Science.gov

Sample records for chytridiomycete blastocladiella emersonii

  1. Comparative EST analysis provides insights into the basal aquatic fungus Blastocladiella emersonii

    PubMed Central

    Ribichich, Karina F; Georg, Raphaela C; Gomes, Suely L

    2006-01-01

    Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi. PMID:16836762

  2. Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii.

    PubMed

    Camilo, César M; Gomes, Suely L

    2010-06-01

    Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.

  3. Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Camilo, César M

    2011-08-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class.

  4. Esterase activity during the life cycle of Blastocladiella emersonii.

    PubMed Central

    Barbieri, C L; Camargo, E P

    1975-01-01

    Total esterase activity was measured in extracts on Blastocladiella throughout its life cycle by the degradation of alpha-naphthyl acetate. A fivefold incease in activity, apparently due to the synthesis of new enzymes, was found during sporulation. PMID:1194246

  5. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.

    PubMed

    Avelar, Gabriela Mól; Glaser, Talita; Leonard, Guy; Richards, Thomas A; Ulrich, Henning; Gomes, Suely L

    2015-09-01

    Phototaxis in flagellated zoospores of the aquatic fungus Blastocladiella emersonii depends on a novel photosensor, Blastocladiella emersonii GC1 (BeGC1), comprising a type I (microbial) rhodopsin fused to a guanylyl cyclase catalytic domain, that produces the conserved second messenger cyclic GMP (cGMP). The rapid and transient increase in cGMP levels during the exposure of zoospores to green light was shown to be necessary for phototaxis and dependent on both rhodopsin function and guanylyl cyclase activity. It is noteworthy that BeGC1 was localized to the zoospore eyespot apparatus, in agreement with its role in the phototactic response. A putative cyclic nucleotide-gated channel (BeCNG1) was also identified in the genome of the fungus and was implicated in flagellar beating via the action of a specific inhibitor (l-cis-diltiazem) that compromised zoospore motility. Here we show that B. emersonii expresses a K(+) channel that is activated by cGMP. The use of specific channel inhibitors confirmed the activation of the channel by cGMP and its K(+) selectivity. These characteristics are consistent with the function of an ion channel encoded by the BeCNG1 gene. Other blastocladiomycete fungi, such as Allomyces macrogynus and Catenaria anguillulae, possess genes encoding a similar K(+) channel and the rhodopsin-guanylyl cyclase fusion protein, while the genes encoding both these proteins are absent in nonflagellated fungi. The presence of these genes as a pair seems to be an exclusive feature of blastocladiomycete fungi. Taken together, these data demonstrate that the B. emersonii cGMP-activated K(+) channel is involved in the control of zoospore motility, most probably participating in the cGMP-signaling pathway for the phototactic response of the fungus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Changes in the pattern of protein synthesis during zoospore germination in Blastocladiella emersonii.

    PubMed Central

    Silva, A M; Maia, J C; Juliani, M H

    1987-01-01

    Using two-dimensional gel electrophoresis, we analyzed the pattern of proteins synthesized during Blastocladiella emersonii zoospore germination in an inorganic solution, in both the presence and absence of actinomycin D. During the transition from zoospore to round cells (the first 25 min), essentially no qualitative differences were noticeable, indicating that the earliest stages of germination are entirely preprogrammed with stored RNA. Later in germination (after 25 min), however, changes in the pattern of protein synthesis were found. Some of these proteins (a total of 6 polypeptides) correspond possibly to a selective translation of stored messages, whereas the majority of the changed proteins (22 polypeptides) corresponds to newly synthesized mRNA. Thus, multiple levels of protein synthesis regulation seem to occur during zoospore germination, involving both transcriptional and translational controls. We also analyzed the pattern of protein synthesis during germination in a nutrient medium; synthesis of specific polypeptides occurred during late germination. During early germination posttranslational control was also observed, several labeled proteins from zoospores being specifically degraded or charge modified. Images PMID:3571161

  7. Protein Degradation and Protease Activity During the Life Cycle of Blastocladiella emersonii

    PubMed Central

    Lodi, W. R.; Sonneborn, D. R.

    1974-01-01

    Analysis of protein degradation during the life cycle of Blastocladiella emersonii showed that (i) protein degradation is especially high during two phases of differentiation (sporulation, 12%/h and germination, 5%/h) in contrast with a much smaller degradation rate in the other phases (growth and zoospores, less than 1%/hr); (ii) protein degradation during germination in growth medium, as well as most of the germination process, is quantitatively unaffected by cycloheximide; (iii) a caseinolytic protease (pH optimum 5.5, apparent molecular weight 55,000 to 60,000) is present in extracts of zoospores and germinating cells; (iv) this protease activity is very low (perhaps absent) in extracts of late growth phase cells, but reappears during induced sporulation; (v) a different class of caseinolytic protease activity (pH optima 7 and 10; apparent molecular weight 25,000 to 30,000) is found in cellular extracts of late growth phase and early phases of sporulation; (vi) the latter class of enzyme activity is released into the medium during later phases of sporulation and is replaced in the cells by the former class. Speculations as to the roles of protein degradation in cell differentiation are discussed. PMID:4813892

  8. Variation in levels of enzymes related to energy metabolism in alternative developmental pathways of Blastocladiella emersonii.

    PubMed

    Ingebretsen, O C; Sanner, T

    1976-06-01

    The activities of phosphofructokinase (PFK), fructose diphosphatase (FDP), nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP)-linked isocitrate dehydrogenases (IDHNAD, IDHNADP), two NAD-linked glutamate dehydrogenases (GDH1, GDH2), and isocitrate lyase were studied during the development of the two phenotypes, ordinary colorless and resistant sporangia (OC and RS plants), of water mold Blastocladiella emersonii in synchronized liquid cultures. The OC plants had a generation time of about 12 h, whereas the RS plants required 3.5 days to reach maturity. All the enzymes were present throughout the development of both phenotypes. In zoospores, PFK, FDP, and GDH2 were localized in the cytosol. The IDHNADP activity was distributed with two-thirds in the soluble and one-third in the particulate fraction. GDH1 and IDHNAD showed the same distribution and were predominantly present in the particulate fraction, presumably in the mitochondria. Isocitrate lyase was found in the particulate fraction. The enzyme levels changed considerably during development. FDP and IDHNADP varied in a parallel manner. Similarly, the three enzymes PFK, IDHNAD and GDH1 showed parallel variations. The activity patterns for all enzymes were different for the OC and RS pathways. Isocitrate lyase exhibited the largest changes in activity during development. Thus, during OC plant formation, its activity decreased by a factor of 20. GDH2 varied similarly to PFK and IDHNADP during OC plant development, whereas it behaved like isocitrate lyase during RS plant development. The ratios between anabolic and catabolic enzymes were higher in mature plants than in zoospores and higher in RS plants than in OC plants. The results indicate that the variations in the enzyme levels are secondary to the critical changes involved in the transition from one developmental pathway to the other.

  9. Circulation of potassium across the plasma membrane of Blastocladiella emersonii: K+ channel.

    PubMed Central

    Van Brunt, J; Caldwell, J H; Harold, F M

    1982-01-01

    A previous paper reported that the water mold Blastocladiella emersonii generates a transcellular electrical current, such that positive charges enter the rhizoid and leave from the thallus (Stump et al., Proc. Natl. Acad. Sci. U.S.A. 77: 6673-6677, 1980). To begin to understand the genesis of this current we investigated ionic relationships in this organism by use of intracellular microelectrodes. In cells suspended in buffered CaCl2, the membrane potential could be accounted for as a K+ diffusion potential; no evidence for an electrogenic pump was obtained. Potassium ions diffuse outward by a pathway that also carries Rb+ and Ba2+, but excludes both smaller and larger ions (Li+, Na+, Cs+, Mg2+, Ca2+, and choline). Chloride and other anions make little contribution to the potential, but the presence of Ca2+ in the external medium is required for successful potential measurements. In growing cells, the internal K+ concentration is generally somewhat higher than would be expected if the K+ distribution were determined entirely by the membrane potential. Under certain conditions, net uptake of K+ against the electrochemical potential gradient was observed. We suggest that K+ is actively accumulated by a primary transport system that may exchange K+ for H+, and that K+ leaks passively outward through the K+ channel. The K+ circulation across the membrane amounts to about 2% of the K+ pool per min, or 4.5 microA/cm2 of surface area. We propose that this K+ circulation is one arm of the transcellular current, carrying positive charge out of the thallus. Images PMID:6281245

  10. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

    PubMed

    Scheib, Ulrike; Stehfest, Katja; Gee, Christine E; Körschen, Heinz G; Fudim, Roman; Oertner, Thomas G; Hegemann, Peter

    2015-08-11

    Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences. Copyright © 2015, American Association for the Advancement of Science.

  11. Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus Blastocladiella emersonii.

    PubMed

    Trieu, Melissa M; Devine, Erin L; Lamarche, Lindsey B; Ammerman, Aaron E; Greco, Jordan A; Birge, Robert R; Theobald, Douglas L; Oprian, Daniel D

    2017-06-23

    RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus Blastocladiella emersonii It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λmax = 390 nm; D380N, λmax = 506 nm) and one with red-shifted (D380E, λmax = 533 nm) absorption maxima relative to the wild-type protein (λmax = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Transcriptional Response to Hypoxia in the Aquatic Fungus Blastocladiella emersonii▿†

    PubMed Central

    Camilo, César M.; Gomes, Suely L.

    2010-01-01

    Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe2+ ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1α, caused a significant decrease in the levels of certain upregulated hypoxic genes. PMID:20418381

  13. Molecular evolution of the fungi: relationship of the Basidiomycetes, Ascomycetes, and Chytridiomycetes.

    PubMed

    Bowman, B H; Taylor, J W; Brownlee, A G; Lee, J; Lu, S D; White, T J

    1992-03-01

    Establishing the phylogeny of fungi and protists often has proved difficult owing to the simple morphologies and convergent characters in these organisms. We used DNA sequences of nuclear small-subunit ribosomal RNA genes to determine phylogenetic relationships among three major classes of organisms considered to be fungi--Basidiomycetes, Ascomycetes and Chytridiomycetes--and to assess the taxonomic position of Neocallimastix, an economically important anaerobic rumen microorganism whose classification is controversial. The Basidiomycetes and Ascomycetes, two classes of nonflagellated fungi, are the most closely related taxa. Chytridiomycetes, though bearing flagella, group with these higher fungi rather than with the protists. Neocallimastix, a eukaryote lacking mitochondria and variously classified as a protist or as a fungus, shows closest molecular affinities with the Chytridiomycete fungi in the order Spizellomycetales.

  14. Origin, evolution, and mechanism of 5′ tRNA editing in chytridiomycete fungi

    PubMed Central

    LAFOREST, MARIE-JOSÉE; BULLERWELL, CHARLES E.; FORGET, LISE; LANG, B. FRANZ

    2004-01-01

    5′ tRNA editing has been demonstrated to occur in the mitochondria of the distantly related rhizopod amoeba Acanthamoeba castellanii and the chytridiomycete fungus Spizellomyces punctatus. In these organisms, canonical tRNA structures are restored by removing mismatched nucleotides at the first three 5′ positions and replacing them with nucleotides capable of forming Watson–Crick base pairs with their 3′ counterparts. This form of editing seems likely to occur in members of Amoebozoa other than A. castellanii, as well as in members of Heterolobosea. Evidence for 5′ tRNA editing has not been found to date, however, in any other fungus including the deeply branching chytridiomycete Allomyces macrogynus. We predicted that a similar form of tRNA editing would occur in members of the chytridiomycete order Monoblepharidales based on the analysis of complete mitochondrial tRNA complements. This prediction was confirmed by analysis of tRNA sequences using a tRNA circularization/ RT-PCR-based approach. The presence of partially and completely unedited tRNAs in members of the Monoblepharidales suggests the involvement of a 5′-to-3′ exonuclease rather than an endonuclease in removing the three 5′ nucleotides from a tRNA substrate. Surprisingly, analysis of the mtDNA of the chytridiomycete Rhizophydium brooksianum, which branches as a sister group to S. punctatus in molecular phylogenies, did not suggest the presence of editing. This prediction was also confirmed experimentally. The absence of tRNA editing in R. brooksianum raises the possibility that 5′ tRNA editing may have evolved twice independently within Chytridiomycota, once in the lineage leading to S. punctatus and once in the lineage leading to the Monoblepharidales. PMID:15247432

  15. Talaromyces emersonii thermostable enzyme systems and their applications in wheat baking systems.

    PubMed

    Waters, Deborah M; Murray, Patrick G; Ryan, Liam A; Arendt, Elke K; Tuohy, Maria G

    2010-06-23

    In this study, novel extracellular thermozymes were produced by the thermophilic fungus Talaromyces emersonii (IMI 392299) on low-cost carbon inducers. This paper reports the cocktail characterization, substrate hydrolysis studies, and their application in baking. Relevant enzymes were optimally active at pH 4.5-5.0 and 70 degrees C. Model studies confirmed production of significant levels of yeast monosaccharide sugars during cereal flour hydrolysis. The "thermozyme cocktails" are thermostable secreted T. emersonii enzyme blends. In baking trials, these thermozyme cocktails showed significant improvements in bread quality with respect to hardness, staling, and loaf volume (p < 0.5). Thermozyme cocktail B- treated loaf volume was 23.2% greater than the control and 49.5% softer. Staling analysis showed that bread treated with cocktail B was 41.7% softer than the control. This is the first report of T. emersonii thermozymes positively influencing bread quality.

