity was progressively lower in low, medium, and high metal categories. An analysis of the frequency of occurrence of genera within metal categories reveals taxonomic shifts that conform to expectations based on metal tolerance of benthic invertebrates. However, different metal-tolerant genera were found at different metal-impacted sites, suggesting that local abiotic and biotic processes may influence the identity of the metal-tolerant genera that become established in polluted sites. Low community similarity in the medium and high-metal categories suggests that accurate prediction of assemblage composition at impacted sites may be challenging. PMID:16711051

  10. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    PubMed

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  11. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2014-02-01

    Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  12. Monitoring of heavy metal pollution in surface waters from Aries River, Romania

    NASA Astrophysics Data System (ADS)

    Levei, E. A.; Moldovan, O.; Senila, M.; Miclean, M.; Tanaselia, C.; Roman, C.; Abraham, B.; Cordos, E. A.

    2009-04-01

    Mining activities have a long history in the Aries catchment. The extraction of precious metals containing ores culminated in the mid 20th century and then decreased continuously. The mining industry created a beneficial economic development of the region but the negative environmental impact due to acid mine drainage combined with heavy metal pollution of surface waters still remains, after most of the mining operations were closed. This study presents the results of a monitoring surveillance of heavy metal concentrations in surface waters from 12 monitoring stations along the Aries River, during March-October 2008. The results showed that downstream of mining activities an increase of all metal concentrations in surface waters was observed, but the water quality improved with the distance from contaminant sources due to the dilution effect of less polluted tributaries.

  13. Modern approaches to remediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  14. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  15. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    PubMed

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  16. Sediment properties and trace metal pollution assessment in surface sediments of the Laizhou Bay, China.

    PubMed

    Xu, Gang; Liu, Jian; Pei, Shaofeng; Gao, Maosheng; Hu, Gang; Kong, Xianghuai

    2015-08-01

    Spatial distribution, ecological risk, pollutant source, and transportation of trace metals in surface sediments, as well as the sediment properties, were analyzed in this study to assess the pollution status of trace metal in the Laizhou Bay, China. Results of provenance analyses indicate that surface sediments were primarily from weathering products carried by the surrounding short rivers and partially from loess matters carried by the Yellow River. Variations of trace metal concentrations were mostly controlled by the accumulation of weathering products, organic matters, and the hydrodynamics. Geoaccumulation index suggests that no Cr pollution occurred in the study area, and Cu, Pb, and Zn pollutions appeared only at a few stations. Comparatively, Cd and As pollutions were at noticeably weak to moderate level at many stations. The combination of six trace metals in this study had a 21% probability of being toxic in our study area based on sediment quality guidelines. Enrichment factors (EFs) and statistical analyses indicate that Cu, Pb, and Zn were primarily derived from the natural process of weathering. By contrast, Cd, As, and Cr (especially Cd and As) were provided by the anthropogenic activities to a large extent. Due to the dilution of coarse-grained sediments, there was even no contamination at some of stations that were obviously influenced by humans. Based on the current study of transportation process of fine-grained sediments in combination with the spatial distribution of EFs, it is found that the migration of anthropogenic trace metals was mainly controlled by the tide in the Laizhou Bay. The study suggests that an effective strategies and remedial measures should be designed and undertaken to prevent further anthropogenic Cd and As pollutions in this area in the future.

  17. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity.

    PubMed

    Lefcort, Hugh; Cleary, David A; Marble, Aaron M; Phillips, Morgan V; Stoddard, Timothy J; Tuthill, Lara M; Winslow, James R

    2015-01-01

    Anthropogenic atmospheric CO2 reacts with water to form carbonic acid (H2CO3) which increases water acidity. While marine acidification has received recent consideration, less attention has been paid to the effects of atmospheric carbon dioxide on freshwater systems-systems that often have low buffering potential. Since many aquatic systems are already impacted by pollutants such as heavy metals, we wondered about the added effect of rising atmospheric CO2 on freshwater organisms. We studied aquatic pulmonate snails (Physella columbiana) from both a heavy-metal polluted watershed and snails from a reference watershed that has not experienced mining pollution. We used gaseous CO2 to increase water acidity and we then measured changes in antipredatory behavior and also survival. We predicted a simple negative additive effect of low pH. We hypothesized that snails from metal-polluted environments would be physiologically stressed and impaired due to defense responses against heavy metals. Instead, snails from populations that acclimated or evolved in the presence of heavy metal mining pollution were more robust to acidic conditions than were snails from reference habitats. Snails from mining polluted sites seemed to be preadapted to a low pH environment. Their short-term survival in acidic conditions was better than snails from reference sites that lacked metal pollution. In fact, the 48 h survival of snails from polluted sites was so high that it did not significantly differ from the 24 h survival of snails from control sites. This suggests that the response of organisms to a world with rising anthropogenic carbon dioxide levels may be complex and difficult to predict. Snails had a weaker behavioral response to stressful stimuli if kept for 1 month at a pH that differed from their lake of origin. We found that snails raised at a pH of 5.5 had a weaker response (less of a decrease in activity) to concentrated heavy metals than did snails raised at their natal pH of

  18. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity.

    PubMed

    Lefcort, Hugh; Cleary, David A; Marble, Aaron M; Phillips, Morgan V; Stoddard, Timothy J; Tuthill, Lara M; Winslow, James R

    2015-01-01

    Anthropogenic atmospheric CO2 reacts with water to form carbonic acid (H2CO3) which increases water acidity. While marine acidification has received recent consideration, less attention has been paid to the effects of atmospheric carbon dioxide on freshwater systems-systems that often have low buffering potential. Since many aquatic systems are already impacted by pollutants such as heavy metals, we wondered about the added effect of rising atmospheric CO2 on freshwater organisms. We studied aquatic pulmonate snails (Physella columbiana) from both a heavy-metal polluted watershed and snails from a reference watershed that has not experienced mining pollution. We used gaseous CO2 to increase water acidity and we then measured changes in antipredatory behavior and also survival. We predicted a simple negative additive effect of low pH. We hypothesized that snails from metal-polluted environments would be physiologically stressed and impaired due to defense responses against heavy metals. Instead, snails from populations that acclimated or evolved in the presence of heavy metal mining pollution were more robust to acidic conditions than were snails from reference habitats. Snails from mining polluted sites seemed to be preadapted to a low pH environment. Their short-term survival in acidic conditions was better than snails from reference sites that lacked metal pollution. In fact, the 48 h survival of snails from polluted sites was so high that it did not significantly differ from the 24 h survival of snails from control sites. This suggests that the response of organisms to a world with rising anthropogenic carbon dioxide levels may be complex and difficult to predict. Snails had a weaker behavioral response to stressful stimuli if kept for 1 month at a pH that differed from their lake of origin. We found that snails raised at a pH of 5.5 had a weaker response (less of a decrease in activity) to concentrated heavy metals than did snails raised at their natal pH of

  19. Removal of heavy metals from effluent. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the removal of lead, cadmium, mercury, and other heavy metals from waste waters. Precipitation, reverse osmosis, complexation, ultrafiltration, and adsorption are among the techniques described. The citations examine the efficiency, operational difficulties, cost effectiveness, and optimization of these methods. Prevention and remediation of metal pollution from electroplating, mining, smelting, and other industries are included. (Contains 250 citations and includes a subject term index and title list.)

  20. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria.

  1. Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient.

    PubMed

    Rogival, Damien; Scheirs, Jan; Blust, Ronny

    2007-01-01

    We studied the accumulation and transfer of As, Cd, Cu, Pb and Zn in the compartments of a soil-diet-wood mouse (Apodemus sylvaticus) food chain at five sites located along a metal pollution gradient. We observed a clear gradient in metal exposure at increasing distance from the smelter in all compartments of the food chain for the non-essential metals. The gradient was less clear or absent for the essential metals in acorn and mice target tissues. Regression analysis showed overall strong relationships within the soil-diet and diet-wood mouse compartments for the non-essential metals, while relationships for the essential metals were weak or absent. Total metal in soil appeared as a better predictor for the diet metal content than the available metal fraction. Our results suggest a more important transfer of non-essential elements through the food chain than essential elements, which is probably a consequence of homeostatic control of the latter group. PMID:16782248

  2. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-01

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil. PMID:26696243

  3. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-01

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  4. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    PubMed

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  5. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    PubMed Central

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-01-01

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range. PMID:26287229

  6. [Characters of greening tree species in heavy metal pollution protection in Shanghai].

    PubMed

    Yang, Xuejun; Tang, Dongqin; Xu, Dongxin; Wang, Xinhua; Pan, Gaohong

    2004-04-01

    In this paper, the stream banks nearby Qibao town and the factory area of Shanghai Baoshan Steel Company were selected as the typical areas contaminated by heavy metals. The polluted status was investigated by measuring the heavy metal concentrations of the sampled soils. The results showed that the heavy metal concentrations in the soils of stream banks were a little higher than the control, but obviously higher in the factory area of Shanghai Baoshan Steel Company. The growth status of the greening trees was recorded, and their heavy metal concentrations were measured by ICP. According to the research results and historic data, the excellent greening tree species mainly applied in polluted factory area were Viburnum awabuki, Lagerstroemia indica, Hibiscus mutabilis, Ligustrum lucidum and Sabina chinensis, which could grow well on contaminated soil, and accumulate high concentrations of heavy metal elements. The other tree species such as Distylium racemosum, Nerium indicum, and Photinia serrulata might be also available in greening for heavy metal pollution protection. PMID:15334971

  7. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory.

  8. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory. PMID:24097365

  9. Heavy metal pollution in surface soils of Pearl River Delta, China.

    PubMed

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased. PMID:25252793

  10. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  11. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  12. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  13. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  14. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically. PMID:26591886

  15. Indoor metallic pollution and children exposure in a mining city.

    PubMed

    Barbieri, Enio; Fontúrbel, Francisco E; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2014-07-15

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P=0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P=0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior.

  16. Heavy-metal pollution and arseniasis in Hetao region, China.

    PubMed

    Zhang, Hui

    2004-05-01

    In the Hetao region in northern China drinking water has become toxic due to the presence of arsenic (As) and other heavy metals in soil and water. The 7 counties in this region cover approx. 6100 km2, and in all 180,000 people are suffering from the toxic effects of contaminated drinking water. However, very few studies have been carried out in the region on the possible source of this arsenic. This paper is based on studies of the distribution of heavy metals in soil and groundwater. Results show that the average content of As is 0.483 microg g(-1) in groundwater and 13.74 microg g(-1) in soil. These levels are higher than the drinking water standard of 0.05 microg g(-1) recommended by the World Health Organization in 1984, and for the local background level in soil (5.20 microg g(-1)). This heavy-metal content in water and soil decreases gradually with increasing distance from the contaminated area, which fronts the Yin Mountains. The ratios of the Pb and Sr isotope contents in water are closely related to the ratios found in the water of the regions' mining area, and the ratios in soil correspond to the content of As in groundwater and soil in the area where pathological changes have been detected. Results suggest that the contaminants originate in the ore deposit zone fronting Yin mountains in the upper reaches of the Hetao Region.

  17. The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems.

    PubMed

    Boshoff, Magdalena; De Jonge, Maarten; Dardenne, Freddy; Blust, Ronny; Bervoets, Lieven

    2014-10-01

    In this study the influence of metal pollution on soil functional activity was evaluated by means of Bait lamina and BIOLOG(®) EcoPlates™ assays. The in situ bait lamina assay investigates the feeding activity of macrofauna, mesofauna and microarthropods while the BIOLOG(®) EcoPlate™ assay measures the metabolic fingerprint of a selectively extracted microbial community. Both assays proved sensitive enough to reveal changes in the soil community between the plots nearest to and further away from a metal pollution source. Feeding activity (FA) at the less polluted plots reached percentages of 90% while plots nearer to the source of pollution reached percentages as low as 10%. After 2 and 6 days of incubation average well color development (AWCD) and functional richness (R') were significantly lower at the plots closest to the source of pollution. While the Shannon Wiener diversity index (H') decreased significantly at sites nearer to the source of pollution after 2 days but not after 6 days of incubation. Arsenic, Cu and Pb correlated significantly and negatively with feeding activity and functional indices while the role of changing environmental factors such as moisture percentage could not be ruled out completely. Compared to the Bait lamina method that is used in situ and which is therefore more affected by site specific variation, the BIOLOG assay, which excludes confounding factors such as low moisture percentage, may be a more reliable assay to measure soil functional activity.

  18. PULMONARY TOXICOLOGY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL

    EPA Science Inventory

    PULMONARY TOXICITY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL.

    M Daniels, A Ranade* & MJ Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, RTP, NC. * Particle Technology, College Par...

  19. THE USEPA'S METAL FINISHING FACILITY RISK SCREENING TOOL (MFFRST) AND POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    This presentation will provide an overview of the USEPA's Metal Finishing Facility Risk Screening Tool, including a discussion of the models used and outputs. The tool is currently being expanded to include pollution prevention considerations as part of the model. The current st...

  20. Exposure to Metal Pollutants and Behavioral Disorders in Children: A Review of the Evidence.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    The paper reviews research on effects of metal pollutants on behavioral disorders in children. Methodological programs of studies conducted in the 1970's are described. Research since 1980 is then addressed in terms of general population studies and studies of behaviorally disordered populations. Findings of research on the latter subject group…

  1. METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T) BETA VERSION

    EPA Science Inventory

    The MFFP2T is a computer-based simulation of metal finishing facilities that is intended to allow the facility to evaluate the effect of process modifications on pollution generation within the facility. MFFP2T has been developed consists of two basic parts, a process simulation ...

  2. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  3. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.

    PubMed

    Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou

    2014-06-15

    Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter.

  4. Elemental mapping inventory of the fish Liza aurata brain: a biomarker of metal pollution vulnerability.

    PubMed

    Godinho, Rita M; Pereira, Patricia; Raimundo, Joana; Pacheco, Mário; Pinheiro, Teresa

    2015-02-01

    The elemental distributions in optic tectum of brains of wild Liza aurata a teleost fish captured in polluted and reference coastal areas were assessed quantitatively by nuclear microscopy providing insights into brain vulnerability to metal pollution. Elemental maps enabled us to visualize optic tectum layers and identify cellular arrangements. Whereas Cl, K and Ca contents identify meninges, the Ca, Fe and Zn concentrations distinguish the underneath grey matter, white matter and inner cellular layers. Exposed animals showed significantly decreased P concentrations and increased contents of Cu, Zn and Ni in all brain structures. These changes highlight homeostasis modification, altered permeability of the blood-brain barrier and suggest risk for neurological toxicity. Our study initiated for the first time an inventory of physiological measures containing images and elemental compositions of brain regions of fish exposed to different environmental conditions. This will help defining total and local brain vulnerability to metals and pollution levels.

  5. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    PubMed

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution. PMID

  6. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    PubMed

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  7. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  8. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  9. Pollution

    ERIC Educational Resources Information Center

    Terry, Luther L.

    1970-01-01

    Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)

  10. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants.

    PubMed

    Ruiz, E; Rodríguez, L; Alonso-Azcárate, J

    2009-05-01

    A pot experiment was conducted in order to assess the effect of the earthworm Eisenia fetida on the uptake of Pb, Zn, Cd and Cu from soils polluted by mining activities using maize (Zea mays) and barley (Hordeum vulgare). Results from single and sequential extractions showed that the soil chemical partitioning of heavy metals was significantly changed by E. fetida, leading to a higher concentration of metals in the non-residual fractions of the soil. Earthworm activities significantly increased shoot biomass (65% for maize and 73% for barley) and root metal concentration for all the metals under study in both maize and barley. The total accumulation rate values for Cd, Cu, Pb and Zn were significantly higher in the presence of E. fetida for both crop plants. Those latter effects led to an increase in Zn extraction yields of up to 3.7-fold and 2.3-fold for barley and maize, respectively. PMID:19232427

  11. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    NASA Astrophysics Data System (ADS)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  12. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    PubMed

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  13. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].

    PubMed

    Lazăr, Veronica; Cernat, Ramona; Balotescu, Carmen; Cotar, Ani; Coipan, Elena; Cojocaru, Cristina

    2002-01-01

    Self-transmissible plasmids conferring multiple antibiotic resistance are wide-spread in coliforms populations. In soil and water, multiple antibiotic resistance is clearly associated with resistance/tolerance to heavy-metals (Hg2+, Cu2+, Pb2+, Zn2+, Ca2+). For different genera the genes for heavy-metals resistance are often plasmid encoded. Since these genes are clustered on the same plasmids, heavy-metals and drugs are environmental factors which exert a selective pressure for the populations of these plasmid-harboring bacteria. The aim of this preliminary study was to find possible correlation between resistance genotype determined by genetic analysis and antibiotic and heavy-metal resistance patterns of 12 E. coli strains isolated from chronically polluted waters. Antimicrobial susceptibility testing was performed for ampicillin, tetracycline, gentamycin, kanamycin, chloramphenicol, ceftazidime and cefotaxime by standard disk diffusion Kirby-Bauer method following NCCLS recommendations. These antibiotics were chosen because of their wide-spread use and importance in the treatment of Gram-negative bacterial infections. MICs values of antibiotics and heavy-metals were determined by dilution method in Mueller-Hinton broth using an inoculum of about 1-2 x 10(8) CFU/ml. The concentration range for antimicrobials and heavy-metals salts (CuSO4, CdCl2, Co(NO3)2, Cr(NO3)3, HgCl2, NiCl2 and ZnSO4) was 0.06-64 [symbol: see text] g/ml, 0.5-256 [symbol: see text] g/ml respectively. Plasmid DNA was isolated from E. coli strains by an alkaline lysis. Genetic characterization was performed by agarose gel electrophoresis and spectrophotometric analysis. All strains are multiple antibiotic resistant, 16% of them being resistant to 3, 4 and 6 antibiotics, 32% to 5 and 8% to all 7 antibiotics, respectively. Multiple tolerance to high levels of Cd2+, Cu2+, Cr3+ and Ni2+ was common among multiple antibioresistant strains. Screening for plasmids relieved the presence of several

  14. Determination of total metal pollutants in water with optical detection

    NASA Astrophysics Data System (ADS)

    Chudy, Michal; Prokaryn, Piotr; Dybko, Artur; Wroblewski, Wojciech; Brzozka, Zbigniew

    2003-09-01

    The total concentration of heavy metal ions was measured with the use of a highly sensitive reagent (4-(2-pyridylzo)-resorcinol (PAR)). Because of PAR chelates are slightly soluble in water and their forming is not selective, the analytical procedure for Cd, Cu, Hg, Pb, Zn determination was developed to perform the analysis in an aqueous environment without the need of inconvenient and time-consuming extraction. A proposed analysis method is more useful in comparison with classical FIA analysis what is crucial during fast classification of various natural water samples. To minimize the chemicals consumption such a classification can be performed in a specially designed microsystem. The Y- shape microchannel structure with a mixing area was made by fine engraving in PMMA plate and sealed with the PDMS one. The M2+-PAR complex forming conditions were determined for each of the chosen metal ions. The solubility of formed complexes was better when a micellar environment was created by the addition of a non-ionic surfactant (Triton X100). Next the synthetic mixtures of Cd, Cu, Hg, Pb, Zn ions were prepared to obtain total molar metal ions concentration in the range from 10-6 to 10-4 M and measured after on-chip reaction. A tap water and HAC-sample (Highest Allowable Concentration, ΣMe=1,2•10-5 M) were also measured. The detection was performed in a special flow cuvette and spectra measurements were carried out using diode array spectrophotometer and CCD detector.

  15. Heavy metal pollution and health risk assessment in the Wei River in China.

    PubMed

    Yang, Xuefu; Duan, Jinming; Wang, Lei; Li, Wei; Guan, Jianling; Beecham, Simon; Mulcahy, Dennis

    2015-03-01

    From data collected monthly at 26 monitoring cross sections in the Wei River in the Shaanxi Region of China during the period 2008-2012, the temporal pollution characteristics of heavy metals (Hg, Cd, Cr(VI), Pb, and As) were analyzed based on a heavy metal pollution index (HPI). The monthly HPI values of the five heavy metals in the river fluctuated greatly in 2008 and then declined gradually with time. This general trend of reduction in HPI appears not to have a seasonal variation and most likely resulted from the continued improvement in heavy metal pollution control strategies implemented by local environmental agencies combined with a significant improvement in wastewater treatment capacities. Among the five heavy metals, Cd and Pb were below 0.1 and 3 μg L(-1), respectively, at all the sampling points in the studied areas in the year 2012. The detection rates of As, Hg, and Cr(VI) were in the order of Hg > Cr(VI) > As. Hg, Cr(VI), and As exceeded, in a month of the dry season in 2012, the standard limits for category III surface waters according to the China Environment Quality Standards for Surface Water (CEQSSW). Based on the assessment using the HPI method, the pollution status of these heavy metals in water of the Wei River in the Shaanxi Region was generally at an acceptable level, but exhibited distinctive characteristics between the main stream river and tributaries. Most of the tributaries were more seriously polluted than the main river. A health risk assessment was conducted based on the Human Health Risk Assessment (HHRA) method recommended by the United States Environmental Protection Agency (USEPA). Apart from As, the health risk for the five heavy metals in the region were at acceptable levels for drinking water sources (hazard quotient (HQ) < 1, carcinogenic risk (CR) ranged from 10(-4)-10(-6)) according to the Risk Assessment Guidance for Superfund (RAGS), USEPA. Arsenic was identified as the most important pollutant of concern

  16. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. PMID:27364359

  17. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  18. Metals pollution tracing in the sewerage network using the diffusive gradients in thin films technique.

