Sample records for cinchonine

  1. Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles.

    PubMed

    Yuan, Xingyi; Tan, Yanji; Wei, Xiaoping; Li, Jianping

    2017-11-01

    A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe 3 O 4 @Au nanoparticles modified with 6-mercapto-beta-cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N,N'-methylenebisacrylamide as a cross-linking agent. Cinchonine was specifically recognized by the 6-mercapto-beta-cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy) 3 2+ . Cinchonine concentrations of 1 × 10 -10 to 4 × 10 -7  mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10 -11  mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%. Copyright © 2017 John Wiley & Sons, Ltd.

  2. RADIOMETRIC STUDY ON THE SUITABILITY OF CINCHONIN AS PRECIPITATION REAGENT FOR TUNGSTEN AND MOLYBDENUM (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merz, E.

    1962-01-01

    The precipitation of W and Mo with cinchonin was studied using P/sup 32/ , Mp/sup 99/, and W/sup 185/. The effects of the acid, acid concentration, solution volume, and precipitation time on the quantitative precipitation of the metals were determined. W was precipitated only from HCl and HNO/sub 3/, and no quantitative precipitation of Mo was obtained. No variation was found in the completeness of the precipitation using HCl concentrations of 1 to 6N, but precipitation is prevented or strongly inhibited in very strong solutions. The quantitative precipitation of W is very strongly dependent on the solution volume, but theremore » is no sharp time dependence. A study of the effectiveness of cinchonin and tannin as combined precipitation agents showed no advantage over the use of cinchonin alone, except in the removal of interferring elements in the precipitation. (J.S.R.)« less

  3. Pseudo-enantiomeric chiral components and formation of the helical micro- and nanostructures in charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy J.; Hreczycho, Grzegorz

    2018-03-01

    Helical organic micro- and nanostructures are formed by a charge-transfer complex, cinchonidine-TCNQ. These unusual forms result from the chirality, the steric structure and specific interactions of cinchonidine molecules. These materials are semiconductors (10-4 S cm-1), with the typical absorption spectra in IR and UV-vis, but also have a characteristic of CD spectrum. Surprisingly, conductive micro and nano helices are not formed in pseudo-enantiomeric cinchonine, i.e. the complex of cinchonine and TCNQ.

  4. Combined use of [TBA][L-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis.

    PubMed

    Zhang, Yu; Yu, Haixia; Wu, Yujiao; Zhao, Wenyan; Yang, Min; Jing, Huanwang; Chen, Anjia

    2014-10-01

    In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Bioactivities examination of Cinchona leaves ethanol extracts

    NASA Astrophysics Data System (ADS)

    Artanti, Nina; Udin, Linar Z.; Hanafi, M.; Jamilah, Kurniasih, Ida Rahmi; Primahana, Gian; Anita, Yulia; Sundowo, Andini; Kandace, Yoice Sri

    2017-01-01

    Cinchona species especially the barks are commonly known for commercial production of quinine as antimalarial. Although it is also reported for treatment of depurative, whooping cough, influenza and dysentery. In this paper we reported in vitro examination of other bioactivities (antidiabetes, antioxidant and in vitro cytotoxicity) of 70% ethanol extract of Cinchona ledgeriana and C. succirubra leaves as well as qunine, quinidine, and cinchonine the major alkaloids found in Cinchona species. Antidiabetes was conducted using α-glucosidase inhibitory activity assay. Antioxidant was conducted using DPPH free radical scavenging activity assay. In vitro cytotoxic activity was concucted by microscopic observation on growth of breast cancer cell line MCF-7. The results showed that at concentration of 100 µg/ml, C. ledgeriana leaves ethanol extracts showed the best activity as antidiabetes (98% inhibitory of α-glucosidase activity) and antioxidant (92% DPPH free radical scavenging activity), whereas at the same concentration C. succirubra, quinine, quinidine and cinchonine showed very low activities of antidiabetes and antioxidant. Microscopic observation of in vitro cytotoxicity showed that C. ledgeriana also has excellent cytotoxicity to breast cancer cell line MCF-7 which better than quinine, quinidine and cinchonine, whereas C. succirubra showed low cytotoxicity. These results suggest that cinchona species have many potential as the source of drugs discovery and development other than just for malaria treatment. Therefore it is important to conduct further studies and to maintain the available Cinchona plantation in Indonesia.

  6. Bioactive cinchona alkaloids from Remijia peruviana.

    PubMed

    Ruiz-Mesia, Lastenia; Ruiz-Mesía, Wilfredo; Reina, Matías; Martínez-Diaz, Rafael; de Inés, Concepción; Guadaño, Ana; González-Coloma, Azucena

    2005-03-23

    Three known Cinchona alkaloids of the quinine type, quinine (1), cupreine (2), cinchonine (3), and the possible artifact cinchonine-HCl (3-HCl), along with two new ones, acetylcupreine (4) and N-ethylquinine (5), have been isolated from the bark of Remijia peruviana (Rubiaceae). Their stereochemical structures were established by high resolution NMR spectroscopy. Alkaloids 2-4 had antifeedant effects on Leptinotarsa decemlineata with varying potencies. Compound 4 was cytotoxic to both insect Sf9 and mammalian CHO cells after 48 h of incubation, while 3-HCl had stronger and selective cytotoxicity to Sf9. Quinine 1 had a moderate to low effect on Trypanosoma cruzi. Tumoral cells were also affected by these alkaloids, with 4 and 3-HCl being the most cytotoxic to all the cell lines tested. Overall, the 8R, 9S configurations, as in 3 and 3-HCl, as well as the C-6'acetylated alkaloid 4, with an 8S, 9R configuration, showed stronger biological effects.