  16. Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii.

    PubMed

    O'Donoghue, Anthony J; Mahon, Cathal S; Goetz, David H; O'Malley, James M; Gallagher, Denise M; Zhou, Min; Murray, Patrick G; Craik, Charles S; Tuohy, Maria G

    2008-10-24

    The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1' such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (k(cat)/K(m)=2 x 10(5) m(-1) s(-1)). Maximum hydrolysis occurs at pH 3.4 and 50 degrees C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (K(i)=1.5 nM), as well as a portion of the propeptide sequence, PT1 (K(i)=32 nM). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii.

  17. Gromochytrium mamkaevae gen. & sp. nov. and two new orders: Gromochytriales and Mesochytriales (Chytridiomycetes).

    PubMed

    Karpov, S A; Kobseva, A A; Mamkaeva, M A; Mamkaeva, K A; Mikhailov, K V; Mirzaeva, G S; Aleoshin, V V

    2014-06-01

    During the last decade several new orders were established in the class Chytridiomycetes on the basis of zoospore ultrastructure and molecular phylogeny. Here we present the ultrastructure and molecular phylogeny of strain x-51 CALU - a parasite of the alga Tribonema gayanum, originally described as Rhizophydium sp. based on light microscopy. Detailed investigation revealed that the zoospore ultrastructure of this strain has unique characters not found in any order of Chytridiomycetes: posterior ribosomal core unbounded by the endoplasmic reticulum and detached from the nucleus or microbody-lipid complex, and kinetosome composed of microtubular doublets. An isolated phylogenetic position of x-51 is further confirmed by the analysis of 18S and 28S rRNA sequences, and motivates the description of a new genus and species Gromochytrium mamkaevae. The sister position of G. mamkaevae branch relative to Mesochytrium and a cluster of environmental sequences, as well as the ultrastructural differences between Gromochytrium and Mesochytrium zoospores prompted us to establish two new orders: Gromochytriales and Mesochytriales.

  18. NUTRIENT COMPOSITION DEGRADATION OF DAPHNIA PULICARIA BY A HIGHLY PREVALENT CHYTRIDIOMYCETE FUNGAL PATHOGEN (POLYCARYUM LEAVE) DURING NATURALLY OCCURRING LAKE-WIDE EPIDEMICS.

    EPA Science Inventory

    Despite evidence illustrating that chytridiomycete fungal infection can be highly prevalent in Daphnia (>80%) and that infected individuals are preferentially consumed by fish, no studies have measured the nutritional consequences of using chytrid-infected Daphnia as a food sourc...

  19. NUTRIENT COMPOSITION DEGRADATION OF DAPHNIA PULICARIA BY A HIGHLY PREVALENT CHYTRIDIOMYCETE FUNGAL PATHOGEN (POLYCARYUM LEAVE) DURING NATURALLY OCCURRING LAKE-WIDE EPIDEMICS.

    EPA Science Inventory

    Despite evidence illustrating that chytridiomycete fungal infection can be highly prevalent in Daphnia (>80%) and that infected individuals are preferentially consumed by fish, no studies have measured the nutritional consequences of using chytrid-infected Daphnia as a food sourc...

  20. Cellulose hydrolysis by the cellulases produced by Talaromyces emersonii when grown on different inducing substrates

    SciTech Connect

    Moloney, A.P.; Considine, P.J.; Coughlan, M.P.

    1983-04-01

    Pulp obtained from the processing of sugar beet at a local factory is mixed with molasses and sold as cattle food. However, the value of the pulp would be increased considerably if its constituent cellulose and hemicellulose fractions could be converted to fermentable sugars. To this end we are investigating the enzymic hydrolysis of beet pulp using the cellulase system produced by the thermophilic fungus, Talaromyces emersonii. In this Communication, we report on the initial results of studies. (Refs. 21).

  1. Characterisation of a Talaromyces emersonii thermostable enzyme cocktail with applications in wheat dough rheology.

    PubMed

    Waters, Deborah M; Ryan, Liam A M; Murray, Patrick G; Arendt, Elke K; Tuohy, Maria G

    2011-07-10

    In this paper, we report new sequence data for secreted thermostable fungal enzymes from the un-sequenced xylanolytic filamentous fungus Talaromyces emersonii and reveal novel insights on the potential role of enzymes relevant as wheat dough improvers. The presence of known and de novo enzyme sequences were confirmed through NanoLC-ESI-MS/MS and resultant peptide sequences were identified using SWISS PROT databases. The de novo protein sequences were assigned identity based on homology to known fungal proteins. Other proteins were assigned function based on the limited T. emersonii genome coverage. This approach allowed the identification of enzymes with relevance as wheat dough improvers. Rheological examination of wheat dough and wheat flour components treated with the thermostable fungal enzyme cocktail revealed structural alterations that can be extrapolated to the baking process. Thermoactive amylolytic, xylanolytic, glucanolytic, proteolytic and lipolytic enzyme activities were observed. Previously characterized T. emersonii enzymes present included; β-glucosidase, xylan-1,4-β-xyloxidase, acetylxylan esterase, acid trehalase, avenacinase, cellobiohydrolase and endo-glucanase. De novo sequence analysis confirmed peptides as being; α-glucosidase, endo-1,4-β-xylanase, endo-arabinase, endo-glucanase, exo-β-1,3-glucanase, glucanase/cellulase, endopeptidase and lipase/acylhydrolase. Rheology tests using wheat dough and fractioned wheat flour components in conjunction with T. emersonii enzymes show the role of these novel biocatalysts in altering properties of wheat substrates. Enzyme treated wheat flour fractions showed the effects of particular enzymes on appropriate substrates. This proteomic approach combined with rheological characterization is the first such report to the authors' knowledge.

  2. Festering food: chytridiomycete pathogen reduces quality of Daphnia host as a food resource.

    PubMed

    Forshay, Kenneth J; Johnson, Pieter T J; Stock, Melanie; Peñalva, Carolina; Dodson, Stanley I

    2008-10-01

    When parasitic infections are severe or highly prevalent among prey, a significant component of the predator's diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of infection status are largely absent. We measured the nutritional consequences of chytridiomycete infections in Daphnia, which achieve high prevalence in lake ecosystems (>80%), and tested the hypothesis that Daphnia pulicaria infected with Polycaryum laeve are diminished in food quality relative to uninfected hosts. Compared with uninfected adults, infected individuals were smaller, contained less nitrogen and phosphorus, and were lower in several important fatty acids. Infected zooplankton had significantly shorter carapace lengths (8%) and lower mass (8-20%) than uninfected individuals. Parasitized animals contained significantly less phosphorus (16-18% less by dry mass) and nitrogen (4-6% less) than did healthy individuals. Infected individuals also contained 26-34% less saturated fatty acid and 31-42% less docosahexaenoic acid, an essential fatty acid that is typically low in cladocera, but critical to fish growth. Our results suggest that naturally occurring levels of chytrid infections in D. pulicaria populations reduce the quality of food available to secondary consumers, including planktivorous fishes, with potentially important effects for lake food webs.

  3. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii.

    PubMed

    Tuohy, Maria G; Walsh, Daniel J; Murray, Patrick G; Claeyssens, Marc; Cuffe, Michelle M; Savage, Angela V; Coughlan, Michael P

    2002-04-29

    Three forms of cellobiohydrolase (EC 3.2.1.91), CBH IA, CBH IB and CBH II, were isolated to apparent homogeneity from culture filtrates of the aerobic fungus Talaromyces emersonii. The three enzymes are single sub-unit glycoproteins, and unlike most other fungal cellobiohydrolases are characterised by noteworthy thermostability. The kinetic properties and mode of action of each enzyme against polymeric and small soluble oligomeric substrates were investigated in detail. CBH IA, CBH IB and CBH II catalyse the hydrolysis of microcrystalline cellulose, albeit to varying extents. Hydrolysis of a soluble cellulose derivative (CMC) and barley 1,3;1,4-beta-D-glucan was not observed. Cellobiose (G2) is the main reaction product released by CBH IA, CBH IB, and CBH II from microcrystalline cellulose. All three CBHs are competitively inhibited by G2; inhibition constant values (K(i)) of 2.5 and 0.18 mM were obtained for CBH IA and CBH IB, respectively (4-nitrophenyl-beta-cellobioside as substrate), while a K(i) of 0.16 mM was determined for CBH II (2-chloro-4-nitrophenyl-beta-cellotrioside as substrate). Bond cleavage patterns were determined for each CBH on 4-methylumbelliferyl derivatives of beta-cellobioside and beta-cellotrioside (MeUmbG(n)). While the Tal. emersonii CBHs share certain properties with their counterparts from Trichoderma reesei, Humicola insolens and other fungal sources, distinct differences were noted.

  4. An enigmatic fossil fungus from the 410 Ma Rhynie chert that resembles Macrochytrium (Chytridiomycota) and Blastocladiella (Blastocladiomycota).

    PubMed

    Krings, Michael; Taylor, Thomas N; Martin, Helmut

    2016-01-01

    Litter layers in the Lower Devonian (~ 410 Ma) Rhynie chert were inhabited by a wide variety of saprotrophic fungi, however, only a few of these organisms have been described formally. A new microfungus, Trewinomyces annulifer gen. et sp. nov., occurs as tufts on decaying land plant axes from the Rhynie chert. The fungus consists of an intramatrical rhizoidal system and an erect extramatrical hypha (stalk) that bears a single, terminal sporangium. One or two successive rings often are present in the stalk immediately below the sporangium base. Overall morphology of T. annulifer resembles the extant genera Macrochytrium (Chytridiomycota) and Blastocladiella (Blastocladiomycota). However, the rhizoids are septate or pseudoseptate, a feature not known in extant zoosporic fungi, and thus render the systematic affinities of T. annulifer unresolved. Trewinomyces annulifer offers a rare view of the morphology of a distinctive Early Devonian saprotrophic microfungus. © 2016 by The Mycological Society of America.

  5. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    PubMed

    Boxma, Brigitte; Voncken, Frank; Jannink, Sander; van Alen, Theo; Akhmanova, Anna; van Weelden, Susanne W H; van Hellemond, Jaap J; Ricard, Guenola; Huynen, Martijn; Tielens, Aloysius G M; Hackstein, Johannes H P

    2004-03-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of pyruvate, which is in marked contrast to the hydrogenosomal metabolism of the anaerobic parabasalian flagellates Trichomonas vaginalis and Tritrichomonas foetus, because these organisms decarboxylate pyruvate with the aid of pyruvate:ferredoxin oxidoreductase (PFO). Here, we show that the chytrids Piromyces sp. E2 and Neocallimastix sp. L2 also possess an alcohol dehydrogenase E (ADHE) that makes them unique among hydrogenosome-bearing anaerobes. We demonstrate that Piromyces sp. E2 routes the final steps of its carbohydrate catabolism via PFL and ADHE: in axenic culture under standard conditions and in the presence of 0.3% fructose, 35% of the carbohydrates were degraded in the cytosol to the end-products ethanol, formate, lactate and succinate, whereas 65% were degraded via the hydrogenosomes to acetate and formate. These observations require a refinement of the previously published metabolic schemes. In particular, the importance of the hydrogenase in this type of hydrogenosome has to be revisited.

  6. Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii.

    PubMed

    Murray, Patrick; Aro, Nina; Collins, Catherine; Grassick, Alice; Penttilä, Merja; Saloheimo, Markku; Tuohy, Maria

    2004-12-01

    The gene encoding a thermostable beta-glucosidase (cel3a) was isolated from the thermophilic fungus Talalaromyces emersonii by degenerate PCR and expressed in the filamentous fungus Trichoderma reesei. The cel3a gene encodes an 857 amino acid long protein with a calculated molecular weight of 90.59 kDa. Tal. emersonii beta-glucosidase falls into glycosyl hydrolase family 3, showing approximately 56 and 67% identity with Cel3b (GenBank ) from T. reesei, and a beta-glucosidase from Aspergillus Niger (GenBank ), respectively. The heterologously expressed enzyme, Cel3a, was a dimer equal to 130 kDa subunits with 17 potential N-glycosylation sites and a previously unreported beta-glucosidase activity produced extracellularly by Tal. emersonii. Cel3a was thermostable with an optimum temperature of 71.5 degrees C and half life of 62 min at 65 degrees C and was a specific beta-glucosidase with no beta-galactosidase side activity. Cel3a had a high specific activity against p-nitrophenyl-beta-D-glucopyranoside (Vmax, 512 IU/mg) and was competitively inhibited by glucose (k(i), 0.254 mM). Cel3a was also active against natural cellooligosacharides with glucose being the product of hydrolysis. It displayed transferase activity producing mainly cellobiose from glucose and cellotetrose from cellobiose.

  7. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor.

    PubMed

    Xu, Meng; Bernards, Matthew; Hu, Zhiqiang

    2014-02-01

    An algae-based membrane bioreactor (A-MBR) was evaluated for high-density algae cultivation and phosphorus (P) removal. The A-MBR was seeded with Chlorella emersonii and operated at a hydraulic retention time of 1day with minimal biomass wastage for about 150days. The algae concentration increased from initially 385mg/L (or 315mg biomass COD/L) to a final of 4840mg/L (or 1664mg COD/L), yielding an average solids (algae biomass+minerals) production rate of 32.5gm(-3)d(-1) or 6.2gm(-2)d(-1). The A-MBR was able to remove 66±9% of the total P from the water while the algal biomass had an average of 7.5±0.2% extracellular P and 0.4% of intracellular P. The results suggest that algae-induced phosphate precipitation by algae is key to P removal and high-density algae cultivation produces P-rich algal biomass with excellent settling properties.

