Sample records for cingulate cortex connectivity

  1. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization.

    PubMed

    Beckmann, Matthias; Johansen-Berg, Heidi; Rushworth, Matthew F S

    2009-01-28

    Whole-brain neuroimaging studies have demonstrated regional variations in function within human cingulate cortex. At the same time, regional variations in cingulate anatomical connections have been found in animal models. It has, however, been difficult to estimate the relationship between connectivity and function throughout the whole cingulate cortex within the human brain. In this study, magnetic resonance diffusion tractography was used to investigate cingulate probabilistic connectivity in the human brain with two approaches. First, an algorithm was used to search for regional variations in the probabilistic connectivity profiles of all cingulate cortex voxels with the whole of the rest of the brain. Nine subregions with distinctive connectivity profiles were identified. It was possible to characterize several distinct areas in the dorsal cingulate sulcal region. Several distinct regions were also found in subgenual and perigenual cortex. Second, the probabilities of connection between cingulate cortex and 11 predefined target regions of interest were calculated. Cingulate voxels with a high probability of connection with the different targets formed separate clusters within cingulate cortex. Distinct connectivity fingerprints characterized the likelihood of connections between the extracingulate target regions and the nine cingulate subregions. Last, a meta-analysis of 171 functional studies reporting cingulate activation was performed. Seven different cognitive conditions were selected and peak activation coordinates were plotted to create maps of functional localization within the cingulate cortex. Regional functional specialization was found to be related to regional differences in probabilistic anatomical connectivity.

  2. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    PubMed

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders

    PubMed Central

    Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine

    2009-01-01

    Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498

  4. Assessing the Psychedelic "After-Glow" in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities.

    PubMed

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi

    2017-09-01

    Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  5. Assessing the Psychedelic “After-Glow” in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities

    PubMed Central

    Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda

    2017-01-01

    Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. PMID:28525587

  6. Amygdala-cingulate intrinsic connectivity is associated with degree of social inhibition

    PubMed Central

    Blackford, Jennifer Urbano; Clauss, Jacqueline A.; Avery, Suzanne N.; Cowan, Ronald L.; Benningfield, Margaret M.; VanDerKlok, Ross M.

    2014-01-01

    The tendency to approach or avoid novel people is a fundamental human behavior and is a core dimension of social anxiety. Resting state fMRI was used to test for an association between social inhibition and intrinsic connectivity in 40 young adults ranging from low to high in social inhibition. Higher levels of social inhibition were associated with specific patterns of reduced amygdala-cingulate cortex connectivity. Connectivity was reduced between the superficial amygdala and the rostral cingulate cortex and between the centromedial amygdala and the dorsal anterior cingulate cortex. Social inhibition also modulated connectivity in several well-established intrinsic networks; higher social inhibition correlated with reduced connectivity with default mode and dorsal attention networks and enhanced connectivity in salience and executive control networks. These findings provide important preliminary evidence that social inhibition reflects differences in the underlying intrinsic connectivity of the brain in the absence of social stimuli or stressors. PMID:24534162

  7. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia.

    PubMed

    De Ridder, Dirk; Vanneste, Sven

    2017-04-01

    Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.

  8. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172

  9. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women.

    PubMed

    García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo

    2017-07-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  10. Disrupted directed connectivity along the cingulate cortex determines vigilance after sleep deprivation

    PubMed Central

    Piantoni, Giovanni; Cheung, Bing Leung P.; Van Veen, Barry D.; Romeijn, Nico; Riedner, Brady A.; Tononi, Giulio; Van Der Werf, Ysbrand D.; Van Someren, Eus J.W.

    2013-01-01

    The cingulate cortex is regarded as the backbone of structural and functional connectivity of the brain. While its functional connectivity has been intensively studied, little is known about its effective connectivity, its modulation by behavioral states, and its involvement in cognitive performance. Given their previously reported effects on cingulate functional connectivity, we investigated how eye-closure and sleep deprivation changed cingulate effective connectivity, estimated from resting-state high-density electroencephalography (EEG) using a novel method to calculate Granger Causality directly in source space. Effective connectivity along the cingulate cortex was dominant in the forward direction. Eyes-open connectivity in the forward direction was greater compared to eyes-closed, in well-rested participants. The difference between eyes-open and eyes-closed connectivity was attenuated and no longer significant after sleep deprivation. Individual variability in the forward connectivity after sleep deprivation predicted subsequent task performance, such that those subjects who showed a greater increase in forward connectivity between the eyes-open and the eyes-closed periods also performed better on a sustained attention task. Effective connectivity in the opposite, backward, direction was not affected by whether the eyes were open or closed or by sleep deprivation. These findings indicate that the effective connectivity from posterior to anterior cingulate regions is enhanced when a well-rested subject has his eyes open compared to when they are closed. Sleep deprivation impairs this directed information flow, proportional to its deleterious effect on vigilance. Therefore, sleep may play a role in the maintenance of waking effective connectivity. PMID:23643925

  11. Task-Related Deactivation and Functional Connectivity of the Subgenual Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Davey, Christopher G.; Yücel, Murat; Allen, Nicholas B.; Harrison, Ben J.

    2012-01-01

    Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterized task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task, MSIT). We used a psycho-physiological interactions approach to examine functional connectivity changes with subgenual anterior cingulate cortex. Voxel-wise statistical maps for each analysis were compared between the patient and control groups. Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive-control regions in depressed patients. Conclusion: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes. PMID:22403553

  12. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women

    PubMed Central

    García-Casares, Natalia; Bernal-López, María R.; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; García-Arnés, Juan A.; Ramos-Rodriguez, José R.; Alfaro, Francisco; Santamaria-Fernández, Sonia; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J.; Gómez-Huelgas, Ricardo

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m2) was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001), left posterior cingulate (p < 0.001), and right posterior cingulate (p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025); and decreased connectivity between the left and right posterior cingulate (p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise. PMID:28671558

  13. Resting state electrical brain activity and connectivity in fibromyalgia

    PubMed Central

    Vanneste, Sven; Ost, Jan; Van Havenbergh, Tony; De Ridder, Dirk

    2017-01-01

    The exact mechanism underlying fibromyalgia is unknown, but increased facilitatory modulation and/or dysfunctional descending inhibitory pathway activity are posited as possible mechanisms contributing to sensitization of the central nervous system. The primary goal of this study is to identify a fibromyalgia neural circuit that can account for these abnormalities in central pain. The second goal is to gain a better understanding of the functional connectivity between the default and the executive attention network (salience network plus dorsal lateral prefrontal cortex) in fibromyalgia. We examine neural activity associated with fibromyalgia (N = 44) and compare these with healthy controls (N = 44) using resting state source localized EEG. Our data support an important role of the pregenual anterior cingulate cortex but also suggest that the degree of activation and the degree of integration between different brain areas is important. The inhibition of the connectivity between the dorsal lateral prefrontal cortex and the posterior cingulate cortex on the pain inhibitory pathway seems to be limited by decreased functional connectivity with the pregenual anterior cingulate cortex. Our data highlight the functional dynamics of brain regions integrated in brain networks in fibromyalgia patients. PMID:28650974

  14. Dissociated emergent-response system and fine-processing system in human neural network and a heuristic neural architecture for autonomous humanoid robots.

    PubMed

    Yan, Xiaodan

    2010-01-01

    The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.

  15. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    PubMed Central

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  16. Functional Connectivity of Human Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  17. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia

    PubMed Central

    Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail

    2015-01-01

    Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635

  18. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    PubMed

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Ventral-Dorsal Functional Contribution of the Posterior Cingulate Cortex in Human Spatial Orientation: A Meta-Analysis.

    PubMed

    Burles, Ford; Umiltá, Alberto; McFarlane, Liam H; Potocki, Kendra; Iaria, Giuseppe

    2018-01-01

    The retrosplenial cortex has long been implicated in human spatial orientation and navigation. However, neural activity peaks labeled "retrosplenial cortex" in human neuroimaging studies investigating spatial orientation often lie significantly outside of the retrosplenial cortex proper. This has led to a large and anatomically heterogenous region being ascribed numerous roles in spatial orientation and navigation. Here, we performed a meta-analysis of functional Magnetic Resonance Imaging (fMRI) investigations of spatial orientation and navigation and have identified a ventral-dorsal functional specialization within the posterior cingulate for spatial encoding vs. spatial recall . Generally, ventral portions of the posterior cingulate cortex were more likely to be activated by spatial encoding , i.e., passive viewing of scenes or active navigation without a demand to respond, perform a spatial computation, or localize oneself in the environment. Conversely, dorsal portions of the posterior cingulate cortex were more likely to be activated by cognitive demands to recall spatial information or to produce judgments of distance or direction to non-visible locations or landmarks. The greatly varying resting-state functional connectivity profiles of the ventral (centroids at MNI -22, -60, 6 and 20, -56, 6) and dorsal (centroid at MNI 4, -60, 28) posterior cingulate regions identified in the meta-analysis supported the conclusion that these regions, which would commonly be labeled as "retrosplenial cortex," should be more appropriately referred to as distinct subregions of the posterior cingulate cortex. We suggest that future studies investigating the role of the retrosplenial and posterior cingulate cortex in spatial tasks carefully localize activity in the context of these identifiable subregions.

  20. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects

    PubMed Central

    Kim, Seung Jun; Kim, Sung-Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae-Jin; Namkoong, Kee

    2017-01-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. PMID:28792155

  1. Does low self-esteem enhance social pain? The relationship between trait self-esteem and anterior cingulate cortex activation induced by ostracism.

    PubMed

    Onoda, Keiichi; Okamoto, Yasumasa; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yoshimura, Shinpei; Yamawaki, Sigeto; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2010-12-01

    According to sociometer theory, self-esteem serves as a barometer of the extent to which individuals are socially included or excluded by others. We hypothesized that trait self-esteem would be related to social pain responsiveness, and we used functional magnetic resonance imaging to experimentally investigate this potential relationship. Participants (n = 26) performed a cyberball task, a computerized game of catch during which the participants were excluded from the game. Participants then rated the degree of social pain experienced during both inclusion in and exclusion from the game. Individuals with lower trait self-esteem reported increased social pain relative to individuals with higher trait self-esteem, and such individuals also demonstrated a greater degree of dorsal anterior cingulate cortex activation. A psychophysiological interaction analysis revealed a positive connectivity between the dorsal anterior cingulate and prefrontal cortices for the lower trait self-esteem group, and a corresponding negative connectivity for the higher trait self-esteem group. Heightened dorsal anterior cortex activity and a corresponding connection with the prefrontal cortex might be one possible explanation for the greater levels of social pain observed experienced by individuals with low trait self-esteem.

  2. Reduced Global Functional Connectivity of the Medial Prefrontal Cortex in Major Depressive Disorder

    PubMed Central

    Murrough, James W.; Abdallah, Chadi G.; Anticevic, Alan; Collins, Katherine A.; Geha, Paul; Averill, Lynnette A.; Schwartz, Jaclyn; DeWilde, Kaitlin E.; Averill, Christopher; Yang, Genevieve Jia-wei; Wong, Edmund; Tang, Cheuk Y.; Krystal, John H.; Iosifescu, Dan V.; Charney, Dennis S.

    2016-01-01

    Background Major depressive disorder is a disabling neuropsychiatric condition that is associated with disrupted functional connectivity across brain networks. The precise nature of altered connectivity, however, remains incompletely understood. The current study was designed to examine the coherence of large-scale connectivity in depression using a recently developed technique termed global brain connectivity. Methods A total of 82 subjects, including medication-free patients with major depression (n=57) and healthy volunteers (n=25) underwent functional magnetic resonance imaging with resting data acquisition for functional connectivity analysis. Global brain connectivity was computed as the mean of each voxel’s time series correlation with every other voxel and compared between study groups. Relationships between global connectivity and depressive symptom severity measured using the Montgomery-Åsberg Depression Rating Scale were examined by means of linear correlation. Results Relative to the healthy group, patients with depression evidenced reduced global connectivity bilaterally within multiple regions of medial and lateral prefrontal cortex. The largest between-group difference was observed within the right subgenual anterior cingulate cortex, extending into ventromedial prefrontal cortex bilaterally (Hedges’ g = −1.48, p<0.000001). Within the depressed group, patients with the lowest connectivity evidenced the highest symptom severity within ventromedial prefrontal cortex (r = −0.47, p=0.0005). Conclusions Patients with major depressive evidenced abnormal large-scale functional coherence in the brain that was centered within the subgenual cingulate cortex, and medial prefrontal cortex more broadly. These data extend prior studies of connectivity in depression and demonstrate that functional disconnection of the medial prefrontal cortex is a key pathological feature of the disorder. PMID:27144347

  3. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    PubMed

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Altered Functional Connectivity of the Default Mode Network in Low-Empathy Subjects.

    PubMed

    Kim, Seung Jun; Kim, Sung Eun; Kim, Hyo Eun; Han, Kiwan; Jeong, Bumseok; Kim, Jae Jin; Namkoong, Kee; Kim, Ji Woong

    2017-09-01

    Empathy is the ability to identify with or make a vicariously experience of another person's feelings or thoughts based on memory and/or self-referential mental simulation. The default mode network in particular is related to self-referential empathy. In order to elucidate the possible neural mechanisms underlying empathy, we investigated the functional connectivity of the default mode network in subjects from a general population. Resting state functional magnetic resonance imaging data were acquired from 19 low-empathy subjects and 18 medium-empathy subjects. An independent component analysis was used to identify the default mode network, and differences in functional connectivity strength were compared between the two groups. The low-empathy group showed lower functional connectivity of the medial prefrontal cortex and anterior cingulate cortex (Brodmann areas 9 and 32) within the default mode network, compared to the medium-empathy group. The results of the present study suggest that empathy is related to functional connectivity of the medial prefrontal cortex/anterior cingulate cortex within the default mode network. Functional decreases in connectivity among low-empathy subjects may reflect an impairment of self-referential mental simulation. © Copyright: Yonsei University College of Medicine 2017.

  5. Imbalance in subregional connectivity of the right temporoparietal junction in major depression.

    PubMed

    Poeppl, Timm B; Müller, Veronika I; Hoffstaedter, Felix; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Langguth, Berthold; Rupprecht, Rainer; Sorg, Christian; Riedl, Valentin; Goya-Maldonado, Roberto; Gruber, Oliver; Eickhoff, Simon B

    2016-08-01

    Major depressive disorder (MDD) involves impairment in cognitive and interpersonal functioning. The right temporoparietal junction (RTPJ) is a key brain region subserving cognitive-attentional and social processes. Yet, findings on the involvement of the RTPJ in the pathophysiology of MDD have so far been controversial. Recent connectivity-based parcellation data revealed a topofunctional dualism within the RTPJ, linking its anterior and posterior part (aRTPJ/pRTPJ) to antagonistic brain networks for attentional and social processing, respectively. Comparing functional resting-state connectivity of the aRTPJ and pRTPJ in 72 MDD patients and 76 well-matched healthy controls, we found a seed (aRTPJ/pRTPJ) × diagnosis (MDD/controls) interaction in functional connectivity for eight regions. Employing meta-data from a large-scale neuroimaging database, functional characterization of these regions exhibiting differentially altered connectivity with the aRTPJ/pRTPJ revealed associations with cognitive (dorsolateral prefrontal cortex, parahippocampus) and behavioral (posterior medial frontal cortex) control, visuospatial processing (dorsal visual cortex), reward (subgenual anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex), as well as memory retrieval and social cognition (precuneus). These findings suggest that an imbalance in connectivity of subregions, rather than disturbed connectivity of the RTPJ as a whole, characterizes the connectional disruption of the RTPJ in MDD. This imbalance may account for key symptoms of MDD in cognitive, emotional, and social domains. Hum Brain Mapp 37:2931-2942, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Altered resting-state neural activity and changes following a craving behavioral intervention for Internet gaming disorder.

    PubMed

    Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi

    2016-07-06

    Internet gaming disorder (IGD) has become a serious mental health issue worldwide. Evaluating the benefits of interventions for IGD is of great significance. Thirty-six young adults with IGD and 19 healthy comparison (HC) subjects were recruited and underwent resting-state fMRI scanning. Twenty IGD subjects participated in a group craving behavioral intervention (CBI) and were scanned before and after the intervention. The remaining 16 IGD subjects did not receive an intervention. The results showed that IGD subjects showed decreased amplitude of low fluctuation in the orbital frontal cortex and posterior cingulate cortex, and exhibited increased resting-state functional connectivity between the posterior cingulate cortex and dorsolateral prefrontal cortex, compared with HC subjects. Compared with IGD subjects who did not receive the intervention, those receiving CBI demonstrated significantly reduced resting-state functional connectivity between the: (1) orbital frontal cortex with hippocampus/parahippocampal gyrus; and, (2) posterior cingulate cortex with supplementary motor area, precentral gyrus, and postcentral gyrus. These findings suggest that IGD is associated with abnormal resting-state neural activity in reward-related, default mode and executive control networks. Thus, the CBI may exert effects by reducing interactions between regions within a reward-related network, and across the default mode and executive control networks.

  7. Altered resting-state neural activity and changes following a craving behavioral intervention for Internet gaming disorder

    PubMed Central

    Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N.; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi

    2016-01-01

    Internet gaming disorder (IGD) has become a serious mental health issue worldwide. Evaluating the benefits of interventions for IGD is of great significance. Thirty-six young adults with IGD and 19 healthy comparison (HC) subjects were recruited and underwent resting-state fMRI scanning. Twenty IGD subjects participated in a group craving behavioral intervention (CBI) and were scanned before and after the intervention. The remaining 16 IGD subjects did not receive an intervention. The results showed that IGD subjects showed decreased amplitude of low fluctuation in the orbital frontal cortex and posterior cingulate cortex, and exhibited increased resting-state functional connectivity between the posterior cingulate cortex and dorsolateral prefrontal cortex, compared with HC subjects. Compared with IGD subjects who did not receive the intervention, those receiving CBI demonstrated significantly reduced resting-state functional connectivity between the: (1) orbital frontal cortex with hippocampus/parahippocampal gyrus; and, (2) posterior cingulate cortex with supplementary motor area, precentral gyrus, and postcentral gyrus. These findings suggest that IGD is associated with abnormal resting-state neural activity in reward-related, default mode and executive control networks. Thus, the CBI may exert effects by reducing interactions between regions within a reward-related network, and across the default mode and executive control networks. PMID:27381822

  8. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    PubMed Central

    Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing

    2015-01-01

    Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933

  9. Modelling brain activations and connectivity of pain modulated by having a loved one nearby

    NASA Astrophysics Data System (ADS)

    Tamam, Sofina; Ahmad, Asma Hayati; Kamil, Wan Ahmad

    2018-06-01

    This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG) and hippocampus (HIP); and (2) Love Heals (participants who reported less pain in the presence of a loved one) involved activations in all parts of cingulate cortex. BMS showed that Love Heals could be represented by a cortical network involving the area of anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and posterior cingulate cortex (PCC) in the intrinsic connectivity of ACC → PCC → MCC and ACC → MCC. There was no optimal model to explain the increase in pain threshold when accompanied by the loved one in Love Hurts. The present study reveals a new possible cortical network for the reduction of pain by having a loved one nearby.

  10. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study.

    PubMed

    Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen

    2016-01-01

    No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.

  11. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  12. Hippocampal Atrophy Is Associated with Altered Hippocampus-Posterior Cingulate Cortex Connectivity in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis.

    PubMed

    Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I

    2017-03-01

    Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2 = 0.045). In left mesial temporal lobe epilepsy with hippocampal sclerosis, the left inferior cingulum bundle undergoes degeneration in tandem with the left hippocampal volume, whereas intrinsic functional connectivity seems to react by compensating the loss of connectivity. Such insight might be helpful in understanding the development of the epileptic network in left mesial temporal lobe epilepsy with hippocampal sclerosis. © 2017 by American Journal of Neuroradiology.

  13. Schizophrenic patients and their unaffected siblings share increased resting-state connectivity in the task-negative network but not its anticorrelated task-positive network.

    PubMed

    Liu, Haihong; Kaneko, Yoshio; Ouyang, Xuan; Li, Li; Hao, Yihui; Chen, Eric Y H; Jiang, Tianzi; Zhou, Yuan; Liu, Zhening

    2012-03-01

    Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.

  14. Brain Responses during the Anticipation of Dyspnea

    PubMed Central

    Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309

  15. Brain Responses during the Anticipation of Dyspnea.

    PubMed

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  16. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients.

    PubMed

    Zhu, Xueling; Wang, Xiang; Xiao, Jin; Liao, Jian; Zhong, Mingtian; Wang, Wei; Yao, Shuqiao

    2012-04-01

    Imaging studies have shown that major depressive disorder (MDD) is associated with altered activity patterns of the default mode network (DMN). However, the neural correlates of the resting-state DMN and MDD-related pathopsychological characteristics, such as depressive rumination and overgeneral autobiographical memory (OGM) phenomena, still remain unclear. Using independent component analysis, we analyzed resting-state functional magnetic resonance imaging data obtained from 35 first-episode, treatment-naive young adults with MDD and from 35 matched healthy control subjects. Patients with MDD exhibited higher levels of rumination and OGM than did the control subjects. We observed increased functional connectivity in the anterior medial cortex regions (especially the medial prefrontal cortex and anterior cingulate cortex) and decreased functional connectivity in the posterior medial cortex regions (especially the posterior cingulate cortex/precuneus) in MDD patients compared with control subjects. In the depressed group, the increased functional connectivity in the anterior medial cortex correlated positively with rumination score, while the decreased functional connectivity in the posterior medial cortex correlated negatively with OGM score. We report dissociation between anterior and posterior functional connectivity in resting-state DMNs of first-episode, treatment-naive young adults with MDD. Increased functional connectivity in anterior medial regions of the resting-state DMN was associated with rumination, whereas decreased functional connectivity in posterior medial regions was associated with OGM. These results provide new evidence for the importance of the DMN in the pathophysiology of MDD and suggest that abnormal DMN activity may be an MDD trait. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The functional integration of the anterior cingulate cortex during conflict processing.

    PubMed

    Fan, Jin; Hof, Patrick R; Guise, Kevin G; Fossella, John A; Posner, Michael I

    2008-04-01

    Although functional activation of the anterior cingulate cortex (ACC) related to conflict processing has been studied extensively, the functional integration of the subdivisions of the ACC and other brain regions during conditions of conflict is still unclear. In this study, participants performed a task designed to elicit conflict processing by using flanker interference on target response while they were scanned using event-related functional magnetic resonance imaging. The physiological response of several brain regions in terms of an interaction between conflict processing and activity of the anterior rostral cingulate zone (RCZa) of the ACC, and the effective connectivity between this zone and other regions were examined using psychophysiological interaction analysis and dynamic causal modeling, respectively. There was significant integration of the RCZa with the caudal cingulate zone (CCZ) of the ACC and other brain regions such as the lateral prefrontal, primary, and supplementary motor areas above and beyond the main effect of conflict and baseline connectivity. The intrinsic connectivity from the RCZa to the CCZ was modulated by the context of conflict. These findings suggest that conflict processing is associated with the effective contribution of the RCZa to the neuronal activity of CCZ, as well as other cortical regions.

  18. Reduced brain resting-state network specificity in infants compared with adults.

    PubMed

    Wylie, Korey P; Rojas, Donald C; Ross, Randal G; Hunter, Sharon K; Maharajh, Keeran; Cornier, Marc-Andre; Tregellas, Jason R

    2014-01-01

    Infant resting-state networks do not exhibit the same connectivity patterns as those of young children and adults. Current theories of brain development emphasize developmental progression in regional and network specialization. We compared infant and adult functional connectivity, predicting that infants would exhibit less regional specificity and greater internetwork communication compared with adults. Functional magnetic resonance imaging at rest was acquired in 12 healthy, term infants and 17 adults. Resting-state networks were extracted, using independent components analysis, and the resulting components were then compared between the adult and infant groups. Adults exhibited stronger connectivity in the posterior cingulate cortex node of the default mode network, but infants had higher connectivity in medial prefrontal cortex/anterior cingulate cortex than adults. Adult connectivity was typically higher than infant connectivity within structures previously associated with the various networks, whereas infant connectivity was frequently higher outside of these structures. Internetwork communication was significantly higher in infants than in adults. We interpret these findings as consistent with evidence suggesting that resting-state network development is associated with increasing spatial specificity, possibly reflecting the corresponding functional specialization of regions and their interconnections through experience.

  19. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study

    PubMed Central

    Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen

    2016-01-01

    Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939

  20. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Brain Activity and Functional Connectivity Associated with Hypnosis.

    PubMed

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The effect of regulatory mode on procrastination: Bi-stable parahippocampus connectivity with dorsal anterior cingulate and anterior prefrontal cortex.

    PubMed

    Zhang, Chenyan; Ni, Yan; Feng, Tingyong

    2017-06-30

    Previous research has elucidated that procrastination can be influenced by regulatory mode orientations. However, the neural mechanism of regulatory modes affecting procrastination is not well understood. To address this question, we employed resting-state functional magnetic resonance imaging (RS-fMRI) to test the influence of two regulatory modes (assessment and locomotion) on procrastination. The behavioral results showed that procrastination was positively correlated with assessment orientation but negatively correlated with locomotion orientation. Neuroimaging results indicated that the functional connectivity between parahippocampal cortex (PHC) and dorsal anterior cingulate (dACC) was negatively correlated with assessment scores, while the functional connectivity between anterior prefrontal cortex (aPFC) and parahippocampal cortex (PHC) was negatively correlated with locomotion scores. Critically, mediation analysis showed that the different effects of two distinct regulatory modes on procrastination were mediated by PHC-dACC and aPFC-PHC functional connectivity respectively. These results suggested that people's procrastination could be predicted by regulatory mode orientations, which is mediated by PHC connectivity with dACC and aPFC respectively. The present study extends our knowledge on procrastination and provides neural mechanism for understanding the link between regulatory mode orientations and procrastination. Copyright © 2017. Published by Elsevier B.V.

  3. Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits.

    PubMed

    Lynch, Charles J; Uddin, Lucina Q; Supekar, Kaustubh; Khouzam, Amirah; Phillips, Jennifer; Menon, Vinod

    2013-08-01

    The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    PubMed

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  5. Altered effective connectivity anchored in the posterior cingulate cortex and the medial prefrontal cortex in cognitively intact elderly APOE ε4 carriers: a preliminary study.