    PubMed

    Thomas, P

    2009-01-01

    Diffusive Gradients in Thin-films (DGT) is a quantitative, passive monitoring technique that can be used to measure concentrations of trace species in situ in solutions. Its potential for tracing metals pollution in the sewer system has been investigated by placing the DGT devices into sewage pumping stations and into manholes, to measure the concentration of certain metals in the catchment of a sewage treatment works with a known metals problem. In addition the methodology and procedure of using the DGT technique in sewers was investigated. Parameters such as temperature and pH were measured to ensure they were within the limits required by the DGT devices, and the optimum deployment time was examined. It was found that although the results given by the DGT technique could not be considered to be fully quantitative, they could be used to identify locations that were showing an excess concentration of metals, and hence trace pollution back to its source. The DGT technique is 'user friendly' and requires no complicated equipment for deployment or collection, and minimal training for use. It is thought that this is the first time that the DGT technique has been used in situ in sewers for metals pollution tracing.

  19. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic. PMID:27011970

  20. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  1. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota.

    PubMed

    Gubelit, Yulia; Polyak, Yulia; Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz; Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga; Maazouzi, Chafik

    2016-04-15

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem.

  2. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota.

    PubMed

    Gubelit, Yulia; Polyak, Yulia; Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz; Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga; Maazouzi, Chafik

    2016-04-15

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem. PMID:26849344

  3. Heavy-metal pollution of sediments from the Polish exclusive economic zone, southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Szefer, P.; Glasby, G. P.; Geldon, J.; Renner, R. M.; Björn, E.; Snell, J.; Frech, W.; Warzocha, J.

    2009-04-01

    Analysis of 59 surface sediment samples from the Polish exclusive economic zone (EEZ) shows that Szczecin Lagoon sediments are the most polluted by heavy metals and that the degree of heavy-metal pollution decreases substantially on passing from the Szczecin Lagoon to the Pomeranian Bay and the inner shelf area and then on passing to the Bornholm Deep and Słupsk Furrow. Heavy-metal pollution in the sediments of the western part of the Polish EEZ therefore appears to follow the dispersion of the Oder River. Fluffy material from the Oder estuary appears to be the main source of heavy metals in the muddy sediments of the Bornholm Deep. The formation of sulphides is therefore not the principal factor controlling the enrichment of heavy metals in the sediments of this anoxic basin, although it may be responsible for the uptake of Mo, Sb and As. Two main factors control the distribution of the rare earth elements (REE) in sediments of the Polish EEZ: the input of Fe-organic colloids from rivers and the presence of detrital material in the sediments.

  4. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    PubMed

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings.

  5. Review of magnetism and heavy metal pollution studies of various environments in Argentina

    NASA Astrophysics Data System (ADS)

    Chaparro, Marcos A. E.; Gogorza, Claudia S. G.; Chaparro, Mauro A. E.; Irurzun, María A.; Sinito, Ana M.

    2006-10-01

    In recent years, the number of studies of pollution and magnetic proxies for environmental pollution in developed countries, especially European and North American countries, has gradually increased from the 80's to date. Despite this trend that shows a positive interest in taking care of the environment and researching into the environmental impact of several human activities, pollution studies in Latin American countries have been reducing in number. Moreover, studies of magnetic proxies for pollution are scarce; in particular, studies of this nature has been carried out in Argentina over the past few years by Chaparro and coworkers. Studies of magnetic enhancement in soils due to the burning mechanism are discussed and the results of burnt soils affected by fires of different nature and natural soils are compared, taking into account their magnetic carriers. Nevertheless, this article deals mainly with the first studies of magnetic proxies for pollution conducted in a province in Argentina. Soils, lagoon and stream sediments from three areas were studied. These areas comprise La Plata, Chascomús, and Tandil districts. The influence of pollution was investigated in Tandil and La Plata, revealing magnetic enhancement and the presence of pollutants only in Tandil soils. On the other hand, stream and lagoon sediments were studied in La Plata and Chascomús. Magnetic carriers and the contents of some heavy metals were identified and investigated in both areas separately. Magnetic parameters show distinctive points and wide areas affected by pollution. Furthermore, this magnetic inference is supported by high contents of heavy metals, especially lead and zinc. Finally, a new statistical study of multiple correlation analysis concerning data from La Plata and Chascomús areas was tried in order to investigate the existence of a linear relation between sets of several magnetic parameters and several chemical variables.

  6. Pollution prevention assessment for a metal parts coater

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Spika, T.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that applies corrosion resistant coatings to metal parts. Aluminum parts received from customers may be anodized or may receive a chromate conversion coating. Brass, copper, steel, and aluminum parts from customers are nickel plated--either by electrolytic or electroless plating. The assessment team`s report, detailing findings and recommendations, indicated that large quantities of wastewater and metal sludge are generated by the plant and that significant cost savings could be achieved through replacement of Freon used for degreasing. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  7. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge.

    PubMed

    Huang, Huajun; Yuan, Xingzhong; Zeng, Guangming; Zhu, Huina; Li, Hui; Liu, Zhifeng; Jiang, Hongwei; Leng, Lijian; Bi, Wenkai

    2011-11-01

    Liquefaction residues (LR) are the main by-products of sewage sludge (SS) liquefaction. This study quantitatively evaluates the potential ecological risk and pollution degrees of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in LR versus SS. The leaching rates (R1) of heavy metals in LR were much lower than those in SS, revealing that the mobility/leachability of heavy metals was well suppressed after liquefaction. Geo-accumulation index (Igeo) indicated that the liquefaction process significantly weakened the contamination degrees of heavy metals. Potential ecological risk index (RI) demonstrated that overall risks caused by heavy metals were obviously lowered from 1093.56 (very high risk) in SS to 4.72 and 1.51 (low risk) in LR1 and LR2, respectively. According to the risk assessment code (RAC), each tested heavy metal had no or low risk to the environments after liquefaction. In a word, the pollution hazards of heavy metals in LR were markedly mitigated.

  8. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. PMID:26160534

  9. Aquatic environments polluted with antibiotics and heavy metals: a human health hazard.

    PubMed

    Martins, Vinicius Vicente; Zanetti, Maria Olívia Barboza; Pitondo-Silva, André; Stehling, Eliana Guedes

    2014-05-01

    Aquatic environments often receive wastewater containing pollutants such as antibiotics and heavy metals from hospital sewage, as well as contaminants from soil. The presence of these pollutants can increase the rate of exchange of resistant genes between environmental and pathogenic bacteria, which can make the treatment of various types of bacterial infections in humans and animals difficult, in addition to causing environmental problems such as ecological risk. In this study, two tetracycline-resistant Pseudomonas aeruginosa (EW32 and EW33), isolated from aquatic environments close to industries and a hospital in southeastern Brazil, were investigated regarding the possible association between tetracycline and heavy metal resistance. The isolate EW32 presented a conjugative plasmid with coresistance to tetracycline and copper, reinforcing the concern that antibiotic resistance by acquisition of plasmids can be induced by the selective pressure of heavy metals in the environment. PMID:24448880

  10. Differential response of marine organisms to certain metal and agrichemical pollutants

    SciTech Connect

    Lee, H.H.; Xu, C.H.

    1984-10-01

    Oocyte maturation of the starfish, fertilization and embryogenesis of sea urchins, and the development of amphioxus and brine shrimps were used to assay the effects of several common metals and agrichemicals frequently found in marine environments. While brine shrimp embryos were tolerant to metals and agrichemicals used here, sea urchins and amphioxus showed a differential response to the common metal pollutants. Starfish oocyte maturation process was affected by agrichemicals. The results show that no one single organism, or its embryonic form, or a particular stage of development, can be used as the indicator for a particular pollutant. However, the use of lower forms of marine organisms can be useful collectively for environmental investigations and the management of waste disposal.

  11. The environmental significance of heavy metal pollution in surface sediments of Maryout lagoon, Egypt

    NASA Astrophysics Data System (ADS)

    Abdallah, M. A. M.

    2009-04-01

    Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes) was concerned since this lake were used for land reclamation, aquaculture in addition to its importance as a fishing source. Meanwhile, sediments served as one of the main ultimate sinks for large amount of pollutants especially heavy metals discharged through two wastewater treatment plants, also from several agricultural drains. Total concentrations of heavy metal, such as Cd, Ni, Pb, Cr, Cu and Zn were investigated, as well as the ecological relevance of metal pollution was investigated by applying different sediment quality assessment approaches: (1) comparisons of concentrations with regional reference data, and (2) comparisons with consensus-based sediment quality guidelines (SQGs).

  12. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution.

  13. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-regionpollutants. What is more, the greatest contaminated area appeared at the river mouth of the south branch of YRE. In Tucker 3, considering the fractions of metals, Mn turned to be the severest pollutant and As did not contribute too much to the contamination of the YRE. That was most probably because that Mn was closely related to the carbonate-associated (CARB) and As was related to organic-associated (OM) which is more stable than CARB. The fractions played an important role in the contamination assessment of heavy metals. PMID:27267116

  14. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-09-01

    The current state, problems, and prospects of phymoremediation of heavy metal polluted soils are analyzed. The main attention is paid to the phytoextraction and phytostabilization as the most widespread and alternative methods of soil phytoremediation. The efficiency of phymoremediation is related to the natural capability of plants for the accumulation and translocation of metals, their tolerance to a high content of metals, the plant biomass, and the amendments applied. The advantages and disadvantages of phytoremediation as compared to other methods of remediation of polluted soils in situ are considered. Examples of successful phytoextraction and phytomining for cleaning up of contaminated soils in Rasteburg (South Africa) and the phytostabilization of technogenic barrens nearby the copper-nickel plants in Sudbury (Ontario, Canada) and in the Kola Subarctic (Russia) are presented.

  15. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-regionpollutants. What is more, the greatest contaminated area appeared at the river mouth of the south branch of YRE. In Tucker 3, considering the fractions of metals, Mn turned to be the severest pollutant and As did not contribute too much to the contamination of the YRE. That was most probably because that Mn was closely related to the carbonate-associated (CARB) and As was related to organic-associated (OM) which is more stable than CARB. The fractions played an important role in the contamination assessment of heavy metals.

  16. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    NASA Astrophysics Data System (ADS)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  17. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health.

  18. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach.

    PubMed

    Saher, Noor Us; Siddiqui, Asmat Saleem

    2016-04-15

    Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade.

  19. Expression of mtc in Folsomia candida indicative of metal pollution in soil.

    PubMed

    Nota, Benjamin; Vooijs, Riet; van Straalen, Nico M; Roelofs, Dick

    2011-05-01

    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing protein (MTC) was assessed, using quantitative PCR, in response to six different metals, each at two concentrations in soil. The expression of mtc was induced after exposure to all metals, except for one chromium concentration. Exposure to soil originating from metal-contaminated field sites also induced mtc, while the expression did not change in response to a polycyclic aromatic hydrocarbon. Since this transcript is induced by most of the tested metals, it may potentially be a good indicator of metal contamination. The presented gene expression assay might become a useful tool to screen potentially polluted sites, in order to identify the ones that need further ecotoxicological investigation. PMID:21296470

  20. Reverse-phase HPLC of benzylpropionitrile dithiocarbamate complexes for the determination of priority pollutant metals

    SciTech Connect

    Park, Y.J.

    1990-01-01

    A new dithiocarbamate, benzylpropionitrile dithiocarbamate (BPDTC), has been synthesized for use in metal analysis. The HPLC behavior of metal chelates of BPDTC has been investigated for the simultaneous determination of antimony, cadmium, chromium, copper, mercury, nickel, lead, selenium, thallium, and zinc, all of which are on the Environmental Protection Agency's list of priority pollutant metals. Metals are extracted into dichloromethane as BPDTC chelates, and then separated on a C-18 column. Cobalt is added as an internal standard. The effects of pH and of three organic modifiers (methanol, acetonitrile, tetrahydrofuran) of the mobile phase on retention time have been investigated. Addition of dichloromethane to the mobile phase increases solubility and chelate stability, and improves the separation of metal BPDTC complexes. BPDTC is added to the aqueous mobile phase to reduce on-column dissociation of the complexes. Detection limits at 260 nm are in the range of 0.1 to 3 ppb using a 1 liter sample.

  1. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals.

    PubMed

    Gao, Xuelu; Zhou, Fengxia; Chen, Chen-Tung Arthur

    2014-01-01

    It is well recognized that the ecosystem of the Bohai Sea is being rapidly degraded and the Sea has basically lost its function as a fishing ground. Billions of funds have been spent in slowing down, halting and finally reversing the environmental deterioration of the Bohai Sea. Although trace metals are routinely monitored, the data with high temporal resolution for a clear understanding of biogeochemical processes in the ecosystem of the Bohai Sea are insufficient, especially in the western literature. In this review, status of trace metal contamination in the Bohai Sea is assessed based on a comprehensive review of their concentrations recorded in the waters, sediments and organisms over the past decades. Studies show that metal contamination in the Bohai Sea is closely associated with the fast economic growth in the past decades. Concentrations of trace metals are high in coastal areas especially in the estuaries. Alarmingly high metal concentrations are observed in the waters, sediments and organisms from the western Bohai Bay and the northern Liaodong Bay, especially the coasts near Huludao in the northernmost area of the Bohai Sea, which is being polluted by industrial sewage from the surrounding areas. The knowledge of the speciation and fractionation of trace metals and the influence of submarine groundwater discharge on the biogeochemistry of trace metals in the Bohai Sea is far from enough and related work needs to be done urgently to get a better understanding of the influence of trace metals on the ecosystem of the Bohai Sea. A clear understanding of the trace metal pollution status of the Bohai Sea could not be achieved presently for lack of systematic cooperation in different research fields. It is quite necessary to apply the environmental and ecological modeling to the investigation of trace metals in the Bohai Sea and then provide foundations for the protection of the environment and ecosystem of the Bohai Sea.

  2. Metal Nanoparticle Pollutants Interfere with Pulmonary Surfactant Function In Vitro☆

    PubMed Central

    Bakshi, Mandeep Singh; Zhao, Lin; Smith, Ronald; Possmayer, Fred; Petersen, Nils O.

    2008-01-01

    Abstract Reported associations between air pollution and pulmonary and cardiovascular diseases prompted studies on the effects of gold nanoparticles (Au NP) on pulmonary surfactant function. Low levels (3.7 mol % Au/lipid, 0.98% wt/wt) markedly inhibited adsorption of a semisynthetic pulmonary surfactant (dipalmitoyl-phosphatidylcholine (DPPC)/palmitoyl-oleoyl-phosphatidylglycerol/surfactant protein B (SP-B); 70:30:1 wt %). Au NP also impeded the surfactant's ability to reduce surface tension (γ) to low levels during film compression and to respread during film expansion. Transmission electron microscopy showed that Au NP generated by a seed-growth method were spherical with diameters of ∼15 nm. Including palmitoyl-oleoyl-phosphatidylglycerol appeared to coat the NP with at least one lipid bilayer but did not affect NP shape or size. Similar overall observations occurred with dimyristoyl phosphatidylglycerol. Dipalmitoyl-phosphatidylglycerol was less effective in NP capping, although similar sized NP were formed. Including SP-B (1% wt/wt) appears to induce the formation of elongated strands of interacting threads with the fluid phosphatidylglycerols (PG). Including DPPC resulted in formation of aggregated, less spherical NP with a larger size distribution. With DPPC, strand formation due to SP-B was not observed. Agarose gel electrophoresis studies demonstrated that the aggregation induced by SP-B blocked migration of PG-coated NP. Migration was also influenced by the fluidity of the PGs. It is concluded that Au NP can interact with and sequester pulmonary surfactant phospholipids and, if inhaled from the atmosphere, could impede pulmonary surfactant function in the lung. PMID:17890383

  3. Pulmonary T cell activation in response to chronic particulate air pollution

    PubMed Central

    Deiuliis, Jeffrey A.; Kampfrath, Thomas; Zhong, Jixin; Oghumu, Steve; Maiseyeu, Andrei; Chen, Lung Chi; Sun, Qinghua; Satoskar, Abhay R.

    2012-01-01

    The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM2.5) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) “knockin,” and chemokine receptor 3 knockout (CXCR3−/−) mice following 24–28 wk of PM2.5 or filtered air. Chronic PM2.5 exposure resulted in increased CXCR3-expressing CD4+ and CD8+ T cells in the lungs, spleen, and blood with elevation in CD11c+ macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP+ regulatory T cells increased with PM2.5 exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM2.5 exposure. Mixed lymphocyte cultures using primary, PM2.5-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM2.5 potentiates a proinflammatory Th1 response involving increased homing of CXCR3+ T effector cells to the lung and modulation of systemic T cell populations. PMID:22160305

  4. Migration of radionuclides and heavy metals during the bioremediation of a polluted cinnamonic soil

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nikolova, Marina

    2013-04-01

    A fresh sample of cinnamonic soil polluted with radionuclides (U, Ra) and toxic heavy metals (Cu, Pb, Zn) was subjected to bioremediation in large-scale lysimeters by means of moulching. The aim of soil treatment was solubilization of pollutants located in horizon A, the migration of their dissolved complexes through the soil profile, and the pollutants` precipitation in the rich-in-clays below-lying horizons. The solubilization was due to the joint action of natural soil microflora and leach waters containing ammonium and phosphate ions, and in some variants-hydrocarbonate ions. The precipitation of pollutants was due to the enhanced activity of the indigenous microflora in which iron- and sulphate-reducing bacteria were the prevalent groups. After 24 months of treatment, each of the soil profiles in different lysimeters was divided into five sections reflecting the relevant soil layers (horizon A and the sub-horizons B1, B2, B3, and B4). The soil in these sections was subjected to a detailed chemical analysis and the obtained data were compared with the relevant data obtained before the start of soil bioremediation. It was found that considerable portions of the pollutants were removed from the horizon A and were migrated to the sub-horizons B3 and B4, mainly. In these sub-horizons the non-ferrous metals were precipitated mainly as the relevant sulphides, uranium was precipitated as uraninite (UO2), and radium-mainly as adsorbed ions and complexes.

  5. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons. PMID:26886427

  6. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  7. Deposition and chemistry of pollutant metals in lakes around the smelters at Sudbury, Ontario

    SciTech Connect

    Nriagu, J.O.; Wong, H.K.T.; Coker, R.D.

    1982-09-01

    Analyses of the suspended particulates in lakes within a 30-km radius of the smelting complex at Sudbury show average Ni, Cu, Zn, and Pb concentrations of 1500, 420, 540, and 360 ..mu..g g/sup -1/, respectively. Organic matter constitutes 35-60% of the suspended material in the lakes but plays a minor role in the transport of metals to the sediments. The rates of metal accumulation in the sediments have been estimated typically to be 100-600, 50-300, 10-60, and 5-30 mg m/sup -2/ year/sup -1/ for Ni, Cu, Zn, and Pb, respectively. The enrichment factors for metals in surficial sediments typically are 12-115 for Ni, 10-77 for Cu, 2-10 for Pb, and 2-8 for Zn. These enrichment factors and deposition rates for Ni and Cu are among the highest recorded anywhere in the world. Some of the lakes with pH values of 4.5 or less show no enrichment or accumulation of pollutant metals in their surface sediments, indicating that pollutant metals previously stored in the sediments have since been leached away. This documentation that the contaminated sediments can release substantial quantities of toxic metals to the overlying water must have interesting ramifications with regard to the limnological impacts of acid rains.

  8. Epigenetic Modifications Due to Heavy Metals Exposure in Children Living in Polluted Areas

    PubMed Central

    Bitto, Alessandra; Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Squadrito, Francesco

    2014-01-01

    The aim of the present article is to provide a summary of the epigenetic modifications that might occur in children exposed to heavy metals pollutants. It is known that children are more susceptible to environmental pollutants, because their detoxification enzymes are less competent, and this may lead to alterations in chromatin structure or of DNA causing, in turn, epigenetic modifications. Little is currently known about the long-term effects of these changes when occur early in childhood, none-theless there are ethics and practical concerns that make the assessment of DNA modifications difficult to perform in large-scale. PMID:25646074

  9. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. PMID:25933290

  10. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells.

  11. Changes of Heavy Metals in Pollutant Release and Transfer Registers (PRTRs) in Korea

    PubMed Central

    Kwon, Yong-Su; Bae, Mi-Jung; Park, Young-Seuk

    2014-01-01

    Industrial effluent containing heavy metals discharged into streams may pose high toxicity risks to aquatic organisms and to human health. Therefore, it is important to understand how to change the amount of effluent with heavy metals discharged from industries into open aquatic ecosystems both for effective management of heavy metals and to foster sustainable ecosystems. This study was conducted to characterize the release of heavy metals from industries based on the Pollutant Release and Transfer Registers database in Korea from 1999 to 2010. From the database, we selected nine heavy metals (Pb, Cd, Mn, Sb, Cu, Zn, Cr, Sn, and Ni) and compared the differences in their effluent for different types of industries. The heavy metal effluents released into freshwater ecosystems were classified into four clusters through the learning process of the self-organizing map. Cluster 1 was characterized by the relatively higher effluent volumes of heavy metals, whereas cluster 4 had lower effluent volumes. The different patterns of the effluent volumes in heavy metals were closely associated with the differences of industrial types, and the changes of effluents of heavy metals reflected the changes in regulations and laws for aquatic ecosystem management. PMID:24577281

  12. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  13. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴). PMID:27506017

  14. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    PubMed

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  15. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    PubMed Central

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  16. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    PubMed

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  17. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    PubMed Central

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  18. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴).

  19. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation.

    PubMed

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  20. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study.

    PubMed

    Chen, Zhanghua; Salam, Muhammad T; Eckel, Sandrah P; Breton, Carrie V; Gilliland, Frank D

    2015-01-01

    Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children's Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children's health while control measures are being implemented.

