Science.gov

Sample records for cimtec-world ceramics congress

  1. PREFACE: 3rd International Congress on Ceramics (ICC3)

    NASA Astrophysics Data System (ADS)

    Niihara, Koichi; Ohji, Tatsuki; Sakka, Yoshio

    2011-10-01

    Early in 2005, the American Ceramic Society, the European Ceramic Society and the Ceramic Society of Japan announced a collaborative effort to provide leadership for the global ceramics community that would facilitate the use of ceramic and glass materials. That effort resulted in an agreement to organize a new biennial series of the International Congress on Ceramics, convened by the International Ceramic Federation (ICF). In order to share ideas and visions of the future for ceramic and glass materials, the 1st International Congress on Ceramics (ICC1) was held in Canada, 2006, under the organization of the American Ceramic Society, and the 2nd Congress (ICC2) was held in Italy, 2008, hosted by the European Ceramic Society. Organized by the Ceramic Society of Japan, the 3rd Congress (ICC3) was held in Osaka, Japan, 14-18 November 2010. Incorporating the 23rd Fall Meeting of the Ceramic Society of Japan and the 20th Iketani Conference, ICC3 was also co-organized by the Iketani Science and Technology Foundation, and was endorsed and supported by ICF, Asia-Oceania Ceramic Federation (AOCF) as well as many other organizations. Following the style of the previous two successful Congresses, the program was designed to advance ceramic and glass technologies to the next generation through discussion of the most recent advances and future perspectives, and to engage the worldwide ceramics community in a collective effort to expand the use of these materials in both conventional as well as new and exciting applications. ICC3 consisted of 22 voluntarily organized symposia in the most topical and essential themes of ceramic and glass materials, including Characterization, design and processing technologies Electro, magnetic and optical ceramics and devices Energy and environment related ceramics and systems Bio-ceramics and bio-technologies Ceramics for advanced industry and safety society Innovation in traditional ceramics It also contained the Plenary Session and the

  2. Virtual Congresses

    PubMed Central

    Lecueder, Silvia; Manyari, Dante E.

    2000-01-01

    A new form of scientific medical meeting has emerged in the last few years—the virtual congress. This article describes the general role of computer technologies and the Internet in the development of this new means of scientific communication, by reviewing the history of “cyber sessions” in medical education and the rationale, methods, and initial results of the First Virtual Congress of Cardiology. Instructions on how to participate in this virtual congress, either actively or as an observer, are included. Current advantages and disadvantages of virtual congresses, their impact on the scientific community at large, and future developments and possibilities in this area are discussed. PMID:10641960

  3. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  4. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  5. Structural ceramics

    SciTech Connect

    Wachtman, J.B. Jr.

    1989-01-01

    The present work discusses opportunities for application of structural ceramics in heat engines, industrial-wear parts, prosthetics and bearings; conceptual and detailed design principles for structural ceramics; the processing, consolidation, and properties of members of the SiC family of structural ceramics; and the silicon nitride and sialon families of hot-pressed, sintered, and reaction-bonded, structural ceramics. Also discussed are partially-stabilized zirconia and zirconia-toughened ceramics for structural applications, the processing methods and mechanisms of fiber-reinforcement in ceramic-matrix fiber-reinforced composites, and the tribological properties of structural ceramics.

  6. 101st Congress: The Children's Congress.

    ERIC Educational Resources Information Center

    Willer, Barbara

    1991-01-01

    Reports on legislation on child care and regulations for children's television enacted during the 101st congress. Legislation involving block grants, Title IV-A funding, and earned income tax credits was intended to bring about quality improvement and affordability. Reauthorizations included Head Start, Follow Through, Community Services Block…

  7. 101st Congress: The Children's Congress.

    ERIC Educational Resources Information Center

    Willer, Barbara

    1991-01-01

    Reports on legislation on child care and regulations for children's television enacted during the 101st congress. Legislation involving block grants, Title IV-A funding, and earned income tax credits was intended to bring about quality improvement and affordability. Reauthorizations included Head Start, Follow Through, Community Services Block…

  8. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  9. On Ceramics.

    ERIC Educational Resources Information Center

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  10. Ceramic Material.

    DTIC Science & Technology

    1990-05-02

    A ceramic material which is (1) ceramics based on monoclinic BaO.Al2O3.2SiO2; (2) ceramics based on monoclinic SrO.Al2O3.2SiO2; or (3) ceramics based on monoclinic solid solution of BaO.Al2O3.2SiO2 and SrO.Al2O3.2SiO2.

  11. Structural Ceramics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  12. Ceramic joining

    SciTech Connect

    Loehman, R.E.

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  13. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  14. Ceramic filters

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1995-12-31

    Filters were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.

  15. Congress receives President's budget

    SciTech Connect

    Rodgers, L.M.

    1991-03-15

    This article looks at President Bush's budget recommendations for fiscal year 1992 and the reactions of federal governments energy related departments to their share of the budget. The departments reviewed are US EPA, US DOE, US NRC, and the Rural Electrification Administration. The expectation of the contents of the President's National Energy Strategy and Congress' own version is discussed.

  16. Communicating with Congress

    ERIC Educational Resources Information Center

    Ochs, Mike

    2005-01-01

    At a seminar, two Congressional staff members offered good tips on how it is best to communicate with legislators. Although offered in the context of communicating with Congress, these insights are also valuable when working with state and local legislators. This article discusses the key points that were provided in the seminar. In addition to…

  17. Congress in Philadelphia.

    ERIC Educational Resources Information Center

    OAH Magazine of History, 1988

    1988-01-01

    Describes life in Philadelphia from 1790-1800 while the city was the temporary capital of the United States. Discusses the city's attempts to keep the federal government there and outlines specific issues the Continental Congress dealt with while meeting there. (BSR)

  18. Sport Heroes in Congress.

    ERIC Educational Resources Information Center

    Corbett, Doris R.

    This paper reports the findings of a study of the role of sports in the lives of U.S. Congressmen and focuses attention on six gifted athletes for whom sports provided preparation for government service. The word "hero" as used in this paper refers to former members of Congress who were admired for their athletic prowess and for their…

  19. Communicating with Congress

    ERIC Educational Resources Information Center

    Ochs, Mike

    2005-01-01

    At a seminar, two Congressional staff members offered good tips on how it is best to communicate with legislators. Although offered in the context of communicating with Congress, these insights are also valuable when working with state and local legislators. This article discusses the key points that were provided in the seminar. In addition to…

  20. Congress and the Environment.

    ERIC Educational Resources Information Center

    Cooley, Richard A., Ed.; Wandesforde-Smith, Geoffrey, Ed.

    This book consists of a series of original case studies which developed from a year-long environmental policy seminar held at the University of Washington. Each chapter surveys a recent piece of legislation to determine how Congress has handled a particular environmental problem. Focusing on issues of highway beautification, water quality control,…

  1. [Ceramic posts].

    PubMed

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  2. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  3. Districts for 104th Congress

    USGS Publications Warehouse

    ,

    1990-01-01

    This is a polygon coverage of 104th Congressional District boundaries obtained from the U.S. Bureau of the Census. The 103rd Congress was the first Congress that reflected the reapportionment and delineation of congressional districts based on the 1990 census. The next (104th) Congress reflects redelineation of districts that occurred for six states: Georgia, Louisiana, Maine, Minnesota, South Carolina, and Virginia. Congressional Districts U.S. House of Representatives Census TIGER/Line Files

  4. Communicating with Congress

    NASA Astrophysics Data System (ADS)

    “The most important thing you can do is make known to your representative and your senators your concern about the national investment in science and technology,” says presidential science advisor D. Allan Bromley, who is quoted in a new pamphlet, “Communicating with Congress,” published by the American Institute of Physics.Included are tips on writing to a member of Congress, suggesting a brief, one-page letter with three paragraphs: the first stating the letter's purpose and the writer's credentials, the second elaborating on the issue of concern, and the third asking for action. “Responding to mail is crucial to reelection, and a great deal of congressional staff time is devoted to responding to letters from constituents,” the pamphlet says.

  5. In Congress: Drilling resolution

    NASA Astrophysics Data System (ADS)

    The following is the text of the resolution on continental scientific drilling passed by the Senate and the House of Representatives and signed into law by President Reagan on October 12.“…That to express the sense of the Congress that the Continental Scientific Drilling Program is an important national scientific endeavor, benefiting the commerce of the Nation, which should be vigorously pursued by government and the private sector.

  6. Colombia: Issues for Congress

    DTIC Science & Technology

    2005-01-19

    Bogotá: Mayor Luis Eduardo Garzon will Complicate Uribe’s Agenda,” Newsweek International, January 26, 2004; Andrew Selsky, “Leftist’s Win in Bogotá...In total, 25 candidates were killed and 160 withdrew their names from the balloting.16 In the elections, Luis Eduardo Garzon, known as Lucho, from...Brief,” July 2004. 54 Ibid. 55 U.S. Department of State Report to Congress, Colombia: Cano Limon Pipeline, January 2003. rightist paramilitaries, has

  7. Congress Honors Glenn, Apollo 11 Crew

    NASA Image and Video Library

    Congress honored storied NASA astronauts John Glenn, Neil Armstrong, Michael Collins and Buzz Aldrin on Wednesday, with the Gold Medal, Congress' highest expression of national appreciation for dis...

  8. Processing ceramics

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A method of hot hydrostatic pressing of ceramics is described. A detailed description of the invention is given. The invention is explained through an example, and a figure illustrates the temperature and pressure during the hot hydrostatic pressing treatment.

  9. Structural ceramics

    NASA Technical Reports Server (NTRS)

    Craig, Douglas F.

    1992-01-01

    This presentation gives a brief history of the field of materials sciences and goes on to expound the advantages of the fastest growing area in that field, namely ceramics. Since ceramics are moving to fill the demand for lighter, stronger, more corrosion resistant materials, advancements will rely more on processing and modeling from the atomic scale up which is made possible by advanced analytical, computer, and processing techniques. All information is presented in viewgraph format.

  10. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  11. The Library of Congress Catalog.

    ERIC Educational Resources Information Center

    Henry, Marcia

    1998-01-01

    Describes the Library of Congress online catalog, which is now available on the World Wide Web. Highlights include the LOCIS (Library of Congress Information System) database; Telnet access; the Web gateway to book and name authority files; an experimental catalog with a user-friendly interface; and examples of computer screens. (LRW)

  12. Congress and the Air Force.

    DTIC Science & Technology

    1996-04-01

    know where to go to find out that information. The "Congress and the Air Force" Internet web page serves as a " one - stop shop" where Air Force personnel...Congress. The need for a " one - stop " guide is clear. The literature on this topic is not readily accessible by the Air Force member out in the field who

  13. Annual report to Congress

    SciTech Connect

    1992-03-01

    This is the eighth annual report submitted by the Office of Civilian Radioactive Waste Management (OCRWM) to Congress. It covers activities and expenditures during Fiscal Year 1991, which ended September 30, 1991. Chapter 1 of this report describes OCRWM`s mission and objectives. Chapters 2 through 8 cover the following topics: earning public trust and confidence; geological disposal; monitored retrieval storage; transportation; systems integration and regulatory compliance; international programs; and program management. Financial statements for the Nuclear Waste Fund are presented in Chapter 9.

  14. Upcoming hearing in Congress

    NASA Astrophysics Data System (ADS)

    The following hearing has been tentatively scheduled by the Senate. The date and time should be verified with the subcommittee; all congressional and committee offices may be reached by telephoning 202-224-3121. For guidelines on contacting a member of Congress, see AGU's Guide to Legislative Information and Contacts (Eos, August 28, 1984, p. 669). July 24: Hearing on the Continental Scientific Drilling and Exploration Act (S. 1026), by the Natural Resources Development and Production Subcommittee of the Senate Committee on Energy and Natural Resources. Room 366, Dirksen Senate Office Building, 10:00 A.M.

  15. Ceramic Seal.

    SciTech Connect

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  16. Ceramic Waveguides

    NASA Astrophysics Data System (ADS)

    Yeh, C.; Shimabukuro, F.; Stanton, P.; Jamnejad, V.; Imbriale, W.; Manshadi, F.

    2000-01-01

    This article is an expanded version of an original article published in Nature (April 6, 2000) entitled, "Millimeter/Submillimeter Wave Communications via Ceramic Ribbon." Finding a very low-loss waveguide in the millimeter-/submillimeter-wave range has been a problem of considerable interest for many years. Researching the fundamentals, we have found a new way to design a waveguide structure that is capable of providing an attenuation coefficient of less than 10 dB/km for the guided dominant mode. This structure is a ceramic (Coors' 998 alumina) ribbon with an aspect ratio of 10:1. This attenuation figure is more than one hundred times smaller than that for a typical ceramic or other dielectric circular-rod waveguide. It appears that the dominant transverse magnetic (TM)-like mode is capable of "gliding" along the surface of the ribbon with exceedingly low attenuation and with a power pattern having a dip in the core of the ribbon guide. This feature makes the ceramic ribbon a true "surface" waveguide structure wherein the wave is guided along, adhering to a large surface with only a small fraction of the power being carried within the core region of the structure. Here, through theoretical analysis as well as experimental measurements, the existence of this low-loss ceramic ribbon structure is proven. Practical considerations, such as an efficient launcher as well as supports for a long open ribbon structure, also have been tested experimentally. The availability of such a low-loss waveguide may now pave the way for new development in this millimeter-/submillimeter-wave range.

  17. Upcoming hearings in Congress

    NASA Astrophysics Data System (ADS)

    The following hearings and markups have been tentatively scheduled for the coming weeks by the Senate and House of Representatives. Dates and times should be verified with the committee or subcommittee holding the hearing or markup; all offices on Capitol Hill may be reached by telephoning 202-224-3121. For guidelines on contacting a member of Congress, see AGU's Guide to Legislative Information and Contacts (Eos, August 28, 1984, p. 669).October 8: A joint hearing by the Energy Research & Development Subcommittee of the Senate Energy and Natural Resources Committee and the Nuclear Regulation Subcommittee of the Senate Environment and Public Works Committee on low-level radioactive waste (S. 1517 and S. 1578). Room SD-366, Dirksen Building, 9:30 A.M.

  18. Congress initiates science study

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. House of Representatives announced in October a year-long study to review the nation's science and technology policy and the government's role in funding scientific research. The Science Policy Study, led by Rep. Vernon Ehlers (R-MI), is the first comprehensive review by Congress since 1985—a time when the Cold War still was being fought and the Internet was largely unknown.At a workshop to discuss the initiative, House Science Committee Chair James Sensenbrenner, Jr., told about 30 scientists and policy experts that the challenge is “to develop a new, sensible, coherent long-range science and technology policy, including a review of our nation's science and math education programs.”

  19. Mercury Study Report to Congress

    EPA Pesticide Factsheets

    EPA's Report to Congress on Mercury provides an assessment of the magnitude of U.S. mercury emissions by source, the health and environmental implications of those emissions, and the availability and cost of control technologies.

  20. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1989-01-01

    This paper discusses the following topics on microwave processing of ceramics: Microwave-material interactions; anticipated advantage of microwave sintering; ceramic sintering; and ceramic joining. 24 refs., 4 figs. (LSP)

  1. Digital Diabetes Congress 2017.

    PubMed

    Klonoff, David C; Kerr, David; Wong, Jenise C; Pavlovic, Yarmela; Koliwad, Suneil; Hu, Julia; Salber, Patricia; Aguilera, Adrian; Long, William; Hamilton, Giles; Chen, Kong Y; Adi, Saleh

    2017-09-01

    The purpose of developing mobile applications for diabetes is generally to: (1) provide enhanced access to timely information for patients, health care professionals, and researchers; (2) facilitate remote monitoring and diagnosis of patients, often based on information delivered by wearable devices; (3) provide decision support to assist patients in selecting treatment; or (4) deliver timely recommendations for treatment to increase adherence to prescribed therapy. There is a perception that mobile applications can provide meaningful clinical benefits, however, there is only sparse convincing evidence to support this belief at the present time. Compounding this problem is the short life span of digital software, such that if a traditional type of randomized controlled trial is conducted on a product, by the time the study has been designed, approved by an IRB, conducted, and analyzed, the product might have significantly changed to a next generation system. Because of great interest in establishing what are the potential benefits, metrics of success, and appropriate components of mobile applications for diabetes, Diabetes Technology Society and William Sansum Diabetes Center launched the Digital Diabetes Congress, March 7-8, 2017, in San Francisco. This report contains summaries of the meeting's 12 sessions. Each summary was written by the session's moderator who helped develop the session prior to the event and keep it on track during the event. This meeting report presents a summary of how 57 panelists, speakers, and moderators, who are leaders in digital health, see the current and future landscape of digital health tools applied to diabetes.

  2. Semiannual report to Congress

    SciTech Connect

    Layton, J.C.

    1991-04-01

    The issue of the Office of Inspector General (OIG) Semiannual Report to the congress covers the period from October 1, 1990, to March 31, 1991. Among the significant audits, inspections, and investigations presented in this Semiannual Report are those on environmental testing done by Department of Energy (DOE) laboratories, issues relating to the construction of the Superconducting Super Collider, control exercised by the DOE over subcontracts awarded by DOE contractors in furtherance of the Work-For-Others Program, deficiencies in DOE's oversight of the personnel security program, vendors substituting used circuit breakers in place of new ones ordered, and noncompliance with DOE documentation and reporting requirements in making and managing major system acquisitions. The Semiannual report is organized into five major sections. The first section contains brief overviews of the Department of Energy and the Office of Inspector General, as well as OIG views on current legislative matters. The second section describes the significant operational results of OIG audit, inspection, and investigative activity. The third, fourth, and fifth sections contain compilations of OIG statistical data.

  3. Technology assessment and the Congress

    NASA Technical Reports Server (NTRS)

    Carpenter, R. A.

    1972-01-01

    The legislative branch is considered as the major focus for technology assessment, and the functions of the Congressional Research Service in supplying Congressmen with scientific and technological development is outlined, and the need for Congress to control, assess, and integrate the various and conflicting elements for the benefit of both technology and society is stressed. The organization of the Science Policy Research Division is mentioned, and its duties in gathering facts for the increased understanding by the members of Congress are indicated. Technology assessment aspects associated with congressional committees and hearings, adequacy of advice, trends in engineering education, and the public interest are also discussed.

  4. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  5. Update on Congress: A Review of Current Issues Facing Congress.

    ERIC Educational Resources Information Center

    Update on Law-Related Education, 1998

    1998-01-01

    Addresses four issues facing Congress: (1) freedom from religious bias in the workplace; (2) campaign finance reform; (3) President Clinton's education program and the allocation of money for various proposals; and (4) Senator John McCain's legislative package for reducing smoking in the United States. (CMK)

  6. Back to Basics for Congress.

    ERIC Educational Resources Information Center

    Penning, Nick

    1991-01-01

    Some members of Congress retain a Norman Rockwell image of the two-parent household. To make headway with these leaders, educators must get them into schools and neighborhoods to let them see firsthand the crying needs of children and the schools providing safe harbor for a few hours. Administrators should also share their visions of education's…

  7. Outstanding Women Members of Congress.

    ERIC Educational Resources Information Center

    Washington, Shirley

    Women's participation in congressional politics began in 1917 when Jeannette Pickering Rankin became the first woman in Congress. This was an unusual historic mark because women did not have the right to vote until 1920 when the 19th Amendment was passed. The book lists 12 prominent women who made an impact in U.S. politics. Corrine Boggs, like…

  8. Congress Wraps Up 2011 Budget

    ERIC Educational Resources Information Center

    Klein, Alyson

    2011-01-01

    Education advocates are already bracing for protracted budget battles in the coming year, even as they sort the winners and losers in the bill approved by Congress late last week financing the U.S. Department of Education and the rest of the federal government through September. The hard-fought agreement followed months of wrangling between…

  9. Congress Wraps Up 2011 Budget

    ERIC Educational Resources Information Center

    Klein, Alyson

    2011-01-01

    Education advocates are already bracing for protracted budget battles in the coming year, even as they sort the winners and losers in the bill approved by Congress late last week financing the U.S. Department of Education and the rest of the federal government through September. The hard-fought agreement followed months of wrangling between…

  10. Reflections on CME Congress 2012

    ERIC Educational Resources Information Center

    Knox, Alan B.

    2013-01-01

    This commentary reflects the author's impressions of Continuing Medical Education (CME) Congress 2012, a provocative international conference on professional development and quality improvement in the health professions that took place in Toronto, Ontario, last spring. The sessions he attended and conversations he had with other attendees were…

  11. Reflections on CME Congress 2012

    ERIC Educational Resources Information Center

    Knox, Alan B.

    2013-01-01

    This commentary reflects the author's impressions of Continuing Medical Education (CME) Congress 2012, a provocative international conference on professional development and quality improvement in the health professions that took place in Toronto, Ontario, last spring. The sessions he attended and conversations he had with other attendees were…

  12. Congress Looks at the Campus.

    ERIC Educational Resources Information Center

    Brock, W. E.

    This is a report of a campus tour led by US Representative Bill Brock of Tennessee to gain a better understanding of student unrest. The 22 participating Congressment were divided into 6 regional groups which together visited over 50 universities of all types and sizes. Their report discusses a series of issues named by students as major sources…

  13. polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Ma, Ji; Cui, Qi; Wang, Wenzhang; Zhang, Hui; Chen, Qingming

    2014-12-01

    La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol-gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.