    PubMed

    Luo, Xiao; Li, Kaicheng; Jia, Y L; Zeng, Qingze; Jiaerken, Yeerfan; Qiu, Tiantian; Huang, Peiyu; Xu, Xiaojun; Shen, Zhujing; Guan, Xiaojun; Zhou, Jiong; Wang, Chao; Xu, J J; Zhang, Minming

    2018-03-17

    The APOE ε4 allele is associated with impaired intrinsic functional connectivity in neural networks, especially in the default mode network (DMN). However, effective connectivity (EC) reflects the direct causal effects of one brain region to another, which has rarely been investigated. Recently, Granger causality analysis (GCA) proved suitable for the study of directionality in neuronal interactions. Using GCA, we examined the differences in the EC between the anterior medial prefrontal cortex/posterior cingulate cortex (aMPFC/PCC) and the whole brain in 17 ε4 carrying and 32 non-carrying cognitively intact elderly individuals. Furthermore, correlation analyses were performed between the abnormal EC and cognition/neuropathological indices. Compared with the non-carriers, the results showed that the ε4 carriers exhibited decreased EC from the PCC to the whole brain in the middle temporal gyrus (MTG), the anterior cingulate cortex (ACC), and the precuneus (PCu). Meanwhile, the ε4 carriers demonstrated increased EC from the whole brain to the aMPFC in the inferior parietal lobe (IPL) and the postcentral gyrus (PCG). The correlation analyses suggested that the EC from the IPL/PCG to the aMPFC was related to episodic memory in non-carriers, while the decreased EC from the PCC to the ACC was associated with increased levels of t-tau in the ε4 carriers. In ε4 carriers, a negative influence can be traced from the PCC to both the anterior and posterior DMN subsystems; meanwhile, the anterior DMN subsystem receives compensatory effects from the parietal cortex. Early increases in AD-related pathologies in the PCC may act as first factors during this pathological process.

  6. [Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].

    PubMed

    Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz

    2018-06-01

    Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Failure to Recover from Proactive Semantic Interference and Abnormal Limbic Connectivity in Asymptomatic, Middle-Aged Offspring of Patients with Late-Onset Alzheimer's Disease.

    PubMed

    Sánchez, Stella M; Abulafia, Carolina; Duarte-Abritta, Barbara; de Guevara, M Soledad Ladrón; Castro, Mariana N; Drucaroff, Lucas; Sevlever, Gustavo; Nemeroff, Charles B; Vigo, Daniel E; Loewenstein, David A; Villarreal, Mirta F; Guinjoan, Salvador M

    2017-01-01

    We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.

  8. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study.

    PubMed

    Ichesco, Eric; Quintero, Andres; Clauw, Daniel J; Peltier, Scott; Sundgren, Pia M; Gerstner, Geoffrey E; Schmidt-Wilcke, Tobias

    2012-03-01

    Among the most common chronic pain conditions, yet poorly understood, are temporomandibular disorders (TMDs), with a prevalence estimate of 3-15% for Western populations. Although it is increasingly acknowledged that central nervous system mechanisms contribute to pain amplification and chronicity in TMDs, further research is needed to unravel neural correlates that might abet the development of chronic pain. The insular cortex (IC) and cingulate cortex (CC) are both critically involved in the experience of pain. The current study sought specifically to investigate IC-CC functional connectivity in TMD patients and healthy controls (HCs), both during resting state and during the application of a painful stimulus. Eight patients with TMD, and 8 age- and sex-matched HCs were enrolled in the present study. Functional magnetic resonance imaging data during resting state and during the performance of a pressure pain stimulus to the temple were acquired. Predefined seed regions were placed in the IC (anterior and posterior insular cortices) and the extracted signal was correlated with brain activity throughout the whole brain. Specifically, we were interested whether TMD patients and HCs would show differences in IC-CC connectivity, both during resting state and during the application of a painful stimulus to the face. As a main finding, functional connectivity analyses revealed an increased functional connectivity between the left anterior IC and pregenual anterior cingulate cortex (ACC) in TMD patients, during both resting state and applied pressure pain. Within the patient group, there was a negative correlation between the anterior IC-ACC connectivity and clinical pain intensity as measured by a visual analog scale. Since the pregenual region of the ACC is critically involved in antinociception, we hypothesize that an increase in anterior IC-ACC connectivity is indicative of an adaptation of the pain modulatory system early in the chronification process. © 2011 American Headache Society.

  9. Distinct Aging Effects on Functional Networks in Good and Poor Cognitive Performers

    PubMed Central

    Lee, Annie; Tan, Mingzhen; Qiu, Anqi

    2016-01-01

    Brain network hubs are susceptible to normal aging processes and disruptions of their functional connectivity are detrimental to decline in cognitive functions in older adults. However, it remains unclear how the functional connectivity of network hubs cope with cognitive heterogeneity in an aging population. This study utilized cognitive and resting-state functional magnetic resonance imaging data, cluster analysis, and graph network analysis to examine age-related alterations in the network hubs’ functional connectivity of good and poor cognitive performers. Our results revealed that poor cognitive performers showed age-dependent disruptions in the functional connectivity of the right insula and posterior cingulate cortex (PCC), while good cognitive performers showed age-related disruptions in the functional connectivity of the left insula and PCC. Additionally, the left PCC had age-related declines in the functional connectivity with the left medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). Most interestingly, good cognitive performers showed age-related declines in the functional connectivity of the left insula and PCC with their right homotopic structures. These results may provide insights of neuronal correlates for understanding individual differences in aging. In particular, our study suggests prominent protection roles of the left insula and PCC and bilateral ACC in good performers. PMID:27667972

  10. Unsupervised classification of major depression using functional connectivity MRI.

    PubMed

    Zeng, Ling-Li; Shen, Hui; Liu, Li; Hu, Dewen

    2014-04-01

    The current diagnosis of psychiatric disorders including major depressive disorder based largely on self-reported symptoms and clinical signs may be prone to patients' behaviors and psychiatrists' bias. This study aims at developing an unsupervised machine learning approach for the accurate identification of major depression based on single resting-state functional magnetic resonance imaging scans in the absence of clinical information. Twenty-four medication-naive patients with major depression and 29 demographically similar healthy individuals underwent resting-state functional magnetic resonance imaging. We first clustered the voxels within the perigenual cingulate cortex into two subregions, a subgenual region and a pregenual region, according to their distinct resting-state functional connectivity patterns and showed that a maximum margin clustering-based unsupervised machine learning approach extracted sufficient information from the subgenual cingulate functional connectivity map to differentiate depressed patients from healthy controls with a group-level clustering consistency of 92.5% and an individual-level classification consistency of 92.5%. It was also revealed that the subgenual cingulate functional connectivity network with the highest discriminative power primarily included the ventrolateral and ventromedial prefrontal cortex, superior temporal gyri and limbic areas, indicating that these connections may play critical roles in the pathophysiology of major depression. The current study suggests that subgenual cingulate functional connectivity network signatures may provide promising objective biomarkers for the diagnosis of major depression and that maximum margin clustering-based unsupervised machine learning approaches may have the potential to inform clinical practice and aid in research on psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  11. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis.

    PubMed

    Frank, G K W; Shott, M E; Riederer, J; Pryor, T L

    2016-11-01

    Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive-emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.

  12. Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-07

    Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.

  13. A network of amygdala connections predict individual differences in trait anxiety.

    PubMed

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion. © 2015 Wiley Periodicals, Inc.

  14. The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

    PubMed Central

    Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele

    2016-01-01

    This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776

  15. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  16. Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects.

    PubMed

    Sun, Hui; Luo, Lizhu; Yuan, Xinru; Zhang, Lu; He, Yini; Yao, Shuqiao; Wang, Jiaojian; Xiao, Jing

    2018-08-01

    Cognitive vulnerability to depression (CVD) is a high risk for depressive disorder. Recent studies focus on individuals with CVD to determine the neural basis of major depressive disorder (MDD) neuropathology. However, whether CVD showed specific or similar brain functional activity and connectivity patterns, compared to MDD, remain largely unknown. Here, using resting-state functional magnetic resonance imaging in subjects with CVD, healthy controls (HC) and MDD, regional homogeneity (ReHo) and resting-state functional connectivity (R-FC) analyses were conducted to assess local synchronization and changes in functional connectivity patterns. Significant ReHo differences were found in right posterior lobe of cerebellum (PLC), left lingual gyrus (LG) and precuneus. Compared to HC, CVD subjects showed increased ReHo in the PLC, which was similar to the difference found between MDD and HC. Compared to MDD patients, CVD subjects showed decreased ReHo in PLC, LG, and precuneus. R-FC analyses found increased functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex in CVD compared to both HC and MDD. Moreover, Regional mean ReHo values were positively correlated with Center for Epidemiologic Studies Depression Scale scores. These analyses revealed that PLC and functional connections between LG and left inferior parietal lobule, posterior cingulate cortex, and dorsolateral prefrontal cortex may be a potential marker for CVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    PubMed

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity.

    PubMed

    Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.

  19. Altered structural connectivity of pain-related brain network in burning mouth syndrome-investigation by graph analysis of probabilistic tractography.

    PubMed

    Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu

    2017-05-01

    Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.

  20. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis

    PubMed Central

    Frank, G K W; Shott, M E; Riederer, J; Pryor, T L

    2016-01-01

    Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive–emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction. PMID:27801897

  1. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites.

    PubMed

    Meier, Timothy B; Lancaster, Melissa A; Mayer, Andrew R; Teague, T Kent; Savitz, Jonathan

    2017-02-15

    There is a great need to identify potential long-term consequences of contact sport exposure and to identify molecular pathways that may be associated with these changes. We tested the hypothesis that football players with (Ath-mTBI) (n = 25) and without a concussion history (Ath) (n = 24) have altered resting state functional connectivity in regions with previously documented structural changes relative to healthy controls without football or concussion history (HC) (n = 27). As a secondary aim, we tested the hypothesis that group differences in functional connectivity are moderated by the relative ratio of neuroprotective to neurotoxic metabolites of the kynurenine pathway. Ath-mTBI had significantly increased connectivity of motor cortex to the supplementary motor area relative to Ath and HC. In contrast, both Ath-mTBI and Ath had increased connectivity between the left orbital frontal cortex and the right lateral frontal cortex, and between the left cornu ammonis areas 2 and 3/dentate gyrus (CA2-3/DG) of the hippocampus and the middle and posterior cingulate cortices, relative to HC. The relationship between the ratio of plasma concentrations of kynurenic acid to quinolinic acid (KYNA/QUIN) and left pregenual anterior cingulate cortex connectivity to multiple regions as well as KYNA/QUIN and right CA2-3/DG connectivity to multiple regions differed significantly according to football and concussion history. The results suggest that football exposure with and without concussion history can have a significant effect on intrinsic brain connectivity and implicate the kynurenine metabolic pathway as one potential moderator of functional connectivity dependent on football exposure and concussion history.

  2. Cocaine users with comorbid Cluster B personality disorders show dysfunctional brain activation and connectivity in the emotional regulation networks during negative emotion maintenance and reappraisal.

    PubMed

    Albein-Urios, Natalia; Verdejo-Román, Juan; Soriano-Mas, Carles; Asensio, Samuel; Martínez-González, José Miguel; Verdejo-García, Antonio

    2013-12-01

    Cocaine dependence often co-occurs with Cluster B personality disorders. Since both disorders are characterized by emotion regulation deficits, we predicted that cocaine comorbid patients would exhibit dysfunctional patterns of brain activation and connectivity during reappraisal of negative emotions. We recruited 18 cocaine users with comorbid Cluster B personality disorders, 17 cocaine users without comorbidities and 21 controls to be scanned using functional magnetic resonance imaging (fMRI) during performance on a reappraisal task in which they had to maintain or suppress the emotions induced by negative affective stimuli. We followed region of interest (ROI) and whole-brain approaches to investigate brain activations and connectivity associated with negative emotion experience and reappraisal. Results showed that cocaine users with comorbid personality disorders had reduced activation of the subgenual anterior cingulate cortex during negative emotion maintenance and increased activation of the lateral orbitofrontal cortex and the amygdala during reappraisal. Amygdala activation correlated with impulsivity and antisocial beliefs in the comorbid group. Connectivity analyses showed that in the cocaine comorbid group the subgenual cingulate was less efficiently connected with the amygdala and the fusiform gyri and more efficiently connected with the anterior insula during maintenance, whereas during reappraisal the left orbitofrontal cortex was more efficiently connected with the amygdala and the right orbitofrontal cortex was less efficiently connected with the dorsal striatum. We conclude that cocaine users with comorbid Cluster B personality disorders have distinctive patterns of brain activation and connectivity during maintenance and reappraisal of negative emotions, which correlate with impulsivity and dysfunctional beliefs. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  3. Disrupted functional connectivity of the pain network in fibromyalgia.

    PubMed

    Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro

    2012-01-01

    To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.

  4. Glutamatergic and Resting-State Functional Connectivity Correlates of Severity in Major Depression – The Role of Pregenual Anterior Cingulate Cortex and Anterior Insula

    PubMed Central

    Horn, Dorothea I.; Yu, Chunshui; Steiner, Johann; Buchmann, Julia; Kaufmann, Joern; Osoba, Annemarie; Eckert, Ulf; Zierhut, Kathrin C.; Schiltz, Kolja; He, Huiguang; Biswal, Bharat; Bogerts, Bernhard; Walter, Martin

    2010-01-01

    Glutamatergic mechanisms and resting-state functional connectivity alterations have been recently described as factors contributing to major depressive disorder (MDD). Furthermore, the pregenual anterior cingulate cortex (pgACC) seems to play an important role for major depressive symptoms such as anhedonia and impaired emotion processing. We investigated 22 MDD patients and 22 healthy subjects using a combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) approach. Severity of depression was rated using the 21-item Hamilton depression scale (HAMD) and patients were divided into severely and mildly depressed subgroups according to HAMD scores. Because of their hypothesized role in depression we investigated the functional connectivity between pgACC and left anterior insular cortex (AI). The sum of Glutamate and Glutamine (Glx) in the pgACC, but not in left AI, predicted the resting-state functional connectivity between the two regions exclusively in depressed patients. Furthermore, functional connectivity between these regions was significantly altered in the subgroup of severely depressed patients (HAMD > 15) compared to healthy subjects and mildly depressed patients. Similarly the Glx ratios, relative to Creatine, in the pgACC were lowest in severely depressed patients. These findings support the involvement of glutamatergic mechanisms in severe MDD which are related to the functional connectivity between pgACC and AI and depression severity. PMID:20700385

  5. Different cerebral connectivity of obese and lean children studied with fMRI

    NASA Astrophysics Data System (ADS)

    Anaya Moreno, Maryan A.; Hernández López, Javier M.; Hidalgo Tobón, Silvia; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    In this work we studied the different fMRI brain activations and connections between normal weighted (NW) and obese (OB) infants for different types of food odours. A total of 30 right handed volunteers (infants 8.4±2 years) of both sexes were studied. Infants were divided in two group, one with BMI between 19 and 24 kg/m2 and the other with BMI over 30 kg/m2. The first part of this project consisted of a study in which fMRI BOLD activations to pleasant, neutral and healthy food was performed on both groups. Cerebellum regions were found to be more active in the NW group over the OB when presented with odour cues. OB volunteers in contrast showed larger activations in cingulate cortex structures than their NW counterparts when presented with food odours. The second part of this study performed connectivity studies (ROI to ROI) comparing both groups for each smell. The NW group presented for the onion smell a strong reward anticipation connection between the gustatory cortex and the cingulate cortex which the OB group did not have. In contrast the OB group presented strong orbitofrontal connections (decision making) with gustatory and somatosensory cortex when stimulated with the chocolate odour which the NW did not present. We can conclude that clear differences in fMRI BOLD activation as well as connectivity between the OB and NW groups were found. This points at a very different processing mechanisms of odour cues in infants. To our knowledge this study has never been performed before on infants.

  6. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  7. The Posterior Medial Cortex in Urologic Chronic Pelvic Pain Syndrome: Detachment from Default Mode Network. A Resting-State Study from the MAPP Research Network

    PubMed Central

    Martucci, Katherine T.; Shirer, William R.; Bagarinao, Epifanio; Johnson, Kevin A.; Farmer, Melissa A.; Labus, Jennifer S.; Apkarian, A. Vania; Deutsch, Georg; Harris, Richard E.; Mayer, Emeran A.; Clauw, Daniel J.; Greicius, Michael D.; Mackey, Sean C.

    2015-01-01

    Altered resting-state brain activity, as a measure of functional connectivity, is commonly observed in chronic pain. Identifying a reliable signature pattern of altered resting-state activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed resting-state fMRI data from female patients with urologic chronic pelvic pain syndrome (UCPPS, N = 45) and matched healthy participants (N = 45) as part of a NIDDK funded multicenter project (www.mappnetwork.org). Using dual regression and seed-based analyses, we observed significantly decreased functional connectivity of the default mode network (DMN) to two regions in the posterior medial cortex (PMC): the posterior cingulate cortex (PCC) and left precuneus (TFCE, FWE corrected p<0.05). Further investigation revealed that patients demonstrated increased functional connectivity between the PCC and several brain regions implicated in pain, sensory, motor, and emotion regulation processes (e.g., insular cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus, putamen, amygdala, hippocampus). The left precuneus demonstrated decreased functional connectivity to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships and self-esteem levels in patients. Collectively, these findings indicate that in UCPPS patients, regions of the PMC are detached from the DMN, while neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes. PMID:26010458

  8. Subgenual anterior cingulate-insula resting-state connectivity as a neural correlate to trait and state stress resilience.

    PubMed

    Shao, Robin; Lau, Way K W; Leung, Mei-Kei; Lee, Tatia M C

    2018-07-01

    Accumulating evidence indicates important roles of the subgenual anterior cingulate cortex and rostral limbic regions such as the anterior insula, in regulating stress-related affective responses and negative affect states in general. However, research is lacking in simultaneously assessing the inter-relations between trait and state affective responses to stress, and the functional connectivity between the subgenual anterior cingulate and anterior insula. This preliminary research involved matched healthy participants with high (N = 10) and low (N = 10) self-reported trait stress resilience, and assessed their affective and subgenual anterior cingulate-anterior insula resting-state functional connectivity patterns before and after a psychosocial stress task. We found that while the low-resilience group displayed higher trait negative affect and perceived greater task-related stress, only the high-resilience group showed increase of negative affect, along with greater decrease of left subgenual anterior cingulate-right anterior insula connectivity, following stress induction. Moreover, the functional connectivity change mediated group difference in affect change following stress task. We speculate that the contingent increase of negative affect, and the associated temporary decoupling of subgenual anterior cingulate-insula circuitry, may represent a normative and adaptive stress response underpinned by adaptive and dynamic interplay between the default mode and salience networks. Such findings, if consolidated, have important implications for promoting stress resilience and reducing risk for stress-related affective disorders. Copyright © 2018. Published by Elsevier Inc.

  9. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-01

    Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

  10. Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men

    PubMed Central

    Li, Qiang; Liu, Jierong; Wang, Wei; Wang, Yarong; Li, Wei; Chen, Jiajie; Zhu, Jia; Yan, Xuejiao; Li, Yongbin; Li, Zhe; Ye, Jianjun; Wang, Wei

    2018-01-01

    Background It is unknown whether impaired coupling among 3 core large-scale brain networks (salience [SN], default mode [DMN] and executive control networks [ECN]) is associated with relapse behaviour in treated heroin-dependent patients. Methods We conducted a prospective resting-state functional MRI study comparing the functional connectivity strength among healthy controls and heroin-dependent men who had either relapsed or were in early remission. Men were considered to be either relapsed or in early remission based on urine drug screens during a 3-month follow-up period. We also examined how the coupling of large-scale networks correlated with relapse behaviour among heroin-dependent men. Results We included 20 controls and 50 heroin-dependent men (26 relapsed and 24 early remission) in our analyses. The relapsed men showed greater connectivity than the early remission and control groups between the dorsal anterior cingulate cortex (key node of the SN) and the dorsomedial prefrontal cortex (included in the DMN). The relapsed men and controls showed lower connectivity than the early remission group between the left dorsolateral prefrontal cortex (key node of the left ECN) and the dorsomedial prefrontal cortex. The percentage of positive urine drug screens positively correlated with the coupling between the dorsal anterior cingulate cortex and dorsomedial prefrontal cortex, but negatively correlated with the coupling between the left dorsolateral prefrontal cortex and dorsomedial prefrontal cortex. Limitations We examined deficits in only 3 core networks leading to relapse behaviour. Other networks may also contribute to relapse. Conclusion Greater coupling between the SN and DMN and lower coupling between the left ECN and DMN is associated with relapse behaviour. These findings may shed light on the development of new treatments for heroin addiction. PMID:29252165

  11. Atypical functional brain connectivity during rest in autism spectrum disorders.

    PubMed

    Doyle-Thomas, Krissy A R; Lee, Wayne; Foster, Nicholas E V; Tryfon, Ana; Ouimet, Tia; Hyde, Krista L; Evans, Alan C; Lewis, John; Zwaigenbaum, Lonnie; Anagnostou, Evdokia

    2015-05-01

    Connectivity atypicalities in autism spectrum disorders (ASD) have been extensively proposed. The default mode network (DMN) is critical in this study, given the insight it provides for long-distance connectivity, and the importance of regions in this network for introspection and social emotion processing, areas affected in ASD. However, study of this network has largely been limited to adults; research earlier in development is lacking. The objective of this study was to examine DMN connectivity in children/adolescents with ASD. A total of 115 children/adolescents, aged 6 to 17 years (71 males with ASD and 44 group age-matched TD males) were included in these analyses. We examined group differences in (1) functional connectivity between the posterior cingulate cortex and regions across the brain, (2) connectivity within the DMN as a function of age and intelligence quotient (IQ), and (3) the association between DMN connectivity and empathic accuracy. Individuals with ASD, relative to controls, showed either stronger or weaker connectivity between the posterior cingulate cortex (PCC) and DMN regions, depending on the region, but also showed stronger connectivity with non-DMN regions. A significant group-by-age interaction was observed in functional connectivity between the PCC and medial prefrontal cortex; connectivity increased with age in controls, but decreased in individuals with ASD. No effects of IQ were found. There was a significant group difference in the relation between DMN connectivity and empathic accuracy. Differences in functional connectivity may suggest the presence of neural atypicalities that impact the development of typical connectivity in ASD. In addition to affecting DMN dynamics, these atypicalities may also impact social-cognitive abilities. © 2015 American Neurological Association.

  12. Steroid hormones and maternal experience interact to induce glial plasticity in the cingulate cortex.

    PubMed

    Salmaso, N; Nadeau, J; Woodside, B

    2009-02-01

    Neocortical plasticity is not usually associated with changes in reproductive function. However, we have shown a six to 10-fold increase in the number of astrocytes labeled with glial fibrillary acidic protein (GFAP) and astrocytic basic fibroblast growth factor or FGF-2 (bFGF) in the cingulate cortex area 2 (Cg2) in postpartum rats, indicative of changes in connectivity in this area. In the present studies, we investigated the necessary and sufficient stimuli for these changes to occur. We show that 3 h of maternal experience combined with a hormonal treatment that mimics late pregnancy induces the astrocytic changes in Cg2 in virgin rats. The extent of these changes was similar to those of postpartum females. Sensitized virgin females did not show any astrocytic changes after 3 h of maternal behavior, suggesting that a similar amount of maternal experience alone is not sufficient to increase astrocytic bFGF- and GFAP-immunoreactivity in Cg2. Consistent with these data, eliminating early maternal experience by removing pups immediately postpartum abolishes the increased bFGF and GFAP protein expression in the cingulate cortex. These results suggest that maternal experience and hormonal state interact to produce astrocytic remodeling in the Cg2. The current results are consistent with a role for the cingulate cortex in maternal responsivity as suggested by early lesion studies in rats and more recent imaging studies in humans.

  13. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    PubMed

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex.

  14. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    PubMed Central

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex. PMID:27909422

  15. Decreased functional connectivity to posterior cingulate cortex in major depressive disorder.

    PubMed

    Yang, Rui; Gao, Chengge; Wu, Xiaoping; Yang, Junle; Li, Shengbin; Cheng, Hu

    2016-09-30

    The default mode network (DMN) and its interaction with other key networks such as the salience network and executive network are keys to understand psychiatric and neurological disorders including major depressive disorder (MDD). In this study, we combined independent component analysis and seed based connectivity analysis to study the posterior default mode network between 20 patients with MDD and 25 normal controls, as well as pre-treatment and post-treatment conditions of the patients. Both correlated and anti-correlated networks centered at the posterior cingulate cortex (PCC) were examined (PCC+ and PCC-). Our results showed aberrant functional connectivity of the PCC+ and PCC- networks between patients and normal controls. Specifically, normal controls exhibited significantly higher connectivity between the PCC and frontal/temporal regions for the PCC+ network and stronger connectivity strength between the PCC and the insula/middle frontal cortex for the PCC- network. The overall connectivity strength of the PCC+ and PCC- networks was also significantly lower in MDD. Because the PCC is a hub in the DMN that interacts with other networks, our result suggested a stronger interaction between the DMN and the salience network but a weak interaction between the DMN and the executive network in MDD. The treatment using sertraline did increase the functional connectivity strength, especially in the PCC+ network. Despite a large inter-subject variability in the overall connectivity strengths and change of the PCC network in response to the treatment, a high correlation between change of connectivity strength and the Hamilton depression score was observed for both the PCC+ and PCC- network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Functional connectivity and neuronal variability of resting state activity in bipolar disorder--reduction and decoupling in anterior cortical midline structures.

    PubMed

    Magioncalda, Paola; Martino, Matteo; Conio, Benedetta; Escelsior, Andrea; Piaggio, Niccolò; Presta, Andrea; Marozzi, Valentina; Rocchi, Giulio; Anastasio, Loris; Vassallo, Linda; Ferri, Francesca; Huang, Zirui; Roccatagliata, Luca; Pardini, Matteo; Northoff, Georg; Amore, Mario

    2015-02-01

    The cortical midline structures seem to be involved in the modulation of different resting state networks, such as the default mode network (DMN) and salience network (SN). Alterations in these systems, in particular in the perigenual anterior cingulate cortex (PACC), seem to play a central role in bipolar disorder (BD). However, the exact role of the PACC, and its functional connections to other midline regions (within and outside DMN) still remains unclear in BD. We investigated functional connectivity (FC), standard deviation (SD, as a measure of neuronal variability) and their correlation in bipolar patients (n = 40) versus healthy controls (n = 40), in the PACC and in its connections in different frequency bands (standard: 0.01-0.10 Hz; Slow-5: 0.01-0.027 Hz; Slow-4: 0.027-0.073 Hz). Finally, we studied the correlations between FC alterations and clinical-neuropsychological parameters and we explored whether subgroups of patients in different phases of the illness present different patterns of FC abnormalities. We found in BD decreased FC (especially in Slow-5) from the PACC to other regions located predominantly in the posterior DMN (such as the posterior cingulate cortex (PCC) and inferior temporal gyrus) and in the SN (such as the supragenual anterior cingulate cortex and ventrolateral prefrontal cortex). Second, we found in BD a decoupling between PACC-based FC and variability in the various target regions (without alteration in variability itself). Finally, in our subgroups explorative analysis, we found a decrease in FC between the PACC and supragenual ACC (in depressive phase) and between the PACC and PCC (in manic phase). These findings suggest that in BD the communication, that is, information transfer, between the different cortical midline regions within the cingulate gyrus does not seem to work properly. This may result in dysbalance between different resting state networks like the DMN and SN. A deficit in the anterior DMN-SN connectivity could lead to an abnormal shifting toward the DMN, while a deficit in the anterior DMN-posterior DMN connectivity could lead to an abnormal shifting toward the SN, resulting in excessive focusing on internal contents and reduced transition from idea to action or in excessive focusing on external contents and increased transition from idea to action, respectively, which could represent central dimensions of depression and mania. If confirmed, they could represent diagnostic markers in BD. © 2014 Wiley Periodicals, Inc.

