Science.gov

Sample records for cimtec-world ceramics congress

  1. PREFACE: 3rd International Congress on Ceramics (ICC3)

    NASA Astrophysics Data System (ADS)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  2. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  3. 101st Congress: The Children's Congress.

    ERIC Educational Resources Information Center

    Willer, Barbara

    1991-01-01

    Reports on legislation on child care and regulations for children's television enacted during the 101st congress. Legislation involving block grants, Title IV-A funding, and earned income tax credits was intended to bring about quality improvement and affordability. Reauthorizations included Head Start, Follow Through, Community Services Block…

  4. First Mayan Women's Congress.

    PubMed

    Teissedre, S

    1997-01-01

    In October 1997, over 200 participants attended the First Mayan Women's Congress in Mexico and called for financial assistance, capacity building, and training to help Mayan women escape poverty. The Congress was initiated by the UN Development Fund for Women in collaboration with the Small Grants Program of the UN Development Program. Traditionally, Mayan women and men have played distinct roles in society, and efforts are underway to increase gender sensitivity and achieve a new balance of power. Mayan women attending the Congress reported that they face daily challenges in gaining their husbands' approval for participation in income-generating activities outside of the home. Eventually, however, some husbands also start working in these enterprises and are learning to assume their share of domestic responsibilities. Mayan women have been forced to reevaluation their role in society by a prevailing agricultural and environmental crisis as well as a high unemployment rate. Crafts that were once produced only for household consumption are now considered for export. Because the women need funds to initiate income-generating activities, the Conference linked women's groups with development practitioners, policy-makers, and donors. The women requested financial aid for more than 30 specific projects, and Congress participants agreed to pursue innovate strategies to support the enterprises with funds, training, and technical assistance. The Congress also encouraged environmental nongovernmental organizations to include Mayan women in mainstream development activities. This successful Congress will be duplicated in other Mexican states. PMID:12293736

  5. Congress and national security

    NASA Astrophysics Data System (ADS)

    Sharfman, Peter

    1983-10-01

    The starting point for any serious discussion of Congress role in matters of national security is the recognition that Congress does some kinds of things very effectively, but generally fails when it tries to do other kinds of things. Consequently, a citizen with a desire to shape national policy may find Congress to be the focal point of national decision, or largely irrelevant, depending almost, entirely on the nature of the issue. As a political scientist, I am tempted to relate this to the provisions of the U.S. Constitution and to the differing structures of the Executive and Legislative institutions; since I am addressing an audience of physicists, I will confine my explanation of causes to the observation that you cannot easily push on a string.

  6. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  7. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  8. Sport Heroes in Congress.

    ERIC Educational Resources Information Center

    Corbett, Doris R.

    This paper reports the findings of a study of the role of sports in the lives of U.S. Congressmen and focuses attention on six gifted athletes for whom sports provided preparation for government service. The word "hero" as used in this paper refers to former members of Congress who were admired for their athletic prowess and for their political…

  9. Communicating with Congress

    ERIC Educational Resources Information Center

    Ochs, Mike

    2005-01-01

    At a seminar, two Congressional staff members offered good tips on how it is best to communicate with legislators. Although offered in the context of communicating with Congress, these insights are also valuable when working with state and local legislators. This article discusses the key points that were provided in the seminar. In addition to…

  10. Ceramic joining

    SciTech Connect

    Loehman, R.E.

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  11. Ceramic burner

    SciTech Connect

    Laux, W.; Hebel, R.; Artelt, P.; Esfeld, G.; Jacob, A.

    1981-03-31

    Improvements in the mixing body and supporting structure of a molded-ceramic-brick burner enable the burner to withstand the vibrations induced during its operation. Designed for the combustion chambers of air heaters, the burner has a mixing body composed of layers of shaped ceramic bricks that interlock and are held together vertically by a ceramic holding bar. The mixing body is shaped like a mushroom - the upper layers have a larger radius than the lower ones.

  12. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  13. Ceramic filters

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1995-12-31

    Filters were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.

  14. Districts for 104th Congress

    USGS Publications Warehouse

    ,

    1990-01-01

    This is a polygon coverage of 104th Congressional District boundaries obtained from the U.S. Bureau of the Census. The 103rd Congress was the first Congress that reflected the reapportionment and delineation of congressional districts based on the 1990 census. The next (104th) Congress reflects redelineation of districts that occurred for six states: Georgia, Louisiana, Maine, Minnesota, South Carolina, and Virginia. Congressional Districts U.S. House of Representatives Census TIGER/Line Files

  15. Congress Honors Glenn, Apollo 11 Crew

    NASA Video Gallery

    Congress honored storied NASA astronauts John Glenn, Neil Armstrong, Michael Collins and Buzz Aldrin on Wednesday, with the Gold Medal, Congress' highest expression of national appreciation for dis...

  16. Upcoming hearings in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    1984-04-01

    The following markup and conference committees have been tentatively scheduled by the Senate and House of Representatives. Dates and times should be verified with the committee or subcommittee holding the markup or conference; all offices on Capitol Hill may be reached by telephoning 202-224-3121. For guidelines on contacting a member of Congress, see AGU's Guide to Legislative Information and Contacts (Eos, April 17, 1984, p. 159).August 7: Mark up legislation that would require federal Coastal Zone Management plans to be consistent with state management plans (H.R. 4589) by the House Merchant Marine and Fisheries Committee. Longworth Building, Room 1334, 10 A.M.

  17. Congress trims NSF budget

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    The last-minute spending bill adopted by Congress just before its 1987 holiday recess provides $1,717 billion for the National Science Foundation (NSF) for fiscal year (FY) 1988. The approved figure is more than 9% lower than the request in President Reagan's budget plan. In addition, wording in the House version of the bill that mandated protection of ocean science and women and minorities programs did not appear in the final product that was approved by Congress and signed into law.In absolute terms, NSF's budget will be 6% more than in 1987, far less than expected by the agency and the White House, which had proposed a doubling of NSF's budget over the next several years. The Research and Related Activities section of the budget, out of which comes the bulk of NSF's support of basic research, was funded at $1,453 billion, $200 million less than its $1,653 billion request, and the Antarctic Research section received $124.8 million of $143 million in the President's budget. Science Education, on the other hand, was budgeted for $139.2 million, $25 million more than requested.

  18. Structural ceramics

    NASA Technical Reports Server (NTRS)

    Craig, Douglas F.

    1992-01-01

    This presentation gives a brief history of the field of materials sciences and goes on to expound the advantages of the fastest growing area in that field, namely ceramics. Since ceramics are moving to fill the demand for lighter, stronger, more corrosion resistant materials, advancements will rely more on processing and modeling from the atomic scale up which is made possible by advanced analytical, computer, and processing techniques. All information is presented in viewgraph format.

  19. Upcoming hearings in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The following hearings and markups have been tentatively scheduled for the coming weeks by the Senate and House of Representatives. Dates and times should be verified with the committee or subcommittee holding the hearing or markup; all offices on Capitol Hill may be reached by telephoning 202-224-3121. For guidelines on contacting a member of Congress, see AGU's Guide to Legislative Information and Contacts (Eos, August 28, 1984, p. 669).June 27: Hearing on legislation to impose user fees for some of the services provided by the National Oceanic and Atmospheric Administration by the Coast Guard Subcommit-tee of the House Merchant Marine and Fisheries Committee. Room 1334, Longworth Building, 9:30 A.M.

  20. Congress initiates science study

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. House of Representatives announced in October a year-long study to review the nation's science and technology policy and the government's role in funding scientific research. The Science Policy Study, led by Rep. Vernon Ehlers (R-MI), is the first comprehensive review by Congress since 1985—a time when the Cold War still was being fought and the Internet was largely unknown.At a workshop to discuss the initiative, House Science Committee Chair James Sensenbrenner, Jr., told about 30 scientists and policy experts that the challenge is “to develop a new, sensible, coherent long-range science and technology policy, including a review of our nation's science and math education programs.”

  1. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  2. Technology assessment and the Congress

    NASA Technical Reports Server (NTRS)

    Carpenter, R. A.

    1972-01-01

    The legislative branch is considered as the major focus for technology assessment, and the functions of the Congressional Research Service in supplying Congressmen with scientific and technological development is outlined, and the need for Congress to control, assess, and integrate the various and conflicting elements for the benefit of both technology and society is stressed. The organization of the Science Policy Research Division is mentioned, and its duties in gathering facts for the increased understanding by the members of Congress are indicated. Technology assessment aspects associated with congressional committees and hearings, adequacy of advice, trends in engineering education, and the public interest are also discussed.

  3. Update on Congress: A Review of Current Issues Facing Congress.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Addresses four issues facing Congress: (1) freedom from religious bias in the workplace; (2) campaign finance reform; (3) President Clinton's education program and the allocation of money for various proposals; and (4) Senator John McCain's legislative package for reducing smoking in the United States. (CMK)

  4. Ceramic transactions: Functionally gradient materials. Volume 34

    SciTech Connect

    Holt, J.B.; Koizumi, Mitsue; Hirai, Toshio; Munir, Z.A.

    1993-01-01

    A functionally gradient material (FGM) is a composite that smoothly transitions from one material at one surface to another material at the opposite surface. Metals and ceramics are usually the materials that are combined in a controlled manner to optimize a specific property. The First International Symposium on Functionally Gradient Materials was held in Sendai, Japan, in August 1990. Contained in the present volume are the Proceedings of the Second International Symposium on Functionally Gradient Materials, presented at the Third International Ceramic Science and Technology Congress, held in San Francisco, CA, November 1-4, 1992. The papers presented here are divided into eight sections: the concept of FGM; mathematical modeling; methods of fabrication; material evaluation; applications; joining processes in FGM; process characterization; and design considerations. Separate abstracts are provided for each of the 54 papers.

  5. Back to Basics for Congress.

    ERIC Educational Resources Information Center

    Penning, Nick

    1991-01-01

    Some members of Congress retain a Norman Rockwell image of the two-parent household. To make headway with these leaders, educators must get them into schools and neighborhoods to let them see firsthand the crying needs of children and the schools providing safe harbor for a few hours. Administrators should also share their visions of education's…

  6. Congress Wraps Up 2011 Budget

    ERIC Educational Resources Information Center

    Klein, Alyson

    2011-01-01

    Education advocates are already bracing for protracted budget battles in the coming year, even as they sort the winners and losers in the bill approved by Congress late last week financing the U.S. Department of Education and the rest of the federal government through September. The hard-fought agreement followed months of wrangling between…

  7. Congress enacts health care reform.

    PubMed

    2010-03-01

    Health care reform at last: After nearly a century of effort by Presidents from Theodore Roosevelt on down, the Congress finally agreed on and President Barack Obama signed into law a system that covers most Americans, regulates sharp insurance practices, and embraces a paradigm shift from acute institutionally focused care to chronic disease management based on home and community-based care. PMID:20465039

  8. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  9. Environmental durability of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.

    1992-01-01

    An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.

  10. Annual report to Congress 1997

    SciTech Connect

    1998-07-01

    Section 205 of the Department of Energy Organization Act of 1977 established the Energy Information Administration (EIA). One of the mandates in this legislation is that EIA prepare for Congress an annual report summarizing both activities and information collected and published. EIA`s major 1997 accomplishments are profiled in the body of this edition of the Annual Report to Congress. Appendix A contains abstracts of significant reports issued by EIA in 1997, and a chart of all titles and a list of all feature articles published during the year. Appendix B contains graphs of selected performance measures. Appendix C lists contact information for EIA subject matter specialists. Appendix D lists the major laws which form the basis of EIA`s legislative mandate.

  11. Annual report to Congress, 1998

    SciTech Connect

    1999-04-01

    Section 205 of the Department of Energy Organization Act of 1977 established the Energy Information Administration (EIA). One of the mandates in this legislation is that EIA prepare for Congress an annual report summarizing both activities and information collected and published. EIA`s major 1998 accomplishments are profiled in the body of this edition of the Annual Report to Congress. Appendix A contains abstracts of significant reports issued by EIA in 1998 and a chart of all titles and a list of all feature articles published during the year. Appendix B contains graphs of selected performance measures. Appendix C lists contact information for EIA subject matter specialists. Appendix D lists the major laws which form the basis of EIA`s legislative mandate.

  12. Annual report to Congress, 1993

    SciTech Connect

    Not Available

    1994-03-31

    Created by Congress in 1977 as an independent entity within the Department of Energy, the Energy Information Administration (EIA) is the principal and authoritative source of comprehensive energy data for the Congress, the Federal Government, the States, and the public. With the mandate to ``collect, assemble, evaluate, analyze, and disseminate data and information,`` EIA`s mission has been defined to: maintain a comprehensive data and information program relevant to energy resources and reserves, energy production, energy demand, energy technologies, and related financial and statistical information relevant to the adequacy of energy resources to meet the Nation`s demands in the near and longer term future. Develop and maintain analytical tool and collection and processing systems; provide analyses that are accurate, timely, and objective; and provide information dissemination services. This annual report summarizes EIA`s activities and accomplishments in 1993.

  13. Annual report to Congress 1992

    SciTech Connect

    Not Available

    1993-03-25

    By Congress in 1977 as an independent entity within the Department of Energy, the Energy Information Administration (EIA) is the principal and authoritative source of comprehensive energy data for the Congress, the Federal Government, the States, and the public. During 1992, EIA provided information and analysis in response to many energy-related issues and events, including Hurricane Andrew. In addition, EIA made substantial strides in a number of critical special projects, most notably development of the National Energy Modeling System, preparation of National Petroleum Council studies on petroleum refining and natural gas, and establishment of oxygenate data program mandated by the Clean Air Act Amendments of 1990. EIA also took advantage of new opportunities for international consultations and energy information exchanges. This report to Congress contains energy-related information on the following: petroleum; natural gas; integrated analysis and forecasting; electricity; coal; energy markets and end use, nuclear, statistical standards, and information services. The appendices include: data collection surveys of the Energy Information Administration; Analytic models of the Energy Information Administration; EIA publication -- EIA products available on diskette; and Major laws affecting EIA, 1974-1992.

  14. The 100th FDI World Dental Congress.

    PubMed

    Yeung, C A

    2013-05-01

    The 100th FDI World Dental Congress was held in Hong Kong from 29 August to 1 September 2012. This article gives a report on the congress, which saw the first FDI World Oral Health Recognition Award being given to Professor Zhu Chen, the Minister of Health in China. During the congress, both the FDI Vision 2020 project and the Global Caries Initiative website were launched.

  15. PREFACE: Symposium 13: Ceramics for Medicine, Biotechnology and Biomimetics

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Chikara

    2011-10-01

    Preface to Symposium 13 (Ceramics for Medicine, Biotechnology and Biomimetics) of the International Congress on Ceramics III, 14-18 November 2010, Osaka, Japan Ceramic materials are now widely used in biomedical fields, such as applications of artificial bones, joints and teeth. The high potential of ceramics to exhibit biological functionality is expected to produce novel materials supporting biotechnology. These applications are governed by the interactions of materials and biological molecules. So far, 'bioceramics' is a type of biomaterial used for repairing damaged tissues. The orthopaedic application of bioceramics has advanced rapidly since the invention of Bioglass® that was found to encourage direct bonding with living bone. Hydroxyapatite and calcium phosphate ceramics are now popular bioceramics for use in artificial bones. While the bone-bonding behavior of materials was understood phenomenologically, very little has been known about the mechanism of either hard or soft tissue attachment or tissue growth on ceramic-based materials, such as glasses, glass-ceramics, ceramic composites and organic-inorganic hybrids. This symposium discussed the scientific understanding of the interface between biomedical materials and soft/hard tissues, and the design and construction of nanoscopic interfaces. It also involved establishment of biomimetic structures, characterization of natural life-related hard and soft tissues, and their formation mechanisms for a wide range of applications in biotechnology through 45 oral presentations including 5 invited lectures and 45 posters. I wish to express my sincere appreciation to the organizers of this symposium in the ICC3 conference. I am also grateful to the invited speakers, all the participants and organizing committee of the ICC3. It is my great pleasure that this proceedings could be published as the fruit of this symposium's achievement, which includes the contributions in all aspect of scientific understanding and

  16. Dental ceramics: An update.

    PubMed

    Shenoy, Arvind; Shenoy, Nina

    2010-10-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed.

  17. International Congress on Glass XII

    SciTech Connect

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  18. The Library of Congress Information Bulletin, 2002.

    ERIC Educational Resources Information Center

    Lamolinara, Guy, Ed.; Dalrymple, Helen, Ed.

    2002-01-01

    These 10 issues, representing one calendar year, including two double issues (2002) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, World Wide Web sites and digital…

  19. The Library of Congress Information Bulletin, 1999.

    ERIC Educational Resources Information Center

    Library of Congress Information Bulletin, 1999

    1999-01-01

    These 12 issues, representing 1 calendar year (1999) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, Web sites and digital collections, new publications, exhibits,…

  20. Clean Water: Report to Congress - 1974.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This publication, an annual report to Congress, covers measures taken to implement the objectives of the Federal Water Pollution Control Act. The report was developed by the Environmental Protection Agency (EPA) and covers calendar year 1973. A letter introducing and highlighting the report from the EPA Director to the Congress is given at the…

  1. Congress Takes Activist Role in Science Policy

    ERIC Educational Resources Information Center

    Polinger, Madeleine

    1972-01-01

    Second of three articles that probe the nature of federal involvement in science. The role of Congress in formulating and implementing science policy is changing to a more activist one. Congress is seetting up mechanisms to interpret the flood of information used in making policy decisions. (Author/TS)

  2. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  3. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  4. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  5. FOREWORD: Focus on innovation in ceramics research in East Asia Focus on innovation in ceramics research in East Asia

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Hishita, Shunichi; Osada, Minoru; Haneda, Hajime

    2010-10-01

    Ceramics, as broadly defined, include all materials other than organic substances and metals, either crystalline or amorphous. They have been used by humans since early history and have contributed considerably to improving the quality of our life. In most cases, however, high-temperature treatment is necessary to prepare ceramics. This burdens the environment and there is therefore a great need for new ceramics processing methods. Recent technologically advanced ceramics are often composed of nanocrystallites, which have great potential for innovation in terms of exploring practical applications of nanomaterials and, consequently, reducing the environmental load. The ceramics industry had long flourished in Asia, particularly in East Asia, and even today, this region is leading the development of related materials. In line with these traditions, Japanese and Korean ceramics societies have been co-sponsoring seminars on ceramics since the 1980s. Having become more international in scope and context, a series of these seminars is now known as the International Japan-Korea Seminar on Ceramics. This focus issue contains eight key articles presented at the 26th International Japan-Korea Seminar on Ceramics held on 24-26 November 2010 at the Tsukuba International Congress Center. In particular, Fabbri et al review electrode materials for protonic solid-oxide fuel cells, and Kamiya et al outline the present situation and future prospects for transparent transistors, particularly those based on amorphous In-Ga-Zn-O films. Eitel et al discuss the progress in engineering high-strain lead-free piezoelectric ceramics. Kim and Kumar review a simple processing method for producing porous ceramics using polysiloxane precursors, Kamiya and Iijima focus on surface modification and characterization of nanomaterials, and Wan et al briefly review the strategy of reducing lattice thermal conductivity of thermoelectric materials and propose new materials for thermoelectric devices

  6. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  7. Ceramic gas turbine shroud

    DOEpatents

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  8. Forming of superplastic ceramics

    SciTech Connect

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  9. Science policy studied in Congress

    NASA Astrophysics Data System (ADS)

    The House Science and Technology Committee will initiate a comprehensive study of science policy in the United States. Although the study will not formally begin until January, when the 99th Congress convenes for its 2-year term, a newly appointed task force has begun to develop the agenda for the committee's work and has begun to prepare background information for the study.Don Fuqua (D-Fla.), chairman of the Science and Technology Committee, said that the health and vitality of American science unquestionably has been a major factor in the strong performance of the American economy over the last 35 years. However, the committee is concerned that present policies and practices may not be fully adequate to the new environment facing U.S. science in the coming decades.