  8. Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii.

    PubMed

    Mahon, Cathal S; O'Donoghue, Anthony J; Goetz, David H; Murray, Patrick G; Craik, Charles S; Tuohy, Maria G

    2009-11-01

    Fungi are capable of degrading proteins in their environment by secreting peptidases. However, the link between extracellular digestion and intracellular proteolysis has scarcely been investigated. Mycelial lysates of the filamentous fungus Talaromyces emersonii were screened for intracellular peptidase production. Five distinct proteolytic activities with specificity for the p-nitroanilide (pNA) peptides Suc-AAPF-pNA, Suc-AAA-pNA, K-pNA, F-pNA and P-pNA were identified. The native enzyme responsible for the removal of N-terminal proline residues was purified to homogeneity by ammonium sulfate fractionation followed by five successive chromatographic steps. The enzyme, termed Talaromyces emersonii prolyl aminopeptidase (TePAP), displayed a 50-fold specificity for cleaving N-terminal Pro-X (k(cat)/K(m)=2.1 x 10(6) M(-1) s(-1)) compared with Ala-X or Val-X bonds. This intracellular aminopeptidase was optimally active at pH 7.4 and 50 degrees C. Peptide sequencing facilitated the design of degenerate oligonucleotides from homologous sequences encoding putative fungal proline aminopeptidases, enabling subsequent cloning of the gene. TePAP was shown to be relatively uninhibited by classical serine peptidase inhibitors and to be sensitive to selected cysteine- and histidine-modifying reagents, yet gene sequence analysis identified the protein as a serine peptidase with an alpha/beta hydrolase fold. Northern analysis indicated that Tepap mRNA levels were regulated by the composition of the growth medium. Highest Tepap transcript levels were observed when the fungus was grown in medium containing glucose and the protein hydrolysate casitone. Interestingly, both the induction profile and substrate preference of this enzyme suggest potential co-operativity between extracellular and intracellular proteolysis in this organism. Gel filtration chromatography suggested that the enzyme exists as a 270 kDa homo-hexamer, whereas most bacterial prolyl aminopeptidases (PAPs) are

  9. Comparison of wild-type and UV-mutant beta-glucanase-producing strains of Talaromyces emersonii with potential in brewing applications.

    PubMed

    McCarthy, Tracey C; Lalor, Eoin; Hanniffy, Orla; Savage, Angela V; Tuohy, Maria G

    2005-04-01

    A screen of 46 UV-mutant strains of the moderately thermophilic fungus Talaromyces emersonii yielded two mutants (TC2, TC5) that displayed gross morphological differences to the parent strain and enhanced activity against mixed linkage cereal beta-glucans. Activity against beta-(1, 3)(1, 4)-D: -glucan from barley (BBGase) was measured during growth of the mutant and wild-type strains on a variety of carbon sources, ranging from solka floc to crude cereal fractions. In liquid culture, TC2 and TC5 secreted 1.2- to 8.6-fold more BBGase than the parent strain and markedly less beta-glucosidase (exo-activity); enzyme levels were dependent on the carbon source. Cellulose induced high BBGase. However, beet pulp, wheat bran, carob and tea-leaves were cheap and effective inducers. T. emersonii wild-type, TC2 and TC5 crude enzyme preparations achieved similar end-points during the hydrolysis of commercial barley beta-glucan (13.0-16.9%), but were more active against crude beta-glucan from barley (16.0-24.2% hydrolysis). The products of hydrolysis were quantified by high-performance anion-exchange chromatography. Mash trials indicated that enzyme preparations from all three organisms effected a significant reduction in wort viscosity and residual mash beta-glucan. Finally, TC2 and TC5 produce more efficient beta-glucan-depolymerizing enzymes; and wheat bran and solka floc can be used to provide inexpensive and potent enzyme cocktails with potential in brewing applications.

  10. A thermophilic endo-1,4-β-glucanase from Talaromyces emersonii CBS394.64 with broad substrate specificity and great application potentials.

    PubMed

    Wang, Kun; Luo, Huiying; Bai, Yingguo; Shi, Pengjun; Huang, Huoqing; Xue, Xianli; Yao, Bin

    2014-08-01

    Thermophilic cellulases are of significant interest to the efficient conversion of plant cell wall polysaccharides into simple sugars. In this study, a thermophilic and thermostable endo-1,4-β-glucanase, TeEgl5A, was identified in the thermophilic fungus Talaromyces emersonii CBS394.64 and functionally expressed in Pichia pastoris. Purified recombinant TeEgl5A exhibits optimal activity at pH 4.5 and 90 °C. It is highly stable at 70 °C and over a broad pH range of 1.0-10.0, and shows strong resistance to most metal ions, sodium dodecyl sulfate (SDS), and proteases. TeEgl5A has broad substrate specificity and exhibits high activity on substrates containing β-1,4-glycosidic bonds and β-1,3-glycosidic bonds (barley β-glucan, laminarin, lichenan, CMC-Na, carob bean gum, and birchwood xylan). Under simulated mashing conditions, addition of 60 U TeEgl5A reduced more viscosity (10.0 vs.7.6 %) than 80 U of Ultraflo XL from Novozymes. These properties make TeEgl5A a good candidate for extensive application in the detergent, textile, feed, and food industries.

  11. Structural and functional studies of the glycoside hydrolase family 3 β-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii

    PubMed Central

    Gudmundsson, Mikael; Hansson, Henrik; Karkehabadi, Saeid; Larsson, Anna; Stals, Ingeborg; Kim, Steve; Sunux, Sergio; Fujdala, Meredith; Larenas, Edmund; Kaper, Thijs; Sandgren, Mats

    2016-01-01

    The filamentous fungus Hypocrea jecorina produces a number of cellulases and hemicellulases that act in a concerted fashion on biomass and degrade it into monomeric or oligomeric sugars. β-Glucosidases are involved in the last step of the degradation of cellulosic biomass and hydrolyse the β-glycosidic linkage between two adjacent molecules in dimers and oligomers of glucose. In this study, it is shown that substituting the β-glucosidase from H. jecorina (HjCel3A) with the β-glucosidase Cel3A from the thermophilic fungus Rasamsonia emersonii (ReCel3A) in enzyme mixtures results in increased efficiency in the saccharification of lignocellulosic materials. Biochemical characterization of ReCel3A, heterologously produced in H. jecorina, reveals a preference for disaccharide substrates over longer gluco-oligosaccharides. Crystallographic studies of ReCel3A revealed a highly N-glycosylated three-domain dimeric protein, as has been observed previously for glycoside hydrolase family 3 β-glucosidases. The increased thermal stability and saccharification yield and the superior biochemical characteristics of ReCel3A compared with HjCel3A and mixtures containing HjCel3A make ReCel3A an excellent candidate for addition to enzyme mixtures designed to operate at higher temperatures. PMID:27377383

  12. Structural and functional studies of the glycoside hydrolase family 3 β-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii.

    PubMed

    Gudmundsson, Mikael; Hansson, Henrik; Karkehabadi, Saeid; Larsson, Anna; Stals, Ingeborg; Kim, Steve; Sunux, Sergio; Fujdala, Meredith; Larenas, Edmund; Kaper, Thijs; Sandgren, Mats

    2016-07-01

    The filamentous fungus Hypocrea jecorina produces a number of cellulases and hemicellulases that act in a concerted fashion on biomass and degrade it into monomeric or oligomeric sugars. β-Glucosidases are involved in the last step of the degradation of cellulosic biomass and hydrolyse the β-glycosidic linkage between two adjacent molecules in dimers and oligomers of glucose. In this study, it is shown that substituting the β-glucosidase from H. jecorina (HjCel3A) with the β-glucosidase Cel3A from the thermophilic fungus Rasamsonia emersonii (ReCel3A) in enzyme mixtures results in increased efficiency in the saccharification of lignocellulosic materials. Biochemical characterization of ReCel3A, heterologously produced in H. jecorina, reveals a preference for disaccharide substrates over longer gluco-oligosaccharides. Crystallographic studies of ReCel3A revealed a highly N-glycosylated three-domain dimeric protein, as has been observed previously for glycoside hydrolase family 3 β-glucosidases. The increased thermal stability and saccharification yield and the superior biochemical characteristics of ReCel3A compared with HjCel3A and mixtures containing HjCel3A make ReCel3A an excellent candidate for addition to enzyme mixtures designed to operate at higher temperatures.

  13. The xylan-degrading enzyme system of Talaromyces emersonii: novel enzymes with activity against aryl beta-D-xylosides and unsubstituted xylans.

    PubMed Central

    Tuohy, M G; Puls, J; Claeyssens, M; Vrsanská, M; Coughlan, M P

    1993-01-01

    Talaromyces emersonii, a thermophilic aerobic fungus, produces a complete xylan-degrading enzyme system when grown on appropriate substrates. In this paper we present the physicochemical and catalytic properties of three enzymes, xylosidase (Xyl) I (M(r) 181,000; pI 8.9), II (M(r) 131,000; pI 5.3) and III (M(r) 54,200; pI 4.2). Xyl I and II appear to be dimeric and Xyl III is a single-subunit protein. All three enzymes catalyse the hydrolysis of aryl beta-D-xylosides and xylo-oligosaccharides. Xyl I is a classic beta-xylosidase (1,4-beta-D-xylan xylohydrolase; EC 3.2.1.37), and Xyl II and III are novel xylanases (endo-1,4-beta-D-xylan xylanohydrolase; EC 3.2.1.8) which we believe have not hitherto been reported. In addition to the above substrates, they also catalyse the extensive hydrolysis of unsubstituted xylans, and may have considerable biotechnological potential. The hydrolysis product profiles and bond-cleavage frequencies with various substrates are presented. PMID:8452541

  14. Investigation of an "alternate water supply system" in enzymatic hydrolysis in the processive endocellulase Cel7A from Rasamsonia emersonii by molecular dynamics simulation.

    PubMed

    Sun, Xun; Qian, Meng-Dan; Guan, Shan-Shan; Shan, Ya-Ming; Dong, Ying; Zhang, Hao; Wang, Song; Han, Wei-Wei

    2017-02-01

    Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond.

  15. Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity.

    PubMed

    Fernandes, Sara; Tuohy, Maria G; Murray, Patrick G

    2009-12-01

    Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXR K271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.

  16. Isolation and characterization of a thermostable endo-beta-glucanase active on 1,3-1,4-beta-D-glucans from the aerobic fungus talaromyces emersonii CBS 814.70.

    PubMed

    Murray, P G.; Grassick, A; Laffey, C D.; Cuffe, M M.; Higgins, T; Savage, A V.; Planas, A; Tuohy, M G.

    2001-07-05

    A novel endoglucanase active on 1,3-1,4-beta-D-glucans was purified to apparent homogeneity from submerged cultures of the moderately thermophilic aerobic fungus Talaromyces emersonii CBS 814.70. The enzyme is a single subunit glycoprotein with M(r) and pI values of 40.7 +/- 0.3 kDa and 4.4, respectively, and an estimated carbohydrate content of 77% (w/w). The purified beta-glucanase displayed activity over broad ranges of pH and temperature, yielding respective optima values of pH 4.8 and 80 degrees C. This enzyme was markedly thermostable with 15% of the original activity remaining after incubation for 15 min at 100 degrees C. Substrate specificity studies revealed the identity of the enzyme to be a 1,3-1,4-beta-D-glucanase. Identical K(m) values (13.38 mg.ml(-1)) were obtained with lichenan and BBG, while the V(max) value with lichenan (142.9 IU.mg(-1)) was approximately twice the value obtained with BBG (79.3 IU.mg(-1)). Time-course hydrolysis of barley-beta-glucan did not proceed linearly with respect to time indicating an 'endo' or more processive action for the enzyme. HPAEC fractionation of the products of hydrolysis yielded a range of oligosaccharides, with cellobiose, cellotriose and cellotetraose being the predominant oligosaccharide products.

  17. FESTERING FOOD: CHYTRIDIOMYCETE PATHOGEN REDUCES QUALITY OF DAPHNIA HOST AS A FOOD RESOURCE

    EPA Science Inventory

    When parasitic infections are severe or highly prevalent among prey, a significant component of the predator’s diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of inf...

  18. Cyclopsomyces plurioperculatus: a new genus and species of Lobulomycetales (Chytridiomycota, Chytridiomycetes) from Japan.

    PubMed

    Seto, Kensuke; Degawa, Yousuke

    2015-01-01

    Lobulomycetales is one of the smallest orders of Chytridiomycota, containing only four genera and five species. In a survey in Japan we isolated a chytrid from a soil sample collected in a broadleaf forest, which grouped in Lobulomycetales by BLAST query. To identify this chytrid and determine its taxonomic position, thallus development and morphology were observed by light microscopy and zoospore ultrastructure was examined using a transmission electron microscopy. We conducted a phylogenetic analysis using nuc 28S rDNA sequences. Thallus morphology was characterized by a spherical zoosporangium with multiple operculate discharge papillae, which is different from that of any other species in Lobulomycetales. This chytrid is similar to Chytriomyces multioperculatus in having multiple operculate discharge papillae, but these are distinguished by characters of the discharge papillae and rhizoidal systems. Zoospores of this chytrid had electron-dense material in the kinetosome, a unique character in the order. Our 28S phylogeny placed it in a distinct clade, sister to all described species in Lobulomycetaceae. Based on these results, we propose a new genus and species of Lobulomycetales, Cyclopsomyces plurioperculatus. © 2015 by The Mycological Society of America.