  17. Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression.

    PubMed

    Chai, Xiaoqian J; Hirshfeld-Becker, Dina; Biederman, Joseph; Uchida, Mai; Doehrmann, Oliver; Leonard, Julia A; Salvatore, John; Kenworthy, Tara; Brown, Ariel; Kagan, Elana; de Los Angeles, Carlo; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2016-12-01

    Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. We compared resting-state functional connectivity, measured with functional magnetic resonance imaging, between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8-14 years of age) and age-matched children of parents with no lifetime history of depression (control subjects, n = 16). At-risk children exhibited hyperconnectivity between the default mode network and subgenual anterior cingulate cortex/orbital frontal cortex, and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited 1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the default mode network; 2) hypoconnectivity between left dorsolateral prefrontal cortex and subgenual anterior cingulate cortex; and 3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and control subjects based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Children at familial risk for depression exhibited atypical functional connectivity in the default mode, cognitive control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Altered Effective Connectivity among Core Neurocognitive Networks in Idiopathic Generalized Epilepsy: An fMRI Evidence

    PubMed Central

    Wei, Huilin; An, Jie; Shen, Hui; Zeng, Ling-Li; Qiu, Shijun; Hu, Dewen

    2016-01-01

    Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures (GTCS) suffer long-term cognitive impairments, and present a higher incidence of psychosocial and psychiatric disturbances than healthy people. It is possible that the cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from disturbed causal relationship among core neurocognitive brain networks. To test this hypothesis, we examined the effective connectivity across the salience network (SN), default mode network (DMN), and central executive network (CEN) using resting-state functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients and 29 healthy controls. In the study, a combination framework of time domain and frequency domain multivariate Granger causality analysis was firstly proposed, and proved to be valid and accurate by simulation experiments. Using this method, we then observed significant differences in the effective connectivity graphs between the patient and control groups. Specifically, between-group statistical analysis revealed that relative to the healthy controls, the patients established significantly enhanced Granger causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate cortex, which is coherent both in the time and frequency domains analyses. Meanwhile, time domain analysis also revealed decreased Granger causal influence from the right fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may provide new evidence for functional brain organization disruption underlying cognitive dysfunctions and psychopathological risk in IGE-GTCS. PMID:27656137

  19. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans

    PubMed Central

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems. PMID:27089185

  20. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    PubMed

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems.

  1. The Neural Basis of Social Influence in a Dictator Decision.

    PubMed

    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong

    2017-01-01

    Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants' decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing.

  2. Salience network integrity predicts default mode network function after traumatic brain injury

    PubMed Central

    Bonnelle, Valerie; Ham, Timothy E.; Leech, Robert; Kinnunen, Kirsi M.; Mehta, Mitul A.; Greenwood, Richard J.; Sharp, David J.

    2012-01-01

    Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)—which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae—regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control. PMID:22393019

  3. Deciding where to attend: Large-scale network mechanisms underlying attention and intention revealed by graph-theoretic analysis.

    PubMed

    Liu, Yuelu; Hong, Xiangfei; Bengson, Jesse J; Kelley, Todd A; Ding, Mingzhou; Mangun, George R

    2017-08-15

    The neural mechanisms by which intentions are transformed into actions remain poorly understood. We investigated the network mechanisms underlying spontaneous voluntary decisions about where to focus visual-spatial attention (willed attention). Graph-theoretic analysis of two independent datasets revealed that regions activated during willed attention form a set of functionally-distinct networks corresponding to the frontoparietal network, the cingulo-opercular network, and the dorsal attention network. Contrasting willed attention with instructed attention (where attention is directed by external cues), we observed that the dorsal anterior cingulate cortex was allied with the dorsal attention network in instructed attention, but shifted connectivity during willed attention to interact with the cingulo-opercular network, which then mediated communications between the frontoparietal network and the dorsal attention network. Behaviorally, greater connectivity in network hubs, including the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the inferior parietal lobule, was associated with faster reaction times. These results, shown to be consistent across the two independent datasets, uncover the dynamic organization of functionally-distinct networks engaged to support intentional acts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The default mode network and social understanding of others: what do brain connectivity studies tell us.

    PubMed

    Li, Wanqing; Mai, Xiaoqin; Liu, Chao

    2014-01-01

    The Default Mode Network (DMN) has been found to be involved in various domains of cognitive and social processing. The present article will review brain connectivity results related to the DMN in the fields of social understanding of others: emotion perception, empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy subjects with no neurological and psychiatric disease, but some studies on patients with autism and psychopathy will also be discussed. Common results show that the medial prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the subregions of the MPFC contribute differently to this function according to their roles in different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal lobe (MTL) subsystem and its connections with emotion regions are mainly associated with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC) in the cortical midline structures (CMS) and its connections with posterior and anterior cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal junction (TPJ) are primarily related to the understanding of other's mental states. As behaviors become more complex, the related regions in frontal cortex are located higher. This reflects the transfer of information processing from automatic to cognitive processes with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the connectivities of posterior cingulate cortex (PCC) also show some changes during tasks from the four social fields. These results indicate that the DMN is indispensable in the social understanding of others.

  5. The default mode network and social understanding of others: what do brain connectivity studies tell us

    PubMed Central

    Li, Wanqing; Mai, Xiaoqin; Liu, Chao

    2014-01-01

    The Default Mode Network (DMN) has been found to be involved in various domains of cognitive and social processing. The present article will review brain connectivity results related to the DMN in the fields of social understanding of others: emotion perception, empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy subjects with no neurological and psychiatric disease, but some studies on patients with autism and psychopathy will also be discussed. Common results show that the medial prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the subregions of the MPFC contribute differently to this function according to their roles in different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal lobe (MTL) subsystem and its connections with emotion regions are mainly associated with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC) in the cortical midline structures (CMS) and its connections with posterior and anterior cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal junction (TPJ) are primarily related to the understanding of other's mental states. As behaviors become more complex, the related regions in frontal cortex are located higher. This reflects the transfer of information processing from automatic to cognitive processes with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the connectivities of posterior cingulate cortex (PCC) also show some changes during tasks from the four social fields. These results indicate that the DMN is indispensable in the social understanding of others. PMID:24605094

  6. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and neurofilament protein content. Thus, although the neurons that provide the anterior and posterior cingulate motor projections to area M1 differ morphologically and in laminar origin, their neurochemical profiles are similar with respect to neurofilament protein. This suggests that neurochemical phenotype may be a more important unifying feature for corticocortical projections than morphology.

  7. How are different neural networks related to consciousness?

    PubMed

    Qin, Pengmin; Wu, Xuehai; Huang, Zirui; Duncan, Niall W; Tang, Weijun; Wolff, Annemarie; Hu, Jin; Gao, Liang; Jin, Yi; Wu, Xing; Zhang, Jianfeng; Lu, Lu; Wu, Chunping; Qu, Xiaoying; Mao, Ying; Weng, Xuchu; Zhang, Jun; Northoff, Georg

    2015-10-01

    We aimed to investigate the roles of different resting-state networks in predicting both the actual level of consciousness and its recovery in brain injury patients. We investigated resting-state functional connectivity within different networks in patients with varying levels of consciousness: unresponsive wakefulness syndrome (UWS; n = 56), minimally conscious state (MCS; n = 29), and patients with brain lesions but full consciousness (BL; n = 48). Considering the actual level of consciousness, we compared the strength of network connectivity among the patient groups. We then checked the presence of connections between specific regions in individual patients and calculated the frequency of this in the different patient groups. Considering the recovery of consciousness, we split the UWS group into 2 subgroups according to recovery: those who emerged from UWS (UWS-E) and those who remained in UWS (UWS-R). The above analyses were repeated on these 2 subgroups. Functional connectivity strength in salience network (SN), especially connectivity between the supragenual anterior cingulate cortex (SACC) and left anterior insula (LAI), was reduced in the unconscious state (UWS) compared to the conscious state (MCS and BL). Moreover, at the individual level, SACC-LAI connectivity was more present in MCS than in UWS. Default-mode network (DMN) connectivity strength, especially between the posterior cingulate cortex (PCC) and left lateral parietal cortex (LLPC), was reduced in UWS-R compared with UWS-E. Furthermore, PCC-LLPC connectivity was more present in UWS-E than in UWS-R. Our findings show that SN (SACC-LAI) connectivity correlates with behavioral signs of consciousness, whereas DMN (PCC-LLPC) connectivity instead predicts recovery of consciousness. © 2015 American Neurological Association.

  8. Altered functional connectivity during self- and close other-reflection in patients with bipolar disorder with past psychosis and patients with schizophrenia.

    PubMed

    Zhang, Liwen; Vander Meer, Lisette; Opmeer, Esther M; Marsman, Jan-Bernard C; Ruhé, Henricus G; Aleman, André

    2016-12-01

    Disturbances in implicit self-processing have been reported both in psychotic patients with bipolar disorder (BD) and schizophrenia. It remains unclear whether these two psychotic disorders show disturbed functional connectivity during explicit self-reflection, which is associated with social functioning and illness symptoms. Therefore, we investigated functional connectivity during explicit self-reflection in BD with past psychosis and schizophrenia. Twenty-three BD-patients, 17 schizophrenia-patients and 21 health controls (HC) performed a self-reflection task, including the conditions self-reflection, close other-reflection and semantic control. Functional connectivity was investigated with generalized psycho-physiological interaction (gPPI). During self-reflection compared to semantic, BD-patients had decreased connectivity between several cortical-midline structures (CMS) nodes (i.e., anterior cingulate cortex, ventromedial prefrontal cortex), the insula and the head of the caudate while HC showed increased connectivities. Schizophrenia-patients, during close other-reflection compared to semantic, demonstrated reduced ventral-anterior insula-precuneus/posterior cingulate cortex (PCC) functional connectivity, whereas this was increased in HC. There were no differences between BD and schizophrenia during self- and close other-reflection. We propose that decreased functional connectivity between the CMS nodes/insula and head of the caudate in BD-patients may imply a reduced involvement of the motivational system during self-reflection; and the reduced functional connectivity between the ventral-anterior insula and precuneus/PCC during close other-reflection in schizophrenia-patients may subserve difficulties in information integration of autobiographical memory and emotional awareness in relation to close others. These distinctive impaired patterns of functional connectivity in BD and schizophrenia (compared to HC) deserve further investigation to determine their robustness and associations with differences in clinical presentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    PubMed Central

    Scheck, Simon M.; Pannek, Kerstin; Raffelt, David A.; Fiori, Simona; Boyd, Roslyn N.; Rose, Stephen E.

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC–precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC–superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = −0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  10. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder

    PubMed Central

    Miller, Danielle R.; Hayes, Scott M.; Hayes, Jasmeet P.; Spielberg, Jeffrey M.; Lafleche, Ginette; Verfaellie, Mieke

    2017-01-01

    Background Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Methods Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Results Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Conclusions Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology. PMID:28435932

  11. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.

    PubMed

    Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke

    2017-05-01

    Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.

  12. Neural substrates of context- and person-dependent altruistic punishment.

    PubMed

    Wang, Lili; Lu, Xiaping; Gu, Ruolei; Zhu, Ruida; Xu, Rui; Broster, Lucas S; Feng, Chunliang

    2017-11-01

    Human altruistic behaviors are heterogeneous across both contexts and people, whereas the neural signatures underlying the heterogeneity remain to be elucidated. To address this issue, we examined the neural signatures underlying the context- and person-dependent altruistic punishment, conjoining event-related fMRI with both task-based and resting-state functional connectivity (RSFC). Acting as an impartial third party, participants decided how to punish norm violators either alone or in the presence of putative others. We found that the presence of others decreased altruistic punishment due to diffusion of responsibility. Those behavioral effects paralleled altered neural responses in the dorsal anterior cingulate cortex (dACC) and putamen. Further, we identified modulation of responsibility diffusion on task-based functional connectivity of dACC with the brain regions implicated in reward processing (i.e., posterior cingulate cortex and amygdala/orbital frontal cortex). Finally, the RSFC results revealed that (i) increased intrinsic connectivity strengths of the putamen with temporoparietal junction and dorsolateral PFC were associated with attenuated responsibility diffusion in altruistic punishment and (ii) increased putamen-dorsomedial PFC connectivity strengths were associated with reduced responsibility diffusion in self-reported responsibility. Taken together, our findings elucidate the context- and person-dependent altruistic behaviors as well as associated neural substrates and thus provide a potential neurocognitive mechanism of heterogeneous human altruistic behaviors. Hum Brain Mapp 38:5535-5550, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder.

    PubMed

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.

  14. Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.

    PubMed

    Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa

    2011-11-01

    Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.

  15. Changes in resting-state connectivity in musicians with embouchure dystonia.

    PubMed

    Haslinger, Bernhard; Noé, Jonas; Altenmüller, Eckart; Riedl, Valentin; Zimmer, Claus; Mantel, Tobias; Dresel, Christian

    2017-03-01

    Embouchure dystonia is a highly disabling task-specific dystonia in professional brass musicians leading to spasms of perioral muscles while playing the instrument. As they are asymptomatic at rest, resting-state functional magnetic resonance imaging in these patients can reveal changes in functional connectivity within and between brain networks independent from dystonic symptoms. We therefore compared embouchure dystonia patients to healthy musicians with resting-state functional magnetic resonance imaging in combination with independent component analyses. Patients showed increased functional connectivity of the bilateral sensorimotor mouth area and right secondary somatosensory cortex, but reduced functional connectivity of the bilateral sensorimotor hand representation, left inferior parietal cortex, and mesial premotor cortex within the lateral motor function network. Within the auditory function network, the functional connectivity of bilateral secondary auditory cortices, right posterior parietal cortex and left sensorimotor hand area was increased, the functional connectivity of right primary auditory cortex, right secondary somatosensory cortex, right sensorimotor mouth representation, bilateral thalamus, and anterior cingulate cortex was reduced. Negative functional connectivity between the cerebellar and lateral motor function network and positive functional connectivity between the cerebellar and primary visual network were reduced. Abnormal resting-state functional connectivity of sensorimotor representations of affected and unaffected body parts suggests a pathophysiological predisposition for abnormal sensorimotor and audiomotor integration in embouchure dystonia. Altered connectivity to the cerebellar network highlights the important role of the cerebellum in this disease. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  16. 8-week Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term meditation practice - A systematic review.

    PubMed

    Gotink, Rinske A; Meijboom, Rozanna; Vernooij, Meike W; Smits, Marion; Hunink, M G Myriam

    2016-10-01

    The objective of the current study was to systematically review the evidence of the effect of secular mindfulness techniques on function and structure of the brain. Based on areas known from traditional meditation neuroimaging results, we aimed to explore a neuronal explanation of the stress-reducing effects of the 8-week Mindfulness Based Stress Reduction (MBSR) and Mindfulness Based Cognitive Therapy (MBCT) program. We assessed the effect of MBSR and MBCT (N=11, all MBSR), components of the programs (N=15), and dispositional mindfulness (N=4) on brain function and/or structure as assessed by (functional) magnetic resonance imaging. 21 fMRI studies and seven MRI studies were included (two studies performed both). The prefrontal cortex, the cingulate cortex, the insula and the hippocampus showed increased activity, connectivity and volume in stressed, anxious and healthy participants. Additionally, the amygdala showed decreased functional activity, improved functional connectivity with the prefrontal cortex, and earlier deactivation after exposure to emotional stimuli. Demonstrable functional and structural changes in the prefrontal cortex, cingulate cortex, insula and hippocampus are similar to changes described in studies on traditional meditation practice. In addition, MBSR led to changes in the amygdala consistent with improved emotion regulation. These findings indicate that MBSR-induced emotional and behavioral changes are related to functional and structural changes in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Default network connectivity as a vulnerability marker for obsessive compulsive disorder.

    PubMed

    Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K

    2014-05-01

    Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.

  18. Abnormal Resting-State Functional Connectivity of the Anterior Cingulate Cortex in Unilateral Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Liu, Shenghua; Lv, Han; Bo, Fan; Feng, Yuan; Chen, Huiyou; Xu, Jin-Jing; Yin, Xindao; Wang, Shukui; Gu, Jian-Ping

    2018-01-01

    Purpose: The anterior cingulate cortex (ACC) has been suggested to be involved in chronic subjective tinnitus. Tinnitus may arise from aberrant functional coupling between the ACC and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to illuminate the functional connectivity (FC) network of the ACC subregions in chronic tinnitus patients. Methods: Resting-state fMRI scans were obtained from 31 chronic right-sided tinnitus patients and 40 healthy controls (age, sex, and education well-matched) in this study. Rostral ACC and dorsal ACC were selected as seed regions to investigate the intrinsic FC with the whole brain. The resulting FC patterns were correlated with clinical tinnitus characteristics including the tinnitus duration and tinnitus distress. Results: Compared with healthy controls, chronic tinnitus patients showed disrupted FC patterns of ACC within several brain networks, including the auditory cortex, prefrontal cortex, visual cortex, and default mode network (DMN). The Tinnitus Handicap Questionnaires (THQ) scores showed positive correlations with increased FC between the rostral ACC and left precuneus (r = 0.507, p = 0.008) as well as the dorsal ACC and right inferior parietal lobe (r = 0.447, p = 0.022). Conclusions: Chronic tinnitus patients have abnormal FC networks originating from ACC to other selected brain regions that are associated with specific tinnitus characteristics. Resting-state ACC-cortical FC disturbances may play an important role in neuropathological features underlying chronic tinnitus. PMID:29410609

  19. Abnormal ventral tegmental area-anterior cingulate cortex connectivity in Parkinson's disease with depression.

    PubMed

    Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong

    2018-07-16

    Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Segregated and integrated coding of reward and punishment in the cingulate cortex.

    PubMed

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-06-01

    Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.

  1. Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex

    PubMed Central

    Lord, Anton R.; Li, Meng; Demenescu, Liliana R.; van den Meer, Johan; Borchardt, Viola; Krause, Anna Linda; Heinze, Hans-Jochen; Breakspear, Michael; Walter, Martin

    2017-01-01

    The brain's connectivity skeleton—a rich club of strongly interconnected members—was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the “rich club.” Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (p = 0.001), while the rich club coefficient showed no effect of age (p = 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (p = 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level. PMID:28439224

  2. Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex.

    PubMed

    Lord, Anton R; Li, Meng; Demenescu, Liliana R; van den Meer, Johan; Borchardt, Viola; Krause, Anna Linda; Heinze, Hans-Jochen; Breakspear, Michael; Walter, Martin

    2017-01-01

    The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age ( p = 0.001), while the rich club coefficient showed no effect of age (p = 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC ( p = 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level.

  3. Visual target modulation of functional connectivity networks revealed by self-organizing group ICA.

    PubMed

    van de Ven, Vincent; Bledowski, Christoph; Prvulovic, David; Goebel, Rainer; Formisano, Elia; Di Salle, Francesco; Linden, David E J; Esposito, Fabrizio

    2008-12-01

    We applied a data-driven analysis based on self-organizing group independent component analysis (sogICA) to fMRI data from a three-stimulus visual oddball task. SogICA is particularly suited to the investigation of the underlying functional connectivity and does not rely on a predefined model of the experiment, which overcomes some of the limitations of hypothesis-driven analysis. Unlike most previous applications of ICA in functional imaging, our approach allows the analysis of the data at the group level, which is of particular interest in high order cognitive studies. SogICA is based on the hierarchical clustering of spatially similar independent components, derived from single subject decompositions. We identified four main clusters of components, centered on the posterior cingulate, bilateral insula, bilateral prefrontal cortex, and right posterior parietal and prefrontal cortex, consistently across all participants. Post hoc comparison of time courses revealed that insula, prefrontal cortex and right fronto-parietal components showed higher activity for targets than for distractors. Activation for distractors was higher in the posterior cingulate cortex, where deactivation was observed for targets. While our results conform to previous neuroimaging studies, they also complement conventional results by showing functional connectivity networks with unique contributions to the task that were consistent across subjects. SogICA can thus be used to probe functional networks of active cognitive tasks at the group-level and can provide additional insights to generate new hypotheses for further study. Copyright 2007 Wiley-Liss, Inc.

  4. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks

    PubMed Central

    Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like) and associated emotional components, such as distress and mood changes. Source localization of quantitative electroencephalography (qEEG) data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual), auditory cortex (primary and secondary), dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus), parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus, the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. PMID:22586375

  5. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  6. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex

    PubMed Central

    Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. PMID:26098888

  7. The Neural Basis of Social Influence in a Dictator Decision

    PubMed Central

    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong

    2017-01-01

    Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants’ decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing. PMID:29375412

  8. Prefrontal cortex based sex differences in tinnitus perception: same tinnitus intensity, same tinnitus distress, different mood.

    PubMed

    Vanneste, Sven; Joos, Kathleen; De Ridder, Dirk

    2012-01-01

    Tinnitus refers to auditory phantom sensation. It is estimated that for 2% of the population this auditory phantom percept severely affects the quality of life, due to tinnitus related distress. Although the overall distress levels do not differ between sexes in tinnitus, females are more influenced by distress than males. Typically, pain, sleep, and depression are perceived as significantly more severe by female tinnitus patients. Studies on gender differences in emotional regulation indicate that females with high depressive symptoms show greater attention to emotion, and use less anti-rumination emotional repair strategies than males. The objective of this study was to verify whether the activity and connectivity of the resting brain is different for male and female tinnitus patients using resting-state EEG. Females had a higher mean score than male tinnitus patients on the BDI-II. Female tinnitus patients differ from male tinnitus patients in the orbitofrontal cortex (OFC) extending to the frontopolar cortex in beta1 and beta2. The OFC is important for emotional processing of sounds. Increased functional alpha connectivity is found between the OFC, insula, subgenual anterior cingulate (sgACC), parahippocampal (PHC) areas and the auditory cortex in females. Our data suggest increased functional connectivity that binds tinnitus-related auditory cortex activity to auditory emotion-related areas via the PHC-sgACC connections resulting in a more depressive state even though the tinnitus intensity and tinnitus-related distress are not different from men. Comparing male tinnitus patients to a control group of males significant differences could be found for beta3 in the posterior cingulate cortex (PCC). The PCC might be related to cognitive and memory-related aspects of the tinnitus percept. Our results propose that sex influences in tinnitus research cannot be ignored and should be taken into account in functional imaging studies related to tinnitus.

  9. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder.

    PubMed

    Velasquez, Francisco; Wiggins, Jillian Lee; Mattson, Whitney I; Martin, Donna M; Lord, Catherine; Monk, Christopher S

    2017-04-01

    Social deficits in autism spectrum disorder (ASD) are linked to amygdala functioning and functional connection between the amygdala and subgenual anterior cingulate cortex (sACC) is involved in the modulation of amygdala activity. Impairments in behavioral symptoms and amygdala activation and connectivity with the sACC seem to vary by serotonin transporter-linked polymorphic region (5-HTTLPR) variant genotype in diverse populations. The current preliminary investigation examines whether amygdala-sACC connectivity differs by 5-HTTLPR genotype and relates to social functioning in ASD. A sample of 108 children and adolescents (44 ASD) completed an fMRI face-processing task. Youth with ASD and low expressing 5-HTTLPR genotypes showed significantly greater connectivity than youth with ASD and higher expressing genotypes as well as typically developing (TD) individuals with both low and higher expressing genotypes, in the comparison of happy vs. baseline faces and happy vs. neutral faces. Moreover, individuals with ASD and higher expressing genotypes exhibit a negative relationship between amygdala-sACC connectivity and social dysfunction. Altered amygdala-sACC coupling based on 5-HTTLPR genotype may help explain some of the heterogeneity in neural and social function observed in ASD. This is the first ASD study to combine genetic polymorphism analyses and functional connectivity in the context of a social task. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Brain intrinsic network connectivity in individuals with frequent tanning behavior.

    PubMed

    Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon

    2018-05-01

    Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.

  11. Altered default network resting state functional connectivity in patients with a first episode of psychosis.

    PubMed

    Alonso-Solís, Anna; Corripio, Iluminada; de Castro-Manglano, Pilar; Duran-Sindreu, Santiago; Garcia-Garcia, Manuel; Proal, Erika; Nuñez-Marín, Fidel; Soutullo, Cesar; Alvarez, Enric; Gómez-Ansón, Beatriz; Kelly, Clare; Castellanos, F Xavier

    2012-08-01

    Default network (DN) abnormalities have been identified in patients with chronic schizophrenia using "resting state" functional magnetic resonance imaging (R-fMRI). Here, we examined the integrity of the DN in patients experiencing their first episode of psychosis (FEP) compared with sex- and age-matched healthy controls. We collected R-fMRI data from 19 FEP patients (mean age 24.9 ± 4.8 yrs, 14 males) and 19 healthy controls (26.1 ± 4.8 yrs, 14 males) at 3T. Following standard preprocessing, we examined the functional connectivity (FC) of two DN subsystems and the two DN hubs (P<0.0045, corrected). Patients with FEP exhibited abnormal FC that appeared largely restricted to the dorsomedial prefrontal cortex (dMPFC) DN subsystem. Relative to controls, FEP patients exhibited weaker positive FC between dMPFC and posterior cingulate cortex (PCC) and precuneus, extending laterally through the parietal lobe to the posterior angular gyrus. Patients with FEP exhibited weaker negative FC between the lateral temporal cortex and the intracalcarine cortex, bilaterally. The PCC and temporo-parietal junction also exhibited weaker negative FC with the right fusiform gyrus extending to the lingual gyrus and lateral occipital cortex, in FEP patients, compared to controls. By contrast, patients with FEP showed stronger negative FC between the temporal pole and medial motor cortex, anterior precuneus and posterior mid-cingulate cortex. Abnormalities in the dMPFC DN subsystem in patients with a FEP suggest that FC patterns are altered even in the early stages of psychosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Altered Default Network Resting State Functional Connectivity in Patients with a First Episode of Psychosis

    PubMed Central

    Alonso-Solís, Anna; Corripio, Iluminada; de Castro-Manglano, Pilar; Duran-Sindreu, Santiago; Garcia-Garcia, Manuel; Proal, Erika; Nuñez-Marín, Fidel; Soutullo, Cesar; Alvarez, Enric; Gómez-Ansón, Beatriz; Kelly, Clare; Castellanos, F. Xavier

    2012-01-01

    Background Default network (DN) abnormalities have been identified in patients with chronic schizophrenia using “resting state” functional magnetic resonance imaging (R-fMRI). Here, we examined the integrity of the DN in patients experiencing their first episode of psychosis (FEP) compared with sex- and age-matched healthy controls. Methods We collected R-fMRI data from 19 FEP patients (mean age 24.9±4.8 yrs, 14 males) and 19 healthy controls (26.1±4.8 yrs, 14 males) at 3 Tesla. Following standard preprocessing, we examined the functional connectivity (FC) of two DN subsystems and the two DN hubs (P<0.0045, corrected). Results Patients with FEP exhibited abnormal FC that appeared largely restricted to the dorsomedial prefrontal cortex (dMPFC) DN subsystem. Relative to controls, FEP patients exhibited weaker positive FC between dMPFC and posterior cingulate cortex (PCC) and precuneus, extending laterally through the parietal lobe to the posterior angular gyrus. Patients with FEP exhibited weaker negative FC between the lateral temporal cortex and the intracalcarine cortex, bilaterally. The PCC and temporo-parietal junction also exhibited weaker negative FC with the right fusiform gyrus extending to the lingual gyrus and lateral occipital cortex, in FEP patients, compared to controls. By contrast, patients with FEP showed stronger negative FC between the temporal pole and medial motor cortex, anterior precuneus and posterior mid-cingulate cortex. Conclusions Abnormalities in the dMPFC DN subsystem in patients with a FEP suggest that FC patterns are altered even in the early stages of psychosis. PMID:22633527

  13. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    PubMed Central

    Rajmohan, Ravi; Anderson, Ronald C.; Fang, Dan; Meyer, Austin G.; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P. Hemachandra; O’Boyle, Michael W.