  10. Congress approves science agency nominees

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    In late July, with the U.S. Congress rushing toward its recess and preparing for the November elections, the Senate confirmed several nominees for key positions in the government. In addition, President Bill Clinton announced his nominee for director of the U.S. Geological Survey (USGS), a division of the Department of the Interior.The Senate confirmed Neal Lane as director of the White House Office of Science and Technology Policy (OSTP). Lane also will serve as assistant to the President for science and technology, provide the President with advice in all areas of science and technology policy, and work to coordinate science, space, and technology policy and programs across the federal government. Lane previously was director of the National Science Foundation.

  11. Congress turns cold on fusion

    SciTech Connect

    Marshall, E.

    1984-06-22

    A 5% cut in fusion research budgets will force some programs to be dropped in order to keep the large machinery running unless US and European scientists collaborate instead of competing. Legislators became uneasy about the escalating costs of the new devices. The 1984 budget of $470 million for magnetic fusion research is only half the projected cost of the Tokomak Fusion Core Experiment (TFCX) planned to ignite, for the first time, a self-sustaining burn. Planning for the TCFX continued despite the message from Congress. Work at the large institutions at Princeton, MIT, etc. may survive at the expense of other programs, some of which will lose academic programs as well. Scientists point to the loss of new ideas and approaches when projects are cancelled. Enthusiasm is growing for international collaboration.

  12. World Energy Council 16. Congress review

    SciTech Connect

    Hammons, T.J.; Kim, C.S.; Jennings, J.S.; Fresco, P.; Nasu, S.; Baker, J.

    1996-03-01

    The sixteenth World Energy Council (WEC) Congress was hosted in Tokyo, Japan, October 8--13, 1995, with a theme of ``Energy for Our Common World: What will the future ask of us?`` Participants in the congress examined several fundamental issues of these times: hot to provide the energy services for an increasing world population, especially in developing countries; hot to meet local, regional, and global environmental and social concerns; how to adapt to changing markets and institutions; how to respond to diversified transportation and other end use patterns reflecting human behavior; how to deal with the emerging interdependence of energy markets; and what action to be pursued individually and collectively. This article summarizes the highlights of the congress, and includes an overview of the World Energy Council (WEC), a synopsis of the events, summaries of the technical program division addresses, and a summary of the congress conclusions.

  13. Congress Struggles through Two Science Policy Hearings.

    ERIC Educational Resources Information Center

    Mervis, Jeffrey

    1991-01-01

    A summary of the Congress's science committee meetings that decides the budget and sets the science policy for the United States is provided. The supercollider and global warming are two of the issues discussed at the hearings. (KR)

  14. REPORT TO CONGRESS ON BLACK CARBON

    EPA Science Inventory

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and thei...

  15. Energy Crisis Spurs Congress Into Action

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses legislation recently passed by Congress in response to the energy crisis, and the Nixon Administration's proposal for creating a new Energy Research and Development Administration (ERDA) and a Nuclear Energy Commission (NEC). (JR)

  16. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  17. Working at Congress : a Sandian's experience.

    SciTech Connect

    Allen, Matthew

    2009-03-01

    During the 110th Congress (calendar years 2007 and 2008), Matthew Allen, a Sandian nuclear scientist, served as a Congressional Fellow on the Committee on Homeland Security in the House of Representatives. This report is an informative account of the role staffers play in assisting the members of Congress in their oversight and legislative duties. It is also a personal account of Matthew Allen's experience as a committee staffer in the House of Representatives.

  18. Analyses of fine paste ceramics

    SciTech Connect

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  19. Ceramic tamper-revealing seals

    DOEpatents

    Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw

    1992-01-01

    A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.

  20. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  1. Method of sintering ceramic materials

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  2. Method of sintering ceramic materials

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  3. Alumina-based ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.

  4. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  5. Ceramic brush seals development

    NASA Technical Reports Server (NTRS)

    Howe, Harold

    1994-01-01

    The following topics are discussed in this viewgraph presentation: ceramic brush seals, research and development, manufacturing, brazed assembly development, controlling braze flow, fiber selection, and braze results.

  6. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  7. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  8. Annual report to Congress 1996

    SciTech Connect

    1997-07-01

    Since its creation in 1977, the Energy Information Administration (EIA) has provided high-quality energy information products and services to a broad spectrum of customers across the Nation and around the world, including Congress, representatives of the print and broadcast news media, businesses, officials of Federal, State, and local agencies, foreign governments and international organizations, students, librarians, researchers, lawyers and private citizens. Our motto: {open_quotes}On-line or off the shelf, EIA is the first place to go for the last word in energy information.{close_quotes} Established as an independent statistical and analytical agency within the U.S. Department of Energy (DOE), EIA was charged by its enabling legislation with: (1) Maintaining a comprehensive data and information program on energy resources and reserves, energy production, energy demand, energy technologies, and related financial and statistical information relevant to the adequacy of energy resources to meet the Nation`s demands in the near and longer term future. (2) Developing and maintaining analytical tools and collection and processing systems; providing analyses that are accurate, timely, and objective; and providing information dissemination services. This report summarizes the reports and contact information issued by the EIA.

  9. The NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Reiff, Patricia H.

    I would like to make the members of AGU aware of the recent happenings in Congress with regard to the fiscal year (FY) 1986 budget for the National Aeronautics and Space Administration (NASA). NASA was scheduled for modest increases from FY 1985 levels in the President's budget (Eos, February 19, 1985, p. 73), which was approved by the House Science and Technology Committee. However, when the authorization bill (H.R. 1714) “hit the floor” on April 3, amendments were offered and overwhelmingly passed to freeze funding at FY 1985 levels. (A similar fate met the National Science Foundation bill, H.R. 1210, on April 17.) The process is under way in the Senate, and the Subcommittee on Science, Technology, and Space, which is the authorizing committee (under the chairmanship of Slade Gorton), plans to mark up its NASA bill in the next few days; the full committee—the Senate Commerce, Science, and Transportation Committee—will then offer it to the floor.

  10. Some ceramic options

    SciTech Connect

    Zievers, J.F.; Eggerstedt, P.M.; Aguilar, P.C.; Zievers, E.C.

    1993-06-01

    Ceramic candle filters have proven to be an effective means of removing particulates to levels exceeding New Source Performance Standards (NSPS) in high temperature applications. The traditional {open_quotes}hard{close_quotes} ceramic filter elements, typically formed form granules however, have shown to be susceptible to failure from physical shock, thermal stress, and chemical attack. Additionally, these hard, dense candles can be costly and present internal filter design problems due to their relatively high weight. A good deal has been written about to use to porous ceramics in the filtration of high temperature gases for removal of particulate matter. Unlike the dense, granular ceramic filter elements, vacuum formed chopped ceramic fiber (VFCF) filters represent an attractive alternative. Composed of commercially available chopped ceramic fibers and utilizing existing vacuum forming technology, low cost filter elements with excellent physical and thermal shock resistance are now available. The ceramic fiber filter {open_quotes}skeleton{close_quotes} can be {open_quotes}post-treated{close_quotes} with refractory materials to enhance strength and chemical resistance, as well as to change permeability to suit a particular application. Also, because the ceramic fiber skeleton has greater porosity and is composed of low density materials, the final product is significantly lighter in weight than the traditional dense ceramic elements, making overall filter design an easier task. The use of ceramics extends beyond that of filter elements, however. Ceramics in the form of refractory have long been used to protect metal structures from high temperature and abrasion, and an extensive body of literature deals with this subject.

  11. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  12. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  13. Method of making a modified ceramic-ceramic composite

    DOEpatents

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  14. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  15. Ceramic heat exchanger

    DOEpatents

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  16. Ceramic heat exchanger

    DOEpatents

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  17. Library of Congress Model, Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    Anaglyph glasses are required to see this view in three-dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the

  18. Library of Congress Model, Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    Anaglyph glasses are required to see this view in three-dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the

  19. An Inquiry into Library of Congress Cataloging Delays

    ERIC Educational Resources Information Center

    Hellen, George B., Jr.

    1971-01-01

    Two problems related to the delay in Library of Congress cataloging which are beyond the control of the Library of Congress are presented. It is concluded that some explanation should be given of the priority system of cataloging employed by the Library of Congress, and that steps must be taken to alleviate the printing backlog. (16 references)…

  20. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  1. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  2. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1987-01-01

    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.

  3. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  4. Legislative Update--104th Congress, First Session.

    ERIC Educational Resources Information Center

    McMillan, Cindy

    1996-01-01

    Discusses major issues pending in the Second Session of the 104th Congress, noting the impact on language education and focusing on educational reform agendas, recissions, the budget process, appropriations, and English as the official U.S. government language. Individuals in related professional organizations are urged to take steps to influence…

  5. Groups concerned about Congress and criticism

    SciTech Connect

    Lucas, A.

    1994-12-07

    Environmental groups are concerned about the impact a Republican-dominated Congress will have on their activities. The Republican agenda would {open_quotes}severely undercut public health and environmental protection, {close_quotes} says the Natural Resources Defense Council (NRDC; Washington).

  6. American Sculpture and the Library of Congress

    ERIC Educational Resources Information Center

    Somma, Thomas P.

    2010-01-01

    The Thomas Jefferson Building of the Library of Congress is one of the more significant public structures in American architecture, due for the most part to its wealth and quality of decoration, including an extensive sculptural program executed in 1894-97. The architects entrusted the program to a committee of three prominent sculptors, J. Q. A.…

  7. Legislative Priorities for the 105th Congress.

    ERIC Educational Resources Information Center

    National Association of State Directors of Vocational Technical Education Consortium.

    The National Association of State Directors of Vocational Technical Education Consortium (NASDVTEC) supports enactment of legislation that is dedicated solely to vocational-technical education (VTE). NASDVTEC urges the 105th Congress to build on the existing foundation of a strong state role in VTE by drafting legislation that achieves the…

  8. Perkins Bill is Approved by Congress

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2006-01-01

    Career and technical education programs will face new pressure to show that they are academically rigorous and guiding high school students through a lineup of courses that prepares them for college or the workplace, under a bill approved by Congress. The reauthorization of the federal law known as the Perkins Act--dealing with what traditionally…

  9. Math-Science Bills Advance in Congress

    ERIC Educational Resources Information Center

    Hoff, David J.; Cavanagh, Sean

    2007-01-01

    Improving K-12 instruction and student achievement in mathematics and science is at the heart of separate bills intended to bolster America's economic standing that won overwhelming approval in both houses of Congress last week. The House on April 24 approved the 10,000 Teachers, 10 Million Minds Science and Math Scholarship Act by a vote of…

  10. The 106th Congress: What to Watch.

    ERIC Educational Resources Information Center

    Fege, Arnold F.

    1999-01-01

    The Improving America's School Act funds numerous small programs that dissipate its purpose and increase its vulnerability. Congress is debating extension of federal roles into areas such as social promotion, parental rights, reading programs, class-size reduction, and national voluntary tests. Changing budget rules pits education against military…

  11. IT Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    Inouye, Alan

    2000-01-01

    Presents an abstract for a planned technical session to discuss the report of the Committee on the Information Technology Strategy of the Library of Congress, developed by the Computer Science and Telecommunications Board of the National Academies. Highlights include digital information, Web links, preservation, and the management of libraries.…

  12. CONGRESS ON SCIENCE TEACHING AND ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    Inter-Union Commission on the Teaching of Science, Paris (France).

    REPORTED ARE THE ACTIVITIES OF THE CONGRESS ORGANIZED BY THE INTER-UNION COMMISSION ON SCIENCE TEACHING (CEIS) OF THE INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS (ICSU). STUDIED WERE PROBLEMS ARISING IN SEVERAL BRANCHES OF KNOWLEDGE DUE TO BOTH INCREASED NUMBERS OF STUDENTS AND SHORTAGE OF TEACHERS. OF PARTICULAR INTEREST WERE THE PROBLEMS OF…

  13. Punctuation in Library of Congress Subject Headings

    ERIC Educational Resources Information Center

    Steinweg, Hilda

    1978-01-01

    An analysis of the punctuation of the eighth edition Library of Congress Subject Headings reveals that the hyphen, coma and parentheses are most often used. Examples of these and the use of the apostrophe, dash, and period are discussed. (Author/MBR)

  14. International Energy and Environmental Congress: Proceedings

    SciTech Connect

    Not Available

    1993-09-01

    This document contains information presented at the International Energy and Environmental Congress `93 proceedings. Symposiums included demand-side management strategic directions; federal energy management; corporate energy management; and pollution control technologies. Individual reports from the symposiums are processed separately for the data bases.

  15. A Message to Congress: Redefining Special Education.

    ERIC Educational Resources Information Center

    Moriarty, David

    1997-01-01

    This article sees Reading Recovery as a tool for systemic change that has the potential to reduce the number of children classified with learning disabilities. The article contends that as the United States Congress meets to revisit the "Individuals with Disabilities Education Act" (IDEA), it is imperative that they develop an awareness of…

  16. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  17. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  18. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  19. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  20. Experiments with ceramic coatings

    NASA Technical Reports Server (NTRS)

    Lynn, E. K.; Rollins, C. T.

    1968-01-01

    Report describes the procedures and techniques used in the application of a ceramic coating and the evaluation of test parts through observation of the cracks that occur in this coating due to loading.

  1. Ceramic breeder materials

    SciTech Connect

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab.

  2. Ceramic heat pipe development

    NASA Astrophysics Data System (ADS)

    Merrigan, M.

    1980-09-01

    Ceramic materials used in conventional brickwork heat exchanger configurations increase allowable temperatures; however, joint leakage problems limit use of these designs. Ceramic tube heat exchanger designs reduce these problems but still require sliding joints and compliant tube end seals. Ceramic heat pipe based recuperator designs eliminate the sealing problems that limited the high temperature heat recovery installations. Heat pipe recuperators offer high corrosion and abrasion resistance, high temperature capability, reduced leakage, element redundancy, and simplified replacement and cleaning. The development of ceramic heat pipe recuperator elements involves the selection and test of materials and fabrication techniques having production potential, evaluation of technology in subscale tests, design and test of components for full scale recuperator applications, and demonstration of heat pipes in subscale and full scale recuperator installation.

  3. Super Thin Ceramic Coatings

    NASA Video Gallery

    New technology being developed at NASA's Glenn Research Center creates super thin ceramic coatings on engine components. The Plasma Spray – Physical Vapor Deposition (PS-PVD) rig uses a powerful ...

  4. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  5. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  6. Ceramic fiber filter technology

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  7. Fibrous ceramic insulation

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.

    1982-01-01

    Some of the reusable heat shielding materials used to protect the Space Shuttles, their manufacturing processes, properties, and applications are discussed. Emphases is upon ceramic materials. Space Shuttle Orbiter tiles are discussed.

  8. Fibrous ceramic insulation

    SciTech Connect

    Goldstein, H.E.

    1982-11-01

    Some of the reusable heat shielding materials used to protect the Space Shuttles, their manufacturing processes, properties, and applications are discussed. Emphasis is upon ceramic materials. Space Shuttle Orbiter tiles are discussed.

  9. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  11. How to interact with Congress about Science

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond

    The role of Congress is critical to the succes of the scientific enterprise, both in terms of authorization and appropriation. As a consequence, it is very important to make the case for science directly with Congress. Every scientist has a representative in the House of Representatives in whose district he/she lives, and in the Senate. Constituents are especially welcomed in their offices. A personal visit is the most effective means for transmitting the importance of science in general, and physics in particular. The AAAS website lists the ``Top Ten Rules for Working With Congress.'' They are: (1) Know your goal; (2) Understand how Congress works; (3) Conduct detailed background research; (4) Determine the timing of your course of action; (5) Be clear and succinct; (6) Understand Congressional staff and their influence; (7) Provide concrete suggestions; (8) Present support of science as a means to meet national and local goals, not as an entitlement; (9)Be willing to say ``I don't know'' and (10) Follow up appropriately. Each of these will be described in more detail during the presentation. The March Meeting is an example of a particularly important time period for meeting with representatives (Rule #4). The President's Budget Request has been submitted to Congress, and the individual appropriation subcommittees are in the process of developing their respective ``mark ups.'' Appointments with members or their staff is now timely, and urgent. Authorization bills are also in play, and can have significant impact on the scientific community. Paying attention to their development in key committees (e.g. the Science, Space, and Technology Committee of the House of Representatives), and providing appropriate and timely input, is the responsibility of every scientist.

  12. Ceramic electrolyte coating and methods

    SciTech Connect

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  13. Industry turns to ceramic composites

    SciTech Connect

    Constance, J.

    1990-03-01

    Developments in the area of ceramic composites, which can be used to construct stronger, lighter weight, and more fuel-efficient aircraft, are examined. Ceramic composites are applicable aircraft braking systems, hypersonic fuselage skins, engine parts, and missile guidance fins. The production and testing of new ceramic composites are discussed. Consideration is given to the production of ceramic composites of an alumina or aluminum nitride matrix; developing glass ceramic matrix composites and silicon nitride matrix composites; and improving synthesis and processing technology to enhance the reliability of ceramic composites.