  19. FESTERING FOOD: CHYTRIDIOMYCETE PATHOGEN REDUCES QUALITY OF DAPHNIA HOST AS A FOOD RESOURCE

    EPA Science Inventory

    When parasitic infections are severe or highly prevalent among prey, a significant component of the predator’s diet may consist of parasitized hosts. However, despite the ubiquity of parasites in most food webs, comparisons of the nutritional quality of prey as a function of inf...

  20. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  1. Developmentally regulated interconversions between end product-inhibitable and noninhibitable forms of a first pathway-specific enzyme activity can be mimicked in vitro by protein dephosphorylation-phosphorylation reactions.

    PubMed Central

    Frisa, P S; Sonneborn, D R

    1982-01-01

    During the life cycle of Blastocladiella emersonii, dramatic shifts occur in the sensitivity of the first hexosamine biosynthetic pathway-specific enzyme [amidotransferase; 2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase (amino-transferring), EC 5.3.1.19] to end product inhibition. These shifts are developmentally correlated with changes in the utilization of the end product (uridine-5'-diphospho-N-acetylglucosamine) for chitin synthesis [Selitrennikoff, C. P., Dalley, N. E. & Sonneborn, D. R. (1980) Proc. Natl. Acad. Sci. USA 77, 5998-6002]. Alterations in amidotransferase sensitivity to end product inhibition can be mimicked by in vitro protein dephosphorylation-phosphorylation reactions, as follows: (i) Zoospore end product-inhibitable amidotransferase activity can be converted to a noninhibitable form by an endogenous (zoospore) protein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) reaction; this noninhibitable form can be converted back to an inhibitable form either by an endogenous cAMP-independent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) reaction or with an added cAMP-dependent protein kinase. (ii) Noninhibitable amidotransferase activity from growing cells can also be converted to the inhibitable form with added protein kinase. PMID:6959119

  2. A Rhodopsin-Guanylyl Cyclase Gene Fusion Functions in Visual Perception in a Fungus

    PubMed Central

    Avelar, Gabriela M.; Schumacher, Robert I.; Zaini, Paulo A.; Leonard, Guy; Richards, Thomas A.; Gomes, Suely L.

    2014-01-01

    Summary Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals. PMID:24835457

  3. A New Chytridiomycete Fungus Intermixed with Crustacean Resting Eggs in a 407-Million-Year-Old Continental Freshwater Environment

    PubMed Central

    Goral, Tomasz; Longcore, Joyce E.; Olesen, Jørgen; Kenrick, Paul; Edgecombe, Gregory D.

    2016-01-01

    The 407-million-year-old Rhynie Chert (Scotland) contains the most intact fossilised remains of an early land-based ecosystem including plants, arthropods, fungi and other microorganisms. Although most studies have focused on the terrestrial component, fossilised freshwater environments provide critical insights into fungal-algal interactions and the earliest continental branchiopod crustaceans. Here we report interactions between an enigmatic organism and an exquisitely preserved fungus. The fungal reproductive structures are intermixed with exceptionally well-preserved globular spiny structures interpreted as branchiopod resting eggs. Confocal laser scanning microscopy enabled us to reconstruct the fungus and its possible mode of nutrition, the affinity of the resting eggs, and their spatial associations. The new fungus (Cultoraquaticus trewini gen. et sp. nov) is attributed to Chytridiomycota based on its size, consistent formation of papillae, and the presence of an internal rhizoidal system. It is the most pristine fossil Chytridiomycota known, especially in terms of rhizoidal development and closely resembles living species in the Rhizophydiales. The spiny resting eggs are attributed to the crustacean Lepidocaris rhyniensis, dating branchiopod adaptation to life in ephemeral pools to the Early Devonian. The new fungal interaction suggests that, as in modern freshwater environments, chytrids were important to the mobilisation of nutrients in early aquatic foodwebs. PMID:27973602

  4. A New Chytridiomycete Fungus Intermixed with Crustacean Resting Eggs in a 407-Million-Year-Old Continental Freshwater Environment.

    PubMed

    Strullu-Derrien, Christine; Goral, Tomasz; Longcore, Joyce E; Olesen, Jørgen; Kenrick, Paul; Edgecombe, Gregory D

    2016-01-01

    The 407-million-year-old Rhynie Chert (Scotland) contains the most intact fossilised remains of an early land-based ecosystem including plants, arthropods, fungi and other microorganisms. Although most studies have focused on the terrestrial component, fossilised freshwater environments provide critical insights into fungal-algal interactions and the earliest continental branchiopod crustaceans. Here we report interactions between an enigmatic organism and an exquisitely preserved fungus. The fungal reproductive structures are intermixed with exceptionally well-preserved globular spiny structures interpreted as branchiopod resting eggs. Confocal laser scanning microscopy enabled us to reconstruct the fungus and its possible mode of nutrition, the affinity of the resting eggs, and their spatial associations. The new fungus (Cultoraquaticus trewini gen. et sp. nov) is attributed to Chytridiomycota based on its size, consistent formation of papillae, and the presence of an internal rhizoidal system. It is the most pristine fossil Chytridiomycota known, especially in terms of rhizoidal development and closely resembles living species in the Rhizophydiales. The spiny resting eggs are attributed to the crustacean Lepidocaris rhyniensis, dating branchiopod adaptation to life in ephemeral pools to the Early Devonian. The new fungal interaction suggests that, as in modern freshwater environments, chytrids were important to the mobilisation of nutrients in early aquatic foodwebs.

  5. Cytochromes of Aquatic Fungi

    PubMed Central

    Gleason, Frank H.; Unestam, Torgny

    1968-01-01

    The cytochrome systems of two classes of aquatic fungi, the Oomycetes and Chytridiomycetes, were studied by means of reduced-minus-oxidized difference spectra at room and at low temperature. At room temperature, all of these fungi have a c-type cytochrome with an absorption maximum at 551 mμ and a b-type cytochrome at 564 mμ. The Oomycetes have a-type cytochromes at 605 mμ, and the Chytridiomycetes have a-type cytochromes at 606 mμ (Blastocladiales) or at 609 mμ (Monoblepharidales). Additional b-type cytochromes are found at 557 mμ in the Oomycetes and at approximately 560 mμ in the Chytridiomycetes. The data obtained from spectra at low temperature are consistent with these conclusions. Thus, the difference spectra reveal variation between the cytochrome systems of these two classes of aquatic fungi. PMID:5650068

  6. The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi.

    PubMed

    Barr, D J

    1981-01-01

    Rootlet morphology shows that the Oomycetes excluding the Thraustochytriales, the Thraustochytriales independently, and the Hyphochytriomycetes probably evolved as three distinctive lines from chrysophycean ancestors. The Plasmodiophoromycetes rootlet system does not show any similarity to rootlet systems in other zoosporic fungi, and this class may have arisen from the Protozoa. The varied rootlet systems present in the Chytridiomycetes show that this class has a very primitive origin and long evolutionary history. The composition of the rootlet systems in different Chytridiomycete taxa indicate that the Monoblepharidiales evolved from the Chytridiales, and the Blastocladiales from the Spizellomycetales.

  7. Protoascon missouriensis, a complex fossil microfungus revisited.

    PubMed

    Taylor, Thomas N; Krings, Michael; Klavins, Sharon D; Taylor, Edith L

    2005-01-01

    The Carboniferous microfungus Protoascon missouriensis has been interpreted variously as an ascomycete, chytridiomycete, zygomycete and oomycete. We offer a more complete interpretation based on a re-examination of the type material that suggests the fossil represents an (a)zygosporangium-suspensor complex of a zygomycete comparable to some modern members of the Mucorales.

  8. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  9. Engineering ionic liquid-tolerant cellulases for biofuels production.

    PubMed

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes.

  10. Preliminary checklist of fungi of the Fernow Experimental Forest. Forest Service general technical report (Final)

    SciTech Connect

    Stephenson, S.L.; Kumar, A.; Bhatt, R.; Dubey, T.; Landolt, J.C.

    1994-01-01

    The report provides a checklist of fungi found on the Fernow Experimental Forest in West Virginia during 4 years of research and collecting by the authors. More than 500 fungi in seven major taxonomic groups (Acrasiomycetes, Myxomycetes, Chytridiomycetes, Oomycetes, Ascomycetes, Deuteromycetes, and Basidiomycetes) are listed alphabetically by genus and species. Also provided is a general description of the forest vegetation of the Fernow Experimental Forest.

  11. Parallels in amphibian and bat declines from pathogenic fungi.

    PubMed

    Eskew, Evan A; Todd, Brian D

    2013-03-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.

  12. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana

    PubMed Central

    Garner, Trenton W.J; Perkins, Matthew W; Govindarajulu, Purnima; Seglie, Daniele; Walker, Susan; Cunningham, Andrew A; Fisher, Matthew C

    2006-01-01

    Batrachochytrium dendrobatidis is the chytridiomycete fungus which has been implicated in global amphibian declines and numerous species extinctions. Here, we show that introduced North American bullfrogs (Rana catesbeiana) consistently carry this emerging pathogenic fungus. We detected infections by this fungus on introduced bullfrogs from seven of eight countries using both PCR and microscopic techniques. Only native bullfrogs from eastern Canada and introduced bullfrogs from Japan showed no sign of infection. The bullfrog is the most commonly farmed amphibian, and escapes and subsequent establishment of feral populations regularly occur. These factors taken together with our study suggest that the global threat of B. dendrobatidis disease transmission posed by bullfrogs is significant. PMID:17148429

  13. Parallels in Amphibian and Bat Declines from Pathogenic Fungi

    PubMed Central

    Eskew, Evan A.

    2013-01-01

    Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species—the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats—are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host–pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases. PMID:23622255

  14. Bioconversion and binding of sterols by thermophilic moulds.

    PubMed

    Satyanarayana, T; Chavant, L

    1987-01-01

    None of the fourteen thermophilic moulds was able to break down the aliphatic side chain of sterols, viz. cholesterol, lanosterol, sitosterol, and stigmasterol so as to yield 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione and progesterone. In Acremonium alabamensis and Talaromyces emersonii, cholestenone was detected as a product of fermentation of cholesterol whereas the former yielded stigmastadienone from stigmasterol and sitosterol. Lanosterol appeared to be resistant to fungal bioconversion. All the thermophilic moulds exhibited avidity for binding sterols to the mycelium, but the ability to bind sterol seemed to depend upon the nature of the organism and the sterol.

  15. Increase in Chlorella strains calorific values when grown in low nitrogen medium.

    PubMed

    Illman; Scragg; Shales

    2000-11-01

    The calorific value of five strains of Chlorella grown in Watanabe and low-nitrogen medium was determined. The algae were grown in small (2L) stirred tank bioreactors and the best growth was obtained with Chlorella vulgaris with a growth rate of 0.99 d(-1) and the highest calorific value (29 KJ/g) was obtained with C. emersonii. The cellular components were assayed at the end of the growth period and the calorific value appears to be linked to the lipid content rather than any other component.

  16. Lobulomycetales, a new order in the Chytridiomycota.

    PubMed

    Simmons, D Rabern; James, Timothy Y; Meyer, Allen F; Longcore, Joyce E

    2009-04-01

    The Chytridiales, one of the four orders in the Chytridiomycetes (Chytridiomycota), is polyphyletic, but contains several well-supported clades. One of these clades is referred to as the Chytriomyces angularis clade, and the phylogenetic placement of this group within the Chytridiomycetes is uncertain. The morphology and zoospore ultrastructure of C. angularis have been studied using LM and were shown to differ from those of the type species of Chytriomyces, which is in the Chytridiaceae and is phylogenetically distinct from the C. angularis clade. In this study, chytrids with morphologies or rDNA sequences similar to C. angularis, including two isolates of the morphologically similar C. poculatus, were isolated and their phylogenetic relationships determined using molecular sequence data. Results of Bayesian and MP analyses of nuSSU and partial nuLSU rDNA sequences grouped the new isolates and the type isolate of C. angularis in a monophyletic clade within the Chytridiomycota but distinct from the Chytridiaceae. Zoospores of isolates examined using TEM had ultrastructural features similar to those of C. angularis. Genetic analyses, ultrastructural data, and morphology support the establishment of a new order Lobulomycetales, placement of C. angularis and C. poculatus in a new genus (Lobulomyces), and description of additional taxa, which we have named Clydaea vesicula and Maunachytrium keaense.

  17. Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences

    PubMed Central

    Bullerwell, C. E.; Forget, L.; Lang, B. F.

    2003-01-01

    We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 7–9 tRNAs, some of which require 5′-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile. PMID:12626702

  18. Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods.