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability. PMID:28588478

  14. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    PubMed

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  15. Altered brain connectivity in sagittal craniosynostosis.

    PubMed

    Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A

    2014-06-01

    Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC < control group) in mean diffusivity were localized to the right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices (MNI coordinates -5, -35, 34 and MNI coordinates 6, -42, 39, respectively) were negatively correlated to right hemisphere precuneus (MNI coordinates 6, -71, 46), while the left ventromedial prefrontal cortex (MNI coordinates 6, 34, -8) was negatively correlated to right middle frontal gyrus (MNI coordinates 40, 4, 33). All group comparisons (sNSC vs controls) were conducted at a whole brain-corrected threshold of p < 0.05. This study demonstrates altered neocortical structural and functional connectivity in sNSC that may, in part or substantially, underlie the neuropsychological deficits commonly reported in this population. Future studies combining analysis of multimodal MRI and clinical characterization data in larger samples of participants are warranted.

  16. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research.

    PubMed

    Brakowski, Janis; Spinelli, Simona; Dörig, Nadja; Bosch, Oliver Gero; Manoliu, Andrei; Holtforth, Martin Grosse; Seifritz, Erich

    2017-09-01

    The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Anterior-to-Posterior Shift in Midline Cortical Activity in Schizophrenia During Self-Reflection

    PubMed Central

    Holt, Daphne J.; Cassidy, Brittany S.; Andrews-Hanna, Jessica R.; Lee, Su Mei; Coombs, Garth; Goff, Donald C.; Gabrieli, John D.; Moran, Joseph M.

    2013-01-01

    Background Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during “resting” states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Methods Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Results Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Conclusions Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. PMID:21144498

  18. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    PubMed

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  20. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  1. The role of the posterior cingulate cortex in cognition and disease

    PubMed Central

    Sharp, David J.

    2014-01-01

    The posterior cingulate cortex is a highly connected and metabolically active brain region. Recent studies suggest it has an important cognitive role, although there is no consensus about what this is. The region is typically discussed as having a unitary function because of a common pattern of relative deactivation observed during attentionally demanding tasks. One influential hypothesis is that the posterior cingulate cortex has a central role in supporting internally-directed cognition. It is a key node in the default mode network and shows increased activity when individuals retrieve autobiographical memories or plan for the future, as well as during unconstrained ‘rest’ when activity in the brain is ‘free-wheeling’. However, other evidence suggests that the region is highly heterogeneous and may play a direct role in regulating the focus of attention. In addition, its activity varies with arousal state and its interactions with other brain networks may be important for conscious awareness. Understanding posterior cingulate cortex function is likely to be of clinical importance. It is well protected against ischaemic stroke, and so there is relatively little neuropsychological data about the consequences of focal lesions. However, in other conditions abnormalities in the region are clearly linked to disease. For example, amyloid deposition and reduced metabolism is seen early in Alzheimer’s disease. Functional neuroimaging studies show abnormalities in a range of neurological and psychiatric disorders including Alzheimer’s disease, schizophrenia, autism, depression and attention deficit hyperactivity disorder, as well as ageing. Our own work has consistently shown abnormal posterior cingulate cortex function following traumatic brain injury, which predicts attentional impairments. Here we review the anatomy and physiology of the region and how it is affected in a range of clinical conditions, before discussing its proposed functions. We synthesize key findings into a novel model of the region’s function (the ‘Arousal, Balance and Breadth of Attention’ model). Dorsal and ventral subcomponents are functionally separated and differences in regional activity are explained by considering: (i) arousal state; (ii) whether attention is focused internally or externally; and (iii) the breadth of attentional focus. The predictions of the model can be tested within the framework of complex dynamic systems theory, and we propose that the dorsal posterior cingulate cortex influences attentional focus by ‘tuning’ whole-brain metastability and so adjusts how stable brain network activity is over time. PMID:23869106

  2. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    ERIC Educational Resources Information Center

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  3. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease

    PubMed Central

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-01-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest (‘task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems. PMID:26837463

  4. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    PubMed

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  5. Aberrant corticostriatal functional circuits in adolescents with Internet addiction disorder

    PubMed Central

    Lin, Fuchun; Zhou, Yan; Du, Yasong; Zhao, Zhimin; Qin, Lindi; Xu, Jianrong; Lei, Hao

    2015-01-01

    Abnormal structure and function in the striatum and prefrontal cortex (PFC) have been revealed in Internet addiction disorder (IAD). However, little is known about alterations of corticostriatal functional circuits in IAD. The aim of this study was to investigate the integrity of corticostriatal functional circuits and their relations to neuropsychological measures in IAD by resting-state functional connectivity (FC). Fourteen IAD adolescents and 15 healthy controls underwent resting-state fMRI scans. Using six predefined bilateral striatal regions-of-interest, voxel-wise correlation maps were computed and compared between groups. Relationships between alterations of corticostriatal connectivity and clinical measurements were examined in the IAD group. Compared to controls, IAD subjects exhibited reduced connectivity between the inferior ventral striatum and bilateral caudate head, subgenual anterior cingulate cortex (ACC), and posterior cingulate cortex, and between the superior ventral striatum and bilateral dorsal/rostral ACC, ventral anterior thalamus, and putamen/pallidum/insula/inferior frontal gyrus (IFG), and between the dorsal caudate and dorsal/rostral ACC, thalamus, and IFG, and between the left ventral rostral putamen and right IFG. IAD subjects also showed increased connectivity between the left dorsal caudal putamen and bilateral caudal cigulate motor area. Moreover, altered cotricostriatal functional circuits were significantly correlated with neuropsychological measures. This study directly provides evidence that IAD is associated with alterations of corticostriatal functional circuits involved in the affective and motivation processing, and cognitive control. These findings emphasize that functional connections in the corticostriatal circuits are modulated by affective/motivational/cognitive states and further suggest that IAD may have abnormalities of such modulation in this network. PMID:26136677

  6. Mapping the "Depression Switch" During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation.

    PubMed

    Choi, Ki Sueng; Riva-Posse, Patricio; Gross, Robert E; Mayberg, Helen S

    2015-11-01

    The clinical utility of monitoring behavioral changes during intraoperative testing of subcallosal cingulate deep brain stimulation is unknown. To characterize the structural connectivity correlates of deep brain stimulation-evoked behavioral effects using probabilistic tractography in depression. Categorization of acute behavioral effects was conducted in 9 adults undergoing deep brain stimulation implantation surgery for chronic treatment-resistant depression in a randomized and blinded testing session at Emory University. Patients were studied from September 1, 2011, through June 30, 2013. Post hoc analyses of the structural tractography patterns mediating distinct categories of evoked behavioral effects were defined, including the best response overall. Data analyses were performed from May 1 through July 1, 2015. Categorization of stimulation-induced transient behavioral effects and delineation of the shared white matter tracts mediating response subtypes. Among the 9 patients, 72 active and 36 sham trials were recorded. The following stereotypical behavior patterns were identified: changes in interoceptive (noted changes in body state in 30 of 72 active and 4 of 36 sham trials) and in exteroceptive (shift in attention from patient to others in 9 of 72 active and 0 sham trials) awareness. The best response was a combination of exteroceptive and interoceptive changes at a single left contact for all 9 patients. Structural connectivity showed that the best response contacts had a pattern of connections to the bilateral ventromedial frontal cortex (via forceps minor and left uncinate fasciculus) and to the cingulate cortex (via left cingulum bundle), whereas behaviorally salient but nonbest contacts had only cingulate involvement. The involvement of the 3 white matter bundles during stimulation of the best contacts suggests a mechanism for the observed transient "depression switch." This analysis of transient behavior changes during intraoperative deep brain stimulation of the subcallosal cingulate and the subsequent identification of unique connectivity patterns may provide a biomarker of a rapid-onset depression switch to guide surgical implantation and to refine and optimize algorithms for the selection of contacts in long-term stimulation for treatment-resistant depression.

  7. [Dysfunctional resting-state connectivity of default mode network in adolescent patients with first-episode drug-naive major depressive disorder].

    PubMed

    Li, S Y; Zhu, Y; Wang, Y L; Lü, P P; Zuo, W B; Li, F Y

    2017-12-05

    Objective: To study resting-state functional connectivity (FC) of default mode network (DMN) in adolescent patients with first-episode drug-naive major depressive disorder (MDD). Methods: We enrolled thirty first-episode and drug-naive adolescent MDD patients and twenty-nine adolescent healthy control (HC) participants in the First Affiliated Hospital of Zhengzhou University. There were no differences in age, sex, and education between the MDD and HC group. Resting-state functional magnetic resonance images (fMRI) was performed. We selected posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) of DMN as regions of interests (ROI). The differences of these regions from the whole brain functional connectivity were analyzed. The relations between abnormalities in FCs of DMN and clinical variables were further investigated. Results: Compared to the HCs, the MDD patients had congruently reduced FCs between the PCC and cerebellum, temporal cortices, occipital cortices, fusiform, dorsolateral prefrontal cortex. MPFC not only had reduced FCs with fusiform, temporal cortices, anterior cingulate cortex, but also had enhanced FCs with occipital cortices, parietal cortices, and precentral gyrus. In addition, the increased FC between the right MPFC and right precentral gyrus was positive correlated with Hamilton Rating Scale for Depression (HAMD) scores ( r =0.38, P =0.04). The reduced FC between the left middle temporal gyrus and left PCC as well as the enhanced FC between the right middle cingulum and right MPFC were positive correlated with the duration of depression since onset ( r =0.39, P =0.03; r =0.38, P =0.04). Conclusions: These findings show dysfunctional DMN connectivity of adolescent MDD patients. Neurodevelopmental abnormalities in DMN may present in adolescent MDD.

  8. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder.

    PubMed

    Yang, Xun; Liu, Jin; Meng, Yajing; Xia, Mingrui; Cui, Zaixu; Wu, Xi; Hu, Xinyu; Zhang, Wei; Gong, Gaolang; Gong, Qiyong; Sweeney, John A; He, Yong

    2017-12-07

    Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. Copyright © 2017. Published by Elsevier Inc.

  9. The development of regional functional connectivity in preterm infants into early childhood.

    PubMed

    Lee, Wayne; Morgan, Benjamin R; Shroff, Manohar M; Sled, John G; Taylor, Margot J

    2013-09-01

    Resting state networks are proposed to reflect the neuronal connectivity that underlies cognitive processes. Consequently, abnormal behaviour of these networks due to disease or altered development may predict poor cognitive outcome. To understand how very preterm birth may affect the development of resting state connectivity, we followed a cohort of very preterm-born infants from birth through to 4 years of age using resting state functional MRI. From a larger longitudinal cohort of infants born very preterm (<32 weeks gestational age), 36 at birth, 30 at term, 21 two-year and 22 four-year resting state fMRI datasets were acquired. Using seed-based connectivity analyses with seeds in the anterior cingulate cortex, posterior cingulate cortex, left and right motor-hand regions and left and right temporal lobes, we investigated local and inter-region connectivity as a function of group and age. We found strong local connectivity during the preterm period, which matured into inter-hemispheric and preliminary default-mode network correlations by 4 years of age. This development is comparable to the resting state networks found in term-born infants of equivalent age. The results of this study suggest that differences in developmental trajectory between preterm-born and term-born infants are small and, if present, would require a large sample from both populations to be detected.

  10. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect.

    PubMed

    Yang, Chuan-Chih; Barrós-Loscertales, Alfonso; Pinazo, Daniel; Ventura-Campos, Noelia; Borchardt, Viola; Bustamante, Juan-Carlos; Rodríguez-Pujadas, Aina; Fuentes-Claramonte, Paola; Balaguer, Raúl; Ávila, César; Walter, Martin

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression.

  11. State and Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its Antidepressant Effect

    PubMed Central

    Yang, Chuan-Chih; Barrós-Loscertales, Alfonso; Pinazo, Daniel; Ventura-Campos, Noelia; Borchardt, Viola; Bustamante, Juan-Carlos; Rodríguez-Pujadas, Aina; Fuentes-Claramonte, Paola; Balaguer, Raúl; Ávila, César; Walter, Martin

    2016-01-01

    The topic of investigating how mindfulness meditation training can have antidepressant effects via plastic changes in both resting state and meditation state brain activity is important in the rapidly emerging field of neuroplasticity. In the present study, we used a longitudinal design investigating resting state fMRI both before and after 40 days of meditation training in 13 novices. After training, we compared differences in network connectivity between rest and meditation using common resting state functional connectivity methods. Interregional methods were paired with local measures such as Regional Homogeneity. As expected, significant differences in functional connectivity both between states (rest versus meditation) and between time points (before versus after training) were observed. During meditation, the internal consistency in the precuneus and the temporoparietal junction increased, while the internal consistency of frontal brain regions decreased. A follow-up analysis of regional connectivity of the dorsal anterior cingulate cortex further revealed reduced connectivity with anterior insula during meditation. After meditation training, reduced resting state functional connectivity between the pregenual anterior cingulate and dorsal medical prefrontal cortex was observed. Most importantly, significantly reduced depression/anxiety scores were observed after training. Hence, these findings suggest that mindfulness meditation might be of therapeutic use by inducing plasticity related network changes altering the neuronal basis of affective disorders such as depression. PMID:26998365

  12. Neural Correlates of Suicidality in Adolescents with Major Depression: Resting-State Functional Connectivity of the Precuneus and Posterior Cingulate Cortex.

    PubMed

    Schreiner, Melinda Westlund; Klimes-Dougan, Bonnie; Cullen, Kathryn R

    2018-05-13

    Major depressive disorder (MDD) is associated with suicidal thoughts and behaviors ("suicidality"). Of the three components of Joiner's interpersonal theory of suicide, two involve negatively valenced, self-related beliefs: perceived burdensomeness and thwarted belongingness. However, the neurocircuitry underlying self-processing and suicidality has not been fully explored. This study examined the association between suicidality and the neurocircuitry of regions relevant to self-referential processing in adolescents with depression. Fifty-eight adolescents underwent assessment and a resting-state fMRI scan. Resting-state functional connectivity (RSFC) analyses included two brain regions implicated in self-referential processing: precuneus and posterior cingulate cortex (PCC). Suicidality was measured using the Index of Depression and Anxiety Symptoms. While controlling for depression severity, we conducted whole-brain correlation analyses between suicidality and left and right precuneus and PCC connectivity maps. Suicidality was positively associated with RSFC between left precuneus and left primary motor and somatosensory cortices, and middle and superior frontal gyri. Suicidality was negatively associated with RSFC between left PCC and left cerebellum, lateral occipital cortex, and temporal-occipital fusiform gyrus. Findings of hyperconnectivity stemming from the precuneus and hypoconnectivity from the PCC may reflect maladaptive self-reflection and mentalization. However, additional investigation is warranted to further clarify these relationships. © 2018 The American Association of Suicidology.

  13. Altered neural responses to heat pain in drug-naive patients with Parkinson disease.

    PubMed

    Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike

    2017-08-01

    Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.

  14. Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression.

    PubMed

    Jalbrzikowski, Maria; Larsen, Bart; Hallquist, Michael N; Foran, William; Calabro, Finnegan; Luna, Beatriz

    2017-10-01

    Connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) is compromised in multiple psychiatric disorders, many of which emerge during adolescence. To identify to what extent the deviations in amygdala-vmPFC maturation contribute to the onset of psychiatric disorders, it is essential to characterize amygdala-vmPFC connectivity changes during typical development. Using an accelerated cohort longitudinal design (1-3 time points, 10-25 years old, n = 246), we characterized developmental changes of the amygdala-vmPFC subregion functional and structural connectivity using resting-state functional magnetic resonance imaging and diffusion-weighted imaging. Functional connectivity between the centromedial amygdala and rostral anterior cingulate cortex (rACC), anterior vmPFC, and subgenual cingulate significantly decreased from late childhood to early adulthood in male and female subjects. Age-associated decreases were also observed between the basolateral amygdala and the rACC. Importantly, these findings were replicated in a separate cohort (10-22 years old, n = 327). Similarly, structural connectivity, as measured by quantitative anisotropy, significantly decreased with age in the same regions. Functional connectivity between the centromedial amygdala and the rACC was associated with structural connectivity in these same regions during early adulthood (22-25 years old). Finally, a novel time-varying coefficient analysis showed that increased centromedial amygdala-rACC functional connectivity was associated with greater anxiety and depression symptoms during early adulthood, while increased structural connectivity in centromedial amygdala-anterior vmPFC white matter was associated with greater anxiety/depression during late childhood. Specific developmental periods of functional and structural connectivity between the amygdala and the prefrontal systems may contribute to the emergence of anxiety and depressive symptoms and may play a critical role in the emergence of psychiatric disorders in adolescence. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    PubMed

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effect of Acupuncture on Functional Connectivity of Anterior Cingulate Cortex for Bell's Palsy Patients with Different Clinical Duration

    PubMed Central

    Wu, Hongli; Kan, Hongxing; Li, Chuanfu; Park, Kyungmo; Zhu, Yifang; Mohamed, Abdalla Z.; Xu, Chunsheng; Wu, Yuanyuan; Zhang, Wei

    2015-01-01

    Acupuncture is widely used in the treatment of Bell's palsy (BP) in many countries, but its underlying physiological mechanism remained controversial. In order to explore the potential mechanism, changes of functional connectivity (FC) of anterior cingulate gyrus (ACC) were investigated. We collected 20 healthy (control group) participants and 28 BP patients with different clinical duration accepted resting state functional MRI (rfMRI) scans before and after acupuncture, respectively. The FC of ACC before and after acupuncture was compared with paired t-test and the detailed results are presented in the paper. Our results showed that effects of the acupuncture on FC were closely related to clinical duration in patients with BP, which suggested that brain response to acupuncture was closely connected with the status of brain functional connectivity and implied that acupuncture plays a homeostatic role in the BP treatment. PMID:26161125

  17. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    PubMed

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  18. Cocaine-specific neuroplasticity in the ventral striatum network is linked to delay discounting and drug relapse.

    PubMed

    Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Perales, José C; Martínez-Gonzalez, José M; Vilar-López, Raquel; Fernández-Serrano, María J; Lozano-Rojas, Oscar; Verdejo-García, Antonio

    2015-12-01

    To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse. © 2015 Society for the Study of Addiction.

  19. Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age

    PubMed Central

    Damaraju, E.; Caprihan, A.; Lowe, J.R.; Allen, E.A.; Calhoun, V.D.; Phillips, J.P.

    2013-01-01

    We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9 months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9 months. However at 9 months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. PMID:23994454

  20. Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age.

    PubMed

    Damaraju, E; Caprihan, A; Lowe, J R; Allen, E A; Calhoun, V D; Phillips, J P

    2014-01-01

    We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9months. However at 9months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. © 2013.

  1. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a non-forensic sample

    PubMed Central

    Yoder, Keith J.; Porges, Eric C.; Decety, Jean

    2016-01-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a non-forensic sample are linked to amygdala response to violence, the current study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. PMID:25557777

  2. Amygdala subnuclei connectivity in response to violence reveals unique influences of individual differences in psychopathic traits in a nonforensic sample.

    PubMed

    Yoder, Keith J; Porges, Eric C; Decety, Jean

    2015-04-01

    Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.

  3. Cognitive control and the anterior cingulate cortex: how conflicting stimuli affect attentional control in the rat

    PubMed Central

    Newman, Lori A.; Creer, David J.; McGaughy, Jill A.

    2014-01-01

    Converging evidence supports the hypothesis that the prefrontal cortex is critical for cognitive control. One prefrontal subregion, the anterior cingulate cortex, is hypothesized to be necessary to resolve response conflicts, disregard salient distractors and alter behavior in response to the generation of an error. These situations all involve goal-oriented monitoring of performance in order to effectively adjust cognitive processes. Several neuropsychological disorders, e.g., schizophrenia, attention deficit hyperactivity and obsessive compulsive disorder, are accompanied by morphological changes in the anterior cingulate cortex. These changes are hypothesized to underlie the impairments on tasks that require cognitive control found in these subjects. A novel conflict monitoring task was used to assess the effects on cognitive control of excitotoxic lesions to anterior cingulate cortex in rats. Prior to surgery all subjects showed improved accuracy on the second of two consecutive, incongruent trials. Lesions to the anterior cingulate cortex abolished this. Lesioned animals had difficulty in adjusting cognitive control on a trial-by-trial basis regardless of whether cognitive changes were increased or decreased. These results support a role for the anterior cingulate cortex in adjustments in cognitive control. PMID:25051488

  4. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex

    PubMed Central

    Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min

    2017-01-01

    Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca2+ increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca2+signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca2+ influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons. PMID:28726541

  5. Disrupted prediction errors index social deficits in autism spectrum disorder

    PubMed Central

    Balsters, Joshua H; Apps, Matthew A J; Bolis, Dimitris; Lehner, Rea; Gallagher, Louise; Wenderoth, Nicole

    2017-01-01

    Abstract Social deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these deficits remain unclear. It has been suggested that social prediction errors—coding discrepancies between the predicted and actual outcome of another’s decisions—might play a crucial role in processing social information. While the gyral surface of the anterior cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in individuals with autism spectrum disorder. Importantly, the degree to which social prediction error signalling was aberrant correlated with diagnostic measures of social deficits. Effective connectivity analyses further revealed that, in typically developing individuals but not in autism spectrum disorder, the magnitude of social prediction errors was driven by input from the ventromedial prefrontal cortex. These data provide a novel insight into the neural substrates underlying autism spectrum disorder social symptom severity, and further research into the gyral surface of the anterior cingulate cortex and ventromedial prefrontal cortex could provide more targeted therapies to help ameliorate social deficits in autism spectrum disorder. PMID:28031223

  6. Lasting impact of regret and gratification on resting brain activity and its relation to depressive traits.

    PubMed

    Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik

    2014-06-04

    Obtaining lower gains than rejected alternatives during decision making evokes feelings of regret, whereas higher gains elicit gratification. Although decision-related emotions produce lingering effects on mental state, neuroscience research has generally focused on transient brain responses to positive or negative events, but ignored more sustained consequences of emotional episodes on subsequent brain states. We investigated how spontaneous brain activity and functional connectivity at rest are modulated by postdecision regret and gratification in 18 healthy human subjects using a gambling task in fMRI. Differences between obtained and unobtained outcomes were manipulated parametrically to evoke different levels of regret or gratification. We investigated how individual personality traits related to depression and rumination affected these responses. Medial and ventral prefrontal areas differentially responded to favorable and unfavorable outcomes during the gambling period. More critically, during subsequent rest, rostral anterior and posterior cingulate cortex, ventral striatum, and insula showed parametric response to the gratification level of preceding outcomes. Functional coupling of posterior cingulate with striatum and amygdala was also enhanced during rest after high gratification. Regret produced distinct changes in connectivity of subgenual cingulate with orbitofrontal cortex and thalamus. Interestingly, individual differences in depressive traits and ruminations correlated with activity of the striatum after gratification and orbitofrontal cortex after regret, respectively. By revealing lingering effects of decision-related emotions on key nodes of resting state networks, our findings illuminate how such emotions may influence self-reflective processing and subsequent behavioral adjustment, but also highlight the malleability of resting networks in emotional contexts. Copyright © 2014 the authors 0270-6474/14/347825-11$15.00/0.