  14. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. Alumina-based ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-07-23

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.

  16. All-ceramic alternatives to conventional metal-ceramic restorations.

    PubMed

    McLaren, E A

    1998-03-01

    In the search for the ultimate esthetic restorative material, many new all-ceramic systems have been introduced to the market. One such system, In-Ceram, is primarily crystalline in nature, whereas all other forms of ceramics used in dentistry consist primarily of a glass matrix with a crystalline phase as a filler. In-Cream can be used to make all-ceramic crowns and fixed partial denture frameworks. Three forms of In-Ceram, based on alumina, spinal (a mixture of alumina and magnesia), or zirconia, make it possible to fabricate frameworks of various translucencies by using different processing techniques. This article discusses clinical indications and contraindications for the use of In-Ceram Alumina and In-Ceram Spinell all-ceramic restorations. Particular attention is given to cement considerations using several clinical examples.

  17. VII International Congress of Engineering Physics

    NASA Astrophysics Data System (ADS)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  18. Fundamental tribological properties of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.

  19. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  20. Microstructure and properties of ceramics

    NASA Technical Reports Server (NTRS)

    Hamano, K.

    1984-01-01

    The history of research into the microstructure and properties of ceramic ware is discussed; methods of producing ceramics with particular characteristics are investigated. Bubbles, sintering, cracks, and electron microscopy are discussed.

  1. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  2. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  3. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  4. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  5. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  7. Lightweight ceramic insulation and method

    NASA Technical Reports Server (NTRS)

    Green, David J. (Inventor)

    1990-01-01

    A process is disclosed for manufacturing a low density ceramic powder which can be formed to make a lightweight material for insulation or other construction. The ceramic product made from the process has a final density of less than 25 to about 1 percent of the theoretical weight of the ceramic powder. The ceramic product is lightweight and can be made to withstand high temperatures greater than 1400 C.

  8. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  9. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  10. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  11. 21st International Congress on Anticancer Treatment.

    PubMed

    Magné, Nicolas; Pacaut, Cécile; Chargari, Cyrus

    2010-05-01

    The 21st International Congress on Anticancer Treatment, endorsed by the American Society of Clinical Oncology, was held in Paris (France) 1-5 February 2010. It was led and jointly sponsored by Gabriel Hortobagyi and David Khayat and by the University of Texas MD Anderson Cancer Center (TX, USA) and the Hôpital de la Pitié Salpêtrière (Paris, France), respectively. The meeting provided complete updates and innovations in the management of various cancers and supportive care. This well-recognized annual international educational and scientific conference brought together the leading scientists from across the world to share their skills and expertise by participating in this high-quality meeting. This congress provides an exceptional opportunity to meet with fellow professionals and discuss new educational case studies. In the present article, we have highlighted particularly pertinent sessions concerning hot topics for the new areas of cancer. PMID:20469995

  12. Wrapping up the 105th Congress.

    PubMed

    Link, D

    1998-12-01

    The 105th Congress was one of the most fiercely partisan in memory. It approved historic increases in AIDS funding, wrestled through the Clinton impeachment process, and saw dramatic changes in leadership. Virtually all legislative activity related to HIV funding occurred just before the election, in an omnibus budget package that included an $855 million increase in AIDS funding. The 105th Congress also restored immigrants' eligibility for Supplemental Security Income (SSI) and Medicaid. The Ricky Ray Hemophilia Relief Act was passed, providing financial compensation to people infected by contaminated clotting products. Also, Dr. Jane Henney was approved as Commissioner of the Food and Drug Administration (FDA). She is the first woman to head the agency. She was approved only after promising not to support an anti-tobacco agenda or the approval of RU-486, which is also known as the abortion pill.

  13. Wrapping up the 105th Congress.

    PubMed

    Link, D

    1998-12-01

    The 105th Congress was one of the most fiercely partisan in memory. It approved historic increases in AIDS funding, wrestled through the Clinton impeachment process, and saw dramatic changes in leadership. Virtually all legislative activity related to HIV funding occurred just before the election, in an omnibus budget package that included an $855 million increase in AIDS funding. The 105th Congress also restored immigrants' eligibility for Supplemental Security Income (SSI) and Medicaid. The Ricky Ray Hemophilia Relief Act was passed, providing financial compensation to people infected by contaminated clotting products. Also, Dr. Jane Henney was approved as Commissioner of the Food and Drug Administration (FDA). She is the first woman to head the agency. She was approved only after promising not to support an anti-tobacco agenda or the approval of RU-486, which is also known as the abortion pill. PMID:11366021

  14. Annual report to Congress, FY 1992

    SciTech Connect

    1993-07-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to inform Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).

  15. Eighth international congress on nitrogen fixation

    SciTech Connect

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  16. Ceramic tamper-revealing seals

    DOEpatents

    Kupperman, D.S.; Raptis, A.C.; Sheen, S.H.

    1992-12-08

    A flexible metal or ceramic cable is described with composite ceramic ends, or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting. 7 figs.

  17. Assessment of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H.

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  18. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  19. Altitude Stress During Participation of Medical Congress.

    PubMed

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee; Suh, Dae Chul

    2016-09-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases.

  20. 11th International Congress of Endocrinology.

    PubMed

    Fuller, P J

    2001-03-01

    The Olympics of endocrinology, the 11th International Congress of Endocrinolgy was held rather appropriately in Sydney, four weeks after the summer games of the XXWIIth Modern Olympiad. Both occasions were a great success and whilst it may be tempting to extend the analogy to the pool or the track or heaven forbid, digress into 'drugs in sport', this review will focus on endocrinology. There were over 3000 participants with ten plenary lectures, 20 meet-the-expert sessions, 41 symposia, 128 oral free communications and 1500 posters. Sydney post-Olympics provided a vibrant, exciting and picturesque setting with outstanding convention facilities. The Congress Party was held at Campbells Cove in the lee of the Harbour Bridge looking toward the Opera House which provided an opportunity for delegates to view the two architectural icons that had become so familiar in the preceding months. Credit must be given both to the Local Organising Committee of Sydney endocrinologists who made it all happen and to the International Program Organising Committee who crafted a pageant of first rate endocrinology. It is self-evident that this report can only hope to give the reader a flavour of a Congress such as this with the choice of topics being largely idiosyncratic. With five concurrent symposia and two concurrent orals each morning and afternoon of the four days, any omissions reflect not on the topic or its importance but on this reviewer's inability to be in more than one place at once!

  1. Altitude Stress During Participation of Medical Congress.

    PubMed

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee; Suh, Dae Chul

    2016-09-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  2. Altitude Stress During Participation of Medical Congress

    PubMed Central

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases.

  3. 11th International Congress of Endocrinology.

    PubMed

    Fuller, P J

    2001-03-01

    The Olympics of endocrinology, the 11th International Congress of Endocrinolgy was held rather appropriately in Sydney, four weeks after the summer games of the XXWIIth Modern Olympiad. Both occasions were a great success and whilst it may be tempting to extend the analogy to the pool or the track or heaven forbid, digress into 'drugs in sport', this review will focus on endocrinology. There were over 3000 participants with ten plenary lectures, 20 meet-the-expert sessions, 41 symposia, 128 oral free communications and 1500 posters. Sydney post-Olympics provided a vibrant, exciting and picturesque setting with outstanding convention facilities. The Congress Party was held at Campbells Cove in the lee of the Harbour Bridge looking toward the Opera House which provided an opportunity for delegates to view the two architectural icons that had become so familiar in the preceding months. Credit must be given both to the Local Organising Committee of Sydney endocrinologists who made it all happen and to the International Program Organising Committee who crafted a pageant of first rate endocrinology. It is self-evident that this report can only hope to give the reader a flavour of a Congress such as this with the choice of topics being largely idiosyncratic. With five concurrent symposia and two concurrent orals each morning and afternoon of the four days, any omissions reflect not on the topic or its importance but on this reviewer's inability to be in more than one place at once! PMID:11424899

  4. Altitude Stress During Participation of Medical Congress

    PubMed Central

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  5. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  6. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al[sub 2]O[sub 3], Si[sub 3]N[sub 4] containing Si[sub 3]N[sub 4] or SiC whiskers, Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] reinforced with SiC whiskers, and duplex-microstructure Si[sub 3]N[sub 4] have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  7. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4} containing Si{sub 3}N{sub 4} or SiC whiskers, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} reinforced with SiC whiskers, and duplex-microstructure Si{sub 3}N{sub 4} have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  8. Whisker reinforced glass ceramic

    SciTech Connect

    Hirschfeld, D.A.; Brown, J.J. Jr.

    1996-06-03

    The process for making an in-situ whisker reinforced glass-ceramic that is up to 1.5 times as strong as conventional glass-ceramics was developed at Virginia Tech and patented in 1993. This technology has been identified as having commercial potential for use in high temperature heat exchanger applications for the electric power generation field by the National Center for Appropriate Technology (NCAT). This technology was licensed by MATVA, Inc., a small Virginia business, for further development. In particular, the goal of this project was to develop a property database and conduct initial testing of heat exchanger prototypes to demonstrate its potential application. This final report describes how the glass precursor was formed, physical properties of the glass-ceramic, techniques for making heat exchanger prototypes.

  9. Ceramic vane drive joint

    DOEpatents

    Smale, Charles H.

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  10. Verification of Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  11. Environment Conscious Ceramics (Ecoceramics)

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. These carbonaceous preforms have been fabricated by pyrolysis of solid wood bodies at 1000 C. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches.

  12. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  13. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  14. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  15. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  16. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  17. Why ceramic engines?

    NASA Technical Reports Server (NTRS)

    Stadler, H. L.

    1984-01-01

    Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.

  18. Performance of Dental Ceramics

    PubMed Central

    Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P.

    2011-01-01

    The clinical success of modern dental ceramics depends on an array of factors, ranging from initial physical properties of the material itself, to the fabrication and clinical procedures that inevitably damage these brittle materials, and the oral environment. Understanding the influence of these factors on clinical performance has engaged the dental, ceramics, and engineering communities alike. The objective of this review is to first summarize clinical, experimental, and analytic results reported in the recent literature. Additionally, it seeks to address how this new information adds insight into predictive test procedures and reveals challenges for future improvements. PMID:21224408

  19. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  20. WEST CORRIDOR (ORIGINALLY KNOWN AS LIBRARY OF CONGRESS CARD CATALOG) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST CORRIDOR (ORIGINALLY KNOWN AS LIBRARY OF CONGRESS CARD CATALOG) ON FIRST FLOOR, LOOKING EAST - Free Library of Philadelphia, Central Library, 1901 Vine Street, Philadelphia, Philadelphia County, PA

  1. Ceramics: rationale for material selection.

    PubMed

    McLaren, Edward A; Whiteman, Yair Y

    2010-01-01

    All imaginable types of materials and techniques, from very conservative ceramic restorations to very complex restorations of either metal or high-strength crystalline ceramics veneered with porcelain, have been introduced and tried throughout the years, with varying levels of success. However, there is considerable misinformation and a general lack of published rational treatment planning guidelines about when to use the ceramics available in dentistry. This article provides a systematic process for treatment planning with ceramic materials. Specific guidelines are outlined for the appropriate clinical conditions for using the various ceramic materials.

  2. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  3. Ceramic transactions: Ceramic joining. Volume 77

    SciTech Connect

    Reimanis, I.E.; Henager, C.H. Jr.; Tomsia, A.P.

    1997-11-01

    The advent of new materials for engineering applications almost always brings a new challenge: how will these new materials be joined to a larger engineering structure? New ceramic materials are being developed for a wide variety of applications in areas such as power generation, energy conversion, automotive and aerospace, with specific applications including heat exchangers, fuel cells, turbocharger rotors, combustor liners, and for many other applications. Typically the new materials will be exposed to more hostile environments with respect to temperature, corrosion, and stress than materials in the past, and thus, many of the conventional joining techniques developed for less hostile environments do not work. Understanding fundamental issues in joining enables the development of new techniques to be able to utilize new materials. A previous DOE workshop defined fundamental and critical issues in ceramic joining and classified them into four general areas: joining techniques; joint failure; residual stress; and characterization and testing. The present international symposium is an effort to discuss some of these fundamental issues and to define areas for future research. Separate abstracts have been indexed into the energy database for articles from this symposium.

  4. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  5. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  6. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  7. Refractory ceramic fibers

    Integrated Risk Information System (IRIS)

    Refractory ceramic fibers ; CASRN Not found Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  8. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  9. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-04-07

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  11. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  12. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  13. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  14. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  15. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  16. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  17. Ceramic tubesheet design analysis

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  18. International Congress of Applied Linguistics: Congress Abstracts (3rd, Copenhagen, August 21-26, 1972).

    ERIC Educational Resources Information Center

    Qvistgaard, Jacques, Ed.; And Others

    This volume contains abstracts of the 239 papers given at the Third International Congress of Applied Linguistics. The volume contains a topical and author index arranged alphabetically. Topics include applied linguistics, quantitative linguistics, contrastive linguistics, application of grammar models, the syntax of spoken language, applied…

  19. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  20. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  1. Population Estimates Used by Congress during the Constitutional Convention

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2006-01-01

    During the summer of 1787, when the delegates to the Constitutional Convention met in Philadelphia, the issue of representation in Congress was strongly debated. Delegates from the large states favored the Virginia Plan's proposal for two houses of Congress with representation based on population. Delegates from the small states favored equal…

  2. Finding the middle ground: how kinetochores power chromosome congression

    PubMed Central

    Saurin, Adrian T.

    2010-01-01

    Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore. PMID:20232224

  3. 22 CFR 1102.9 - Annual report to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Annual report to Congress. 1102.9 Section 1102.9 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION FREEDOM OF INFORMATION ACT § 1102.9 Annual report to Congress. (a) On or before March 1 of...

  4. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of...

  5. LC21: A Digital Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The Library of Congress asked the Computer Science and Telecommunications Board (CSTB) of the National Academies to conduct a study to provide strategic advice concerning the information technology path that the Library of Congress should traverse over the coming decade. The Committee on an Information Technology Strategy for the Library of…

  6. 1991 SOLAR WORLD CONGRESS - VOLUME 1, PART I

    EPA Science Inventory

    The four-volume proceedings document the 1991 Solar World Congress (the biennial congress of the International Solar Energy Society) in Denver, CO, August 19-23, 1991. Volume 1 is dedicated to solar electricity, biofuels, and renewable resources. Volume 2 contains papers on activ...

  7. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each calendar year the Commissioner shall submit...

  8. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each calendar year the Commissioner shall submit...

  9. 6 Universities Give Congress New Plan for Taxing Campus Businesses.

    ERIC Educational Resources Information Center

    Jaschik, Scott

    1988-01-01

    A new lobbying strategy by six universities, designed to show Congress that higher education may be willing to give up some tax advantages under current law, is also criticized as a tactical error when Congress is just beginning to consider changes in the tax law affecting nonprofit groups. (MSE)

  10. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.

    2000-01-01

    Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.

  11. Kennedy Giving Historic Speech to Congress

    NASA Technical Reports Server (NTRS)

    1961-01-01

    President John F. Kennedy in his historic message to a joint session of the Congress, on May 25, 1961 declared, '...I believe this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth.' This goal was achieved when astronaut Neil A. Armstrong became the first human to set foot upon the Moon at 10:56 p.m. EDT, July 20, 1969. Shown in the background are, (left) Vice President Lyndon Johnson, and (right) Speaker of the House Sam T. Rayburn.

  12. World Space Congress: a vision quest.

    PubMed

    Iannotta, Ben

    2003-01-01

    The World Space Congress (WSC) in October, 2002, brought together luminaries, aerospace engineers, students, and scientists to discuss strategies for reviving the world's space agency. WSC lectures and plenary sessions focused on future research in space. Among topics discussed are the use of the Hubble Space Telescope to scan for habitable planets and obtain data about the beginning of the universe, new weather satellites, planetary protection from comets or asteroids, exploration and establishment of colonies on the Moon and Mars, medical advances, the role of space exploration in the world economy.

  13. World Space Congress: a vision quest.

    PubMed

    Iannotta, Ben

    2003-01-01

    The World Space Congress (WSC) in October, 2002, brought together luminaries, aerospace engineers, students, and scientists to discuss strategies for reviving the world's space agency. WSC lectures and plenary sessions focused on future research in space. Among topics discussed are the use of the Hubble Space Telescope to scan for habitable planets and obtain data about the beginning of the universe, new weather satellites, planetary protection from comets or asteroids, exploration and establishment of colonies on the Moon and Mars, medical advances, the role of space exploration in the world economy. PMID:12524711

  14. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  15. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  16. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  17. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  18. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  19. Seal between metal and ceramic conduits

    DOEpatents

    Underwood, Richard Paul; Tentarelli, Stephen Clyde

    2015-02-03

    A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.

  20. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  1. Ceramic composite coating

    DOEpatents

    Wicks, George G.

    1997-01-01

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  2. Ceramic composite coating

    DOEpatents

    Wicks, G.G.

    1997-01-21

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  3. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  4. Laser in Ceramics Processing

    NASA Astrophysics Data System (ADS)

    Lal, Bajrang; Jain, Pankaj

    LASER, an acronym for Light Amplification by Stimulated Emission of Radiation have unique properties, Which make it differ from ordinary light such as it is highly coherent, monochromatic, negligible divergence and scattering loss and a intense beam of electromagnetic radiation or light. It also occur in a wide range of wavelength/frequency (from Ultraviolet to Infrared), energy/power and beam-mode/configurations ; Due to these unique properties, it have use in wide application of ceramic processing for industrial manufacturing, fabrication of electronic circuit such as marking, serializing, engraving, cutting, micro-structuring because laser only produces localized heating, without any contact and thermal stress on the any part during processing. So there is no risk of fracturing that occurs during mechanical sawing and also reduce Cost of processing. The discussion in this paper highlight the application of laser in ceramics processing.

  5. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  6. Ceramic composite coatings

    SciTech Connect

    Wicks, G.G.

    1991-12-31

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  7. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, including an MHD electrode for strategic defense initiative (SDI) applications and a high stress, low cost, reinforced ceramic component for armor applications. The MHD electrode design is substantially completed. A layered structure composed of molybdenum disilicide graded with quartz glass has been designed and analyzed using finite element methods. The design demonstrates the fabrication capabilities of the CCF process. The high stress, armor application component will be silicon carbide reinforced alumina in thick plates. 2 refs., 4 figs., 1 tab.