    PubMed

    Komor, Russell S; Romero, Philip A; Xie, Catherine B; Arnold, Frances H

    2012-12-01

    Building on our previous efforts to generate thermostable chimeric fungal cellobiohydrolase I (CBH I, also known as Cel7A) cellulases by structure-guided recombination, we used FoldX and a 'consensus' sequence approach to identify individual mutations present in the five homologous parent CBH I enzymes which further stabilize the chimeras. Using the FoldX force field, we calculated the effect on ΔG(Folding) of each candidate mutation in a number of CBH I structures and chose those predicted to be stabilizing in multiple structures. With an alignment of 41 CBH I sequences, we also used amino acid frequencies at each candidate position to calculate predicted effects on ΔG(Folding). A combination of mutations chosen using these methods increased the T(50) of the most thermostable chimera by an additional 4.7°C, to yield a CBH I with T(50) of 72.1°C, which is 9.2°C higher than that of the most stable native CBH I, from Talaromyces emersonii. This increased stability resulted in a 10°C increase in the optimal temperature for activity, to 65°C, and a 50% increase in total sugar production from crystalline cellulose at the optimal temperature, compared with native T.emersonii CBH I.

  19. Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides.

    PubMed

    Neumüller, K G; Streekstra, H; Gruppen, H; Schols, H A

    2014-07-01

    Supplementation of a Trichoderma longibrachiatum preparation to an industrial Aspergillus niger/Talaromyces emersonii enzyme mixture demonstrated synergy for the saccharification of corn silage water-unextractable solids (WUS). Sub-fractions of the crude T. longibrachiatum preparation obtained after chromatography were analyzed regarding their hydrolytic activity. An acetyl xylan esterase 1 [Axe1, carbohydrate esterase (CE) family 5]-enriched sub-fraction closely mimicked the hydrolytic gain as obtained by supplementation of the complete, crude enzyme mixture (increase of 50%, 62% and 29% for Xyl, Ara and Glc, respectively). The acetic acid released from model polysaccharides (WUS) and oligosaccharides [neutral (AcXOS) and acidic (AcUXOS) xylo-oligosaccharides] by Axe1 was two and up to six times higher compared to the acetic acid released by acetyl xylan esterase A (AxeA, CE 1). Characterization of Axe1 treated AcXOS and AcUXOS revealed deacetylation of oligosaccharides that were not deacetylated by AxeA or the A. niger/T. emersonii preparation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi.

    PubMed

    Ozawa, Kazumichi; Iwasa, Hisanori; Sasaki, Noriko; Kinoshita, Nao; Hiratsuka, Atsunori; Yokoyama, Kenji

    2017-01-01

    FAD-dependent glucose dehydrogenase (FAD-GDH), which contains FAD as a cofactor, catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, and plays an important role in biosensors measuring blood glucose levels. In order to obtain a novel FAD-GDH gene homolog, we performed degenerate PCR screening of genomic DNAs from 17 species of thermophilic filamentous fungi. Two FAD-GDH gene homologs were identified and cloned from Talaromyces emersonii NBRC 31232 and Thermoascus crustaceus NBRC 9129. We then prepared the recombinant enzymes produced by Escherichia coli and Pichia pastoris. Absorption spectra and enzymatic assays revealed that the resulting enzymes contained oxidized FAD as a cofactor and exhibited glucose dehydrogenase activity. The transition midpoint temperatures (T m) were 66.4 and 62.5 °C for glycosylated FAD-GDHs of T. emersonii and T. crustaceus prepared by using P. pastoris as a host, respectively. Therefore, both FAD-GDHs exhibited high thermostability. In conclusion, we propose that these thermostable FAD-GDHs could be ideal enzymes for use as thermotolerant glucose sensors with high accuracy.

  1. Characterization of thermophilic fungal community associated with pile fermentation of Pu-erh tea.

    PubMed

    Zhang, Wei; Yang, Ruijuan; Fang, Wenjun; Yan, Liang; Lu, Jun; Sheng, Jun; Lv, Jie

    2016-06-16

    This study aimed to characterize the thermophilic fungi in pile-fermentation process of Pu-erh tea. Physicochemical analyses showed that the high temperature and low pH provided optimal conditions for propagation of fungi. A number of fungi, including Blastobotrys adeninivorans, Thermomyces lanuginosus, Rasamsonia emersonii, Aspergillus fumigatus, Rhizomucor pusillus, Rasamsonia byssochlamydoides, Rasamsonia cylindrospora, Aspergillus tubingensis, Aspergillus niger, Candida tropicalis and Fusarium graminearum were isolated as thermophilic fungi under combination of high temperature and acid culture conditions from Pu-erh tea pile-fermentation. The fungal communities were analyzed by PCR-DGGE. Results revealed that those fungi are closely related to Debaryomyces hansenii, Cladosporium cladosporioides, A. tubingensis, R. emersonii, R. pusillus, A. fumigatus and A. niger, and the last four presented as dominant species in the pile process. These four preponderant thermophilic fungi reached the order of magnitude of 10(7), 10(7), 10(7) and 10(6)copies/g dry tea, respectively, measured by real-time quantitative PCR (q-PCR). The results indicate that the thermophilic fungi play an important role in Pu-erh tea pile fermentation.

  2. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-12-24

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel.

  3. Do we need many genes for phylogenetic inference?

    PubMed

    Aleshin, V V; Konstantinova, A V; Mikhailov, K V; Nikitin, M A; Petrov, N B

    2007-12-01

    Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize

  4. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life

    PubMed Central

    Zhao, Zhongtao; Liu, Huiquan; Luo, Yongping; Zhou, Shanyue; An, Lin; Wang, Chenfang; Jin, Qiaojun; Zhou, Mingguo; Xu, Jin-Rong

    2014-01-01

    Microtubules are essential for various cellular activities and β-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom. Phylogenetic analysis showed that α-/β-tubulin genes underwent multiple independent duplications and losses in different fungal lineages and formed distinct paralogous/orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two paralogs of α-tubulin (α1/α2) and β-tubulin (β1/β2) genes but α2-tubulin genes were lost in basidiomycetes and β2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that α1, α2, and β2-tubulins have been under strong divergent selection and adaptive positive selection. Many positively selected sites are at or adjacent to important functional sites and likely contribute to functional diversification. We further experimentally confirmed functional divergence of two β-tubulins in Fusarium and identified type II variations in FgTub2 responsible for function shifts. In this study, we also identified δ-/ε-/η-tubulins in Chytridiomycetes. Overall, our results illustrated that different evolutionary mechanisms drive functional diversification of α-/β-tubulin genes in different fungal lineages, and residues under positive selection could provide targets for further experimental study. PMID:25339375

  5. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link?

    PubMed Central

    Bosch, Jaime; Carrascal, Luís M; Durán, Luis; Walker, Susan; Fisher, Matthew C

    2006-01-01

    Amphibian species are declining at an alarming rate on a global scale in large part owing to an infectious disease caused by the chytridiomycete fungus, Batrachochytrium dendrobatidis. This disease of amphibians has recently emerged within Europe, but knowledge of its effects on amphibian assemblages remains poor. Importantly, little is known about the environmental envelope that is associated with chytridiomycosis in Europe and the potential for climate change to drive future disease dynamics. Here, we use long-term observations on amphibian population dynamics in the Peñalara Natural Park, Spain, to investigate the link between climate change and chytridiomycosis. Our analysis shows a significant association between change in local climatic variables and the occurrence of chytridiomycosis within this region. Specifically, we show that rising temperature is linked to the occurrence of chytrid-related disease, consistent with the chytrid-thermal-optimum hypothesis. We show that these local variables are driven by general circulation patterns, principally the North Atlantic Oscillation. Given that B. dendrobatidis is known to be broadly distributed across Europe, there is now an urgent need to assess the generality of our finding and determine whether climate-driven epidemics may be expected to impact on amphibian species across the wider region. PMID:17148254

  6. Mitigating amphibian chytridiomycosis in nature

    USGS Publications Warehouse

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  7. Mitigating amphibian chytridiomycoses in nature.

    PubMed

    Garner, Trenton W J; Schmidt, Benedikt R; Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A; Weldon, Che; Fisher, Matthew C; Bosch, Jaime

    2016-12-05

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  8. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

    PubMed

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-09-17

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.

  9. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians

    PubMed Central

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C.; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-01-01

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi. PMID:24003137

  10. Molecular phylogenetic and zoospore ultrastructural analyses of Chytridium olla establish the limits of a monophyletic Chytridiales.

    PubMed

    Vélez, Carlos G; Letcher, Peter M; Schultz, Sabina; Powell, Martha J; Churchill, Perry F

    2011-01-01

    Chytridium olla A. Braun, the first described chytrid and an obligate algal parasite, is the type for the genus and thus the foundation of family Chytridiaceae, order Chytridiales, class Chytridiomycetes and phylum Chytridiomycota. Chytridium olla was isolated in coculture with its host, Oedogonium capilliforme. DNA was extracted from the coculture, and 18S, 28S and ITS1-5.8S-ITS2 rDNA were amplified with universal fungal primers. Free swimming zoospores and zoospores in mature sporangia were examined with electron microscopy. Molecular analyses placed C. olla in a clade in Chytridiales with isolates of Chytridium lagenaria and Phlyctochytrium planicorne. Ultrastructural analysis revealed C. olla to have a Group II-type zoospore, previously described for Chytridium lagenaria and Phlyctochytrium planicorne. On the basis of zoospore ultrastructure, family Chytridiaceae is emended to include the type of Chytridium and other species with a Group II-type zoospore, and the new family Chytriomycetaceae is delineated to include members of Chytridiales with a Group I-type zoospore.

  11. The Polychytriales ord. nov. contains chitinophilic members of the rhizophlyctoid alliance.

    PubMed

    Longcore, Joyce E; Simmons, D Rabern

    2012-01-01

    During the past 5 y the Rhizophydiales, Cladochytriales and Lobulomycetales have been segregated from the formerly recognized Chytridiales. Descriptions of new chytridiomycete orders are based on molecular and ultrastructural characters, which have been phylogenetically mutually supportive. The Polychytrium clade has consisted of a few chitinophilic, soil and aquatic chytrids that clustered in phylogenetic hypotheses but have not been placed in a new order. We isolated additional putative members of this clade, sequenced their nucSSU and nucLSU rDNA and examined zoospores of some of the isolates with TEM. Our isolates are in a well supported clade with previous Polychytrium clade members, but zoospore ultrastructural types vary within the clade, with characters that often are conserved within other orders (e.g. flagellar plug, rumposome) being either present or absent. Based on the isolates in culture we describe the Polychytrium clade as the Polychytriales. This order contains Polychytrium, Lacustromyces, Karlingiomyces, two new genera (Arkaya and Neokarlingia) and additional undescribed taxa.

  12. Evolutionary relationships among basal fungi (Chytridiomycota and Zygomycota): Insights from molecular phylogenetics.

    PubMed

    Tanabe, Yuuhiko; Watanabe, Makoto M; Sugiyama, Junta

    2005-10-01

    Evolutionary relationships of the two basal fungal phyla Chytridiomycota and Zygomycota are reviewed in light of recent molecular phylogenetic investigation based on rDNA (nSSU, nLSU rDNA), entire mitochondrial genomes, and nuclear protein coding gene sequences (e.g., EF-1alpha, RPB1). Accumulated molecular evidence strongly suggests that the two basal fungal phyla are not monophyletic. For example, the chytridiomycete order Blastocladiales appears to be closely related to the zygomycete order Entomophthorales. Within the Zygomycota, a monophyletic clade, consisting of the Dimargaritales, Harpellales, and Kickxellales, which is characterized by a shared unique septal ultrastructure, was identified. Moreover, evidence for the exclusion of zygomycete orders Amoebidiales and Eccrinales from the Fungi, and their placement at the Animal-Fungi boundary has been clearly documented. Microsporidia, a group of amitochondriate organisms currently under intensive study, is not supported as derived within the Fungi, but a fungal affinity cannot be ruled out. Taking these molecular phylogenetic studies into account, we proposed a hypothetical evolutionary framework of basal fungi.

  13. Molecular and cultural assessment of chytrid and Spizellomyces populations in grassland soils.

    PubMed

    Lozupone, C A; Klein, D A

    2002-01-01

    We developed a molecular method for the detection and quantification of members of the genus Spizellomyces in the environment and used this technique, together with traditional cultural techniques, to measure the effects of cultivation and nitrogen availability on Spizellomyces populations in grassland soils. Primer sets specific for Spizellomyces acuminatus and S. kniepii were developed by sequencing internal transcribed spacer 2 (ITS2) of the gene encoding ribosomal RNA for 9 isolates within the genus Spizellomyces, 5 representatives of different genera within the order Spizellomycetales and one member of the order Chytridiales. These primers were used with fungal-specific primers in a nested PCR approach to generate a specific molecular signal for S. acuminatus and S. kneipii in a soil from which S. acuminatus had previously been recovered. Using MPN-PCR (a quantitative molecular technique) and traditional cultural techniques, we found that chytridiomycetous fungi, including members of the genus Spizellomyces, are abundant in the grassland ecosystems studied. No significant differences in occurrence were observed between native and disturbed control soils but it appeared in 2 separate MPN assays and one MPN-PCR assay that chytrid populations increased in response to disturbance. No significant differences in chytrid or Spizellomyces populations were observed with variations in nitrogen availability. The primer sets and protocols developed in this study worked well to complement traditional cultural data to better assess Spizellomyces populations in the environment. These molecular approaches should provide a foundation for further work with these interesting and oft neglected fungi.