  14. PREFACE: Symposium 13: Ceramics for Medicine, Biotechnology and Biomimetics

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Chikara

    2011-10-01

    Preface to Symposium 13 (Ceramics for Medicine, Biotechnology and Biomimetics) of the International Congress on Ceramics III, 14-18 November 2010, Osaka, Japan Ceramic materials are now widely used in biomedical fields, such as applications of artificial bones, joints and teeth. The high potential of ceramics to exhibit biological functionality is expected to produce novel materials supporting biotechnology. These applications are governed by the interactions of materials and biological molecules. So far, 'bioceramics' is a type of biomaterial used for repairing damaged tissues. The orthopaedic application of bioceramics has advanced rapidly since the invention of Bioglass® that was found to encourage direct bonding with living bone. Hydroxyapatite and calcium phosphate ceramics are now popular bioceramics for use in artificial bones. While the bone-bonding behavior of materials was understood phenomenologically, very little has been known about the mechanism of either hard or soft tissue attachment or tissue growth on ceramic-based materials, such as glasses, glass-ceramics, ceramic composites and organic-inorganic hybrids. This symposium discussed the scientific understanding of the interface between biomedical materials and soft/hard tissues, and the design and construction of nanoscopic interfaces. It also involved establishment of biomimetic structures, characterization of natural life-related hard and soft tissues, and their formation mechanisms for a wide range of applications in biotechnology through 45 oral presentations including 5 invited lectures and 45 posters. I wish to express my sincere appreciation to the organizers of this symposium in the ICC3 conference. I am also grateful to the invited speakers, all the participants and organizing committee of the ICC3. It is my great pleasure that this proceedings could be published as the fruit of this symposium's achievement, which includes the contributions in all aspect of scientific understanding and

  15. Ceramic inspection system

    DOEpatents

    Werve, Michael E.

    2006-05-16

    A system for inspecting a ceramic component. The ceramic component is positioned on a first rotary table. The first rotary table rotates the ceramic component. Light is directed toward the first rotary table and the rotating ceramic component. A detector is located on a second rotary table. The second rotary table is operably connected to the first rotary table and the rotating ceramic component. The second rotary table is used to move the detector at an angle to the first rotary table and the rotating ceramic component.

  16. Dental ceramics: An update

    PubMed Central

    Shenoy, Arvind; Shenoy, Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed. PMID:21217946

  17. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  18. Joining Ceramics By Brazing

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Sudsina, Michael W.

    1992-01-01

    Certain ceramic materials tightly bond together by brazing with suitable alloys. Enables fabrication of parts of wide variety of shapes from smaller initial pieces of ceramics produced directly in only limited variety of shapes.

  19. FOREWORD: Focus on innovation in ceramics research in East Asia Focus on innovation in ceramics research in East Asia

    NASA Astrophysics Data System (ADS)

    Kato, Akio; Hishita, Shunichi; Osada, Minoru; Haneda, Hajime

    2010-10-01

    Ceramics, as broadly defined, include all materials other than organic substances and metals, either crystalline or amorphous. They have been used by humans since early history and have contributed considerably to improving the quality of our life. In most cases, however, high-temperature treatment is necessary to prepare ceramics. This burdens the environment and there is therefore a great need for new ceramics processing methods. Recent technologically advanced ceramics are often composed of nanocrystallites, which have great potential for innovation in terms of exploring practical applications of nanomaterials and, consequently, reducing the environmental load. The ceramics industry had long flourished in Asia, particularly in East Asia, and even today, this region is leading the development of related materials. In line with these traditions, Japanese and Korean ceramics societies have been co-sponsoring seminars on ceramics since the 1980s. Having become more international in scope and context, a series of these seminars is now known as the International Japan-Korea Seminar on Ceramics. This focus issue contains eight key articles presented at the 26th International Japan-Korea Seminar on Ceramics held on 24-26 November 2010 at the Tsukuba International Congress Center. In particular, Fabbri et al review electrode materials for protonic solid-oxide fuel cells, and Kamiya et al outline the present situation and future prospects for transparent transistors, particularly those based on amorphous In-Ga-Zn-O films. Eitel et al discuss the progress in engineering high-strain lead-free piezoelectric ceramics. Kim and Kumar review a simple processing method for producing porous ceramics using polysiloxane precursors, Kamiya and Iijima focus on surface modification and characterization of nanomaterials, and Wan et al briefly review the strategy of reducing lattice thermal conductivity of thermoelectric materials and propose new materials for thermoelectric devices

  20. Ceramic electrolyte coating methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2004-10-12

    Processes for preparing aqueous suspensions of a nanoscale ceramic electrolyte material such as yttrium-stabilized zirconia. The invention also includes a process for preparing an aqueous coating slurry of a nanoscale ceramic electrolyte material. The invention further includes a process for depositing an aqueous spray coating slurry including a ceramic electrolyte material on pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  1. Spyware: Background and Policy Issues for Congress

    DTIC Science & Technology

    2010-09-08

    called “ adware ”). Spyware may redirect a Web browser to a site different from what the user intended to visit, or change the user’s home page. A type of...another party, such as the software manufacturer or a marketing company. Another oft-cited example of spyware is “ adware ,” which may cause...CRS Report for Congress Prepared for Members and Committees of Congress Spyware : Background and Policy Issues for Congress Patricia

  2. The 100th FDI World Dental Congress.

    PubMed

    Yeung, C A

    2013-05-01

    The 100th FDI World Dental Congress was held in Hong Kong from 29 August to 1 September 2012. This article gives a report on the congress, which saw the first FDI World Oral Health Recognition Award being given to Professor Zhu Chen, the Minister of Health in China. During the congress, both the FDI Vision 2020 project and the Global Caries Initiative website were launched.

  3. Annual report to Congress, 1993

    SciTech Connect

    Not Available

    1994-03-31

    Created by Congress in 1977 as an independent entity within the Department of Energy, the Energy Information Administration (EIA) is the principal and authoritative source of comprehensive energy data for the Congress, the Federal Government, the States, and the public. With the mandate to ``collect, assemble, evaluate, analyze, and disseminate data and information,`` EIA`s mission has been defined to: maintain a comprehensive data and information program relevant to energy resources and reserves, energy production, energy demand, energy technologies, and related financial and statistical information relevant to the adequacy of energy resources to meet the Nation`s demands in the near and longer term future. Develop and maintain analytical tool and collection and processing systems; provide analyses that are accurate, timely, and objective; and provide information dissemination services. This annual report summarizes EIA`s activities and accomplishments in 1993.

  4. Annual report to Congress 1997

    SciTech Connect

    1998-07-01

    Section 205 of the Department of Energy Organization Act of 1977 established the Energy Information Administration (EIA). One of the mandates in this legislation is that EIA prepare for Congress an annual report summarizing both activities and information collected and published. EIA`s major 1997 accomplishments are profiled in the body of this edition of the Annual Report to Congress. Appendix A contains abstracts of significant reports issued by EIA in 1997, and a chart of all titles and a list of all feature articles published during the year. Appendix B contains graphs of selected performance measures. Appendix C lists contact information for EIA subject matter specialists. Appendix D lists the major laws which form the basis of EIA`s legislative mandate.

  5. Annual report to Congress, 1998

    SciTech Connect

    1999-04-01

    Section 205 of the Department of Energy Organization Act of 1977 established the Energy Information Administration (EIA). One of the mandates in this legislation is that EIA prepare for Congress an annual report summarizing both activities and information collected and published. EIA`s major 1998 accomplishments are profiled in the body of this edition of the Annual Report to Congress. Appendix A contains abstracts of significant reports issued by EIA in 1998 and a chart of all titles and a list of all feature articles published during the year. Appendix B contains graphs of selected performance measures. Appendix C lists contact information for EIA subject matter specialists. Appendix D lists the major laws which form the basis of EIA`s legislative mandate.

  6. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  7. Brittleness of ceramics

    NASA Technical Reports Server (NTRS)

    Kroupa, F.

    1984-01-01

    The main characteristics of mechanical properties of ceramics are summarized and the causes of their brittleness, especially the limited mobility of dislocations, are discussed. The possibility of improving the fracture toughness of ceramics and the basic research needs relating to technology, structure and mechanical properties of ceramics are stressed in connection with their possible applications in engineering at high temperature.

  8. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  9. Tribological Properties Of Ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1990-01-01

    Report reviews adhesion, friction, and micromechanical properties of ceramics - properties increasingly important as more ceramic materials used in bearings, seals, and gears in advanced engines and in cutting tools and extrusion dies. Report considers effects of contaminating surface films, temperature, and chemical interactions. Examines ceramics, in both monolithic and coating form, in contact with themselves, with other harder materials, and with metals.

  10. Annual report to Congress 1992

    SciTech Connect

    Not Available

    1993-03-25

    By Congress in 1977 as an independent entity within the Department of Energy, the Energy Information Administration (EIA) is the principal and authoritative source of comprehensive energy data for the Congress, the Federal Government, the States, and the public. During 1992, EIA provided information and analysis in response to many energy-related issues and events, including Hurricane Andrew. In addition, EIA made substantial strides in a number of critical special projects, most notably development of the National Energy Modeling System, preparation of National Petroleum Council studies on petroleum refining and natural gas, and establishment of oxygenate data program mandated by the Clean Air Act Amendments of 1990. EIA also took advantage of new opportunities for international consultations and energy information exchanges. This report to Congress contains energy-related information on the following: petroleum; natural gas; integrated analysis and forecasting; electricity; coal; energy markets and end use, nuclear, statistical standards, and information services. The appendices include: data collection surveys of the Energy Information Administration; Analytic models of the Energy Information Administration; EIA publication -- EIA products available on diskette; and Major laws affecting EIA, 1974-1992.

  11. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  12. Ceramic gas turbine shroud

    SciTech Connect

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  13. Mechanisms of Chromosome Congression during Mitosis.

    PubMed

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-02-17

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by

  14. All-ceramic crowns.

    PubMed

    Lehner, C R; Schärer, P

    1992-06-01

    Despite the good appearance and biocompatibility of dental porcelains, failures are still of considerable concern because of some limited properties common to all-ceramic crown systems. As in the years before, pertinent scientific articles published between November 1990 and December 1991 focused on strengthening mechanisms and compared fracture toughness for different ceramic systems by using various test methods. Some evaluated the clinical implications thereon for seating and loading crowns and measured wear against different ceramic surface conditions. Recently introduced with pleasing aesthetic qualities, IPS-Empress (Ivoclar, Schaan, Liechtenstein), a new European leucite-reinforced glass-ceramic, has finally drawn attention in some journals and has been reviewed with promising in vitro test results. Using a simple press-molding technique, well-fitting crowns, inlays, and veneers can be fabricated without an additional ceramming procedure. Again, only long-term clinical trials will validate achievements compared with other all-ceramic systems and with well-established metal ceramics.

  15. The Role of Congress in Indian Affairs.

    ERIC Educational Resources Information Center

    Benham, William J.

    An examiniation of past and recent federal legislation affecting American Indians reveals the important role of Congress in developing policy for Indian affairs. The role of Congress inititally seemed directed toward providing a legal means of taking Indian land and other resources for the benefit of non-Indians. Subsequent policy has varied…

  16. Teaching Parliamentary Procedure Through the Student Congress.

    ERIC Educational Resources Information Center

    Metcalf, Marguerite Pearce

    An effective means of teaching parliamentary procedure to high school students is the Student Congress. Advance planning and imagination are necessary to the success of the Congress. Included in the advance planning are discussions of the types of legislation permitted and the governing body to which each resolution is directed. The point system…

  17. The Role of Congress in Indian Affairs.

    ERIC Educational Resources Information Center

    Benham, William J.

    An examiniation of past and recent federal legislation affecting American Indians reveals the important role of Congress in developing policy for Indian affairs. The role of Congress inititally seemed directed toward providing a legal means of taking Indian land and other resources for the benefit of non-Indians. Subsequent policy has varied…

  18. Clean Water: Report to Congress - 1974.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This publication, an annual report to Congress, covers measures taken to implement the objectives of the Federal Water Pollution Control Act. The report was developed by the Environmental Protection Agency (EPA) and covers calendar year 1973. A letter introducing and highlighting the report from the EPA Director to the Congress is given at the…

  19. The Library of Congress Information Bulletin, 2000.

    ERIC Educational Resources Information Center

    Lamolinara, Guy, Ed.

    2000-01-01

    These 12 issues, representing one calendar year (2000) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, World Wide Web sites and digital collections, new…

  20. The Library of Congress Information Bulletin, 1999.

    ERIC Educational Resources Information Center

    Library of Congress Information Bulletin, 1999

    1999-01-01

    These 12 issues, representing 1 calendar year (1999) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, Web sites and digital collections, new publications,…

  1. The Library of Congress Information Bulletin, 2002.

    ERIC Educational Resources Information Center

    Lamolinara, Guy, Ed.; Dalrymple, Helen, Ed.

    2002-01-01

    These 10 issues, representing one calendar year, including two double issues (2002) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, World Wide Web sites and…

  2. The 11th International Congress on Acoustics

    NASA Astrophysics Data System (ADS)

    McKinney, C.; Blackstock, D.

    1983-09-01

    This report provides an overview of trends in acoustics research, based on the subject matter of the 11th International Congress on Acoustics. The report includes an appendix, written by David Blackstock (Applied Research Laboratories, The University of Texas). The appendix deals with nonlinear acoustics at the congress.

  3. The Library of Congress Information Bulletin, 2001.

    ERIC Educational Resources Information Center

    Lamolinara, Guy, Ed.

    2001-01-01

    These 12 issues, representing one calendar year (2001) of "The Library of Congress Information Bulletin," contain information on Library of Congress new collections and program developments, lectures and readings, financial support and materials donations, budget, honors and awards, World Wide Web sites and digital collections, new…

  4. International Congress on Glass XII

    SciTech Connect

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  5. Reinventing ceramic production

    SciTech Connect

    Krause, C.

    1993-01-01

    Ceramic materials can take the heat, but repeated stresses will do them in because they are inherently brittle. When subjected to one too many stresses, ceramics will crack or even shatter, like Humpty Dumpty falling off the wall. The problem lies in tiny flaws that undermine the strength of ceramics. Voids or particles of the wrong size or shape that don't quite fit together can be the Achilles' heel of a ceramic, setting it up of eventual failure. The solution lies in the close packing of the particles that make up the material. Controlling the sizes and shapes of the particles that become the building blocks of ceramics is an essential first step toward developing highly reliable ceramics for energy applications. Three ORNL engineers have developed a device that may help industry reinvent ceramic production. Called the electric dispersion reactor, the device produces ultrafine precursor ceramic particles of desired shapes and distribution of sizes. Such control could eliminate the tiny flaws that eventually grow into cracks in normally brittle ceramics, especially those containing multiple components. In addition, such control could eliminate the problem of misaligned grains, which limits the amount of electrical current that bulk superconducting ceramics can carry. Thus, this approach could improve the electrical current-carrying capacity of high-temperature superconducting materials.

  6. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  7. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  8. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  9. Congress asks for drilling plans

    NASA Astrophysics Data System (ADS)

    Andrews, Robert S.

    The Interagency Coordinating Group on Continental Scientific Drilling develops policy to guide long-term drilling plans for the Department of Energy, National Science Foundation, and U.S. Geological Survey. ICG has already cooperated on several drilling projects, such as those at Salton Sea, Long Valley, and Cajon Pass in California, and Valles caldera in New Mexico.Congress will soon pass the Continental Scientific Drilling and Exploration Act, S. 52 and H.R. 2737. The bill requires ICG to prepare a report that outlines a national program of scientific drilling.

  10. Bioethics: US Congress tries again.

    PubMed

    Budiansky, Stephen

    1985-07-04

    Bills have been introduced in both houses of Congress to create a nonregulatory bioethics advisory panel to operate as an agency of the legislative branch. The panel, consisting of researchers, physicians, ethicists, and laypeople, would review ethical problems and evolve policy. Two areas of present concern are human gene therapy guidelines now under consideration by a subcommittee of the National Institutes of Health's Recombinant DNA Advisory Committee, and the essentially total moratorium on fetal research resulting from the failure of the Secretary of Health and Human Services to appoint an advisory board to consider such research.

  11. Mechanisms of Chromosome Congression during Mitosis

    PubMed Central

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule

  12. Ceramic tamper-revealing seals

    DOEpatents

    Kupperman, David S.; Raptis, Apostolos C.; Sheen, Shuh-Haw

    1992-01-01

    A flexible metal or ceramic cable with composite ceramic ends, or a u-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting.

  13. Analyses of fine paste ceramics

    SciTech Connect

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  14. Ceramic laser materials

    NASA Astrophysics Data System (ADS)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  15. NDE of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex A.; Klima, Stanley J.

    1993-01-01

    Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.

  16. NDE of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1991-01-01

    Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.

  17. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Method of sintering ceramic materials

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  19. Method of sintering ceramic materials

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  20. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  1. Measuring Fracture Times Of Ceramics

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Bister, Leo; Bickler, Donald G.

    1989-01-01

    Electrical measurements complement or replace fast cinematography. Electronic system measures microsecond time intervals between impacts of projectiles on ceramic tiles and fracture tiles. Used in research on ceramics and ceramic-based composite materials such as armor. Hardness and low density of ceramics enable them to disintegrate projectiles more efficiently than metals. Projectile approaches ceramic tile specimen. Penetrating foil squares of triggering device activate display and recording instruments. As ceramic and resistive film break oscilloscope plots increase in electrical resistance of film.

  2. Alumina-based ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.

  3. Second International Fascia Research Congress

    PubMed Central

    Findley, Thomas W.

    2009-01-01

    Findings from papers published by key speakers at the 2007 Fascia Research Congress are presented in preparation for the second congress, October 2009, in Amsterdam. The role of fascia is demonstrated in new scientific findings in mechanotransduction between the cytoskeletal structure and the extracellular matrix, and its implications for health and disease.the presence of contractile cells (myofibroblasts) within the fascial fabric. Clinicians are interested in their role in creating contractile tonus in the fascial fabric—how myofibroblasts form, how they are activated, and their influence on passive muscle tonus.the biomechanical properties of fascial tissues: creep, relaxation, hysteresis, effect of sustained spinal flexion on lumbar tissues, strain-induced hydration changes, myofascial manipulation, and fascial viscoelastic deformation. These properties underlie the response of these tissues to therapy.how fascia is innervated, and how proprioception and pain are created, detected, and modulated by the spinal cord and the rest of the nervous system.forms of mechanical signaling within the fascial matrix, such as the tugging in the collagen matrix created by twisting acupuncture needles.new techniques for measurement of fascial motion in living tissue. PMID:21589727

  4. European Society of Cardiology Congress 2013 highlights.

    PubMed

    Fox, Keith A A

    2014-01-01

    The European Society of Cardiology (ESC) Congress in 2013 met in Amsterdam (The Netherlands) as an innovative and interactive congress involving more than 30,000 participants. There were 10,490 abstract submissions and a total of 227 hotline, basic science hotline and trial update submissions. Participants were involved from more than 150 countries. To make the congress manageable for participants, related topics were grouped together in ‘villages’ and a smart electronic application allowed the participants to guide their way through the congress and choose the sessions of interest. The innovative new program was initiated by the ESC Congress Programme Committee and the Congress Chair (Keith AA Fox, Chair 2012–2014) has responsibility for the design and delivery of the scientific program. The spotlight of the congress was ‘the heart interacting with systemic organs’, chosen because of the importance of cardiovascular disease conditions crossing conventional boundaries. In all 572 abstracts, the work involved an interaction between the heart and another organ, such as the brain, lungs, kidney, vasculature or inflammation system. In addition, innovative new approaches linked basic science and clinical science and the new ‘hubs of the congress’ allowed excellent interaction and exchange of ideas.

  5. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  6. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  7. Dry pressing technical ceramics

    SciTech Connect

    Lewis, W.A. Jr.

    1996-04-01

    Dry pressing of technical ceramics is a fundamental method of producing high-quality ceramic components. The goals of dry pressing technical ceramics are uniform compact size and green density, consistent part-to-part green density and defect-free compact. Dry pressing is the axial compaction of loosely granulated dry ceramic powders (< 3% free moisture) within a die/punch arrangement. The powder, under pressure, conforms to the specific shape of the punch faces and die. Powder compaction occurs within a rigid-walled die and usually between a top and bottom punch. Press configurations include anvil, rotary, multiple-punch and multiple-action.

  8. Thermoplastic Extrusion for Ceramic Bodies

    NASA Astrophysics Data System (ADS)

    Clemens, Frank

    Originally for the extrusion of ceramic bricks and tiles, clay and water were used to endow ceramic particle mixtures with sufficient plastic behaviour to permit practical shaping of the ceramic bodies. High-performance ceramics, however, often require the elimination of clay from extrusion formulations because the chemistry of the clay is incompatible with that of the desired ceramic materials. Therefore organic materials are frequently used in ceramic extrusion to provide plastic flow. Not only plastic behaviour is important for the extrusion of ceramic bodies. There are many other characteristics that can be tailored by the suitable addition of organics in a ceramic extrusion paste, or feedstock.

  9. Congress and the Army Bridging the Gap.

    DTIC Science & Technology

    1983-06-01

    f -.U.Th ~ -, * , , - r rr,-.c ~..-. *~r’’- -’ ~ U U .* .-- - * 1U" : ..,.".U"V"~9 3 homeland, deter attack, fight and win if deterrence... leadership must be prepared - . - -t .1~.~ 1~~ - .-v..- - - - - 2.... 5 CHAPTER II CONGRESS AND THE ARMY-HISTORICAL RELATIONS Congress and the Army have been... leadership to work at ways of increasing our credibility and minimizing the skepticism of Congress. Historically speaking, the Army should have the edge

  10. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  11. Method of making a modified ceramic-ceramic composite

    DOEpatents

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-02-01

    This is the fifth quarterly report on a new study to develop a ceramic membrane/metal joint. Results of wetting experiments on commercially available Nickel based brazing alloys on perovskite surfaces are described. Additionally, experimental and numerical investigations on the strength of concentric ceramic/metal joints are presented.