  8. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  9. U.S. Congress playing budgetary endgame

    NASA Astrophysics Data System (ADS)

    Carlowicz, Mike

    With fiscal year 1997 (FY '97) set to begin on October 1, the U.S. Congress was poised to fund most American science programs and agencies at or above the levels of funding appropriated in the tumultuous FY '96. Seeking to avert a drawn-out budget debate during an election year, congressional leaders were working feverishly in the last week of September to write appropriations bills that would be acceptable—though not necessarily satisfying—to both Congress and the Clinton Administration.On September 24, the U.S. House of Representatives and the Senate approved the conference report of H.R. 3666, the appropriations bill that provides funding for the departments of Veterans Affairs, Housing and Urban Development, and the Independent Agencies. The conference report of this VA-HUD bill provides $84.7 billion in spending for the affected agencies, including NASA, the Environmental Protection Agency (EPA), and the National Science Foundation (NSF). The conference report was weighted heavily toward the preferences of the Senate, where moderates and pragmatists were stressing compromise and pushing for appropriations bills that President Clinton would be likely to sign.

  10. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  11. Tailored Ceramics for Laser Applications

    SciTech Connect

    Hollingsworth, Joel

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  12. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  13. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  14. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  15. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  16. Joined ceramic product

    DOEpatents

    Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA

    2001-08-21

    According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

  17. Microprobes aluminosilicate ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. [Pharmaceutical ceramics by Buthaud].

    PubMed

    Devaux, G; Arléry, S

    1977-01-01

    In 1928 in Bordeaux, the ceramics manufacturer René Buthaud (1886-1986) created, in the neo-classical style that is typical of his work, four large pharmacists' jars, for display in a city dispensary. These pieces are presented here, each one decorated differently, with the back showing variations on the theme of the serpent and the front the design of tall, unclothed women holding objects Symbolic of the pharmceutical art.

  20. Multifracture of ceramic composites

    SciTech Connect

    Weitsman, Y.J.; Zhu, H.

    1992-03-01

    This work presents a mechanistic model for the multifracture process of uniaxially reinforced fibrous ceramic composites under monotonically increasing tension parallel to the fiber direction. The model employs an energy criterion to account for the progression of matrix cracks, bridged by intact fibers, and Weibull failure statistics to relate the failure of the fibers. Consideration is given to the interactions between the foregoing failure processes as well as to the effects of various material parameters on the response of the composite.

  1. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  2. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  3. Dental ceramics: a current review.

    PubMed

    Lawson, Nathaniel C; Burgess, John O

    2014-03-01

    Ceramics are used for many dental applications and are characterized in various ways, including by their hardness, brittleness, thermal and electrical insulation, and biocompatibility. The ceramics most commonly used in dentistry are oxides, particularly silicon dioxide (SiO2), or silica; aluminum oxide (Al2O3), or alumina; and zirconium dioxide (ZrO2), or zirconia. This article reviews the microstructure of current dental ceramic materials and how it relates to their mechanical properties, clinical techniques, and optical properties. Typical ceramics currently in use are described, and their clinically relevant properties such as strength, fracture, polishability, and wear are compared. Cementation methods are also discussed.

  4. 26 CFR 5e.274-8 - Travel expenses of Members of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Travel expenses of Members of Congress. 5e.274-8... TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS, TRAVEL EXPENSES OF MEMBERS OF CONGRESS § 5e.274-8 Travel expenses of Members of Congress. (a) In general. Members of Congress (including any Delegate...

  5. 26 CFR 5e.274-8 - Travel expenses of Members of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Travel expenses of Members of Congress. 5e.274...) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS, TRAVEL EXPENSES OF MEMBERS OF CONGRESS § 5e.274-8 Travel expenses of Members of Congress. (a) In general. Members of Congress (including...

  6. The congress that never was: the Madrid International Congress of Psychology (1936).

    PubMed

    Carpintero, Helio; Lafuente, Enrique

    2008-11-01

    The 11th International Congress of Psychology did not take place in Madrid in September 1936, as initially planned. Instead, it was held in Paris in July of the following year. The finding of a so-far unpublished correspondence between the main organizers of the event, the Spanish psychologists José Germain and Emilio Mira, and the Swiss psychologist Edouard Claparède, makes it possible to gain new insight into the circumstances preventing its celebration in Madrid. This paper aims at shedding some light on such circumstances by unraveling the social and political context alluded to in these letters, and connecting their contents with other significant events and documents on the various organizational aspects of the congress. PMID:19244832

  7. The congress that never was: the Madrid International Congress of Psychology (1936).

    PubMed

    Carpintero, Helio; Lafuente, Enrique

    2008-11-01

    The 11th International Congress of Psychology did not take place in Madrid in September 1936, as initially planned. Instead, it was held in Paris in July of the following year. The finding of a so-far unpublished correspondence between the main organizers of the event, the Spanish psychologists José Germain and Emilio Mira, and the Swiss psychologist Edouard Claparède, makes it possible to gain new insight into the circumstances preventing its celebration in Madrid. This paper aims at shedding some light on such circumstances by unraveling the social and political context alluded to in these letters, and connecting their contents with other significant events and documents on the various organizational aspects of the congress.

  8. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  9. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  10. After three decades of Medical Informatics Europe congresses.

    PubMed

    Dezelic, Gjuro

    2009-01-01

    European medical informatics professionals traditionally gather at congresses of the European Federation for Medical Informatics (EFMI) named "Medical Informatics Europe - MIE". After more than three decades of successive organization of these congresses, some important points of their history of are presented. As the MIE Congress in Sarajevo, organized by the Society for Medical Informatics of Bosnia and Herzegovina (BHSMI), is the third EFMI event in the western part of South-East Europe, a short review of the development of medical informatics in this part of Europe, together with important events in its history, will shortly be presented.

  11. The 2003 Air Medical Leadership Congress: findings and recommendations.

    PubMed

    Thomas, Frank; Robinson, Kenneth; Judge, Tom; Eastlee, Connie; Frazer, Eileen; Thomas, Stephen H; Romig, Laurie; Blumen, Ira; Brozen, Reed; Williams, Ken; Swanson, Eric R; Hartsell, Stephen; Johnson, Jill; Hutton, Kevin; Heffernan, J; North, Michelle; Johnson, Kent; Petersen, Pat; Toews, Robert; Zalar, Christine M

    2004-01-01

    To address important concerns facing the air medical community, 149 air medical transport leaders, providers, consultants, and experts met September 4-6, 2003, in Salt Lake City, Utah, for a 3-day summit-the Air Medical Leadership Congress: Setting the Health Care Agenda for the Air Medical Community. Using data from a Web-based survey, top air medical transport issues were identified in four core areas: safety, medical care, cost/benefit, and regulatory/compliance. This report reviews the findings of previous congresses and summarizes the discussions, findings, recommendations, and proposed industry actions to address these issues as set forth by the 2003 congress participants. PMID:15127042

  12. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  13. Lightweight high performance ceramic material

    DOEpatents

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  14. Method of forming ceramic bricks

    DOEpatents

    Poeppel, R.B.; Claar, T.D.; Silkowski, P.

    1987-04-22

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  15. Method of forming ceramic bricks

    DOEpatents

    Poeppel, Roger B.; Claar, Terry D.; Silkowski, Peter

    1988-09-06

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  16. Method of forming ceramic bricks

    DOEpatents

    Poeppel, Roger B.; Claar, Terry D.; Silkowski, Peter

    1988-01-01

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  17. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.

    1981-01-01

    Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.

  18. Congress hears testimony on Augustine Report

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    A range of space analysts assessed the future of the National Aeronautics and Space Administration (NASA) on January 29 and 31 before the House Science, Space, and Technology Committee. The committee's new chairman, George E. Brown, Jr. (D-Calif.), held the hearing on the Report of the Advisory Committee on the Future of the U.S. Space Program, better known as the Augustine Report, which was released in December.Most witnesses from government agencies, scientific associations, and universities lauded the report's conclusions, expressing strong consensus that NASA needed new direction. John M. Logsdon, director of George Washington University's Space Policy Institute, summed up the report's message as “let's stop 20 years of arguments and uncertainty and get on with a space program that commands stable support from the White House, the Congress, and the American people.”

  19. Siren song: physicians, congress, and medicare fees.

    PubMed

    Laugesen, Miriam J

    2009-04-01

    Physicians' fees under Medicare are updated by regulation annually based on a formula called the Sustainable Growth Rate (SGR). Since 2003 Congress has reversed impending cuts to fees in response to physician calls for reform of the SGR, yet physician groups supported the SGR when fee increases outstripped medical inflation. Physician groups are partly culpable for the failure of cost containment because physician groups have resisted efforts to regulate their practice or link effectiveness research to coverage and reimbursement decisions. In the story of Ulysses and the Sirens, Ulysses has himself bound to the mast so that he cannot be seduced by the calls of the Sirens. Physician groups are like sirens because legislators cannot resist their songs. Future policy changes should consider physician needs alongside broader cost-containment goals, including linking reimbursement to comparative effectiveness research. PMID:19276315

  20. Ceramic membrane development in NGK

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  1. Protective coating for ceramic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.

  2. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  3. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  4. TRANSFORMATION TOUGHENING IN CERAMICS

    SciTech Connect

    Evans, A. G.; Marshall, D. B.; Burlingame, N. H.

    1980-12-01

    The origin of transformation toughening in ceramics is examined using two separate approaches: one based on the stress field ahead of the crack and the other on the changes in thermodynamic potential during a crack increment. Both approaches yield essentially similar predictions of trends in toughness with particle size, temperature, composition, etc. The stress intensity analysis provides fully quantitative predictions of the toughness. These indicate that the shielding of the crack by the transformation zone only develops in the presence of a transformed wake, leading to R-curve behavior.

  5. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  6. Hydrogen program goal-setting methodologies: Report to Congress

    SciTech Connect

    None, None

    2006-08-01

    DOE's Hydrogen Goal-Setting Methodologies Report to Congress summarizes the processes used to set Hydrogen Program goals and milestones. Published in August 2006, it fulfills the requirement under section 1819 of the Energy Policy Act of 2005.

  7. 17. Historic American Buildings Survey Original at Library of Congress, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Historic American Buildings Survey Original at Library of Congress, Pictorial Archives of Early American Architecture Arthur A. Snyder, Photographer AQUEDUCT BRIDGE, FEBRUARY 2,1900 - Potomac Aqueduct, Georgetown abutment at Georgetown waterfront, Washington, District of Columbia, DC

  8. International congress on DNA damage and repair: Book of abstracts

    SciTech Connect

    Not Available

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  9. 35. Photocopy of drawing (from Library of Congress) Artist unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of drawing (from Library of Congress) Artist unknown 1891 SOUTH FRONT FROM THE SOUTHWEST - Patent Office Building, Bounded by Seventh, Ninth, F & G Streets, Northwest, Washington, District of Columbia, DC

  10. Campus Projects that Congress Earmarked for Funds This Year.

    ERIC Educational Resources Information Center

    Cordes, Colleen, Comp.; Leatherman, Courtney, Comp.

    1988-01-01

    A list of specific campus projects that Congress has directed federal agencies to support this year includes controversial projects (so-called pork barrel projects) for which the agencies did not request funding or sponsor competitions. (MSE)

  11. Computerization at the Library of Congress: The First Twenty Years.

    ERIC Educational Resources Information Center

    Goodrum, Charles; Dalrymple, Helen

    1982-01-01

    Outlines the automation process at the Library of Congress begun in 1961, noting problems encountered and future possibilities, and describing databases currently in use--SCORPIO, MUMS, MARC, COPICS AND COINS, ISIS, AND PAGING. (EJS)

  12. High-temperature corrosion resistance of ceramics and ceramic coatings

    SciTech Connect

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  13. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  14. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  15. Integral Textile Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  16. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modelling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, principally an MHD electrode for strategic defense initiative (SDI) applications. A high stress, low cost, ceramic component is to be selected, designed and, if possible, analyzed. The final design for the MHD electrode comprised a layered structure of molybdenum disilicide graded with quartz glass. The design demonstrates the fabrication capabilities of the CCF process. The high stress component was targeted at armor applications and will be thick alumina plate. Silicon carbide reinforcement of the alumina will be explored. Task 2 is directed at establishing a mechanical properties data base for monolithic and laminated alumina fabricated using the CCF process. Task 3 involved production of a solid oxide fuel cell model electrode; however, work ceased when it became apparent that successful integration of the electrode modules would require additional time. Currently, work is principally focused on the production of thick CCF alumina plates; three test plates were ballistically tested and showed a very satisfactory performance. Silicon carbide reinforcement of the CCF alumina is being explored. Effort on the CCF processing of molybdenum disilicide (a nonoxide material) continued at a reduced level. Sinter aids were explored, and densities of 87% theoretical density on pressureless sintered dry pressed pellets were achieved. 1 ref., 9 figs., 4 tabs.

  17. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components. This quarter, the advanced molybdenum disicilide MHD electrode design was essentially completed. Final refinements will be made after molybdenum disilicide processing results are available and the final layer compositions are established. Work involving whisker incorporation was initiated on the high stress component. It is unlikely that whiskers will become low cost, so particulate reinforcement will be pursued. Modeling work will resume once a suitable aluminum oxide/silicon carbide composition is selected that can be fired to acceptable densities by pressureless sintering. Task 2, subcontracted to Applied Technology Laboratories (ATL), is principally directed at establishing a property data base for monolithic and laminated alumina fabricated using the CCF process. This quarter, ATL demonstrated that the CCF process does not compromise the flexure strength of alumina. Task 3, subcontracted to Ceramics Binder Systems, Inc., focused on CCF silicon carbide particulate reinforced alumina and on the development of processing procedures for nonoxide molybdenum disilicide. Preliminary results indicate that achieving high densities in silicon carbide particulate reinforced aluminum oxide will be difficult. Molybdenum disilicide results are encouraging, and it is clear that the CCF process will work with this nonoxide material. 3 refs., 18 figs., 4 tabs.

  18. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  19. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  20. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  1. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  2. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  3. Dental ceramics: current thinking and trends.

    PubMed

    Kelly, J Robert

    2004-04-01

    Dental ceramics are presented within a simplifying framework allowing for understanding of their composition and development. The meaning of strength and details of the fracture process are explored, and recommendations are given regarding making structural comparisons among ceramics. Assessment of clinical survival data is dealt with, and literature is reviewed on the clinical behavior of metal-ceramic and all-ceramic systems. Practical aspects are presented regarding the choice and use of dental ceramics.

  4. Hardness of ion implanted ceramics

    SciTech Connect

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al/sub 2/O/sub 3/ with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material.

  5. The fifth International Geological Congress, Washington, 1891

    USGS Publications Warehouse

    Nelson, C.M.

    2006-01-01

    The 5th International Geological Congress (IGC), the initial meeting in North America, was the first of the three IGCs that have been held in the United States of America (USA). Of the 538 registrants alive when the 5th IGC convened in Washington, 251 persons, representing fifteen countries, actually attended the meeting. These participants included 173 people from the USA, of whom forty-two represented the US Geological Survey (USGS). Fourteen of the US State geological surveys sent representatives to Washington. Eight participants came from other countries in the Western Hemisphere - Canada (3), Chile (1), Mexico (3), and Peru (1). The sixty-six European geologists and naturalists at the 5th IGC represented Austro-Hungary (3), Belgium (3), Britain (12), France (7), Germany (23), Norway (1), Romania (3), Russia (8), Sweden (4), and Switzerland (2). The USGS and the Columbian College (now the George Washington University) acted as the principal hosts. The American Association for the Advancement of Science and then the Geological Society of America (GSA) met in the Capital immediately before the Congress convened (26 August-1 September 1891). The 5th IGC's formal discussions treated the genetic classification of Pleistocene rocks, the chronological correlation of clastic rocks, and the international standardization of colors, symbols, and names used on geologic maps. The third of those topics continued key debates at the 1st through 4th IGCs. The GSA, the Korean Embassy, the Smithsonian Institution's US National Museum, the USGS, and one of the two Secretaries-General hosted evening receptions. Field excursions examined Paleozoic exposures in New York (18-25 August), Cretaceous-Pleistocene localities along the Potomac River south of Washington (30 August), and classic Precambrian-Pleistocene sequences and structures in the Great Plains, Yellowstone, Rocky Mountains, and Great Basin (2-26 September), with optional trips to the Grand Canyon (19-28 September) and Lake

  6. Dynamic crack arrest in ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Yang, K. H.

    1989-01-01

    The results of past dynamic crack arrest experiments involving structural ceramics and ceramic composites are reviewed and analyzed. The lack of dynamic crack arrest in very brittle materials is discussed and contrasted with dynamic crack arrest in somewhat brittle metallic and polymeric materials. Numerical analyses show that the lack of crack arrest is due to reduced dynamic fracture resistance of the material and is not due to the kinetic energy.

  7. Dispersed metal-toughened ceramics and ceramic brazing

    SciTech Connect

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurement of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.

  8. Ceramic formation on metallic surfaces (ceramization) for medical applications.

    PubMed

    Rieu, J

    1993-01-01

    Surface transformations can be performed on metals in order to combine their load-bearing properties to the inertness and wear resistance of ceramics. In a joint prosthesis, metals are useful for their high fatigue strength and ductility, but they are more sensitive to superficial corrosion and wear than ceramics. Coating a ceramic on metal surface will improve the qualities of the metallic component. The various ways of transforming a metallic surface into a ceramic one are described. First, the surface treatments to improve the friction and wear properties are analysed. Coatings and surface transformations give superficial inert compounds. Many techniques are used to create hard, corrosion resistant layers on the surface. The processes may involve heating of the treated parts. But some metals cannot be heated without an alteration of their mechanical properties. The adhesion strength--and thus, the lifetime--of the ceramic layers depend on the binding forces and on the structure of the interfaces between the bulk metal and the outermost ceramic. Coatings generally have a lower adhesion strength than in-situ formed phases and the risk of peeling is higher. Second, the plasma-sprayed coatings performed to improve the bone anchorage are described. This review does not deal with bioactive materials. So, only the alumina coatings and their mechanical compatibility advantage are present.

  9. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  10. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  11. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  12. Ceramic turbine nozzle

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  13. Ceramic turbine nozzle

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  15. Ceramic Cerami Turbine Nozzle

    DOEpatents

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  16. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.; Filatovs, G. J.

    1974-01-01

    A study was conducted to develop a ceramics handbook defining properties and parameters necessary for thermostructural design. Continuing efforts toward this goal, and in particular toward the evolution of a reliable predictor of fracture from current literature, are described.