  1. Effects of heavy metals pollution on benthic foraminifera assemblage: the Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Ayadi, Najla; Zghal, Ihsen; Bouzid, Jalel; Abdennaceur Ouali, Jamel

    2014-05-01

    Benthic foraminifera are amongst the most abundant protists found in huge marine and brackish water habitat. During the last few decades, many researches had been focused on using benthic foraminifera as bioindicators of marine pollution caused by industrial, domestic and agricultural waste, oil or heavy metal contamination. The aim of this research is to investigate heavy metals pollution in superficial sediments in two industrial locations at the Gulf of Gabes and to examine the reaction of benthic foraminifera towards metallic concentration. The Gulf of Gabes, located on the eastern coast of Tunisia, is regarded as an extremely vital zone and considered as one of the most important area for fishing in the country. During last years, the coastal area of this region had known an important demographic and industrial development, leading to the presence of uncontrolled discharge. Fifteen superficial sediment samples were collected along the coastline of Skhira and Ghannouch- Gabes. They have been analyzed for Al, Cd, Cr, Cu, Pb, and Zn concentrations as well as for the species composition of benthic foraminifera. Results show three levels of metallic contamination with high concentration of cadmium and zinc. Thirty five benthic foraminifera species were identified. Ammonia parkinsoniana, Ammonia beccarii, Peneroplis planatus, Triloculina trigonula and Adelosina longirostraare are the most abundant and common species. Increasing pollution results in a lower species diversity as well as population density, with the presence of a barren zone, and more frequent abnormal specimens. A complementary statistical analysis (PCA/FA and matrix correlation) shows that heavy metals are resulting from the same anthropogenic source and negative correlation between faunal parameters (density and diversity) and pollutants concentrations.

  2. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay.

    PubMed

    Aruoja, Villem; Kurvet, Imbi; Dubourguier, Henri-Charles; Kahru, Anne

    2004-08-01

    A small-scale Selenastrum capricornutum (Rhapidocelis subcapitata) growth inhibition assay was applied to the toxicity testing of suspensions of heavy-metal-polluted soils. The OECD 201 standard test procedure was followed, and algal biomass was measured by the fluorescence of extracted chlorophyll. The soils, which contained up to (per kilogram) 1390 mg of Zn, 20 mg of Cd, and 1050 mg of Pb were sampled around lead and zinc smelters in northern France. The water extractability of the metals in suspensions (1 part soil/99 parts water w/v) was not proportional to the pollution level, as extractability was lower for soil samples that were more polluted. Thus, the same amount of metals could be leached out of soils of different levels of pollution, showing that total concentrations of heavy metals in soil (currently used for risk assessment purposes) are poor predictors of the real environmental risk via the soil-water path. Despite high concentrations of water-extracted zinc (0.6-1.4 mg/L of Zn in the test), exceeding by approximately 10-fold the EC(50) value for S. capricornutum (0.1 mg Zn/L), 72-h algal growth in the soil extracts was comparable or better than growth in the standard control OECD mineral medium. The soil suspension stimulated the growth of algae up to eightfold greater than growth using the OECD control medium. Growth stimulation of algae was observed even when soil suspensions contained up to 12.5 mg Zn/L and could not be explained by supplementary nitrogen, phosphorous, and carbonate leached from the soil. However, if the growth of algae in suspensions of clean and polluted soils was compared, a dose-dependent inhibitory effect of metals on algal growth was demonstrated. Thus, as soil contains nutrients/supplements that mask the adverse effect of heavy metals, a clean soil that has properties similar to the polluted soils should be used instead of mineral salt solution as a control for analysis of the ecotoxicity of soils. PMID:15269912

  3. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    PubMed

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  4. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2016-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  5. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  6. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  7. Soil contamination and plant uptake of heavy metals at polluted sites in China.

    PubMed

    Wang, Qing-Ren; Cui, Yan-Shan; Liu, Xiu-Mei; Dong, Yi-Ting; Christie, Peter

    2003-05-01

    We investigated heavy metal contamination in soils and plants at polluted sites in China including some with heavy industries, metal mining, smelting and untreated wastewater irrigation areas. We report our main findings in this paper. The concentrations of heavy metals, including Cd and Zn, in the soils at the investigated sites were above the background levels, and generally exceeded the Government guidelines for metals in soil. The concentrations of metals in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate the metals from the soil. Substantial differences in the accumulation of heavy metals were observed among the plant species investigated. Polygonum hydropiper growing on contaminated soils in a sewage pond had accumulated 1061 mg kg(-1) of Zn in its shoots. Rumex acetosa L. growing near a smelter had accumulated more than 900 mg kg(-1) of Zn both in its shoots and roots. Therefore these species have potential for phytoremediation of metal-contaminated sites. Our results indicate the need to elucidate the dynamics of soil metal contamination of plants and the onward movement of metal contaminants into the food chain. Also our results indicate that the consumption of rice grown in paddy soils contaminated with Cd, Cr or Zn may pose a serious risk to human health, because from 24 to 22% of the total metal content in the rice biomass was concentrated in the rice grain. Platanus acerifolia growing on heavily contaminated soil accumulated only very low levels of heavy metals, and this mechanism for excluding metal uptake may have value in crop improvement. Sources of metal entering the environmental matrices studied included untreated wastewater, tailings or slurries and dust depositions from metal ore mining, and sewage sludge. Pb, Zn or Cd concentrations declined with the distance from metal smelter in accordance with a good exponential correlation (R2

  8. Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism.

    PubMed

    Bonilla-Ramirez, Leonardo; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-12-01

    The biometals iron (Fe), manganese (Mn) and copper (Cu) have been associated to Parkinson's disease (PD) and Parkinsonism. In this work, we report for the first time that acute (15 mM for up to 5 days) or chronic (0.5 mM for up to 15 days) Fe, Mn and Cu exposure significantly reduced life span and locomotor activity (i.e. climbing capabilities) in Drosophila melanogaster. It is shown that the concentration of those biometals dramatically increase in Drosophila's brain acutely or chronically fed with metal. We demonstrate that the metal accumulation in the fly's head is associated with the neurodegeneration of several dopaminergic neuronal clusters. Interestingly, it is found that the PPL2ab DAergic neuronal cluster was erode by the three metals in acute and chronic metal exposure and the PPL3 DAergic cluster was also erode by the three metals but in acute metal exposure only. Furthermore, we found that the chelator desferoxamine, ethylenediaminetetraacetic acid, and D: -penicillamine were able to protect but not rescue D. melanogaster against metal intoxication. Taken together these data suggest that iron, manganese and copper are capable to destroy DAergic neurons in the fly's brain, thereby impairing their movement capabilities. This work provides for the first time metal-induced Parkinson-like symptoms in D. melanogaster. Understanding therefore the effects of biometals in the Drosophila model may provide insights into the toxic effect of metal ions and more effective therapeutic approaches to Parkinsonism. PMID:21594680

  9. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  10. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd. PMID:26013654

  11. Germination and establishment of the invasive cordgrass Spartina densiflora in acidic and metal polluted sediments of the Tinto River.

    PubMed

    Curado, Guillermo; Rubio-Casal, Alfredo E; Figueroa, Enrique; Castillo, Jesús M

    2010-10-01

    Heavy metal pollution is common in rivers in the vicinity of mining areas. In these polluted environments, the survival of alien species with a high tolerance to metals may be favored. The Tinto River (Southwest Iberian Peninsula) is an excellent natural laboratory for the study of plants' responses to acidic and metal polluted sediments. This work analyzes the tolerance of the alien species Spartina densiflora to low pH and high metal loads in the Tinto River. The main aim of this study was to determine if this alien species can invade landward along the banks of the Tinto River. S. densiflora seeds were able to germinate in heavy metal polluted aerobic sediments even at pH 2. However, these conditions decreased S. densiflora final germination, altered germination dynamics, decreased aerial and subterranean growth rates, and prevented its establishment.

  12. DEVELOPING A CAPE-OPEN COMPLIANT METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (CO-MFFP2T)

    EPA Science Inventory

    The USEPA is developing a Computer Aided Process Engineering (CAPE) software tool for the metal finishing industry that helps users design efficient metal finishing processes that are less polluting to the environment. Metal finishing process lines can be simulated and evaluated...

  13. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China.

    PubMed

    Liu, Enfeng; Yan, Ting; Birch, Gavin; Zhu, Yuxin

    2014-04-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n=99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2-23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca>Cu>Pb≈Zn>Cr≈Fe>Ni≈Ba>Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children.

  14. Influence of air pollution on chronic obstructive respiratory diseases: comparison between city (Rome) and hillcountry environments and climates.

    PubMed

    Avino, Pasquale; De Lisio, Vincenzo; Grassi, Marcello; Lucchetra, Maria C; Messina, Baldassare; Monaco, Giorgio; Petraccia, Luisa; Quartieri, Giuseppe; Rosentzwig, Rivka; Russo, Mario V; Spada, Sebastiano; Valenzi, Vincenzo I

    2004-01-01

    Chronic Obstructive Pulmonary Diseases (COPDs) constitute a social problem of widespread interest. These diseases increase slowly and constantly. Air pollution and its impact on public health continually repropose certain absolute priorities, such as the pin-pointing of strategies to control the pollution sources, the planning of observational studies and the epidemic control. This work shows that a climate marked by always windy weather and low humidity and with low chemical pollutant concentrations (Pietracupa; Molise, Italy) is connected to smaller prevalence of COPDs in comparison with big cities like Rome. Living in non-polluted areas, the benefits of a healthy climate in terms of an improvement in breathing and bronchial hyperactivity reduction, may only in part be backed up by epidemic evidence; however, they are a solid base on which to build definite research projects which can effectively validate it even from an experimental point of view supported by statistics.

  15. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  16. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates. PMID:26436275

  17. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    SciTech Connect

    Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into the Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.

  18. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    NASA Astrophysics Data System (ADS)

    Siegel, F. R.; Slaboda, M. L.; Stanley, D. J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13×), Pb (22.1×), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into the Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies.

  19. Indoor metallic pollution related to mining activity in the Bolivian Altiplano.

    PubMed

    Fontúrbel, Francisco E; Barbieri, Enio; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2011-10-01

    The environmental pollution associated with mining and metallurgical activities reaches its greatest extent in several Andean cities and villages. Many locations in this area have accumulated through centuries a large amount of mining wastes, often disregarding the magnitude of this situation. However, in these naturally mineralized regions, there is little information available stating the exact role of mining and metallurgical industries in urban pollution. In this study, we demonstrated that the various metallic elements present in indoor dust (As, Cd, Cu, Pb, Sb, Sn, Zn) had a common origin and this contamination was increased by the proximity to the mines. Lead dust concentration was found at concerning levels for public health. In addition, wrong behaviors such as carrying mining workwear home contributed to this indoor dust pollution. Consequently, the constant exposure of the population could represent a potential health hazard for vulnerable groups, especially children.

  20. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives*

    PubMed Central

    Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J.; Yang, Xiao-e

    2008-01-01

    Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623

  1. The use of feathers of birds of prey as indicators of metal pollution.

    PubMed

    Lodenius, Martin; Solonen, Tapio

    2013-11-01

    Published results concerning metal levels in feathers of birds of prey were listed and evaluated. Mercury concentrations have been studied most and the background values normally vary between 0.1 and 5 mg/kg dry weight the highest concentrations being in birds from aquatic food chains. Pollution causes elevated levels of mercury in feathers. The concentrations of cadmium, copper, lead and zinc show reasonable variation between species, areas and time periods. Feathers of birds of prey have proved to be good indicators of the status of environmental heavy metal pollution. Special attention should be paid to clean sampling and preparation of samples. Interpretation of the results requires knowledge on food habit, molting and migration patterns of the species. Several species representing different food chains should be included in comprehensive monitoring surveys. Chick feathers reflect most reliably local conditions.

  2. The use of feathers of birds of prey as indicators of metal pollution.

    PubMed

    Lodenius, Martin; Solonen, Tapio

    2013-11-01

    Published results concerning metal levels in feathers of birds of prey were listed and evaluated. Mercury concentrations have been studied most and the background values normally vary between 0.1 and 5 mg/kg dry weight the highest concentrations being in birds from aquatic food chains. Pollution causes elevated levels of mercury in feathers. The concentrations of cadmium, copper, lead and zinc show reasonable variation between species, areas and time periods. Feathers of birds of prey have proved to be good indicators of the status of environmental heavy metal pollution. Special attention should be paid to clean sampling and preparation of samples. Interpretation of the results requires knowledge on food habit, molting and migration patterns of the species. Several species representing different food chains should be included in comprehensive monitoring surveys. Chick feathers reflect most reliably local conditions. PMID:24096904

  3. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L.

    PubMed

    Celik, Ali; Kartal, Aslihan A; Akdoğan, Abdullah; Kaska, Yakup

    2005-01-01

    The leaves of Robinia pseudo-acacia L. (Fabaceae) were evaluated as a biomonitors of heavy metal contamination in Denizli city, Turkey. Concentrations of Fe, Zn, Pb, Cu, Mn and Cd were determined in washed and unwashed leaves and soils collected from a wide range of sites with different degrees of metal pollution (industry, urban roadside, suburban) and from a rural (control) site by atomic absorption spectrometry. All the elements that measured were found to be at high levels in samples collected at industrial sites, except for lead and copper which were found at high levels in samples collected from urban roadsides that associated with the road traffic. The strong correlation between the degree of contamination and concentrations in all plant leaves assessed display that the leaves of R. pseudo-acacia reflect the environmental changes accurately, and that they seem as an effective biomonitor of environmental quality in areas subjected to industrial and traffic pollutions.

  4. Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River.

    PubMed

    Nasehi, F; Hassani, A H; Monavvari, M; Karbassi, A R; Khorasani, N

    2013-01-01

    Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals' concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5. PMID:22318740

  5. Evaluating the metallic pollution of riverine water and sediments: a case study of Aras River.

    PubMed

    Nasehi, F; Hassani, A H; Monavvari, M; Karbassi, A R; Khorasani, N

    2013-01-01

    Metallic pollution caused by elements Zn, Cu, Fe, Pb, Ni, Cd, and Hg in water and sediments of Aras River within a specific area in Ardabil province of Iran is considered. Water and sediment samples were collected seasonally and once respectively from the five selected stations. Regarding WHO published permissible values, only Ni concentration in spring and summer water samples has exceeded the acceptable limit up to four times greater than the limit. The concentration of metals Ni, Pb, and Fe in river water shows a direct relationship with river water discharge and the amount of precipitation. Enhanced soil erosion, bed load dissolution, and runoffs may play a key role in remarkable augmentation of metallic ions concentration. Furthermore, excessive use of pesticides which contain a variety of metallic ions (mainly Cu) in spring and summer may also result in an increase in the metals' concentration. The potential risk of Ni exposure to the water environment of the study area is assigned to juice, dairy products, edible oil, and sugar cane factories as well as soybean crop lands which are located within the sub-basin of Aras River in the study area. Regarding the sediment samples, the bioavailable metal concentrations indicate an ascending order from the first station towards the last one. In comparison with earth crust, sedimental and igneous rocks the reported metallic concentration values, except for Cd, lie within the low-risk status. Regarding Cd, the reported values in some stations (S2, S4, and S5) are up to ten times greater than that of shale which may be considered as a remarkable risk potential. The industrial and municipal wastewater generated by Parsabad moqan industrial complex and residential areas, in addition to the discharges of animal husbandry centers, may be addressed as the key factors in the sharp increase of metallic pollution potential in stations 4 and 5.

  6. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.

    PubMed

    Di Veroli, A; Santoro, F; Pallottini, M; Selvaggi, R; Scardazza, F; Cappelletti, D; Goretti, E

    2014-10-01

    Mouthpart deformities of Chironomus riparius larvae (Diptera) have been investigated to evaluate the toxic effects of contamination by heavy metals in the Genna Stream (Central Italy), situated in an area subjected to intensive swine farms (40000 heads). The livestock farming (fertirrigation) contributes to metal pollution of the Genna Stream with an increase of copper, zinc, cadmium, chromium and nickel in the sediments of the downstream stations. The incidence of mentum deformities was very high at all sampling stations, about 56%. The highest values of deformities were found in the intermediate river reach (St. 3: 65%) and in March (66%), mainly due to an increase in severe deformities. The high incidence of severe deformities (30%) is attributed to the high pollution level by heavy metals in the sediments, in particular to copper and zinc, which showed the highest average value at St. 3 and in March. This field study reflected the relationships between sediment metal concentrations and chironomid mouthpart deformities, previously observed in laboratory tests, and highlighted these deformities as toxicity endpoints. This feature paves the way for their use as an effective tool in freshwater bioassessment monitoring programs to evaluate the toxic effects of metal contamination in freshwater ecosystems. PMID:25048882

  7. Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies.

    PubMed

    Di Veroli, A; Santoro, F; Pallottini, M; Selvaggi, R; Scardazza, F; Cappelletti, D; Goretti, E

    2014-10-01

    Mouthpart deformities of Chironomus riparius larvae (Diptera) have been investigated to evaluate the toxic effects of contamination by heavy metals in the Genna Stream (Central Italy), situated in an area subjected to intensive swine farms (40000 heads). The livestock farming (fertirrigation) contributes to metal pollution of the Genna Stream with an increase of copper, zinc, cadmium, chromium and nickel in the sediments of the downstream stations. The incidence of mentum deformities was very high at all sampling stations, about 56%. The highest values of deformities were found in the intermediate river reach (St. 3: 65%) and in March (66%), mainly due to an increase in severe deformities. The high incidence of severe deformities (30%) is attributed to the high pollution level by heavy metals in the sediments, in particular to copper and zinc, which showed the highest average value at St. 3 and in March. This field study reflected the relationships between sediment metal concentrations and chironomid mouthpart deformities, previously observed in laboratory tests, and highlighted these deformities as toxicity endpoints. This feature paves the way for their use as an effective tool in freshwater bioassessment monitoring programs to evaluate the toxic effects of metal contamination in freshwater ecosystems.

  8. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    SciTech Connect

    Rai, P.K.

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  9. Impact of particulate pollutant metals on larval and adult bivalve molluscs

    SciTech Connect

    Gilbert, T.R.; Robinson, W.E. ); Morse, M.P. . Marine Science Lab.)

    1982-10-25

    Our investigations of the effects of pollutants on bivalve molluscs have continued with studies with in the following areas: bioaccumulation of trace metals in adult sea scallops exposed to dissolved and particulate forms of the metals, SEM/EDXA studies of phosphoritic concretions in the kidneys of adult sea scallops (Placopecten magellanicus), documentation of the normal embryonic and larval development, including shell formation, in surf clams (Spisula solidissima), evaluation of the toxicity of dissolved silver to the gametes and larvae of surf clams at several stages of development, and examination of the effects of turbid suspensions on the feeding efficiency of larval Mercenaria mercenaria. The overall goal of our work is twofold. First, we are striving to gain an understanding of the pathways by which metals are transported within bivalve molluscs. The production of metallothioneins and metal-rich inorganic concretions have been documented for a number of bivalves. The ways in which of metal-rich matrices in membrane-limited vesicles as an intermediate step, is one area of investigation. Second, we are examining the relative sensitivities of the gamete and of early life stages of these organisms to stresses induced by exposure to energy-related pollutants. 46 refs., 12 figs., 8 tabs.

  10. [Analysis of heavy metals distribution characteristics and pollution assessment in agricultural region soils of Huaihe basin].

    PubMed

    Xiao, Xue; Zhao, Nan-Jing; Yuan, Jing; Ma, Ming-Jun; Fang, Li; Wang, Yin; Meng, De-Shuo; Yu, Yang; Tang, Jie; Zhang, Xiao-Ling; Dai, Yuan; Zhang, Yu-Jun; Liu, Jian-Guo; Liu, Wen-Qing

    2014-07-01

    By means of field sampling and laboratory analysis, the content distribution characteristics of Cd, Cr, Cu, Ni, Pb and Zn in agricultural region soils of Huaihe basin in Anhui province were analyzed. Assessment of heavy metal pollutions was conducted using enrichment factor, geoaccumulation index and potential ecological risk index. The results showed that the average mass fraction of Cd and Cu was 0.113 5 and 22.09 mg x kg(-1) respectively in the study area soil, which were above the background values 0.097 and 20.4 mg x kg(-1) in Anhui Province. The average mass fraction of other four heavy metals did not exceed the average values of Anhui Province. The results of the evaluations from geoaccumulation index and ecological risk assessment discovered that Cd is the strongest pollution metal among six heavy metals in the study area soil. For some samples of the study soil, Cd was slight risk for the ecosystem. The ecosystem risks caused by the other five heavy metals were not obviously for the sampling points. The entire study area soils were mid integrated potential ecological risk.

  11. The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe

    SciTech Connect

    Braennvall, M.L.; Bindler, R.; Renberg, I.; Emteryd, O.; Bartnicki, J.; Billstroem, K.

    1999-12-15

    There is great concern for contamination of sensitive ecosystems in high latitudes by long-range transport of heavy metals and other pollutants derived from industrial areas in lower latitudes. Atmospheric pollution of heavy metals has a very long history, and since metals accumulate in the environment, understanding of present-day pollution conditions requires knowledge of past atmospheric deposition. The authors use analyses of lead concentrations and stable lead isotopes ({sup 206}Pb/{sup 207}Pb ratios) of annually laminated sediments from four lakes in northern Sweden to provide a decadal record of atmospheric lead pollution for the last 3000 years. There is a clear signal in the sediments of airborne pollution from Greek and Roman cultures 2000 years ago, followed by a period of clean conditions 400--900 A.D. From 900 A.D. there was a conspicuous, permanent increase in atmospheric lead pollution fallout, The sediments reveal peaks in atmospheric lead pollution at 1200 and 1530 A.D. comparable to present-day levels. These peaks match the history of metal production in Europe. This study indicates that the contemporary atmospheric pollution climate in northern Europe was established in Medieval time, rather than in the industrial period. Atmospheric lead pollution deposition did not, when seen in a historical perspective, increase as much as usually assumed with the Industrial Revolution.