  14. Biology of gut anaerobic fungi.

    PubMed

    Bauchop, T

    1989-01-01

    The obligately anaerobic nature of the gut indigenous fungi distinguishes them from other fungi. They are distributed widely in large herbivores, both in the foregut of ruminant-like animals and in the hindgut of hindgut fermenters. Comparative studies indicate that a capacious organ of fermentative digestion is required for their development. These fungi have been assigned to the Neocallimasticaceae, within the chytridiomycete order Spizellomycetales. The anaerobic fungi of domestic ruminants have been studied most extensively. Plant material entering the rumen is rapidly colonized by zoospores that attach and develop into thalli. The anaerobic rumen fungi have been shown to produce active cellulases and xylanases and specifically colonise and grow on plant vascular tissues. Large populations of anaerobic fungi colonise plant fragment in the rumens of cattle and sheep on high-fibre diets. The fungi actively ferment cellulose which results in formation of a mixture of products including acetate, lactate, ethanol, formate, succinate, CO2 and H2. The properties of the anaerobic fungi together with the extent of their populations on plant fragments in animals on high-fibre diets indicates a significant role for the fungi in fibre digestion.

  15. Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection.

    PubMed

    Baláž, Vojtech; Vörös, Judit; Civiš, Petr; Vojar, Jiri; Hettyey, Attila; Sós, Endre; Dankovics, Róbert; Jehle, Robert; Christiansen, Ditte G; Clare, Frances; Fisher, Matthew C; Garner, Trenton W J; Bielby, Jon

    2014-02-01

    Amphibians are globally threatened, but not all species are affected equally by different threatening processes. This is true for the threat posed by the chytridiomycete fungus (Batrachochytrium dendrobatidis). We compiled a European data set for B. dendrobatidis to analyze the trends of infection in European amphibians. The risk of infection was not randomly distributed geographically or taxonomically across Europe. Within countries with different prevalence, infection was nonrandom in certain amphibian taxa. Brown frogs of the genus Rana were unlikely to be infected, whereas frogs in the families Alytidae and Bombinatoridae were significantly more likely to be infected than predicted by chance. Frogs in the 2 families susceptible to B. dendrobatidis should form the core of attempts to develop spatial surveillance studies of chytridiomycosis in Europe. Ideally, surveys for B. dendrobatidis should be augmented by sampling the widespread genus Pelophylax because this taxon exhibits geographically inconsistent overinfection with B. dendrobatidis and surveillance of it may facilitate recognition of factors causing spatial variability of infection intensity. Several European amphibian taxa were not represented in our data set; however, surveillance of unsampled species should also occur when warranted. © 2013 Society for Conservation Biology.

  16. Effects of rumen fluid collection site on microbial population structure during in vitro fermentation of the different substrates quantified by 16S rRNA hybridisation.

    PubMed

    Muetzel, S; Krishnamoorthy, U; Becker, K

    2001-01-01

    Rumen fluid samples from a cow were withdrawn manually from the feed mat (solid phase) or the liquid phase below this mat and incubated in vitro with wheat straw, sorghum hay and a concentrate mixture. From the inoculum and several samples collected during in vitro incubation RNA was extracted to assess microbial population size and structure. RNA content recovered from the solid phase rumen fluid was significantly higher than from the liquid phase. The composition of the microbial population in the solid phase material was characterised by a high proportion of Ruminococci. Neither the proportion of other cell wall degrading organisms (Fibrobacter and Chytridiomycetes) nor the Eukarya and Archaea populations differed between the two sampling sites. Gas production was higher when substrates were incubated with solid phase than with liquid phase rumen fluid regardless of sampling time. However, the higher level of gas production was not accompanied by a corresponding increase in true digestibility. The RNA probes showed that during in vitro incubation with liquid phase rumen fluid, the eukaryotic population was inactive no matter which substrate was used and the activity of methanogens (Archaea) was lower than with solid phase rumen fluid. The population pattern of the cell wall degrading organisms was influenced mainly by the substrate fermented, and to a smaller extent by the inoculum used for in vitro fermentation.

  17. Evaluation of certain food additives and contaminants. Eightieth report of the Joint FAO/WHO Expert Committee on Food Additives.

    PubMed

    2016-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives and contaminants and to prepare specifications for identity and purity. The first part of the report contains a brief description of general considerations addressed at the meeting, including updates on matters of interest to the work of the Committee. A summary follows of the Committee's evaluations of technical, toxicological and/or dietary exposure data for seven food additives (benzoates; lipase from Fusarium heterosporum expressed in Ogataea polymorpha; magnesium stearate; maltotetraohydrolase from Pseudomonas stutzeri expressed in Bacillus licheniformis; mixed β-glucanase, cellulase and xylanase from Rasamsonia emersonii; mixed β-glucanase and xylanase from Disporotrichum dimorphosporum; polyvinyl alcohol (PVA)- polyethylene glycol (PEG) graft copolymer) and two groups of contaminants (non-dioxin-like polychlorinated biphenyls and pyrrolizidine alkaloids). Specifications for the following food additives were revised or withdrawn: advantame; annatto extracts (solavnt extracted bixin, ad solvent-extracted norbixin); food additives containing aluminium and/or silicon (aluminium silicate; calcium aluminium silicate; calcium silicate; silicon dioxide, amorphous; sodium aluminium silicate); and glycerol ester of gum rosin. Annexed to the report are tables or text summarizing the toxicological and dietary exposure information and information on specifications as well as the Committees recommendations on the food additives and contaminants considered at this meeting.

  18. Temperature Effects on Kinetic Parameters and Substrate Affinity of Cel7A Cellobiohydrolases*

    PubMed Central

    Sørensen, Trine Holst; Cruys-Bagger, Nicolaj; Windahl, Michael Skovbo; Badino, Silke Flindt; Borch, Kim; Westh, Peter

    2015-01-01

    We measured hydrolytic rates of four purified cellulases in small increments of temperature (10–50 °C) and substrate loads (0–100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases. PMID:26183777

  19. Purification and biochemical characterization of a thermostable extracellular glucoamylase produced by the thermotolerant fungus Paecilomyces variotii.

    PubMed

    Michelin, Michele; Ruller, Roberto; Ward, Richard J; Moraes, Luiz Alberto B; Jorge, João A; Terenzi, Héctor F; Polizeli, Maria de Lourdes T M

    2008-01-01

    An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t (50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).

  20. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    PubMed

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs.

  2. Culture density influence on the photosynthetic efficiency of microalgae growing under different spectral compositions of light.

    PubMed

    Kula, M; Kalaji, H M; Skoczowski, A

    2017-02-01

    A density in algal suspension causes a significant change in the intensity and spectral composition of light reaching individual cells. Measurements of chlorophyll fluorescence allow us to observe any general changes in the bioenergetic status of photosynthesis. The aim of the study was to determine the effect of cultivation density on the PSII photochemical efficiency of three species of algae (Chlorella vulgaris, Botryococcus braunii and Chlorella emersonii), each with a different rate of growth - high, medium and low - respectively. The cell density of algae in suspension differentiated through the cultivation time (2, 4, and 8days) and the spectral composition of light. The results showed that the density of cultivation led to change in the photosynthetic apparatus of algae. The differences described between each day of cultivation (2, 4, and 8) in the kinetics of chlorophyll a fluorescence intensity in cells of the algal strains under study probably resulted from the different phases of growth of these cultures. In addition the results showed the beneficial effect of far red light on the photosynthetic apparatus and the growth of biomass in investigated algal strains.

  3. Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure.

    PubMed

    Zheng, Fei; Huang, Huoqing; Wang, Xiaoyu; Tu, Tao; Liu, Qiong; Meng, Kun; Wang, Yuan; Su, Xiaoyun; Xie, Xiangming; Luo, Huiying

    2016-10-01

    The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.0 and 50°C but had low catalytic efficiency (25.4±0.8mLs(-1)mg(-1)). In contrast, BaCel5(127) and BaCel5(167) showed similar enzymatic properties but improved catalytic performance. When using CMC-Na, barley β-glucan, lichenan, and cellooligosaccharides as substrates, BaCel5(127) and BaCel5(167) had increased specific activities and catalytic efficiencies by ∼1.8-6.7-fold and ∼1.0-4.7-fold, respectively. The catalytic efficiency of BaCel5(167) was even higher than that of parental proteins. The underlying mechanism was analyzed by molecular docking and molecular dynamic simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. High Protein- and High Lipid-Producing Microalgae from Northern Australia as Potential Feedstock for Animal Feed and Biodiesel

    PubMed Central

    Duong, Van Thang; Ahmed, Faruq; Thomas-Hall, Skye R.; Quigley, Simon; Nowak, Ekaterina; Schenk, Peer M.

    2015-01-01

    Microalgal biomass can be used for biodiesel, feed, and food production. Collection and identification of local microalgal strains in the Northern Territory, Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds, and streams and subsequently classified by 18S rDNA sequencing. All of the strains were green microalgae and predominantly belong to Chlorella sp., Scenedesmus sp., Desmodesmus sp., Chlamydomonas sp., Pseudomuriella sp., Tetraedron caudatum, Graesiella emersonii, and Mychonastes timauensis. Among the fastest growing strains, Scenedesmus sp. NT1d possessed the highest content of protein; reaching up to 33% of its dry weight. In terms of lipid production, Chlorella sp. NT8a and Scenedesmus dimorphus NT8e produced the highest triglyceride contents of 116.9 and 99.13 μg mL−1 culture, respectively, as measured by gas chromatography–mass spectroscopy of fatty acid methyl esters. These strains may present suitable candidates for biodiesel production after further optimization of culturing conditions, while their protein-rich biomass could be used for animal feed. PMID:26042215

  5. Enzymatic solubilization of arabinoxylans from isolated rye pentosans and rye flour by different endo-xylanases and other hydrolyzing enzymes. Effect of a fungal caccase on the flour extracts oxidative gelation.

    PubMed

    Figueroa-Espinoza, M C; Poulsen, C; Borch Søe, J; Zargahi, M R; Rouau, X

    2002-10-23

    Water-extractable (WEP) and water-unextractable (WUP) pentosans were isolated from a rye flour. The effect of a commercial enzyme preparation, Grindamyl S 100 (GS100), containing pentosanase activities, was investigated on WEP, WUP, a mix of WEP and WUP, and the rye flour, with the aim to monitor the solubilization and depolymerization of high molecular weight arabinoxylans and the effect on the viscosity of the reaction medium. The effects of other hydrolyzing enzymes were also tested. Three xylanases were used: xylanase 1 (Xyl-1) from Aspergillus niger, the main activity present in GS100; xylanase 2 (Xyl-2) from Talaromyces emersonii; and xylanase 3 (Xyl-3) from Bacillus subtilis. Xyl-3 was used in combination with Xyl-1, (1,4)-beta-D-arabinoxylan arabinofuranohydrolase, endo-beta-D-glucanase, or ferulate esterase from A. niger, but no synergism was observed. GS100 and xylanases increased the arabinoxylan solubilization, Xyl-3 and Xyl-1 being those that presented the best yields of extraction without extensive depolymerization of water-extractable arabinoxylans. Both xylanases were affected by an inhibitor in rye flour. Flour treated with hot ethanol was used to study the oxidative gelation of flour extracts treated with xylanases, in the presence of laccase from Pycnoporus cinnabarinus. Two doses of xylanases were tested (0.5 and 2.5 units). Only the flour extracts treated with 0.5 unit of Xyl-1 thickened.

  6. Redox-initiated hydrogel system for detection and real-time imaging of cellulolytic enzyme activity.

    PubMed

    Malinowska, Klara H; Verdorfer, Tobias; Meinhold, Aylin; Milles, Lukas F; Funk, Victor; Gaub, Hermann E; Nash, Michael A

    2014-10-01

    Understanding the process of biomass degradation by cellulolytic enzymes is of urgent importance for biofuel and chemical production. Optimizing pretreatment conditions and improving enzyme formulations both require assays to quantify saccharification products on solid substrates. Typically, such assays are performed using freely diffusing fluorophores or dyes that measure reducing polysaccharide chain ends. These methods have thus far not allowed spatial localization of hydrolysis activity to specific substrate locations with identifiable morphological features. Here we describe a hydrogel reagent signaling (HyReS) system that amplifies saccharification products and initiates crosslinking of a hydrogel that localizes to locations of cellulose hydrolysis, allowing for imaging of the degradation process in real time. Optical detection of the gel in a rapid parallel format on synthetic and natural pretreated solid substrates was used to quantify activity of T. emersonii and T. reesei enzyme cocktails. When combined with total internal reflection fluorescence microscopy and AFM imaging, the reagent system provided a means to visualize enzyme activity in real-time with high spatial resolution (<2 μm). These results demonstrate the versatility of the HyReS system in detecting cellulolytic enzyme activity and suggest new opportunities in real-time chemical imaging of biomass depolymerization.

  7. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    PubMed Central

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  8. Immobilization of microalgae for biosorption and degradation of butyltin chlorides.