  17. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.

  18. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  19. Recent progress in ceramic joining

    SciTech Connect

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  20. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  1. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  2. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  3. 8th Annual European Antibody Congress 2012

    PubMed Central

    Beck, Alain; Carter, Paul J.; Gerber, Hans-Peter; Lugovskoy, Alexey A.; Wurch, Thierry; Junutula, Jagath R.; Kontermann, Roland E; Mabry, Robert

    2013-01-01

    The 8th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The new agenda format for 2012 included three parallel tracks on: (1) naked antibodies; (2) antibody drug conjugates (ADCs); and (3) bispecific antibodies and alternative scaffolds. The meeting started and closed with three plenary lectures to give common background and to share the final panel discussion and conclusions. The two day event included case studies and networking for nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The monoclonal antibody track was focused on understanding the structure-function relationships, optimization of antibody design and developability, and processes that allow better therapeutic candidates to move through the clinic. Discussions on novel target identification and validation were also included. The ADC track was dedicated to evaluation of the ongoing success of the established ADC formats alongside the rise of the next generation drug-conjugates. The bispecific and alternative scaffold track was focused on taking stock of the multitude of bispecific formats being investigated and gaining insight into recent innovations and advancements. Mechanistic understanding, progression into the clinic and the exploration of multispecifics, redirected T cell killing and alternative scaffolds were extensively discussed. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:23493119

  4. The NAPAP 1996 report to Congress

    SciTech Connect

    Uhart, M.S.

    1997-12-31

    The National Acid Precipitation Assessment Program (NAPAP) is currently producing its 1996 Report to Congress. In accordance with Title IX of the 1990 Clean Air Act Amendments (CAAA), this report will attempt to address two main policy-relevant issues: (1) the costs, benefits, and effectiveness of Title IV of the 1990 CAAA, and (2) the reductions in deposition rates needed to prevent adverse ecological effects. The 1996 Report is the first in a series of assessment reports that are required every four years. Therefore, this report must layout the foundation and methodology for future assessment reports, as well as identify research and monitoring gaps that will lead to more comprehensive assessments in the future. Several analyses have been performed on the costs of the acid deposition control program (Title IV) to date. Identifying and valuing the benefits of the program will be an evolving process. NAPAP has supported efforts that attempt to quantify aquatic, visibility, and health benefits for inclusion in the 1996 report with the hopes of expanding valuation to other benefits areas over the next four years. Reporting on ecological effects will also be a challenge. Future efforts will need to focus on further development of dose response functions for relevant effects areas in order to more fully understand ecological changes resulting from emissions reductions.

  5. 7th Annual European Antibody Congress 2011

    PubMed Central

    2012-01-01

    The 7th European Antibody Congress (EAC), organized by Terrapin Ltd., was again held in Geneva, Switzerland, following on the tradition established with the 4th EAC. The 2011 version of the EAC was attended by nearly 250 delegates who learned of the latest advances and trends in the global development of antibody-based therapeutics. The first day focused on advances in understanding structure-function relationships, choosing the best format, glycoengineering biobetter antibodies, improving the efficacy and drugability of mAbs and epitope mapping. On the second day, the discovery of novel targets for mAb therapy, clinical pipeline updates, use of antibody combinations to address resistance, generation and identification of mAbs against new targets and biosimilar mAb development were discussed. Antibody-drug conjugates, domain antibodies and new scaffolds and bispecific antibodies were the topics of the third day. In total, nearly 50 speakers provided updates of programs related to antibody research and development on-going in the academic, government and commercial sectors. PMID:22453093

  6. Status report on the 104th congress

    SciTech Connect

    Kotz, D.

    1995-11-01

    It`s hard to believe that just one year ago the Republicans introduced their {open_quotes}Contract with America{close_quotes}, promising broad legislative reform as they swept into Congress on a tide of national discontent with the political system. The first 100 days brought a frenzy of legislation that could have dramatically affected the nuclear medicine community with bills calling for the demise of Department Energy (DOE) to those that would have reduced the regulatory the Food and Drug Administration (FDA) and Nuclear Regulatory Commission (NRC). Yet most of the dramatic initiatives that came House were either defeated, delayed or diluted by the Senate. Entering the final stretch of the long legislative year, both the House and the Senate are now grappling with big items such as the Budget Reconciliation bill and Medicare reform. {open_quotes}It`s been an interesting year and most likely only the beginning of several years of legislative focus on issues affecting nuclear medicine including FDA reform,{close_quotes} said David Nichols, Associate Director of Government Relations for ACNP/SNM. Here are how things are shaping up and the potential impact on nuclear physicians.

  7. Congress delves into science with RU-486.

    PubMed

    Kaeser, L

    1998-12-01

    In June 1998, a conservative, Republican member of the US House of Representatives attempted to amend the 1999 bill authorizing funding for the US Food and Drug Administration (USFDA) to prevent government funds from being used to test, develop, or approve "any drug for the chemical inducement of abortion." This bill was designed to halt the approval process for RU-486, a drug that was deemed "approvable" by the USFDA in 1996. Arguments mounted against the amendment by medical, health, and research groups stated that 1) RU-486 is an advance because it permits abortions early in pregnancies, 2) it is improper for the US Congress to impose a scientific judgement on the USFDA, and 3) this amendment has adverse implications for a wide range of drugs and devices that might have an abortifacient effect but be approved for other uses. The House of Representatives passed the amendment but the Senate rejected it, and it was deleted from the final version of the legislation. The amendment is expected to resurface next year. The Congressional debate on RU-486 also spilled over into the appointment hearings for the nomination of Jane Henney as USFDA commissioner. During her confirmation process, Henney was grilled about whether she would grant final approval to RU-486. Henney's nomination was approved by committee but has not yet been considered by the full Senate.

  8. Astronomers, Congress, and the Large Space Telescope

    NASA Astrophysics Data System (ADS)

    Hanle, P. A.

    1985-04-01

    The Hubble Space Telescope (HST) project was initiated near the end of the Apollo program and immediately encountered fiscal contraints. Planned as a long-term facility, the HST had to be continually justified to the public, astronomers and Congress from 1973 onward. Budgetary restraints caused design reductions which for a while threatened the practicality of the HST and changed it from a pressurized, manned unit to an automatic mode, teleoperated, intermittently visited spacecraft. It is noted that numerous exaggerations were made of both the power of the HST for scientific research and the total support of the astronomical community during promotion of the HST program, although the HST is the most powerful visual wavelength telescope ever to be built due to its unique operating environment. NASA's consistent and steadily more detailed definitions of the design features and missions of the HST proved to be a decisive factor in repeated requests for information by funding committees who were deliberating in the presence of severe fiscal difficulties.

  9. National Space Transportation Policy: Issues for Congress

    NASA Astrophysics Data System (ADS)

    1995-05-01

    This report, prepared for the House Committee on Science, is the first in a broad assessment of the health and future prospects of the U.S. space transportation technology and industrial base. The report focuses on the Clinton Administration's National Space Transportation Policy, which was released last fall. It examines administration policy in light of the implementation plans prepared by NASA, DOD, and the Transportation and Commerce Departments. The policy also emphasizes the important contribution private industry can make to the direction and development of U.S. space transportation capabilities. However, an analysis of the policy and implementation plans also raises some issues that might be of interest to Congress as it debates space transportation legislation, oversight, and funding. These issues involve decisions on NASA and DOD development programs, the use of foreign launch vehicles, and the new role of the private sector in space transportation research and development decisionmaking. This report also identifies two issues omitted from the Administration's policy: the preservation of long-range ballistic missile capabilities after final production in 2005, and the perspective of lower industrial tier firms toward national space transportation policy.

  10. Abstracted model for ceramic coating

    SciTech Connect

    Farmer, J C; Stockman, C

    1998-11-14

    Engineers are exploring several mechanisms to delay corrosive attack of the CAM (corrosion allowance material) by dripping water, including drip shields and ceramic coatings. Ceramic coatings deposited with high-velocity oxyfuels (HVOF's) have exhibited a porosity of only 2% at a thickness of 0.15 cm. The primary goal of this document is to provide a detailed description of an abstracted process-level model for Total System Performance Assessment (TSPA) that has been developed to account for the inhibition of corrosion by protective ceramic coatings. A second goal was to address as many of the issues raised during a recent peer review as possible (direct reaction of liquid water with carbon steel, stress corrosion cracking of the ceramic coating, bending stresses in coatings of finite thickness, limitations of simple correction factors, etc.). During the periods of dry oxidation (T ≥ 100°C) and humid-air corrosion (T ≤ 100°C & RH < 8O%), it is assumed that the growth rate of oxide on the surface is diminished in proportion to the surface covered by solid ceramic. The mass transfer impedance imposed by a ceramic coating with gas-filled pores is assumed to be negligible. During the period of aqueous phase corrosion (T ≤ 100°C & RH ≥ 80%), it is assumed that the overall mass transfer resistance governing the corrosion rate is due to the combined resistance of ceramic coating & interfacial corrosion products. Two porosity models (simple cylinder & cylinder-sphere chain) are considered in estimation of the mass transfer resistance of the ceramic coating. It is evident that substantial impedance to 0₂ transport is encountered if pores are filled with liquid water. It may be possible to use a sealant to eliminate porosity. Spallation (rupture) of the ceramic coating is assumed to occur if the stress introduced by the expanding corrosion products at the ceramic- CAM interface exceeds fracture stress. Since this model does not account for the possibility of

  11. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  12. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  13. Extruded ceramic honeycomb and method

    DOEpatents

    Day, J. Paul

    1995-04-04

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  14. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  15. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  16. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  17. Heat distribution ceramic processing method

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  18. Method for preparing ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  19. Method for preparing ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  20. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  1. The World Congress of Herpetology and Animal Conservation: Excerpts from the 6th World Congress

    USGS Publications Warehouse

    Garner, T.W.J.; Hero, J.-M.; Jehle, R.; Kraus, F.; Muths, E.; Reed, R.N.; Vogt, R.C.; Hodl, W.

    2010-01-01

    The World Congress of Herpetology (WCH, http://www.worldcongressofherpetology.org/) is a relatively young organization as far as august herpetological societies go. It was formed in 1982, the year of the 25th meeting of the Society for the Study of Amphibians and Reptiles (founded in 1958), which itself is a relative youngster when compared to organizations such as the American Society for Ichthyology and Herpetology (founded in 1913) or Die Deutsche Gesellschaft für Herpetologie und Terrarienkunde e. V. (originally founded in 1918 under a different name). Despite its youth, the WCH has accomplished much during its relatively short existence. Arguably the greatest accomplishment of the WCH was to provide the venue at the first meeting of the Congress, held in 1989 at Canterbury, UK, where numerous amphibian biologists shared tales of enigmatic declines and disappearances of amphibian study species. Undoubtedly these exchanges sparked the formation of the Declining Amphibian Populations Task Force, providing impetus for the establishment of IUCN's Global Amphibian Assessment. This assessment, along with other research, in turn confirmed that amphibians are declining at a global scale and are more threatened than any other vertebrate class comprehensively assessed to date (Houlahan et al., 2000; Stuart et al., 2004).

  2. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  3. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  4. Method for Waterproofing Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  5. Failure Analysis of Ceramic Components

    SciTech Connect

    B.W. Morris

    2000-06-29

    Ceramics are being considered for a wide range of structural applications due to their low density and their ability to retain strength at high temperatures. The inherent brittleness of monolithic ceramics requires a departure from the deterministic design philosophy utilized to analyze metallic structural components. The design program ''Ceramic Analysis and Reliability Evaluation of Structures Life'' (CARES/LIFE) developed by NASA Lewis Research Center uses a probabilistic approach to predict the reliability of monolithic components under operational loading. The objective of this study was to develop an understanding of the theories used by CARES/LIFE to predict the reliability of ceramic components and to assess the ability of CARES/LIFE to accurately predict the fast fracture behavior of monolithic ceramic components. A finite element analysis was performed to determine the temperature and stress distribution of a silicon carbide O-ring under diametral compression. The results of the finite element analysis were supplied as input into CARES/LIFE to determine the fast fracture reliability of the O-ring. Statistical material strength parameters were calculated from four-point flexure bar test data. The predicted reliability showed excellent correlation with O-ring compression test data indicating that the CARES/LIFE program can be used to predict the reliability of ceramic components subjected to complicated stress states using material properties determined from simple uniaxial tensile tests.

  6. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  7. Ferroelectric ceramics in a pyroelectric accelerator

    SciTech Connect

    Shchagin, A. V.; Miroshnik, V. S.; Volkov, V. I.; Oleinik, A. N.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  8. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  9. Performance of Ceramics in Severe Environments

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  10. Library of Congress Model, Perspective View

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the mountains, leaving little rainfall for areas further inland, thus creating the deserts.

    Topography also controls the land use pattern. The mountains are mostly very

  11. Library of Congress Model, Perspective View

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the mountains, leaving little rainfall for areas further inland, thus creating the deserts.

    Topography also controls the land use pattern. The mountains are mostly very

  12. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  13. First Congress of the United States tackled geophysics in 1789

    NASA Astrophysics Data System (ADS)

    Silverman, Sam

    1998-06-01

    When the first Congress of the United States under the new Constitution convened in the spring of 1789, one of the first orders of business involved a geophysical project. This involved, first, a petition from John Churchman for protection of an invention for determination of longitude using magnetic variation, and second, a request for congressional support for a voyage to Baffin's Bay to determine the cause of the magnetic variation. The discussions and arguments are an instructive introduction to those that arise when Congress considers scientific projects. The new government came into being after ratification by the requisite nine states. The new Congress met for the first time on March 4, 1789, in New York, but almost immediately adjourned in the absence of a quorum.

  14. 75 FR 3372 - Safety Zone: Congress Street Bridge, Pequonnock River, Bridgeport, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone: Congress Street Bridge, Pequonnock River... establishing a temporary safety zone in the waters surrounding the Congress Street Bridge over the Pequonnock... Congress Street Bridge. Entry into this zone is prohibited unless authorized by the Captain of the...

  15. The 5th World Environmental Education Congress, 2009: A Research Project

    ERIC Educational Resources Information Center

    Jickling, Bob; Sauve, Lucie; Briere, Laurence; Niblett, Blair; Root, Emily

    2010-01-01

    This paper contextualizes the 5th World Environmental Education Congress, discusses the theoretical underpinnings of the Congress theme "Earth Our Common Home," and relates this theorizing to the research project that was woven through the Congress. We provide a rationale for engaging in this research project, as an invitation for Congress…

  16. How Members of Congress Practice Private School Choice. Backgrounder. Number 2066

    ERIC Educational Resources Information Center

    Feinberg, Evan

    2007-01-01

    In this report, the author presents the results of the Heritage Foundation's 2007 parental choice survey of Members of Congress, conducted to determine the percentage of Members of Congress that practice private school choice. It was found that the percentage of Members of the 110th Congress who practice private school choice is disproportionate…

  17. More than a Library for Congress: Making LC the Nation's Library.

    ERIC Educational Resources Information Center

    Mason, Marilyn Gell

    1993-01-01

    Discusses designating the Library of Congress (LC) as a national library. Topics addressed include problems with Congress; costs of serving the information needs of Congress; funds for electronic conversion; access to LC resources; user fees; reallocating federal library aid; and governance of LC. (LRW)

  18. As the Economic Crisis Hits Home, Colleges Seek Help from Congress

    ERIC Educational Resources Information Center

    Field, Kelly

    2008-01-01

    Congress is crafting a second economic-stimulus bill, and the nation's colleges, hit by the deepening fiscal crisis, want a share of the money. Over the last few weeks, colleges and their lobbyists have bombarded members of Congress with letters and phone calls seeking money for research, student aid, and infrastructure. However, Congress is…

  19. Ceramic HEPA Filter Program

    SciTech Connect

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  20. Ordered ceramic membranes

    SciTech Connect

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  1. Disc piezoelectric ceramic transformers.

    PubMed

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power. PMID:25004532

  2. Bar piezoelectric ceramic transformers.

    PubMed

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  3. Disc piezoelectric ceramic transformers.

    PubMed

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  4. Reliability of ceramics for heat engine applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  5. Thermally induced micromechanical stresses in ceramic/ceramic composites

    SciTech Connect

    Li, Zhuang; Bradt, R.C.

    1992-11-01

    The internal micromechanical stresses which develop in ceramic-ceramic composites as a consequence of temperature changes and thermoelastic property differences between the reinforcing and matrix phases are addressed by the Eshelby method. Results for two whisker reinforced ceramic matrix composites and for quartz particles in porcelain are discussed. It is concluded that the stresses which develop in the second phase reinforcing inclusions are quite substantial (GPa-levels) and may be highly anisotropic in character. These stresses are additive to the macroscopic thermal stresses from temperature gradients which are encountered during heating and cooling, and also to externally apphed mechanical stresses (loads). These micromechanical stresses are expected to be highly significant for thermal cycling fatigue and other failure processes.

  6. Catastrophic failure of ceramic-on-ceramic total hip arthroplasty presenting as squeaking hip

    PubMed Central

    Malem, David; Nagy, Mathias Thomas; Ghosh, Sabyasachi; Shah, Bhavik

    2013-01-01

    A 68-year-old woman with osteoarthritis had a ceramic-on-ceramic left total hip arthroplasty, including ceramic femoral head and acetabular liner. At 5 years after surgery, the patient developed onset of a very loud squeaking noise, which could be heard 25 m from her, associated with limited hip movement. Findings at revision surgery included a broken ceramic femoral head component, complete wear of the ceramic acetabular component, and black wear debris. Squeaking hip after ceramic-on-ceramic total hip arthroplasty may be associated with catastrophic failure of the arthroplasty components. PMID:23429031

  7. Effects of Climate Change on Federal Hydropower. Report to Congress

    SciTech Connect

    2013-08-01

    This is a formal Department of Energy report to Congress. It outlines the findings of an assessment directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities.

  8. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    SciTech Connect

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  9. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    SciTech Connect

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  10. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    SciTech Connect

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  11. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    SciTech Connect

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  12. Protein adsorption onto ceramic surfaces.