  12. [Heavy metals content and pollution risk assessment of cropland soils around a pesticide industrial park].

    PubMed

    Shi, Ning-ning; Ding, Yan-feng; Zhao, Xiu-feng; Wang, Qiang-sheng

    2010-07-01

    By the method of concentric circle distribution method, a total of 183 topsoil samples were collected from 30-km2 area around a pesticide industrial park in south Jiangsu Province, with the content and pollution index of soil Cd, Cr, Cu, Ni, Pb, Zn, Hg and As analyzed. The average contents of Hg, Cu, Cd, and Pb in the top soils were higher than those of the natural background values, and the contents of Hg and Cu were the highest. Taking the national standard II as the assessment criterion, the average pollution index values of Cd, Cr, Cu, Ni, Pb, Zn, and As in the top soils were all below 1, while those of the Hg and Cu were 1.59 and 1.05, respectively. In the southeast and northwest to the pesticide industrial park, soil heavy metals contamination was more serious, and, with the increasing distance to the park, the contents of soil Cd, Ni, Pb, Cr, As, Hg, Zn, and Cu increased first and then decreased to a stable level. The comprehensive pollution index of test metals indicated that the areas 200-1000 meter around the industrial park were of high risk in soil heavy metals contamination, while the areas 1000 meter beyond were safety. By using geostatistics and GIS, it was found that the pollution index of the eight heavy metals had significant spatial variability. Based on the principal component analysis and correlation analysis, it was speculated that the Zn, Ni, Cr, Pb, and As were mainly from soil parent materials, while the Hg, Cu, and Cd were mainly related to human activities.

  13. [Assessment and correlation analysis of heavy metals pollution in soil of Dajinshan Island].

    PubMed

    Cheng, Fang; Cheng, Jin-Ping; Sang, Heng-Chun; Yu, Jin-Lian; Xi, Lei; Pi, Shuai-Shuai

    2013-03-01

    The Dajinshan Island is the highest altitude point in the nature land of Shanghai. In order to find out the status of soil heavy metals pollution of the Dajinshan Island and its correlation, this paper used the methods of grid and serpents sampling to collect samples, and applied the single factor pollution index method and potential ecological harm index method to assess the pollutions status. The results showed that the main contributor of soil heavy metal pollution in Dajinshan Island was Cd, with an over-standard rate of 85.4%, followed by Pb, with an over-standard rate of 26.8%, whereas Zn and Cu were not excessive. In addition, there was significant positive correlation between Pb-Cu, Pb-Zn and Cu-Zn at the level of P = 0.05, suggesting that they had high homology and were easily influenced by the soil forming materials. This was an indirect evidence that the Dajinshan Island was well protected and not much affected by human activities.

  14. Small mammals as biomonitors of metal pollution: a case study in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Kryštufek, Boris

    2014-07-01

    The transfer of lead, cadmium, zinc, mercury, copper and molybdenum from soil to the tissues of small mammals inhabiting differently polluted areas in Slovenia was investigated. Metals were determined in soil samples and in the livers of 139 individuals of five small mammal species, collected in 2012 in the vicinity of a former lead smelter, the largest Slovenian thermal power plant, along a main road and in a control area. The area in the vicinity of former lead smelter differs considerably from other study areas. The soil from that area is heavily polluted with Pb and Cd. The mean metal concentrations in the liver, irrespective of species, varied in the following ranges-Pb: 0.40-7.40 mg/kg fw and Cd: 0.27-135 mg/kg fw and reached effect concentrations at which toxic effects can be expected in a significant proportion of the livers of the small mammal specimens (Pb 40 %, Cd 67 %). These findings indicate that the majority of small mammals trapped in the area of the former lead smelter are at risk of toxic effects due to the very high bioaccumulation of Pb and Cd in the organism. On the contrary, Pd and Cd concentrations in the livers of small mammals sampled in the vicinity of the thermal power plant and along the main road were comparable with reference values and considerably lower than effect concentrations. Additionally, the study suggests that Apodemus flavicollis and Myodes glareolus are very suitable biomonitors of metal pollution.

  15. Heavy metal pollution in sediments of a typical mariculture zone in South China.

    PubMed

    Zhang, Wenfeng; Liu, Xueping; Cheng, Hefa; Zeng, Eddy Y; Hu, Yuanan

    2012-04-01

    The heavy metal inventory and the ecological risk of the estuarine sediments in Hailing Bay, an important maricultural zone along the southern coast of China, were investigated. Results show that the surface sediments were mainly polluted by As (2.17-20.34 mg/kg), Ni (1.37-42.50mg/kg), Cu (1.21-58.84 mg/kg) and Zn (11.69-219.22 mg/kg). Furthermore, the aquafarming zone was significantly more polluted than the non-aquafarming zone, and cluster analysis suggested additional sources of heavy metal input in the aquafarming zone. As, Cr, Cu, Ni, Pb and Zn were mainly present in the non-bioavailable residual form in the surface sediments, whereas Cd was predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd, and from As, Cu and Pb to less degrees. The highest potential risks occurred near the aquaculture base, indicating the need to control heavy metal inputs from aquafarming activities.

  16. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals.

    PubMed

    Klok, Chris; Goedhart, Paul W; Vandecasteele, Bart

    2007-05-01

    In industrialized countries river floodplains can be strongly polluted with heavy metals. Published studies on effects of heavy metal pollution on soil invertebrates in floodplains, however, are inconclusive. This is unexpected since studies in other less dynamic environments reported clear effects at even lower levels of pollution. Flooding induces extra variation in invertebrate biomass and abundance which may reduce the probability to detect heavy metal effects. In this paper we combine reported data from studies on river floodplains in The Netherlands and Belgium and statistically analyze the effect of heavy metals on species composition, biomass, density and individual weight of earthworms. Interaction effects of heavy metal stress and flooding are also considered. The results suggest clear effects of zinc and copper on all variables and interaction of heavy metals and flooding for individual weight.

  17. Metaproteomics and metabolomics analyses of chronically petroleum‐polluted sites reveal the importance of general anaerobic processes uncoupled with degradation

    PubMed Central

    Bargiela, Rafael; Herbst, Florian‐Alexander; Martínez‐Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N.; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M.; Golyshin, Peter N.

    2015-01-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi‐enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large‐scale chronic pollution is yet to be defined, particularly in anaerobic and micro‐aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments. PMID:26201687

  18. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.

    PubMed

    Bargiela, Rafael; Herbst, Florian-Alexander; Martínez-Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.

  19. From highly polluted Zn-rich acid mine drainage to non-metallic waters: implementation of a multi-step alkaline passive treatment system to remediate metal pollution.

    PubMed

    Macías, Francisco; Caraballo, Manuel A; Rötting, Tobias S; Pérez-López, Rafael; Nieto, José Miguel; Ayora, Carlos

    2012-09-01

    Complete metal removal from highly-polluted acid mine drainage was attained by the use of a pilot multi-step passive remediation system. The remediation strategy employed can conceptually be subdivided into a first section where the complete trivalent metal removal was achieved by the employment of a previously tested limestone-based passive remediation technology followed by the use of a novel reactive substrate (caustic magnesia powder dispersed in a wood shavings matrix) obtaining a total divalent metal precipitation. This MgO-step was capable to abate high concentrations of Zn together with Mn, Cd, Co and Ni below the recommended limits for drinking waters. A reactive transport model anticipates that 1 m(3) of MgO-DAS (1 m thick × 1 m(2) section) would be able to treat a flow of 0.5 L/min of a highly acidic water (total acidity of 788 mg/L CaCO(3)) for more than 3 years. PMID:22819882

  20. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.

    PubMed

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2011-02-01

    Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider. PMID:20508923

  1. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    PubMed

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-01-01

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182

  2. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.

    PubMed

    Gjorgieva, Darinka; Kadifkova-Panovska, Tatjana; Bačeva, Katerina; Stafilov, Trajče

    2011-02-01

    Different plant organs (leaves, flowers, stems, or roots) from four plant species-Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)-were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg⁻¹ in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg⁻¹) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg⁻¹ in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg⁻¹. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg⁻¹ Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg⁻¹. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider.

  3. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    PubMed

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  4. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    PubMed Central

    2012-01-01

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182

  5. [A study on the relationship between in-door air pollution and chronic obstructive pulmonary disease in Xuanwei County].

    PubMed

    Zhou, X; Jin, Y; He, X

    1995-01-01

    A cross-sectional study was conducted to explore the relationship between in-door air pollution caused by different fuels for domestic use and chronic obstructive pulmonary disease (COPD) in local population. A total population of 10892 were sampled and analyzed. Results showed in-door air pollution caused by coal-burning was the major risk factor for COPD in Xuanwei County. The risk of residents using soft coal and anthracite to suffer from COPD was 4.36 and 1.55 times, respectively, higher than in those using fire wood.

  6. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  7. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities.

    PubMed

    Vázquez, S; Martín, A; García, M; Español, C; Navarro, E

    2016-04-01

    The analysis of the airborne particulate matter-PM-incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas.

  8. Trace metals pollution in seawater and groundwater in the ship breaking area of Sitakund Upazilla, Chittagong, Bangladesh.

    PubMed

    Hasan, Asma Binta; Kabir, Sohail; Selim Reza, A H M; Zaman, Mohammad Nazim; Ahsan, Mohammad Aminul; Akbor, Mohammad Ahedul; Rashid, Mohammad Mamunur

    2013-06-15

    This study reveals potential accumulation of trace metals in the sea and groundwater due to ship breaking activities which take place along the Bay of Bengal in Sitakund Upazilla, Chittagong, Bangladesh. When compared with WHO and Bangladesh domestic standards for water quality, it is revealed that seawater was strongly polluted by Fe and Hg, moderately by Mn and Al, and slightly by Pb and Cd. Groundwater was strongly polluted by Fe, Pb and Hg, moderately by Mn and Al, and slightly by As. Trace element concentrations of all seawater samples exceeded the average concentration of elements in the Earth's seawater. The application of Principal Components Analysis identified two sources of pollution-marine and ship breaking. The mechanism of groundwater pollution inferred that if seawater is polluted, nearby groundwater is also polluted with trace metals due to the influence of seawater intrusion.

  9. Nutritional traits of bean ( Phaseolus vulgaris ) seeds from plants chronically exposed to ozone pollution.

    PubMed

    Iriti, Marcello; Di Maro, Antimo; Bernasconi, Silvana; Burlini, Nedda; Simonetti, Paolo; Picchi, Valentina; Panigada, Cinzia; Gerosa, Giacomo; Parente, Augusto; Faoro, Franco

    2009-01-14

    The effect of chronic exposure to ozone pollution on nutritional traits of bean ( Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) seeds from plants grown in filtered and nonfiltered open-top chambers (OTCs) has been investigated. Results showed that, among seed macronutrients, ozone significantly raised total lipids, crude proteins, and dietary fiber and slightly decreased total free amino acid content, although with a significant reduction of asparagine, lysine, valine, methionine, and glycine, compensated by a conspicuous augmentation of ornithine and tryptophan. Phytosterol analysis showed a marked increase of beta-sitosterol, stigmasterol, and campesterol in seeds collected from nonfiltered OTCs. With regard to secondary metabolites, ozone exposure induced a slight increase of total polyphenol content, although causing a significant reduction of some flavonols (aglycone kaempferol and its 3-glucoside derivative) and hydroxycinnamates (caffeic, p-coumaric, and sinapic acids). Total anthocyanins decreased significantly, too. Nevertheless, ozone-exposed seeds showed higher antioxidant activity, with higher Trolox equivalent antioxidant capacity (TEAC) values than those measured in seeds collected from filtered air.

  10. [Study on canopy spectral characteristics of paddy polluted by heavy metals].

    PubMed

    Ren, Hong-Yan; Zhuang, Da-Fang; Pan, Jian-Jun; Shi, Xue-Zheng; Shi, Run-He; Wang, Hong-Jie

    2010-02-01

    Because of frequent mining, heavy metals are brought into environment like soils, water and atmosphere, resulting heavy metal contamination in the agricultural region beside mines. Heavy metals contamination causes vegetation stress like destruction of chloroplast structure, chlorophyll content decrease, blunt photosynthesis, etc. Spectral responses to changes in chlorophyll content and photosynthesis make it possible that remote sensing is applied in monitoring heavy metals stress on paddy plants. Field spectroradiometer was used to acquire canopy reflectance spectra of paddy plants contaminated by heavy metals released from local mining. The present study was conducted to (1) investigate discrimination of canopy reflectance spectra of heavy metal polluted and normal paddy plants; (2) extract spectral characteristics of contaminated paddy plants and compare them. By means of correlation analysis, sensitive bands (SB) were firstly picked out from canopy spectra. Secondly, on the basis of these sensitive bands, normalized difference vegetation indices (NDVI) were established, and then red edge position (REP) was extracted from canopy spectra via curve fitting of inverted Gaussian model. As a result of correlation analysis, 460, 560, 660 and 1 100 nm were considered respectively as sensitive band for Pb, Zn, Cu and As concentration in paddy leaves. Furthermore, heavy metal concentrations (Pb, Zn, Cu and As) were significantly correlated with NDVIs (Pb, NDV(510, 810); Zn, NDVI(510, 870; Cu, NDVI(660, 870); As, NDVI(510, 810)). Heavy metals were also significantly correlated with REP, however, the inflexion termed as spectral critical value (SCV) between low and high heavy metals concentrations should be considered during applying REP in remote sensing monitoring. Moreover, NDVI and REP are much better than SB in terms of capability of expressing spectral information. Therefore, heavy metals contamination in paddy plants can be remotely monitored via ground

  11. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.

    PubMed

    Khan, Khalid Saifullah; Joergensen, Rainer Georg

    2006-11-01

    Two incubation experiments were conducted to evaluate differences in the microbial use of non-contaminated and heavy metal contaminated nettle (Urtica dioica L.) shoot residues in three soils subjected to heavy metal pollution (Zn, Pb, Cu, and Cd) by river sediments. The microbial use of shoot residues was monitored by changes in microbial biomass C, biomass N, biomass P, ergosterol, N mineralisation, CO(2) production and O(2) consumption rates. Microbial biomass C, N, and P were estimated by fumigation extraction. In the non-amended soils, the mean microbial biomass C to soil organic C ratio decreased from 2.3% in the low metal soil to 1.1% in the high metal soils. In the 42-d incubation experiment, the addition of 2% nettle residues resulted in markedly increased contents of microbial biomass P (+240%), biomass C (+270%), biomass N (+310%), and ergosterol (+360%). The relative increase in the four microbial properties was similar for the three soils and did not show any clear heavy metal effect. The contents of microbial biomass C, N and P and ergosterol contents declined approximately by 30% during the incubation as in the non-amended soils. The ratios microbial biomass C to N, microbial biomass C to P, and ergosterol to microbial biomass C remained constant at 5.2, 26, and 0.5%, respectively. In the 6-d incubation experiment, the respiratory quotient CO(2)/O(2) increased from 0.74 in the low metal soil to 1.58 in the high metal soil in the non-amended soils. In the treatments amended with 4% nettle residues, the respiratory quotient was constant at 1.13, without any effects of the three soils or the two nettle treatments. Contaminated nettle residues led generally to significantly lower N mineralisation, CO(2) production and O(2) consumption rates than non-contaminated nettle residues. However, the absolute differences were small. PMID:16677685

  12. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils.

    PubMed

    Ma, Ying; Rajkumar, Mani; Rocha, Inês; Oliveira, Rui S; Freitas, Helena

    2014-01-01

    The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.

  13. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils

    PubMed Central

    Ma, Ying; Rajkumar, Mani; Rocha, Inês; Oliveira, Rui S.; Freitas, Helena

    2015-01-01

    The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils. PMID:25601876

  14. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658

  15. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. PMID:23968553

  16. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    PubMed

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.

  17. Heavy metal contamination in bore water due to industrial pollution and polluted and non polluted sea water intrusion in Thoothukudi and Tirunelveli of South Tamil Nadu, India.

    PubMed

    Puthiyasekar, C; Neelakantan, M A; Poongothai, S

    2010-12-01

    This study investigates the pollution vulnerability of bore water in the coastal region of Tirunelveli and Thoothukudi in the state of Tamilnadu, India. There are no industries in the Tirunelveli Coastal area whereas there are many industries in SIPCOT (State Industries Promotion Corporation of Tamilnadu) Thoothukudi, and coastal area of Thoothukudi. Bore water from the SIPCOT, coastal area of Thoothukudi and Tirunelveli were collected periodically from July 2006 to May 2008 for this study. These samples were tested and analyzed to find the concentrations of sodium, magnesium, aluminium, potassium, calcium, copper, cadmium, mercury and lead. The toxic cadmium concentration was found in the range of 0.00-0.22 mg Kg⁻¹ at SIPCOT 2 in November 2007, mercury 0.00-0.024 mg Kg⁻¹ and lead 0.00-0.02 mg Kg⁻¹ in SIPCOT 2 in January 2008. The level of contamination is higher than the WHO limits of drinking water standards; but copper and aluminium content are within the limit. On the other hand, the samples taken from bores in Tirunelveli coastal area are non-polluted, and the analysis shows that all the metals are within the limits of WHO standard. PMID:21082162

  18. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2013-11-01

    Anthropogenic activities are resulting in an increase on the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the current state of knowledge phytoremediation and biochar application to remediate heavy metal contaminated soils, discussing the advantages and disadvantages of both individual approaches. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both remediation techniques and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  19. Cd isotopes as a potential source tracer of metal pollution in river sediments.

    PubMed

    Gao, Bo; Zhou, Haidong; Liang, Xirong; Tu, Xianglin

    2013-10-01

    Tracing the sources of heavy metals in water environment is key important for our understanding of their pollution behavior. In this present study, Cd concentrations and Cd isotopic compositions in sediments were determined to effectively identify possible Cd sources. Results showed that elevated concentrations and high enrichment factor for Cd were found in all sediments, suggesting anthropogenic Cd origin. Cd isotopic compositions in sediments yielded relative variations ranged from -0.35‰ to 0.07‰ in term of δ(114/110)Cd (the mean: -0.08‰). Large fractionated Cd was found in sediments collected from a smelter and an E-waste town. Cd isotopic compositions and Cd concentrations measured in sediments allowed the identification of three main origins (dust from metal refining (δ(114/110)Cd < 0), slag of metal refining (δ(114/110)Cd > 0), and those δ(114/110)Cd = 0, such as background and mining activity). According to the actual precision obtained, Cd isotopes could be a potential tool for tracing metal pollution sources in water environment.

  20. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.

    PubMed

    Sapkota, B; Cioppa, M T

    2012-11-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil.

  1. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  2. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils.

    PubMed

    Hassan, Saad El Din; Boon, Eva; St-Arnaud, Marc; Hijri, Mohamed

    2011-08-01

    We assessed the indigenous arbuscular mycorrhizal fungi (AMF) community structure from the roots and associated soil of Plantago major (plantain) plants growing on sites polluted with trace metals (TM) and on unpolluted sites. Uncontaminated and TM-contaminated sites containing As, Cd, Cu, Pb, Sn and Zn were selected based on a survey of the TM concentration in soils of community gardens in the City of Montréal. Total genomic DNA was extracted directly from these samples. PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE), augmented by cloning and sequencing, as well as direct sequencing techniques, was all used to investigate AMF community structure. We found a decreased diversity of native AMF (assessed by the number of AMF ribotypes) in soils and plant roots harvested from TM-polluted soils compared with unpolluted soils. We also found that community structure was modified by TM contamination. Various species of Glomus, Scutellospora aurigloba and S. calospora were the most abundant ribotypes detected in unpolluted soil; ribotypes of G. etunicatum, G. irregulare/G. intraradices and G. viscosum were found in both polluted and unpolluted soils, while ribotypes of G. mosseae and Glomus spp. (B9 and B13) were dominant in TM-polluted soils. The predominance of G. mosseae in metal-polluted sites suggests the tolerance of this species to TM stress, as well as its potential use for phytoremediation. These data are relevant for our understanding of how AMF microbial communities respond to natural environments that contain a broad variety of toxic inorganic compounds and will substantially expand our knowledge of AMF ecology and biodiversity. PMID:21668808

  3. Metal contents in Centaurium erythraea and its biometry at various levels of environmental pollution.

    PubMed

    Brudzińska-Kosior, Anna; Kosior, Grzegorz; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Mróz, Lucyna; Kempers, Alexander J

    2012-06-01

    In this investigation we focus on the influence of pollution on concentration of elements in the medicinal Centaurium erythraea. This herb is collected from wild populations and also provides important information as monitor of environmental quality. Concentrations of Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, N, Ni, P, Pb, V and Zn in Centaurium erythraea and in the soil in which this plant grew were measured together with biometrical features of the species from sites affected by various levels of pollution. C. erythraea from sites polluted by lignite mining and industrial combustion had the highest concentrations of Cd, Co and Zn (principal component and classification analysis, PCCA). C. erythraea from sites influenced by ferrous-chromium and thermal power plants had the highest concentrations of Cr and Fe as well as Cu, Mn and Ni and the highest length of shoots and number of leaves, shoots, nodes, flowers and flowers on the main shoot. These luxurious growth forms were probably related to the highest concentrations of N, P and Fe in the soil and concentrations of N and K accumulated by C. erythraea on these sites as revealed by the established models. Controlling the collection of C. erythraea for medicinal purposes is recommended as this species is able to accumulate increased levels of metals from polluted sites. The medical quality of C. erythraea may be negatively related to the degree and type of pollution of the environment and should not be based on the luxurious growth of individuals which may contain hazardous levels of metals.