  7. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  8. Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome

    PubMed Central

    Schreiner, Matthew J.; Karlsgodt, Katherine H.; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria

    2014-01-01

    22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched controls. Subsequently, the relationship between PCC connectivity and Social Responsiveness Scale (SRS) scores was examined in 22q11DS participants. Relative to 22q11DS participants, controls showed significantly stronger FC between the PCC and other default mode network (DMN) nodes, including the precuneus, precentral gyrus and left frontal pole. 22q11DS patients did not show age-associated FC changes observed in typically developing controls. Increased connectivity between PCC, medial prefrontal regions and the anterior cingulate cortex, was associated with lower SRS scores (i.e. improved social competence) in 22q11DS. DMN integrity may play a key role in social information processing. We observed disrupted DMN connectivity in 22q11DS, paralleling reports from idiopathic autism and schizophrenia. Increased strength of long-range DMN connectivity was associated with improved social functioning in 22q11DS. These findings support a ‘developmental-disconnection’ hypothesis of symptom development in this disorder. PMID:23912681

  9. Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity

    PubMed Central

    Geng, Xiangfei; Xu, Junhai; Liu, Baolin; Shi, Yonggang

    2018-01-01

    Major depressive disorder (MDD) is a mental disorder characterized by at least 2 weeks of low mood, which is present across most situations. Diagnosis of MDD using rest-state functional magnetic resonance imaging (fMRI) data faces many challenges due to the high dimensionality, small samples, noisy and individual variability. To our best knowledge, no studies aim at classification with effective connectivity and functional connectivity measures between MDD patients and healthy controls. In this study, we performed a data-driving classification analysis using the whole brain connectivity measures which included the functional connectivity from two brain templates and effective connectivity measures created by the default mode network (DMN), dorsal attention network (DAN), frontal-parietal network (FPN), and silence network (SN). Effective connectivity measures were extracted using spectral Dynamic Causal Modeling (spDCM) and transformed into a vectorial feature space. Linear Support Vector Machine (linear SVM), non-linear SVM, k-Nearest Neighbor (KNN), and Logistic Regression (LR) were used as the classifiers to identify the differences between MDD patients and healthy controls. Our results showed that the highest accuracy achieved 91.67% (p < 0.0001) when using 19 effective connections and 89.36% when using 6,650 functional connections. The functional connections with high discriminative power were mainly located within or across the whole brain resting-state networks while the discriminative effective connections located in several specific regions, such as posterior cingulate cortex (PCC), ventromedial prefrontal cortex (vmPFC), dorsal cingulate cortex (dACC), and inferior parietal lobes (IPL). To further compare the discriminative power of functional connections and effective connections, a classification analysis only using the functional connections from those four networks was conducted and the highest accuracy achieved 78.33% (p < 0.0001). Our study demonstrated that the effective connectivity measures might play a more important role than functional connectivity in exploring the alterations between patients and health controls and afford a better mechanistic interpretability. Moreover, our results showed a diagnostic potential of the effective connectivity for the diagnosis of MDD patients with high accuracies allowing for earlier prevention or intervention. PMID:29515348

  10. Normalization of Intrinsic Neural Circuits Governing Tourette's Syndrome Using Cranial Electrotherapy Stimulation.

    PubMed

    Qiao, Jianping; Weng, Shenhong; Wang, Pengwei; Long, Jun; Wang, Zhishun

    2015-05-01

    The aim of this study was to investigate the normalization of the intrinsic functional activity and connectivity of TS adolescents before and after the cranial electrotherapy stimulation (CES) with alpha stim device. We performed resting-state functional magnetic resonance imaging on eight adolescents before and after CES with mean age of about nine-years old who had Tourette's syndrome with moderate to severe tics symptom. Independent component analysis (ICA) with hierarchical partner matching method was used to examine the functional connectivity between regions within cortico-striato-thalamo-cortical (CSTC) circuit. Granger causality was used to investigate effective connectivity among these regions detected by ICA. We then performed pattern classification on independent components with significant group differences that served as endophenotype markers to distinguish the adolescents between TS and the normalized ones after CES. Results showed that TS adolescents after CES treatment had stronger functional activity and connectivity in anterior cingulate cortex (ACC), caudate and posterior cingulate cortex while had weaker activity in supplementary motor area within the motor pathway compared with TS before CES. The results suggest that the functional activity and connectivity in motor pathway was suppressed while activities in the control portions within CSTC loop including ACC and caudate were increased in TS adolescents after CES compared with adolescents before CES. The normalization of the balance between motor and control portions of the CSTC circuit may result in the recovery of TS adolescents.

  11. Addiction Related Alteration in Resting-state Brain Connectivity

    PubMed Central

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568

  12. The Distressed Brain: A Group Blind Source Separation Analysis on Tinnitus

    PubMed Central

    De Ridder, Dirk; Vanneste, Sven; Congedo, Marco

    2011-01-01

    Background Tinnitus, the perception of a sound without an external sound source, can lead to variable amounts of distress. Methodology In a group of tinnitus patients with variable amounts of tinnitus related distress, as measured by the Tinnitus Questionnaire (TQ), an electroencephalography (EEG) is performed, evaluating the patients' resting state electrical brain activity. This resting state electrical activity is compared with a control group and between patients with low (N = 30) and high distress (N = 25). The groups are homogeneous for tinnitus type, tinnitus duration or tinnitus laterality. A group blind source separation (BSS) analysis is performed using a large normative sample (N = 84), generating seven normative components to which high and low tinnitus patients are compared. A correlation analysis of the obtained normative components' relative power and distress is performed. Furthermore, the functional connectivity as reflected by lagged phase synchronization is analyzed between the brain areas defined by the components. Finally, a group BSS analysis on the Tinnitus group as a whole is performed. Conclusions Tinnitus can be characterized by at least four BSS components, two of which are posterior cingulate based, one based on the subgenual anterior cingulate and one based on the parahippocampus. Only the subgenual component correlates with distress. When performed on a normative sample, group BSS reveals that distress is characterized by two anterior cingulate based components. Spectral analysis of these components demonstrates that distress in tinnitus is related to alpha and beta changes in a network consisting of the subgenual anterior cingulate cortex extending to the pregenual and dorsal anterior cingulate cortex as well as the ventromedial prefrontal cortex/orbitofrontal cortex, insula, and parahippocampus. This network overlaps partially with brain areas implicated in distress in patients suffering from pain, functional somatic syndromes and posttraumatic stress disorder, and might therefore represent a specific distress network. PMID:21998628

  13. Differences on Brain Connectivity in Adulthood Are Present in Subjects with Iron Deficiency Anemia in Infancy

    PubMed Central

    Algarin, Cecilia; Karunakaran, Keerthana Deepti; Reyes, Sussanne; Morales, Cristian; Lozoff, Betsy; Peirano, Patricio; Biswal, Bharat

    2017-01-01

    Iron deficiency continues to be the most prevalent micronutrient deficit worldwide. Since iron is involved in several processes including myelination, dopamine neurotransmission and neuronal metabolism, the presence of iron deficiency anemia (IDA) in infancy relates to long-lasting neurofunctional effects. There is scarce data regarding whether these effects would extend to former iron deficient anemic human adults. Resting state functional magnetic resonance imaging (fMRI) is a novel technique to explore patterns of functional connectivity. Default Mode Network (DMN), one of the resting state networks, is deeply involved in memory, social cognition and self-referential processes. The four core regions consistently identified in the DMN are the medial prefrontal cortex, posterior cingulate/retrosplenial cortex and left and right inferior parietal cortex. Therefore to investigate the DMN in former iron deficient anemic adults is a particularly useful approach to elucidate de long term effects on functional brain. We conducted this research to explore the connection between IDA in infancy and altered patterns of resting state brain functional networks in young adults. Resting-state fMRI studies were performed to 31 participants that belong to a follow-up study since infancy. Of them, 14 participants were former iron deficient anemic in infancy and 17 were controls, with mean age of 21.5 years (±1.5) and 54.8% were males. Resting-state fMRI protocol was used and the data was analyzed using the seed based connectivity statistical analysis to assess the DMN. We found that compared to controls, former iron deficient anemic subjects showed posterior DMN decreased connectivity to the left posterior cingulate cortex (PCC), whereas they exhibited increased anterior DMN connectivity to the right PCC. Differences between groups were also apparent in the left medial frontal gyrus, with former iron deficient anemic participants having increased connectivity with areas included in DMN and dorsal attention networks. These preliminary results suggest different patterns of functional connectivity between former iron deficient anemic and control young adults. Indeed, IDA in infancy, a common nutritional problem among human infants, may turn out to be important for understanding the mechanisms of cognitive alterations, common in adulthood. PMID:28326037

  14. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management

    PubMed Central

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A.; Montague, P. Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition. PMID:29163095

  15. The Functional Architecture of the Brain Underlies Strategic Deception in Impression Management.

    PubMed

    Luo, Qiang; Ma, Yina; Bhatt, Meghana A; Montague, P Read; Feng, Jianfeng

    2017-01-01

    Impression management, as one of the most essential skills of social function, impacts one's survival and success in human societies. However, the neural architecture underpinning this social skill remains poorly understood. By employing a two-person bargaining game, we exposed three strategies involving distinct cognitive processes for social impression management with different levels of strategic deception. We utilized a novel adaptation of Granger causality accounting for signal-dependent noise (SDN), which captured the directional connectivity underlying the impression management during the bargaining game. We found that the sophisticated strategists engaged stronger directional connectivity from both dorsal anterior cingulate cortex and retrosplenial cortex to rostral prefrontal cortex, and the strengths of these directional influences were associated with higher level of deception during the game. Using the directional connectivity as a neural signature, we identified the strategic deception with 80% accuracy by a machine-learning classifier. These results suggest that different social strategies are supported by distinct patterns of directional connectivity among key brain regions for social cognition.

  16. Resting-state functional connectivity of the default mode network associated with happiness

    PubMed Central

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun

    2016-01-01

    Happiness refers to people’s cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people’s perceived happiness. PMID:26500289

  17. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction.

    PubMed

    Hu, Yuzheng; Salmeron, Betty Jo; Gu, Hong; Stein, Elliot A; Yang, Yihong

    2015-06-01

    Converging evidence has long identified both impulsivity and compulsivity as key psychological constructs in drug addiction. Although dysregulated striatal-cortical network interactions have been identified in cocaine addiction, the association between these brain networks and addiction is poorly understood. To test the hypothesis that cocaine addiction is associated with disturbances in striatal-cortical communication as captured by resting-state functional connectivity (rsFC), measured from coherent spontaneous fluctuations in the blood oxygenation level-dependent functional magnetic resonance imaging signal, and to explore the relationships between striatal rsFC, trait impulsivity, and uncontrolled drug use in cocaine addiction. A case-control, cross-sectional study was conducted at the National Institute on Drug Abuse Intramural Research Program outpatient magnetic resonance imaging facility. Data used in the present study were collected between December 8, 2005, and September 30, 2011. Participants included 56 non-treatment-seeking cocaine users (CUs) (52 with cocaine dependence and 3 with cocaine abuse) and 56 healthy individuals serving as controls (HCs) matched on age, sex, years of education, race, estimated intelligence, and smoking status. Voxelwise statistical parametric analysis testing the rsFC strength differences between CUs and HCs in brain regions functionally connected to 6 striatal subregions defined a priori. Increased rsFC strength was observed predominantly in striatal-frontal circuits; decreased rsFC was found between the striatum and cingulate, striatal, temporal, hippocampal/amygdalar, and insular regions in the CU group compared with the HCs. Increased striatal-dorsal lateral prefrontal cortex connectivity strength was positively correlated with the amount of recent cocaine use (uncorrected P < .046) and elevated trait impulsivity in the CUs (uncorrected P < .012), and an index reflecting the balance between striatal-dorsal anterior cingulate cortex and striatal-anterior prefrontal/orbitofrontal cortex circuits was significantly associated with loss of control over cocaine use (corrected P < .012). Cocaine addiction is associated with disturbed rsFC in several specific striatal-cortical circuits. Specifically, compulsive cocaine use, a defining characteristic of dependence, was associated with a balance of increased striatal-anterior prefrontal/orbitofrontal and decreased striatal-dorsal anterior cingulate connectivity; trait impulsivity, both a risk factor for and a consequence of cocaine use, was associated with increased dorsal striatal-dorsal lateral prefrontal cortex connectivity uniquely in CUs. These findings provide new insights toward the neurobiological mechanisms of addiction and suggest potential novel therapeutic targets for treatment.

  18. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    PubMed

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity.

    PubMed

    Demenescu, Liliana Ramona; Colic, Lejla; Li, Meng; Safron, Adam; Biswal, B; Metzger, Coraline Danielle; Li, Shijia; Walter, Martin

    2017-03-01

    Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI's network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate-glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p < 0.05 family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p < 0.05) in MDD patients. We showed that the local AI ratio of glutamatergic-creatine metabolism is an underlying candidate subserving functional network disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.

  20. ALTERED DEFAULT MODE NETWORK (DMN) RESTING STATE FUNCTIONAL CONNECTIVITY FOLLOWING A MINDFULNESS-BASED EXPOSURE THERAPY FOR POSTTRAUMATIC STRESS DISORDER (PTSD) IN COMBAT VETERANS OF AFGHANISTAN AND IRAQ.

    PubMed

    King, Anthony P; Block, Stefanie R; Sripada, Rebecca K; Rauch, Sheila; Giardino, Nicholas; Favorite, Todd; Angstadt, Michael; Kessler, Daniel; Welsh, Robert; Liberzon, Israel

    2016-04-01

    Recent studies suggest that mindfulness may be an effective component for posttraumatic stress disorder (PTSD) treatment. Mindfulness involves practice in volitional shifting of attention from "mind wandering" to present-moment attention to sensations, and cultivating acceptance. We examined potential neural correlates of mindfulness training using a novel group therapy (mindfulness-based exposure therapy (MBET)) in combat veterans with PTSD deployed to Afghanistan (OEF) and/or Iraq (OIF). Twenty-three male OEF/OIF combat veterans with PTSD were treated with a mindfulness-based intervention (N = 14) or an active control group therapy (present-centered group therapy (PCGT), N = 9). Pre-post therapy functional magnetic resonance imaging (fMRI, 3 T) examined resting-state functional connectivity (rsFC) in default mode network (DMN) using posterior cingulate cortex (PCC) and ventral medial prefrontal cortex (vmPFC) seeds, and salience network (SN) with anatomical amygdala seeds. PTSD symptoms were assessed at pre- and posttherapy with Clinician Administered PTSD Scale (CAPS). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.46). Increased DMN rsFC (PCC seed) with dorsolateral dorsolateral prefrontal cortex (DLPFC) regions and dorsal anterior cingulate cortex (ACC) regions associated with executive control was seen following MBET. A group × time interaction found MBET showed increased connectivity with DLPFC and dorsal ACC following therapy; PCC-DLPFC connectivity was correlated with improvement in PTSD avoidant and hyperarousal symptoms. Increased connectivity between DMN and executive control regions following mindfulness training could underlie increased capacity for volitional shifting of attention. The increased PCC-DLPFC rsFC following MBET was related to PTSD symptom improvement, pointing to a potential therapeutic mechanism of mindfulness-based therapies. © 2016 Wiley Periodicals, Inc.

  1. Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs.

    PubMed

    Ramirez-Mahaluf, Juan P; Perramon, Joan; Otal, Begonya; Villoslada, Pablo; Compte, Albert

    2018-06-04

    The regulation of cognitive and emotional processes is critical for proper executive functions and social behavior, but its specific mechanisms remain unknown. Here, we addressed this issue by studying with functional magnetic resonance imaging the changes in network topology that underlie competitive interactions between emotional and cognitive networks in healthy participants. Our behavioral paradigm contrasted periods with high emotional and cognitive demands by including a sadness provocation task followed by a spatial working memory task. The sharp contrast between successive tasks was designed to enhance the separability of emotional and cognitive networks and reveal areas that regulate the flow of information between them (hubs). By applying graph analysis methods on functional connectivity between 20 regions of interest in 22 participants we identified two main brain network modules, one dorsal and one ventral, and their hub areas: the left dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub areas did not modulate their mutual functional connectivity following sadness but they did so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results identify dlPFC and mFP as areas regulating interactions between emotional and cognitive networks, and suggest that their modulation by sadness experience is mediated by sACC.

  2. Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study.

    PubMed

    Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong

    2016-12-01

    The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Altered regional and circuit resting-state activity in patients with occult spastic diplegic cerebral palsy.

    PubMed

    Mu, Xuetao; Wang, Zhiqun; Nie, Binbin; Duan, Shaofeng; Ma, Qiaozhi; Dai, Guanghui; Wu, Chunnan; Dong, Yuru; Shan, Baoci; Ma, Lin

    2017-10-07

    Very few studies have been made to investigate functional activity changes in occult spastic diplegic cerebral palsy (SDCP). The purpose of this study was to analyze whole-brain resting state regional brain activity and functional connectivity (FC) changes in patients with SDCP. We examined 12 occult SDCP and 14 healthy control subjects using resting-state functional magnetic resonance imaging. The data were analyzed using Resting-State fMRI Data Analysis Toolkit (REST) software. The regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and whole brain FC of the motor cortex and thalamus were analyzed and compared between the occult SDCP and control groups. Compared with the control group, the occult SDCP group showed decreased ReHo regions, including the bilateral frontal, parietal, and temporal lobes, the cerebellum, right cingulate gyrus, and right lenticular nucleus, whereas an increased ReHo value was observed in the left precuneus, calcarine, fusiform gyrus, and right precuneus. Compared with the control group, no significant differences in ALFF were noted in the occult SDCP group. With the motor cortex as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral fusiform and lingual gyrus, but increased connectivity regions in the contralateral precentral and postcentral gyrus, supplementary motor area, and the ipsilateral postcentral gyrus. With the thalamus being regarded as the region of interest, the occult SDCP group showed decreased connectivity regions in the bilateral basal ganglia, cingulate, and prefrontal cortex, but increased connectivity regions in the bilateral precentral gyrus, the contralateral cerebellum, and inferior temporal gyrus. Resting-state regional brain activities and FC changes in the patients with occult SDCP exhibited a special distribution pattern, which is consistent with the pathology of the disease. Copyright © 2017. Published by Elsevier B.V.

  4. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    PubMed

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  5. Dissociating medial frontal and posterior cingulate activity during self-reflection

    PubMed Central

    Johnson, Marcia K.; Raye, Carol L.; Mitchell, Karen J.; Touryan, Sharon R.; Greene, Erich J.; Nolen-Hoeksema, Susan

    2006-01-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a ‘self’ and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus. PMID:18574518

  6. Off-label intranasal oxytocin use in adults is associated with increased amygdala-cingulate resting-state connectivity.

    PubMed

    Kovács, B; Kéri, S

    2015-06-01

    Intranasally administered oxytocin gained popularity as a hormone facilitating trust, cooperation, and affiliation. However, the long-term consequences of oxytocin use are not known. Given that intensive media attention and advertisements of the "love hormone" might lead to a new form of misuse, we conducted an online survey and identified 41 individuals with oxytocin misuse. Misuse will be proposed throughout the manuscript instead of the more accurate "off-label use" for reasons of simplicity. We compared the social functions of oxytocin users with that of 41 matched control volunteers. We administered the "Reading the Mind in the Eyes Test" (RMET) and the National Institute of Health (NIH) Toolbox Adult Social Relationship Scales (NIH-ASRS) to delineate affective "theory of mind" and real-life social functions, respectively. Resting-state functional brain connectivity analyses were also carried out. Results revealed no significant differences between individuals with oxytocin misuse and control participants on the RMET and NIH-ASRS. However, individuals with oxytocin misuse showed an increased connectivity between the right amygdala and dorsal anterior cingulate cortex relative to the control group. Higher estimated cumulative doses of oxytocin were associated with enhanced amygdala-cingulate connectivity. These results show that individuals who have self-selected for and pursued oxytocin use have increased amygdala-cingulate resting connectivity, compared to individuals who have not used oxytocin, despite the lack of differences in RMET and NIH-ASRS scores. Further longitudinal studies are warranted to investigate the cause-effect relationship between oxytocin use and brain connectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity.

    PubMed

    Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio

    2016-05-01

    Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.

  8. A brain network instantiating approach and avoidance motivation.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Banich, Marie T; Sutton, Bradley P; Heller, Wendy

    2012-09-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. Copyright © 2012 Society for Psychophysiological Research.

  9. A Brain Network Instantiating Approach and Avoidance Motivation

    PubMed Central

    Spielberg, Jeffrey M.; Miller, Gregory A.; Warren, Stacie L.; Engels, Anna S.; Crocker, Laura D.; Banich, Marie T.; Sutton, Bradley P.; Heller, Wendy

    2015-01-01

    Research indicates that dorsolateral prefrontal cortex (DLPFC) is important for pursuing goals, and areas of DLPFC are differentially involved in approach and avoidance motivation. Given the complexity of the processes involved in goal pursuit, DLPFC is likely part of a network that includes orbitofrontal cortex (OFC), cingulate, amygdala, and basal ganglia. This hypothesis was tested with regard to one component of goal pursuit, the maintenance of goals in the face of distraction. Examination of connectivity with motivation-related areas of DLPFC supported the network hypothesis. Differential patterns of connectivity suggest a distinct role for DLPFC areas, with one involved in selecting approach goals, one in selecting avoidance goals, and one in selecting goal pursuit strategies. Finally, differences in trait motivation moderated connectivity between DLPFC and OFC, suggesting that this connectivity is important for instantiating motivation. PMID:22845892

  10. Brain connectivity and psychiatric comorbidity in adolescents with Internet gaming disorder.

    PubMed

    Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F; Anderson, Jeffrey S

    2017-05-01

    Prolonged Internet video game play may have multiple and complex effects on human cognition and brain development in both negative and positive ways. There is not currently a consensus on the principle effects of video game play neither on brain development nor on the relationship to psychiatric comorbidity. In this study, 78 adolescents with Internet gaming disorder (IGD) and 73 comparison subjects without IGD, including subgroups with no other psychiatric comorbid disease, with major depressive disorder and with attention deficit hyperactivity disorder (ADHD), were included in a 3 T resting state functional magnetic resonance imaging analysis. The severity of Internet gaming disorder, depression, anxiety and ADHD symptoms were assessed with the Young Internet Addiction Scale, the Beck Depression Inventory, the Beck Anxiety Inventory and the Korean ADHD rating scales, respectively. Patients with IGD showed an increased functional correlation between seven pairs of regions, all satisfying q < 0.05 False discovery rates in light of multiple statistical tests: left frontal eye field to dorsal anterior cingulate, left frontal eye field to right anterior insula, left dorsolateral prefrontal cortex (DLPFC) to left temporoparietal junction (TPJ), right DLPFC to right TPJ, right auditory cortex to right motor cortex, right auditory cortex to supplementary motor area and right auditory cortex to dorsal anterior cingulate. These findings may represent a training effect of extended game play and suggest a risk or predisposition in game players for over-connectivity of the default mode and executive control networks that may relate to psychiatric comorbidity. © 2015 Society for the Study of Addiction.

  11. Medial prefrontal functional connectivity--relation to memory self-appraisal accuracy in older adults with and without memory disorders.

    PubMed

    Ries, Michele L; McLaren, Donald G; Bendlin, Barbara B; Guofanxu; Rowley, Howard A; Birn, Rasmus; Kastman, Erik K; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C

    2012-04-01

    It is tentatively estimated that 25% of people with early Alzheimer's disease (AD) show impaired awareness of disease-related changes in their own cognition. Research examining both normative self-awareness and altered awareness resulting from brain disease or injury points to the central role of the medial prefrontal cortex (MPFC) in generating accurate self-appraisals. The current project builds on this work - examining changes in MPFC functional connectivity that correspond to impaired self-appraisal accuracy early in the AD time course. Our behavioral focus was self-appraisal accuracy for everyday memory function, and this was measured using the Memory Function Scale of the Memory Awareness Rating Scale - an instrument psychometrically validated for this purpose. Using regression analysis of data from people with healthy memory (n=12) and people with impaired memory due to amnestic mild cognitive impairment or early AD (n=12), we tested the hypothesis that altered MPFC functional connectivity - particularly with other cortical midline structures and dorsolateral prefrontal cortex - explains variation in memory self-appraisal accuracy. We spatially constrained (i.e., explicitly masked) our regression analyses to those regions that work in conjunction with the MPFC to evoke self-appraisals in a normative group. This empirically derived explicit mask was generated from the result of a psychophysiological interaction analysis of fMRI self-appraisal task data in a separate, large group of cognitively healthy individuals. Results of our primary analysis (i.e., the regression of memory self-appraisal accuracy on MPFC functional connectivity) were generally consistent with our hypothesis: people who were less accurate in making memory self-appraisals showed attenuated functional connectivity between the MPFC seed region and proximal areas within the MPFC (including subgenual anterior cingulate cortex), bilateral dorsolateral prefrontal cortex, bilateral caudate, and left posterior hippocampus. Contrary to our expectations, MPFC functional connectivity with the posterior cingulate was not significantly related to accuracy of memory self-appraisals. Results reported here corroborate findings of variable memory self-appraisal accuracy during the earliest emergence of AD symptoms and reveal alterations in MPFC functional connectivity that correspond to impaired memory self-appraisal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Brain Metabolism Correlates of the Free and Cued Selective Reminding Test in Mild Cognitive Impairment.

    PubMed

    Caffarra, Paolo; Ghetti, Caterina; Ruffini, Livia; Spallazzi, Marco; Spotti, Annamaria; Barocco, Federica; Guzzo, Caterina; Marchi, Massimo; Gardini, Simona

    2016-01-01

    Free and Cued Selective Reminding Test (FCSRT) measures immediate and delayed episodic memory and cueing sensitivity and is suitable to detect prodromal Alzheimer's disease (AD). The present study aimed at investigating the segregation effect of FCSRT scores on brain metabolism of memory-related structures, usually affected by AD pathology, in the Mild Cognitive Impairment (MCI) stage. A cohort of forty-eight MCI patients underwent FCSRT and 18F-FDG-PET. Multiple regression analysis showed that Immediate Free Recall correlated with brain metabolism in the bilateral anterior cingulate and delayed free recall with the left anterior cingulate and medial frontal gyrus, whereas semantic cueing sensitivity with the left posterior cingulate. FCSRT in MCI is associated with neuro-functional activity of specific regions of memory-related structures connected to hippocampal formation, such as the cingulate cortex, usually damaged in AD.

  13. Resting-state functional connectivity in combat veterans suffering from impulsive aggression

    PubMed Central

    Heesink, Lieke; van Honk, Jack; Geuze, Elbert

    2017-01-01

    Abstract Impulsive aggression is common among military personnel after deployment and may arise because of impaired top-down regulation of the amygdala by prefrontal regions. This study sought to further explore this hypothesis via resting-state functional connectivity analyses in impulsively aggressive combat veterans. Male combat veterans with (n = 28) and without (n = 30) impulsive aggression problems underwent resting-state functional magnetic resonance imaging. Functional connectivity analyses were conducted with the following seed-regions: basolateral amygdala (BLA), centromedial amygdala, anterior cingulate cortex (ACC), and anterior insular cortex (AIC). Regions-of-interest analyses focused on the orbitofrontal cortex and periaqueductal gray, and yielded no significant results. In exploratory cluster analyses, we observed reduced functional connectivity between the (bilateral) BLA and left dorsolateral prefrontal cortex in the impulsive aggression group, relative to combat controls. This finding indicates that combat-related impulsive aggression may be marked by weakened functional connectivity between the amygdala and prefrontal regions, already in the absence of explicit emotional stimuli. Group differences in functional connectivity were also observed between the (bilateral) ACC and left cuneus, which may be related to heightened vigilance to potentially threatening visual cues, as well as between the left AIC and right temporal pole, possibly related to negative memory association in impulsive aggression. PMID:29040723

  14. Electrical activity of the cingulate cortex. II. Cholinergic modulation.

    PubMed

    Borst, J G; Leung, L W; MacFabe, D F

    1987-03-24

    The role of the cholinergic innervation in the modulation of cingulate electrical activity was studied by means of pharmacological manipulations and brain lesions. In the normal rat, an irregular slow activity (ISA) accompanied with EEG-spikes was recorded in the cingulate cortex during immobility as compared to walking. Atropine sulfate, but not atropine methyl nitrate, increased ISA and the frequency of cingulate EEG-spikes. Pilocarpine suppressed ISA and EEG-spikes during immobility, and induced a slow (4-7 Hz) theta rhythm. Unilateral or bilateral lesions of the substantia innominata and ventral globus pallidus area using kainic acid did not significantly change the cingulate EEG or its relation to behavior. Large electrolytic lesions of the medial septal nuclei and vertical limbs of the diagonal band generally decreased or abolished all theta activity in the cingulate cortex and the hippocampus. However, in 5 rats the cingulate theta rhythm increased while the hippocampal theta disappeared after a medial septal lesion. The large, postlesion cingulate theta, accompanied by sharp EEG-spikes during its negative phase, is an unequivocal demonstration of the existence of a theta rhythm in the cingulate cortex, independent of the hippocampal rhythm. Cholinergic afferents from the medial septum and diagonal band nuclei are inferred to be responsible for the behavioral suppression of cingulate EEG-spikes and ISA, and partially for the generation of a local cingulate theta rhythm. However, an atropine-resistant pathway and a theta-suppressing pathway, possibly coming from the medial septum or the hippocampus, may also be important in cingulate theta generation.