    PubMed

    Takami, Y; Yamane, S; Makinouchi, K; Otsuka, G; Glueck, J; Benkowski, R; Nosé, Y

    1998-04-01

    Ceramics seldom have been used as blood-contacting materials. However, alumina ceramic (Al2O3) and polyethylene are incorporated into the pivot bearings of the Gyro centrifugal blood pump. This material combination was chosen based on the high durability of the materials. Due to the stagnant flow that often occurs in a continuous flow condition inside a centrifugal pump, pivot bearing system is extremely critical. To evaluate the thombogenicity of pivot bearings in the Gyro pump, this study sought to investigate protein adsorption, particularly albumin, IgG, fibrinogen, and fibronectin onto ceramic surfaces. Al2O3 and silicon carbide ceramic (SiC) were compared with polyethylene (PE) and polyvinylchloride (PVC). Bicinchoninic acid (BCA) protein assay revealed that the amount of adsorbed proteins onto Al2O3 and SiC was significantly less than that on PVC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that numerous proteins adsorbed onto PVC compared to PE, Al2O3, and SiC. Identification of adsorbed proteins by Western immunoblotting revealed that the adsorption of albumin was similar on all four materials tested. Western immunoblotting also indicated lesser amounts of IgG, fibrinogen, and fibronectin on Al2O3 and SiC than on PE and PVC. In conclusion, ceramics (Al2O3 and SiC) are expected to be thromboresistant from the viewpoint of protein adsorption. PMID:9511095

  13. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  14. Shock compression profiles in ceramics

    SciTech Connect

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  15. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  16. Transparent ceramic lamp envelope materials

    NASA Astrophysics Data System (ADS)

    Wei, G. C.

    2005-09-01

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  17. Ceramic tile expansion engine housing

    DOEpatents

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  18. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  19. Organopolysiloxane Waterproofing Treatment for Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Cagliostro, Domenick E. (Inventor); Hsu, Ming-ta S. (Inventor); Chen, Timothy S. (Inventor)

    1998-01-01

    Rigid and flexible porous ceramics, including thermal insulation of a type used on space vehicles, are waterproofed by a treatment which comprises applying an aqueous solution of an organopolysiloxane water-proofing agent having reactive silanol groups to the surface of the ceramic and then heating the treated ceramic to form a waterproofed ceramic. The organopolysiloxane is formed by the hydrolysis and partial condensation of di- and trialkoxyfunctional alkylalkoxysilanes having 1-10 carbon atom hydrocarbyl groups.

  20. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.

    1997-01-01

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  1. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  2. Emerging Ceramic-based Materials for Dentistry

    PubMed Central

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  3. Process for strengthening silicon based ceramics

    DOEpatents

    Kim, Hyoun-Ee; Moorhead, A. J.

    1993-01-01

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  4. Process for strengthening silicon based ceramics

    DOEpatents

    Kim, Hyoun-Ee; Moorhead, A. J.

    1993-04-06

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  5. Patches for Repairing Ceramics and Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hogenson, Peter A.; Toombs, Gordon R.; Adam, Steven; Tompkins, James V.

    2006-01-01

    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial

  6. Fabrication of large ceramic electrolyte disks

    NASA Technical Reports Server (NTRS)

    Ring, S. A.

    1972-01-01

    Process for sintering compressed ceramic powders produces large ceramic disks for use as electrolytes in high-temperature electrolytic cells. Thin, strain-free uniformly dense disks as large as 30 cm squared have been fabricated by slicing ceramic slugs produced by this technique.

  7. Reliability and Lifetime Prediction for Ceramic Components

    SciTech Connect

    Vedula, V.R.; Glass, S.J.; Monroe, S.L.; Neilsen, M.K.; Newton, C.

    1999-01-11

    Ceramic materials are used extensively in non-nuclear components in the weapons stockpile including neutron tubes, stronglinks, weaklinks, batteries, and current/voltage stacks. Ceramics also perform critical functions in electronics, passively as insulators and actively as resistors and capacitors, Glass and ceramic seals also provide hermetic electrical feedthrus in connectors for many weapons components.

  8. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  9. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  10. Lubrication And Wear Of Hot Ceramics

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1988-01-01

    Report presents results of experiments on tribological properties of ceramics. Describes friction and wear characteristics of some ceramics under consideration for use in gas turbines, diesel engines, and Stirling engines. Discusses formulation of composite plasma-sprayed ceramics containing solid lubricant additives, and data for carbide- and oxide-based composite coatings for use at temperatures up to at least 900 degree C.

  11. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  12. Instructional Resources. The Significance of Form: Ceramics.

    ERIC Educational Resources Information Center

    Zawatsky, Carole; And Others

    1989-01-01

    Presents four lesson plans designed to teach K-12 students about ceramics and the artists using the medium. Each lesson is centered around one ceramic piece: (1) "Wall Clock," by the Chantilly Porcelain Factory; (2) "Poppy Vase," by Adelaide Robineau; (3) "Laughing Eyes," by Pablo Picasso; and (4) "Ceramic Drum Jar," by Tsayutitsa. (GEA)

  13. Uses of ceramics in microelectronics: A survey

    NASA Technical Reports Server (NTRS)

    Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.

    1971-01-01

    The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.

  14. Preparation of a dense, polycrystalline ceramic structure

    DOEpatents

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  15. High impact resistant ceramic composite

    DOEpatents

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  16. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-12-22

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs.

  17. Thermal shock resistance ceramic insulator

    DOEpatents

    Morgan, Chester S.; Johnson, William R.

    1980-01-01

    Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.

  18. Ultra-High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Rasky, Dan; Bull, Jeff

    1994-01-01

    Recent developments in ultra-high temperature ceramic composites, and their application to advanced vehicle thermal protection systems will be discussed. Research and testing of refractory ceramics has resulted in the identification of a new family of ceramic composites that promise temperature performance to 4000 F+, significantly beyond the current state-of-the-art of reusable systems which are limited to approximately 300 F. This new family of materials includes zirconium and hafnium diboride composites with various reinforcements, such as fibers and particulates. Preliminary material characterization and testing results, including plasma arc-jet testing of prototype vehicle components, will be described. Future directions for the research and material development activities will also be discussed.

  19. Process for making ceramic insulation

    SciTech Connect

    Akash, Akash; Balakrishnan, G. Nair

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  20. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  1. High impact resistant ceramic composite

    DOEpatents

    Derkacy, J.A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance are disclosed. The material comprises: (a) a first continuous phase of [beta]-SiC; and (b) a second phase of about 25-40 vol % TiB[sub 2]. Al[sub 2]O[sub 3] is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800 C to less than the transition temperature of [beta]-SiC to [alpha]-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material. 6 figures.

  2. Nondestructive evaluation of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Baaklini, George Y.; Abel, Phillip B.

    1987-01-01

    A review is presented on research and development of techniques for nondestructive evaluation and characterization of advanced ceramics for heat engine applications. Highlighted in this review are Lewis Research Center efforts in microfocus radiography, scanning laser acoustic microscopy (SLAM), scanning acoustic microscopy (SAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM). The techniques were evaluated by applying them to research samples of green and sintered silicon nitride and silicon carbide in the form of modulus-of-rupture bars containing seeded voids. Probabilities of detection of voids were determined for diameters as small as 20 microns for microfucus radiography, SLAM, and SAM. Strengths and limitations of the techniques for ceramic applications are identified. Application of ultrasonics for characterizing ceramic microstructures is also discussed.

  3. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    A process for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article.

  4. Flexure tests on dental ceramics.

    PubMed

    Zeng, K; Odén, A; Rowcliffe, D

    1996-01-01

    The failure stresses in flexural tests of a densely sintered high-purity alumina (Procera AllCeram) were evaluated using three-point bend, ring-on-ring, and piston-on-three-ball tests. Glass-infiltrated presintered alumina (In-Ceram) and leucite-reinforced porcelain (IPS Empress) disks with the same dimensions were also tested using ring-on-ring and piston-on-three-ball tests. The failure stresses for all materials were substantially different (up to 50%) with different testing methods, and cannot be directly compared. However, by considering the effective specimen area under the maximum tensile stress, these failure stress data could be compared. The results emphasize the importance of knowing the test method and the method of calculation when comparing data. These three testing methods were also subjected to Weibull analysis. The Procera AllCeram had a consistently higher failure stress than the other two materials. PMID:9108743

  5. Ceramic Foams for TPS Applications

    NASA Technical Reports Server (NTRS)

    Stockpoole, Mairead

    2003-01-01

    Ceramic foams have potential in many areas of Thermal Protection Systems (TPS) including acreage and tile leading edges as well as being suitable as a repair approach for re-entry vehicles. NASA Ames is conducting ongoing research in developing lower-density foams from pre-ceramic polymer routes. One of the key factors to investigate, when developing new materials for re-entry applications, is their oxidation behavior in the appropriate re-entry environment which can be simulated using ground based arc jet (plasma jet) testing. Arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the material? response. Other foam properties (mechanical and thermal) will also be presented.

  6. Electrically conductive ceramic powders

    NASA Astrophysics Data System (ADS)

    Lu, Yanxia

    1999-11-01

    Electrically conductive ceramic powders were investigated in this project. There are three ways to produce those materials. The first is doping alkali metal into the titanium dioxides in an inert or reducing atmosphere. The second is reducing un-doped titanium dioxide, forming a non-stoichiometric composition in a hydrogen atmosphere. The third is to coat a conductive layer, reduced titanium dioxide, on an insulating core such as alumina. Highly conductive powders have been produced by all these processes. The conductivity of powder compacts ranged between 10-2 and 10° S/cm. A novel doping process was developed. All samples were doped by a solid-vapor reaction instead of a solid state reaction. Titanium dioxide was doped with alkali metals such as Na or Li in this study. The alkali metal atom contributes an electron to the host material (TiO2), which then creates Ti 3+ ion. The conductivity was enhanced by creating the donor level due to the presence of these Ti3+ ions. The conductivity of those alkali doped titanium oxides was dependent on the doping level and charge mobility. Non-stoichiometric titanium oxides were produced by reduction of titanium dioxide in a hydrogen atmosphere at 800°C to 1000°C for 2 to 6 hours. The reduced titanium oxides showed better stability with respect to conductivity at ambient condition when compared with the Na or Li doped samples. Conductive coatings were prepared by coating titanium precursors on insulating core materials like SiO2, Al2O3 or mica. The titania coating was made by hydrolysis of titanyl sulfate (TiOSO 4) followed by a reduction procedure to form reduced titanium oxide. The reduced titanium oxides are highly conductive. A uniform coating of titanium oxides on alumina cores was successfully produced. The conductivity of coated powder composites was a function of coating quantity and hydrolysis reaction temperature. The conductivity of the powder as a function of structure, composition, temperature, frequency and

  7. Ceramic catalyst materials

    SciTech Connect

    Sault, A.G.; Gardner, T.J.; Hanprasopwattanna, A.; Reardon, J.; Datye, A.K.

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  8. Ultrahigh-Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Ellerby, Donald T.; Beckman, Sarah E.; Irby, Edward; Gasch, Matthew J.; Gusman, Michael I.

    2007-01-01

    Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high-temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes. UHTCs were first studied in the 1960 s by the U.S. Air Force. NASA s Ames Research Center concentrated on developing materials in the HfB2/SiC family for a leading-edge application. The work focused on developing a process to make uniform monolithic (2-phase) materials, and on the testing and design of these materials. Figure 1 shows arc-jet models made from UHTC materials fabricated at Ames. Figure 2 shows a cone being tested in the arc-jet. Other variations of these materials being investigated elsewhere include zirconium based materials and fiber-reinforced composites. Current UHTC work at Ames covers four broad topics: monoliths, coatings, composites, and processing. The goals include improving the fracture toughness, thermal conductivity and oxidation resistance of monolithic UHTCs and developing oxidation-resistant UHTC coatings for thermal-protection-system substrates through novel coating methods. As part of this effort, researchers are exploring compositions and processing changes that have yielded improvements in properties. Computational materials science and nanotechnology are being explored as approaches to reduce materials development time and improve and tailor properties.

  9. Proton conducting cerate ceramics

    SciTech Connect

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J.

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  11. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  13. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  14. Ceramic veneers with minimum preparation.

    PubMed

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-10-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative treatment also improved the function of the anterior guidance. It can be concluded that the conservative use of minimum thickness ceramic laminate veneers may provide satisfactory esthetic outcomes while preserving the dental structure.

  15. Ceramic veneers with minimum preparation

    PubMed Central

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-01-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative treatment also improved the function of the anterior guidance. It can be concluded that the conservative use of minimum thickness ceramic laminate veneers may provide satisfactory esthetic outcomes while preserving the dental structure. PMID:24932126

  16. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  17. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  18. Method for joining ceramic shapes

    DOEpatents

    Rabin, Barry H.

    1992-01-01

    A method for joining shapes of ceramic materials together to form a unitary ceramic structure. In the method of the invention, a mixture of two or more chemical components which will react exothermically is placed between the surfaces to be joined, and the joined shapes heated to a temperature sufficient to initiate the exothermic reaction forming a joining material which acts to bond the shapes together. Reaction materials are chosen which will react exothermically at temperatures below the degradation temperature of the materials to be joined. The process is particularly suited for joining composite materials of the silicon carbide-silicon carbide fiber type.

  19. Ceramic components for MHD electrode

    DOEpatents

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  20. Ceramic component for MHD electrode

    DOEpatents

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  1. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  2. High photovoltages in ferroelectric ceramics

    NASA Technical Reports Server (NTRS)

    Brody, P. S.

    1976-01-01

    The short-circuit currents and photo-emfs were measured for various ceramics including barium titanate, lead metaniobate, and lead titanate. It is suggested that the emfs and currents arise from the presence of photoconductor-insulator sandwiches in the presence of space-charge-produced internal fields. Results are in agreement with the proposed theory and indicate that the ferroelectric ceramics are not only producers of high-voltage photoelectricity but a photo-battery, the polarity and magnitude of which can be switched by application of an electrical signal.

  3. Services to the Nation: The Library of Congress.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC.

    This pamphlet describes the many services that the Library of Congress (LC) provides. A brief historical background of the Library's founding is followed by descriptions of LC's buildings and facilities. Other topics which are presented include the library's extensive collection, which runs the gamut from papyrus to optical disk; services to…

  4. 25 Years of Progress: Professional Staff Congress/CUNY.

    ERIC Educational Resources Information Center

    Yellowitz, Irwin

    This publication reviews the history of the Professional Staff Congress (PSC) of the City University of New York (CUNY), which in 1997 celebrated its 25th anniversary, commemorating the 1972 merger of the institution's Legislative Conference and the United Federation of College Teachers, two previously rival unions. The first chapter covers the…

  5. Learning Disabilities: A Report to the U.S. Congress.

    ERIC Educational Resources Information Center

    Interagency Committee on Learning Disabilities, Washington, DC.

    The report to Congress by the Interagency Committee on Learning Disabilities, required by the Health Research Extension Act of 1985, Public Law 99-158, provides a review and assessment of Federal research priorities, activities, and findings regarding learning disabilities. Included in the report is information on (1) the number of persons…

  6. Serials on Optical Disks: A Library of Congress Pilot Program.

    ERIC Educational Resources Information Center

    Criswell, Lela Beth

    1983-01-01

    Description of the Optical Disk Pilot Program of the Library of Congress defines characteristics and differences between analog videodisks and optical digital disk technology. Benefits of the optical digital disk, material selection, and the system configuration (bibliographic indexing, document preparation and input scanning, image and record…

  7. Commission on Child Online Protection (COPA) Report to Congress. Appendices.

    ERIC Educational Resources Information Center

    2000

    The appendices for the Commission on Child Online Protection (COPA) Report to Congress, October 20, 2000, include the following: Commission overview, which includes scope and timeline, original statute, amended statute, technologies and methods, and biographies of the commissioners; Commission finances; Commission meetings for the year 2000;…

  8. NASA NASA CONNECT: Special World Space Congress. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. This video presents the World Space Congress 2002, the meeting of the decade for space professionals. Topics discussed range from the discovery of distant planets to medical advancements,…

  9. Semiannual Report to Congress, October 1, 2002-March 31, 2003.

    ERIC Educational Resources Information Center

    Office of Inspector General (ED), Washington, DC.

    This semiannual report to Congress by the Office of Inspector General (OIG), U.S. Department of Education, covers the actions of the OIG from October 1, 2002, through March 31, 2003. The report discusses four goals of the President's Management Agenda: (1) improved financial performance: includes information on financial statement audits,…

  10. Child Care Development Fund (CCDF): Report to Congress.

    ERIC Educational Resources Information Center

    Administration on Children, Youth, and Families (DHHS), Washington, DC. Child Care Bureau.

    Child Care and Development Fund (CCDF) monies are used primarily to provide subsidized child care services to low-income working families through vouchers or certificates. This report to Congress describes and analyzes the most current information about the CCDF including that drawn from state plans, expenditure reports, case-level reports, and…

  11. Colleges Must Get Used to Collaborating with Congress

    ERIC Educational Resources Information Center

    Trible, Paul

    2005-01-01

    Differences in political ideology between college and university administrators and federal legislators have brought about lack of communication, mistrust, and indifference between Congress and higher education. This article discusses the bridging of these differences through common understanding and collaboration to meet the challenges faced by…

  12. Review of Issues Facing Congress. News from Capitol Hill.

    ERIC Educational Resources Information Center

    Heinz, Ann Simeo

    2001-01-01

    Discusses various topics that have faced the 107th U.S. Congress, such as tax cuts, judicial appointments, domestic issues, patients' bill of rights, stem cell research, election law, and campaign finance reform. Includes information on U.S. Senate and federal judicial appointments. Provides ideas for student learning activities. (CMK)

  13. Fission yeast kinesin-8 controls chromosome congression independently of oscillations

    PubMed Central

    Mary, Hadrien; Fouchard, Jonathan; Gay, Guillaume; Reyes, Céline; Gauthier, Tiphaine; Gruget, Clémence; Pécréaux, Jacques; Tournier, Sylvie; Gachet, Yannick

    2015-01-01

    ABSTRACT In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy. PMID:26359299

  14. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED.... Section's effort to comply with the objectives of the Act, to include any problems encountered,...

  15. Information Policy: Public Laws from the 95th Congress.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on House Administration.