  4. Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania

    PubMed Central

    Suciu, Ioan; Cosma, Constantin; Todică, Mihai; Bolboacă, Sorana D.; Jäntschi, Lorentz

    2008-01-01

    The concentration of five soil heavy metals (Pb, Co, Cr, Cu, Hg) was measured in forty sampling sites in central Transylvania, Romania, regions known as centres of pollution due to the chemical and metallurgical activities. The soil samples were collected from locations where the ground is not sliding and the probability of alluvial deposits is small. The concentration of heavy metals was measured by using the Inductively Coupled Plasma Spectrometry method. Data were verified by using the Neutron Activation Analysis method. In some locations, the concentration for the investigated heavy metals exceeds the concentration admitted by the Romanian guideline. The highest concentration of lead (1521.8 ppm) and copper (1197.6 ppm) was found in Zlatna. The highest concentration of chromium was found in Târnăveni (1080 ppm). The maximum admitted concentrations in the sensitive areas revealed to be exceed from five to forty times. PMID:19325760

  5. Distribution patterns of the metal pollutants Cd and Ni in soybean seeds

    NASA Astrophysics Data System (ADS)

    Malan, H. L.; Mesjasz-Przybylowicz, J.; Przybylowicz, W. J.; Farrant, J. M.; Linder, P. W.

    2012-02-01

    Soybean ( Glycine max) plants were grown to maturity in nutrient solution, amended with either Cd or Ni. The distribution of these metals in mature seeds was examined with micro-PIXE. The levels of Cd were too low for mapping and only average concentrations from selected regions could be obtained. Cd was localised mainly in the seed coat and cotyledons, with very little in the embryo axis. Levels of Ni were high enough to obtain the distribution maps. This metal was mainly concentrated in the axis, particularly in the apical meristem and cortex, and least in the cotyledons. Localisation of Ni within different tissues of the embryo was facilitated by mapping of Ca which is present in the cell walls of plants. This enabled the different plant tissues of the seed embryo to be identified. Micro-PIXE is a valuable tool for localising the distribution of metal pollutants in plant tissue.

  6. Using blood samples to estimate persistent organic pollutants and metals in green sea turtles (Chelonia mydas).

    PubMed

    van de Merwe, Jason P; Hodge, Mary; Olszowy, Henry A; Whittier, Joan M; Lee, Shing Y

    2010-04-01

    Persistent organic pollutants (POPs) and heavy metals have been reported in a number of green turtle (Chelonia mydas) populations worldwide. However, due to ethical considerations, these studies have generally been on tissues from deceased and stranded animals. The purpose of this study was to investigate the use of blood samples to estimate the tissue contamination of live C. mydas populations. This study analysed 125 POP compounds and eight heavy metals in the blood, liver, kidney and muscle of 16 C. mydas from the Sea World Sea Turtle Rehabilitation Program, Gold Coast, Australia. Strong correlations were observed between blood and tissue concentrations for a number of POPs and metals. Furthermore, these correlations were observed over large ranges of turtle size, sex and condition. These results indicate that blood samples are a reliable non-lethal method for predicting chemical contamination in C. mydas.

  7. Metal transport in a stream polluted by acid mine drainage--The Afon Goch, Anglesey, UK.

    PubMed

    Boult, S; Collins, D N; White, K N; Curtis, C D

    1994-01-01

    Sampling of the Afon Goch over a 14-month period revealed maximum dissolved Fe, Al, Mn, Cu and Zn concentrations of 259, 167, 49, 60 and 42 mg dm(-3), respectively, and pH as low as 2.3, making it one of the most metal- and acid-contaminated streams in the UK. The river produces particulates by precipitation of ferrihydrite, due to the entry of near-neutral tributary waters, under all discharge conditions. Consequently, metal transport in this stream is dominated by processes different from those in less contaminated streams. The stream acts as a sink for contaminants, except under high discharge, when accumulated metals are flushed from the system. The implications of these observations for the monitoring and management of streams polluted by acid mine drainage are discussed. PMID:15091699

  8. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    PubMed

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  9. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea.

    PubMed

    Cho, Jinhyung; Hyun, Sangmin; Han, J-H; Kim, Suhyun; Shin, Dong-Hyeok

    2015-06-15

    The spatiotemporal distribution and their mass accumulation rate (MAR) of heavy metals were investigated to evaluate the time-dependent historical trends of heavy metal concentration. The three short cores used for this study were collected from the catchment area (MS-PC5, 60cm length), the central part (MS-PC4, 40cm length) and the offshore (MS-PC2, 60cm length) of the Masan Bay, Korea. The concentration of heavy metals (Co, Ni, Cu, Zn, Cr and Pb) in catchment area is as much as 1.5-2 times higher than central part of the Bay, and about 2 times higher than offshore area approximately. In particular, MAR of metals (Cu, Zn and Pb) show clear spatiotemporal variation, so that MAR's of heavy metal may provide more accurate information in evaluating the degree of pollution. Temporally, the heavy metal concentration had been increased since the late 1970s, but it seems to decrease again since the 2004yr in catchment area. This may came from concentrated efforts for the government to reduce industrial waste release.

  10. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth.

    PubMed

    Castaldi, Paola; Santona, Laura; Melis, Pietro

    2005-07-01

    The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.

  11. The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution.

    PubMed

    Gao, Jian; Zhang, Yongzhong; Lu, Chaolong; Peng, Hua; Luo, Mao; Li, Gaoke; Shen, Yaou; Ding, Haiping; Zhang, Zhiming; Pan, Guangtang; Lin, Haijian

    2015-03-01

    Lead (Pb), as a heavy metal element, has become the most important metal pollutant of the environment. With allocating a relatively higher proportion of its biomass in roots, maize could be a potential important model to study the phytoremediation of Pb-contaminated soil. Here we analyzed the maize root transcriptome of inbred lines 9782 under heavy metal lead (Pb) pollution, which was identified as a non-hyperaccumulator for Pb in roots. In the present study, more than 98 millions reads were mapped to define gene structure and detect polymorphism, thereby to qualify transcript abundance along roots development under Pb treatment. A total of 17,707, 17,440, 16,998 and 16,586 genes were identified in maize roots at four developmental stages (0, 12 h, 24 h and 48 h) respectively and 2,825, 2,626, 2161 and 2260 stage-specifically expressed genes were also identified respectively. In addition, based on our RNA-Seq data, transcriptomic changes during maize root development responsive to Pb were investigated. A total of 384 differentially expressed genes (DEGs) (log2Ratio ≥ 1, FDR ≤ 0.001) were identified, of which, 36 genes with significant alteration in expression were detected in four developmental stages; 12 DEGs were randomly selected and successful validated by qRT-PCR. Additionally, many transcription factor families might act as the important regulators at different developmental stages, such as bZIP, ERF and GARP et al. These results will expand our understanding of the complex molecular and cellular events in maize root development and provide a foundation for future study on root development in maize under heavy metal pollution and other cereal crops.

  12. Antipredatory behavior as an index of heavy-metal pollution? A test using snails and caddisflies.

    PubMed

    Lefcort, H; Ammann, E; Eiger, S M

    2000-04-01

    The loss of behaviors that organisms use to avoid predation may serve as a sensitive indicator of pollution. We tested the hypothesis that a correlation exists in the field between heavy metal levels and antipredator behaviors. We examined the antipredator behavior of aquatic caddisfly larvae and snails at sites in the Coeur d'Alene basin of Northern Idaho which varied in their levels of heavy metals. We tested the antipredator response of Physella columbiana snails at 10 polluted lakes downstream from the Bunker Hill Environmental Protection Agency (EPA) Superfund cleanup site. We then compared their behavior to snails at 14 reference lakes. We placed the snails in a plastic testing apparatus, exposed them to an extract of crushed snail, and then monitored their movements to a normally preferred shaded area. We also tested the behavior of caddisfly larvae from 36 sites from a total of 6 streams/rivers adjacent to the Superfund site. Sites were located upstream and downstream of abandoned mines. We located active larvae of four genera, simulated predation by grasping the animals between thumb and forefinger (the larvae respond to being grasped by withdrawing into their case), lifted them from the water for 3 s, and then placed them in an adjacent, slower section of the stream. We then recorded how long it took each larvae to partially emerge from its case and attempt to move away. Unlike reference site snails, snails from heavy metal-polluted environments failed to exhibit antipredator behaviors in response to crushed conspecifics. These results are consistent with previous laboratory studies. We found no effect of heavy metals on the antipredatory behavior of caddisfly larvae.

  13. Urbanization, Trace Metal Pollution, and Malaria Prevalence in the House Sparrow

    PubMed Central

    Bichet, Coraline; Scheifler, Renaud; Cœurdassier, Michaël; Julliard, Romain; Sorci, Gabriele; Loiseau, Claire

    2013-01-01

    Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases. PMID:23342022

  14. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow.

    PubMed

    Bichet, Coraline; Scheifler, Renaud; Cœurdassier, Michaël; Julliard, Romain; Sorci, Gabriele; Loiseau, Claire

    2013-01-01

    Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases.

  15. [Heavy metals pollution and analysis of seasonal variation runoff in Xi'an].

    PubMed

    Yuan, Hong-Lin; Li, Xing-Yu; Wang, Xiao-Chang

    2014-11-01

    In order to explore heavy metals pollution situation,changes in characteristics, the correlation between each heavy mental and pollution source analysis of Xi'an various regions in different season in one year. This study collected several samples of Xi'an rainfall typical urban trunk roads throughout the year in 2013 and used inductively coupled plasma mass spectrometry (ICP-MS) to determine the level of Fe, Mn, Pb, Zn, Al, Cd of the samples, then, analyzed the seasonal change of heavy mental. Studies have shown that: the heavy metal of Xi'an road runoff pollutes seriously, the concentration of Fe over three times of the national standard and maintain the higher levels throughout the year, meanwhile the concentration with the intensity of human activities increases. The concentration of Mn and Zn in one year show a trends: winter > autumn > summer> spring. Pb concentration increases with the increase in traffic volume, while showing: winter > spring > summer > autumn. Factor analysis shows: Fe and Al was affected by the same sources-natural sources; Zn, Cd affected by anthropogenic sources of large; Mn, Pb affected by the larger traffic sources.

  16. Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone.

    PubMed

    Nwaichi, E O; Wegwu, M O; Nwosu, U L

    2014-12-01

    Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830 ± 19.6 mgkg(-1) dw and 6,950 ± 68.3 mgkg(-1) dw (exceeding DPR set limits) and 11.3 ± 0.04 mgkg(-1) dw and 186 ± 0.02 mgkg(-1) dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.

  17. [Heavy metals pollution and analysis of seasonal variation runoff in Xi'an].

    PubMed

    Yuan, Hong-Lin; Li, Xing-Yu; Wang, Xiao-Chang

    2014-11-01

    In order to explore heavy metals pollution situation,changes in characteristics, the correlation between each heavy mental and pollution source analysis of Xi'an various regions in different season in one year. This study collected several samples of Xi'an rainfall typical urban trunk roads throughout the year in 2013 and used inductively coupled plasma mass spectrometry (ICP-MS) to determine the level of Fe, Mn, Pb, Zn, Al, Cd of the samples, then, analyzed the seasonal change of heavy mental. Studies have shown that: the heavy metal of Xi'an road runoff pollutes seriously, the concentration of Fe over three times of the national standard and maintain the higher levels throughout the year, meanwhile the concentration with the intensity of human activities increases. The concentration of Mn and Zn in one year show a trends: winter > autumn > summer> spring. Pb concentration increases with the increase in traffic volume, while showing: winter > spring > summer > autumn. Factor analysis shows: Fe and Al was affected by the same sources-natural sources; Zn, Cd affected by anthropogenic sources of large; Mn, Pb affected by the larger traffic sources. PMID:25639087

  18. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines.

    PubMed

    Fry, Brian; Carter, James F; Tinggi, Ujang; Arman, Ali; Kamal, Masud; Metian, Marc; Waduge, Vajira Ariyaratna; Yaccup, Rahman Bin

    2016-12-01

    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites.

  19. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines.

    PubMed

    Fry, Brian; Carter, James F; Tinggi, Ujang; Arman, Ali; Kamal, Masud; Metian, Marc; Waduge, Vajira Ariyaratna; Yaccup, Rahman Bin

    2016-12-01

    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites. PMID:26982881

  20. Are Mussels Always the Best Bioindicators? Comparative Study on Biochemical Responses of Three Marine Invertebrate Species to Chronic Port Pollution.

    PubMed

    Laitano, María V; Fernández-Gimenez, Analía V

    2016-07-01

    Bivalves have traditionally been considered good bioindicators due to their sensitivity to pollution, among other features. This characteristic is shared by several other non-bivalve species as well, though studies in this respect remain scarce. This work aims to compare biomarker sensitivity to chronic port pollution among three intertidal invertebrate species with good bioindicator characteristics. Mussels' immunological (phenoloxidase and peroxidases) and biotransformation (glutathione-S-transferase) responses were contrasted against those of limpets and barnacles. The three species under study evidenced activity of all the enzymes measured, although with differences. Barnacle Balanus glandula was the most sensitive species showing pollution modulation of the three enzymes, which suggests that mussels would not always be the best bioindicator species among marine invertebrates depending on the responses that are assessed. PMID:27221210

  1. Are Mussels Always the Best Bioindicators? Comparative Study on Biochemical Responses of Three Marine Invertebrate Species to Chronic Port Pollution.

    PubMed

    Laitano, María V; Fernández-Gimenez, Analía V

    2016-07-01

    Bivalves have traditionally been considered good bioindicators due to their sensitivity to pollution, among other features. This characteristic is shared by several other non-bivalve species as well, though studies in this respect remain scarce. This work aims to compare biomarker sensitivity to chronic port pollution among three intertidal invertebrate species with good bioindicator characteristics. Mussels' immunological (phenoloxidase and peroxidases) and biotransformation (glutathione-S-transferase) responses were contrasted against those of limpets and barnacles. The three species under study evidenced activity of all the enzymes measured, although with differences. Barnacle Balanus glandula was the most sensitive species showing pollution modulation of the three enzymes, which suggests that mussels would not always be the best bioindicator species among marine invertebrates depending on the responses that are assessed.

  2. Two-stage Bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions.

    PubMed

    Blangiardo, Marta; Finazzi, Francesco; Cameletti, Michela

    2016-08-01

    Exposure to high levels of air pollutant concentration is known to be associated with respiratory problems which can translate into higher morbidity and mortality rates. The link between air pollution and population health has mainly been assessed considering air quality and hospitalisation or mortality data. However, this approach limits the analysis to individuals characterised by severe conditions. In this paper we evaluate the link between air pollution and respiratory diseases using general practice drug prescriptions for chronic respiratory diseases, which allow to draw conclusions based on the general population. We propose a two-stage statistical approach: in the first stage we specify a space-time model to estimate the monthly NO2 concentration integrating several data sources characterised by different spatio-temporal resolution; in the second stage we link the concentration to the β2-agonists prescribed monthly by general practices in England and we model the prescription rates through a small area approach. PMID:27494955

  3. Identification of trace metal pollution in urban dust from kindergartens using magnetic, geochemical and lead isotopic analyses

    NASA Astrophysics Data System (ADS)

    Zhu, Zongmin; Sun, Guangyi; Bi, Xiangyang; Li, Zhonggen; Yu, Genhua

    2013-10-01

    In the present study, magnetic measurements were combined with geochemical analysis and stable Pb isotopic ratios to reveal the distribution and origination of trace metal pollutants in kindergarten dusts from a typical urban environment of Wuhan, central China. The geoaccumulation index (Igeo) of magnetic properties was more prominent than those of individual metals. The magnetic susceptibility (MS) and trace metals (Zn, Pb, and Cu) in this study together with published results from other Chinese cities formed a liner relationship, suggesting that metal contaminants in Chinese urban areas had similar MS to metal ratios, which could be used as an indicator for identification of pollution sources between Chinese cities and the other Asian cities. Stable Pb isotopic ratios (1.1125-1.1734 for 206Pb/207Pb and 2.4457-2.4679 for 208Pb/207Pb) in the urban dusts from Wuhan were characterized by higher 208Pb component in comparison with those from other Chinese cities. This result combined with principal component analysis (PCA) indicated that metal pollutants in the dusts were derived from industrial activities and coal combustion, whereas the traffic emissions were no longer a predominant pollution source in urban environment. Our study demonstrated that environmental magnetic methods could not only reveal the overall situation of trace metal contamination, but also prove evidence in the identification of pollution sources.

  4. Effects of pollution on freshwater invertebrates

    SciTech Connect

    Buikema

    1982-06-01

    The biological effects of acid rain, chlorination, heavy metals and other forms of pollution on freshwater invertebrates are examined in this review. Several methods for evaluating chronic toxicity to pesticide residues and synthetic fuels components are reviewed. The effects of pollutants is reviewed in detail for cladocera, amphipods, isopods, decapods, aquatic insects, molluscs, worms, and protozoa.(KRM)

  5. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    PubMed

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  6. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  7. Delayed geochemical hazard: a tool for risk assessment of heavy metal polluted sites and case study.

    PubMed

    Zheng, Mingxia; Feng, Liu; He, Juanni; Chen, Ming; Zhang, Jiawen; Zhang, Minying; Wang, Jing

    2015-04-28

    A concept of delayed geochemical hazard (DGH) was proposed instead of chemical time bomb to represent an ecological and environmental hazard caused by sudden reactivation and release of long-term accumulated pollutants in soil/sediment system due to the change of physicochemical conditions or the decrease of environmental capacity. A DGH model was also established to provide a quantitative tool to assess and predict potential environmental risk caused by heavy metals and especially its dynamic evolutions. A case study of DGH was carried out for a mercury-polluted area in southern China. Results of soil column experiment showed that DGH was directly resulted from the transformation and release of pollutant from the releasable species to the active ones through a mechanism of chain reaction. The most possible chain reaction was summarized as HgE+C+F+O+R→HgE+C+F+O→HgE+C+F→HgE+C→HgE. Although 8.3% of the studied area with the total releasable content of mercury (TRCPHg) exceeded the DGH critical point value of 16.667mg/kg, with the possibility of DGH burst, the area was classified as low-risk of DGH. This confirmed that DGH model could contribute to the risk assessment and early warning of soil/sediment pollution. PMID:25661167

  8. Phytomass change in natural phytocenosis as an indicator of technogenic pollution of soils with heavy metals.

    PubMed

    Trifonova, Tatiana A; Alkhutova, Ekaterina Y

    2016-12-01

    This study considered the possibility of using plant community phytomass for the assessment of soil pollution with heavy metals (HM) from industrial wastes. The three-year-long field experiment was run under the regional natural meadow vegetation; the polymetallic galvanic slime was used as an industrial waste contaminant. It is shown that soil contamination primarily causes decrease of phytomass in the growing phytocenosis. The vegetation experiments determined nonlinear dependence of cultivated and wild plant biomass on the level of soil contamination; it is described by the equations of logistic and Gaussian regression. In the absence of permanent contaminants, the soil is self-cleaned over time. It reproduces phytomass mainly due to the productivity increase of the most pollution-tolerant species in the remaining phytocenosis. This phenomenon is defined as environmental hysteresis. Soil pollution by industrial waste leads to the loss of plant biodiversity. The research shows that the study of the HM impact on ecosystems is expedient given the consideration of the "soil-phytocenosis-pollutant" complex in the "dose-response" aspect. The reaction of phytocenosis on HM showing decline in phytomass leads to serious limitations in the choice of accumulating plants, because the adsorbed HM are rejected through phytomass. PMID:27257749

  9. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.

    PubMed

    Rai, Prabhat Kumar

    2008-01-01

    This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some

  10. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    NASA Astrophysics Data System (ADS)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  11. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China.

    PubMed

    Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu

    2015-09-01

    Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values. PMID:26260049

  12. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China.

    PubMed

    Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu

    2015-09-01

    Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.

  13. Levels of metals in hair of young children as an indicator of environmental pollution

    SciTech Connect

    Wibowo, A.A.; Herber, R.F.; Das, H.A.; Roeleveld, N.; Zielhuis, R.L.

    1986-08-01

    In 1982 the levels of lead (Pb), cadmium (Cd), vanadium (V), copper (Cu), and selenium (Se) were determined in hair of 231 four- to five-year-old children. The objective was to explore the feasibility of using metal-in-hair levels in groups of children as an indicator of environmental pollution. The study was carried out in four areas, which were assumed to differ in ambient pollution by metals. A questionnaire on personal data, socioeconomic status, intake of beverages, and life-style was completed by the parents. The metal-in-hair levels covered a large range. The variables pertaining to location together with sex, presence of a garden, and drinking of coffee and/or tea explained 32% of the variance of Pb, 24% of the variance of Cd, and 21% of the variance of V. The total variance explained by all measured questionnaire items was at best 38%. The location was the most important factor. Cu and Se levels did not differ between the locations.

  14. [Evolvement and pollution of heavy metals in core sediments from Yamenqi Lake in Lianhuan Lake, China].

    PubMed

    Xiao, Hai-Feng; Zang, Shu-Ying; Guan, Ying; Liu, Shao-Jun; Xu, Hai-Feng; Sun, Qing-Zhan; Wang, Jing-Jing; Li, Miao

    2013-08-01

    One sediment core was obtained from the center of Yamenqi Lake at the Songnen Plain in eastern China in August 2010 using a gravity corer. The sediment samples were digested using HNO3-HClO4-HF. Concentrations of the metals Cr, Cu, Mn, Ni, Fe, Pb, Zn, Cd, Al, Ba, Ca, K, Li, Mg, Na and Sr were determined using inductively coupled plasma-mass spectrometry (ICP-MS). With the dating approach, the characteristics and polluted history of heavy metals in lake sediments were determined. The heavy metal pollution of sediment was discussed based on the enrichment factor. The results are listed as following:(1) the contents of all elements had a smooth variation trend before 1950,and fluctuated severely from 1950 to 1990. The contents of Mn, Zn, Cd, Pb, Fe, Ni, Cr, Cu, Ca, Li and Sr increased obviously since 1990. (2) Mn, Zn, Pb and Cd showed light contamination degree. Contents of Ni, Cr and Cu were below the contamination level. PMID:24191552

  15. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants

    SciTech Connect

    Samson, G.; Popovic, R.