  15. Partially dissociable roles of OFC and ACC in stimulus-guided and action-guided decision making.

    PubMed

    Khani, Abbas

    2014-05-01

    Recently, the functional specialization of prefrontal areas of the brain, and, specifically, the functional dissociation of the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), during decision making have become a particular focus of research. A number of neuropsychological and lesion studies have shown that the OFC and ACC have dissociable functions in various dimensions of decision making, which are supported by their different anatomical connections. A recent single-neuron study, however, described a more complex picture of the functional dissociation between these two frontal regions during decision making. Here, I discuss the results of that study and consider alternative interpretations in connection with other findings.

  16. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    PubMed

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms the unique organization of MCC and supports the predictive validity of the MCC dichotomy. Vulnerability of aMCC is shown in chronic pain, obsessive-compulsive disorder with checking symptoms and attention-deficit/hyperactivity disorder and methylphenidate and pain medications selectively impact aMCC. In contrast, pMCC vulnerabilities are for progressive supranuclear palsy, unipolar depression and posttraumatic stress disorder. Thus, there is an emerging picture of the organization, functions and diseases of MCC. Future work will take this type of modular analysis to individual areas of which there are at least 10 in MCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Alterations in Resting-State Functional Connectivity Link Mindfulness Meditation With Reduced Interleukin-6: A Randomized Controlled Trial.

    PubMed

    Creswell, J David; Taren, Adrienne A; Lindsay, Emily K; Greco, Carol M; Gianaros, Peter J; Fairgrieve, April; Marsland, Anna L; Brown, Kirk Warren; Way, Baldwin M; Rosen, Rhonda K; Ferris, Jennifer L

    2016-07-01

    Mindfulness meditation training interventions have been shown to improve markers of health, but the underlying neurobiological mechanisms are not known. Building on initial cross-sectional research showing that mindfulness meditation may increase default mode network (DMN) resting-state functional connectivity (rsFC) with regions important in top-down executive control (dorsolateral prefrontal cortex [dlPFC]), here we test whether mindfulness meditation training increases DMN-dlPFC rsFC and whether these rsFC alterations prospectively explain improvements in interleukin (IL)-6 in a randomized controlled trial. Stressed job-seeking unemployed community adults (n = 35) were randomized to either a 3-day intensive residential mindfulness meditation or relaxation training program. Participants completed a 5-minute resting-state scan before and after the intervention program. Participants also provided blood samples at preintervention and at 4-month follow-up, which were assayed for circulating IL-6, a biomarker of systemic inflammation. We tested for alterations in DMN rsFC using a posterior cingulate cortex seed-based analysis and found that mindfulness meditation training, and not relaxation training, increased posterior cingulate cortex rsFC with left dlPFC (p < .05, corrected). These pretraining to posttraining alterations in posterior cingulate cortex-dlPFC rsFC statistically mediated mindfulness meditation training improvements in IL-6 at 4-month follow-up. Specifically, these alterations in rsFC statistically explained 30% of the overall mindfulness meditation training effects on IL-6 at follow-up. These findings provide the first evidence that mindfulness meditation training functionally couples the DMN with a region known to be important in top-down executive control at rest (left dlPFC), which, in turn, is associated with improvements in a marker of inflammatory disease risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    PubMed

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  19. Inflexible Functional Connectivity of the Dorsal Anterior Cingulate Cortex in Adolescent Major Depressive Disorder.

    PubMed

    Ho, Tiffany C; Sacchet, Matthew D; Connolly, Colm G; Margulies, Daniel S; Tymofiyeva, Olga; Paulus, Martin P; Simmons, Alan N; Gotlib, Ian H; Yang, Tony T

    2017-11-01

    Recent evidence suggests that anterior cingulate cortex (ACC) maturation during adolescence contributes to or underlies the development of major depressive disorder (MDD) during this sensitive period. The ACC is a structure that sits at the intersection of several task-positive networks (eg, central executive network, CEN), which are still developing during adolescence. While recent work using seed-based approaches indicate that depressed adolescents show limited task-evoked vs resting-state connectivity (termed 'inflexibility') between the ACC and task-negative networks, no study has used network-based approaches to investigate inflexibility of the ACC in task-positive networks to understand adolescent MDD. Here, we used graph theory to compare flexibility of network-level topology in eight subregions of the ACC (spanning three task-positive networks) in 42 unmedicated adolescents with MDD and 53 well-matched healthy controls. All participants underwent fMRI scanning during resting state and a response inhibition task that robustly engages task-positive networks. Relative to controls, depressed adolescents were characterized by inflexibility in local efficiency of a key ACC node in the CEN: right dorsal anterior cingulate cortex/medial frontal gyrus (R dACC/MFG). Furthermore, individual differences in flexibility of local efficiency of R dACC/MFG significantly predicted inhibition performance, consistent with current literature demonstrating that flexible network organization affords successful cognitive control. Finally, reduced local efficiency of dACC/MFG during the task was significantly associated with an earlier age of depression onset, consistent with prior work suggesting that MDD may alter functional network development. Our results support a neurodevelopmental hypothesis of MDD wherein dysfunctional self-regulation is potentially reflected by altered ACC maturation.

  20. Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng

    2017-03-01

    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.

  1. Altered Amygdala Resting-State Functional Connectivity in Maintenance Hemodialysis End-Stage Renal Disease Patients with Depressive Mood.

    PubMed

    Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang

    2017-04-01

    The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.

  2. Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex.

    PubMed

    Moore, C M; Breeze, J L; Gruber, S A; Babb, S M; Frederick, B B; Villafuerte, R A; Stoll, A L; Hennen, J; Yurgelun-Todd, D A; Cohen, B M; Renshaw, P F

    2000-09-01

    Alterations in choline and myo-inositol metabolism have been noted in bipolar disorder, and the therapeutic efficacy of lithium in mania may be related to these effects. We wished to determine the relationship between anterior cingulate cortex choline and myo-inositol levels, assessed using proton magnetic resonance spectroscopic imaging (MRSI), and mood state in subjects with bipolar disorder. Serial assessments of anterior cingulate cortex choline and myo-inositol metabolism were performed in nine subjects with bipolar disorder, taking either lithium or valproate, and 14 controls. Each bipolar subject was examined between one and four times (3.1 +/- 1.3). On the occasion of each examination, standardized ratings of both depression and mania were recorded. In the left cingulate cortex, the bipolar subjects' depression ratings correlated positively with MRSI measures of Cho/Cr-PCr. In the right cingulate cortex, the Cho/Cr-PCr ratio was significantly higher in subjects with bipolar disorder compared with control subjects. In addition, bipolar subjects not taking antidepressants had a significantly higher right cingulate cortex Cho/Cr-PCr ratio compared with patients taking antidepressants or controls. No clinical or drug-related changes were observed for the Ino/Cr-PCr ratio. The results of this study suggest that bipolar disorder is associated with alterations in the metabolism of cytosolic, choline-containing compounds in the anterior cingulate cortex. As this resonance arises primarily from phosphocholine and glycerophosphocholine, both of which are metabolites of phosphatidylcholine, these results are consistent with impaired intraneuronal signaling mechanisms.

  3. Evoked effective connectivity of the human neocortex.

    PubMed

    Entz, László; Tóth, Emília; Keller, Corey J; Bickel, Stephan; Groppe, David M; Fabó, Dániel; Kozák, Lajos R; Erőss, Loránd; Ulbert, István; Mehta, Ashesh D

    2014-12-01

    The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies. © 2014 Wiley Periodicals, Inc.

  4. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex central nervous system control over the multi-functional thyroarytenoid muscle.[297 words] PMID:19426785

  5. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project.

    PubMed

    Morbelli, Silvia; Drzezga, Alex; Perneczky, Robert; Frisoni, Giovanni B; Caroli, Anna; van Berckel, Bart N M; Ossenkoppele, Rik; Guedj, Eric; Didic, Mira; Brugnolo, Andrea; Sambuceti, Gianmario; Pagani, Marco; Salmon, Eric; Nobili, Flavio

    2012-11-01

    We explored resting-state metabolic connectivity in prodromal Alzheimer's disease (pAD) patients and in healthy controls (CTR), through a voxel-wise interregional correlation analysis of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) by means of statistical parametric mapping. Baseline 18F-fluorodeoxyglucose-positron emission tomography of 36 patients with amnestic mild cognitive impairment who converted to Alzheimer's disease (AD) dementia after an average time of 2 years (pAD) and of 105 CTR were processed. The area of hypometabolism in pAD showed less metabolic connectivity in patients than in CTR (autocorrelation and correlation with large temporal and frontal areas, respectively). pAD patients showed limited correlation even in selected nonhypometabolic areas, including the hippocampi and the dorsolateral prefrontal cortex (DLFC). On the contrary, in CTR group correlation was highlighted between hippocampi and precuneus/posterior cingulate and frontal cortex, and between dorsolateral prefrontal cortex and caudate nuclei and parietal cortex. The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD patients suggest that metabolic disconnection (reflecting early diaschisis) may antedate remote hypometabolism (early sign of synaptic degeneration). Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    PubMed

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.

  7. Changed Hub and Corresponding Functional Connectivity of Subgenual Anterior Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Wu, Huawang; Sun, Hui; Xu, Jinping; Wu, Yan; Wang, Chao; Xiao, Jing; She, Shenglin; Huang, Jianwei; Zou, Wenjin; Peng, Hongjun; Lu, Xiaobing; Huang, Guimao; Jiang, Tianzi; Ning, Yuping; Wang, Jiaojian

    2016-01-01

    Major depressive disorder (MDD) is one of the most prevalent mental disorders. In the brain, the hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, whether the changed pattern in functional network hubs contributes to the onset of MDD remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods, we investigated whether alterations of hubs can be detected in MDD. First, we constructed the whole-brain voxel-wise functional networks and calculated a functional connectivity strength (FCS) map in each subject in 34 MDD patients and 34 gender-, age- and education level-matched healthy controls (HCs). Next, the two-sample t-test was applied to compare the FCS maps between HC and MDD patients and identified significant decrease of FCS in subgenual anterior cingulate cortex (sgACC) in MDD patients. Subsequent functional connectivity analyses of sgACC showed disruptions in functional connectivity with posterior insula, middle and inferior temporal gyrus, lingual gyrus and cerebellum in MDD patients. Furthermore, the changed FCS of sgACC and functional connections to sgACC were significantly correlated with the Hamilton Depression Rating Scale (HDRS) scores in MDD patients. The results of the present study revealed the abnormal hub of sgACC and its corresponding disrupted frontal-limbic-visual cognitive-cerebellum functional networks in MDD. These findings may provide a new insight for the diagnosis and treatment of MDD. PMID:28018183

  8. Balance Deficit and Brain Connectivity in Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Kim, Sun Mi; Hyun, Gi Jung; Jung, Tae-Woon; Son, Young Don; Cho, In-Hee; Kee, Baik Seok; Han, Doug Hyun

    2017-07-01

    We aimed to assess disturbances in postural and gait balance and functional connectivity within the brain regions controlling balance in children with attention-deficit/hyperactivity disorder (ADHD). Thirteen children with ADHD and 13 age- and sex-matched controls were recruited. Gait balance was assessed by the difference in the center of pressure (COP) between the left and right foot, as well as the difference in plantar pressure between the left and right foot during gait. Neuroimaging data were acquired using a 3.0 Tesla MRI scanner. Functional connectivity between the vermis of the cerebellum and all other brain regionswas assessed. The difference in plantar pressure between the left foot and right foot in the ADHD group was greater than that observed in the control group. The average COP jerk score of the right foot in the ADHD group was higher than that observed in the control group. A higher functional connectivity between the cerebellum and the right middle frontal gyrus (premotor cortex) and medial frontal gyrus (cingulate gyrus) was observed in the control group relative to the ADHD group. In the ADHD group, the difference in plantar pressure between the left and right foot was also negatively correlated with the beta-value within the middle frontal gyrus. Children with ADHD had disturbance of balance as assessed by plantar pressure. Decreased brain connectivity from the cerebellum to the premotor cortex and anterior cingulate was associated with disturbances of posture and balance in children with ADHD.

  9. Resting-state functional connectivity of the default mode network associated with happiness.

    PubMed

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun; Huang, Xiting

    2016-03-01

    Happiness refers to people's cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people's perceived happiness. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve greater accuracy in detecting network connectivity than the widely used pairwise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI. PMID:21232892

  11. Volumetric abnormalities in connectivity-based subregions of the thalamus in patients with chronic schizophrenia.

    PubMed

    Kim, Jae-Jin; Kim, Dae-Jin; Kim, Tae-Gyun; Seok, Jeong-Ho; Chun, Ji Won; Oh, Maeng-Keun; Park, Hae-Jeong

    2007-12-01

    The thalamus, which consists of multiple subnuclei, has been of particular interest in the study of schizophrenia. This study aimed to identify abnormalities in the connectivity-based subregions of the thalamus in patients with schizophrenia. Thalamic volume was measured by a manual tracing on superimposed images of T1-weighted and diffusion tensor images in 30 patients with schizophrenia and 22 normal volunteers. Cortical regional volumes automatically measured by a surface-based approach and thalamic subregional volumes measured by a connectivity-based technique were compared between the two groups and their correlations between the connected regions were calculated in each group. Volume reduction was observed in the bilateral orbitofrontal cortices and the left cingulate gyrus on the cortical side, whereas in subregions connected to the right orbitofrontal cortex and bilateral parietal cortices on the thalamic side. Significant volumetric correlations were identified between the right dorsal prefrontal cortex and its related thalamic subregion and between the left parietal cortex and its related thalamic subregion only in the normal group. Our results suggest that patients with schizophrenia have a structural deficit in the corticothalamic systems, especially in the orbitofrontal-thalamic system. Our findings may present evidence of corticothalamic connection problems in schizophrenia.

  12. Shared neural circuits for mentalizing about the self and others.

    PubMed

    Lombardo, Michael V; Chakrabarti, Bhismadev; Bullmore, Edward T; Wheelwright, Sally J; Sadek, Susan A; Suckling, John; Baron-Cohen, Simon

    2010-07-01

    Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.

  13. Cognitive Control Signals in Posterior Cingulate Cortex

    PubMed Central

    Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.

    2010-01-01

    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560

  14. Dimensional change card sort performance associated with age-related differences in functional connectivity of lateral prefrontal cortex.

    PubMed

    Ezekiel, Fredrick; Bosma, Rachael; Morton, J Bruce

    2013-07-01

    The Dimensional Change Card Sort (DCCS) is a standard procedure for assessing executive functioning early in development. In the task, participants switch from sorting cards one way (e.g., by color) to sorting them a different way (e.g., by shape). Traditional accounts associate age-related changes in DCCS performance with circumscribed changes in lateral prefrontal cortex (lPFC) functioning, but evidence of age-related differences in the modulation of lPFC activity by switching is mixed. The current study therefore tested for possible age-related differences in functional connectivity of lPFC with regions that comprise a larger cognitive control network. Functional magnetic resonance imaging (fMRI) data collected from children and adults performing the DCCS were analyzed by means of independent components analysis (ICA). The analysis revealed several important age-related differences in functional connectivity of lPFC. In particular, lPFC was more strongly connected with the anterior cingulate, inferior parietal cortex, and the ventral tegmental area in adults than in children. Theoretical implications are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cannabis, cigarettes, and their co-occurring use: disentangling differences in default mode network functional connectivity

    PubMed Central

    Wetherill, Reagan R.; Fang, Zhuo; Jagannathan, Kanchana; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.

    2015-01-01

    Background Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. Methods We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: 1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20–50), 2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21–52), 3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21–57), and 4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21–50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. Results PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. Conclusions This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity. PMID:26094186

  16. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men.

    PubMed

    Schulte, Tilman; Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf

    2012-02-01

    Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, D.N.; Seltzer, B.

    1982-01-10

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2)more » and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.« less

  18. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    PubMed

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. The effects of age on resting state functional connectivity of the basal ganglia from young to middle adulthood.

    PubMed

    Manza, Peter; Zhang, Sheng; Hu, Sien; Chao, Herta H; Leung, Hoi-Chung; Li, Chiang-Shan R

    2015-02-15

    The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Functional connectivity mapping of regions associated with self- and other-processing.

    PubMed

    Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B

    2015-04-01

    Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.

  1. Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the Theory of Mind Network.

    PubMed

    Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Schütz, Claudia; Romanczuk-Seiferth, Nina; Grimm, Oliver; Haddad, Leila; Pöhland, Lydia; Garbusow, Maria; Schmitgen, Mike M; Kirsch, Peter; Esslinger, Christine; Rietschel, Marcella; Witt, Stephanie H; Nöthen, Markus M; Cichon, Sven; Mattheisen, Manuel; Mühleisen, Thomas; Jensen, Jimmy; Schott, Björn H; Maier, Wolfgang; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik

    2014-04-01

    The single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A is one of the best-supported risk variants for psychosis. We hypothesized that this SNP contributes to the development of schizophrenia by affecting the ability to understand other people's mental states. This skill, commonly referred to as Theory of Mind (ToM), has consistently been found to be impaired in schizophrenia. Using functional magnetic resonance imaging, we previously showed that in healthy individuals rs1344706 impacted on activity and connectivity of key areas of the ToM network, including the dorsomedial prefrontal cortex, temporo-parietal junction, and the posterior cingulate cortex, which show aberrant activity in schizophrenia patients, too. We aimed to replicate these results in an independent sample of 188 healthy German volunteers. In order to assess the reliability of brain activity elicited by the ToM task, 25 participants performed the task twice with an interval of 14 days showing excellent accordance in recruitment of key ToM areas. Confirming our previous results, we observed decreasing activity of the left temporo-parietal junction, dorsomedial prefrontal cortex, and the posterior cingulate cortex with increasing number of risk alleles during ToM. Complementing our replication sample with the discovery sample, analyzed in a previous report (total N=297), further revealed negative genotype effects in the left dorsomedial prefrontal cortex as well as in the temporal and parietal regions. In addition, as shown previously, rs1344706 risk allele dose positively predicted increased frontal-temporo-parietal connectivity. These findings confirm the effects of the psychosis risk variant in ZNF804A on the dysfunction of the ToM network.

  2. Further Evidence for the Impact of a Genome-Wide-Supported Psychosis Risk Variant in ZNF804A on the Theory of Mind Network

    PubMed Central

    Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Schütz, Claudia; Romanczuk-Seiferth, Nina; Grimm, Oliver; Haddad, Leila; Pöhland, Lydia; Garbusow, Maria; Schmitgen, Mike M; Kirsch, Peter; Esslinger, Christine; Rietschel, Marcella; Witt, Stephanie H; Nöthen, Markus M; Cichon, Sven; Mattheisen, Manuel; Mühleisen, Thomas; Jensen, Jimmy; Schott, Björn H; Maier, Wolfgang; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik

    2014-01-01

    The single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A is one of the best-supported risk variants for psychosis. We hypothesized that this SNP contributes to the development of schizophrenia by affecting the ability to understand other people's mental states. This skill, commonly referred to as Theory of Mind (ToM), has consistently been found to be impaired in schizophrenia. Using functional magnetic resonance imaging, we previously showed that in healthy individuals rs1344706 impacted on activity and connectivity of key areas of the ToM network, including the dorsomedial prefrontal cortex, temporo-parietal junction, and the posterior cingulate cortex, which show aberrant activity in schizophrenia patients, too. We aimed to replicate these results in an independent sample of 188 healthy German volunteers. In order to assess the reliability of brain activity elicited by the ToM task, 25 participants performed the task twice with an interval of 14 days showing excellent accordance in recruitment of key ToM areas. Confirming our previous results, we observed decreasing activity of the left temporo-parietal junction, dorsomedial prefrontal cortex, and the posterior cingulate cortex with increasing number of risk alleles during ToM. Complementing our replication sample with the discovery sample, analyzed in a previous report (total N=297), further revealed negative genotype effects in the left dorsomedial prefrontal cortex as well as in the temporal and parietal regions. In addition, as shown previously, rs1344706 risk allele dose positively predicted increased frontal–temporo-parietal connectivity. These findings confirm the effects of the psychosis risk variant in ZNF804A on the dysfunction of the ToM network. PMID:24247043

  3. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    PubMed

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  4. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    PubMed

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  5. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study

    PubMed Central

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-01-01

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention. PMID:27616687

  6. Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques.

    PubMed

    Rogers, Christina N; Ross, Amy P; Sahu, Shweta P; Siegel, Ethan R; Dooyema, Jeromy M; Cree, Mary Ann; Stopa, Edward G; Young, Larry J; Rilling, James K; Albers, H Elliott; Preuss, Todd M

    2018-05-24

    Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions. © 2018 Wiley Periodicals, Inc.

  7. Ventral anterior cingulate cortex and social decision-making.

    PubMed

    Lockwood, Patricia L; Wittmann, Marco K

    2018-06-07

    Studies in the field of social neuroscience have recently made use of computational models of decision-making to provide new insights into how we learn about the self and others during social interactions. Importantly, these studies have increasingly drawn attention to brain areas outside of classical cortical "social brain" regions that may be critical for social processing. In particular, two portions of the ventral anterior cingulate cortex (vACC), subgenual anterior cingulate cortex and perigenual anterior cingulate cortex, have been linked to social and self learning signals, respectively. Here we discuss the emerging parallels between these studies. Uncovering the function of vACC during social interactions could provide important new avenues to understand social decision-making in health and disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Spatial Cognition and Episodic Memory Formation in the Limbic Cortex].

    PubMed

    Kobayashi, Yasushi

    2017-04-01

    The limbic lobe defined by Broca is a cortical region with highly diverse structure and functions, and comprises the paleo-, archi-, and neocortices as well as their transitional zones. In the limbic lobe, Brodmann designated areas 27, 28, 34, 35, and 36 adjacent to the hippocampus, and areas 23, 24, 25, 26, 29, 30, 31, 32, and 33 around the corpus callosum. In the current literature, areas 27 and 28 correspond to the presubiculum and entorhinal cortex, respectively. Area 34 represents the cortico-medial part of the amygdaloid complex. Areas 35 and 36 roughly cover the perirhinal and parahippocampal cortices. Areas 24, 25, 32, and 33 belong to the anterior cingulate gyrus, while areas 23, 26, 29, 30, and 31 to the posterior cingulate gyrus. Areas 25, 32, and the anteroinferior portion of area 24 are deeply involved in emotional responses, particularly in their autonomic functions, through reciprocal connections with the amygdaloid complex, anterior thalamus and projections to the brainstem and spinal visceral centers. Areas 29 and 30 have dense reciprocal connections with areas 23 and 31, the dorsolateral prefrontal areas, and the regions related to the hippocampus. They play pivotal roles in mediating spatial cognition, working memory processing, and episodic memory formation.

  9. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study

    PubMed Central

    Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv

    2017-01-01

    Abstract Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. PMID:26912785

  11. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    PubMed

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  12. Altered intrinsic and extrinsic connectivity in schizophrenia.

    PubMed

    Zhou, Yuan; Zeidman, Peter; Wu, Shihao; Razi, Adeel; Chen, Cheng; Yang, Liuqing; Zou, Jilin; Wang, Gaohua; Wang, Huiling; Friston, Karl J

    2018-01-01

    Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.

  13. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    PubMed

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  14. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    PubMed Central

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the underlying neurobiological mechanisms remain elusive. Using a large sample of patients with varying degrees of consciousness loss, we demonstrate that intrinsic functional connectivity strength in many brain regions, especially in the posterior cingulate cortex and precuneus, significantly correlated with consciousness level and recovery outcome. We further demonstrate that the functional connectivity pattern of these regions can predict patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%. Our study thus provides potentially important biomarkers of acquired brain injury in clinical diagnosis, prediction of recovery outcome, and decision making for treatment strategies for patients with severe loss of consciousness. PMID:26377477

  15. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging

    PubMed Central

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P.; Heffner, Kathi; Lin, Feng

    2017-01-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more “internal” LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more “external” LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20 minutes, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC’s role in cognitive aging. PMID:28315366

  16. Default Mode Network Aberrant Connectivity Associated with Neurological Soft Signs in Schizophrenia Patients and Unaffected Relatives.

    PubMed

    Galindo, Liliana; Bergé, Daniel; Murray, Graham K; Mané, Anna; Bulbena, Antonio; Pérez, Victor; Vilarroya, Oscar

    2017-01-01

    Brain connectivity and neurological soft signs (NSS) are reportedly abnormal in schizophrenia and unaffected relatives, suggesting they might be useful neurobiological markers of the illness. NSS are discrete sensorimotor impairments thought to correspond to deviant brain development. Although NSS support the hypothesis that schizophrenia involves disruption in functional circuits involving several hetero modal association areas, little is known about the relationship between NSS and brain connectivity. We explored functional connectivity abnormalities of the default mode network (DMN) related to NSS in schizophrenia. A cross-sectional study was performed with 27 patients diagnosed with schizophrenia, 23 unaffected relatives who were unrelated to the schizophrenia subjects included in the study, and 35 healthy controls. Subjects underwent magnetic resonance imaging scans including a functional resting-state acquisition and NSS evaluation. Seed-to-voxel and independent component analyses were used to study brain connectivity. NSS scores were significantly different between groups, ranging from a higher to lower scores for patients, unaffected relatives, and healthy controls, respectively (analysis of variance effect of group F  = 56.51, p  < 0.001). The connectivity analysis revealed significant hyperconnectivity in the fusiform gyrus, insular and dorsolateral prefrontal cortices, inferior and middle frontal gyri, middle and superior temporal gyri, and posterior cingulate cortex [minimum p-family wise error (FWE) < 0.05 for all clusters] in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE < 0.05 for all clusters) in patients with schizophrenia as compared with in controls. Also, unaffected relatives showed hyperconnectivity in relation to controls in the supramarginal association and dorsal posterior cingulate cortices (p-FWE = 0.001) and in the anterior prefrontal cortex (42 voxels, p-FWE = 0.047). A negative correlation was found between left caudate connectivity and NSS [p-FWE = 0.044, cluster size ( k ) = 110 voxels]. These findings support the theory of widespread abnormal connectivity in schizophrenia, reinforcing DMN hyperconnectivity and NSS as neurobiological markers of schizophrenia. The results also indicate the caudate nucleus as the gateway to the motor consequences of abnormal DMN connectivity.