  13. Industrial Ceramics: Secondary Schools.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  14. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1990-01-01

    The NASA Lewis Research Center's Ceramic Technology Program is focused on aerospace propulsion and power needs. Thus, emphasis is on high-temperature ceramics and their structural and environmental durability and reliability. The program is interdisciplinary in nature with major emphasis on materials and processing, but with significant efforts in design methodology and life prediction.

  15. Endocrine Disruptor Screening Program Reports to Congress

    EPA Pesticide Factsheets

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  16. EPA Reports to Congress on Technology Transfer

    EPA Pesticide Factsheets

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  17. 2004 NPDES CSO Report to Congress

    EPA Pesticide Factsheets

    This report, delivered to Congress on Thursday, August 26, 2004, presents a comprehensive characterization of CSOs and SSOs, including the extent of environmental and human health impacts caused by CSOs and SSOs.

  18. Energy Crisis Spurs Congress Into Action

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses legislation recently passed by Congress in response to the energy crisis, and the Nixon Administration's proposal for creating a new Energy Research and Development Administration (ERDA) and a Nuclear Energy Commission (NEC). (JR)

  19. 2002 NPDES CSO Report to Congress

    EPA Pesticide Factsheets

    This report, delivered to Congress on January 29, 2002, identifies progress made in implementing and enforcing combined sewer overflow (CSO) controls prior to, and because of, the 1994 CSO control policy.

  20. World Energy Council 16. Congress review

    SciTech Connect

    Hammons, T.J.; Kim, C.S.; Jennings, J.S.; Fresco, P.; Nasu, S.; Baker, J.

    1996-03-01

    The sixteenth World Energy Council (WEC) Congress was hosted in Tokyo, Japan, October 8--13, 1995, with a theme of ``Energy for Our Common World: What will the future ask of us?`` Participants in the congress examined several fundamental issues of these times: hot to provide the energy services for an increasing world population, especially in developing countries; hot to meet local, regional, and global environmental and social concerns; how to adapt to changing markets and institutions; how to respond to diversified transportation and other end use patterns reflecting human behavior; how to deal with the emerging interdependence of energy markets; and what action to be pursued individually and collectively. This article summarizes the highlights of the congress, and includes an overview of the World Energy Council (WEC), a synopsis of the events, summaries of the technical program division addresses, and a summary of the congress conclusions.

  1. ESMO World Congress on Gastrointestinal Cancer.

    PubMed

    Alexander, Walter

    2017-09-01

    This year's annual ESMO World Congress on Gastrointestinal Cancer paid particular attention to the influence of primary tumor sidedness in colorectal cancer as it affects prognosis and treatment outcomes to meet the growing interest in this theory.

  2. Congress Struggles through Two Science Policy Hearings.

    ERIC Educational Resources Information Center

    Mervis, Jeffrey

    1991-01-01

    A summary of the Congress's science committee meetings that decides the budget and sets the science policy for the United States is provided. The supercollider and global warming are two of the issues discussed at the hearings. (KR)

  3. Energy Crisis Spurs Congress Into Action

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses legislation recently passed by Congress in response to the energy crisis, and the Nixon Administration's proposal for creating a new Energy Research and Development Administration (ERDA) and a Nuclear Energy Commission (NEC). (JR)

  4. Ceramic heat exchanger

    DOEpatents

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  5. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  6. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  7. Ceramic heat exchanger

    DOEpatents

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  8. Working at Congress : a Sandian's experience.

    SciTech Connect

    Allen, Matthew

    2009-03-01

    During the 110th Congress (calendar years 2007 and 2008), Matthew Allen, a Sandian nuclear scientist, served as a Congressional Fellow on the Committee on Homeland Security in the House of Representatives. This report is an informative account of the role staffers play in assisting the members of Congress in their oversight and legislative duties. It is also a personal account of Matthew Allen's experience as a committee staffer in the House of Representatives.

  9. Ceramics for engines

    NASA Technical Reports Server (NTRS)

    Kiser, James D.; Levine, Stanley R.; Dicarlo, James A.

    1987-01-01

    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics.

  10. Ceramic-silicide composites

    SciTech Connect

    Petrovic, J.J.

    1998-12-01

    The area of ceramic-silicide composites represents a merging of structural ceramics and structural silicides. Such ceramic-silicide composites can possess the desirable characteristics of both classes of compounds. Important structural ceramics are materials such as Si{sub 3}N{sub 4}, SiC, Al{sub 2}O{sub 3}, and ZrO{sub 2}, which possess covalent, ionic, or mixed covalent-ionic atomic bonding. An important structural silicide is MoSi{sub 2}, which possesses mixed covalent-metallic bonding. The arena of ceramic-silicide composites encompasses both composites where the structural silicide is the matrix and the structural ceramic is the reinforcement, and composites where the structural ceramic is the matrix and the structural silicide is the reinforcement. In the former area, MoSi{sub 2}-SiC, MoSi{sub 2}-ZrO{sub 2}, and MoSi{sub 2}-Al{sub 2}O{sub 3} composites are discussed. In the latter area, Si{sub 3}N{sub 4}-MoSi{sub 2} composites are described.

  11. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  12. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  13. The APS ceramic chambers

    SciTech Connect

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  14. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  15. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  16. Fibrous ceramic insulation

    SciTech Connect

    Goldstein, H.E.

    1982-11-01

    Some of the reusable heat shielding materials used to protect the Space Shuttles, their manufacturing processes, properties, and applications are discussed. Emphasis is upon ceramic materials. Space Shuttle Orbiter tiles are discussed.

  17. Experiments with ceramic coatings

    NASA Technical Reports Server (NTRS)

    Lynn, E. K.; Rollins, C. T.

    1968-01-01

    Report describes the procedures and techniques used in the application of a ceramic coating and the evaluation of test parts through observation of the cracks that occur in this coating due to loading.

  18. Ceramic fiber filter technology

    SciTech Connect

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  19. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  20. Ceramic Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  1. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  2. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  4. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  5. Making Ceramic Cameras

    ERIC Educational Resources Information Center

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  6. Super Thin Ceramic Coatings

    NASA Image and Video Library

    New technology being developed at NASA's Glenn Research Center creates super thin ceramic coatings on engine components. The Plasma Spray – Physical Vapor Deposition (PS-PVD) rig uses a powerful ...

  7. Annual report to Congress 1996

    SciTech Connect

    1997-07-01

    Since its creation in 1977, the Energy Information Administration (EIA) has provided high-quality energy information products and services to a broad spectrum of customers across the Nation and around the world, including Congress, representatives of the print and broadcast news media, businesses, officials of Federal, State, and local agencies, foreign governments and international organizations, students, librarians, researchers, lawyers and private citizens. Our motto: {open_quotes}On-line or off the shelf, EIA is the first place to go for the last word in energy information.{close_quotes} Established as an independent statistical and analytical agency within the U.S. Department of Energy (DOE), EIA was charged by its enabling legislation with: (1) Maintaining a comprehensive data and information program on energy resources and reserves, energy production, energy demand, energy technologies, and related financial and statistical information relevant to the adequacy of energy resources to meet the Nation`s demands in the near and longer term future. (2) Developing and maintaining analytical tools and collection and processing systems; providing analyses that are accurate, timely, and objective; and providing information dissemination services. This report summarizes the reports and contact information issued by the EIA.

  8. Revised LHC deal quiets congress

    SciTech Connect

    Lawler, A.

    1997-05-23

    The roughest part of the ride may be over for U.S. physicists who want to participate in the Large Hadron Collider (LHC), the $5 billion accelerator planned for CERN in Geneva. They have found themselves on a political roller coaster for the past few months. This week, U.S. and European negotiators were putting the final touches on a revamped agreement that should pave the way for the United States to help pay for construction of the accelerator and its two main detectors, and guarantee U.S. scientists a role in research on the machine. The trouble began in March, when Representative Joe Barton (R-TX) declared war on a proposed $530 million U.S. contribution to the new facility, slated for completion in 2005. Barton and many other members of Congress were still smarting from what they said was a lack of European support for the canceled Superconducting Super Collider that was being built in Barton`s backyard. Representative James Sensenbrenner (R-WI), who chairs the House Science Committee, led the charge to alter a draft agreement initialed this winter by Department of Energy (DOE) and CERN officials that spelled out the details of U.S. participation. After hurried negotiations, both sides have sharpened the agreement to address the lawmakers` concerns. The new deal, says Energy Secretary Federico Pena, {open_quotes}has made that project even better.{close_quotes}

  9. The NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Reiff, Patricia H.

    I would like to make the members of AGU aware of the recent happenings in Congress with regard to the fiscal year (FY) 1986 budget for the National Aeronautics and Space Administration (NASA). NASA was scheduled for modest increases from FY 1985 levels in the President's budget (Eos, February 19, 1985, p. 73), which was approved by the House Science and Technology Committee. However, when the authorization bill (H.R. 1714) “hit the floor” on April 3, amendments were offered and overwhelmingly passed to freeze funding at FY 1985 levels. (A similar fate met the National Science Foundation bill, H.R. 1210, on April 17.) The process is under way in the Senate, and the Subcommittee on Science, Technology, and Space, which is the authorizing committee (under the chairmanship of Slade Gorton), plans to mark up its NASA bill in the next few days; the full committee—the Senate Commerce, Science, and Transportation Committee—will then offer it to the floor.

  10. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  11. Ceramic Weld Backing Evaluation

    DTIC Science & Technology

    1980-06-01

    deposition rate welding processes such as GTAW and GMAW short arc, to some degree, no others will consistently produce full penetration one side welds ...OFFSHORE POWER SYSTEMS 8000 Arlington Expressway Jacksonville, Florida 32211 CERAMIC WELD BACKING EVALUATION FINAL REFORT JUNE 1980 Project Manager...Ceramic Weld Backing Evaluation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  12. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, Mark S.; Shlomo, Golan; Anderson, Marc A.

    1994-01-01

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  13. Degradability of dental ceramics.

    PubMed

    Anusavice, K J

    1992-09-01

    The degradation of dental ceramics generally occurs because of mechanical forces or chemical attack. The possible physiological side-effects of ceramics are their tendency to abrade opposing dental structures, the emission of radiation from radioactive components, the roughening of their surfaces by chemical attack with a corresponding increase in plaque retention, and the release of potentially unsafe concentrations of elements as a result of abrasion and dissolution. The chemical durability of dental ceramics is excellent. With the exception of the excessive exposure to acidulated fluoride, ammonium bifluoride, or hydrofluoric acid, there is little risk of surface degradation of virtually all current dental ceramics. Extensive exposure to acidulated fluoride is a possible problem for individuals with head and/or neck cancer who have received large doses of radiation. Such fluoride treatment is necessary to minimize tooth demineralization when saliva flow rates have been reduced because of radiation exposure to salivary glands. Porcelain surface stains are also lost occasionally when abraded by prophylaxis pastes and/or acidulated fluoride. In each case, the solutes are usually not ingested. Further research that uses standardized testing procedures is needed on the chemical durability of dental ceramics. Accelerated durability tests are desirable to minimize the time required for such measurements. The influence of chemical durability on surface roughness and the subsequent effect of roughness on wear of the ceramic restorations as well as of opposing structures should also be explored on a standardized basis.

  14. 31 CFR 0.212 - Influencing legislation or petitioning Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... petitioning Congress. (a) Employees shall not use Government time, money, or property to petition a Member of... Congress or furnish information to either House of Congress when not using Government time, money or... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Influencing legislation or...

  15. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Recommendations to Congress. 700.304 Section 700... The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the Secretary of Defense, the Secretary of the Navy may make such recommendations to Congress relating to...

  16. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Recommendations to Congress. 700.304 Section 700... The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the Secretary of Defense, the Secretary of the Navy may make such recommendations to Congress relating to...

  17. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Recommendations to Congress. 700.304 Section 700... The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the Secretary of Defense, the Secretary of the Navy may make such recommendations to Congress relating to...

  18. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Recommendations to Congress. 700.304 Section 700... The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the Secretary of Defense, the Secretary of the Navy may make such recommendations to Congress relating to...

  19. 32 CFR 700.304 - Recommendations to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Recommendations to Congress. 700.304 Section 700... The Secretary of the Navy § 700.304 Recommendations to Congress. After first informing the Secretary of Defense, the Secretary of the Navy may make such recommendations to Congress relating to...

  20. Ceramic electrolyte coating and methods

    DOEpatents

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  1. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  2. Clinical application of bio ceramics

    SciTech Connect

    Anu, Sharma Gayatri, Sharma

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  3. Alumina-based ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-07-23

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.

  4. Fifth Congress of Industrial Cell Technology 2014.

    PubMed

    Rasch, Anja

    2015-01-01

    The highly specialized and informative Fifth Congress of Industrial Cell Technology took place in Luebeck, close to Hamburg, on 11-12 September 2014. It was organized by the Fraunhofer Institution for Marine Biotechnology (EMB), Luebeck and supported by the cluster agency Life Science Nord Management GmbH as well as the Luebeck Chamber of Industry and Commerce. The central aim of the congress was to promote the name-giving platform applications of industrial cell technologies, in other words, the development of complex cell culture systems, analyzing technologies, innovative instruments and materials, etc. This year's sessions were: smart cell culture, bioreactor systems and cell goods including 3D bioprinting. This article highlights selected presentations of the congress.

  5. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    PubMed

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  6. Library of Congress Model, Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    Anaglyph glasses are required to see this view in three-dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the

  7. Library of Congress Model, Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    Anaglyph glasses are required to see this view in three-dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the

  8. Library of Congress Model, Anaglyph

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets.

    Anaglyph glasses are required to see this view in three-dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest.

    The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the

  9. Fundamental tribological properties of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    When a ceramic is brought into contact with itself, another ceramic, or a metal, strong bond forces can develop between the materials. Adhesion between a ceramic and itself or another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to the interface resulting from solid state contact. Elastic, plastic, and fracture behavior of ceramics in solid-state contact are discussed as they relate to friction and wear. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Lubrication is found to increase the critical load necessary to initiate fracture of ceramics with sliding or rubbing contact.

  10. Microstructure and properties of ceramics

    NASA Technical Reports Server (NTRS)

    Hamano, K.

    1984-01-01

    The history of research into the microstructure and properties of ceramic ware is discussed; methods of producing ceramics with particular characteristics are investigated. Bubbles, sintering, cracks, and electron microscopy are discussed.

  11. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  12. Piezoelectric Ceramics and Their Applications

    ERIC Educational Resources Information Center

    Flinn, I.

    1975-01-01

    Describes the piezoelectric effect in ceramics and presents a quantitative representation of this effect. Explains the processes involved in the manufacture of piezoelectric ceramics, the materials used, and the situations in which they are applied. (GS)

  13. Lightweight ceramic insulation and method

    NASA Technical Reports Server (NTRS)

    Green, David J. (Inventor)

    1990-01-01

    A process is disclosed for manufacturing a low density ceramic powder which can be formed to make a lightweight material for insulation or other construction. The ceramic product made from the process has a final density of less than 25 to about 1 percent of the theoretical weight of the ceramic powder. The ceramic product is lightweight and can be made to withstand high temperatures greater than 1400 C.

  14. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  15. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  16. Injection moulded hydroxyapatite ceramics.

    PubMed

    Cihlár, J; Trunec, M

    1996-10-01

    The injection moulding of hydroxyapatite (HA) and properties (relative density, shrinkage, microstructure, thermal strength and phase composition) of HA ceramics sintered at temperatures of 1373-1773 K were studied. Particles of oval shape and size of 0.5 microns were most suitable for injection moulding. Polymer/HA mixture contained 63 vol% of the HA powder. Maximum relative density (98.7%) and shrinkage (16%) of HA ceramics were obtained at a sintering temperature of 1523 K. Maximum flexural strength (60 MPa) of HA ceramics occurred at a sintering temperature of 1473 K. The strength of these ceramics decreased at sintering temperatures higher than 1473 K. Loss in strength was owing to the grain growth and decomposition of HA ceramics. The relationship between grain size and strength is described by the equation: sigma = 53.3d1/2. The calculated activation energy of grain growth obtained was 215kJ mol-1 K-1. The decomposition of HA to alpha-tricalcium phosphate was important at temperatures greater than 1573 K.

  17. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  18. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  19. Fatigue of dental ceramics.

    PubMed

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  1. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  2. Ceramics with Different Additives

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Feng, Lajun; Lei, Ali; Zhao, Kang; Yan, Aijun

    2014-09-01

    Li2CO3, MgCO3, BaCO3, and Bi2O3 dopants were introduced into CaCu3Ti4O12 (CCTO) ceramics in order to improve the dielectric properties. The CCTO ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure, and dielectric behavior were carefully investigated. The pure structure without any impurity phases can be confirmed by the x-ray diffraction patterns. Scanning Electron Microscopy (SEM) analysis illuminated that the grains of Ca0.90Li0.20Cu3Ti4O12 ceramics were greater than that of pure CCTO. It was important for the properties of the CCTO ceramics to study the additives in complex impedance spectroscopy. It was found that the Ca0.90Li0.20Cu3Ti4O12 ceramics had the higher permittivity (>45000), the lower dielectric loss (<0.025) than those of CCTO at 1 kHz at room temperature and good temperature stability from -30 to 75 °C.

  3. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  4. Ceramic coatings on smooth surfaces

    NASA Technical Reports Server (NTRS)

    Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)

    1991-01-01

    A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.

  5. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  6. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  7. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  8. Ceramic tamper-revealing seals

    DOEpatents

    Kupperman, D.S.; Raptis, A.C.; Sheen, S.H.

    1992-12-08

    A flexible metal or ceramic cable is described with composite ceramic ends, or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or zirconium, and connected to the connecting element by shrink fitting. 7 figs.

  9. Ceramic technology for automotive turbines

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1982-01-01

    The paper presents an update on ceramic technology for automotive turbines. Progress in research and development of improved ceramics is reviewed, including approaches for assessing time-dependent strength characteristics. Processes for making shapes are discussed, and the design and testing of selected ceramic turbine components are reviewed.

  10. Assessment of ceramic membrane filters

    SciTech Connect

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H.

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  11. Artificial Voids In Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Generazio, Edward R.; Baaklini, George Y.

    1988-01-01

    Method for creating voids in ceramic specimens developed. Silicon carbide and silicon nitride are high-temperature structural ceramic materials considered for applications in advanced gas-turbine engines. Ability to detect and characterize voids (by sizes, shapes, and locations) in structural ceramics vital for increasing strengths and reliabilities of materials. Small holes made deliberately to help quantify techniques of nondestructive evaluation.

  12. Revision of ceramic head fracture after third generation ceramic-on-ceramic total hip arthroplasty.

    PubMed

    Koo, Kyung-Hoi; Ha, Yong-Chan; Kim, Shin-Yoon; Yoon, Kang-Sup; Min, Byung-Woo; Kim, Sang-Rim

    2014-01-01

    We performed 24 revisions of fractures of third generation ceramic heads. The stem was not changed in 20 revisions; a new ceramic-on-ceramic bearing was used in four and a metal-on-polyethylene bearing in 16. The stem was changed in four revisions; a new ceramic-on-ceramic bearing was used in three and a metal-on-polyethylene bearing in one. During the follow-up of 57.5 months, complications occurred in five hips among the 20 stem retained revisions: a fracture of the new ceramic head in two, metallosis with pseudocyst in two, and femoral osteolysis with stem loosening in one. However, there were no complications in the four revisions where the stem was changed. Revision surgery after ceramic head fracture shows high rates of early complications. We recommend stem revision in cases of THA failure due to fracture of a modern ceramic head. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  14. Math-Science Bills Advance in Congress

    ERIC Educational Resources Information Center

    Hoff, David J.; Cavanagh, Sean

    2007-01-01

    Improving K-12 instruction and student achievement in mathematics and science is at the heart of separate bills intended to bolster America's economic standing that won overwhelming approval in both houses of Congress last week. The House on April 24 approved the 10,000 Teachers, 10 Million Minds Science and Math Scholarship Act by a vote of…

  15. Navy Ship Names: Background for Congress

    DTIC Science & Technology

    2010-04-26

    principal cities and towns. A law approved in 1858 (Act of June 12, 1858, c. 153, §5, 11 Stat. 319) provided a similar rule for “ steamships of the...similar to those above, varying slightly depending on whether the vessel was a sailing ship or a steamship . In 1898, Congress passed a law (Act of May 4

  16. Groups concerned about Congress and criticism

    SciTech Connect

    Lucas, A.

    1994-12-07

    Environmental groups are concerned about the impact a Republican-dominated Congress will have on their activities. The Republican agenda would {open_quotes}severely undercut public health and environmental protection, {close_quotes} says the Natural Resources Defense Council (NRDC; Washington).

  17. Legislative Priorities for the 105th Congress.

    ERIC Educational Resources Information Center

    National Association of State Directors of Vocational Technical Education Consortium.