    1988-12-01

    The phytotoxicity of heavy metals and pesticides was studied by using the fluorescence induction from the alga Dunaliella tertiolecta. The complementary area calculated from the variable fluorescence induction was used as a direct parameter to estimate phytotoxicity. The value of this parameter was affected when algae were treated with different concentrations of mercury, copper, atrazine, DCMU, Dutox, and Soilgard. The toxic effect of these pollutants was estimated by monitoring the decrease in the complementary area, which reflects photosystem II photochemistry. Further, the authors have demonstrated the advantage of using the complementary area as a parameter of phytotoxicity over using variable fluorescence yield. The complementary area of algal fluorescence can be used as a simple and sensitive parameter in the estimation of the phytotoxicity of polluted water.

  16. Treatment of waters polluted with crude oil and heavy metals by means of a natural wetland.

    PubMed

    Groudeva, V I; Groudev, S N; Doycheva, A S

    2003-01-01

    In the Dolni Dubnik oil deposit, Northern Bulgaria, waters polluted with crude oil and heavy metals (iron, manganese, zinc, cadmium, lead, copper) were treated by means of a natural wetland located in the deposit. The waters had a pH in the range of about 4.5-6.5 and contained about 1-5 mg/l oil. The concentrations of heavy metals usually were about 2-4 times higher than the relevant permissible levels for waters intended for use in the agriculture and industry. The watercourse through the wetland covered a distance of about 100 m and the water flow rate varied in the range of about 0.2-0.8 l/s. The wetland was characterized by an abundant water and emergent vegetation and a diverse microflora, including different oil-degrading bacteria and fungi. The treatment of the polluted waters by means of the above-mentioned wetland markedly depended on the temperature but was efficient during the different climatic seasons, even during the cold winter months at temperatures close to 0 degrees C. The oil content in the wetland effluents in most cases was decreased to less than 0.2 mg/l, and the concentrations of heavy metals were decreased below the relevant permissible levels. The removal of oil was connected with its microbial degradation. The removal of heavy metals was due to different processes but the microbial dissimilatory sulphate reduction and the sorption of metals on the organic matter and clay minerals present in the wetland played the main role.

  17. Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems.

    PubMed

    Batista, Daniela; Muricy, Guilherme; Rocha, Rafael Chávez; Miekeley, Norbert F

    2014-05-01

    In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.

  18. Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears (Tardigrada), as bioindicators.

    PubMed

    Vargha, Béla; Otvös, Edit; Tuba, Zoltán

    2002-01-01

    The authors demonstrate a possible relationship between the concentrations of metals (Cd, Cr, Cu, Fe, Ni, Pb, V, Zn) measured in mosses and the composition of Tardigrade species detected in the same samples. Cushions of Hypnum cupressiforme were collected at 18 sites distributed in the whole of Hungary to estimate the background air pollution, then analyzed by ICP-AES to determine the concentrations of heavy metals. Data reflect the expected correlation; elevated heavy metal contents decrease the number of water bear species and of specimens, and abundance of Tardigrada depends strongly on air pollution. Higher concentrations of cadmium and chromium seem to have particularly damaging and toxic influence on community structure. As the biologically relevant effects of pollution can only be evaluated by carrying out measurements on the organisms themselves, our method applied species of Bryophyte and of Tardigrade, as bioindicators were appeared to be an adequate method to show the effect of air pollution on abundance of water bears.

  19. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    NASA Astrophysics Data System (ADS)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  20. Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice

    NASA Astrophysics Data System (ADS)

    Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing

    2010-05-01

    Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment

  1. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India.

    PubMed

    Agoramoorthy, Govindasamy; Chen, Fu-An; Hsu, Minna J

    2008-09-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43+/-0.37 microg/g) was seven times higher than mangrove plants (0.06+/-0.03 microg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves.

  2. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  3. Gill ATPase activity in Procambarus clarkii as an indicator of heavy metal pollution

    SciTech Connect

    Torreblanca, A.; Del Ramo, J.; Diaz-Mayans, J. )

    1989-06-01

    Lake Albufera and the surrounding rice field waters are subjected to very heavy loads of sewage and toxic industrial residues, including heavy metals, from the many urban and waste waters of this area. The American red crayfish, Procambarus clarkii have a high resistance to toxic effects of heavy metals. The sublethal effects of heavy metals on gills of fish and aquatic invertebrates have been extensively studied. Some metabolic disturbances and histologic damages have been reported, as well as osmoregulation alterations. However, little work has been done about the effect of heavy metals on Na,K and Mg-ATPases of freshwater invertebrate gills. Na,K-ATPase is the prime mediator of ion transport across cellular membranes and plays a central role in whole body ion regulation in marine and estuarine animals. Na,K-ATPase has been reviewed and assessed as a potentially useful indicator of pollution stress in aquatic animals. The purpose of this study is look for the relation, if any, between crayfish gill ATP-ase activity changes and metal exposure in laboratory. This find would allow the authors to assay this potential indicator in the field.

  4. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    PubMed

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al.

  5. Influence of Mining Pollution on Metal Bioaccumulation and Biomarker Responses in Cave Dwelling Fish, Clarias gariepinus.

    PubMed

    du Preez, Gerhard; Wepener, Victor

    2016-07-01

    Cave ecosystems remain largely unstudied and risk being severely degraded as a result of anthropogenic activities. The Wonderfontein Cave, situated in the extensive gold mining region of the Witwatersrand Basin, is one such system that hosts a population of Clarias gariepinus, which is exposed to the influx of polluted mine water from the Wonderfontein Spruit River. The aim of this study was to investigate the bioaccumulation of metals, as well as relevant biomarkers, in C. gariepinus specimens sampled from the Wonderfontein Cave during high (April 2013) and low (September 2013) flow surveys. Results were also compared to a surface population associated with the Wonderfontein Spruit River. There were temporal differences in metal bioaccumulation patterns and this was attributed to the lack of dilution during the low flow period. Metals associated with acid mine drainage, i.e. Co, Mn and Zn were significantly higher in the Wonderfontein Cave population and were reflected in an increase in oxidative stress biomarkers (catalase, protein carbonyls and superoxide dismutase) and the induction of metallothionein, a biomarker of metal exposure. The surface population was exposed to metals associated with geological weathering processes, i.e. Fe and Al. PMID:27086300

  6. Assessing heavy metal pollution using Great Tits (Parus major): feathers and excrements from nestlings and adults.

    PubMed

    Costa, R A; Eeva, T; Eira, C; Vaqueiro, J; Vingada, J V

    2013-06-01

    Passerine species have been increasingly used as bioindicators of metal bioaccumulation especially by taking benefit of non-invasive procedures, such as collecting feathers and excrements. In 2009, metal (As, Cd, Cu, Hg, Ni, Pb, Se and Zn) concentrations were determined in feathers and excrements of nestling and adult female great tits (Parus major) in industrial (a paper mill) and rural sites in maritime pine forests on the west coast of Portugal. The aim of this study was to compare the levels of metals between the areas but also between sampling methods (feather vs. excrement) and age classes (nestling vs. adult). Although excrements and feathers of nestling great tits showed different concentrations, similar patterns of accumulation were detected in both study areas. There was a significantly higher concentration of mercury in the industrial area and significantly higher concentrations of arsenic in the rural area in both sample types. Metal levels in adult females had quite different results when compared to nestlings, and only nickel presented significantly higher levels near the paper mill. Since metal levels showed a consistent pattern in feathers and excrements of nestling great tits, we conclude that both represent good and non-invasive methods for the evaluation of these elements in polluted areas.

  7. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  8. Small mammals as biomonitors of metal pollution: a case study in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Kryštufek, Boris

    2014-07-01

    The transfer of lead, cadmium, zinc, mercury, copper and molybdenum from soil to the tissues of small mammals inhabiting differently polluted areas in Slovenia was investigated. Metals were determined in soil samples and in the livers of 139 individuals of five small mammal species, collected in 2012 in the vicinity of a former lead smelter, the largest Slovenian thermal power plant, along a main road and in a control area. The area in the vicinity of former lead smelter differs considerably from other study areas. The soil from that area is heavily polluted with Pb and Cd. The mean metal concentrations in the liver, irrespective of species, varied in the following ranges-Pb: 0.40-7.40 mg/kg fw and Cd: 0.27-135 mg/kg fw and reached effect concentrations at which toxic effects can be expected in a significant proportion of the livers of the small mammal specimens (Pb 40 %, Cd 67 %). These findings indicate that the majority of small mammals trapped in the area of the former lead smelter are at risk of toxic effects due to the very high bioaccumulation of Pb and Cd in the organism. On the contrary, Pd and Cd concentrations in the livers of small mammals sampled in the vicinity of the thermal power plant and along the main road were comparable with reference values and considerably lower than effect concentrations. Additionally, the study suggests that Apodemus flavicollis and Myodes glareolus are very suitable biomonitors of metal pollution. PMID:24619365

  9. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems.

    PubMed

    Pons-Branchu, Edwige; Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise; Borst, Wolfgang; Branchu, Philippe; Douville, Eric; Dumont, Emmanuel

    2015-06-15

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th-18th centuries ((206)Pb/(207)Pb=1.180+/-0.003). The mean (206)Pb/(207)Pb ratio, for one of the speleothems is 1.181+/-0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183+/-0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172+/-0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975+/-15 years) deposit ((206)Pb/(207)Pb=1.148+/-0.003), and the second, a thin subactual layer ((206)Pb/(207)Pb=1.181+/-0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore).

  10. Spatial and temporal distribution and pollution assessment of trace metals in marine sediments in Oyster Bay, NSW, Australia.

    PubMed

    Alyazichi, Yasir M; Jones, Brian G; McLean, Errol

    2015-01-01

    The disposal of untreated urban and industrial wastewater has a deleterious effect on both the water and sediment quality of Oyster Bay located in south Sydney, Australia. The present investigation was undertaken to evaluate the potential pollution of marine sediments in Oyster Bay. The results of metals were compared with adverse biological effect values effect range low (ERL) and effect range median (ERM). Spatial distribution of trace metals was estimated by applying geographic information system. The results indicated that the sediments were polluted with Cu, Zn, As and Pb, which exceeded ERL levels. However, these metals were still below ERM values, and other metals Cr and Ni were below ERL. Moreover, the highest concentrations of metals were around discharge points and in the inner bay. Further, trace metals could be attributed to human activities within the bay as they declined in concentrations with increasing sediment depth.

  11. Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements)

    NASA Astrophysics Data System (ADS)

    Chernova, O. V.; Beketskaya, O. V.

    2011-09-01

    Approaches to the establishment of the limit concentrations of pollutants in Russia and abroad were considered. It was shown that the norms for the concentrations of total trace elements and heavy metals in soils used in Russia and European countries are comparable. On the basis of the analysis of cartographic data, general regularities in changes of the concentrations of some trace elements were revealed for soils of European Russia. Different computational methods were tested for establishing the background concentrations of elements in soils of different composition in different regions.

  12. Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil.

    PubMed

    Salminen, J; van Gestel, C A; Oksanen, J

    2001-10-01

    Pollution may lead to the development of pollution-induced community tolerance (PICT) in a stressed community. We studied the presence of PICT in soil food webs using soil microcosms. Soil microcosms containing soil invertebrates and microbes were collected from polluted and unpolluted areas and exposed to a range of soil zinc concentrations. A pine seedling was planted in each microcosm to measure the effects of the origin of the community and Zn pollution on above-ground plant production. The effects of the treatments on nutrient content in the soil were also measured. The diversity of soil microarthropods and the soil's mineral nutrient content were low at the Zn-polluted site. We did not observe an increasing Zn tolerance among the soil organisms in the polluted soil. However, low population growth rates of soil invertebrates from the polluted site may indicate the deleterious effects on fitness of long-lasting pollution. In the soil from the nonpolluted site, Zn additions caused changes in the invertebrate food web structure. These changes were explained by the good physiological condition of the animals and their insensitivity to Zn. The fact that the food web structure in soil from the polluted site did not change can be used as a rough indicator of PICT. Structural stability is presumed by the lack of Zn-sensitive species at this site and the inability of populations to acclimate by altering their growth or reproduction patterns in response to changing soil conditions. Although microbial-based soil decomposer systems may have a high functional redundancy, our results indicate that metal stress at the polluted site exceeds the tolerance limits of the system. As a consequence, ecosystem function at this site is endangered. This study also shows that the evolution of metal tolerance by soil decomposer organisms may not be a common reaction to soil pollution, although changes of population and community structure indicated severe metal stress on organisms.

  13. Analysis of mosses and topsoils for detecting sources of heavy metal pollution: multivariate and enrichment factor analysis.

    PubMed

    Dragović, S; Mihailović, N

    2009-10-01

    In order to assess the contribution of emission sources to the pollution of areas remote from industrial facilities, a combined approach of enrichment factor analysis and multivariate statistics was used for detecting the origin of heavy metal pollution in the Zlatibor ecosystem, in Serbia. Samples of moss (Pleurozium schreberi, Hylocomium splendens, Scleropodium purum, Hypnum cupressiforme and Thuidum delicatulum) and of topsoil (0-5 cm) were collected in 2005. The concentrations of seven heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) were determined in moss and soil samples by atomic absorption spectrometry. The results obtained by enrichment factor analysis and two multivariate statistical methods, principal component analysis and cluster analysis, enabled discrimination of the lithologic and anthropogenic sources of heavy metals in the mosses. Enrichment factors, calculated to evaluate the contribution to the metal content in moss from anthropogenic sources, revealed pollution of the investigated area by Cd and Pb, originating from long-range transport and fossil fuel burning.

  14. Heavy metal pollution of river Yamuna in the industrially developing state of Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sahu, R; Kaushik, C P

    2001-10-01

    Heavy metal concentrations viz. Fe, Ni, Pb, Cd, Co, Zn in the river Yamuna flowing along the state of Haryana through Delhi have been reported selecting 16 stations covering the upstream and downstream stations for major industrial complexes of the state. While Fe, Ni and Co concentrations exceeded the maximum permissible limits prescribed for drinking all along the river, the Cd concentrations crossed the acceptable standards in Delhi downstream. The Pb concentrations declined in the eutrophicated Delhi downstream while Zn concentrations remained within desirable limits throughout. Peak concentrations were recorded in Delhi downstream for Fe and at Sonepat-Gohana downstream for Ni, Co & Zn, which matched with the type of industrial inputs viz. Iron-works and the electroplating, galvanizing & cycle industries, respectively. The status of heavy metal pollution of the river has been discussed with respect to possible impacts on human health and aquatic life. PMID:12395521

  15. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  16. Sources of Heavy Metal Pollution into the St. Louis River, Lake Superior Watershed

    NASA Astrophysics Data System (ADS)

    Sternberg, S. P.; Palokangas, C.

    2013-12-01

    The St. Louis River begins in Hoyt Lakes, Minnesota and enters Lake Superior between Duluth, Minnesota and Superior, Wisconsin. The Partridge River and the Embarrass River are two of its main tributaries. National Pollutant Discharge Elimination System (NPDES) permits are issued for surface water dischargers under the Clean Water Act. The Permit Compliance System (PCS) and the Integrated Compliance Information System (ICIS) is a tool allowing public access to information contained in NPDES permits. Along the way to Lake Superior, 19 facilities list the St. Louis River, St. Louis Bay, part of the St. Louis River estuary, or one of its tributaries as a receiving water. Of these 19 locations, four report discharging heavy metals into the receiving water. Copper and Lead are the metals most frequently discharged.

  17. Heavy metal pollution of river Yamuna in the industrially developing state of Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sahu, R; Kaushik, C P

    2001-10-01

    Heavy metal concentrations viz. Fe, Ni, Pb, Cd, Co, Zn in the river Yamuna flowing along the state of Haryana through Delhi have been reported selecting 16 stations covering the upstream and downstream stations for major industrial complexes of the state. While Fe, Ni and Co concentrations exceeded the maximum permissible limits prescribed for drinking all along the river, the Cd concentrations crossed the acceptable standards in Delhi downstream. The Pb concentrations declined in the eutrophicated Delhi downstream while Zn concentrations remained within desirable limits throughout. Peak concentrations were recorded in Delhi downstream for Fe and at Sonepat-Gohana downstream for Ni, Co & Zn, which matched with the type of industrial inputs viz. Iron-works and the electroplating, galvanizing & cycle industries, respectively. The status of heavy metal pollution of the river has been discussed with respect to possible impacts on human health and aquatic life.

  18. Early diagenesis and clay mineral adsorption as driving factors of metal pollution in sediments: the case of Aveiro Lagoon (Portugal).

    PubMed

    Martins, Maria Virgínia Alves; Mane, Miguel Ângelo; Frontalini, Fabrizio; Santos, José Francisco; da Silva, Frederico Sobrinho; Terroso, Denise; Miranda, Paulo; Figueira, Rubens; Laut, Lazaro Luiz Mattos; Bernardes, Cristina; Filho, João Graciano Mendonça; Coccioni, Rodolfo; Dias, João M Alveirinho; Rocha, Fernando

    2015-07-01

    This work aims to define the factors driving the accumulation of metals in the sediment of the lagoon of Aveiro (Portugal). The role of initial diagenetic processes in controlling trace metal retention in surface sediment is traced by mineralogy, magnetic susceptibility and geochemical analyses. Although several studies have focused on the metal distribution in this polihaline and anthropized coastal lagoon, most of them have been solely focused on the total metal concentrations. This study instead represents the first attempt to evaluate in a vast area of the Aveiro Lagoon the role of biogeochemical processes in metal availability and distribution in three extracted phases: exchangeable cations adsorbed by clay and elements co-precipitated with carbonates (S1), organic matter (S2) and amorphous Mn hydroxides (S3). According to the sediment guideline values, the sediment is polluted by, for instance, As and Hg in the inner area of the Murtosa Channel, Pb in the Espinheiro Channel, Aveiro City canals and Aveiro Harbour, and Zn in the northern area of the Ovar Channel. These sites are located near the source areas of pollutants and have the highest total available concentrations in each extracted phase. The total available concentrations of all toxic metals are however associated, firstly, with the production of amorphous Mn hydroxides in most of the areas and, secondly, with adsorption by organic compounds. The interplay of the different processes implies that not all of the sites near pollution sources have polluted surface sediment. The accumulation of metals depends on not only the pollution source but also the changing in the redox state of the sediments that may cause alterations in the sediment retention or releasing of redox-sensitive metals. Results of this work suggest that the biogeochemical processes may play a significant role in the increase of the pollutants in the sediment of the Aveiro Lagoon.

  19. Albatross as Sentinels of Heavy Metal Pollution: Local and Global Factors

    NASA Astrophysics Data System (ADS)

    Sentman, W.; Edwards, S. V.; Vo, A. E.; Bank, M. S.

    2012-12-01

    Heavy metal pollution in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists over the extent to which mercury in biota may have resulted from increases in anthropogenic emissions over time. Albatrosses, including those inhabiting the North Pacific, are wide-ranging, long-lived, keystone, avian predators. Consequently, they serve as ideal sentinel species for investigating the effects of historical and contemporary pollution as well as local and global factors related to heavy metal bioaccumulation, exposure, and ecotoxicological risk. To date, high levels of mercury and lead have been documented in albatross species throughout the Pacific. To address biotic exposure to these multiple stressors, here we synthesize and conduct meta-analyses of total mercury, methylmercury, and lead exposure data in Black-footed albatross (Phoebastria nigripes) and Laysan albatross (Phoebastria immutabilis). Our approach uses data from the field and literature and for methyl mercury uses museum feathers spanning the past 130 years for Black-Footed albatross. We discuss the use and application of stable isotopes (δ15N and δ13C) as a way to control for temporal changes in trophic structure and diet and the importance of conducting speciation analyses, for mercury, to account for curator mediated inorganic mercury in older specimens. Our data showed higher levels of inorganic mercury in older specimens of Black-Footed albatross as well as two non-pelagic species (control samples) lacking historical sources of bioavailable mercury exposure, which suggests that studies on bioaccumulation should measure methylmercury rather than total mercury when utilizing museum collections. Additionally, at the local scale, previous research has reported that lead paint exposure from buildings was also an important environmental stressor for Laysan albatross, suggesting that albatross species face heavy

  20. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  1. The history of metals pollution in Narragansett Bay as recorded by salt-marsh sediments

    SciTech Connect

    Bricker, S.B.

    1990-01-01

    Sediment cores from 5 salt marshes from the head to the mouth of Narragansett Bay and an additional core from a lagoon on Block Island Sound were analyzed for [sup 210]Pb and for Fe, Mn, Cu, Pb, Cr, Zn, Ag, and Ni in order to examine the long-term variation of metal inputs to Narragansett Bay. The [sup 210]Pb results were used to determine accretion rates for each core. Distributions of Fe and Mn were used as indicators of chemical conditions of sediment cores and Cu, Pb, Cr, Zn, Ag, and Ni distributions with time were compared with known or estimated source inputs to examine the long-term variation of pollutant metal inputs to Narragansett Bay. At one location, duplicate cores were sampled to look at variability within a marsh. At another location, a high marsh, receiving predominantly atmospheric inputs and a low marsh, receiving waterborne and atmospheric inputs, were sampled so that atmospheric and tidal contributions could be determined. A comparison was made of the distributions of metals in bay cores and in the lagoon core. All the Rhode Island marshes accrete at rates equal to or greater than the local rise in sea level. Based on the [sup 210]Pb chronologies, pollutant metals began to increase in the mid to late 1800s, corresponding to coal burning emissions to the atmosphere. Steeper increases in the 1900s reflect industrial and sewage discharges. Maximum concentrations were reached in the 1950s and have declined almost continuously since then. Observed reductions were attributable to implementation of and improvements to sewage treatment, and controls on atmospheric emissions.