  17. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy

    PubMed Central

    Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142

  18. Thinking about thinking: Neural mechanisms and effects on memory.

    PubMed

    Bonhage, Corinna; Weber, Friederike; Exner, Cornelia; Kanske, Philipp

    2016-02-15

    It is a well-established finding that memory encoding is impaired if an external secondary task (e.g. tone discrimination) is performed simultaneously. Yet, while studying we are also often engaged in internal secondary tasks such as planning, ruminating, or daydreaming. It remains unclear whether such a secondary internal task has similar effects on memory and what the neural mechanisms underlying such an influence are. We therefore measured participants' blood oxygenation level dependent responses while they learned word-pairs and simultaneously performed different types of secondary tasks (i.e., internal, external, and control). Memory performance decreased in both internal and external secondary tasks compared to the easy control condition. However, while the external task reduced activity in memory-encoding related regions (hippocampus), the internal task increased neural activity in brain regions associated with self-reflection (anterior medial prefrontal cortex), as well as in regions associated with performance monitoring and the perception of salience (anterior insula, dorsal anterior cingulate cortex). Resting-state functional connectivity analyses confirmed that anterior medial prefrontal cortex and anterior insula/dorsal anterior cingulate cortex are part of the default mode network and salience network, respectively. In sum, a secondary internal task impairs memory performance just as a secondary external task, but operates through different neural mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Mediodorsal Thalamus Drives Feedforward Inhibition in the Anterior Cingulate Cortex via Parvalbumin Interneurons

    PubMed Central

    Delevich, Kristen; Tucciarone, Jason; Huang, Z. Josh

    2015-01-01

    Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown. Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC) subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneurons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit function in cognition. PMID:25855185

  20. Patients with first-episode, drug-naive schizophrenia and subjects at ultra-high risk of psychosis shared increased cerebellar-default mode network connectivity at rest.

    PubMed

    Wang, Houliang; Guo, Wenbin; Liu, Feng; Wang, Guodong; Lyu, Hailong; Wu, Renrong; Chen, Jindong; Wang, Shuai; Li, Lehua; Zhao, Jingping

    2016-05-18

    Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis.

  1. Network Mechanisms of Clinical Response to Transcranial Magnetic Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder.

    PubMed

    Philip, Noah S; Barredo, Jennifer; van 't Wout-Frank, Mascha; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2018-02-01

    Repetitive transcranial magnetic stimulation (TMS) therapy can modulate pathological neural network functional connectivity in major depressive disorder (MDD). Posttraumatic stress disorder is often comorbid with MDD, and symptoms of both disorders can be alleviated with TMS therapy. This is the first study to evaluate TMS-associated changes in connectivity in patients with comorbid posttraumatic stress disorder and MDD. Resting-state functional connectivity magnetic resonance imaging was acquired before and after TMS therapy in 33 adult outpatients in a prospective open trial. TMS at 5 Hz was delivered, in up to 40 daily sessions, to the left dorsolateral prefrontal cortex. Analyses used a priori seeds relevant to TMS, posttraumatic stress disorder, or MDD (subgenual anterior cingulate cortex [sgACC], left dorsolateral prefrontal cortex, hippocampus, and basolateral amygdala) to identify imaging predictors of response and to evaluate clinically relevant changes in connectivity after TMS, followed by leave-one-out cross-validation. Imaging results were explored using data-driven multivoxel pattern activation. More negative pretreatment connectivity between the sgACC and the default mode network predicted clinical improvement, as did more positive amygdala-to-ventromedial prefrontal cortex connectivity. After TMS, symptom reduction was associated with reduced connectivity between the sgACC and the default mode network, left dorsolateral prefrontal cortex, and insula, and reduced connectivity between the hippocampus and the salience network. Multivoxel pattern activation confirmed seed-based predictors and correlates of treatment outcomes. These results highlight the central role of the sgACC, default mode network, and salience network as predictors of TMS response and suggest their involvement in mechanisms of action. Furthermore, this work indicates that there may be network-based biomarkers of clinical response relevant to these commonly comorbid disorders. Published by Elsevier Inc.

  2. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    PubMed Central

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  3. Anterior Cingulate Cortex and Cognitive Control: Neuropsychological and Electrophysiological Findings in Two Patients with Lesions to Dorsomedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Lovstad, M.; Funderud, I.; Meling, T.; Kramer, U. M.; Voytek, B.; Due-Tonnessen, P.; Endestad, T.; Lindgren, M.; Knight, R. T.; Solbakk, A. K.

    2012-01-01

    Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial…

  4. Track-weighted functional connectivity (TW-FC): a tool for characterizing the structural-functional connections in the brain.

    PubMed

    Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan

    2013-04-15

    MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Narcissists’ social pain seen only in the brain

    PubMed Central

    Konrath, Sara H.; Falk, Emily B.

    2015-01-01

    Narcissism is a complex phenomenon, involving a level of defensive self-enhancement. Narcissists have avoidant attachment styles, maintain distance in relationships and claim not to need others. However, they are especially sensitive to others’ evaluations, needing positive reflected appraisals to maintain their inflated self-views, and showing extreme responses (e.g. aggression) when rejected. The current study tested the hypothesis that narcissists also show hypersensitivity in brain systems associated with distress during exclusion. We measured individual differences in narcissism (Narcissistic Personality Inventory) and monitored neural responses to social exclusion (Cyberball). Narcissism was significantly associated with activity in an a priori anatomically defined social pain network (anterior insula, dorsal anterior cingulate cortex and subgenual anterior cingulate cortex) during social exclusion. Results suggest hypersensitivity to exclusion in narcissists may be a function of hypersensitivity in brain systems associated with distress, and suggests a potential pathway that connects narcissism to negative consequences for longer-term physical and mental health—findings not apparent with self-report alone. PMID:24860084

  6. Emotion triggers executive attention: anterior cingulate cortex and amygdala responses to emotional words in a conflict task.

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-02-01

    Coherent behavior depends on attentional control that detects and resolves conflict between opposing actions. The current functional magnetic resonance imaging study tested the hypothesis that emotion triggers attentional control to speed up conflict processing in particularly salient situations. Therefore, we presented emotionally negative and neutral words in a version of the flanker task. In response to conflict, we found activation of the dorsal anterior cingulate cortex (ACC) and of the amygdala for emotional stimuli. When emotion and conflict coincided, a region in the ventral ACC was activated, which resulted in faster conflict processing in reaction times. Emotion also increased functional connectivity between the ventral ACC and activation of the dorsal ACC and the amygdala in conflict trials. These data suggest that the ventral ACC integrates emotion and conflict and prioritizes the processing of conflict in emotional trials. This adaptive mechanism ensures rapid detection and resolution of conflict in potentially threatening situations signaled by emotional stimuli. Copyright © 2010 Wiley-Liss, Inc.

  7. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory

    PubMed Central

    Vetere, Gisella; Restivo, Leonardo; Cole, Christina J.; Ross, P. Joel; Ammassari-Teule, Martine; Josselyn, Sheena A.; Frankland, Paul W.

    2011-01-01

    Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes. PMID:21531906

  8. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene.

    PubMed

    Hong, Ji Sun; Kim, Sun Mi; Bae, Sujin; Han, Doug Hyun

    2018-01-01

    Problematic Internet game play is often accompanied by major depressive disorder (MDD). Depression seems to be closely related to altered functional connectivity (FC) within (and between) the default mode network (DMN) and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS), Beck Depressive Inventory, Beck Anxiety Inventory (BAI), Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS), respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC) to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG) to the right rostral prefrontal cortex (RPFC), right anterior insular (AInsular) to right SMG, anterior cingulate cortex (ACC) to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  9. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game

    PubMed Central

    Seo, Hyojung; Lee, Daeyeol

    2008-01-01

    The process of decision making in humans and other animals is adaptive and can be tuned through experience so as to optimize the outcomes of their choices in a dynamic environment. Previous studies have demonstrated that the anterior cingulate cortex plays an important role in updating the animal’s behavioral strategies when the action-outcome contingencies change. Moreover, neurons in the anterior cingulate cortex often encode the signals related to expected or actual reward. We investigated whether reward-related activity in the anterior cingulate cortex is affected by the animal’s previous reward history. This was tested in rhesus monkeys trained to make binary choices in a computer-simulated competitive zero-sum game. The animal’s choice behavior was relatively close to the optimal strategy, but also revealed small but systematic biases that are consistent with the use of a reinforcement learning algorithm. In addition, the activity of neurons in the dorsal anterior cingulate cortex that was related to the reward received by the animal in a given trial was often modulated by the rewards in the previous trials. Some of these neurons encoded the rate of rewards in previous trials, whereas others displayed activity modulations more closely related to the reward prediction errors. By contrast, signals related to the animal’s choices were only weakly represented in this cortical area. These results suggest that neurons in the dorsal anterior cingulate cortex might be involved in the subjective evaluation of choice outcomes based on the animal’s reward history. PMID:17670983

  10. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    PubMed

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  11. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients. PMID:29186356

  12. Reduced event-related current density in the anterior cingulate cortex in schizophrenia.

    PubMed

    Mulert, C; Gallinat, J; Pascual-Marqui, R; Dorn, H; Frick, K; Schlattmann, P; Mientus, S; Herrmann, W M; Winterer, G

    2001-04-01

    There is good evidence from neuroanatomic postmortem and functional imaging studies that dysfunction of the anterior cingulate cortex plays a prominent role in the pathophysiology of schizophrenia. So far, no electrophysiological localization study has been performed to investigate this deficit. We investigated 18 drug-free schizophrenic patients and 25 normal subjects with an auditory choice reaction task and measured event-related activity with 19 electrodes. Estimation of the current source density distribution in Talairach space was performed with low-resolution electromagnetic tomography (LORETA). In normals, we could differentiate between an early event-related potential peak of the N1 (90-100 ms) and a later N1 peak (120-130 ms). Subsequent current-density LORETA analysis in Talairach space showed increased activity in the auditory cortex area during the first N1 peak and increased activity in the anterior cingulate gyrus during the second N1 peak. No activation difference was observed in the auditory cortex between normals and patients with schizophrenia. However, schizophrenics showed significantly less anterior cingulate gyrus activation and slowed reaction times. Our results confirm previous findings of an electrical source in the anterior cingulate and an anterior cingulate dysfunction in schizophrenics. Our data also suggest that anterior cingulate function in schizophrenics is disturbed at a relatively early time point in the information-processing stream (100-140 ms poststimulus). Copyright 2001 Academic Press.

  13. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    PubMed

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  14. Aberrant temporal and spatial brain activity during rest in patients with chronic pain

    PubMed Central

    Malinen, Sanna; Vartiainen, Nuutti; Hlushchuk, Yevhen; Koskinen, Miika; Ramkumar, Pavan; Forss, Nina; Kalso, Eija; Hari, Riitta

    2010-01-01

    In the absence of external stimuli, human hemodynamic brain activity displays slow intrinsic variations. To find out whether such fluctuations would be altered by persistent pain, we asked 10 patients with unrelenting chronic pain of different etiologies and 10 sex- and age-matched control subjects to rest with eyes open during 3-T functional MRI. Independent component analysis was used to identify functionally coupled brain networks. Time courses of an independent component comprising the insular cortices of both hemispheres showed stronger spectral power at 0.12 to 0.25 Hz in patients than in control subjects, with the largest difference at 0.16 Hz. A similar but weaker effect was seen in the anterior cingulate cortex, whereas activity of the precuneus and early visual cortex, used as a control site, did not differ between the groups. In the patient group, seed point-based correlation analysis revealed altered spatial connectivity between insulae and anterior cingulate cortex. The results imply both temporally and spatially aberrant activity of the affective pain-processing areas in patients suffering from chronic pain. The accentuated 0.12- to 0.25-Hz fluctuations in the patient group might be related to altered activity of the autonomic nervous system. PMID:20308545

  15. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment.

    PubMed

    Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo

    2016-01-01

    We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems.

  16. Altered effective connectivity within default mode network in major depression disorder

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  17. Role of testosterone and Y chromosome genes for the masculinization of the human brain.

    PubMed

    Savic, Ivanka; Frisen, Louise; Manzouri, Amirhossein; Nordenstrom, Anna; Lindén Hirschberg, Angelica

    2017-04-01

    Women with complete androgen insensitivity syndrome (CAIS) have a male (46,XY) karyotype but no functional androgen receptors. Their condition, therefore, offers a unique model for studying testosterone effects on cerebral sex dimorphism. We present MRI data from 16 women with CAIS and 32 male (46,XY) and 32 female (46,XX) controls. FreeSurfer software was employed to measure cortical thickness and subcortical structural volumes. Axonal connections, indexed by fractional anisotropy, (FA) were measured with diffusion tensor imaging, and functional connectivity with resting state fMRI. Compared to men, CAIS women displayed a "female" pattern by having thicker parietal and occipital cortices, lower FA values in the right corticospinal, superior and inferior longitudinal tracts, and corpus callosum. Their functional connectivity from the amygdala to the medial prefrontal cortex, was stronger and amygdala-connections to the motor cortex weaker than in control men. CAIS and control women also showed stronger posterior cingulate and precuneus connections in the default mode network. Thickness of the motor cortex, the caudate volume, and the FA in the callosal body followed, however, a "male" pattern. Altogether, these data suggest that testosterone modulates the microstructure of somatosensory and visual cortices and their axonal connections to the frontal cortex. Testosterone also influenced functional connections from the amygdala, whereas the motor cortex could, in agreement with our previous reports, be moderated by processes linked to X-chromosome gene dosage. These data raise the question about other genetic factors masculinizing the human brain than the SRY gene and testosterone. Hum Brain Mapp 38:1801-1814, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review.

    PubMed

    Li, Mo-Yi; Huang, Mao-Mao; Li, Shu-Zhen; Tao, Jing; Zheng, Guo-Hua; Chen, Li-Dian

    2017-07-01

    Physical activity may play a role in both the prevention and slowing of brain volume loss and may be beneficial in terms of improving the functional connectivity of brain regions. But much less is known about the potential benefit of aerobic exercise for the structure and function of the default mode network (DMN) brain regions. This systematic review examines the effects of aerobic exercise on the structure and function of DMN brain regions in human adulthood. Seven electronic databases were searched for prospective controlled studies published up to April 2015. The quality of the selected studies was evaluated with the Cochrane Collaboration's tool for assessing the risk of bias. RevMan 5.3 software was applied for data analysis. Finally, 14 studies with 631 participants were identified. Meta-analysis revealed that aerobic exercise could significantly increase right hippocampal volume (SMD = 0.26, 95% CI 0.01-0.51, p = 0.04, I 2 = 7%, 4 studies), and trends of similar effects were observed in the total (SMD = 0.12, 95% CI -0.17 to 0.41, p = 0.43, I 2 = 0%, 5 studies), left (SMD = 0.12, 95% CI -0.13 to 0.37, p = 0.33, I 2 = 14%, 4 studies), left anterior (SMD = 0.12, 95% CI -0.16 to 0.40, p = 0.41, I 2 = 74%, 2 studies) and right anterior (SMD = 0.10, 95% CI -0.17 to 0.38, p = 0.46, I 2 = 76%, 4 studies) hippocampal volumes compared to the no-exercise interventions. A few studies reported that relative to no-exercise interventions, aerobic exercise could significantly decrease the atrophy of the medial temporal lobe, slow the anterior cingulate cortex (ACC) volume loss, increase functional connectivity within the hippocampus and improve signal activation in the cingulate gyrus and ACC. The current review suggests that aerobic exercise may have positive effects on the right hippocampus and potentially beneficial effects on the overall and other parts of the hippocampus, the cingulate cortex and the medial temporal areas of the DMN. Moreover, aerobic exercise may increase functional connectivity or activation in the hippocampus, cingulate cortex and parahippocampal gyrus regions of the DMN. However, considering the quantity and limitations of the included studies, the conclusion could not be drawn so far. Additional randomized controlled trials (RCTs) with rigorous designs and longer intervention periods are needed in the future.

  19. Amygdala-prefrontal cortical functional connectivity during implicit emotion processing differentiates youth with bipolar spectrum from youth with externalizing disorders.

    PubMed

    Hafeman, Danella; Bebko, Genna; Bertocci, Michele A; Fournier, Jay C; Chase, Henry W; Bonar, Lisa; Perlman, Susan B; Travis, Michael; Gill, Mary Kay; Diwadkar, Vaibhav A; Sunshine, Jeffrey L; Holland, Scott K; Kowatch, Robert A; Birmaher, Boris; Axelson, David; Horwitz, Sarah M; Arnold, L Eugene; Fristad, Mary A; Frazier, Thomas W; Youngstrom, Eric A; Findling, Robert L; Phillips, Mary L

    2017-01-15

    Both bipolar spectrum disorders (BPSD) and attention deficit hyperactivity disorder (ADHD) present with emotion-regulation deficits, but require different clinical management. We examined how the neurobiological underpinnings of emotion regulation might differentiate youth with BPSD versus ADHD (and healthy controls, HCs), specifically assessing functional connectivity (FxC) of amygdala-prefrontal circuitry during an implicit emotion processing task. We scanned a subset of the Longitudinal Assessment of Manic Symptoms (LAMS) sample, a clinically recruited cohort with elevated behavioral and emotional dysregulation, and age/sex-ratio matched HCs. Our sample consisted of 22 youth with BPSD, 30 youth with ADHD/no BPSD, and 26 HCs. We used generalized psychophysiological interaction (gPPI) to calculate group differences to emerging emotional faces vs. morphing shapes in FxC between bilateral amygdala and ventral prefrontal cortex/anterior cingulate cortex. FxC between amygdala and left ventrolateral prefrontal cortex (VLPFC) in response to emotions vs. shapes differed by group (p=.05): while BPSD showed positive FxC (emotions>shapes), HC and ADHD showed inverse FxC (emotions

  20. Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder

    PubMed Central

    Schulz, Kurt P.; Bédard, Anne-Claude V.; Fan, Jin; Clerkin, Suzanne M.; Dima, Danai; Newcorn, Jeffrey H.; Halperin, Jeffrey M.

    2014-01-01

    Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD. PMID:24918067

  1. Emotional bias of cognitive control in adults with childhood attention-deficit/hyperactivity disorder.

    PubMed

    Schulz, Kurt P; Bédard, Anne-Claude V; Fan, Jin; Clerkin, Suzanne M; Dima, Danai; Newcorn, Jeffrey H; Halperin, Jeffrey M

    2014-01-01

    Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD.

  2. Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease.

    PubMed

    Petersen, Kalen; Van Wouwe, Nelleke; Stark, Adam; Lin, Ya-Chen; Kang, Hakmook; Trujillo-Diaz, Paula; Kessler, Robert; Zald, David; Donahue, Manus J; Claassen, Daniel O

    2018-01-01

    A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward-driven behaviors, which can result in life-altering morbidity. The mesocorticolimbic dopamine network guides reward-motivated behavior; however, its role in this treatment-related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward-learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD-fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex-matched PD patients with (n = 19) or without (n = 18) ICB. An incentive-based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole-brain voxelwise analyses and region-of-interest-based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala-to-midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum-to-subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment-avoidance learning. These data indicate that PD-ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward-based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509-521, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  4. A computational study of whole-brain connectivity in resting state and task fMRI

    PubMed Central

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  5. Depression in chronic ketamine users: Sex differences and neural bases.

    PubMed

    Li, Chiang-Shan R; Zhang, Sheng; Hung, Chia-Chun; Chen, Chun-Ming; Duann, Jeng-Ren; Lin, Ching-Po; Lee, Tony Szu-Hsien

    2017-11-30

    Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adverse Effects of Cannabis on Adolescent Brain Development: A Longitudinal Study.

    PubMed

    Camchong, Jazmin; Lim, Kelvin O; Kumra, Sanjiv

    2017-03-01

    Cannabis is widely perceived as a safe recreational drug and its use is increasing in youth. It is important to understand the implications of cannabis use during childhood and adolescence on brain development. This is the first longitudinal study that compared resting functional connectivity of frontally mediated networks between 43 healthy controls (HCs; 20 females; age M = 16.5 ± 2.7) and 22 treatment-seeking adolescents with cannabis use disorder (CUD; 8 females; age M = 17.6 ± 2.4). Increases in resting functional connectivity between caudal anterior cingulate cortex (ACC) and superior frontal gyrus across time were found in HC, but not in CUD. CUD showed a decrease in functional connectivity between caudal ACC and dorsolateral and orbitofrontal cortices across time. Lower functional connectivity between caudal ACC cortex and orbitofrontal cortex at baseline predicted higher amounts of cannabis use during the following 18 months. Finally, high amounts of cannabis use during the 18-month interval predicted lower intelligence quotient and slower cognitive function measured at follow-up. These data provide compelling longitudinal evidence suggesting that repeated exposure to cannabis during adolescence may have detrimental effects on brain resting functional connectivity, intelligence, and cognitive function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    PubMed

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  8. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder.

    PubMed

    Manelis, Anna; Ladouceur, Cecile D; Graur, Simona; Monk, Kelly; Bonar, Lisa K; Hickey, Mary Beth; Dwojak, Amanda C; Axelson, David; Goldstein, Benjamin I; Goldstein, Tina R; Bebko, Genna; Bertocci, Michele A; Hafeman, Danella M; Gill, Mary Kay; Birmaher, Boris; Phillips, Mary L

    2015-09-01

    This study aimed to identify neuroimaging measures associated with risk for, or protection against, bipolar disorder by comparing youth offspring of parents with bipolar disorder versus youth offspring of non-bipolar parents versus offspring of healthy parents in (i) the magnitude of activation within emotional face processing circuitry; and (ii) functional connectivity between this circuitry and frontal emotion regulation regions. The study was conducted at the University of Pittsburgh Medical Centre. Participants included 29 offspring of parents with bipolar disorder (mean age = 13.8 years; 14 females), 29 offspring of non-bipolar parents (mean age = 13.8 years; 12 females) and 23 healthy controls (mean age = 13.7 years; 11 females). Participants were scanned during implicit processing of emerging happy, sad, fearful and angry faces and shapes. The activation analyses revealed greater right amygdala activation to emotional faces versus shapes in offspring of parents with bipolar disorder and offspring of non-bipolar parents than healthy controls. Given that abnormally increased amygdala activation during emotion processing characterized offspring of both patient groups, and that abnormally increased amygdala activation has often been reported in individuals with already developed bipolar disorder and those with major depressive disorder, these neuroimaging findings may represent markers of increased risk for affective disorders in general. The analysis of psychophysiological interaction revealed that offspring of parents with bipolar disorder showed significantly more negative right amygdala-anterior cingulate cortex functional connectivity to emotional faces versus shapes, but significantly more positive right amygdala-left ventrolateral prefrontal cortex functional connectivity to happy faces (all P-values corrected for multiple tests) than offspring of non-bipolar parents and healthy controls. Taken together with findings of increased amygdala-ventrolateral prefrontal cortex functional connectivity, and decreased amygdala-anterior cingulate cortex functional connectivity previously shown in individuals with bipolar disorder, these connectivity patterns in offspring of parents with bipolar disorder may be risk markers for, rather than markers conferring protection against, bipolar disorder in youth. The patterns of activation and functional connectivity remained unchanged after removing medicated participants and those with current psychopathology from analyses. This is the first study to demonstrate that abnormal functional connectivity patterns within face emotion processing circuitry distinguish offspring of parents with bipolar disorder from those of non-bipolar parents and healthy controls. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures.

    PubMed

    Dai, Yu-Jie; Zhang, Xin; Yang, Yang; Nan, Hai-Yan; Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Bo; Zhang, Jin; Qiu, Zi-Yu; Gao, Yi; Cui, Guang-Bin; Chen, Bi-Liang; Wang, Wen

    2018-03-14

    The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.

  10. Decreased interhemispheric resting-state functional connectivity in first-episode, drug-naive major depressive disorder.

    PubMed

    Guo, Wenbin; Liu, Feng; Dai, Yi; Jiang, Muliang; Zhang, Jian; Yu, Liuyu; Long, Liling; Chen, Huafu; Gao, Qing; Xiao, Changqing

    2013-03-05

    Major depressive disorder (MDD) is shown to have structural and functional abnormalities in specific brain areas and connections by recent neuroimaging studies. However, little is known about the alterations of the interhemispheric resting-state functional connectivity (FC) in patients with MDD. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in patients with MDD at rest. Twenty-four first-episode, drug-naive patients with MDD and 24 age-, gender-, and education-matched healthy subjects underwent a resting-state functional magnetic resonance imaging (fMRI). An automated VMHC approach was used to analyze the data. Patients with MDD showed lower VMHC than healthy subjects in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex/precuneus (PCC/PCu), two core regions within default mode network (DMN). Both left and right MPFC showed reduced FC with the other frontal areas and with right anterior cingulate gyrus (ACC), while PCC/PCu exhibited abnormal FC with the frontal areas and thalamus in patient group. Significant positive correlation was observed between VMHC in MPFC and persistent error response of Wisconsin Card Sorting Test (WCST-Pre) in patients. Further ROC analysis revealed that VMHC in the MPFC and PCC/PCu could be used to differentiate the patients from healthy subjects with relatively high sensitivity and specificity. Our results suggest that decreased VMHC in brain regions within DMN may underlie the pathogenesis of MDD. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Brain networks during free viewing of complex erotic movie: new insights on psychogenic erectile dysfunction.

    PubMed

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other's actions. Moreover, the between group differences in the SN nodes suggested a decreased recognition of autonomical and sexual arousal changes in EDp.

  12. Brain Networks during Free Viewing of Complex Erotic Movie: New Insights on Psychogenic Erectile Dysfunction

    PubMed Central

    Cera, Nicoletta; Di Pierro, Ezio Domenico; Ferretti, Antonio; Tartaro, Armando; Romani, Gian Luca; Perrucci, Mauro Gianni

    2014-01-01

    Psychogenic erectile dysfunction (ED) is defined as a male sexual dysfunction characterized by a persistent or recurrent inability to attain adequate penile erection due predominantly or exclusively to psychological or interpersonal factors. Previous fMRI studies were based on the common occurrence in the male sexual behaviour represented by the sexual arousal and penile erection related to viewing of erotic movies. However, there is no experimental evidence of altered brain networks in psychogenic ED patients (EDp). Some studies showed that fMRI activity collected during non sexual movie viewing can be analyzed in a reliable manner with independent component analysis (ICA) and that the resulting brain networks are consistent with previous resting state neuroimaging studies. In the present study, we investigated the modification of the brain networks in EDp compared to healthy controls (HC), using whole-brain fMRI during free viewing of an erotic video clip. Sixteen EDp and nineteen HC were recruited after RigiScan evaluation, psychiatric, and general medical evaluations. The performed ICA showed that visual network (VN), default-mode network (DMN), fronto-parietal network (FPN) and salience network (SN) were spatially consistent across EDp and HC. However, between-group differences in functional connectivity were observed in the DMN and in the SN. In the DMN, EDp showed decreased connectivity values in the inferior parietal lobes, posterior cingulate cortex and medial prefrontal cortex, whereas in the SN decreased and increased connectivity was observed in the right insula and in the anterior cingulate cortex respectively. The decreased levels of intrinsic functional connectivity principally involved the subsystem of DMN relevant for the self relevant mental simulation that concerns remembering of past experiences, thinking to the future and conceiving the viewpoint of the other’s actions. Moreover, the between group differences in the SN nodes suggested a decreased recognition of autonomical and sexual arousal changes in EDp. PMID:25126947

  13. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum.