    The National Association of State Directors of Vocational Technical Education Consortium (NASDVTEC) supports enactment of legislation that is dedicated solely to vocational-technical education (VTE). NASDVTEC urges the 105th Congress to build on the existing foundation of a strong state role in VTE by drafting legislation that achieves the…

  18. Navy Ship Names: Background for Congress

    DTIC Science & Technology

    2012-01-06

    cities and towns. A law approved in 1858 (Act of June 12, 1858, c. 153, §5, 11 Stat. 319) provided a similar rule for “ steamships of the navy...those above, varying slightly depending on whether the vessel was a sailing ship or a steamship . In 1898, Congress passed a law (Act of May 4, 1898, c

  19. Navy Ship Names: Background for Congress

    DTIC Science & Technology

    2011-04-01

    June 12, 1858, c. 153, §5, 11 Stat. 319) provided a similar rule for “ steamships of the navy,” except that third-class vessels (those with fewer than...the vessel was a sailing ship or a steamship . In 1898, Congress passed a law (Act of May 4, 1898, c. 234, 30 Stat. 390 [appropriations for the naval

  20. International Energy and Environmental Congress: Proceedings

    SciTech Connect

    Not Available

    1993-09-01

    This document contains information presented at the International Energy and Environmental Congress `93 proceedings. Symposiums included demand-side management strategic directions; federal energy management; corporate energy management; and pollution control technologies. Individual reports from the symposiums are processed separately for the data bases.

  1. CONGRESS ON SCIENCE TEACHING AND ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    Inter-Union Commission on the Teaching of Science, Paris (France).

    REPORTED ARE THE ACTIVITIES OF THE CONGRESS ORGANIZED BY THE INTER-UNION COMMISSION ON SCIENCE TEACHING (CEIS) OF THE INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS (ICSU). STUDIED WERE PROBLEMS ARISING IN SEVERAL BRANCHES OF KNOWLEDGE DUE TO BOTH INCREASED NUMBERS OF STUDENTS AND SHORTAGE OF TEACHERS. OF PARTICULAR INTEREST WERE THE PROBLEMS OF…

  2. Math-Science Bills Advance in Congress

    ERIC Educational Resources Information Center

    Hoff, David J.; Cavanagh, Sean

    2007-01-01

    Improving K-12 instruction and student achievement in mathematics and science is at the heart of separate bills intended to bolster America's economic standing that won overwhelming approval in both houses of Congress last week. The House on April 24 approved the 10,000 Teachers, 10 Million Minds Science and Math Scholarship Act by a vote of…

  3. Punctuation in Library of Congress Subject Headings

    ERIC Educational Resources Information Center

    Steinweg, Hilda

    1978-01-01

    An analysis of the punctuation of the eighth edition Library of Congress Subject Headings reveals that the hyphen, coma and parentheses are most often used. Examples of these and the use of the apostrophe, dash, and period are discussed. (Author/MBR)

  4. Herbert Putnam's Appointment as Librarian of Congress.

    ERIC Educational Resources Information Center

    Wiegand, Wayne A.

    1979-01-01

    Demonstrates, through careful analysis of primary source materials, that the events leading up to Herbert Putnam's selection as Librarian of Congress in March 1899 were complex and contained no major villains, and that problems encountered by the American Library Association are traceable to misunderstandings rather than political machinations.…

  5. Federal Evacuation Policy: Issues for Congress

    DTIC Science & Technology

    2010-04-29

    6 Low- Income Individuals and Households........................................................................6 The Evacuation of...that there will be an 14 Examples include U.S. Congress, House Select Bipartisan...legislation. Finally, the House report23 concluded that the responsibility to evacuate did not reside solely within the government. Many individuals

  6. Experiments in Automatic Library of Congress Classification.

    ERIC Educational Resources Information Center

    Larson, Ray R.

    1992-01-01

    Presents the results of research into the automatic selection of Library of Congress Classification numbers based on the titles and subject headings in MARC records from a test database at the University of California at Berkeley Library School library. Classification clustering and matching techniques are described. (44 references) (LRW)

  7. Punctuation in Library of Congress Subject Headings

    ERIC Educational Resources Information Center

    Steinweg, Hilda

    1978-01-01

    An analysis of the punctuation of the eighth edition Library of Congress Subject Headings reveals that the hyphen, coma and parentheses are most often used. Examples of these and the use of the apostrophe, dash, and period are discussed. (Author/MBR)

  8. American Sculpture and the Library of Congress

    ERIC Educational Resources Information Center

    Somma, Thomas P.

    2010-01-01

    The Thomas Jefferson Building of the Library of Congress is one of the more significant public structures in American architecture, due for the most part to its wealth and quality of decoration, including an extensive sculptural program executed in 1894-97. The architects entrusted the program to a committee of three prominent sculptors, J. Q. A.…

  9. American Sculpture and the Library of Congress

    ERIC Educational Resources Information Center

    Somma, Thomas P.

    2010-01-01

    The Thomas Jefferson Building of the Library of Congress is one of the more significant public structures in American architecture, due for the most part to its wealth and quality of decoration, including an extensive sculptural program executed in 1894-97. The architects entrusted the program to a committee of three prominent sculptors, J. Q. A.…

  10. [The Library of Congress Manuscript Division.

    ERIC Educational Resources Information Center

    Mitchelmore, Elizabeth

    The first of this set of two papers discusses the administration and activities of the Manuscript Division of the Library of Congress. The function of the Division is to safeguard, help acquire, classify and catalog, and make useful the collections of manuscripts in its possessions. To accomplish this the Division maintains a reading room and…

  11. IT Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    Inouye, Alan

    2000-01-01

    Presents an abstract for a planned technical session to discuss the report of the Committee on the Information Technology Strategy of the Library of Congress, developed by the Computer Science and Telecommunications Board of the National Academies. Highlights include digital information, Web links, preservation, and the management of libraries.…

  12. The Library of Congress: Hydra and Dinosaur.

    ERIC Educational Resources Information Center

    Molz, Kathleen R.

    1978-01-01

    A review of the book, "The Library of Congress in Perspective: A Volume Based on the Reports of the 1976 Librarians Task Force and Advisory Board Reports," edited by John Y. Cole and published in 1978 (Bowker, 281 pages). The review emphasizes the task force's findings and recommendations. (JPF)

  13. IT Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    Inouye, Alan

    2000-01-01

    Presents an abstract for a planned technical session to discuss the report of the Committee on the Information Technology Strategy of the Library of Congress, developed by the Computer Science and Telecommunications Board of the National Academies. Highlights include digital information, Web links, preservation, and the management of libraries.…

  14. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  15. Ceramic vane drive joint

    DOEpatents

    Smale, Charles H.

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  16. Multilayer ceramic actuator commercialization

    NASA Astrophysics Data System (ADS)

    Ritter, Andrew P.

    1995-05-01

    AVX is the largest US manufacturer of multilayer ceramic capacitors, producing 10's of millions per day. Multilayer ceramic actuators are manufactured using virtually identical fabrication methods. Fabrication from this ceramic tape allows tremendous latitude in device shape, size and material choice. This paper will discuss several different actuator configurations-including stacks, plates and chips- with respect to performance and cost tradeoffs. Virtually all developing smart material applications are 'technology driven,' however the widespread availability of devices at commercial scale relies on 'market pull' to achieve a balance of high annualized volumes and low cost. Given sufficient demand, devices can be produced such that the raw materials themselves dominate the unit cost. Generalized price-volume-performance relationships for the different actuator configurations can both guide system designers and focus long-term component development efforts.

  17. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al[sub 2]O[sub 3], Si[sub 3]N[sub 4] containing Si[sub 3]N[sub 4] or SiC whiskers, Y[sub 2]O[sub 3]-stabilized ZrO[sub 2] reinforced with SiC whiskers, and duplex-microstructure Si[sub 3]N[sub 4] have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  18. Erosion of composite ceramics

    SciTech Connect

    Routbort, J.L.

    1992-08-01

    The theoretical basis to describe solid-particle erosion of monolithic ceramics is well developed. In many cases, the models can account for the impact velocity, impact angle and erodent-size dependencies of the steady-state erosion rate. In addition, the models account for effects of materials parameters such as fracture toughness and hardness. Steady-state erosion measurements on a wide variety of composite ceramics, including SiC whisker-reinforced Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4} containing Si{sub 3}N{sub 4} or SiC whiskers, Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} reinforced with SiC whiskers, and duplex-microstructure Si{sub 3}N{sub 4} have been reported. The theories developed for monolithic ceramics are, however, less successful in describing the results for composites.

  19. Breakdown in ceramic window

    SciTech Connect

    Dhavale, A.S.; Mittal, K.C.

    2014-07-01

    A capacitive type coaxial ceramic window is designed for the SC linac. The coaxial power coupler has inner conductor diameter 34.8 mm and outer conductor diameter 80 mm. An alumina disk of diameter 150 mm and thickness 3.6 mm is used as ceramic. The diameter of the inner conductor of the coupler near the ceramic is increased to 39.2 mm to match the impedance at 1050 MHz. A copper prototype of the window is fabricated and characterized. A performance of the window is often degraded because of the multipacting. A CST particle studio is used to simulate the multipacting trajectories. The particle trajectories are observed at different locations and different power levels up to 1 MW. The results are dependent on the initial position of the primary electron and power level. A few soft multipacting barriers are observed at the operating power level. (author)

  20. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  1. Microwave sintering of ceramics

    SciTech Connect

    Snyder, W.B.

    1989-01-01

    Successful adaptation of microwave heating to the densification of ceramic materials require a marriage of microwave and materials technologies. Using an interdisciplinary team of microwave and materials engineers, we have successfully demonstrated the ability to density ceramic materials over a wide range of temperatures. Microstructural evolution during microwave sintering has been found to be significantly different from that observed in conventional sintering. Our results and those of others indicate that microwave sintering has the potential to fabricate components to near net shape with mechanical properties equivalent to hot pressed or hot isostatically pressed material. 6 refs., 11 figs.

  2. Why ceramic engines?

    NASA Technical Reports Server (NTRS)

    Stadler, H. L.

    1984-01-01

    Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.

  3. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  4. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  5. Performance of Dental Ceramics

    PubMed Central

    Rekow, E.D.; Silva, N.R.F.A.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P.

    2011-01-01

    The clinical success of modern dental ceramics depends on an array of factors, ranging from initial physical properties of the material itself, to the fabrication and clinical procedures that inevitably damage these brittle materials, and the oral environment. Understanding the influence of these factors on clinical performance has engaged the dental, ceramics, and engineering communities alike. The objective of this review is to first summarize clinical, experimental, and analytic results reported in the recent literature. Additionally, it seeks to address how this new information adds insight into predictive test procedures and reveals challenges for future improvements. PMID:21224408

  6. Battery utilizing ceramic membranes

    DOEpatents

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  7. Ceramic breeder materials

    SciTech Connect

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs.

  8. Ceramics for turbine engines

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    1986-01-01

    The Ceramics for Turbine Engines Project is comprised of three main research programs with major elements as indicated: materials and processing (monolithics and fiber reinforcement), design methodology (design code and tribology), and life prediction (environmental effects, nondestructive evaluation, fracture and fatigue, and time dependent behavior). From the NASA perspective an enhanced ceramics technology base directly supports aeronautics initiatives in small engine technology, high-performance turbine engine technology, and hypersonics. An overview of the program, which includes the technical objectives and content of each program, is provided.

  9. Environment Conscious Ceramics (Ecoceramics)

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. These carbonaceous preforms have been fabricated by pyrolysis of solid wood bodies at 1000 C. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches.

  10. How to interact with Congress about Science

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond

    The role of Congress is critical to the succes of the scientific enterprise, both in terms of authorization and appropriation. As a consequence, it is very important to make the case for science directly with Congress. Every scientist has a representative in the House of Representatives in whose district he/she lives, and in the Senate. Constituents are especially welcomed in their offices. A personal visit is the most effective means for transmitting the importance of science in general, and physics in particular. The AAAS website lists the ``Top Ten Rules for Working With Congress.'' They are: (1) Know your goal; (2) Understand how Congress works; (3) Conduct detailed background research; (4) Determine the timing of your course of action; (5) Be clear and succinct; (6) Understand Congressional staff and their influence; (7) Provide concrete suggestions; (8) Present support of science as a means to meet national and local goals, not as an entitlement; (9)Be willing to say ``I don't know'' and (10) Follow up appropriately. Each of these will be described in more detail during the presentation. The March Meeting is an example of a particularly important time period for meeting with representatives (Rule #4). The President's Budget Request has been submitted to Congress, and the individual appropriation subcommittees are in the process of developing their respective ``mark ups.'' Appointments with members or their staff is now timely, and urgent. Authorization bills are also in play, and can have significant impact on the scientific community. Paying attention to their development in key committees (e.g. the Science, Space, and Technology Committee of the House of Representatives), and providing appropriate and timely input, is the responsibility of every scientist.

  11. Ceramics: rationale for material selection.

    PubMed

    McLaren, Edward A; Whiteman, Yair Y

    2010-01-01

    All imaginable types of materials and techniques, from very conservative ceramic restorations to very complex restorations of either metal or high-strength crystalline ceramics veneered with porcelain, have been introduced and tried throughout the years, with varying levels of success. However, there is considerable misinformation and a general lack of published rational treatment planning guidelines about when to use the ceramics available in dentistry. This article provides a systematic process for treatment planning with ceramic materials. Specific guidelines are outlined for the appropriate clinical conditions for using the various ceramic materials.

  12. Damage quantification in confined ceramics

    SciTech Connect

    Xu Yueping; Espinosa, Horacio D.

    1998-07-10

    Impact recovery experiments on confined ceramic rods and multi-layer ceramic targets are performed for failure identification and damage quantification. In-material stress measurements with manganin gauges and velocity histories are recorded with interferometric techniques. Observations on recovered samples are made through Optical Microscopy. Microscopy results show that microcracking is the dominant failure mode in ceramic rods and multi-layer ceramic targets. Macrocrack surface per unit area is estimated on various sections along several orientations. Correlation between dynamic loading and crack density is established. Moreover, multiple penetrator defeat is observed in ceramic targets recovered from penetration experiments.

  13. [Ceramic couplings in orthopedic surgery].

    PubMed

    Thomsen, M; Willmann, G

    2003-01-01

    Ceramic materials have been used as a coupling in total hip arthroplasty since the 1970s to solve the problem of polyethylene particle disease. Several problems with the material and the design have been identified and solved. Using inlays and ceramic heads of the latest generation offers the possibility of reducing the wear rate to as low as 0.001 mm per year. The problem of ceramic fractures is rare. Recently due to the manufacturing process some zirconia ceramic heads have been problematic. New developments with other ceramics are discussed.

  14. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  15. Ceramic gas turbine technology development

    SciTech Connect

    Easley, M.L.; Smyth, J.R.

    1995-10-01

    AlliedSignal Engines is addressing critical concerns slowing the commercialization of structural ceramics in gas turbine engines. These issues include ceramic component reliability, commitment of ceramic suppliers to support production needs, and refinement of ceramic design technologies. The stated goals of the current program are to develop and demonstrate structural ceramic technology that has the potential for extended operation in a gas turbine environment by incorporation in an auxiliary power unit (APU) to support automotive gas turbine development. AlliedSignal Engines changed the ATTAP ceramic engine test bed from the AGT101 automotive engine to the 331-200[CT] APU. The 331-200[CT] first-stage turbine nozzle segments and blades were redesigned using ceramic materials, employing design methods developed during the earlier DOE/NASA-funded Advanced Gas Turbine (AGT) and the ATTAP programs. The ceramic design technologies under development in the present program include design methods for improved resistance to impact and contact damage, assessment of the effects of oxidation and corrosion on ceramic component life, and assessment of the effectiveness of nondestructive evaluation (NDE) and proof testing methods to reliably identify ceramic parts having critical flaws. AlliedSignal made progress in these activities during 1993 ATTAP efforts. Ceramic parts for the 331-200[CT] engine have been fabricated and evaluated in component tests, to verify the design characteristics and assure structural integrity prior to full-up engine testing. Engine testing is current under way.

  16. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Miyoshi, Kazuhisa

    1989-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  17. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  18. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  19. Light-weight ceramic insulation

    NASA Technical Reports Server (NTRS)

    Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2002-01-01

    Ultra-high temperature, light-weight, ceramic insulation such as ceramic tile is obtained by pyrolyzing a siloxane gel derived from the reaction of at least one organo dialkoxy silane and at least one tetralkoxy silane in an acid or base liquid medium. The reaction mixture of the tetra- and dialkoxy silanes may contain also an effective amount of a mono- or trialkoxy silane to obtain the siloxane gel. The siloxane gel is dried at ambient pressures to form a siloxane ceramic precursor without significant shrinkage. The siloxane ceramic precursor is subsequently pyrolyzed, in an inert atmosphere, to form the black ceramic insulation comprising atoms of silicon, carbon and oxygen. The ceramic insulation, can be characterized as a porous, uniform ceramic tile resistant to oxidation at temperatures ranging as high as 1700.degree. C. and is particularly useful as lightweight tiles for spacecraft and other high-temperature insulation applications.

  20. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  1. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  3. Ceramic Coating Method

    DTIC Science & Technology

    2002-07-02

    platinum, protactinium , rhenium, chemically stable in oxygen or other oxidizing atmospheres. rhodium; ruthenium, samarium, scandium, silicon, tantalum; 20...high "mismatch" platinum, protactinium , rhenium, and tantalum braze layer, 30 between ceramic (e.g., A12O3 or ZrO2 ) and carbon steel, the lower-melting

  4. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  5. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-01-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  6. Microwave processing of ceramics

    SciTech Connect

    Katz, J.D.

    1993-04-01

    Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

  7. Refractory ceramic fibers

    Integrated Risk Information System (IRIS)

    Refractory ceramic fibers ; CASRN Not found Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  8. Durability of ceramic filters

    SciTech Connect

    Alvin, M.A.; Tressler, R.E.; Lippert, T.E.; Diaz, E.S.; Smeltzer, E.E.

    1994-10-01

    The objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating systems have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life.

  9. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  10. Coated ceramic breeder materials

    DOEpatents

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-04-07

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  11. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  12. VII International Congress of Engineering Physics

    NASA Astrophysics Data System (ADS)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  13. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  14. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  15. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  16. Ceramic tubesheet design analysis

    SciTech Connect

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  17. [90 years since the first congress of Serbian physicians].

    PubMed

    Atanacković, D

    1995-01-01

    The first congress of the south Slav physicians was held in Belgrade in 1904 and was entitled the First Congress of the Serbian Physicians and Naturalists under the presidency of Dr. Jovan Danić, the president of the Medical Society of Serbia. The Congress was attended by 433 active participants, and the work was organized in sessions: medico-pharmaceutical, physico-chemical and mathematical, biological and abiological, veterino-agronomical. Papers were printed in extenso in the proceedings and were published in the native language of the lectureres (Serbian, Croatian, Bohemian, Slovenian and Bulgarian). Out of these papers 56 were presented in the medico-pharmaceutical session. The Congress was appraised very successful by the attenders and its honorary president, Prof. Dr. Jaroslav Hlava from Prague who concluded at the end of the Congress ".. the First Serbian Congress has prepared material for the future faculty of medicine".

  18. Oxidation and Corrosion of Ceramics and Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Lee, Kang N.

    2000-01-01

    Ceramics and ceramic matrix composites are candidates for numerous applications in high temperature environments with aggressive gases and possible corrosive deposits. There is a growing realization that high temperature oxidation and corrosion issues must be considered. There are many facets to these studies, which have been extensively covered in some recent reviews. The focus of this paper is on current research, over the past two years. In the authors' view, the most important oxidation and corrosion studies have focused on four major areas during this time frame. These are; (I) Oxidation of precursor-based ceramics; (II) Studies of the interphase material in ceramic matrix composites; (III) Water vapor interactions with ceramics, particularly in combustion environments; and (IV) Development of refractory oxide coatings for silicon-based ceramics. In this paper, we shall explore the most current work in each of these areas.

  19. Unmanned Aerial Vehicles: Background and Issues for Congress

    DTIC Science & Technology

    2005-11-21

    Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31872 Unmanned Aerial Vehicles : Background...00-2005 4. TITLE AND SUBTITLE Unmanned Aerial Vehicles : Background and Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Unmanned Aerial Vehicles : Background and

  20. Annual report to Congress, FY 1992

    SciTech Connect

    1993-07-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to inform Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).

  1. Wrapping up the 105th Congress.

    PubMed

    Link, D

    1998-12-01

    The 105th Congress was one of the most fiercely partisan in memory. It approved historic increases in AIDS funding, wrestled through the Clinton impeachment process, and saw dramatic changes in leadership. Virtually all legislative activity related to HIV funding occurred just before the election, in an omnibus budget package that included an $855 million increase in AIDS funding. The 105th Congress also restored immigrants' eligibility for Supplemental Security Income (SSI) and Medicaid. The Ricky Ray Hemophilia Relief Act was passed, providing financial compensation to people infected by contaminated clotting products. Also, Dr. Jane Henney was approved as Commissioner of the Food and Drug Administration (FDA). She is the first woman to head the agency. She was approved only after promising not to support an anti-tobacco agenda or the approval of RU-486, which is also known as the abortion pill.

  2. REPORT TO CONGRESS ON BLACK CARBON | Science ...

    EPA Pesticide Factsheets

    The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.

  3. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  4. Grain boundaries in ceramics and ceramic-metal interfaces

    SciTech Connect

    Clarke, D.R.; Wolf, D.