  2. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution.

    PubMed

    Zawadzki, Krzysztof; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Wojtuń, Bronisław; Mróz, Lucyna; Kempers, Alexander J

    2016-06-01

    Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation.

  3. Metals in Pleurozium schreberi and Polytrichum commune from areas with various levels of pollution.

    PubMed

    Zawadzki, Krzysztof; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Wojtuń, Bronisław; Mróz, Lucyna; Kempers, Alexander J

    2016-06-01

    Metals deposited into ecosystems are non-degradable and become one of the major toxic agents which accumulate in habitats. Thus, their concentration requires precise monitoring. To evaluate pollution around a chlor-alkali plant, a glass smelter, two power plants and a ceramic and porcelain factory, we selected terrestrial mosses with different life forms: the orthotropic and endohydric Polytrichum commune and plagiotropic and ectohydric Pleurozium schreberi. Metal concentrations were determined in both species growing together at sites situated at various distances approximately 0.75, 1.5, 3 and 6 km from polluters. MARS analysis evaluated different tendencies of both species for Cd, Co and Pb accumulation depending on the distance from the emitter. In P. schreberi, the concentration of these metals diminished relatively rapidly with an increasing distance from the emitter up to 3000 m and then stabilised. For P. commune, a steady decrease could be observed with increasing the distance up to 6000 m. PCCA ordination explained that both species from the vicinity of the chlor-alkali plant were correlated with the highest Co, Cr, Cu, Fe and Pb as well as Mn and Ni concentrations in their tissues. The mosses from sites closest to both power plants were correlated with the highest Cd and Zn concentrations. P. commune contained significantly higher Cd, Cr, Ni, Pb and Zn concentrations compared to P. schreberi. This may be caused by the lamellae found in the leaves of P. commune which increase the surface area of the possible aerial absorption of contaminants. Soil may also be an additional source of metals, and it affects the uptake in endohydric P. commune more than in ectohydric P. schreberi. However, the precise explanation of these relations needs further investigation. PMID:26910826

  4. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals.

    PubMed

    Lin, Yu-Chi; Hsu, Shih-Chieh; Chou, Charles C-K; Zhang, Renjian; Wu, Yunfei; Kao, Shuh-Ji; Luo, Li; Huang, Chao-Hao; Lin, Shuen-Hsin; Huang, Yi-Tang

    2016-01-01

    Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM2.5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10(-4) on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days. PMID:26277049

  5. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals.

    PubMed

    Lin, Yu-Chi; Hsu, Shih-Chieh; Chou, Charles C-K; Zhang, Renjian; Wu, Yunfei; Kao, Shuh-Ji; Luo, Li; Huang, Chao-Hao; Lin, Shuen-Hsin; Huang, Yi-Tang

    2016-01-01

    Airborne particulate matter (PM) was collected in Beijing between 24 February and 12 March 2014 to investigate chemical characteristics and potential industrial sources of aerosols along with health risk of haze events. Results showed secondary inorganic aerosol was the major contributor to PM2.5 during haze days. Utilizing specific elements, including Fe, La, Tl and As, as fingerprinting tracers, four emission sources, namely iron and steel manufacturing, petroleum refining, cement plant, and coal combustion were explicitly identified; their elevated contributions to PM during haze days were also estimated. The average cancer risk from exposure to inhalable PM toxic metals was 1.53 × 10(-4) on haze days, which is one order of magnitude higher than in other developed cities. These findings suggested heavy industries emit large amounts of not only primary PM but also precursor gas pollutants, leading to secondary aerosol formation and harm to human health during haze days.

  6. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  7. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    PubMed

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.

  8. [Assessment of Heavy Metal Pollution and its Health Risk of Surface Dusts from Parks of Kaifeng, China].

    PubMed

    Duan, Hai-jing; Cai, Xiao-qiang; Ruan, Xin-ling; Tong, Zhi-qi; Ma, Jian-hua

    2015-08-01

    Fifty-two dust samples were collected from four parks [Longting Park (P(L)), Tieta Park (P(T)), Qingmingshanghe Park (P(Q)), Xiangguosi Park (P(X))] located in Kaifeng City, China. Concentrations of Hg and As in dusts were measured by atomic fluorescence spectrometry (AFS), while Cr, Cu, Zn, Pb, Ni and Cd were analyzed by inductively coupled plasma mass-spectrometry (ICP-MS). The heavy metal pollution of dust was assessed using Geo-accumulation index (Igeo) and pollution load index (PLI). The health risk due to exposure to heavy metals in dust was assessed using the model recommended by USEPA. The non-carcinogen (HI) and carcinogen health risks (TCR) were also calculated to evaluate the potential risks to adults. The results showed that the average contents of Hg, Cu, Zn, Cd and Pb were much higher than those in control samples and the background values of fluvo-aquic soil in China. The samples were seriously polluted by Hg and Pb, besides, there was.moderate pollution, slight pollution of Cu and Zn, and no pollution of As, Cr and Ni. The PLI from the 4 Parks indicated that there was serious heavy metals pollution of dust in P(X), moderate pollution in P%, and slight pollution in P(T) and P(Q). The average HI of heavy metals in the four Parks was lower than one. The average HI decreased in the order of P(L) > P(X), > P(T) > P(Q), while the average TCR decreased in the order of P(L) > P(Q) > P(x) > P(T). The contribution rate of HQ(As) to HI was about 43.51% , and that of CR(As) to TCR was about 70.11%.

  9. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  10. Smouldering peat fires in polluted landscapes and their impact on heavy metal mobilisation

    NASA Astrophysics Data System (ADS)

    Clay, Gareth; Rothwell, James; Shuttleworth, Emma

    2016-04-01

    Whilst wildfires are commonly viewed as a threat confined to Southern Europe, Australia, and North America, recognition of wildfire hazard in the UK has been growing in recent years. UK wildfires often occur on heathland vegetation underlain by peat. These areas can contain industrially-derived legacy pollutants, such as mercury, lead, and arsenic. Ignition of the peat can lead to long-term smouldering fires that are difficult to extinguish, leading to large-scale damage. While work on assessing post-fire damage of peatlands has focussed on carbon and nutrient dynamics, there has been little attention on the release of heavy metals following wildfires. This paper presents initial data from a preliminary study to assess heavy metal release from smouldering peat fires. A homogenised sample of peat from the Peak District National Park, UK was ignited, monitored using thermocouples and an IR camera, and left to smoulder until self-extinguished (~9 hours). Total mass loss was 61%. Samples of pre- and post-burn peat were analysed for their heavy metal concentrations using XRF, ICP-MS, and CVAFS. Sample analysis is ongoing, but initial data shows that there is a substantial (3x) relative enrichment in heavy metal concentrations in post-fire ash. This has important implications for subsequent mobilisation in the aquatic and terrestrial environments, as well as consequences for human health risk through atmospheric redistribution.

  11. [Bioindicating function of sulfur in Haplocladium under heavy metals pollution by SRXRF and XANES].

    PubMed

    Cao, Qing-chen; Lou, Yu-xia; Zhang, Yuan-xun; Bao, Liang-man; Cao, Tong; Zhao, Yi-dong; Chen, Dong-liang; Zhang, Gui-lin; Li, Yan

    2009-12-01

    Haplocladium was cultivated in a special prepared nutrient medium containing different concentrations of Pb, Fe and Cr in laboratory. The sulfur content in moss was measured by synchrotron radiation X-ray fluorescence (SRXRF), and the percentage of various oxidation states of sulfur was analyzed by X-ray absorption near-edge structure (XANES) spectrum. The results show that the sulfur absorption increases under exposure to heavy metal ions of Pb and Fe, but it decreases under exposure to 400 mg/L Pb and 200 mg/L Fe. When Haplocladium was cultivated for 15 days, under the stress of 100 mg/L Pb, the relative content of low oxidation states sulfur increases from 17.8% to 23.6% and the sulfate sulfur decreases from 56.3% to 51.2%. Under the stress of 400 mg/L Pb, the relative content of low oxidation state sulfur increases from 17.8% to 24.8%, and the sulfate sulfur decreases from 56.3% to 48.4%. Under heavy metal exposure, the total relative content of low oxidation states sulfur such as cystine, cysteine, methionine and glutathione increases, and the relative content of sulfate sulfur apparently decreases. All these results indicate that the changing characteristics of sulfur content and oxidation states percentage in sulfur assimilation process under heavy metal exposure can be used as a bioindicator of heavy metal pollution. PMID:20187404

  12. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    PubMed

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.

  13. Microbial leaching of toxic metals and arsenic from a heap consisting of heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Soil heavily polluted with toxic heavy metals (mainly Cu, Zn, Cd) and arsenic was subjected to microbial cleanup in a heap specially constructed for this purpose. The heap was located on an impermeable geomembrane, had the shape of a truncated pyramid and contained about 240 tons of soil collected mainly from the horizon A. The soil was highly acidic (with an initial pH of about 3.2) and was preliminarily crushed to minus 2.5 cm particle size. The pollutants were present mainly as the relevant sulphide minerals and the soil was inhabited by different microorganisms, including some acidophilic chemolithotrophic bacteria able to oxidize sulphides and to solubilize the relevant toxic elements. The heap possessed systems for irrigation and aeration and was surrounded by ditches to collect the drainage heap effluents containing the dissolved pollutants. The treatment of the soil was carried out by means of interrupted irrigation with leach solutions containing diluted sulphuric acid (to maintain pH in the heap within the range of about 2.5 - 2.8) and ammonium and phosphate ions to maintain the microbial growth. The treatment was carried out for a period of about two years during different climatic seasons. After the end of leaching the soil was subjected to some conventional melioration procedures such as liming, grassing, moulching, addition of fertilizers and animal manure and periodic ploughing and irrigation to increase its quality to levels suitable for agricultural utilization.

  14. Increased genetic diversity of Viola tricolor L. (Violaceae) in metal-polluted environments.

    PubMed

    Słomka, A; Sutkowska, A; Szczepaniak, M; Malec, P; Mitka, J; Kuta, E

    2011-04-01

    Changes in DNA sequences affecting cryptic intraspecific variability are very important mechanisms of plant microevolutionary processes, initiating species diversification. In polluted environments, intra- and interpopulation changes at the molecular level proceed rapidly and lead to the formation of new ecotypes in a relatively short time. We used ISSR PCR fingerprinting data to analyze the genetic diversity and genetic structure of seven populations of Viola tricolor: four growing on soil contaminated with heavy metals (Zn, Pb, Cd; waste heaps) and three from control soil. The populations from the polluted sites showed higher genetic polymorphism (%(poly)=84%) and gene diversity (H(T)=0.1709) than the control populations (%(poly)=75% and H(T)=0.1448). The number of private markers we detected within metallicolous (MET) populations was more than double that found within non-metallicolous (NON) populations (15 vs. 7). The STRUCTURE and UPGMA analyses showed clear genetic differences between the NON and MET populations. Based on broad analyses of the genetic parameters, we conclude that the effect of these polluted environments on the genetic diversity of the MET populations, separating them from the NON populations, is evidence of microevolutionary processes at species level, leading to species divergence and the emergence of local ecotypes better adapted to their different environments.

  15. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot. PMID:26352643

  16. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei.

    PubMed

    Zhang, Wenya; Guo, Rui; Yang, Ying; Ding, Jian; Zhang, Yingmei

    2016-09-01

    Gastrointestinal (GI) microbiota plays a very important role in maintaining its host's health. However, the effects of environmental contamination on the GI microbiota homeostasis of amphibians have not yet been reported. The present study reveals the long-term effect of natural heavy-metal pollution on the GI microbial community diversity and structural changes of Bufo raddei (B. raddei). Basing on the 16S rRNA sequencing method, the GI microbiota of B. raddei from a heavily heavy-metal-polluted area (Baiyin, (BY)) and a relatively unpolluted area (Liujiaxia, (LJX)) were profiled. The results showed that heavy-metal pollution had caused significant shifts in the composition of the GI microbiota both at the phylum and genus levels. Specifically, Bacteroidetes dominated in the GI tract of B. raddei from BY, while Tenericutes was much more common in those from LJX. The ratio of Firmicutes/Bacteroidetes and the proportion of probiotics in the GI microbiota of B. raddei from BY were reduced compared to those from LJX, as well. Heavy-metal pollution also induced in a reduction of species diversity and decreased proportion of unique operational taxonomic units in the GI tract. In short, our results demonstrate that long-term heavy-metal exposure re-shaped the composition and decreased the species diversity of GI microbiota of B. raddei; our results also represent a novel approach to uncover the toxic effects of pollution on amphibians. PMID:27392436

  17. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei.

    PubMed

    Zhang, Wenya; Guo, Rui; Yang, Ying; Ding, Jian; Zhang, Yingmei

    2016-09-01

    Gastrointestinal (GI) microbiota plays a very important role in maintaining its host's health. However, the effects of environmental contamination on the GI microbiota homeostasis of amphibians have not yet been reported. The present study reveals the long-term effect of natural heavy-metal pollution on the GI microbial community diversity and structural changes of Bufo raddei (B. raddei). Basing on the 16S rRNA sequencing method, the GI microbiota of B. raddei from a heavily heavy-metal-polluted area (Baiyin, (BY)) and a relatively unpolluted area (Liujiaxia, (LJX)) were profiled. The results showed that heavy-metal pollution had caused significant shifts in the composition of the GI microbiota both at the phylum and genus levels. Specifically, Bacteroidetes dominated in the GI tract of B. raddei from BY, while Tenericutes was much more common in those from LJX. The ratio of Firmicutes/Bacteroidetes and the proportion of probiotics in the GI microbiota of B. raddei from BY were reduced compared to those from LJX, as well. Heavy-metal pollution also induced in a reduction of species diversity and decreased proportion of unique operational taxonomic units in the GI tract. In short, our results demonstrate that long-term heavy-metal exposure re-shaped the composition and decreased the species diversity of GI microbiota of B. raddei; our results also represent a novel approach to uncover the toxic effects of pollution on amphibians.

  18. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  19. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands. PMID:26473705

  20. Risk assessment of metals and PAHs for receptor organisms in differently polluted areas in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Tome, Davorin; Kryštufek, Boris

    2015-11-01

    Samples from receptor organisms (small mammals, passerine birds) and their food sources (herbaceous plants, leaves and fruits of wood plants, earthworms) were collected during 2011-2014 from the vicinity of a former lead smelter, from the vicinity of the largest Slovenian thermal power plant, from along a state road and also from a reference area. The samples were then analysed to determine the degree of contamination with the metals (Pb, Cd, Zn, Hg, Cu, Mo) and with polycyclic aromatic hydrocarbons (PAHs). This study provides the first data on metal and PAH exposure to small mammals and passerine birds in southeast Europe, focussing on the transfer of metals and PAHs through the food chain and on risk assessment for differently polluted areas in Slovenia. The results indicate that: (i) earthworms and herbaceous plants (especially roots) can be a source of metal exposure for organisms higher in the food chain; (ii) a risk from Pb and Cd (HQ > 1) in the vicinity of the former lead smelter exists for Myodes glareolus feeding in part on roots and for Apodemus flavicollis and Parus major feeding in part on earthworms; and (iii) mean Pb and Cd concentrations in the liver of small mammal species inhabiting the vicinity of the lead smelter reach effect concentrations in a significant proportion of the specimens (Pb: 40%, Cd: 67%); (iv) the results for P. major confirm that the study area is exposed to Pb, Cd, Hg; (v) metals contribute the major part of the total risk for receptor organisms from vicinity of lead smelter. On the contrary, the risk of PAHs for small mammals trapped close to the state road is insignificant. We can summarize, that the hazards experienced by the local ecosystem due to metal exposure may persist for decades in the vicinity of large emission sources (especially smelters).

  1. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  2. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands.

  3. Effects of organism preparation in metallothionein and metal analysis in marine invertebrates for biomonitoring marine pollution.

    PubMed

    Oaten, J F P; Hudson, M D; Jensen, A C; Williams, I D

    2015-06-15

    Metallothionein (MT) is established as a potentially useful biomarker for monitoring aquatic pollution. This paper addresses widespread inconsistencies in storage conditions, tissue type selection and pre-treatment of samples before MT and metal analysis in biomarker studies. This variation hampers comparability and so the widespread implementation of this monitoring approach. Actively sampled Mytilus edulis in Southampton Water, UK were exposed to different storage temperatures, a variety of tissue types were analysed, and various pre-treatments of transportation on ice, transportation in seawater, depuration, and rapid dissection in the field were examined. Storage temperatures of -20 °C were found to be adequate for periods of at least ten weeks, as MT was not reduced by protein degradation compared with samples kept at -80 °C. Whole tissue and digestive gland concentrations of MT and metals were significantly positively correlated and directly relatable. MT in the digestive gland appeared to be more responsive to metals than in whole tissue, where it may be diluted, masking MT responses. However, longer study periods may suffer the effects of mass changes to the digestive gland, which alters MT concentration, and it may therefore be advisable to measure whole tissue. Depuration and transportation in seawater reduced both MT and metal concentrations in the digestive gland, and few correlations between MT and metals were identified for these treatments. It is therefore recommended that: i) samples are transported to the laboratory on ice and dissected as soon as possible thereafter, ii) depuration should not be used when examining MT response to metal exposure until further research clarifying its utility is reported, iii) either whole tissue or the digestive gland can be used to measure MT, though whole tissue may be preferable on long-term studies, and iv) organisms can be stored at -20 °C before analysis for up to ten weeks. These practices can be applied

  4. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    PubMed

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  5. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    SciTech Connect

    Debes, John H.; Walsh, Kevin J.; Stark, Christopher

    2012-03-10

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  6. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil.

    PubMed

    González, V; García, I; Del Moral, F; Simón, M

    2012-02-29

    A metal-arsenic polluted soil from sulphide-mine waste was treated, in all possible combinations, with two different amounts of marble sludge (98% CaCO3), compost (41% organic carbon), and Byferrox (70% Fe). Lixiviate and pore water from each treated and untreated soil were analysed, and lettuce-seed bioassays were performed. None of the treatments decreased the electrical conductivity of lixiviates or the concentrations of all pollutants found in both solutions. Marble sludge and compost increased the pH values and decreased the zinc, cadmium, copper, and lead concentrations in both solutions while increasing the arsenic concentrations in the lixiviates. Byferrox did not alter the physicochemical parameters or the concentrations of zinc, cadmium, copper, or lead in either solution but significantly decreased the arsenic concentrations in pore water. Compared with the Byferrox treatment, the mixture of marble sludge and Byferrox decreased redox potential values, increasing the arsenic concentrations in both solutions and the electrical conductivity of the pore water. All lixiviates were highly phytotoxic and seeds did not germinate. Pore-water phytotoxicity was related to electrical conductivity values and heavy-metal concentrations. The combination of marble sludge and compost was most effective at diminishing toxicity in lettuce. The soils treated with Byferrox, alone or mixed with marble sludge or compost, were the most phytotoxic.

  7. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil.

    PubMed

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2009-10-01

    Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation.

  8. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    PubMed

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  9. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    PubMed

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  10. Assessment of heavy metal pollution in Córdoba (Spain) by biomonitoring foraging honeybee.

    PubMed

    Gutiérrez, Miriam; Molero, Rafael; Gaju, Miquel; van der Steen, Josef; Porrini, Claudio; Ruiz, José Antonio

    2015-10-01

    Due to features that make them outstanding environmental bioindicator, colonies of Apis mellifera are being used to study environmental pollution. The primary objective of this research was to use honeybee colonies to identify heavy metals and determine their utility for environmental management. Five stations each with two A. mellifera hives were strategically located in urban, industrial, agricultural and forested areas within the municipality of Córdoba (Spain), and foraging bees were collected from April to December in 2007, 2009 and 2010 to analyse spatial and temporal variation in Pb, Cr, Ni and Cd pollution. Metal concentrations, in milligram per kilogram of honeybee, were determined by inductively coupled plasma-atomic emission spectrometry and graphite furnace atomic absorption spectrophotometry. Significant differences in concentrations were found among the various locations and periods. The highest number of values exceeding the upper reference thresholds proposed for this study (Pb, 0.7 mg/kg; Cr, 0.12 mg/kg; Ni, 0.3 mg/kg; and Cd, 0.1 mg/kg) was observed for Pb and Cr (6.25% respectively), station S4 (13.22%), year 2007 (20.83%) and in months of May and July (11.90% each). Regarding the Cd, which was analysed only in 2010, the highest number of values exceeding the upper reference thresholds was 40%. Biomonitoring with colonies of A. mellifera could contribute to improved surveillance and control systems for atmospheric pollution by integrating qualitative and quantitative assessments, thus facilitating prevention and readiness in the event of environmental crises.

  11. Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils.

    PubMed

    Rivero-Huguet, Mario; Marshall, William D

    2011-04-01

    Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l'Environnement et des Parcs for the Province of Québec, Canada. The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg(0) particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H(2)-supercritical CO(2) that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al(2)O(3). In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility. PMID:21354593

  12. On-line detection of metal pollutant spikes in MSW incinerator flue gases prior to clean-up

    SciTech Connect

    Poole, D. Sharifi, V.; Swithenbank, J.; Argent, B.; Ardelt, D.

    2007-07-01

    SUWIC's unique mobile metals emissions monitoring laboratory has been used to measure metal pollutant spikes in the flue gas from a municipal solid waste incinerator, prior to gas clean-up. The laboratory has a heated sampling probe that extends into the plant, allowing the simultaneous on-line measurement of the concentrations of more than 30 metals by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). As little is known about temporal variation in metal concentrations, this capability is seen as a major advance. The graphs of continuous measurements show that the elemental loading is far from uniform, and that concentrations fluctuate far more than may have been conventionally expected. There are occasional significant spikes in the emission profiles for cadmium and mercury, which are believed to be due to specific items in the waste feed material. Continuous monitoring measurements are of significant value for those seeking to model metal behaviour in combustion and in pollution control devices.