    This compilation of abstracts provides brief descriptions of the 74 new public laws relating to computers and information policy that were enacted during the 95th Congress. Each of these bills is concerned with information, although the diverse subject matter--e.g., energy and clean water, food and health, foreign investments, ethics in…

  16. 33. Photocopy of photograph (from Library of Congress, #USZ6224770) (???) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Photocopy of photograph (from Library of Congress, #USZ62-24770) (???) M'Clees, Photographer 1859 SOUTH PORTICO, WITH POST OFFICE IN FOREGROUND (4 x 5 negative; 8 x 10 print) - Patent Office Building, Bounded by Seventh, Ninth, F & G Streets, Northwest, Washington, District of Columbia, DC

  17. Bush Administration Looks to Congress to Proceed in Lender Bailout

    ERIC Educational Resources Information Center

    Basken, Paul

    2008-01-01

    The Bush administration has called off internal deliberations over a bailout plan for student-loan companies after concluding it did not have the authority to act on its own. Instead, it endorsed a Congressional proposal that would allow the education secretary to purchase loans from private lenders. The decision leaves Congress facing a ticking…

  18. School Prayer: The Court, the Congress, and the First Amendment.

    ERIC Educational Resources Information Center

    Alley, Robert S.

    When Congress adopted the First Amendment to the U.S. Constitution in 1789, it left open many questions that would arise concerning church-state relations. It became clear early in the history of the country that the Supreme Court would have a great impact on how the First Amendment would be upheld and interpreted. This book examines how Congress…

  19. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....304 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the...

  20. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....304 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the...

  1. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....304 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the...

  2. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....304 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the...

  3. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....304 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Secretary of the Navy The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the...

  4. Library of Congress Cataloging Directorate Annual Report, Fiscal Year 2002.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Cataloging Directorate.

    This fiscal year 2002 annual report of the Library of Congress (LC) Cataloging Directorate covers the following topics: (1) production and productivity; (2) arrearage reduction; (3) the aftermath of the terrorist attacks of September 11, 2001; (4) cooperative cataloging programs; (5) conversion of LC records in Chinese from Wade-Giles to pinyin…

  5. Library of Congress Report Urges Technological Updates of Cataloging Strategies

    ERIC Educational Resources Information Center

    Foster, Andrea L.; Howard, Jennifer

    2008-01-01

    Libraries need to share records more with one another, make greater use of the Web, and bring more attention to their special collections, according to a report released last month by the Library of Congress. The new study examines how libraries can improve the distribution and use of their materials in a technology-centric environment. But "On…

  6. 31 CFR 0.212 - Influencing legislation or petitioning Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Influencing legislation or... DEPARTMENT OF THE TREASURY EMPLOYEE RULES OF CONDUCT Rules of Conduct § 0.212 Influencing legislation or... Congress to favor or oppose any legislation. This prohibition does not apply to the official...

  7. American Perspectives on the Seventh International Congress on Mathematical Education.

    ERIC Educational Resources Information Center

    Dossey, John A., Ed.

    This publication is a collection of papers portraying an American view of the happenings of the Seventh International Congress on Mathematical Education (ICME-7). Papers included: (1) "ICME-7 and Tertiary Level Mathematics: Une Petite Affaire" (Shirley Hill); (2) "Technology and Mathematics Education at ICME-7" (James T. Fey); (3) "Assessment in…

  8. Congress Gives Colleges a Billion-Dollar Bonanza.

    ERIC Educational Resources Information Center

    Brainard, Jeffrey; Southwick, Ron

    2000-01-01

    Reports that Congress has earmarked a record amount of money (more than $1 billion) for projects involving specific colleges in the 2000 fiscal year. Notes that such "pork-barrel" spending has tripled since 1996. Charts show trends in earmarks since 1989, year 2000 earmarks by agency, the top 20 recipients of earmarked grants, and ranking of…

  9. 31 CFR 50.91 - Notice to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Notice to Congress. 50.91 Section 50.91 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE... terrorism, stating whether the Secretary estimates that aggregate insured losses will exceed...

  10. The 1925 Fort Union Indian Congress: Divergent Narratives, One Event

    ERIC Educational Resources Information Center

    Blee, Lisa

    2007-01-01

    This essay investigates how various perspectives differ and converge in the span of an afternoon, thus illustrating how divergent narratives, through their very difference, enhance one's understanding of the past. The case study of the 1925 Fort Union Indian Congress points to the process of narrativizing experience and underscores how meaning is…

  11. 32 CFR 270.19 - Reports to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Reports to Congress. 270.19 Section 270.19 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS COMPENSATION OF CERTAIN FORMER OPERATIVES INCARCERATED BY THE DEMOCRATIC REPUBLIC OF...

  12. 32 CFR 270.19 - Reports to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Reports to Congress. 270.19 Section 270.19 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS COMPENSATION OF CERTAIN FORMER OPERATIVES INCARCERATED BY THE DEMOCRATIC REPUBLIC OF...

  13. 32 CFR 270.19 - Reports to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Reports to Congress. 270.19 Section 270.19 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS COMPENSATION OF CERTAIN FORMER OPERATIVES INCARCERATED BY THE DEMOCRATIC REPUBLIC OF...

  14. 32 CFR 270.19 - Reports to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Reports to Congress. 270.19 Section 270.19 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS COMPENSATION OF CERTAIN FORMER OPERATIVES INCARCERATED BY THE DEMOCRATIC REPUBLIC OF...

  15. 32 CFR 270.19 - Reports to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Reports to Congress. 270.19 Section 270.19 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS COMPENSATION OF CERTAIN FORMER OPERATIVES INCARCERATED BY THE DEMOCRATIC REPUBLIC OF...

  16. Reflecting on the 2007 World Environmental Education Congress

    ERIC Educational Resources Information Center

    Lotz-Sisitka, Heila

    2007-01-01

    What motivates more than 800 people from 101 countries around the world to meet at a World Environmental Education Congress (WEEC)? And how does one make the most of such an incredible gathering of people, cultures, thoughts and minds? What did people learn and was it worthwhile? These are just some of the questions that have been chasing through…

  17. 43 CFR 1610.6 - Management decision review by Congress.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Management decision review by Congress. 1610.6 Section 1610.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING,...

  18. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  19. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    SciTech Connect

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  20. Critics of NCLB Ask Congress to Overhaul It

    ERIC Educational Resources Information Center

    Klein, Alyson

    2007-01-01

    This article describes the contents of a proposal released last week by a coalition that includes some of the most prominent critics of the No Child Left Behind Act. It asks Congress to scrap the accountability system at the center of the federal education law in favor of one that holds schools responsible for improving teacher training and…

  1. Indian Education Legislative Report, 106th Congress, Second Session.

    ERIC Educational Resources Information Center

    National Indian Education Association, Arlington, VA.

    This report notes that with a Republican majority in the 106th Congress and a Democratic administration, little new legislation was passed, but funding for Indian education programs did better than at any time in the recent past. Funding highlights include: no funding for school renovation grants to public schools with high concentrations of…

  2. Highlights of the EANM Congress 2011: Birmingham, UK.

    PubMed

    de Geus-Oei, Lioe-Fee; Zerizer, Imene; Uebleis, Christopher; Al-Nahhas, Adil

    2012-02-01

    The EANM Congress 2011 took place in Birmingham between the 15th and 19th October 2011 under the presidency of Professor Werner Langsteger. The attendance was reassuringly high, in line with other EANM congresses, despite the current 'Eurozone Crisis'. Participants from 87 countries came along, met old friends and made new ones. They were presented with a massive programme of 1,480 abstracts, symposia, and CME, scientific, plenary and featured sessions. The industry made a substantial contribution to the success of the congress with 109 hardware, software and radiopharmaceutical companies demonstrating the latest technology and innovations in the field. A feature in this year's congress was the emphasis on the role of the young generation. The highlight lecture was presented and this article was compiled by three young EANM members chosen from the young investigator project of the EANM. They review the most highly rated presentations in clinical and preclinical imaging in oncology, neuroendocrine tumours, cardiology, paediatrics and neurology, and provide an update on radionuclide therapy, physics, instrumentation, innovative tracers and techniques. PMID:22237847

  3. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  4. 18 CFR 401.119 - Disclosure to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to Congress. 401.119 Section 401.119 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information §...

  5. 29 CFR 1400.735-19 - Influencing Members of Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Influencing Members of Congress. 1400.735-19 Section 1400.735-19 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE STANDARDS OF CONDUCT, RESPONSIBILITIES, AND DISCIPLINE Employees: Ethical and Other Conduct...

  6. 29 CFR 1400.735-19 - Influencing Members of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Influencing Members of Congress. 1400.735-19 Section 1400.735-19 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE STANDARDS OF CONDUCT, RESPONSIBILITIES, AND DISCIPLINE Employees: Ethical and Other Conduct...

  7. 29 CFR 1400.735-19 - Influencing Members of Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Influencing Members of Congress. 1400.735-19 Section 1400.735-19 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE STANDARDS OF CONDUCT, RESPONSIBILITIES, AND DISCIPLINE Employees: Ethical and Other Conduct...

  8. 29 CFR 1400.735-19 - Influencing Members of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Influencing Members of Congress. 1400.735-19 Section 1400.735-19 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE STANDARDS OF CONDUCT, RESPONSIBILITIES, AND DISCIPLINE Employees: Ethical and Other Conduct...

  9. 29 CFR 1400.735-19 - Influencing Members of Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Influencing Members of Congress. 1400.735-19 Section 1400.735-19 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE STANDARDS OF CONDUCT, RESPONSIBILITIES, AND DISCIPLINE Employees: Ethical and Other Conduct...

  10. 31 CFR 50.91 - Notice to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Notice to Congress. 50.91 Section 50.91 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE... terrorism, stating whether the Secretary estimates that aggregate insured losses will exceed...

  11. 31 CFR 50.91 - Notice to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Notice to Congress. 50.91 Section 50.91 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE... terrorism, stating whether the Secretary estimates that aggregate insured losses will exceed...

  12. 31 CFR 50.91 - Notice to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Notice to Congress. 50.91 Section 50.91 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE... terrorism, stating whether the Secretary estimates that aggregate insured losses will exceed...

  13. 31 CFR 50.91 - Notice to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Notice to Congress. 50.91 Section 50.91 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE... terrorism, stating whether the Secretary estimates that aggregate insured losses will exceed...

  14. Five Decades of Microforms at the Library of Congress.

    ERIC Educational Resources Information Center

    Sullivan, Robert C.

    1988-01-01

    Discusses the history of the microform collections at the Library of Congress (LC), highlighting the exchange of microfilmed newspapers between LC and the Biblioteca Nacional, Brazil. Recent developments in preservation microfilming, LC's acquisition of microforms, and the activities of the LC Preservation Microfilming Office are described. (3…

  15. Library of Congress Gives Teachers Digital Access to All Knowledge

    ERIC Educational Resources Information Center

    Orchowski, Peggy

    2009-01-01

    "Learning to think is the real goal of educators," said Lauren Resnick, internationally known University of Pittsburgh professor of cognitive science, in mid-March at the Library of Congress (LOC). "The real pedagogical conflict is over what comes first: content or thinking skills?" According to Resnick, new brain research leads to the answer:…

  16. 10 CFR 9.109 - Report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Government in the Sunshine Act, including a tabulation of the total number of open meetings, the total number... REGULATORY COMMISSION PUBLIC RECORDS Government in the Sunshine Act Regulations § 9.109 Report to Congress... against the Commission pursuant to the Government in the Sunshine Act, including any cost assessed...

  17. 20 CFR 1001.131 - Secretary's annual report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Secretary's annual report to Congress. 1001.131 Section 1001.131 Employees' Benefits OFFICE OF THE ASSISTANT SECRETARY FOR VETERANS' EMPLOYMENT AND TRAINING SERVICE, DEPARTMENT OF LABOR SERVICES FOR VETERANS State Employment Service...

  18. 20 CFR 1001.131 - Secretary's annual report to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Secretary's annual report to Congress. 1001.131 Section 1001.131 Employees' Benefits OFFICE OF THE ASSISTANT SECRETARY FOR VETERANS' EMPLOYMENT AND TRAINING SERVICE, DEPARTMENT OF LABOR SERVICES FOR VETERANS State Employment Service...

  19. Try a Local "Congress" to Understand Sensitive Issues.

    ERIC Educational Resources Information Center

    Gentry, Sharon L.

    1988-01-01

    Describes a First Amendment "Congress," a national seminar for business and labor leaders, educators, civic and charitable organizations, religious leaders, lawyers, and students, designed to elicit discussion about various interpretations of the amendment. Recommends this type of seminar for exploring sensitive issues at the local or state level.…

  20. 32 CFR 211.10 - Reporting determinations to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Reporting determinations to Congress. 211.10 Section 211.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures §...

  1. 32 CFR 211.10 - Reporting Determinations to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Reporting Determinations to Congress. 211.10 Section 211.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures §...

  2. 32 CFR 211.10 - Reporting Determinations to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Reporting Determinations to Congress. 211.10 Section 211.10 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS MISSION COMPATIBILITY EVALUATION PROCESS Project Evaluation Procedures §...

  3. Literary Lectures Presented at the Library of Congress.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC.

    This book contains 37 out-of-print lectures on American, English, and world literature that have been presented at the Library of Congress over the past 30 years. Lectures by Thomas Mann, T. S. Eliot, R. P. Blackmur, Archibald Henderson, Irving Stone, John O'Hara, MacKinlay Kantor, John Crowe Ransom, Delmore Schwartz, John Hall Wheelock, Robert…

  4. Film and Video Resources at the Library of Congress.

    ERIC Educational Resources Information Center

    Taylor, Anita

    While the primary emphasis of the Motion Picture, Broadcasting and Recorded Sound Division (MBRS) of the Library of Congress (LC) has been on collecting theatrical features, other materials are also collected, including theatrical shorts, newsreels, instructional films, television news, entertainment programs, and documentaries. Access to MBRS…

  5. Editorial Introduction on Proceedings of the 2015 International Congress on Ultrasonics, 2015 ICU Metz

    NASA Astrophysics Data System (ADS)

    Patin, Nico Felicien Declercq de

    A brief summary of the 2015 International Congress on Ultrasonics is presented. The 2015 ICU has taken place in Metz, France, at the Arsenal and was hosted by Georgia Tech Lorraine in collaboration with the French Acoustical Society. The congress hosted a record number of 700 participants. The report focuses on the awards presented during the congress, the invited speakers and some statistics. Other details can be found in reports available on the congress website. The author N. F. Declercq, president of 2015 ICU and Editor of the congress proceedings, wishes to publish the congress proceedings in loving memory of his father Maurice Alois who suddenly passed away 5 weeks after the end of the congress.

  6. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  7. Hip Squeaking after Ceramic-on-ceramic Total Hip Arthroplasty

    PubMed Central

    Wu, Guo-Liang; Zhu, Wei; Zhao, Yan; Ma, Qi; Weng, Xi-Sheng

    2016-01-01

    Objective: The present study aimed to review the characteristics and influencing factors of squeaking after ceramic-on-ceramic (CoC) total hip arthroplasty (THA) and to analyze the possible mechanisms of the audible noise. Data Sources: The data analyzed in this review were based on articles from PubMed and Web of Science. Study Selection: The articles selected for review were original articles and reviews found based on the following search terms: “total hip arthroplasty”, “ceramic-on-ceramic”, “hip squeaking”, and “hip noise.” Results: The mechanism of the squeaking remains unknown. The possible explanations included stripe wear, edge loading, a third body, fracture of the ceramic liner, and resonance of the prosthesis components. Squeaking occurrence is influenced by patient, surgical, and implant factors. Conclusions: Most studies indicated that squeaking after CoC THA was the consequence of increasing wear or impingement, caused by prosthesis design, patient characteristics, or surgical factors. However, as conflicts exist among different articles, the major reasons for the squeaking remain to be identified. PMID:27453238

  8. Ceramic on ceramic hip arthroplasty in fused hips

    PubMed Central

    Park, Kyung-Soon; Yoon, Taek-Rim; Lee, Tae-Min; Ahn, Yeong-Seub

    2015-01-01

    Background: Most literature in the field of total hip arthroplasty (THA) for fused hips, until date has reported the results of using metal on polyethylene and ceramic on polyethylene bearings. Results of THA using ceramic on ceramic (CoC) bearings in fused hips have not been published in literature. This study reports the results of cementless THA using CoC articulation perfomed in fused hips. Materials and Methods: Twenty-three patients (25 hips) with fused hips underwent conversion to THA using CoC bearings and were followed up for a mean 5.4 years. The conventional posterolateral approach was used in 15 hips, a modified two incision technique in 7 hips and a direct lateral approach with greater trochanteric osteotomy in 3 hips. Postoperatively, range of motion exercises were encouraged after 2–3 days of bed rest and subsequent gradual weight bearing using crutches was begun. Results: Mean Harris hip score improved from 42.4 to 84.2 and mean leg lengthening of 36.6 mm was achieved. In the average 5.4 years (range 2.8-9.1 years) followup there were no cases with osteolysis around acetabular cup and femoral stem. In this study, there was no case of ceramic fracture. There was one case of squeaking. Conclusion: This study suggests that cementless THA performed for fused hips with CoC bearings can provide good early clinical results. PMID:26015635

  9. Compliant sleeve for ceramic turbine blades

    DOEpatents

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  10. Ceramic heat exchangers: Manufacturing techniques and performance

    NASA Astrophysics Data System (ADS)

    Merrigan, M. A.; Sandstrom, D. J.

    1981-05-01

    The objective of the ceramic heat pipe program being conducted at Los Alamos is demonstration of the practical feasibility of this technology for the solution of severe high temperature recuperation functions. Ceramic heat pipe recuperators were theoretically shown to offer distinct advantages over conventional ceramic heat exchangers from the standpoint of efficiency of heat recuperation and economics. The main stumbling block to their widespread utilization is related to the problems of materials for construction and the details of fabrication and assembly. The performance objectives of ceramic heat pipes and some aspects of the materials technology program aimed at solving the problem of economic ceramic heat pipe fabrication are described.

  11. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  12. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  13. High temperature ceramics for automobile gas turbines. Part 2: Development of ceramic components

    NASA Technical Reports Server (NTRS)

    Walzer, P.; Koehler, M.; Rottenkolber, P.

    1978-01-01

    The development of ceramic components for automobile gas turbine engines is described with attention given to the steady and unsteady thermal conditions the ceramics will experience, and their anti-corrosion and strain-resistant properties. The ceramics considered for use in the automobile turbines include hot-pressed Si3N4, reaction-sintered, isostatically pressed Si3N4, hot-pressed SiC, reaction-bonded SiC, and glass ceramics. Attention is given to the stress analysis of ceramic structures and the state of the art of ceramic structural technology is reviewed, emphasizing the use of ceramics for combustion chambers and ceramic shrouded turbomachinery (a fully ceramic impeller).