    1986-01-01

    Three interfaces exist: the crystal-crystal grain boundary in very pure single-phase ceramics, the crystal-glass-crystal grain boundary in most single-phase and polyphase ceramics, and the ceramic-metal interface. It is needed to correlate their structure and adhesion/failure. Methods for studying the bonding, interfacial structure, and fracture and adhesion are discussed, and recommendations are given. 42 refs. (DLC)

  5. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    NASA Astrophysics Data System (ADS)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  6. Eighth international congress on nitrogen fixation

    SciTech Connect

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  7. Women in Combat: Issues for Congress

    DTIC Science & Technology

    2015-12-03

    women emphasize equal rights and argue it is more difficult for servicemembers to advance to top-ranking positions in the armed services without...combat experience. In their view, modern weapons have equalized the potential for women in combat since wars are less likely to be fought on a hand-to...development and application of “ gender -neutral” occupational standards, and has oversight of all DOD decisions in this matter. Congress may also consider

  8. Congress as a Consumer of Intelligence Information

    DTIC Science & Technology

    2009-01-15

    established its intelligence oversight committee, the Senate Select Committee on Intelligence ( SSCI ), in May 1976. The House of Representatives followed suit...Intelligence ( SSCI ) directed that the Director of Central Intelligence17 prepare a comprehensive report that would examine the role of Congress as a...policymaking responsibilities.18 CRS is unaware the Director did not apparently produced such a report. More recently, the SSCI included language in its

  9. Iraq War: Defense Program Implications for Congress

    DTIC Science & Technology

    2003-06-04

    Steven A. Hildreth Ronald O’Rourke Iraq War: Defense Program Implications for Congress Summary The recent war against Iraq may have implications for...Henry. Special Forces Soldiers Prove They’re Special. Fayetteville (NC) Observer, May 24, 2003; Muradian, Vago . Allied Special Forces Took Western...joint (i.e., multi-service) training operations. CRS-51 125This section prepared by Steven A. Hildreth, Specialist in National Defense. Among UAVs

  10. 43 CFR 1610.6 - Management decision review by Congress.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) PLANNING, PROGRAMMING, BUDGETING Resource Management Planning § 1610.6 Management decision review by Congress. The Federal Land Policy...

  11. WEST CORRIDOR (ORIGINALLY KNOWN AS LIBRARY OF CONGRESS CARD CATALOG) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST CORRIDOR (ORIGINALLY KNOWN AS LIBRARY OF CONGRESS CARD CATALOG) ON FIRST FLOOR, LOOKING EAST - Free Library of Philadelphia, Central Library, 1901 Vine Street, Philadelphia, Philadelphia County, PA

  12. Layered color of all-ceramic core and veneer ceramics.

    PubMed

    Lee, Yong-Keun; Cha, Hyun-Suk; Ahn, Jin-Soo

    2007-05-01

    Color of an all-ceramic restoration is the result of interaction between core and veneer ceramics. However, the influence on color of the different types of all-ceramic core and veneer combinations at clinically relevant thicknesses is not well understood. The purpose of this study was to measure the layered color of all-ceramic core and veneer combinations with the thickness of the core set as the clinically minimum thickness to mask the background, and the thickness of the veneer set as the remaining available thickness within a clinically allowable thickness. The A2-corresponding shade of 7 all-ceramic core materials, and 1 sintering ceramic and 1 alloy core as references, were prepared in clinically minimum thicknesses (0.4 to 0.8 mm) to mask the background (n=7). The A2 and A3 corresponding shades of each recommended veneer ceramic were used to fabricate specimens that were 1.5 mm thick. The color of the core, veneer, and layered specimens was measured with a reflection spectrophotometer. Two-way ANOVA with the independent variables of the types of core and veneer ceramics on the layered color was used to analyze the data (alpha=.05). The influence of the color coordinates in the core and veneering ceramics on the layered color was analyzed with multiple regression analysis. CIE L( *), a( *), b( *), and C( *)(ab) values of A2- or A3-veneer layered specimens were influenced significantly by the combination of core and veneer ceramics (P<.001). The CIE L( *) values of layered specimens were primarily influenced by the CIE L( *) values of the core ceramic (P<.001). The other 3 parameters were primarily influenced by each corresponding parameter of veneer ceramic, based on multiple regression analyses (P<.001). The layered color of all-ceramic core and veneer ceramics in the clinically allowable thickness was different even when the same shade, keyed to a VITA guide, of core and veneer ceramics were layered. The color difference between each pair of A2- or A3

  13. 11th International Congress of Endocrinology.

    PubMed

    Fuller, P J

    2001-03-01

    The Olympics of endocrinology, the 11th International Congress of Endocrinolgy was held rather appropriately in Sydney, four weeks after the summer games of the XXWIIth Modern Olympiad. Both occasions were a great success and whilst it may be tempting to extend the analogy to the pool or the track or heaven forbid, digress into 'drugs in sport', this review will focus on endocrinology. There were over 3000 participants with ten plenary lectures, 20 meet-the-expert sessions, 41 symposia, 128 oral free communications and 1500 posters. Sydney post-Olympics provided a vibrant, exciting and picturesque setting with outstanding convention facilities. The Congress Party was held at Campbells Cove in the lee of the Harbour Bridge looking toward the Opera House which provided an opportunity for delegates to view the two architectural icons that had become so familiar in the preceding months. Credit must be given both to the Local Organising Committee of Sydney endocrinologists who made it all happen and to the International Program Organising Committee who crafted a pageant of first rate endocrinology. It is self-evident that this report can only hope to give the reader a flavour of a Congress such as this with the choice of topics being largely idiosyncratic. With five concurrent symposia and two concurrent orals each morning and afternoon of the four days, any omissions reflect not on the topic or its importance but on this reviewer's inability to be in more than one place at once!

  14. Altitude Stress During Participation of Medical Congress.

    PubMed

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee; Suh, Dae Chul

    2016-09-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases.

  15. Altitude Stress During Participation of Medical Congress

    PubMed Central

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  16. The 20th International Congress of Chemotherapy.

    PubMed

    Hunter, P A

    1997-09-01

    Over 4,000 participants from all over the world attended the 20th International Congress of Chemotherapy (ICC) between 29th June-3rd July, 1997, in Sydney. Anti-infective and cancer chemotherapy were discussed in a wide context, with presentations being made on new products, compounds in development and current clinical approaches. Inevitably in a congress of this size, there were many sessions running concurrently (usually nine), with several simultaneous poster sessions as well. A common theme currently at many chemotherapy congresses is the growth of resistance to existing agents, and the ICC was no exception. Resistance to Gram-positive cocci is a particular problem, and many sessions were devoted to this subject. This report attempts to highlight just some of the aspects of antibacterial chemotherapy presented at the meeting. New fluoroquinolones formed a major topic that attracted a number of poster sessions and symposia, continuing a trend seen in recent years. The streptogramins offer an alternative approach to combating Gram-positive infections, and a symposium was devoted to these compounds.

  17. Seal between metal and ceramic conduits

    DOEpatents

    Underwood, Richard Paul; Tentarelli, Stephen Clyde

    2015-02-03

    A seal between a ceramic conduit and a metal conduit of an ion transport membrane device consisting of a sealing surface of ceramic conduit, a sealing surface of ceramic conduit, a single gasket body, and a single compliant interlayer.

  18. Ceramic applications in turbine engines

    SciTech Connect

    Helms, H.E.; Heitman, P.W.; Lindgren, L.C.; Thrasher, S.R.

    1984-10-01

    A program is being conducted for the application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGT 404 vehicular gas turbine engine. This effort, called the Ceramic Applications in Turbine Engines (CATE) program, has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating ceramic components in the IGT 404 engine. This is the CATE final report, which contains a complete discussion of all phases of the progream, design, materials development, fabrication of ceramic components, and testing - including rig, engine, and vehicle demonstration test. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  19. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  1. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  2. Longevity of silicate ceramic restorations.

    PubMed

    Beier, Ulrike Stephanie; Dumfahrt, Herbert

    2014-09-01

    The demand for esthetic restorations has resulted in an increased use of dental ceramics as a biocompatible and functionally sufficient alternative to conventional restorative materials. Silicate ceramic restorations are widely used for veneers, inlays, onlays, and crowns in dentistry. Long-term data are of crucial importance to optimize clinical practice. The purpose of the present article is to summarize data of the Innsbruck ceramic evaluation up to 261 months with the focus on longevity and failure characteristics.

  3. Tailored Ceramics for Laser Applications

    SciTech Connect

    Hollingsworth, Joel

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  4. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  5. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  6. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  7. Ceramic composite coating

    DOEpatents

    Wicks, George G.

    1997-01-01

    A thin, room-temperature-curing, ceramic composite for coating and patching etal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  8. Ceramic composite coating

    DOEpatents

    Wicks, G.G.

    1997-01-21

    A thin, room-temperature-curing, ceramic composite for coating and patching metal substrates comprises a sol gel silica glass matrix filled with finely ground particles or fibers, preferably alumina. The sol gel glass is made by adding ethanol to water to form a first mixture, then separately adding ethanol to tetraethyl orthosilicate to form a second mixture, then slowly adding the first to the second mixture to make a third mixture, and making a slurry by adding the finely ground particles or fibers to the third mixture. The composite can be applied by spraying, brushing or trowelling. If applied to patch fine cracks, densification of the ceramic composite may be obtained to enhance sealing by applying heat during curing.

  9. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components, including an MHD electrode for strategic defense initiative (SDI) applications and a high stress, low cost, reinforced ceramic component for armor applications. The MHD electrode design is substantially completed. A layered structure composed of molybdenum disilicide graded with quartz glass has been designed and analyzed using finite element methods. The design demonstrates the fabrication capabilities of the CCF process. The high stress, armor application component will be silicon carbide reinforced alumina in thick plates. 2 refs., 4 figs., 1 tab.

  10. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  11. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  12. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  13. Microprobes aluminosilicate ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Methods have been developed to make mixed alumina-silicate and aluminosilicate particulate microporous ceramic membranes. One method involves the making of separate alumina and silica sols which are then mixed. Another method involves the creation of a combined sol with aluminosilicate particles. The resulting combined alumina and silica membranes have high surface area, a very small pore size, and a very good temperature stability.

  14. Transparent Spinel Ceramic

    DTIC Science & Technology

    2009-01-01

    2009 NRL REVIEW 215 OPTICAL SCIENCES Transparent Spinel Ceramic J.S. Sanghera, G. Villalobos , W. Kim, S. Bayya, and I.D. Aggarwal Optical Sciences...Sponsored by NRL and ONR] Reference 1 G. Villalobos , J.S. Sanghera, S.B. Bayya, and I.D. Aggarwal, “Fluoride Salt Coated Magnesium Aluminate,” U.S. Patent 7,211,325, May 1, 2007.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-12-01

    Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  16. Transformation Toughening of Ceramics

    DTIC Science & Technology

    1992-03-01

    TRANSFORMATION ZONE SHAPE EFFECTS IN CRACK SHIELDING IN CERIA-PARTIALLY STABILIZED ZIRCONIA (Ce-TZP). ALUMINA COMPOSITES to be published in J. Am. Ceram. Soc. 13 Cl...lS85HWejw TRANSFORMATION ZONE SHAPE EFFECTS ON CRACK SHIELDING IN CERIA-PARTIALLY-STABILIZED ZIRCONIA (Ce-TZP)- ALUMINA S..COMPOSITES Cheng-Sheng Yu...zones in Ce-TZP/Al203 composites, in which the transformation zone sizes were changed significantly by varying the sintering temperature to control

  17. Multifracture of ceramic composites

    SciTech Connect

    Weitsman, Y.J.; Zhu, H.

    1992-03-01

    This work presents a mechanistic model for the multifracture process of uniaxially reinforced fibrous ceramic composites under monotonically increasing tension parallel to the fiber direction. The model employs an energy criterion to account for the progression of matrix cracks, bridged by intact fibers, and Weibull failure statistics to relate the failure of the fibers. Consideration is given to the interactions between the foregoing failure processes as well as to the effects of various material parameters on the response of the composite.

  18. Transformation Toughening of Ceramics

    DTIC Science & Technology

    1988-12-01

    International Science Center SC5444.FR 1. INTRODUCTION Zirconia -containing ceramics can be toughened dramatically by the marten- sitic tetragonal -to-monoclinic...cm- 1) coincide with peaks of the monoclinic phase (Fig. 3(c)), but the remaining nine do not belong to any of the tetragonal , monoclinic or cubic ... tetragonal precipitates and the remainder cubic matrix. After cooling, there was no change in the intensities of the monoclinic peaks (e.g. (G1T)and (111

  19. Joined ceramic product

    DOEpatents

    Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA

    2001-08-21

    According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.

  20. Friction and wear of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.

    1986-01-01

    The adhesion, friction, wear, and lubricated behaviors of both oxide and non-oxide ceramics are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both the free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing.

  1. Friction and wear of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1984-01-01

    The adhesion, friction, wear and lubricated behaviors of both oxide and non-oxide ceramics are reviewed. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as with metals. Grit size effects in two- and three-body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing.

  2. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  3. Ceramic stationary gas turbine

    SciTech Connect

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  4. Anionic Conducting Oxide Ceramics: Microstructure - Property Relations of Bicuvox Ceramics.

    DTIC Science & Technology

    1996-06-14

    The bismuth vanadate composition, Bi4V2011, is the parent compound for a new family of oxygen ion conductors. The substitution of various metallic... bismuth vanadate ceramics. Phase-pure materials with densities above 95% of theoretical were obtained using standard ceramic processing approaches

  5. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  6. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, Thomas K.; Novak, Robert F.

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  7. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOEpatents

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  8. 76 FR 31367 - Advisory Committee on the Records of Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... RECORDS ADMINISTRATION Advisory Committee on the Records of Congress AGENCY: National Archives and Records... National Archives and Records Administration (NARA) announces a meeting of the Advisory Committee on the Records of Congress. The committee advises NARA on the full range of programs, policies, and plans for the...

  9. 75 FR 70031 - Advisory Committee on the Records of Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... RECORDS ADMINISTRATION Advisory Committee on the Records of Congress AGENCY: National Archives and Records... National Archives and Records Administration (NARA) announces a meeting of the Advisory Committee on the Records of Congress. The committee advises NARA on the full range of programs, policies, and plans for the...

  10. 15 CFR 12.4 - Report to the Congress.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Report to the Congress. 12.4 Section 12.4 Commerce and Foreign Trade Office of the Secretary of Commerce FAIR PACKAGING AND LABELING § 12.4 Report to the Congress. Whenever the Secretary publishes a final determination under § 12.3(b)(4...

  11. 75 FR 32229 - Advisory Committee on the Records of Congress

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... National Archives and Records Administration (NARA) announces a meeting of the Advisory Committee on the Records of Congress. The committee advises NARA on the full range of programs, policies, and plans for the... RECORDS ADMINISTRATION Advisory Committee on the Records of Congress AGENCY: National Archives and...

  12. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each...

  13. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each...

  14. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Annual report to Congress. 1101.17 Section 1101.17 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each...

  15. 22 CFR 1102.9 - Annual report to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Annual report to Congress. 1102.9 Section 1102.9 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION FREEDOM OF INFORMATION ACT § 1102.9 Annual report to Congress. (a) On or before March 1 of each...

  16. Balancing Scientific Publication and National Security Concerns: Issues for Congress

    DTIC Science & Technology

    2006-02-02

    98) Prescribed by ANSI Std Z39-18 Balancing Scientific Publication and National Security Concerns: Issues for Congress Summary The federal...6 Current Federal Policy on Scientific Publication . . . . . . . . . . . . . . . . . . . . . . . . . . 8...OECD), 2002, p. 30. Balancing Scientific Publication and National Security Concerns: Issues for Congress Introduction Publication of scientific

  17. 1991 SOLAR WORLD CONGRESS - VOLUME 1, PART I

    EPA Science Inventory

    The four-volume proceedings document the 1991 Solar World Congress (the biennial congress of the International Solar Energy Society) in Denver, CO, August 19-23, 1991. Volume 1 is dedicated to solar electricity, biofuels, and renewable resources. Volume 2 contains papers on activ...

  18. LC21: A Digital Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The Library of Congress asked the Computer Science and Telecommunications Board (CSTB) of the National Academies to conduct a study to provide strategic advice concerning the information technology path that the Library of Congress should traverse over the coming decade. The Committee on an Information Technology Strategy for the Library of…

  19. Chartrand: Congress More Computer Literate. Government Computer News Interview.

    ERIC Educational Resources Information Center

    Government Computer News: The Newspaper Serving Computer Users throughout the Federal Government, 1985

    1985-01-01

    This excerpt from a newsletter presents an interview with Robert Lee Chartrand, senior specialist in information policy and technology for the Congressional Research Service of the Library of Congress, on issues related to information technology and the U.S. Congress. A brief biography of Mr. Chartrand presents his major professional experience,…

  20. ESS: The Library of Congress Experimental Search System.

    ERIC Educational Resources Information Center

    Wilder, Dean; Greenfield, Rich

    1997-01-01

    Describes the Library of Congress's Experimental Search System (ESS), a Web-based online public access catalog that introduced new search methods to replace Boolean searching as well as powerful navigational aids for browsing and cross-linking. Discusses problems, ESS user comments, acceptance by Library of Congress staff, and future…

  1. 10 CFR 9.109 - Report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Report to Congress. 9.109 Section 9.109 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Government in the Sunshine Act Regulations § 9.109 Report to Congress... against the Commission pursuant to the Government in the Sunshine Act, including any cost assessed against...

  2. 22 CFR 1102.9 - Annual report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Annual report to Congress. 1102.9 Section 1102.9... SECTION FREEDOM OF INFORMATION ACT § 1102.9 Annual report to Congress. (a) On or before March 1 of each calendar year the Commissioner shall submit a report covering the preceding calendar year to the Speaker...

  3. 22 CFR 1101.17 - Annual report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Annual report to Congress. 1101.17 Section 1101... STATES SECTION PRIVACY ACT OF 1974 § 1101.17 Annual report to Congress. (a) On or before August 1 of each calendar year the Commissioner shall submit a report covering the preceding calendar year to the Speaker...

  4. 45 CFR 12.15 - Reports to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Reports to Congress. 12.15 Section 12.15 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DISPOSAL AND UTILIZATION OF SURPLUS REAL PROPERTY FOR PUBLIC HEALTH PURPOSES § 12.15 Reports to Congress. The Secretary will make...

  5. 45 CFR 12.15 - Reports to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Reports to Congress. 12.15 Section 12.15 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DISPOSAL AND UTILIZATION OF SURPLUS REAL PROPERTY FOR PUBLIC HEALTH PURPOSES § 12.15 Reports to Congress. The Secretary will make...

  6. Teaching about the U.S. Congress. ERIC Digest.

    ERIC Educational Resources Information Center

    Vontz, Thomas S.; Drake, Sarah E.

    This digest addresses teaching about the U.S. Congress. The digest addresses the constitutional foundations of the U.S. Congress, including the Virginia Plan, the New Jersey Plan, representation, bicameralism, and the balance of power between state and federal government and among the executive, judicial, and legislative branches of the federal…

  7. LC21: A Digital Strategy for the Library of Congress.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    The Library of Congress asked the Computer Science and Telecommunications Board (CSTB) of the National Academies to conduct a study to provide strategic advice concerning the information technology path that the Library of Congress should traverse over the coming decade. The Committee on an Information Technology Strategy for the Library of…

  8. An Analysis of Math Congress in an Eighth Grade Classroom

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Lee, Joanne

    2012-01-01

    A "math congress" is a pedagogical approach in which students present their solutions from their mathematical work completed individually, in pairs, or in small groups, and share and defend their mathematical thinking. Mathematical artifacts presented during math congress remain on display as community records of practice. Math congress…

  9. 93rd Congress: Federal Laws and Regulations Affecting the Handicapped.

    ERIC Educational Resources Information Center

    Gettings, Robert M.

    Provided is a summary of 1973 and 1974 legislative and administrative developments affecting handicapped persons. The report is divided into five major sections: an outline of some overriding issues faced by the 93rd Congress; a detailed analysis of the implications for the handicapped of bills enacted by the past session of Congress; a brief…

  10. 40 CFR 1603.13 - Report to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Report to Congress. 1603.13 Section 1603.13 Protection of Environment CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1603.13 Report to Congress. The CSB General Counsel shall annually report...

  11. 22 CFR 1102.9 - Annual report to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Annual report to Congress. 1102.9 Section 1102.9 Foreign Relations INTERNATIONAL BOUNDARY AND WATER COMMISSION, UNITED STATES AND MEXICO, UNITED STATES SECTION FREEDOM OF INFORMATION ACT § 1102.9 Annual report to Congress. (a) On or before March 1 of...

  12. Population Estimates Used by Congress during the Constitutional Convention

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2006-01-01

    During the summer of 1787, when the delegates to the Constitutional Convention met in Philadelphia, the issue of representation in Congress was strongly debated. Delegates from the large states favored the Virginia Plan's proposal for two houses of Congress with representation based on population. Delegates from the small states favored equal…

  13. 1991 SOLAR WORLD CONGRESS - VOLUME 1, PART I

    EPA Science Inventory

    The four-volume proceedings document the 1991 Solar World Congress (the biennial congress of the International Solar Energy Society) in Denver, CO, August 19-23, 1991. Volume 1 is dedicated to solar electricity, biofuels, and renewable resources. Volume 2 contains papers on activ...

  14. 18 CFR 16.15 - Commission recommendation to Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... recommendation to Congress. 16.15 Section 16.15 Conservation of Power and Water Resources FEDERAL ENERGY... 15 of the Federal Power Act § 16.15 Commission recommendation to Congress. Upon receipt of a recommendation from any Federal department or agency, a proposal of any party, or on the Commission's own...