    PubMed

    Zhang, L; Huang, G; Yu, Y

    1998-07-01

    Since the discovery of their biocidal properties in the 1950s, organotin compounds have found a large spectrum of industrial applications such as wood and textile preservatives, fungicides and pesticides, and antifouling paint on ships and fishing equipment. The fate and environmental impact of butyltins have been the subjects of a large body of research in the last decades. Biosorption and degradation of butyltin compounds by immobilized microalgae chlorella were studied in this paper, aiming to find an alternative way to solve organotin pollution problem. Chlorella emersonii cells were entrapped in a calcium aginate matrix. The cell growth rates, respiratory rate and chlorophyll a content were studied and compared. Results showed that immobilized chlorella had increased respiratory and growth rates, and almost equal chlorophyll a content when compared with free cells. Cell leakage was slight during the 20-day experimental period Cell leakage from the matrix was unrelated to cell growth within the matrix. Immobilized chlorella was applied to deal with butytin contaminated aquatic solutions. Immobilized chlorella had increased degradation rates of tri-, di-, and mono-butyltin chlorides in aquatic solutions, and lower biological accumulation factors on cells, than free cells, which indicates a potential use for tackleing organotin polluted water body.

  9. Structure, expression and function of Allomyces arbuscula CDP II (metacaspase) gene.

    PubMed

    Ojha, Mukti; Cattaneo, Arlette; Hugh, Séverine; Pawlowski, Jan; Cox, Jos A

    2010-06-01

    Allomyces arbuscula, a primitive chytridiomycete fungus, has two Ca(2+)-dependent cysteine proteases, the CDP I and CDP II. We have cloned and analyzed the nucleotide sequence of CDP II gene and domain structure of the protein. Blast analysis of the sequence has shown that the protein belongs to a newly described member of caspase superfamily protein, the metacaspase, a CD clan of C14 family cysteine protease, we hence-forth name it as AMca 2 (Allomyces metacaspase 2). Southern hybridization studies have shown that the gene exists in a single copy per genome. The transcriptional analysis by Northern hybridization has confirmed our previous results that the protein is developmentally regulated, i.e. present in active growth phase but disappears during nutritional stress which also induces reproductive differentiation, indicating that the protein promotes cell growth, not death. The recombinant gene product expressed in Escherichiacoli has all the catalytic properties of native enzyme, i.e. sensitivity to protease inhibitors and substrate specificity. There is an absolute requirement of Ca(2+) for the activation of catalytic activity and the presence of R residue at the cleavage site (P1 position) in the substrate. The presence of a second basic residue, either R or K, in the P2 position strongly inhibits the catalytic activity which is stimulated by the presence of P and to a lesser extent G at this site. Peptide substrates with D at the cleavage site are not recognised and therefore not cleaved. The enzyme activity is inhibited by EDTA-EGTA, cysteine protease inhibitors and a specific peptide inhibitor Ac GVRCHCL TFA, but not by E64, although a potent inhibitor of cysteine proteases.

  10. Long-term disease dynamics in lakes: causes and consequences of chytrid infections in Daphnia populations.

    PubMed

    Johnson, Pieter T J; Ives, Anthony R; Lathrop, Richard C; Carpenter, Stephen R

    2009-01-01

    Understanding the drivers and consequences of disease epidemics is an important frontier in ecology. However, long-term data on hosts, their parasites, and the corresponding environmental conditions necessary to explore these interactions are often unavailable. We examined the dynamics of Daphnia pulicaria, a keystone zooplankter in lake ecosystems, to explore the long-term causes and consequences of infection by a chytridiomycete parasitoid (Polycaryum laeve). After quantifying host-pathogen dynamics from vouchered samples collected over 15 years, we used autoregressive models to evaluate (1) hypothesized drivers of infection, including host density, water temperature, dissolved oxygen, host-food availability, and lake mixing; and (2) the effects of epidemics on host populations. Infection was present in most years but varied widely in prevalence, from < 1% to 34%, with seasonal peaks in early spring and late fall. Within years, lake stratification strongly inhibited P. laeve transmission, such that epidemics occurred primarily during periods of water mixing. Development of the thermocline likely reduced transmission by spatially separating susceptible hosts from infectious zoospores. Among years, ice duration and cumulative snowfall correlated negatively with infection prevalence, likely because of reductions in spring phytoplankton and D. pulicaria density in years with extended winters. Epidemics also influenced dynamics of the host population. Infected D. pulicaria rarely (< 1%) contained eggs, and P. laeve prevalence was positively correlated with sexual reproduction in D. pulicaria. Analyses of D. pulicaria density-dependent population dynamics predicted that, in the absence of P. laeve infection, host abundance would be 11-50% higher than what was observed. By underscoring the importance of complex physical processes in controlling host-parasite interactions and of epidemic disease in influencing host populations, our results highlight the value of long

  11. Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG 'stop' codons recognized as leucine.

    PubMed Central

    Laforest, M J; Roewer, I; Lang, B F

    1997-01-01

    The mitochondrial DNA of the chytridiomycete fungus Spizellomyces punctatusen codes only eight tRNAs, although a minimal set of 24-25 tRNAs is normally found in fungi. One of these tRNAs has a CAU anticodon and is structurally related to leucine tRNAs, which would permit the translation of the UAG 'stop' codons that occur in most of its protein genes. The predicted structures of all S. punctatus tRNAs have the common feature of containing one to three mis-pairings in the first three positions of their acceptor stems. Such mis-pairing is expected to impair proper folding and processing of tRNAs from their precursors. Five of these eight RNAs were shown to be edited at the RNA level, in the 5'portion of the molecules. These changes include both pyrimidine to purine and A to G substitutions that restore normal pairing in the acceptor stem. Editing was not found at other positions of the tRNAs, or in the mitochondrial mRNAs of S. punctatus. While tRNA editing has not been observed in other fungi, the editing pattern inS.punctatus is virtually identical to that described in the amoeboid protozoan Acanthamoeba castellanii. If this type of mitochondrial tRNA editing has originated from their common ancestor, one has to assume that it was independently lost in plants, animals and in most fungi. Alternatively, editing might have evolved independently, or the genes coding for the components of the editing machinery were laterally transferred. PMID:9016605

  12. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment.

    PubMed

    Maza-Márquez, P; Vilchez-Vargas, R; Kerckhof, F M; Aranda, E; González-López, J; Rodelas, B

    2016-11-15

    Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Occurrence of fungi and fungus-like organisms in the Horodnianka River in the vicinity of Białystok, Poland.

    PubMed

    Kiziewicz, Bozena; Zdrojkowska, Ewa; Gajo, Bernadetta; Godlewska, Anna; Muszyńska, Elzbieta; Mazalska, Bozenna

    2011-01-01

    Studies of fungi and fungus- like organisms in the northeastern Poland have mainly concentrated on running waters in the vicinity of Białystok, including the Horodnianka River. The main objective was to investigate biodiversity of fungi and fungus-like organisms which take part in decomposition of organic matter commonly found in inland waters. To obtain a complete picture of species composition of fungi and fungus-like organisms in running waters we decided to explore representative sites of the Horodnianka River such as Olmonty, Hryniewicze and Horodniany with close localization of landfill. Fungal species were isolated using baiting technique. Baits of onion skin (Alium cepa), hemp-seeds (Cannabis sativa), impregnated cellophane and snake skin (Natrix natrix) were applied to isolate fungi from water of the Horodnianka River. The fungal community consists of 26 species, 10 species of fungi belonging to class Chytridiomycetes (3), anamorphic fungi (6), and Zygomycetes (1). 16 species belong to fungus-like organisms from class Oomycetes. Most of the recognized species have already been found in other running waters. From all the examined habitats the fungi belonging to 26 species of 18 genera Achlya, Alternaria, Aphanomyces, Aspergillus, Catenophlyctis, Dictyuchus, Fusarium, Karlingia, Lagenidium, Leptomitus, Olpidiopsis, Penicillium, Phlyctochytrium, Pythium, Saprolegnia, Scoliognia, Thraustotheca and Zoophagus were obtained. Certain fungal species like Aphanomyces laevis, Fusarium aqueductum, F. moniliforme, F. oxysporum, Leptomitus lacteus, Saprolegnia feax and S. parasitica were found at all the study sites. Among fungi potentially pathogenic and allergogenic for humans the genera Alternaria, Aspergillus, Fusarium, Lagenidium and Penicillium have already been described. However, the species Lagenidium giganteum and Achlya androgyna are new in the fungal biota of Poland. The greatest number of fungal species occurred in Olmonty (24), the smallest in Horodniany

  14. Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production.

    PubMed

    Smith-Bädorf, Holly D; Chuck, Christopher J; Mokebo, Kirsty R; Macdonald, Heather; Davidson, Matthew G; Scott, Rod J

    2013-01-31

    The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into 'unialgal' culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration.Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition.

  15. A Thermostable Glucoamylase from Bispora sp. MEY-1 with Stability over a Broad pH Range and Significant Starch Hydrolysis Capacity

    PubMed Central

    Bai, Yingguo; Wang, Kun; Niu, Canfang; Huang, Huoqing; Shi, Pengjun; Wang, Caihong; Yang, Peilong; Yao, Bin

    2014-01-01

    Background Glucoamylase is an exo-type enzyme that converts starch completely into glucose from the non-reducing ends. To meet the industrial requirements for starch processing, a glucoamylase with excellent thermostability, raw-starch degradation ability and high glucose yield is much needed. In the present study we selected the excellent Carbohydrate-Activity Enzyme (CAZyme) producer, Bispora sp. MEY-1, as the microbial source for glucoamylase gene exploitation. Methodology/Principal Findings A glucoamylase gene (gla15) was cloned from Bispora sp. MEY-1 and successfully expressed in Pichia pastoris with a high yield of 34.1 U/ml. Deduced GLA15 exhibits the highest identity of 64.2% to the glucoamylase from Talaromyces (Rasamsonia) emersonii. Purified recombinant GLA15 was thermophilic and showed the maximum activity at 70°C. The enzyme was stable over a broad pH range (2.2–11.0) and at high temperature up to 70°C. It hydrolyzed the breakages of both α-1,4- and α-1,6-glycosidic linkages in amylopectin, soluble starch, amylose, and maltooligosaccharides, and had capacity to degrade raw starch. TLC and H1-NMR analysis showed that GLA15 is a typical glucoamylase of GH family 15 that releases glucose units from the non-reducing ends of α-glucans. The combination of Bacillus licheniformis amylase and GLA15 hydrolyzed 96.14% of gelatinized maize starch after 6 h incubation, which was about 9% higher than that of the combination with a commercial glucoamylase from Aspergillus niger. Conclusion/Significance GLA15 has a broad pH stability range, high-temperature thermostability, high starch hydrolysis capacity and high expression yield. In comparison with the commercial glucoamylase from A. niger, GLA15 represents a better candidate for application in the food industry including production of glucose, glucose syrups, and high-fructose corn syrups. PMID:25415468

  16. Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria.

    PubMed

    Choi, Okkyoung; Das, Atreyee; Yu, Chang-Ping; Hu, Zhiqiang

    2010-12-15

    Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. © 2010 Wiley Periodicals, Inc.

  17. Enzymatic solubilization of arabinoxylans from native, extruded, and high-shear-treated rye bran by different endo-xylanases and other hydrolyzing enzymes.

    PubMed

    Figueroa-Espinoza, Maria-Cruz; Poulsen, Charlotte; Borch Søe, Jorn; Zargahi, Masoud Rajabi; Rouau, Xavier

    2004-06-30

    The overall objective of this research was to find a new way to valorize rye bran, by producing a gellifier from the enzymatic solubilization of arabinoxylans (AX). The effects of three pure endo-xylanases from Aspergillus niger (Xyl-1), Talaromyces emersonii (Xyl-2), and Bacillus subtilis (Xyl-3) and of Grindamyl S100 (GS100), a commercial enzyme preparation containing a Xyl-1 type endo-xylanase, were tested on rye bran to study the solubilization of water-unextractable arabinoxylans (WUAX). Eight different extrusion-treated rye brans were also used as substrates to find the best physical treatment to facilitate enzymatic arabinoxylan (AX) solubilization. Arabinoxylans were better solubilized from the bran extruded at high temperature using Xyl-3. This enzyme was then tested in combination with pure (1,4)-beta-d-arabinoxylan arabinofuranohydrolase (AXH) and endo-beta-d-glucanase or ferulic acid esterase (FAE), from A. niger. Only beta-glucanase in combination with Xyl-3 improved the AX extraction, but it did not have a marked effect on the viscosity of the extracts. Xyl-3 was then tested on a high-shear-treated rye bran, and results were compared to those obtained with the high-temperature-extruded rye bran. The high-shear treatment did not improve the bran AX enzymatic solubilization. The combination of FAE with Xyl-1 or Xyl-3 did not improve the AX extraction from untreated and high-shear-treated rye bran. Finally, to study the gelation capacity of the enzymatically solubilized AX, the effect of the hydrogen peroxide/horseradish peroxidase (H(2)O(2)/POD) was tested on the Xyl-3 high-temperature-extruded bran extracts. Solubilized AX did not gel in the presence of the oxidizing system.