  14. Evaluation of silicon-nitride ceramic valves.

    SciTech Connect

    Sun, J. G.; Zhang, J. M.; Andrews, M. J.; Tretheway, J. S.; Phillips, N. S .L.; Jensen, J. A.; Nuclear Engineering Division; Univ. of Texas; Caterpillar, Inc.

    2008-01-01

    Silicon-nitride ceramic valves can improve the performance of both light- and heavy-duty automotive engines because of the superior material properties of silicon nitrides over current metal alloys. However, ceramics are brittle materials that may introduce uncertainties in the reliability and durability of ceramic valves. As a result, the lifetime of ceramic valves are difficult to predict theoretically due to wide variations in the type and distribution of microstructural flaws in the material. Nondestructive evaluation (NDE) methods are therefore required to assess the quality and reliability of these valves. Because ceramic materials are optically translucent and the strength-limiting flaws are normally located near the valve surface, a laser-scatter method can be used for NDE evaluation of ceramic valves. This paper reviews the progress in the development of this NDE method and its application to inspect silicon-nitride ceramic valves at various stages of manufacturing and bench and engine tests.

  15. Ceramic high pressure gas path seal

    NASA Technical Reports Server (NTRS)

    Liotta, G. C.

    1987-01-01

    Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.

  16. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  17. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  18. Performance of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.; Geyer, H.K.; Shelleman, D.L.; Tressler, R.E.

    1996-08-01

    CeraMem Corp.`s ceramic-membrane coated, dead-end ceramic filters offer a promising alternative to ceramic candle filters providing long-term operational and reliability issues are resolved: regenerability of filter passages by back pulse cleaning, tolerance to alkali-containing combustion gas and thermal/chemical aging. ANL is responsible for analytical modeling of filtration and pulse cleaning operations, flow-through testing, and prediction of filter response to thermal cycling under realistic service conditions. A test apparatus was built to expose ceramic filter specimens to chemical environments simulating operation of pressurized fluidized bed and integrated gasification combined cycle plants. Four long-duration tests have been conducted in which 100-cpsi channel filters were exposed to ash collected downstream of the cyclone separator at the PFBC plant at Tidd. Results are discussed. Focus has now shifted to exposing the advanced candle filter specimens to reducing gas environments containing NaCl, H{sub 2}S, H{sub 2}O, and gasification ash.

  19. Art Education: Creative Ceramic Arts.

    ERIC Educational Resources Information Center

    Swan, Nora; Marinaccio, Louis

    A course in forming, decorating, glazing, and firing pottery is presented. Upon completion of the course, the student will be expected to be familiar with all terms and characteristics connected with pottery and ceramics, and he will be expected to be able to properly handle and form clay. Course content includes the history of clay handling,…

  20. Ceramic-Cord Gas Seal

    NASA Technical Reports Server (NTRS)

    Etzel, C. W.

    1983-01-01

    High-temperature gasket material seals at temperatures above 1,100 degrees C. Concentric exhaust pipes are typical of applications in which ceramic-cord seals might be used. Cord is crushed to form seal between inner and outer pipes when inner pipe is expanded into place. Typical applications include engine exhaust ducts or hot pipes passing through firewalls.

  1. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  2. Ceramic valve guide and seat

    SciTech Connect

    Mott, D.H.; Schmidt, H.

    1987-08-25

    For molded inclusion in a cast metal cylinder head of a internal combustion engine, an integral ceramic valve seat and valve stem guide assembly are described for operative engagement with and support of a conventional poppet-type valve with its enlarged head portion with a sealing surface thereon and an elongated cylindrical stem portion. The guide and seat consist of: valve seat forming means cast in ceramic material having an annular configuration operatively conforming to the configuration of the sealing surface of the valve and defining an annular seating surface for sealing engagement with the enlarged valve head when the valve is in a closed position; valve stem support means cast in ceramic having a generally tubular configuration with an internal bore and defining a support for reciprocation of the cylindrical stem portion of the valve as the valve moves between open and closed operative position; connecting means cast in ceramic and integral with both the valve set forming means and the valve stem supporting guide means for aligning the means so that a plane through the annular seating surface is normal to the axis of the tubular guide means and coaxially supporting the annular valve set forming means and the tubular guide portion whereas the integral valve seat forming means.

  3. Superplastic forming of ceramic insulation

    NASA Technical Reports Server (NTRS)

    Nieh, T. G.; Wittenauer, J. P.; Wadsworth, J.

    1992-01-01

    Superplasticity has been demonstrated in many fine-grained structural ceramics and ceramic composites, including yttria-stabilized tetragonal zirconia polycrystal (YTZP), alumina, and Al2O3-reinforced zirconia (Al2O3/YTZ) duplex composites and SiC-reinforced Si3N4. These superplastic ceramics obviously offer the potential benefit of forming net shape or near net shape parts. This could be particularly useful for forming complicated shapes that are difficult to achieve using conventional forming techniques, or require elaborate, subsequent machining. In the present study, we successfully demonstrated the following: (1) superplastic 3Y-TXP and 20 percent Al2O3/YTZ composite have for the first time been successfully deformed into hemispherical caps via a biaxial gas-pressure forming technique; (2) no experimental difficulty was encountered in applying the required gas pressures and temperatures to achieve the results, thus, it is certain that higher rates of deformation than those presented in this study will be possible by using the current test apparatus at higher temperatures and pressures; and (3) an analytical model incorporating material parameters, such as variations during forming in the strain rate sensitivity exponent and grain growth-induced strain hardening, is needed to model accurately and therefore precisely control the biaxial gas-pressure forming of superplastic ceramics. Based on the results of this study, we propose to fabricate zirconia insulation tubes by superplastic extrusion of zirconia polycrystal. This would not only reduce the cost, but also improve the reliability of the tube products.

  4. Gas Separations using Ceramic Membranes

    SciTech Connect

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  5. Oxidation resistance of silicon ceramics

    NASA Technical Reports Server (NTRS)

    Yasutoshi, H.; Hirota, K.

    1984-01-01

    Oxidation resistance, and examples of oxidation of SiC, Si3N4 and sialon are reviewed. A description is given of the oxidation mechanism, including the oxidation product, oxidation reaction and the bubble size. The oxidation reactions are represented graphically. An assessment is made of the oxidation process, and an oxidation example of silicon ceramics is given.

  6. Lightweight Ceramics for Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.

    1997-01-01

    The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.

  7. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  8. Method for preparing thin-walled ceramic articles of configuration

    DOEpatents

    Holcombe, C.E.; Powell, G.L.

    1975-11-01

    A method for preparing a hollow thin-walled ceramic product is described. Ceramic powder is plasma-sprayed onto a concave surface of a substrate having a coefficient of thermal expansion less than that of the ceramic. The coated substrate is heated to sinter the ceramic and then cooled to effect a separation of the ceramic product from the substrate. (auth)

  9. Bonded ceramic foams reinforced with fibers for high temperature use

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.; Hendricks, R. C.; Mullen, R. L.

    1992-01-01

    High quality SiC ceramic foams, which have only recently become available, have for the first time made possible the construction of low density ceramic fiber-ceramic foam sandwiches for high temperature applications. This report describes the construction of some ceramic fiber-ceramic foam structures and the preliminary measurement of strength at elevated temperature.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  11. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  12. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  13. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  14. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  15. Environmental Barrier Coatings for Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam

    2004-01-01

    One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.

  16. European Society of Cardiology (ESC) Congress Report from London 2015.

    PubMed

    Nishiguchi, Tsuyoshi; Akasaka, Takashi

    2015-01-01

    The Annual Congress of the European Society of Cardiology (ESC) was held in London from 29 August to 2 September 2015. It is the leading conference in cardiology in the world, with presentations on the latest scientific discoveries, innovations, technology, education, and clinical practices. More than 32,000 delegates and 5,000 exhibitors from 140 countries participated, sharing a number of scientific presentations, including 28 clinical hot lines, 18 clinical trial updates, 20 registry studies, 12 basic and translational science hot line studies, and 4,533 abstract studies. Japan had the highest number of accepted abstracts at the Congress, indicating the great contribution of Japanese scientists and the Japanese Circulation Society. PMID:26459395

  17. PREFACE: XVII Congress of Bioengineering and VI Clinical Engineering Conference

    NASA Astrophysics Data System (ADS)

    Rocha, Darío

    2011-09-01

    SABI 2009 was the XVII Biennial Congress of the Argentinean Bioengineering Society (SABI - www.sabi.org.ar), celebrated along with the VI Clinical Engineering Conference. It took place in Rosario, the second city of Argentina, located on the west bank of the Paraná, one of the world's most important rivers. This city, with its 150 year history and one million inhabitants, is characterized by a strong enterprising spirit. It is the agroindustrial leader of Argentina, with cereal ports recognized to be among the most active in the world, and its cereal stock exchange competes with Chicago's in international cereal pricing. Demographically Rosario presents a European profile, and there are seven national and private higher level universities in the area. SABI 2009 was the first time the Congress was celebrated in Rosario. Usually the Congress is organized by the Bioengineering Society in cooperation with a university with an undergraduate program, which Rosario lacks. To meet the needs of this exceptional case, a young local institution was asked to coordinate the Congress, the Rosario Technological Center (www.polotecnologico.net). This organization gathers together around 100 companies that produce technology, with a large number focused on IT, but those focused on biotechnology also stand out. The Center is also integrated with relevant public and government bodies. Traditionally, bioengineering has been related to human health applications, with less emphasis on applications significant to agrotechnology, an area in which Rosario is growing as an economic force. In order to address this oversight, the Congress formulated its main goals for integrating and synergizing bioengineering and biotechnology, particularly bioengineering and agrotechnology. This initiative has produced promising results. The importance of the Congress was reflected in the high number of participants - including researchers, professionals and students - from abroad, with participants from

  18. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  19. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  20. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  1. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  2. Ceramics as biomaterials for dental restoration.

    PubMed

    Höland, Wolfram; Schweiger, Marcel; Watzke, Ronny; Peschke, Arnd; Kappert, Heinrich

    2008-11-01

    Sintered ceramics and glass-ceramics are widely used as biomaterials for dental restoration, especially as dental inlays, onlays, veneers, crowns or bridges. Biomaterials were developed either to veneer metal frameworks or to produce metal-free dental restorations. Different types of glass-ceramics and ceramics are available and necessary today to fulfill customers' needs (patients, dentists and dental technicians) regarding the properties of the biomaterials and the processing of the products. All of these different types of biomaterials already cover the entire range of indications of dental restorations. Today, patients are increasingly interested in metal-free restoration. Glass-ceramics are particularly suitable for fabricating inlays, crowns and small bridges, as these materials achieve very strong, esthetic results. High-strength ceramics are preferred in situations where the material is exposed to high masticatory forces.

  3. Metal-to-ceramic attachment device

    DOEpatents

    Pavelka, Edwin A.; Grindstaff, Quirinus G.; Scheppele, Stuart E.

    1985-01-01

    A metal-to-ceramic fastening device is disclosed for securing a metal member to a ceramic member with respective confronting surfaces thereon clamped together, comprising a threaded bolt adapted to extend through a bolt hole in the metal member and into an aligned opening in the ceramic member, a rod nut threadedly receiving the bolt and adapted to span the opening in the ceramic member, and a pressure limiting member received on the bolt between the nut and the confronting surface of the metal member for limiting the movement of the nut toward the metal member when the bolt is tightened, so as to limit the pressure applied by the nut to the ceramic member to avoid damage thereto. The fastening device also prevents damage to the ceramic member due to thermal stresses. The pressure limiting member may have a shallow dish-shaped depression facing the rod nut to assist in accommodating thermal stresses.

  4. Ceramic processing: Experimental design and optimization

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.; Lauben, David N.; Madrid, Philip

    1992-01-01

    The objectives of this paper are to: (1) gain insight into the processing of ceramics and how green processing can affect the properties of ceramics; (2) investigate the technique of slip casting; (3) learn how heat treatment and temperature contribute to density, strength, and effects of under and over firing to ceramic properties; (4) experience some of the problems inherent in testing brittle materials and learn about the statistical nature of the strength of ceramics; (5) investigate orthogonal arrays as tools to examine the effect of many experimental parameters using a minimum number of experiments; (6) recognize appropriate uses for clay based ceramics; and (7) measure several different properties important to ceramic use and optimize them for a given application.

  5. Superplasticity and superplastic forming of ceramics

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1994-05-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics are reviewed. Deformation mechanisms as well as microstructural requirements for superplastic ceramics are discussed. Microstructural effects, such as grain size, dynamic grain growth, and the presence of grain-boundary liquid phases, on the superplastic properties and deformation behavior of ceramics are addressed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics, including YTZP and Al{sub 2}O{sub 3}/YTZP, is also presented. The forming behavior of these ceramics is correlated with that obtained from conventional uniaxial tests. Examples of concurrent superplastic forming and diffusion bonding (SPF/DB) of metal-ceramic hybrids are given.

  6. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  7. Third International Congress on Epilepsy, Brain and Mind: Part 1.

    PubMed

    Korczyn, Amos D; Schachter, Steven C; Amlerova, Jana; Bialer, Meir; van Emde Boas, Walter; Brázdil, Milan; Brodtkorb, Eylert; Engel, Jerome; Gotman, Jean; Komárek, Vladmir; Leppik, Ilo E; Marusic, Petr; Meletti, Stefano; Metternich, Birgitta; Moulin, Chris J A; Muhlert, Nils; Mula, Marco; Nakken, Karl O; Picard, Fabienne; Schulze-Bonhage, Andreas; Theodore, William; Wolf, Peter; Zeman, Adam; Rektor, Ivan

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks. PMID:26276417

  8. Congress ends session with a whimper, but EPA is roaring

    SciTech Connect

    Begley, R.

    1994-10-19

    The end of session for Congress (October 1994) marked a disturbing end for environmental concerns which did not see Congressional action. EPA`s agenda of worker protection, chemical monitoring and criminal enforcement will most likely resurface. Legislation that died included Superfund reform, Clean Water Act and Product liability. However, NAFTA got passed, as did a hazardous materials transportation reauthorization and risk assessment in an agricultural bill.

  9. Third International Congress on Epilepsy, Brain and Mind: Part 1.

    PubMed

    Korczyn, Amos D; Schachter, Steven C; Amlerova, Jana; Bialer, Meir; van Emde Boas, Walter; Brázdil, Milan; Brodtkorb, Eylert; Engel, Jerome; Gotman, Jean; Komárek, Vladmir; Leppik, Ilo E; Marusic, Petr; Meletti, Stefano; Metternich, Birgitta; Moulin, Chris J A; Muhlert, Nils; Mula, Marco; Nakken, Karl O; Picard, Fabienne; Schulze-Bonhage, Andreas; Theodore, William; Wolf, Peter; Zeman, Adam; Rektor, Ivan

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks.

  10. Manufacturing tailored property ceramic composites

    SciTech Connect

    Ewsuk, K.G.; Harrison, L.W.

    1994-11-14

    Composite materials are desirable for many advanced engineering applications where the properties of a single phase material cannot meet all of the service requirements; however, existing process technology has limited the development and commercialization of composites. Lack of reproducible sintering to high density is one of the major obstacles to commercializing ceramic composites. Final-stage, non-reactive liquid phase sintering (NLPS) theory provides metrics for sinterability that can be used as guidelines to design and manufacture dense ceramic-filled-glass (CFG) composites. Additionally, within the constraints defined by the NLPS theory, sum-property models can be used to predict CFG composite properties, and to design composites with properties tailored to specific applications. By integrating composite process models with composite property models, processable, application-tailored CFG composites for microelectronics packaging have been designed and fabricated.

  11. Environment-Conscious Ceramics (Ecoceramics)

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2001-01-01

    Since the dawn of human civilization, there has always been a delicate balance between expanding human frontiers and coexisting with the ecosystem. In the new millennium, it will be extremely important to develop various materials, products, and processes to sustain a healthy life in harmony with nature that allow us to minimize any harmful effects. Environment-conscious ceramics (ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). Wood is one of the best and most intricate engineering materials created by nature. Natural woods of various types are available throughout the world. In addition, wood sawdusts are generated in abundant quantities by sawmills. Environment-conscious ceramic materials, fabricated via the pyrolysis and infiltration of natural wood-derived preforms with silicon have tailorable properties with numerous potential applications.

  12. Salt splitting with ceramic membranes

    SciTech Connect

    Kurath, D.

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  13. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.

    1976-01-01

    A group of common ceramic materials (alumina, magnesium oxide, silicon nitride, and silicon carbide) were characterized through literature searches according to their physical properties. The files used were the NASA file, DDC/GRA File, Engineering Index File and standard library searches. The results of these searches are arranged by material properties including mechanical, electrical, electromagnetic, where applicable, and fracture; and the entries are arranged in chronological order by candidate. A list, by author, follows where tabular information including charts and figures of results is given along with a brief statement of the results and conclusions. In both cases, information on the independent variables along with their range is given. The results of an extensive industry survey asking for names of other candidates on which information is lacking and also what type of service, if any, is desired in keeping a current information file on general ceramic materials.

  14. Transparent ceramics for spacecraft windows

    NASA Astrophysics Data System (ADS)

    Salem, Jonathan A.

    2013-06-01

    The mechanical properties of several transparent ceramics were investigated to determine if their use might lighten next generation spacecraft windows. The measured fracture toughness and slow crack growth parameters were used as inputs to functions describing the required mass for a desired window life. Transparent magnesium aluminate (spinel, MgAlO4) and AlON exhibit superior slow crack resistance relative to fused silica, which is the historical material of choice. For spinel, slow crack growth, strength and fracture toughness are significantly influenced by the grain size, and alumina rich phases and porosity at the grain boundaries lead to intergranular fracture in coarse grain spinel. The results imply that transparent ceramics can lighten window panes from a slow crack growth perspective.

  15. Ceramics: Durability and radiation effects

    SciTech Connect

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  16. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    SciTech Connect

    Blumenthal, W. R.

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  17. Furnace for Tensile Testing of Flexible Ceramics

    NASA Technical Reports Server (NTRS)

    Smith, M.; Estrella, C. A.; Katvala, V. W.

    1986-01-01

    Ceramic cloth and thread tested quickly at temperatures up to 1,250 degree C. Tensile strengths of ceramic cloths and threads measured conveniently in new furnace at specified temperatures up to 1,250 degree C, using ordinary mechanical tester. Samples heated along part of their lengths in furnace slots. Interchangeable furnace chambers and matching heating elements sized to match size of tested ceramic material.

  18. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  19. Tantalum-Based Ceramics for Refractory Composites

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  20. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.