  15. 10 CFR 9.109 - Report to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Report to Congress. 9.109 Section 9.109 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Government in the Sunshine Act Regulations § 9.109 Report to Congress... against the Commission pursuant to the Government in the Sunshine Act, including any cost assessed...

  16. 10 CFR 9.109 - Report to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Report to Congress. 9.109 Section 9.109 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Government in the Sunshine Act Regulations § 9.109 Report to Congress... against the Commission pursuant to the Government in the Sunshine Act, including any cost assessed...

  17. 10 CFR 9.109 - Report to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Report to Congress. 9.109 Section 9.109 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Government in the Sunshine Act Regulations § 9.109 Report to Congress... against the Commission pursuant to the Government in the Sunshine Act, including any cost assessed...

  18. Using the Records of Congress in the Classroom.

    ERIC Educational Resources Information Center

    Hunt, Richard

    1998-01-01

    Argues that the documentary history of the Congress offers a compelling source of primary materials for the classroom. Discusses two types of frequently overlooked documents, petitions to Congress from ordinary citizens and political cartoons by Clifford Berryman, and aspects of United States' history illustrated by them. (DSK)

  19. Chartrand: Congress More Computer Literate. Government Computer News Interview.

    ERIC Educational Resources Information Center

    Government Computer News: The Newspaper Serving Computer Users throughout the Federal Government, 1985

    1985-01-01

    This excerpt from a newsletter presents an interview with Robert Lee Chartrand, senior specialist in information policy and technology for the Congressional Research Service of the Library of Congress, on issues related to information technology and the U.S. Congress. A brief biography of Mr. Chartrand presents his major professional experience,…

  20. 18 CFR 16.15 - Commission recommendation to Congress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... recommendation to Congress. 16.15 Section 16.15 Conservation of Power and Water Resources FEDERAL ENERGY... 15 of the Federal Power Act § 16.15 Commission recommendation to Congress. Upon receipt of a recommendation from any Federal department or agency, a proposal of any party, or on the Commission's own...

  1. 18 CFR 16.15 - Commission recommendation to Congress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... recommendation to Congress. 16.15 Section 16.15 Conservation of Power and Water Resources FEDERAL ENERGY... 15 of the Federal Power Act § 16.15 Commission recommendation to Congress. Upon receipt of a recommendation from any Federal department or agency, a proposal of any party, or on the Commission's own...

  2. 18 CFR 16.15 - Commission recommendation to Congress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... recommendation to Congress. 16.15 Section 16.15 Conservation of Power and Water Resources FEDERAL ENERGY... 15 of the Federal Power Act § 16.15 Commission recommendation to Congress. Upon receipt of a recommendation from any Federal department or agency, a proposal of any party, or on the Commission's own...

  3. International Congress of Applied Linguistics: Congress Abstracts (3rd, Copenhagen, August 21-26, 1972).

    ERIC Educational Resources Information Center

    Qvistgaard, Jacques, Ed.; And Others

    This volume contains abstracts of the 239 papers given at the Third International Congress of Applied Linguistics. The volume contains a topical and author index arranged alphabetically. Topics include applied linguistics, quantitative linguistics, contrastive linguistics, application of grammar models, the syntax of spoken language, applied…

  4. Network Centric Warfare: Background and Oversight Issues for Congress. CRS Report for Congress

    DTIC Science & Technology

    2005-03-18

    see CRS Report RS21294, Unmanned Vehicles for U.S. Naval Forces: Background and Issues for Congress. 15 Edward A. Smith , “Network Centric Warfare...excess of non- defense-related agencies. While outsourcing may have been initially motivated by CRS-12 42 Patrick Theobald and Sumner Lemon, “R&D

  5. Method of forming ceramic bricks

    DOEpatents

    Poeppel, Roger B.; Claar, Terry D.; Silkowski, Peter

    1988-09-06

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  6. Method of forming ceramic bricks

    DOEpatents

    Poeppel, R.B.; Claar, T.D.; Silkowski, P.

    1987-04-22

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  7. Method of forming ceramic bricks

    DOEpatents

    Poeppel, Roger B.; Claar, Terry D.; Silkowski, Peter

    1988-01-01

    A method for forming free standing ceramic bricks for use as tritium breeder material is disclosed. Aqueous solutions of sodium carbonate and potassium carbonate are mixed with an organic hydrocolloid dispersion and powdered lithium carbonate, spray dried, and ceramic bricks formed by molding in a die and firing.

  8. Systematic review of ceramic inlays.

    PubMed

    Hayashi, M; Wilson, N H F; Yeung, C A; Worthington, H V

    2003-03-01

    The purpose of the present study was to conduct a systematic review of ceramic inlays, assess the quality of published clinical studies, and determine the clinical effectiveness of ceramic inlays compared to other forms of posterior restorations. Prospective clinical trials of ceramic inlays published from 1990 to 2001 were retrieved by electronic and hand searching. The methodological quality of each study was assessed by two calibrated reviewers using a standardised checklist. The clinical effectiveness of ceramic inlays was evaluated in terms of failure rate, postoperative pain, and aesthetics. The results were compared to those of other forms of posterior restorations by means of an odds ratio. Among 46 articles selected for quality assessment, only five (10.6%) reported randomised controlled trials and 15 (32.6%) presented controlled clinical trials. The remaining 26 papers (56.5%) were longitudinal clinical trials lacking control groups. Only three papers fulfilled the requirement for statistical analysis to evaluate the clinical effectiveness of ceramic inlays. The results indicate no significant differences in longevity or postoperative sensitivity between ceramic and other posterior restorations over assessment periods of up to 1 year. It is concluded that no strong evidence is available to confirm the clinical effectiveness of ceramic inlays in comparison to other posterior restorations. Greater attention is required to the design and reporting of studies to improve the quality of clinical trials of ceramic inlays.

  9. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.

    1981-01-01

    Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.

  10. Impact-Resistant Ceramic Coating

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.; Izu, Y. D.

    1986-01-01

    Refractory fibers more than double strength of coating. Impact strengths of ceramic coatings increase with increasing whisker content. Silicon carbide whiskers clearly produce largest increase, and improvement grows even more with high-temperature sintering. Coating also improves thermal and mechanical properties of electromagnetic components, mirrors, furnace linings, and ceramic parts of advanced internal-combustion engines.

  11. Ceramic applications in turbine engines

    SciTech Connect

    Helms, H.E.; Heitman, P.W.; Lindgren, L.C.; Thrasher, S.R.

    1986-01-01

    This book documents a study of the use of ceramic components in turbine engines, for the purpose of improving cycle efficiency and raising operating temperatures. The study covers design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstration tests. The use of ceramic components in gas turbine engines allows significantly higher engine operating temperatures than metal components allow. This increased temperature capability yields a more efficient engine that could reduce heavy-duty truck fuel use per mile by more than 20%. Furthermore, ceramic components may be less expensive than complex air-cooled metal components and may offer reduced weight, improved erosion resistance, and reduced dependence on critical imported metals used in superalloys. The reduction in cost may make the gas turbine engine feasible for mass production vehicualr applications (trucks or passenger cars). As a part of the study described, a technology base was established which can be applied to automotive and other gas turbine engines. In addition, an understanding of ceramic design methodology was accomplished, design data and ceramic material characterization were provided, nondestructive testing technology was developed, ceramic component fabrication techniques were advanced, and chemical structural stability of ceramic components in a gas turbine environment were evaluated.

  12. Lightweight high performance ceramic material

    DOEpatents

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  13. Improved Tensile Test for Ceramics

    NASA Technical Reports Server (NTRS)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  14. Controlled Dynamic Fragmentation of Ceramics

    DTIC Science & Technology

    2009-12-14

    mechanism determining ballistic impact performance of ceramic armors as well as reliability of gun barrels. This program, which was sponsored by the...Research Office Fragmentation is a key damage mechanism determining ballistic impact performance of ceramic armors as well as reliability of gun ...the defect distributions that were considered (Weibull, Gauss and Uniform) fall on a single universal curve. Sdf

  15. Method of forming a ceramic matrix composite and a ceramic matrix component

    DOEpatents

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  16. Ceramic membrane development in NGK

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  17. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  18. Protective coating for ceramic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.

  19. World Space Congress: a vision quest.

    PubMed

    Iannotta, Ben

    2003-01-01

    The World Space Congress (WSC) in October, 2002, brought together luminaries, aerospace engineers, students, and scientists to discuss strategies for reviving the world's space agency. WSC lectures and plenary sessions focused on future research in space. Among topics discussed are the use of the Hubble Space Telescope to scan for habitable planets and obtain data about the beginning of the universe, new weather satellites, planetary protection from comets or asteroids, exploration and establishment of colonies on the Moon and Mars, medical advances, the role of space exploration in the world economy.

  20. The Yankee Dental Congress: an MDS Institution.

    PubMed

    Carman, Melissa

    2014-01-01

    The Yankee Dental Congress is such a big part of the Massachusetts Dental Society (MDS) that it's sometimes hard to think of one without thinking of the other. The dental meeting, which is the fifth-largest dental conference in the United States, is so integral to the Society that the entire MDS staff moves to Boston's Seaport District and the Boston Convention & Exhibition Center (BCEC) for the four days of the conference, working both behind the scenes and on the front lines to make sure that everything runs smoothly and that attendees and exhibitors get as much out of the meeting as possible.

  1. Chromosome congression explained by nanoscale electrostatics.

    PubMed

    Gagliardi, L John; Shain, Daniel H

    2014-02-24

    Nanoscale electrostatic microtubule disassembly forces between positively charged molecules in kinetochores and negative charges on plus ends of microtubules have been implicated in poleward chromosome motions and may also contribute to antipoleward chromosome movements. We propose that chromosome congression can be understood in terms of antipoleward nanoscale electrostatic microtubule assembly forces between negatively charged microtubule plus ends and like-charged chromosome arms, acting in conjunction with poleward microtubule disassembly forces. Several other aspects of post-attachment prometaphase chromosome motions, as well as metaphase oscillations, are consistently explained within this framework.

  2. 26 CFR 5e.274-8 - Travel expenses of Members of Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Travel expenses of Members of Congress. 5e.274-8... TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS, TRAVEL EXPENSES OF MEMBERS OF CONGRESS § 5e.274-8 Travel expenses of Members of Congress. (a) In general. Members of Congress (including any Delegate and...

  3. 26 CFR 5e.274-8 - Travel expenses of Members of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Travel expenses of Members of Congress. 5e.274...) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS, TRAVEL EXPENSES OF MEMBERS OF CONGRESS § 5e.274-8 Travel expenses of Members of Congress. (a) In general. Members of Congress (including...

  4. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  5. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.; Bates, J. Lambert

    1980-01-01

    A ceramic component suitable for preparing MHD generator electrodes having the compositional formula: Y.sub.x (Mg.sub.y Cr.sub.z).sub.w Al.sub.(1-w) O.sub.3 where x=0.9 to 1.05, y=0.02 to 0.2, z=0.8 to 1.05 and w=1.0 to 0.5. The component is resistant to the formation of hydration products in an MHD environment, has good electrical conductivity and exhibits a lower electrochemical corrosion rate than do comparable compositions of lanthanum chromite.

  6. Ceramic superconducting components

    NASA Technical Reports Server (NTRS)

    Haertling, G. H.

    1991-01-01

    An approach to the application of high-Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid conductor process (RCP), involves the mounting of a preformed, sintered, and tested superconductor material onto an appropriate, rigid substrate with an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Circuit elements such as straight conductors, coils and connectors were fabricated from YBa2Cu3O(7-x) superconducting material. Performance results are included for a low-noise low-thermal-conductivity superconducting grounding link for NASA.

  7. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  8. Absorbable-Susceptor Welding of Ceramics

    NASA Technical Reports Server (NTRS)

    Schroeder, J. E.; Shlichta, P. J.

    1983-01-01

    Susceptor becomes part of joint. Susceptor is heated to high temperature by RF energy, then melts adjacent ceramic material. Susceptor dissolves in molten ceramic. When cooled, ceramic parts form moloithic assembly. Suitable for joining complex subassemblies in heat exchangers or other ceramic process equipment for high temperatures.

  9. High-temperature corrosion resistance of ceramics and ceramic coatings

    SciTech Connect

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  10. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  11. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  12. Ceramic-glass-ceramic seal by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-ceramic seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic workpieces. The slurry and workpieces are placed together, insulated and then microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by a diffusion rather than by wetting of the reactants.

  13. In Congress Budget Update for NOAA, USGS

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Among the agenda items facing Congress as it reconvenes this week are the fiscal 1984 budgets for the National Oceanic and Atmospheric Administration (NOAA), which is part of the Department of Commerce, and for the U.S. Geological Survey (USGS), which is within the Department of the Interior. Fiscal year 1984 begins October 1, 1983. As Congress rolls up its shirtsleeves and gets down to business, Eos presents a status report on the two agency budgets.Both House and Senate appropriations committees have finished their work on the NOAA budget, which had been targeted by President Ronald Reagan for a $799.8 million appropriation request (program level of $843.2 million) in his proposed fiscal 1984 budget (Eos, February 15, 1983, p. 65). The House appropriation for NOAA (H.R. 3134 and H.R. 3222) is $998.5 million, with a program level of $1043.9 million. The Senate Appropriations Committee set its appropriation (S. 1721) at $987.8 million, with a program level of $1041.0 million.

  14. U.S. Congress playing budgetary endgame

    NASA Astrophysics Data System (ADS)

    Carlowicz, Mike

    With fiscal year 1997 (FY '97) set to begin on October 1, the U.S. Congress was poised to fund most American science programs and agencies at or above the levels of funding appropriated in the tumultuous FY '96. Seeking to avert a drawn-out budget debate during an election year, congressional leaders were working feverishly in the last week of September to write appropriations bills that would be acceptable—though not necessarily satisfying—to both Congress and the Clinton Administration.On September 24, the U.S. House of Representatives and the Senate approved the conference report of H.R. 3666, the appropriations bill that provides funding for the departments of Veterans Affairs, Housing and Urban Development, and the Independent Agencies. The conference report of this VA-HUD bill provides $84.7 billion in spending for the affected agencies, including NASA, the Environmental Protection Agency (EPA), and the National Science Foundation (NSF). The conference report was weighted heavily toward the preferences of the Senate, where moderates and pragmatists were stressing compromise and pushing for appropriations bills that President Clinton would be likely to sign.

  15. Radiation effects in ceramics

    NASA Astrophysics Data System (ADS)

    Hobbs, Linn W.; Clinard, Frank W.; Zinkle, Steven J.; Ewing, Rodney C.

    1994-10-01

    Ceramics represent a large class of solids with a wide spectrum of applicability, whose structures range from simple to complex, whose bonding runs from highly ionic to almost entirely covalent and, in some cases, partially metallic, and whose band structures yield wide-gap insulators, narrow-gap semiconductors or even superconductors. These solids exhibit responses to irradiation which are more complex than those for metals. In ceramic materials, atomic displacements can be produced by direct momentum transfer to often more than one distinguishable sublattice, and in some cases radiolytically by electronic excitations, and result in point defects which are in general not simple. Radiation-induced defect interaction, accumulation and aggregation modes differ significantly from those found in metals. Amorphization is a frequent option in response to high-density defect perturbation and is strongly related to structural topology. These fundamental responses to irradiation result in significant changes to important applicable properties, such as strength, toughness, electrical and thermal conductivities, dielectric response and optical behavior. The understanding of such phenomena is less well-understood than the simple responses of metals but is being increasingly driven by critical applications in fusion energy production, nuclear waste disposal and optical communications.

  16. Ceramic fabrication R D

    SciTech Connect

    Not Available

    1990-01-01

    This project is separated into three tasks. The first task is a design and modeling effort to be carried out by MSE, Inc. The purpose of this task is to develop and analyze designs for various cohesive ceramic fabrication (CCF) components. This quarter, the advanced molybdenum disicilide MHD electrode design was essentially completed. Final refinements will be made after molybdenum disilicide processing results are available and the final layer compositions are established. Work involving whisker incorporation was initiated on the high stress component. It is unlikely that whiskers will become low cost, so particulate reinforcement will be pursued. Modeling work will resume once a suitable aluminum oxide/silicon carbide composition is selected that can be fired to acceptable densities by pressureless sintering. Task 2, subcontracted to Applied Technology Laboratories (ATL), is principally directed at establishing a property data base for monolithic and laminated alumina fabricated using the CCF process. This quarter, ATL demonstrated that the CCF process does not compromise the flexure strength of alumina. Task 3, subcontracted to Ceramics Binder Systems, Inc., focused on CCF silicon carbide particulate reinforced alumina and on the development of processing procedures for nonoxide molybdenum disilicide. Preliminary results indicate that achieving high densities in silicon carbide particulate reinforced aluminum oxide will be difficult. Molybdenum disilicide results are encouraging, and it is clear that the CCF process will work with this nonoxide material. 3 refs., 18 figs., 4 tabs.

  17. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  18. Integral Textile Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  20. Contemporary all-ceramic materials, part-1.

    PubMed

    Pilathadka, Shriharsha; Vahalova, Dagmar

    2007-01-01

    Over the past 35 years, multiple types of all-ceramic materials have been introduced as an ideal alternative for metal-fused to ceramic. This review covers state-of-the-art development of all-ceramic systems in terms of history, material composition, fabrication technologies, and structural and strength properties. These materials are proved to be ideal in terms of mechanical properties and biocompatibility, making metal-free ceramic restorations a realistic clinical alternative for conventional metal-fused-to ceramic.

  1. Advanced ceramics for environmental protection

    SciTech Connect

    Chambers, J.A.

    1994-12-31

    Advanced ceramic materials offer significant thermodynamic efficiency advantages over metals and alloys because of their higher use temperatures. Using ceramic components results in higher temperature industrial processes which convert fuels to energy more efficiently, reducing environmental emissions. Ceramics have always offered high temperature strength and superior corrosion and erosion resistance. However, brittleness, poor thermal stock resistance and catastrophic failure have slowed industrial adoptions of ceramics in environmental applications. This paper will focus on environmental applications of three new advanced ceramic materials that are overcoming these barriers to industrial utilization through improved toughness, reliability, and thermal shock performance. PRD-66, a layered oxide ceramic with outstanding thermal shock resistance and high use temperature with utility in catalyst support, insulation, and hot gas filtration applications, is discussed. Tough silicon carbide fiber reinforced silicon carbide (SiC/SiC) and carbon fiber reinforced silicon carbide (C/SiC) ceramic composites made by chemical vapor infiltration, and silicon carbide particulate reinforced alumina (SiC{sub p}/Al{sub 2}O{sub 3}) composites made through Lanxide Corporation`s DIMOX{trademark} directed metal oxidation process are described. Applications of these materials to pollution reduction and energy efficiency in medical and municipal waste incineration, heat management, aluminum remelting, pyrolysis, coal combustion and gasification, catalytic pollution control, and hot gas filtration, will be discussed.

  2. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, B.D.; Ward, M.E.

    1998-09-22

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 5 figs.

  3. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  4. High pressure ceramic heat exchanger

    DOEpatents

    Harkins, Bruce D.; Ward, Michael E.

    1999-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the reinforcing member and having a strengthening member wrapped around the refractory material. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  5. Ceramic tamper-revealing seals

    SciTech Connect

    Kupperman, D.S.; Raptis, A.C.; Sheen, Shuh-Haw

    1991-12-31

    A tamper resistant seal is made of a brittle material with internal defects internally arranged in a random pattern to form a unique fingerprint characteristic of the seal which may be identified by ultrasonic scanning to determine whether tampering has occurred. It comprises a flexible metal or ceramic cable with composite ceramic ends or a U-shaped ceramic connecting element attached to a binding element plate or block cast from alumina or Zr, and connected to the connecting element by shrink fitting. Part of the binding element is cast with NiO{sub 2} particles, which allows ultrasonic scanning and the resulting fingerprint. 7 figs.

  6. Congress abstracts: preparing abstracts for submission and successful acceptance.

    PubMed

    Curzon, M E J; Cleaton-Jones, P E

    2011-12-01

    To provide guidance on writing congress abstracts for submission and how to increase the chance of acceptance. There is increasing competition for submitted abstracts to be accepted by scientific congresses. Because the facilities or size of a congress may be limited a selection process is often used based upon the quality of abstracts submitted. Accordingly, it is crucial for a researcher to prepare an abstract very carefully to ensure the best chance of acceptance. The approaches to preparing an abstract and the techniques for enhancing quality are reviewed. Suggestions and guidance are given to ensure the production of a well structured, informative and scientifically sound abstract.

  7. The congress that never was: the Madrid International Congress of Psychology (1936).

    PubMed

    Carpintero, Helio; Lafuente, Enrique

    2008-11-01

    The 11th International Congress of Psychology did not take place in Madrid in September 1936, as initially planned. Instead, it was held in Paris in July of the following year. The finding of a so-far unpublished correspondence between the main organizers of the event, the Spanish psychologists José Germain and Emilio Mira, and the Swiss psychologist Edouard Claparède, makes it possible to gain new insight into the circumstances preventing its celebration in Madrid. This paper aims at shedding some light on such circumstances by unraveling the social and political context alluded to in these letters, and connecting their contents with other significant events and documents on the various organizational aspects of the congress.

  8. Dispersed metal-toughened ceramics and ceramic brazing

    SciTech Connect

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurement of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.

  9. NDE of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Vary, A.

    1986-01-01

    Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.

  10. Ceramic turbine nozzle

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  11. Ceramic turbine nozzle

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2002-07-01

    In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  14. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  15. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  16. Ceramic Cerami Turbine Nozzle

    DOEpatents

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  17. Lightweight Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.