  18. The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella.

    PubMed

    Mezhoud, Nahla; Zili, Fatma; Bouzidi, Nahla; Helaoui, Fatma; Ammar, Jihene; Ouada, Hatem Ben

    2014-11-01

    Tunisian microalgae are diverse and rarely been studied. This study reports a first investigation of thermophile Chlorophyta isolated from mats community colonizing the geothermal springs in the north of Tunisia at water temperature 60 °C. In the study, the combined effect of temperature and light intensity was investigated on the cell growth, the mother and daughter cells abundance and the extracellular polymeric substances synthesis in batch culture of the isolated species. Three levels were tested for each factor, 20, 30, 40 °C for temperature; and 20, 70, 120 μmol photons m(-2) s(-1) for light intensity, using full factorial design and response surface methodology. The thermophile strain was identified as a genus Graesiella and showed 99.8% similarity with two Graesiella species: Graesiella emersonii and Graesiella vacuolata based on the 18S rDNA molecular identification. The optimal growth condition was found at 30 °C and 120 µmol photons m(-2) s(-1) (7 MC mL(-1) day(-1)), with the abundance of vegetative cells (daughter cells). In contrast, the number of mother cells increased significantly as the growth decreased; consequently, the highest ratio of auto spore mother cells versus daughter cells (19.4) was obtained at 20 °C and 20 µmol photons m(-2) s(-1). The highest yield of EPS production (11.7 mg L(-1) day(-1)) was recorded at the highest temperature (40 °C) and lowest light intensity (20 µmol photons m(-2)s(-1)). These results revealed how the species respond to high and low temperatures and suggest that the species should be considered as facultative thermophile.

  19. Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production

    PubMed Central

    2013-01-01

    The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into ‘unialgal’ culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration. Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition. PMID:23369619

  20. Expression and evaluation of enzymes required for the hydrolysis of galactomannan.

    PubMed

    Malherbe, A R; Rose, S H; Viljoen-Bloom, M; van Zyl, W H

    2014-08-01

    The cost-effective production of bioethanol from lignocellulose requires the complete conversion of plant biomass, which contains up to 30 % mannan. To ensure utilisation of galactomannan during consolidated bioprocessing, heterologous production of mannan-degrading enzymes in fungal hosts was explored. The Aspergillus aculeatus endo-β-mannanase (Man1) and Talaromyces emersonii α-galactosidase (Agal) genes were expressed in Saccharomyces cerevisiae Y294, and the Aspergillus niger β-mannosidase (cMndA) and synthetic Cellvibrio mixtus β-mannosidase (Man5A) genes in A. niger. Maximum enzyme activity for Man1 (374 nkat ml(-1), pH 5.47), Agal (135 nkat ml(-1), pH 2.37), cMndA (12 nkat ml(-1), pH 3.40) and Man5A (8 nkat ml(-1), pH 3.40) was observed between 60 and 70 °C. Co-expression of the Man1 and Agal genes in S. cerevisiae Y294[Agal-Man1] reduced the extracellular activity relative to individual expression of the respective genes. However, the combined action of crude Man1, Agal and Man5A enzyme preparations significantly decreased the viscosity of galactomannan in locust bean gum, confirming hydrolysis thereof. Furthermore, when complemented with exogenous Man5A, S. cerevisiae Y294[Agal-Man1] produced 56 % of the theoretical ethanol yield, corresponding to a 66 % carbohydrate conversion, on 5 g l(-1) mannose and 10 g l(-1) locust bean gum.

  1. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.

    PubMed

    Davison, Steffi A; den Haan, Riaan; van Zyl, Willem Heber

    2016-09-01

    Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.

  2. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins.

    PubMed

    Wina, E; Muetzel, S; Becker, K

    2006-01-01

    To investigate the short- and long-term effects of an extract of Sapindus rarak saponins (SE) on the rumen fibrolytic enzyme activity and the major fibrolytic micro-organisms. Two feeding trials were conducted. In the short-term trial, four fistulated goats were fed a basal diet containing sugar cane tops and wheat pollard (65:35, w/w) and were supplemented for 7 days with SE at a level of 0.6 g kg(-1) body weight. Rumen liquor was taken before, during and after SE feeding. In the long-term trial, 28 sheep were fed the same basal diet as the goats and were supplemented for 105 days with 0.24, 0.48 and 0.72 g kg(-1) body mass of the extract. Rumen liquor was taken on days 98 and 100. Protozoal numbers were counted under the microscope. Cell wall degradation was determined by enzyme assays and the major fibrolytic micro-organisms were quantified by dot blot hybridization. Sapindus extract significantly depressed rumen xylanase activity in both trials and carboxymethylcellulase activity in the long-term trial (P < 0.01). Fibrobacter sp. were not affected by the SE in both trials, while ruminococci and the anaerobic fungi showed a short-term response to the application of saponins. Protozoal counts were decreased only in the long-term trial with sheep. These data suggest that there is an adaptation of Ruminococcus albus, Ruminococcus flavefaciens and Chytridiomycetes (fungi) to saponin when fed over a long period. The fact that no correlation between the cell wall degrading enzyme activities and the cell wall degrading micro-organisms was observed suggests that the organisms tracked in this experiment are not the only key players in ruminal cell wall degradation. Sapindus rarak saponins partially defaunate the rumen flora. Their negative effect on cell wall degradation, however, is not related to rumen organisms currently recognized as the major cell wall degrading species. The adaptation of microbes in the long-term feeding experiment suggests that the results from

  3. Genomic and Transcriptomic Resources for Marker Development in Synchytrium endobioticum, an Elusive but Severe Potato Pathogen.

    PubMed

    Busse, Friederike; Bartkiewicz, Annette; Terefe-Ayana, Diro; Niepold, Frank; Schleusner, Yvonne; Flath, Kerstin; Sommerfeldt-Impe, Nicole; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Linde, Marcus; Przetakiewicz, Jarosław; Debener, Thomas

    2017-03-01

    Synchytrium endobioticum is an obligate biotrophic fungus that causes wart diseases in potato. Like other species of the class Chytridiomycetes, it does not form mycelia and its zoospores are small, approximately 3 μm in diameter, which complicates the detection of early stages of infection. Furthermore, potato wart disease is difficult to control because belowground organs are infected and resting spores of the fungus are extremely durable. Thus, S. endobioticum is classified as a quarantine organism. More than 40 S. endobioticum pathotypes have been reported, of which pathotypes 1(D1), 2(G1), 6(O1), 8(F1), and 18(T1) are the most important in Germany. No molecular methods for the differentiation of pathotypes are available to date. In this work, we sequenced both genomic DNA and cDNA of the German pathotype 18(T1) from infected potato tissue and generated 5,422 expressed sequence tags (EST) and 423 genomic contigs. Comparative sequencing of 33 genes, single-stranded confirmation polymorphism (SSCP) analysis with polymerase chain reaction fragments of 27 additional genes, as well as the analysis of 41 simple sequence repeat (SSR) loci revealed extremely low levels of variation among five German pathotypes. From these markers, one sequence-characterized amplified region marker and five SSR markers revealed polymorphisms among the German pathotypes and an extended set of 11 additional European isolates. Pathotypes 8(F1) and 18(T1) displayed discrete polymorphisms which allow their differentiation from other pathotypes. Overall, using the information of the six markers, the 16 isolates could be differentiated into three distinct genotype groups. In addition to the presented markers, the new collection of EST from genus Synchytrium might serve in the future for molecular taxonomic studies as well as for analyses of the host-pathogen interactions in this difficult pathosystem. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article

  4. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi

    DOE PAGES

    Xu, Qi; Knoshaug, Eric P.; Wang, Wei; ...

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose twomore » prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for

  5. Stunting syndrome in broilers: effect of age and exogenous amylase and protease on performance, development of the digestive tract, digestive enzyme activity, and apparent digestibility.

    PubMed

    Shapiro, F; Nir, I

    1995-12-01

    Day-old male, meat-type chicks raised in brooder batteries were infected by orally administering an inoculum prepared from intestines of broiler chicks infected with stunting syndrome (SS). Naive controls were kept in a parallel room. The chicks were fed a commercial starter diet supplemented with two levels of enzyme preparations to 14 d of age. The experiment was continued to the age of 6 wk in order to estimate compensatory feed intake and growth. In a parallel study, digestibility of the feed was determined from 1 to 3 wk of age with control or inoculated chicks. The enzymes amylase and proteases were produced by Bacillus subtilis and Penicillium emersonii. Enzyme supplementation had no effect on feed intake, growth, or feed utilization, or on digestibility of fat, starch, protein, or energy. Because enzyme supplementation did not consistently affect performance of chicks and no interactions were observed between enzyme supplementation and infection status, data are presented for effects of infection only. Inoculation of SS-infective material reduced performance to 4 wk. Compensatory growth and feed intake were observed from the age of 4 wk onward. At the age of 6 wk the slight retardation of the inoculated chicks was not significant. On Week 1, retention of fat, starch, protein, and energy was significantly depressed in the inoculated chicks. At the age of 2 wk, retention of starch was not depressed, and at the age of 3 wk, the only consistent depression was that observed for fat. The proventriculus weight and content were consistently higher in inoculated chicks, as were the small intestine and intestinal content. The pH of the gizzard content was higher, and that of the small intestine content was lower, in the inoculated birds than in their control counterparts. Stunting syndrome infection was accompanied by a significant depression of trypsin activity in the pancreas at the age of 1 and 2 wk. At these periods, amylase and chymotrypsin were not affected. At

  6. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    DOE PAGES

    Wei, Hui; Wang, Wei; Alahuhta, Markus; ...

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichodermamore » reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  7. Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing

    SciTech Connect

    Wei, Hui; Wang, Wei; Alahuhta, Markus; Vander Wall, Todd; Baker, John O.; Taylor, Larry E.; Decker, Stephen R.; Himmel, Michael E.; Zhang, Min

    2014-10-16

    Background: Yarrowia lipolytica is an oleaginous yeast capable of metabolizing glucose to lipids, which then accumulate intracellularly. However, it lacks the suite of cellulolytic enzymes required to break down biomass cellulose and cannot therefore utilize biomass directly as a carbon source. Toward the development of a direct microbial conversion platform for the production of hydrocarbon fuels from cellulosic biomass, the potential for Y. lipolytica to function as a consolidated bioprocessing strain was investigated by first conducting a genomic search and functional testing of its endogenous glycoside hydrolases. Once the range of endogenous enzymes was determined, the critical cellulases from Trichoderma reesei were cloned into Yarrowia. Results: Initially, work to express T. reesei endoglucanase II (EGII) and cellobiohydrolase (CBH) II in Y. lipolytica resulted in the successful secretion of active enzymes. However, a critical cellulase, T. reesei CBHI, while successfully expressed in and secreted from Yarrowia, showed less than expected enzymatic activity, suggesting an incompatibility (probably at the post-translational level) for its expression in Yarrowia. This result prompted us to evaluate alternative or modified CBHI enzymes. Our subsequent expression of a T. reesei-Talaromyces emersonii (Tr-Te) chimeric CBHI, Chaetomium thermophilum CBHI, and Humicola grisea CBHI demonstrated remarkably improved enzymatic activities. Specifically, the purified chimeric Tr-Te CBHI showed a specific activity on Avicel that is comparable to that of the native T. reesei CBHI. Furthermore, the chimeric Tr-Te CBHI also showed significant synergism with EGII and CBHII in degrading cellulosic substrates, using either mixed supernatants or co-cultures of the corresponding Y. lipolytica transformants. The consortia system approach also allows rational volume mixing of the transformant cultures in accordance with the optimal ratio of cellulases required for efficient

  8. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    PubMed

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  9. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber

    PubMed Central

    2012-01-01

    Background Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra- and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U.mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2:1 or 4:1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic

  10. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber.

    PubMed

    Segato, Fernando; Damasio, André R L; Gonçalves, Thiago Augusto; Murakami, Mario T; Squina, Fabio M; Polizeli, Mariadelourdestm; Mort, Andrew J; Prade, Rolf A

    2012-04-11

    Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra- and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U.mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2:1 or 4:1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic fiber

  11. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    PubMed

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  12. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species.

    PubMed

    Houbraken, Jos; de Vries, Ronald P; Samson, Robert A

    2014-01-01

    Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of

  13. Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis.

    PubMed

    van Elsas, J D; Duarte, G F; Keijzer-Wolters, A; Smit, E

    2000-12-15

    A molecular method for profiling of fungal communities in soil was applied in experiments in soil microcosms, with two objectives, (1) to assess the persistence of two selected fungal species in soil, and (2) to analyze the response of the natural fungal community to a spill of sulphurous petrol in the same soil. To achieve the aims, two soil DNA extraction methods, one originally designed for the direct extraction of bacterial community DNA and the other one aimed to obtain fungal DNA, were tested for their efficiency in recovering DNA of fungal origin from soil. Both methods allowed for the efficient extraction of DNA from introduced Trichoderma harzianum spores as well as Arthrobotrys oligospora mycelial fragments, at comparable rates. Several PCR amplification systems based on primers specific for fungal 18S ribosomal RNA genes were tested to design strategies for the assessment of fungal communities in soil. The PCR systems produced amplicons of expected size with DNA of most fungi studied, which included members of the Ascomycetes, Basidiomycetes, Zygomycetes and Chytridiomycetes. On the other hand, the 18S rRNA genes of Oomycetes (including key plant pathogens) were poorly amplified. Plant (Solanum tuberosum), nematode (Meloidogyne sp.) and bacterial DNA was not amplified. For studies of soil fungal communities, a nested PCR approach was selected, in which the first PCR provided the required specificity for fungi, whereas the second (nested) PCR served to produce amplicons separable on denaturing gradient gels. Denaturing gradient gel electrophoresis (DGGE) allowed the resolution of mixtures of PCR products of several different fungi, as well as products resulting from mixed-template amplifications, into distinct banding patterns. The persistence of fungal species in soil was assessed using T. harzianum spores and A. oligospora hyphal fragments added to silt loam soil microcosms. Using PCR-DGGE, these fungi were detectable for about 14 days and 2 months