  13. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    PubMed Central

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  14. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers.

    PubMed

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-11-06

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake's only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr.

  15. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  16. Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005)

    PubMed Central

    Zeger, Scott L.; Dominici, Francesca; McDermott, Aidan; Samet, Jonathan M.

    2008-01-01

    Background Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative. Objectives This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005. Methods By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models. Results In the eastern and central regions, a 10-μg/m3 increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age. Conclusions We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States. PMID:19079710

  17. Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio.

    PubMed

    Morachis-Valdez, Gabriela; Dublán-García, Octavio; López-Martínez, Leticia Xochitl; Galar-Martínez, Marcela; Saucedo-Vence, Karinne; Gómez-Oliván, Leobardo Manuel

    2015-06-01

    Madín Reservoir (MR) is located on the Río Tlalnepantla in Mexico. Previous studies seeking to identify pollutants at this site evidence that MR water contains a considerable metal load as well as nonsteroidal anti-inflammatory drugs (NSAIDs) at concentrations above those determined suitable for aquatic life. This study aimed to evaluate whether chronic exposure to pollutants in MR alters oxidative stress status and flesh quality in muscle of the common carp Cyprinus carpio. The following biomarkers were evaluated in muscle of carp caught in the general area of discharge from the town of Viejo Madín: hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Physicochemical and textural properties of muscle were also evaluated. Results show that the metals Al and Fe were accumulated in muscle of C. carpio at levels of 21.3 and 29.6 μg L(-1), respectively, and the NSAIDs diclofenac, ibuprofen, and naproxen at levels from 0.08 to 0.21 ng L(-1). Fish exposed to discharge from the town of Viejo Madín showed significant increases in HPC (9.77 %), LPX (69.33 %), and PCC (220 %) with respect to control specimens (p < 0.05). Similarly, enzyme activity increased significantly: SOD (80.82 %), CAT (98.03 %), and GPx (49.76 %). In muscle, physicochemical properties evidenced mainly significant reductions compared to control values while textural properties showed significant increases. Thus, water in this reservoir is contaminated with xenobiotics that alter some biological functions in C. carpio, a fish species consumed by the local human population. PMID:25583264

  18. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China. PMID:16828162

  19. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    PubMed

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  20. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning.

    PubMed

    Huber, Maximilian; Welker, Antje; Helmreich, Brigitte

    2016-01-15

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters. PMID:26448594

  1. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  2. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides.

  3. Pollution by Arsenic, Mercury and other Heavy Metals in Sunchulli mining district of Apolobamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime

    2010-05-01

    In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5

  4. Heavy Metal Pollution Characteristics of Surface Sediments in Different Aquatic Ecosystems in Eastern China: A Comprehensive Understanding

    PubMed Central

    Tang, Wenzhong; Shan, Baoqing; Zhang, Wenqiang; Zhang, Hong; Wang, Lishuo; Ding, Yuekui

    2014-01-01

    Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems). The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average). The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment. PMID:25268385

  5. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    PubMed

    Tang, Wenzhong; Shan, Baoqing; Zhang, Wenqiang; Zhang, Hong; Wang, Lishuo; Ding, Yuekui

    2014-01-01

    Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems). The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average). The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  6. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals.

    PubMed

    Collén, J; Pinto, E; Pedersén, M; Colepicolo, P

    2003-10-01

    Heavy metals are environmental pollutants that have the potential to induce severe stress-reactions in organisms on land as well as in the sea. We have studied effects of short term sublethal concentrations of copper (Cu2+) and cadmium (Cd2+) on the reactive oxygen metabolism of the marine red macroalga Gracilaria tenuistipitata. Additions of either 0.2 ppm Cu2+ or 1 ppm Cd2+ caused decreased growth (approximately 60%), increased oxidation of lipids and increased oxidative damage to proteins as shown by increased content of protein carbonyl groups. Together this strongly suggests an induction of oxidative stress. Cu2+ caused more oxidative damage than Cd2+. As a response to the increased oxidative stress, addition of Cu2+ induced the activities of catalase, ascorbate peroxidase, and superoxide dismutase. In contrast, Cd2+ only caused increased catalase activity. Ten-fold lower concentrations of the metals did not cause an increase in enzyme activity. Both heavy metals also increased the content of the antioxidants beta-carotene and lutein. The results show that Cd2+ and, to a larger extent, Cu2+ induce oxidative stress in short-term experiments and the seaweed responds by increasing the activity of the reactive oxygen metabolism. PMID:14674586

  7. Screening of variable importance for optimizing electrodialytic remediation of heavy metals from polluted harbour sediments.

    PubMed

    Pedersen, Kristine B; Lejon, Tore; Ottosen, Lisbeth M; Jensen, Pernille E

    2015-01-01

    Using multivariate design and modelling, the optimal conditions for electrodialytic remediation (EDR) of heavy metals were determined for polluted harbour sediments from Hammerfest harbour located in the geographic Arctic region of Norway. The comparative importance of the variables, current density, remediation time, light/no light, the liquid-solid ratio and stirring rate of the sediment suspension, was determined in 15 laboratory-scale EDR experiments by projection to latent structures (PLS). The relation between the X matrix (experimental variables) and the Y matrix (removal efficiencies) was computed and variable importance in the projection was used to assess the influence of the experimental variables. Current density and remediation time proved to have the highest influence on the remediation of the heavy metals Cr, Cu, Ni, Pb and Zn in the studied experimental domain. In addition, it was shown that excluding the acidification time improved the PLS model, indicating the importance of applying a limited experimental domain that covers the removal phases of each heavy metal in the specific sediment. Based on PLS modelling, the optimal conditions for remediating the Hammerfest sediment were determined; operating in the experimental domain of 0.5-0.8 mA/cm(2) and a remediation time after acidification of 450-570 h met acceptable levels according to Norwegian sediment quality guidelines.

  8. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Salmanzadeh, Mahdiyeh

    2012-08-15

    50 street dust samples from four major streets in eastern and southern Tehran, the capital of Iran, were analyzed for metal pollution (Cu, Cr, Pb, Ni, Cd, Zn, Fe, Mn and Li). Hakanson's method was used to determine the Risk Index (RI) and ecological risks. Amongst these samples, 21 were also analyzed for polycyclic aromatic hydrocarbons (PAHs). Correlation, cluster and principal component analyses identified probable natural and anthropogenic sources of contaminants. The dust had elevated concentrations of Pb, Cd, Cu, Cr, Ni, Zn, Fe and PAHs. Enrichment factors of Cu, Pb, Cd and Zn showed that the dust is extremely enriched in these metals. Multivariate statistical analyses revealed that Cu, Pb, Zn, Fe and PAHs and, to a lesser extent, Cr and Ni have common anthropogenic sources. While Mn and Li were identified to have natural sources, Cd may have different anthropogenic origins. All samples demonstrated high ecological risk. Traffic and related activities, petrogenic and pyrogenic sources are likely to be the main anthropogenic sources of heavy metals and PAHs in Tehran dust.

  9. The impact of a high magnitude flood on metal pollution in a shallow subtropical estuarine embayment.

    PubMed

    Coates-Marnane, J; Olley, J; Burton, J; Grinham, A

    2016-11-01

    Drought-breaking floods pose a risk to coastal water quality as sediments, nutrients, and pollutants stored within catchments during periods of low flow are mobilized and delivered to coastal waters within a short period of time. Here we use subtidal surface sediment surveys and sediment cores to explore the effects of the 2011 Brisbane River flood on trace metals zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), chromium (Cr), manganese (Mn), and phosphorus (P) deposition in Moreton Bay, a shallow subtropical bay in eastern Australia. Concentrations of Zn, Cu, and Pb in sediments in central Moreton Bay derived from the 2011 flood were the highest yet observed in the Bay. We suggest flushing of metal rich sediments which had accumulated on the Brisbane River floodplain and in its estuary during the preceding 10 to 40years of low flows to be the primary source of this increase. This highlights the importance of intermittent high magnitude floods in tidally influenced rivers in controlling metal transport to coastal waters in subtropical regions. PMID:27380395

  10. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs).

    PubMed

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil profile, they pose a threat to groundwater. What is more, after a flood, they may be absorbed by the crops. This paper focuses on the effects of Odra River (Poland) floods, heavy metals, and PAHs on soil and the possibilities of the migration of these pollutants into the soil profile. In the tested sludge samples of floodwater and soil, there were no abnormal concentrations of heavy metals, but the flooding time positively affected the amount listed in the test samples. Concentrations of PAHs increased, but they also exceeded the standards for arable soils in the case of single compounds.

  11. The impact of a high magnitude flood on metal pollution in a shallow subtropical estuarine embayment.

    PubMed

    Coates-Marnane, J; Olley, J; Burton, J; Grinham, A

    2016-11-01

    Drought-breaking floods pose a risk to coastal water quality as sediments, nutrients, and pollutants stored within catchments during periods of low flow are mobilized and delivered to coastal waters within a short period of time. Here we use subtidal surface sediment surveys and sediment cores to explore the effects of the 2011 Brisbane River flood on trace metals zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), chromium (Cr), manganese (Mn), and phosphorus (P) deposition in Moreton Bay, a shallow subtropical bay in eastern Australia. Concentrations of Zn, Cu, and Pb in sediments in central Moreton Bay derived from the 2011 flood were the highest yet observed in the Bay. We suggest flushing of metal rich sediments which had accumulated on the Brisbane River floodplain and in its estuary during the preceding 10 to 40years of low flows to be the primary source of this increase. This highlights the importance of intermittent high magnitude floods in tidally influenced rivers in controlling metal transport to coastal waters in subtropical regions.

  12. Hazardous Metal Pollution in the Republic of Fiji and the Need to Elicit Human Exposure

    PubMed Central

    Park, Eun-Kee; Choi, Hyun-Ju; Wilson, Colleen Turaga; Ueno, Susumu

    2013-01-01

    The fact that hazardous metals do not bio-degrade or bio-deteriorate translates to long-lasting environmental effects. In the context of evidently rapid global industrialization, this ought to warrant serious caution, particularly in developing countries. In the Republic of Fiji, a developing country in the South Pacific, several different environmental studies over the past 20 years have shown levels of lead, copper, zinc and iron in sediments of the Suva Harbor to be 6.2, 3.9, 3.3 and 2.1 times more than the accepted background reference levels, respectively. High levels of mercury have also been reported in lagoon shellfish. These data inevitably warrant thorough assessment of the waste practices of industries located upstream from the estuaries, but in addition, an exposure and health impact assessment has never been conducted. Relevant government departments are duty-bound, at least to the general public that reside in and consume seafood from the vicinities of the Suva Harbor, to investigate possible human effects of the elevated hazardous metal concentrations found consistently in 20 years of surface sediment analysis. Furthermore, pollution of the intermediate food web with hazardous metals should be investigated, regardless of whether human effects are eventually confirmed present or not. PMID:24498594

  13. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs).

    PubMed

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil profile, they pose a threat to groundwater. What is more, after a flood, they may be absorbed by the crops. This paper focuses on the effects of Odra River (Poland) floods, heavy metals, and PAHs on soil and the possibilities of the migration of these pollutants into the soil profile. In the tested sludge samples of floodwater and soil, there were no abnormal concentrations of heavy metals, but the flooding time positively affected the amount listed in the test samples. Concentrations of PAHs increased, but they also exceeded the standards for arable soils in the case of single compounds. PMID:25253915

  14. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants.

    PubMed

    Mânzatu, Carmen; Nagy, Boldizsár; Ceccarini, Alessio; Iannelli, Renato; Giannarelli, Stefania; Majdik, Cornelia

    2015-12-30

    The aim of this study was to investigate the concentrations and pollution levels of heavy metals, organochlorine pesticides, and polycyclic aromatic hydrocarbons in marine sediments from the Leghorn Harbor (Italy) on the Mediterranean Sea. The phytoextraction capacity of three aquatic plants Salvinia natans, Vallisneria spiralis, and Cabomba aquatica was also tested in the removal of lead and copper, present in high concentration in these sediments. The average detectable concentrations of metals accumulated by the plants in the studied area were as follows: >3.328 ± 0.032 mg/kg dry weight (DW) of Pb and 2.641 ± 0.014 mg/kg DW of Cu for S. natans, >3.107 ± 0.034 g/kg DW for V. spiralis, and >2.400 ± 0.029 mg/kg DW for C. aquatica. The occurrence of pesticides was also analyzed in the sediment sample by gas chromatography coupled with mass spectrometry (GC/MS). Due to its metal and organic compound accumulation patterns, S. natans is a potential candidate in phytoextraction strategies. PMID:26515993

  15. Utilization of biomass residues for the remediation of metal-polluted soils

    SciTech Connect

    Fischer, K.; Kettrup, A.; Bipp, H.P.; Riemschneider, P.; Leidmann, P.; Bieniek, D.

    1998-07-15

    The utilization of biomass residues as sources for natural chelates is a new approach to improve the ecological and economical balance of leaching techniques for the remediation of metal-polluted soils. Residues, such as molasses, blood meal, and silage effluents, containing various aliphatic carboxylic acids, sugar acids, and amino acids or their precursor compounds were selected, hydrolyzed and oxidized, if required, and analyzed for their organic constituents. Soils that were contaminated with metals via sewage sludge amendment were extracted in batch and column experiments at various pH values. Grass silage effluent removed {approximately} 75% of Cd and > 50% of Cu and Zn at pH 4.4. The neutralized effluent was less effective except for Cu (69% leached). The neutral blood meal hydrolysate extracted primarily Cu (55--66%) and Ni (38--67%). Metal bonds attacked by this extractant were identified using a sequential leaching procedure. Hydrolysates containing sugar acids mobilized Cu and Pb under alkaline conditions. The actual results support the conclusion that biomass residues have a potential to serve as extractants in remediation techniques.

  16. Biomonitoring of river pollution by heavy metals in reserves on the basis of studies on metal accumulation in the body of aquatic invertebrates

    SciTech Connect

    Zhulidov, A.V.; Emets, V.M.; Shevtsov, A.S.

    1980-05-01

    In recent years particular importance has been attached to biological monitoring, with biosphere reserves moving into the forefront as background-monitoring stations. However, the biomonitoring of river pollution by heavy metals is poorly developed and is not carried out in reserves. The realization of this type of monitoring is prevented in no small degree by the inadequate extent to which the accumulation of heavy metals in the body of freshwater invertebrates has been studied; some data exist on individual species os bivalve and gastropod mollusks, leeches, crustaceans, mayflies, dragonflies dipterous insects, and caddis flies. A number of groups of large freshwater invertebrates important in the biocenological sense, especially bugs and beetles, have not been investigated at all in respect to heavy-metal accumulation. The present communication demonstrates the possibility of utilizing aquatic gastropod mollusks and insects (bugs and beetles) to characterize river pollution by heavy metals in the reserves.

  17. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    PubMed Central

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  18. [Distributions and pollution status of heavy metals in the suspended particles of the estuaries and coastal area of eastern Hainan].

    PubMed

    Xin, Cheng-Lin; Ren, Jing-Ling; Zhang, Gui-Ling; Shao, Ya-Ping; Zhang, Guo-Ling; Liu, Su-Mei

    2013-04-01

    The distributions and pollution status of heavy metals in the suspended particles were investigated in the Wanquan and Wenchang/Wenjiao estuaries and the coastal area of eastern Hainan in July 2008. The concentrations of metal elements (Al, Fe, Mn, Cr, Cu, Ni, V, Zn) were determined by ICP-AES after microwave digestion. Multivariate statistical methods (e. g. correlation analysis and principal factor analysis) were used to discuss the major factors controlling the variability of heavy metal concentrations and the pollution status in those areas. There was an obvious variability in particulate metal concentrations from upstream to estuary of both rivers. The concentrations first increased with increasing salinity and then decreased with further increase of the salinity; the concentrations were slightly higher at the coastal area in the east. The variability of particulate metal concentrations reduced significantly after the normalization by Al, indicating the effects of grain size. Enrichment factor calculation results showed that there was heavy metal pollution (especially Cu, Ni) in the Wenchang/Wenjiao River and estuary, while the situation in Wanquan River remained at pristine level. Concentrations of particulate metals in the study area were mainly controlled by source geology and provenance, as well as contamination from the discharge of waste water and biological activity.

  19. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-12-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  20. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea.

    PubMed

    Huang, Lili; Pu, Xinming; Pan, Jin-Fen; Wang, Bo

    2013-11-01

    The national 'Shandong Peninsula Blue Economic Zone Development Plan' compels the further understanding of the distribution and potential risk of metals pollution in the east coast of China, where the rapid economic and urban development have been taken off and metal pollution has become a noticeable problem. Surface sediments collected from the largest swan habitat in Asia, the Swan Lake lagoon and the surrounding coastal area in Rongcheng Bay in northern Yellow Sea, were analyzed for the total metal concentrations and chemical phase partitioning of five heavy metals (Cu, Zn, Pb, Cd, and Cr). Metal contents in the studied region have increased significantly in the past decade. The speciation analyzed by the sequential extraction showed that Zn and Cr were present dominantly in the residual fraction and thus of low bioavailability, while Cd, Pb and Cu were found mostly in the non-residual fraction thus of high potential availability, indicating significant anthropogenic sources. Among the five metals, Cd is the most outstanding pollutant and presents high risk, and half of the surface sediments in the studied region had a 21% probability of toxicity based on the mean Effect Range-Median Quotient. At some stations with comparable total metal contents, remarkably different non-residual fraction portions were determined, pointing out that site-specific risk assessment integrating speciation is crucial for better management practices of coastal sediments.

  1. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    PubMed

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  2. Pop, heavy metal and the blues: secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey

    PubMed Central

    Berk, Michael; Williams, Lana J; Andreazza, Ana C; Pasco, Julie A; Dodd, Seetal; Jacka, Felice N; Moylan, Steven; Reiner, Eric J; Magalhaes, Pedro V S

    2014-01-01

    Objectives Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms. Setting National Health and Nutrition Examination Survey (NHANES). Participants A total of 15 140 eligible people were included across the three examined waves of NHANES. Primary and secondary outcome measures Depressive symptoms were assessed using the nine-item version of the Patient Health Questionnaire (PHQ-9), using a cut-off point of 9/10 as likely depression cases. Organic pollutants and heavy metals, including cadmium, lead and mercury, as well as polyfluorinated compounds (PFCs), pesticides, phenols and phthalates, were measured in blood or urine. Results Higher cadmium was positively associated with depression (adjusted Prevalence Ratios (PR)=1.48, 95% CI 1.16 to 1.90). Higher levels of mercury were negatively associated with depression (adjusted PR=0.62, 95% CI 0.50 to 0.78), and mercury was associated with increased fish consumption (n=5500, r=0.366, p<0.001). In addition, several PFCs (perfluorooctanoic acid, perfluorohexane sulfonic acid, perfluorodecanoic acid and perfluorononanoic acid) were negatively associated with the prevalence of depression. Conclusions Cadmium was associated with an increased likelihood of depression. Contrary to hypotheses, many of persistent environmental pollutants were not associated or negatively associated with depression. While the inverse association between mercury and depressive symptoms may be explained by a protective role for fish consumption, the negative associations with other pollutants remains unclear. This exploratory study suggests the need for

  3. Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia.

    PubMed

    Ayari, J; Agnan, Y; Charef, A

    2016-07-01

    An extensive spatial survey was conducted on trace metal content in stream sediments from Oued El Maadene basin, northern Tunisia. Our objectives were to evaluate the level of trace metal pollution and associated ecological risk and identify the major sources of metal pollution. A total of 116 stream sediment samples were collected and analysed for total As, Cd, Cr, Cu, Ni, Pb, V, Zn, and Zr concentrations. The results showed that concentrations of Cr, Ni, V, and Zr were close to natural levels. In contrast, As, Cd, Cu, Pb, and Zn had elevated concentrations and enrichment factors compared to other contaminated regions in northern Tunisia. Ecological risk to aquatic ecosystems was highlighted in most areas. Principal component analysis showed that Cr, Ni, V, and Zr mainly derived from local soil and bedrock weathering, whilst As, Cd, Pb, and Zn originated from mining wastes. Trace metals could be dispersed downstream of tailings, possibly due to surface runoff during the short rainy season. Surprisingly, Cu, and to a lesser extent As, originated from agricultural activities, related to application of Cu-based fungicides in former vineyards and orchards. This study showed that, despite the complete cessation of mining activities several decades ago, metal pollution still impacts the local environment. This large pollution, however, did not mask other additional sources, such as local agricultural applications of fungicides. PMID:27270485

  4. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    PubMed

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.

  5. Epidemiologic investigation to identify chronic health effects of ambient air pollutants in Southern California. Phase 2. Final report

    SciTech Connect

    Peters, J.M.

    1997-09-01

    The Phase II cross-sectional study was conducted to provide early information on the possible chronic effects of air pollution in Southern California children and to determine, if effects are found, which pollutant (or pollutants) is responsible. Annual questionnaires were completed on these children which covered health history (including history of wheezing, asthma, bronchitis, pneumonia and other respiratory conditions), residential history, housing characteristics (such as heating and air conditioning practices), and history of exposure to other possibly harmful agents, such as tobacco smoke (both active and passive smoking). In addition, the usual physical and outdoor/indoor activity of each subject was ascertained. The lung function of each subject was assessed annually to determine ventilatory capacity. School absenses were recorded to determine frequency and severity of respiratory illnesses. After the development and deployment of the instrumentation, monitoring for air pollutants was conducted for the twelve communities, the schools and a sample of the subject`s residences. Ozone, PM{sub 10}, PM{sub 2.5}, NO{sub 2}, and acid vapor conce