    1986-01-01

    Fiber burnout process yields low densities. Low density attained by process of sacrificial burnout. Graphite or carbon fibers mixed into slurry of silica, alumina, and boron-compound fibers in amounts ranging from 25 to 75 percent of total fiber content by weight. Mixture formed into blocks and dried. Blocks placed in kiln and heated to 1,600 degrees F(870 degrees C) for several hours. Graphite or carbon fibers slowly oxidize away, leaving voids and reducing block density. Finally, blocks heated to 2,350 degrees F (1,290 degrees C) for 90 minutes to bond remaining ceramic fibers together. Developed for use on Space Shuttle and other spacecraft, rigid insulation machined to requisite shape and bonded in place.

  18. NDE of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Vary, A.

    1986-01-01

    Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.

  19. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  20. NDE of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.

    1986-01-01

    Radiographic, ultrasonic, and scanning laser acoustic microscopy (SLAM) techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high-density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was capable also of detecting voids, inclusions, and cracks in finished test bars. Consideration is given to the potential for applying thermoacoustic microscopy techniques to green and densified ceramics. Some limitations and the detection probability statistics of the aforementioned nondestructive evaluation (NDE) processes are also discussed.

  1. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  2. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  3. Nondestructive characterization of micromachined ceramics

    NASA Astrophysics Data System (ADS)

    Cooney, Adam; Hix, Kenneth E.; Yaney, Perry; Zhan, Qiwen; Dosser, Larry R.; Blackshire, James L.

    2005-05-01

    The aerospace, automotive, and electronic industries are finding increasing need for components made from silicon carbide (SiC) and silicon nitride (Si3N4). The development and use of miniaturized ceramic parts, in particular, is of significant interest in a variety of critical applications. As these application areas grow, manufacturers are being asked to find new and better solutions for machining and forming ceramic materials with microscopic precision. Recent advances in laser machining technologies are making precision micromachining of ceramics a reality. Questions regarding micromachining accuracy, residual melt region effects, and laser-induced microcracking are of critical concern during the machining process. In this activity, a variety of nondestructive inspection methods have been used to investigate the microscopic features of laser-machined ceramic components. The primary goal was to assess the micromachined areas for machining accuracy and microcracking using laser ultrasound, scanning electron microscopy, and white-light interference microscopic imaging of the machined regions.

  4. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  5. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.; Filatovs, G. J.

    1974-01-01

    A study was conducted to develop a ceramics handbook defining properties and parameters necessary for thermostructural design. Continuing efforts toward this goal, and in particular toward the evolution of a reliable predictor of fracture from current literature, are described.

  6. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.

  7. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  8. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  9. Nonlinear fracture of concrete and ceramics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.

    1989-01-01

    The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.

  10. Heat distribution ceramic processing method

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  11. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  12. Casting Of Multilayer Ceramic Tapes

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Procedure for casting thin, multilayer ceramic membranes, commonly called tapes, involves centrifugal casting at accelerations of 1,800 to 2,000 times normal gravitational acceleration. Layers of tape cast one at a time on top of any previous layer or layers. Each layer cast from slurry of ground ceramic suspended in mixture of solvents, binders, and other components. Used in capacitors, fuel cells, and electrolytic separation of oxygen from air.

  13. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  14. Method for preparing ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  15. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  16. Method for preparing ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-01-09

    A process is disclosed for preparing ceramic composite comprising blending TiC particulates, Al{sub 2}O{sub 3} particulates and nickel aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m{sup 1/2}, a hardness equal to or greater than 18 GPa. 5 figs.

  17. Extruded ceramic honeycomb and method

    DOEpatents

    Day, J. Paul

    1995-04-04

    Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.

  18. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  19. High-Temperature Ceramic Superconductors

    DTIC Science & Technology

    1991-12-15

    magnetic susceptibility, Meissner effect and specific heat. Task 4 is an investigation of superconductor ceramic processing. Most of the important... effect of the additional heater on the microstructure is shown in Fig. 11. As the upper micrograph shows, hardly any alignment was induced with a single... effect in cal field,7 H 1 = 𔃻o In K/41TA 2, and magnetic field pene- limiting the current-carrying capability of the ceramic tration length, A. The

  20. Radiation hard ceramic RPC development

    NASA Astrophysics Data System (ADS)

    Akindinov, A.; Dreyer, J.; Fan, X.; Kämpfer, B.; Kiselev, S.; Kotte, R.; Laso Garcia, A.; Malkevich, D.; Naumann, L.; Nedosekin, A.; Plotnikov, V.; Stach, D.; Sultanov, R.; Voloshin, K.

    2017-01-01

    We report recent advances in R&D on the Beam Fragmentation and T0 Counter (BFTC) for the CBM experiment, based on RPCs with floating electrodes made of resistive ceramic material. An optimal value of the ceramics bulk resistivity has been determined to be about 5·109 Ω·cm. RPCs with such electrodes show even characteristics and stable operation under particle fluxes of up to 150 kHz/cm2, with the detection efficiency above 90%.

  1. Report to Congress on abnormal occurrences

    SciTech Connect

    Not Available

    1991-03-01

    Section 208 of the Energy Reorganization Act of 1974 identified an abnormal occurrence as an unscheduled incident or event that the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from October 1 through December 31, 1990. The report discusses five abnormal occurrences, none of which involved a nuclear power plant. Two involved significant overexposures to the hands of two radiographers, two involved medical therapy misadministrations, and one involved a medical diagnostic misadministration. No abnormal occurrences were reported by the Agreement States. The report also contains information that updates a previously reported abnormal occurrence. 8 refs.

  2. Congress hears testimony on Augustine Report

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    A range of space analysts assessed the future of the National Aeronautics and Space Administration (NASA) on January 29 and 31 before the House Science, Space, and Technology Committee. The committee's new chairman, George E. Brown, Jr. (D-Calif.), held the hearing on the Report of the Advisory Committee on the Future of the U.S. Space Program, better known as the Augustine Report, which was released in December.Most witnesses from government agencies, scientific associations, and universities lauded the report's conclusions, expressing strong consensus that NASA needed new direction. John M. Logsdon, director of George Washington University's Space Policy Institute, summed up the report's message as “let's stop 20 years of arguments and uncertainty and get on with a space program that commands stable support from the White House, the Congress, and the American people.”

  3. International congress on DNA damage and repair: Book of abstracts

    SciTech Connect

    Not Available

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  4. 111. STAN HYWET AND GROUNDS Member of Congress John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. STAN HYWET AND GROUNDS Member of Congress John F. Seiberling, photographer January 1942; 5' x 7' copy negatives made from 35 mm negatives loaned by Representative Seiberling - Stan Hywet Hall, 714 North Portage Path, Akron, Summit County, OH

  5. 35. Photocopy of drawing (from Library of Congress) Artist unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Photocopy of drawing (from Library of Congress) Artist unknown 1891 SOUTH FRONT FROM THE SOUTHWEST - Patent Office Building, Bounded by Seventh, Ninth, F & G Streets, Northwest, Washington, District of Columbia, DC

  6. Flying High in Philadelphia. "Congress Shall Make No Law. . ."

    ERIC Educational Resources Information Center

    Piel, Gerard

    1976-01-01

    Reviews congressional appropriations which have led to the development of science education curriculum materials and science teacher education. Describes the present reluctance of Congress to appropriate more funds for additional efforts. (CP)

  7. 17. Historic American Buildings Survey Original at Library of Congress, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Historic American Buildings Survey Original at Library of Congress, Pictorial Archives of Early American Architecture Arthur A. Snyder, Photographer AQUEDUCT BRIDGE, FEBRUARY 2,1900 - Potomac Aqueduct, Georgetown abutment at Georgetown waterfront, Washington, District of Columbia, DC

  8. Science and technology in the 101st Congress

    SciTech Connect

    Roush, W.

    1990-11-01

    Congressional say over science and technology is growing along with a consensus that the reins of management should accompany the power of the purse. This article outlines six key issues and how each member of Congress voted on them.

  9. Flying High in Philadelphia. "Congress Shall Make No Law. . ."

    ERIC Educational Resources Information Center

    Piel, Gerard

    1976-01-01

    Reviews congressional appropriations which have led to the development of science education curriculum materials and science teacher education. Describes the present reluctance of Congress to appropriate more funds for additional efforts. (CP)

  10. Hydrogen program goal-setting methodologies: Report to Congress

    SciTech Connect

    None, None

    2006-08-01

    DOE's Hydrogen Goal-Setting Methodologies Report to Congress summarizes the processes used to set Hydrogen Program goals and milestones. Published in August 2006, it fulfills the requirement under section 1819 of the Energy Policy Act of 2005.

  11. School Desegregation: The Court, the Congress, and the President

    ERIC Educational Resources Information Center

    Wise, Michael B.

    1974-01-01

    Author examined the current status of the desegregation movement and traced the development of opposition to school desegregation by both Congress and the president since the 1964 Civil Rights Acts. (Editor/RK)

  12. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  13. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  14. Method for Waterproofing Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  15. Failure Analysis of Ceramic Components

    SciTech Connect

    B.W. Morris

    2000-06-29

    Ceramics are being considered for a wide range of structural applications due to their low density and their ability to retain strength at high temperatures. The inherent brittleness of monolithic ceramics requires a departure from the deterministic design philosophy utilized to analyze metallic structural components. The design program ''Ceramic Analysis and Reliability Evaluation of Structures Life'' (CARES/LIFE) developed by NASA Lewis Research Center uses a probabilistic approach to predict the reliability of monolithic components under operational loading. The objective of this study was to develop an understanding of the theories used by CARES/LIFE to predict the reliability of ceramic components and to assess the ability of CARES/LIFE to accurately predict the fast fracture behavior of monolithic ceramic components. A finite element analysis was performed to determine the temperature and stress distribution of a silicon carbide O-ring under diametral compression. The results of the finite element analysis were supplied as input into CARES/LIFE to determine the fast fracture reliability of the O-ring. Statistical material strength parameters were calculated from four-point flexure bar test data. The predicted reliability showed excellent correlation with O-ring compression test data indicating that the CARES/LIFE program can be used to predict the reliability of ceramic components subjected to complicated stress states using material properties determined from simple uniaxial tensile tests.

  16. Microwave sintering of ceramic materials

    NASA Astrophysics Data System (ADS)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  17. The new Congress and population issues.

    PubMed

    Kalish, S

    1993-02-01

    A change of the US administration and an increase in the number of new members of the US Congress, many of whom are minorities and/or women, in 1993 may strengthen population activities including data collection, demographic research, family planning and population, and policies. In fact, the 1993 freshman class of US House of Representatives is the largest since World War II (110 vs. 118). Women and minorities in the House now comprise 25% of the vote. The US Senate now has the first ever elected African American woman (Carol Mosely Braun [D-IL]) and the first Native American in more than 60 years (Ben Nighthorse Campbell [D-CO]). Even though they are new members, 72% have previous legislative experience. This experience, especially in the era of New Federalism set during the 1980s which resulted in new responsibilities without additional resources, has prepared them to make compromises. Further, the new members tend to be moderates. Moreover, 33% were elected to office by margins less than 60% and are therefore candidates for targeting by the opposition. In addition, the huge federal budget deficit concerns the public. Thus, Congress and the new administration will probably have to focus on deficit reduction rather than on population and social issues. There will also be competition over available funds coming from the cut to defense spending. Therefore, it is difficult to predict spending levels for population and population-related issues. Yet there appears to be support for family planning programs and clinics, passage of the Family Medical Leave Act, environmental policies, and implementing 2 studies of sexual behavior. There is uncertainty about the level of support for international family planning, however.

  18. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2015-09-02

    Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress Ronald O’Rourke Specialist in Naval Affairs September 2, 2015...SUBTITLE Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Coast Guard Polar Icebreaker Modernization: Background and

  19. Coast Guard Cutter Procurement: Background and Issues for Congress

    DTIC Science & Technology

    2015-07-28

    Coast Guard Cutter Procurement: Background and Issues for Congress Ronald O’Rourke Specialist in Naval Affairs July 28, 2015 Congressional...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Coast Guard Cutter Procurement: Background and Issues for Congress Congressional...OPCs), and 58 Fast Response Cutters (FRCs) as replacements for 90 aging Coast Guard cutters and patrol craft. The NSC, OPC, and FRC programs have a

  20. The Ninth Inter-American Indian Congress Historical Overview.

    ERIC Educational Resources Information Center

    Willard, William

    1986-01-01

    The Ninth Congress of the Inter-American Indian Institute (IAII) was held October 28-November 1, 1985 in Santa Fe, New Mexico, and was--for several reasons--a major event in the history of the indigenous people of this hemisphere. First, it was the first Congress held in the United States in the 45 years since the Institute was organized. Second,…

  1. Sovereign Debt in Advanced Economies: Overview and Issues for Congress

    DTIC Science & Technology

    2013-10-28

    for Congress Congressional Research Service 1 Introduction In many advanced economies, the global financial crisis of 2008-2009 and ensuing...Advanced Economies: Overview and Issues for Congress Congressional Research Service 16 Financial Repression Some economists argue that governments can... Financial Data. Additionally, one market research firm (S&P Capital IQ) estimates the likelihood of default over the next five years for a number

  2. Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress

    DTIC Science & Technology

    2015-03-09

    Background1 The JLTV is an Army- led , multi-service initiative to develop a family of future light tactical vehicles to replace many of the HMMWVs used...Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress Andrew Feickert Specialist in Military Ground Forces March 9, 2015...SUBTITLE Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  3. Membership of the 109th Congress: A Profile

    DTIC Science & Technology

    2005-05-31

    includes data on party affiliation; average age and length of service; occupation; religious affiliation; female and minority Members; foreign-born...such as Greek Orthodox, Jewish, Christian Scientist, and The Church of Jesus Christ of Latter-Day Saints (Mormon), make up the balance. Female and...Minority Members Female Members. More women, 83, serve in the 109th Congress than have in any prior Congress. Sixty-nine in the House and 14 in the Senate

  4. Korea: U.S.-Korean Relations -- Issues for Congress

    DTIC Science & Technology

    2005-06-16

    wounded in the Korean War (1950-53). The United States agreed to defend South Korea from external aggression in the 1954 Mutual Defense Treaty. The... Korean Relations — Issues for Congress Updated June 16, 2005 Larry A. Niksch Foreign Affairs, Defense , and Trade Division Report Documentation Page...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Korea : U.S.- Korean Relations -- Issues for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  5. Ferroelectric ceramics in a pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Shchagin, A. V.; Miroshnik, V. S.; Volkov, V. I.; Oleinik, A. N.

    2015-12-01

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  6. Ferroelectric ceramics in a pyroelectric accelerator

    SciTech Connect

    Shchagin, A. V.; Miroshnik, V. S.; Volkov, V. I.; Oleinik, A. N.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  7. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  8. Ceramic-Ceramic Bearing: Too Unpredictable to Use it Regularly.

    PubMed

    Su, Edwin P

    2012-10-01

    Ceramic-on-ceramic (CoC) bearings have excellent tribologic properties because of the smoothness, hardness, and wettability of the material. Therefore, their use has been proposed in younger, active patients who may wear out a traditional metal-on-polyethylene bearing. The same material properties that are beneficial to tribology may also create problems, however. For example, squeaking and fracture of the bearing materials have been reported to occur. The purpose of this paper was to investigate the literature reporting the complications of ceramic bearings and attempt to provide insight into their implications. The US National Library of Medicine Database (PubMed) was searched using the terms "ceramic-ceramic total hip replacement," "complications," "squeaking," and "fracture." Only clinical studies with a clear reporting of the incidence of these complications were included. The literature reports that squeaking of the CoC bearing occurs in a certain percentage of patients and is likely indicative of edge loading and excessive wear. Other factors, such as patient height, weight, range of motion, and implant design, may contribute to the propensity for squeaking. Fracture is a unique risk of the CoC articulation that requires revision surgery. Though improvements in manufacturing techniques have reduced the fracture risk to a very low percentage, the ceramic material remains susceptible to this complication by impingement and component malposition. Because of these possible negative outcomes associated with the ceramic material, the CoC bearing is too unpredictable to use regularly, and its use should be limited to patients who would benefit the most from it.

  9. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  10. Performance of Ceramics in Severe Environments

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  11. Tailored ceramics for laser applications

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Joel Philip

    Transparent ceramics have many features that recommend them over single crystals for use as laser amplifiers. Some features, such as greater mechanical toughness and an absence of extended crystalline defects, are intrinsic to polycrystalline materials. Other advantages accrue from ceramic processing: ceramics sinter more rapidly than crystals grow from a melt, at lower temperatures. Ceramic processes are more readily scaled than Czochralski growth, facilitating larger apertures. Unlike a uniform melt, a ceramic green structure can have controlled concentration gradients, resulting in a multifunctional device upon sintering. Identifying diffusion mechanisms in a suitable host material and quantifying diffusion for a dopant with appropriate energy levels are key steps toward tailoring laser ceramics to the specifications of device designers. Toward that end, this study was the first to identify the mechanism and rate of Nd diffusion in YAG. Grain boundary diffusion was shown to dominate Nd transport under conditions relevant to laser ceramics fabrication. Based on a definition of grain boundary width as 1 A, this process occurs at a rate of DGB = 6.4 x 105 +/- 2.0 x 105 exp(-491 +/- 64 kJ/(mol K))m 2/s. Mechanism identification and the first published kinetics measurement were made possible by the introduction of a heat treatment method that isolates microstructural change from dopant diffusion: the concentration of grain boundaries was kept great enough to allow rapid diffusion, but low enough to limit the driving force for coarsening. Sintering of fine-grained and phase-pure precursor powder for 4 min at 1700 °C produced 0.8 mum grains; subsequent diffusion heat treatments at up to 1650 °C for up to 64 h caused negligible coarsening, while achieving diffusion distances of up to 23 mum.

  12. Glass Ceramic Formulation Data Package

    SciTech Connect

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  13. Use of ceramics in total hip replacement.

    PubMed

    Lang, Jason E; Whiddon, David R; Smith, Eric L; Salyapongse, Aaron K

    2008-01-01

    Ceramics have been used as a bearing surface in total hip arthroplasty (THA) for more than 30 years. Properties of this material which make it particularly attractive for this application include its hardness, high compression strength, and excellent wettability. The low incidence of biologically significant particle generation and clinically significant osteolysis with the use of ceramics in THA reflects these properties. However, low fracture toughness and linear elastic behavior demonstrated by ceramic make it prone to breakage under stress. Improvements in the processing of ceramic as well as advances in engineering of head-neck articulations and liner design have led to an overall decrease in the incidence of ceramic fracture and dislocation. This article reviews the science behind the use of ceramics in THA, the clinical results of ceramics in THA, including complications unique to this bearing surface, and future directions for the application of ceramics in THA.

  14. Modeling projectile impact onto prestressed ceramic targets

    NASA Astrophysics Data System (ADS)

    Holmquist, T. J.; Johnson, G. R.

    2003-09-01

    This work presents computed results for the responses of ceramic targets, with and without prestress, subjected to projectile impact. Also presented is a computational technique to include prestress. Ceramic materials have been considered for armor applications for many years because of their high strength and low density. Many researchers have demonstrated that providing confinement enhances the ballistic performance of ceramic targets. More recently, prestressing the ceramic is being considered as an additional enhancement technique. This work investigates the effect of prestressing the ceramic for both thin and thick target configurations subjected to projectile impact. In all cases the targets with ceramic prestress provided enhanced ballistic performance. The computed results indicate that prestressed ceramic reduces and/or delays failure, resulting in improved ceramic performance and ballistic efficiency.

  15. Reliability of ceramics for heat engine applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  16. Ceramic HEPA Filter Program

    SciTech Connect

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  17. Properties of Ceramic Filters

    SciTech Connect

    Spain, J.D.

    1996-12-31

    The mechanical integrity of ceramic filter elements is a key issue for hot gas cleanup systems. To meet the demands of advanced power systems, the filter components sustain thermal stresses of normal operations (pulse cleaning), of start-up and shut-down, and of process upsets such as excessive ash accumulation without catastrophic failure. They must also survive various mechanical loads associated with handling and assembly, normal operation, and process upsets. For near-term filter systems, the elements must also survive operating temperature of 1650{degrees}F for three years. Objectives of the testing conducted were as follows: (1) measure basic physical, mechanical and thermal properties of candle filter materials and relate these properties to in-service performance, (2) perform post-exposure testing of candle-filter materials after service at Tidd and Karhula and compare post-exposure results to as-manufactured results to evaluate property degradation, (3) based on measured properties and in-service performance, develop an understanding of material requirements for candle-filter materials and help establish property goals, and (4) establish a test protocol for evaluation of candle filter materials.

  18. Ordered ceramic membranes

    SciTech Connect

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  19. Ceramic filter material issues

    SciTech Connect

    Sawyer, J.W.; Brown, J.J.; Brown, N.R.

    1993-06-01

    The development of advanced power production processes such as pressurized fluid bed combustion (PFBC) or integrated gasification combined cycle (IGCC) is important to assure the energy future of the United States. These power producing processes can potentially produce electric power at competitive prices in an environmentally benign manner. The use of high temperature filters is required in these processes to assure high operating efficiency. However, high temperature filters have not proven to be durable in these applications. The objective of the effort is to identify and investigate the filter material degradation mechanisms. The filter materials examined under this project are silicon carbide based ceramic candle filters from two manufactures: Schumacher and Refractron. Specifically, the Schumacher Diaschumalith F40 and the Refractron 70/3 with 442-T binder were subjected to a series of tests which examined their ability to withstand thermal fatigue and chemical corrosion from steam and alkali. Both these candles are composed to silicon carbide grains in an alumina/silica based binder. There are differences in binder formulation between the two candles and each manufacturer has a different approach to forming the filtration membrane on the candle surface.