  7. Rapid and green analytical method for the determination of quinoline alkaloids from Cinchona succirubra based on Microwave-Integrated Extraction and Leaching (MIEL) prior to high performance liquid chromatography.

    PubMed

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  8. Rapid and Green Analytical Method for the Determination of Quinoline Alkaloids from Cinchona succirubra Based on Microwave-Integrated Extraction and Leaching (MIEL) Prior to High Performance Liquid Chromatography

    PubMed Central

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids. PMID:22174637

  9. Chemotherapy of Rodent Malaria. Part 1

    DTIC Science & Technology

    1987-10-01

    to produce exaggerated resistance factors (I 90 values). For example, the ED of chloroquine against the artemisinin 90 resistant ART strain...primaquine, quinine, cinchonine, quinidine, mefloquine, halofantrine, artemisinin , pyronaridine, mepacrine and Mannich bases (such as WR 228258). It is...RC. It is markedly resistant to primaquine and possesses slight cross-resistance to quinidine, mefloquine, artemisinin . There is also a marked cross

  10. Nature's Chiral Catalyst and Anti-Malarial Agent: Isolation and Structure Elucidation of Cinchonine and Quinine from "Cinchona calisaya"

    ERIC Educational Resources Information Center

    Carroll, Anne-Marie; Kavanagh, David J.; McGovern, Fiona P.; Reilly, Joe W.; Walsh, John J.

    2012-01-01

    Nature is a well-recognized source of compounds of interest, but access is often an issue. One pertinent example is the cinchona alkaloids from the bark of "Cinchona calisaya." In this experiment, students at the third-year undergraduate level undertake the selective isolation and characterization of two of the four main alkaloids present in the…

  11. Quantitative determination of major alkaloids in Cinchona bark by Supercritical Fluid Chromatography.

    PubMed

    Murauer, Adele; Ganzera, Markus

    2018-06-15

    Chinoline alkaloids found in Cinchona bark still play an important role in medicine, for example as antimalarial and antiarrhythmic drugs. For the first time Supercritical Fluid Chromatography has been utilized for their separation. Six respective derivatives (dihydroquinidine, dihydroquinine, quinidine, quinine, cinchonine and cinchonidine) could be resolved in less than 7 min, and three of them quantified in crude plant extracts. The optimum stationary phase showed to be an Acquity UPC 2 Torus DEA 1.7 μm column, the mobile phase comprised of CO 2 , acetonitrile, methanol and diethylamine. Method validation confirmed that the procedure is selective, accurate (recovery rates from 97.2% to 103.7%), precise (intra-day ≤2.2%, inter-day ≤3.0%) and linear (R 2  ≥ 0.999); at 275 nm the observed detection limits were always below 2.5 μg/ml. In all of the samples analyzed cinchonine dominated (1.87%-2.30%), followed by quinine and cinchonidine. Their total content ranged from 4.75% to 5.20%. These values are in good agreement with published data, so that due to unmatched speed and environmental friendly character SFC is definitely an excellent alternative for the analysis of these important natural products. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borszeky, K.; Mallat, T.; Aeschiman, R.

    The chemo- and enantioselective hydrogenation of pyruvic acid oxime have been studied on Pd/alumina, the latter in the presence of the 1,2-amino alcohol type alkaloids ephedrine, cinchonidine, and cinchonine. High yields of racemic alanine (90-98%) were obtained in the absence of alkaloids in polar solvents at 0-45{degrees}C and 10 bar. Enantioselection increased with higher temperature and alkalid: oxime molar ratio. A 1:1 ephedrine: oxime molar ratio afforded the best enantiomeric excess (26%). The presence of alkaloid resulted in a decrease of reaction rate by a factor of up to 140, compared to the racemic hydrogenation. Based on X-ray crystal structuremore » analysis of the alkaloid-pyruvic acid oxime adduct, a mechanism is proposed for the steric course of the reaction. Extended interactions by multiple H bonds between the adsorbed alkaloid-oxime salt units on the Pd surface is assumed to be at the origin of the moderate enantioselectivity and the very low enantioselective hydrogenation rate. 28 refs., 5 figs., 3 tabs.« less

  13. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    PubMed

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  14. Phytochemical screening, total phenolic, total flavonoids contents and antioxidant activity of cinchona ledgeriana leaves ethanol extract

    NASA Astrophysics Data System (ADS)

    Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian

    2017-11-01

    C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).

  15. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580

Top