  20. Incorporation of Waste Ceramic Blocks in Structural Ceramics

    NASA Astrophysics Data System (ADS)

    de Oliveira, Orley Magalhães; das Graças da Silva-Valenzuela, Maria; Andrade, Christiano Gianesi Bastos; Junior, Antonio Hortêncio Munhoz; Valenzuela-Díaz, Francisco Rolando

    In Brazil, Ceramics Industries produce bricks and ceramic tiles in practically all the country. In the southwestern region of Bahia are located some of these industries. A considerable proportion of the material produced do not pass the quality control for not having a uniform visual appearance or have cracks. These burned pieces are generally discarded, resulting in a big quantity of waste. The objective of this work is the characterization of this industrial waste and thus consign them to other industrial applications. Our results demonstrate that the burned waste have potential to be used for incorporation in common clay for structural ceramics, thereby avoiding its disposal in nature and reducing this environmental liability. Experimental bodies were tested with different quantities of waste. The common clay and the burned waste were characterized by XRD, TG/DTA, and SEM. The burned specimens were tested for mechanical strength, water absorption, bulk density, and apparent porosity. An incorporation of 10% of waste furnished the best results.

  1. Thermally induced micromechanical stresses in ceramic/ceramic composites

    SciTech Connect

    Li, Zhuang ); Bradt, R.C. . Mackay School of Mines)

    1992-11-01

    The internal micromechanical stresses which develop in ceramic-ceramic composites as a consequence of temperature changes and thermoelastic property differences between the reinforcing and matrix phases are addressed by the Eshelby method. Results for two whisker reinforced ceramic matrix composites and for quartz particles in porcelain are discussed. It is concluded that the stresses which develop in the second phase reinforcing inclusions are quite substantial (GPa-levels) and may be highly anisotropic in character. These stresses are additive to the macroscopic thermal stresses from temperature gradients which are encountered during heating and cooling, and also to externally apphed mechanical stresses (loads). These micromechanical stresses are expected to be highly significant for thermal cycling fatigue and other failure processes.

  2. Thermally induced micromechanical stresses in ceramic/ceramic composites

    SciTech Connect

    Li, Zhuang; Bradt, R.C.

    1992-11-01

    The internal micromechanical stresses which develop in ceramic-ceramic composites as a consequence of temperature changes and thermoelastic property differences between the reinforcing and matrix phases are addressed by the Eshelby method. Results for two whisker reinforced ceramic matrix composites and for quartz particles in porcelain are discussed. It is concluded that the stresses which develop in the second phase reinforcing inclusions are quite substantial (GPa-levels) and may be highly anisotropic in character. These stresses are additive to the macroscopic thermal stresses from temperature gradients which are encountered during heating and cooling, and also to externally apphed mechanical stresses (loads). These micromechanical stresses are expected to be highly significant for thermal cycling fatigue and other failure processes.

  3. Stress Corrosion of Ceramic Materials.

    DTIC Science & Technology

    1983-11-01

    detailed than those presented here. coordinates, of 6 to 15 specimens (error bars omitted for water, for clarity). Contact loads P used for heptane are...Envo Publishing Co.. Lehigh Valley, PA. 1974. te"H. Richter; pp.447-57 in Proceedings of Eleventh International Congress on Combining Glass. Vol. 2...measure of the slope. ’* 15 , . . -. .. .. . .. .. . . . .. . m7- : * * - While reductions in surface energy due to the attachment of surface groups

  4. Process for strengthening silicon based ceramics

    SciTech Connect

    Kim, Hyoun-Ee; Moorhead, A.J.

    1991-03-07

    A process for strengthening silicon based ceramic monolithic materials and composite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400{degrees}C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts, or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  5. Organopolysiloxane Waterproofing Treatment for Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Cagliostro, Domenick E. (Inventor); Hsu, Ming-ta S. (Inventor); Chen, Timothy S. (Inventor)

    1998-01-01

    Rigid and flexible porous ceramics, including thermal insulation of a type used on space vehicles, are waterproofed by a treatment which comprises applying an aqueous solution of an organopolysiloxane water-proofing agent having reactive silanol groups to the surface of the ceramic and then heating the treated ceramic to form a waterproofed ceramic. The organopolysiloxane is formed by the hydrolysis and partial condensation of di- and trialkoxyfunctional alkylalkoxysilanes having 1-10 carbon atom hydrocarbyl groups.

  6. Baseline Industry Analysis, Advance Ceramics Industry

    DTIC Science & Technology

    1993-04-01

    Commerce , Department of Defense, and the National Critical Technologies Panel. Advanced Ceramics, which include ceramic matrix composites, are found in...ceramics and materials industry being identified as a National Critical Technology, Commerce Emerging Technology, and Defense Critical Technology.’ There is...total procurement cost in advanced systems, and as much as ten percent of the electronics portion of those weapons. Ceramic capacitors are almost as

  7. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.

    1997-01-01

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  8. Process for strengthening silicon based ceramics

    DOEpatents

    Kim, Hyoun-Ee; Moorhead, A. J.

    1993-01-01

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  9. Process for strengthening silicon based ceramics

    DOEpatents

    Kim, Hyoun-Ee; Moorhead, A. J.

    1993-04-06

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  10. Emerging Ceramic-based Materials for Dentistry

    PubMed Central

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  11. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  12. Influence of social networks on congresses of urological societies and associations: Results of the 81th National Congress of the Spanish Urological Association.

    PubMed

    Gómez-Rivas, J; Rodríguez-Socarrás, M E; Tortolero-Blanco, L; Garcia-Sanz, M; Alvarez-Maestro, M; Ribal, M J; Cózar-Olmo, M

    2017-04-01

    To measure social network activity during the 81th National Congress of the Spanish Urological Association (AEU) and to compare it with the activity during other congresses of national and international urological associations. We designed and registered the official hashtag #AEU16 for the 81(th) National Congress of the AEU on the Symplur website. The following measurements were recorded: number of participants, number of tweets, tweets by participant, tweets per hour and views. The number of participants in the social network activity during the congress was 207. The measurements of activity in Twitter consisted of a total of 1866 tweets, a mean rate of 16 tweets/h, 9 tweets per participant and 1,511,142 views. The activity during the international congresses is as follows: 2016 American Urological Association annual congress (views: 28,052,558), 2016 European Association of Urology annual congress (views: 13,915,994), 2016 Urological Society of Australia and New Zealand (views: 4,757,453), 2015 Société Internationale d'Urologie annual congress (views: 1,023,038). The activity during the national congresses was recorded as follows: 2016 Annual Conference of The British Association of Urological Surgeons (views: 2,518,880), 81th National Congress of the AEU (views: 1,511,142), 109th Congress of l'Association Française d'Urologie (views: 662,828), 67th German Congress of Urology (views: 167,347). We found 10 posts in Facebook and 2 communications via Periscope TV related to #AEU16. The social network activity during the 81(th) National Congress of the AEU was notable given the results of this study. The use of social networks has expanded among urological associations, congresses and meetings, giving them a global character. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Ceramic tile expansion engine housing

    DOEpatents

    Myers, B.

    1995-04-11

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow there between. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow. 8 figures.

  14. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  15. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  16. Shock compression profiles in ceramics

    SciTech Connect

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  17. High flow ceramic pot filters.

    PubMed

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-07-20

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h(-1)), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ceramic tile expansion engine housing

    SciTech Connect

    Myers, Blake

    1995-01-01

    An expandable ceramic tile housing for a high temperature engine is disclosed wherein each tile is independently supported in place in an interlocking matrix by retention mechanisms which mechanically couple the individual ceramic tiles to an outer metal support housing while maintaining thermal isolation of the metal housing from the ceramic tiles. The ceramic tiles are formed with either an octagonal front face portion and a square shank portion or a square front face portion with an octagonal shank portion. The length of the sides of the octagonal front face portion on one tile is equal to the length of the sides of the square front face portion of adjoining tiles to permit formation of an interlocking matrix. Fibrous ceramic sealing material may be placed between radial and tangential facing surfaces of adjacent tiles to limit radial gas flow therebetween. Labyrinth-sealed pressure-controlled compartments may be established between the tile housing and the outer metal support housing to control radial gas flow.

  19. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    PubMed

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  20. Ceramic on ceramic hip prostheses: a review of past and modern materials.

    PubMed

    Macdonald, Nathanael; Bankes, Marcus

    2014-09-01

    Ceramic on ceramic hip prostheses are an increasingly popular choice for hip replacement. Modern manufacturing techniques and developments have increased the strength and reliability of ceramic materials. The alternative bearing couples such as metal-on-polyethylene and metal-on-metal are more inclined to wear and produce particulate debris. Despite reports of fractures and stripe wear, harder, more inert and more wear resistant, modern ceramic-ceramic hip replacements provide a strong alternative to traditional bearings.

  1. 6th Annual European Antibody Congress 2010

    PubMed Central

    2011-01-01

    The 6th European Antibody Congress (EAC), organized by Terrapinn Ltd., was held in Geneva, Switzerland, which was also the location of the 4th and 5th EAC.1,2 As was the case in 2008 and 2009, the EAC was again the largest antibody congress held in Europe, drawing nearly 250 delegates in 2010. Numerous pharmaceutical and biopharmaceutical companies active in the field of therapeutic antibody development were represented, as were start-up and academic organizations and representatives from the US Food and Drug Administration (FDA). The global trends in antibody research and development were discussed, including success stories of recent marketing authorizations of golimumab (Simponi®) and canakinumab (Ilaris®) by Johnson & Johnson and Novartis, respectively, updates on antibodies in late clinical development (obinutuzumab/GA101, farletuzumab/MORAb-003 and itolizumab/T1 h, by Glycart/Roche, Morphotek and Biocon, respectively) and success rates for this fast-expanding class of therapeutics (Tufts Center for the Study of Drug Development). Case studies covering clinical progress of girentuximab (Wilex), evaluation of panobacumab (Kenta Biotech), characterization of therapeutic antibody candidates by protein microarrays (Protagen), antibody-drug conjugates (sanofi-aventis, ImmunoGen, Seattle Genetics, Wyeth/Pfizer), radio-immunoconjugates (Bayer Schering Pharma, Université de Nantes) and new scaffolds (Ablynx, AdAlta, Domantis/GlaxoSmithKline, Fresenius, Molecular Partners, Pieris, Scil Proteins, Pfizer, University of Zurich) were presented. Major antibody structural improvements were showcased, including the latest selection engineering of the best isotypes (Abbott, Pfizer, Pierre Fabre), hinge domain (Pierre Fabre), dual antibodies (Abbott), IgG-like bispecific antibodies (Biogen Idec), antibody epitope mapping case studies (Eli Lilly), insights in FcγRII receptor (University of Cambridge), as well as novel tools for antibody fragmentation (Genovis). Improvements

  2. The fifth International Geological Congress, Washington, 1891

    USGS Publications Warehouse

    Nelson, C.M.

    2006-01-01

    The 5th International Geological Congress (IGC), the initial meeting in North America, was the first of the three IGCs that have been held in the United States of America (USA). Of the 538 registrants alive when the 5th IGC convened in Washington, 251 persons, representing fifteen countries, actually attended the meeting. These participants included 173 people from the USA, of whom forty-two represented the US Geological Survey (USGS). Fourteen of the US State geological surveys sent representatives to Washington. Eight participants came from other countries in the Western Hemisphere - Canada (3), Chile (1), Mexico (3), and Peru (1). The sixty-six European geologists and naturalists at the 5th IGC represented Austro-Hungary (3), Belgium (3), Britain (12), France (7), Germany (23), Norway (1), Romania (3), Russia (8), Sweden (4), and Switzerland (2). The USGS and the Columbian College (now the George Washington University) acted as the principal hosts. The American Association for the Advancement of Science and then the Geological Society of America (GSA) met in the Capital immediately before the Congress convened (26 August-1 September 1891). The 5th IGC's formal discussions treated the genetic classification of Pleistocene rocks, the chronological correlation of clastic rocks, and the international standardization of colors, symbols, and names used on geologic maps. The third of those topics continued key debates at the 1st through 4th IGCs. The GSA, the Korean Embassy, the Smithsonian Institution's US National Museum, the USGS, and one of the two Secretaries-General hosted evening receptions. Field excursions examined Paleozoic exposures in New York (18-25 August), Cretaceous-Pleistocene localities along the Potomac River south of Washington (30 August), and classic Precambrian-Pleistocene sequences and structures in the Great Plains, Yellowstone, Rocky Mountains, and Great Basin (2-26 September), with optional trips to the Grand Canyon (19-28 September) and Lake

  3. Ceramics and ceramic matrix composites - Aerospace potential and status

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    1992-01-01

    Thermostructural ceramics and ceramic-matrix composites are attractive in numerous aerospace applications; the noncatastrophic fracture behavior and flaw-insensitivity of continuous fiber-reinforced CMCs renders them especially desirable. The present development status evaluation notes that, for most highly-loaded high-temperature applications, the requisite fiber-technology base is at present insufficient. In addition to materials processing techniques, the life prediction and NDE methods are immature and require a projection of 15-20 years for the maturity of CMC turbine rotors. More lightly loaded, moderate temperature aircraft engine applications are approaching maturity.

  4. Patches for Repairing Ceramics and Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Hogenson, Peter A.; Toombs, Gordon R.; Adam, Steven; Tompkins, James V.

    2006-01-01

    Patches consisting mostly of ceramic fabrics impregnated with partially cured polymers and ceramic particles are being developed as means of repairing ceramics and ceramic-matrix composites (CMCs) that must withstand temperatures above the melting points of refractory metal alloys. These patches were conceived for use by space-suited, space-walking astronauts in repairing damaged space-shuttle leading edges: as such, these patches could be applied in the field, in relatively simple procedures, and with minimal requirements for specialized tools. These design characteristics also make the patches useful for repairing ceramics and CMCs in terrestrial settings. In a typical patch as supplied to an astronaut or repair technician, the polymer would be in a tacky condition, denoted as an A stage, produced by partial polymerization of a monomeric liquid. The patch would be pressed against the ceramic or CMC object to be repaired, relying on the tackiness for temporary adhesion. The patch would then be bonded to the workpiece and cured by using a portable device to heat the polymer to a curing temperature above ambient temperature but well below the maximum operating temperature to which the workpiece is expected to be exposed. The patch would subsequently become pyrolized to a ceramic/glass condition upon initial exposure to the high operating temperature. In the original space-shuttle application, this exposure would be Earth-atmosphere-reentry heating to about 3,000 F (about 1,600 C). Patch formulations for space-shuttle applications include SiC and ZrO2 fabrics, a commercial SiC-based pre-ceramic polymer, and suitable proportions of both SiC and ZrO2 particles having sizes of the order of 1 m. These formulations have been tailored for the space-shuttle leading-edge material, atmospheric composition, and reentry temperature profile so as to enable repairs to survive re-entry heating with expected margin. Other formulations could be tailored for specific terrestrial

  5. Uses of ceramics in microelectronics: A survey

    NASA Technical Reports Server (NTRS)

    Bratschun, W. R.; Mountvala, A. J.; Pincus, A. G.

    1971-01-01

    The properties and behavior of ceramic materials used in components for electronic circuitry are examined to appraise the present and future directions for microelectronics, and to suggest further product development, and how innovations may be useful in other technologies. Ceramic and glass insulators, resistors, capacitors, and the use of ceramics and glasses in microcircuitry are discussed along with technology transfer to nonaerospace uses.

  6. Ablation Resistant Zirconium and Hafnium Ceramics

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  7. Preparation of a dense, polycrystalline ceramic structure

    SciTech Connect

    Cooley, Jason; Chen, Ching-Fong; Alexander, David

    2010-12-07

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  8. Instructional Resources. The Significance of Form: Ceramics.

    ERIC Educational Resources Information Center

    Zawatsky, Carole; And Others

    1989-01-01

    Presents four lesson plans designed to teach K-12 students about ceramics and the artists using the medium. Each lesson is centered around one ceramic piece: (1) "Wall Clock," by the Chantilly Porcelain Factory; (2) "Poppy Vase," by Adelaide Robineau; (3) "Laughing Eyes," by Pablo Picasso; and (4) "Ceramic Drum Jar," by Tsayutitsa. (GEA)

  9. Recent developments in restorative dental ceramics.

    PubMed

    Anusavice, K J

    1993-02-01

    Since the introduction of porcelain jacket crowns in the early 1900s, dental ceramics have been praised for their esthetic appearance. But there's more to consider: other benefits, longevity, limitations. This review addresses major developments in modern dental ceramics and metal-ceramics.

  10. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  11. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  12. Instructional Resources. The Significance of Form: Ceramics.

    ERIC Educational Resources Information Center

    Zawatsky, Carole; And Others

    1989-01-01

    Presents four lesson plans designed to teach K-12 students about ceramics and the artists using the medium. Each lesson is centered around one ceramic piece: (1) "Wall Clock," by the Chantilly Porcelain Factory; (2) "Poppy Vase," by Adelaide Robineau; (3) "Laughing Eyes," by Pablo Picasso; and (4) "Ceramic Drum Jar," by Tsayutitsa. (GEA)

  13. 22 CFR 214.38 - Submission of reports to the Library of Congress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MANAGEMENT Operation of Advisory Committees § 214.38 Submission of reports to the Library of Congress. (a... Congress; and sends a copy to the A.I.D. Advisory Committee Management Officer for inclusion in the...

  14. How will 2014 European Society of Cardiology Congress influence our daily practice?

    PubMed

    Yılmaz, M Birhan

    2014-12-01

    European Cardiology Congress which was held in Barcelona in this year; was a meeting with striking results of the presented scientific studies. Herein, a brief overview of congress highlights is presented.

  15. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-12-22

    A process is disclosed for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article. 15 figs.

  16. Micromechanics for ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    The fiber substructuring concepts and the micromechanics equations that are embedded in the Ceramic Matrix Composite Analyzer (CEMCAN) computer code are described as well as the code itself, its current features and capabilities, and some examples to demonstrate the code's versatility. The methodology is equally applicable to metal matrix and polymer matrix composites. The prediction of ply mechanical and thermal properties agree very well with the existing models in the Integrated Composite Analyzer and the Ceramic Matrix Composite Analyzer, lending credence to the fiber substructuring approach. Fiber substructuring can capture greater local detail than conventional unit-cell-based micromechanical theories. It offers promise in simulating complex aspects of micromechanics in ceramic matrix composites.

  17. Process for making ceramic insulation

    DOEpatents

    Akash, Akash; Balakrishnan, G. Nair

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  18. High impact resistant ceramic composite

    SciTech Connect

    Derkacy, James A.

    1991-07-16

    A ceramic material and a method of forming a ceramic material which possesses a high impact resistance. The material comprises: (a) a first continuous phase of .beta.-SiC; and (b) a second phase of about 25-40 vol % TiB.sub.2. Al.sub.2 O.sub.3 is preferably used as a densification aid. The material is formed by hot-pressing the mixture at a temperature from greater than about 1800.degree. C. to less than the transition temperature of .beta.-SiC to .alpha.-SiC. The hot-pressing is performed at a pressure of about 2000 psi to about 4000 psi in an inert atmosphere for several hours and results in the formation of a two phase sintered ceramic composite material.

  19. Surface treatment of ceramic articles

    DOEpatents

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh

    1998-01-01

    A process for producing an article with improved ceramic surface properties including providing an article having a ceramic surface, and placing the article onto a conductive substrate holder in a hermetic enclosure. Thereafter a low pressure ambient is provided in the hermetic enclosure. A plasma including ions of solid materials is produced the ceramic surface of the article being at least partially immersed in a macroparticle free region of the plasma. While the article is immersed in the macroparticle free region, a bias of the substrate holder is biased between a low voltage at which material from the plasma condenses on the surface of the article and a high negative voltage at which ions from the plasma are implanted into the article.

  20. Ceramic materials testing and modeling

    SciTech Connect

    Wilfinger, K. R., LLNL

    1998-04-30

    Certain refractory ceramics (notably oxides) have desirable properties suitable for the construction of ceramic waste containers for long term use in nuclear waste disposal applications. In particular, they are far less prone to environmental corrosion than metals under realistic repository conditions. The aqueous corrosion rates of oxides such as magnesium aluminate spinel (MgAl{sub 2}0{sub 4}) and alumina (Al{sub 2}0{sub 4}) fall in the range of a few millimeters per million years. Oxide ceramics are also not likely to be subject to microbiologically influenced corrosion, which apparently can attack most, if not all, of the available engineering metals. Ceramics have a reputation for poor mechanical performance and large, impermeable objects are not easily fabricated by most current fabrication methods. As a result, the most promising approach for incorporating ceramics in large waste packages appears to be to apply a high density ceramic coating to a supporting metallic structure. Ceramic coatings 2048 applied by a thermal spray technique can be made effectively seamless and provide a method for final closure of the waste package while maintaining low average temperatures for the entire assembly. The corrosion resistance of the ceramic should prevent or delay water penetration to the underlying metal, which will in turn provide most of the mechanical strength and toughness required by the application. In this way, the major concerns regarding the ceramic coating become ensuring it is impervious to moisture, its adherence and its resistance to mechanical stresses during handling or resulting from rock fall in the repository. Without water, electrochemical corrosion and microbiologically influenced corrosion processes are considered impossible, so a complete coating should protect the metal vessels for far longer than the current design requirements. Even an imperfect coating should extend the life of the package, delaying the onset and reducing the severity of