    PubMed

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P

    2016-09-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.

  14. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    PubMed Central

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  15. Amygdala functional connectivity is associated with locus of control in the context of cognitive aging.

    PubMed

    Ren, Ping; Anthony, Mia; Chapman, Benjamin P; Heffner, Kathi; Lin, Feng

    2017-05-01

    Locus of control (LOC) measures the extent to which individuals perceive control over their lives. Those with a more "internal" LOC feel self-sufficient and able to determine important aspects of their own future, while those with a more "external" LOC feel that their lives are governed by events beyond their control. Reduced internal LOC and increased external LOC have been found in cognitive disorders, but the neural substrates of these control perceptions are yet unknown. In the present study, we explored the relationship between amygdala functional connectivity and LOC in 18 amnestic mild cognitive impairment (MCI) and age-, sex-, and education-matched, 22 cognitively healthy controls (HC). Participants completed cognitive challenge tasks (Stroop Word Color task and Dual 1-back) for 20min, and underwent resting-state functional magnetic resonance imaging immediately before and after the tasks. We found significantly lower internal LOC and higher external LOC in the MCI group than the HC group. Compared to HC, MCI group showed significantly stronger positive associations between internal LOC and baseline right amygdala connections (including right middle frontal gyrus and anterior cingulate cortex), and stronger negative associations between internal LOC and change of these right amygdala connections. Across all participants, external LOC explained the relationships between associations of another set of right amygdala connections (including middle cingulate cortex and right superior frontal gyrus), both at baseline and for change, and performance in the cognitive challenge tasks. Our findings indicate that the right amygdala networks might be critical in understanding the neural mechanisms underlying LOC's role in cognitive aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hyperventilation in Patients With Focal Epilepsy: Electromagnetic Tomography, Functional Connectivity and Graph Theory - A Possible Tool in Epilepsy Diagnosis?

    PubMed

    Mazzucchi, Edoardo; Vollono, Catello; Losurdo, Anna; Testani, Elisa; Gnoni, Valentina; Di Blasi, Chiara; Giannantoni, Nadia M; Lapenta, Leonardo; Brunetti, Valerio; Della Marca, Giacomo

    2017-01-01

    Hyperventilation (HV) is a commonly used electroencephalogram activation method. We analyzed EEG recordings in 22 normal subjects and 22 patients with focal epilepsy of unknown cause. We selected segments before (PRE), during (HYPER), and 5 minutes after (POST) HV. To analyze the neural generators of EEG signal, we used standard low-resolution electromagnetic tomography (sLORETA software). We then computed EEG lagged coherence, an index of functional connectivity, between 19 regions of interest. A weighted graph was built for each band in every subject, and characteristic path length (L) and clustering coefficient (C) have been computed. Statistical comparisons were performed by means of analysis of variance (Group X Condition X Band) for mean lagged coherence, L and C. Hyperventilation significantly increases EEG neural generators (P < 0.001); the effect is particularly evident in cingulate cortex. Functional connectivity was increased by HV in delta, theta, alpha, and beta bands in the Epileptic group (P < 0.01) and only in theta band in Control group. Intergroup analysis of mean lagged coherence, C and L, showed significant differences for Group (P < 0.001), Condition (P < 0.001), and Band (P < 0.001). Analysis of variance for L also showed significant interactions: Group X Condition (P = 0.003) and Group X Band (P < 0.001). In our relatively small group of epileptic patients, HV is associated with activation of cingulate cortex; moreover, it modifies brain connectivity. The significant differences in mean lagged coherence, path length, and clustering coefficient permit to hypothesize that this activation method leads to different brain connectivity patterns in patients with epilepsy when compared with normal subjects. If confirmed by other studies involving larger populations, this analysis could become a diagnostic tool in epilepsy.

  17. Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology.

    PubMed

    Rzepa, Ewelina; Fisk, Jennifer; McCabe, Ciara

    2017-03-01

    Neural reward function has been proposed as a possible biomarker for depression. However, how the neural response to reward and aversion might differ in young adolescents with current symptoms of depression is as yet unclear. Thirty-three adolescents were recruited, 17 scoring low on the Mood and Feelings Questionnaire (low risk group) and 16 scoring high (high risk group). Our functional magnetic resonance imaging task measured; anticipation (pleasant/unpleasant cue), effort (achieve a pleasant taste or avoid an unpleasant taste) and consummation (pleasant/unpleasant tastes) in regions of interest; ventral medial prefrontal cortex, pregenual cingulate cortex, the insula and ventral striatum. We also examined whole brain group differences. In the regions of interest analysis we found reduced activity in the high risk group in the pregenual cingulate cortex during anticipation and reduced pregenual cingulate cortex and ventral medial prefrontal cortex during effort and consummation. In the whole brain analysis we also found reduced activity in the high risk group in the prefrontal cortex and the precuneus during anticipation. We found reduced activity in the hippocampus during the effort phase and in the anterior cingulate/frontal pole during consummation in the high risk group. Increased anhedonia measures correlated with decreased pregenual cingulate cortex activity during consummation in the high risk group only. Our results are the first to show that adolescents with depression symptoms have blunted neural responses during the anticipation, effort and consummation of rewarding and aversive stimuli. This study suggests that interventions in young people at risk of depression, that can reverse blunted responses, might be beneficial as preventative strategies.

  18. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of 'nociception-related memory acquisition'?

    PubMed

    Ortega-Legaspi, J Manuel; López-Avila, Alberto; Coffeen, Ulises; del Angel, Rosendo; Pellicer, Francisco

    2003-01-01

    The cingulate cortex plays a key role in the affective component related to pain perception. This structure receives cholinergic projections and also plays a role in memory processing. Therefore, we propose that the cholinergic system in the anterior cingulate cortex is involved in the nociceptive memory process. We used scopolamine (10 microg in 0.25 mircrol/saline) microinjected into the anterior cingulate cortex, either before thermonociception followed by a sciatic denervation, between thermonociception and denervation or after both procedures (n=10 each). The vehicle group (saline solution 0.9%, n=14) was microinjected before thermonociception. Chronic nociception was measured by the autotomy score, which onset and incidence were also determined. Group scopolamine-thermonociception-denervation (STD) presented the lowest autotomy score as compared to vehicle and group thermonociception-denervation-scopolamine (TDS) (vehicle vs. STD, p=0.002, STD vs. TDS, p=0.001). Group thermonociception-scopolamine-denervation (TSD) showed a diminished autotomy score when compared to TDS (p=0.053). STD group showed a delay in the onset of AB as compared to the rest of the groups. Group TSD presented a significative delay (p=0.048) in AB onset when compared to group TDS. There were no differences in the incidence between groups. The results show that nociception-related memory processed in the anterior cingulate cortex is susceptible of being modified by the cholinergic transmission blockade. When scopolamine is microinjected prior to the nociceptive stimuli, nociception-related memory acquisition is prevented. The evidence obtained in this study shows the role of the anterior cingulate cortex in the acquisition of nociception-related memory.

  19. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.

    PubMed

    Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A

    2011-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Therapygenetics: anterior cingulate cortex-amygdala coupling is associated with 5-HTTLPR and treatment response in panic disorder with agoraphobia.

    PubMed

    Lueken, Ulrike; Straube, Benjamin; Wittchen, Hans-Ulrich; Konrad, Carsten; Ströhle, Andreas; Wittmann, André; Pfleiderer, Bettina; Arolt, Volker; Kircher, Tilo; Deckert, Jürgen; Reif, Andreas

    2015-01-01

    Variation in the 5'-flanking promoter region of the serotonin transporter gene SLC6A4, the 5-HTT-linked polymorphic region (5-HTTLPR) has been inconclusively associated with response to cognitive-behavioural therapy (CBT). As genomic functions are stronger related to neural than to behavioural markers, we investigated the association of treatment response, 5-HTTLPR and functional brain connectivity in patients with panic disorder with agoraphobia (PD/AG). Within the national research network PANIC-NET 231 PD/AG patients who provided genetic information underwent a manualized exposure-based CBT. A subset of 41 patients participated in a functional magnetic resonance imaging (fMRI) add-on study prior to treatment applying a differential fear conditioning task. Neither the treatment nor the reduced fMRI sample showed a direct effect of 5-HTTLPR on treatment response as defined by a reduction in the Hamilton Anxiety Scale score ≥50 % from baseline to post assessment. On a neural level, inhibitory anterior cingulate cortex (ACC)-amygdala coupling during fear conditioning that had previously been shown to characterize treatment response in this sample was driven by responders with the L/L genotype. Building upon conclusive evidence from basic and preclinical findings on the association of the 5-HTTLPR polymorphism with emotion regulation and related brain connectivity patterns, present findings translate these to a clinical sample of PD/AG patients and point towards a potential intermediate connectivity phenotype modulating response to exposure-based CBT.

  1. Dissociable prefrontal brain systems for attention and emotion

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hiroshi; Labar, Kevin S.; McCarthy, Gregory

    2002-08-01

    The prefrontal cortex has been implicated in a variety of attentional, executive, and mnemonic mental operations, yet its functional organization is still highly debated. The present study used functional MRI to determine whether attentional and emotional functions are segregated into dissociable prefrontal networks in the human brain. Subjects discriminated infrequent and irregularly presented attentional targets (circles) from frequent standards (squares) while novel distracting scenes, parametrically varied for emotional arousal, were intermittently presented. Targets differentially activated middle frontal gyrus, posterior parietal cortex, and posterior cingulate gyrus. Novel distracters activated inferior frontal gyrus, amygdala, and fusiform gyrus, with significantly stronger activation evoked by the emotional scenes. The anterior cingulate gyrus was the only brain region with equivalent responses to attentional and emotional stimuli. These results show that attentional and emotional functions are segregated into parallel dorsal and ventral streams that extend into prefrontal cortex and are integrated in the anterior cingulate. These findings may have implications for understanding the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders. novelty | prefrontal cortex | amygdala | cingulate gyrus

  2. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  3. Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network.

    PubMed

    Prado, Jérôme; Carp, Joshua; Weissman, Daniel H

    2011-01-01

    Although variations of response time (RT) within a particular experimental condition are typically ignored, they may sometimes reflect meaningful changes in the efficiency of cognitive and neural processes. In the present study, we investigated whether trial-by-trial variations of response time (RT) in a cross-modal selective attention task were associated with variations of functional connectivity between brain regions that are thought to underlie attention. Sixteen healthy young adults performed an audiovisual selective attention task, which involved attending to a relevant visual letter while ignoring an irrelevant auditory letter, as we recorded their brain activity using functional magnetic resonance imaging (fMRI). In line with predictions, variations of RT were associated with variations of functional connectivity between the anterior cingulate cortex and various other brain regions that are posited to underlie attentional control, such as the right dorsolateral prefrontal cortex and bilateral regions of the posterior parietal cortex. They were also linked to variations of functional connectivity between anatomically early and anatomically late regions of the relevant-modality visual cortex whose communication is thought to be modulated by attentional control processes. By revealing that variations of RT in a selective attention task are linked to variations of functional connectivity in the attentional network, the present findings suggest that variations of attention may contribute to trial-by-trial fluctuations of behavioral performance. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Neural correlates of the classic color and emotional stroop in women with abuse-related posttraumatic stress disorder.

    PubMed

    Bremner, J Douglas; Vermetten, Eric; Vythilingam, Meena; Afzal, Nadeem; Schmahl, Christian; Elzinga, Bernet; Charney, Dennis S

    2004-03-15

    The anterior cingulate and medial prefrontal cortex play an important role in the inhibition of responses, as measured by the Stroop task, as well as in emotional regulation. Dysfunction of the anterior cingulate/medial prefrontal cortex has been implicated in posttraumatic stress disorder (PTSD). The purpose of this study was to use the Stroop task as a probe of anterior cingulate function in PTSD. Women with early childhood sexual abuse-related PTSD (n = 12) and women with abuse but without PTSD (n = 9) underwent positron emission tomographic measurement of cerebral blood flow during exposure to control, color Stroop, and emotional Stroop conditions. Women with abuse with PTSD (but not abused non-PTSD women) had a relative decrease in anterior cingulate blood flow during exposure to the emotional (but not color) classic Stroop task. During the color Stroop there were also relatively greater increases in blood flow in non-PTSD compared with PTSD women in right visual association cortex, cuneus, and right inferior parietal lobule. These findings add further evidence for dysfunction of a network of brain regions, including anterior cingulate and visual and parietal cortex, in abuse-related PTSD.

  5. Structural and functional correlates of hypnotic depth and suggestibility.

    PubMed

    McGeown, William Jonathan; Mazzoni, Giuliana; Vannucci, Manila; Venneri, Annalena

    2015-02-28

    This study explores whether self-reported depth of hypnosis and hypnotic suggestibility are associated with individual differences in neuroanatomy and/or levels of functional connectivity. Twenty-nine people varying in suggestibility were recruited and underwent structural, and after a hypnotic induction, functional magnetic resonance imaging at rest. We used voxel-based morphometry to assess the correlation of grey matter (GM) and white matter (WM) against the independent variables: depth of hypnosis, level of relaxation and hypnotic suggestibility. Functional networks identified with independent components analysis were regressed with the independent variables. Hypnotic depth ratings were positively correlated with GM volume in the frontal cortex and the anterior cingulate cortex (ACC). Hypnotic suggestibility was positively correlated with GM volume in the left temporal-occipital cortex. Relaxation ratings did not correlate significantly with GM volume and none of the independent variables correlated with regional WM volume measures. Self-reported deeper levels of hypnosis were associated with less connectivity within the anterior default mode network. Taken together, the results suggest that the greater GM volume in the medial frontal cortex and ACC, and lower connectivity in the DMN during hypnosis facilitate experiences of greater hypnotic depth. The patterns of results suggest that hypnotic depth and hypnotic suggestibility should not be considered synonyms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Sharing self-related information is associated with intrinsic functional connectivity of cortical midline brain regions

    PubMed Central

    Meshi, Dar; Mamerow, Loreen; Kirilina, Evgeniya; Morawetz, Carmen; Margulies, Daniel S.; Heekeren, Hauke R.

    2016-01-01

    Human beings are social animals and they vary in the degree to which they share information about themselves with others. Although brain networks involved in self-related cognition have been identified, especially via the use of resting-state experiments, the neural circuitry underlying individual differences in the sharing of self-related information is currently unknown. Therefore, we investigated the intrinsic functional organization of the brain with respect to participants’ degree of self-related information sharing using resting state functional magnetic resonance imaging and self-reported social media use. We conducted seed-based correlation analyses in cortical midline regions previously shown in meta-analyses to be involved in self-referential cognition: the medial prefrontal cortex (MPFC), central precuneus (CP), and caudal anterior cingulate cortex (CACC). We examined whether and how functional connectivity between these regions and the rest of the brain was associated with participants’ degree of self-related information sharing. Analyses revealed associations between the MPFC and right dorsolateral prefrontal cortex (DLPFC), as well as the CP with the right DLPFC, the left lateral orbitofrontal cortex and left anterior temporal pole. These findings extend our present knowledge of functional brain connectivity, specifically demonstrating how the brain’s intrinsic functional organization relates to individual differences in the sharing of self-related information. PMID:26948055

  7. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  8. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response.

    PubMed

    Nitschke, Jack B; Sarinopoulos, Issidoros; Oathes, Desmond J; Johnstone, Tom; Whalen, Paul J; Davidson, Richard J; Kalin, Ned H

    2009-03-01

    The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.

  10. Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response

    PubMed Central

    Nitschke, Jack B.; Sarinopoulos, Issidoros; Oathes, Desmond J.; Johnstone, Tom; Whalen, Paul J.; Davidson, Richard J.; Kalin, Ned H.

    2009-01-01

    Objective The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. Method Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. Results Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. Conclusions These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder. PMID:19122007

  11. Insight and psychosis: Functional and anatomical brain connectivity and self-reflection in Schizophrenia.

    PubMed

    Ćurčić-Blake, Branislava; van der Meer, Lisette; Pijnenborg, Gerdina H M; David, Anthony S; Aleman, André

    2015-12-01

    Impaired insight into illness, associated with worse treatment outcome, is common in schizophrenia. Insight has been related to the self-reflective processing, centred on the medial frontal cortex. We hypothesized that anatomical and functional routes to and from the ventromedial prefrontal cortex (vmPFC) would differ in patients according to their degree of impaired insight. Forty-five schizophrenia patients and 19 healthy subjects performed a self-reflection task during fMRI, and underwent diffusion tensor imaging. Using dynamic causal modelling we observed increased effective connectivity from the posterior cingulate cortex (PCC), inferior parietal lobule (IPL), and dorsal mPFC (dmPFC) towards the vmPFC with poorer insight and decrease from vmPFC to the IPL. Stronger connectivity from the PCC to vmPFC during judgment of traits related to self was associated with poorer insight. We found small-scale significant changes in white matter integrity associated with clinical insight. Self-reflection may be influenced by synaptic changes that lead to the observed alterations in functional connectivity accompanied by the small-scale but measurable alterations in anatomical connections. Our findings may point to a neural compensatory response to an impairment of connectivity between self-processing regions. Similarly, the observed hyper-connectivity might be a primary deficit linked to inefficiency in the component cognitive processes that lead to impaired insight. We suggest that the stronger cognitive demands placed on patients with poor insight is reflected in increased effective connectivity during the task in this study. © 2015 Wiley Periodicals, Inc.

  12. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.

    PubMed

    Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan

    2018-02-01

    It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans.

    PubMed

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2010-06-01

    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.

  14. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.

    PubMed

    Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon

    2016-04-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.

  15. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738

  16. Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder

    PubMed Central

    Klimes-Dougan, Bonnie; Vu, Dung Pham; Westlund Schreiner, Melinda; Mueller, Bryon A.; Eberly, Lynn E.; Camchong, Jazmin; Westervelt, Ana; Lim, Kelvin O.

    2016-01-01

    Abstract Objective: The neural changes underlying response to antidepressant treatment in adolescents are unknown. Identification of neural change correlates of treatment response could (1) aid in understanding mechanisms of depression and its treatment and (2) serve as target biomarkers for future research. Method: Using functional magnetic resonance imaging, we examined changes in brain activation and functional connectivity in 13 unmedicated adolescents with major depressive disorder (MDD) before and after receiving treatment with a selective serotonin reuptake inhibitor medication for 8 weeks. Specifically, we examined brain activation during a negative emotion task and resting-state functional connectivity (RSFC), focusing on the amygdala to capture networks relevant to negative emotion. We conducted whole-brain analyses to identify how symptom improvement was related to change in brain activation during a negative emotion task or amygdala RSFC. Results: After treatment, clinical improvement was associated with decreased task activation in rostral and subgenual anterior cingulate cortex and increased activation in bilateral insula, bilateral middle frontal cortices, right parahippocampus, and left cerebellum. Analysis of change in amygdala RSFC showed that treatment response was associated with increased amygdala RSFC with right frontal cortex, but decreased amygdala RSFC with right precuneus and right posterior cingulate cortex. Conclusion: The findings represent a foothold for advancing understanding of pathophysiology of MDD in adolescents by revealing the critical neural circuitry changes that underlie a positive response to a standard treatment. Although preliminary, the present study provides a research platform for future work needed to confirm these biomarkers at a larger scale before using them in future target engagement studies of novel treatments. PMID:27159204

  17. Working Memory-Related Effective Connectivity in Huntington's Disease Patients.

    PubMed

    Lahr, Jacob; Minkova, Lora; Tabrizi, Sarah J; Stout, Julie C; Klöppel, Stefan; Scheller, Elisa

    2018-01-01

    Huntington's disease (HD) is a genetically caused neurodegenerative disorder characterized by heterogeneous motor, psychiatric, and cognitive symptoms. Although motor symptoms may be the most prominent presentation, cognitive symptoms such as memory deficits and executive dysfunction typically co-occur. We used functional magnetic resonance imaging (fMRI) and task fMRI-based dynamic causal modeling (DCM) to evaluate HD-related changes in the neural network underlying working memory (WM). Sixty-four pre-symptomatic HD mutation carriers (preHD), 20 patients with early manifest HD symptoms (earlyHD), and 83 healthy control subjects performed an n -back fMRI task with two levels of WM load. Effective connectivity was assessed in five predefined regions of interest, comprising bilateral inferior parietal cortex, left anterior cingulate cortex, and bilateral dorsolateral prefrontal cortex. HD mutation carriers performed less accurately and more slowly at high WM load compared with the control group. While between-group comparisons of brain activation did not reveal differential recruitment of the cortical WM network in mutation carriers, comparisons of brain connectivity as identified with DCM revealed a number of group differences across the whole WM network. Most strikingly, we observed decreasing connectivity from several regions toward right dorsolateral prefrontal cortex (rDLPFC) in preHD and even more so in earlyHD. The deterioration in rDLPFC connectivity complements results from previous studies and might mirror beginning cortical neural decline at premanifest and early manifest stages of HD. We were able to characterize effective connectivity in a WM network of HD mutation carriers yielding further insight into patterns of cognitive decline and accompanying neural deterioration.

  18. The Influence of Work-Related Chronic Stress on the Regulation of Emotion and on Functional Connectivity in the Brain

    PubMed Central

    Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka

    2014-01-01

    Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294

  19. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  20. Anterior Cingulate Cortex in Schema Assimilation and Expression

    ERIC Educational Resources Information Center

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  1. Interaction among subsystems within default mode network diminished in schizophrenia patients: a dynamic connectivity approach

    PubMed Central

    Du, Yuhui; Pearlson, Godfrey D; Yu, Qingbao; He, Hao; Lin, Dongdong; Sui, Jing; Wu, Lei; Calhoun, Vince D.

    2015-01-01

    Default mode network (DMN) has been reported altered in schizophrenia (SZ) using static connectivity analysis. However, the studies on dynamic characteristics of DMN in SZ are still limited. In this work, we compare dynamic connectivity within DMN between 82 healthy controls (HC) and 82 SZ patients using resting-state fMRI. Firstly, dynamic DMN was computed using a sliding time window method for each subject. Then, the overall connectivity strengths were compared between two groups. Furthermore, we estimated functional connectivity states using K-means clustering, and then investigated group differences with respect to the connectivity strengths in states, the dwell time in each state, and the transition times between states. Finally, graph metrics of time-varying connectivity patterns and connectivity states were assessed. Results suggest that measured by the overall connectivity, HC showed stronger inter-subsystem interaction than patients. Compared to HC, patients spent less time in the states with nodes tightly connected. For each state, SZ patients presented relatively weaker connectivity strengths mainly in inter-subsystem. Patients also exhibited lower values in averaged node strength, clustering coefficient, global efficiency, and local efficiency than HC. In summary, our findings indicate that SZ showed impaired interaction among DMN subsystems, with a reduced central role for posterior cingulate cortex (PCC) and anterior medial prefrontal cortex (aMPFC) hubs as well as weaker interaction between dorsal medial prefrontal cortex (dMPFC) subsystem and medial temporal lobe (MTL) subsystem. For SZ, decreased integration of DMN may be associated with impaired ability in making self-other distinctions and coordinating present mental states with episodic decisions about future. PMID:26654933

  2. Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys

    PubMed Central

    Borra, Elena; Visco-Comandini, Federica; Averbeck, Bruno B.

    2017-01-01

    The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands. PMID:28275714

  3. Reduced functional connectivity to the frontal cortex during processing of social cues in autism spectrum disorder.

    PubMed

    Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk

    2016-08-01

    People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD.

  4. Two different mirror neuron networks: The sensorimotor (hand) and limbic (face) pathways.

    PubMed

    Ferrari, P F; Gerbella, M; Coudé, G; Rozzi, S

    2017-09-01

    The vast majority of functional studies investigating mirror neurons (MNs) explored their properties in relation to hand actions, and very few investigated how MNs respond to mouth actions or communicative gestures. Since hand and mouth MNs were recorded in two partially overlapping sectors of the ventral precentral cortex of the macaque monkey, there is a general assumption that they share a same neuroanatomical network, with the parietal cortex as a main source of visual information. In the current review, we challenge this perspective and describe the connectivity pattern of mouth MN sector. The mouth MNs F5/opercular region is connected with premotor, parietal areas mostly related to the somatosensory and motor representation of the face/mouth, and with area PrCO, involved in processing gustatory and somatosensory intraoral input. Unlike hand MNs, mouth MNs do not receive their visual input from parietal regions. Such information related to face/communicative behaviors could come from the ventrolateral prefrontal cortex. Further strong connections derive from limbic structures involved in encoding emotional facial expressions and motivational/reward processing. These brain structures include the anterior cingulate cortex, the anterior and mid-dorsal insula, orbitofrontal cortex and the basolateral amygdala. The mirror mechanism is therefore composed and supported by at least two different anatomical pathways: one is concerned with sensorimotor transformation in relation to reaching and hand grasping within the traditional parietal-premotor circuits; the second one is linked to the mouth/face motor control and is connected with limbic structures, involved in communication/emotions and reward processing. Copyright © 2017. Published by Elsevier Ltd.

  5. Association of Hippocampal Substructure Resting-State Functional Connectivity with Memory Performance in Older Adults.

    PubMed

    Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J

    2018-06-01

    Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Functional connectivity increase in the default-mode network of patients with Alzheimer's disease after long-term treatment with Galantamine.

    PubMed

    Blautzik, Janusch; Keeser, Daniel; Paolini, Marco; Kirsch, Valerie; Berman, Albert; Coates, Ute; Reiser, Maximilian; Teipel, Stefan J; Meindl, Thomas

    2016-03-01

    Acetylcholinesterase inhibitors (AChEIs) are efficacious for the treatment of mild to moderate forms of Alzheimer's dementia (AD). Default-mode network (DMN) connectivity is considered to be early impaired in AD. Long-term effects of AChEIs on the DMN in AD have not yet been investigated. Twenty-eight AD patients and 11 age-matched healthy volunteers (HC) participated in the prospective study. AD patients were randomly assigned to either a pharmacotherapy arm (Galantamine, AD G) or to a placebo arm (AD P+G) for the period of 6 months followed by open-label Galantamine therapy from month 7-12. All subjects underwent neuropsychological testing, resting-state functional and structural MRI at baseline and after 12 months, AD patients additionally in between after 6 months. Thirteen AD patients completed the treatment trial and underwent all functional MRI follow-up sequences of good quality. Functional connectivity significantly increased within the AD G group in the posterior cingulate cortex and in the Precuneus between baseline and 12 months follow-up (pcorr<0.05). Between-group analyses demonstrated that functional connectivity in the AD G group significantly increased in the posterior cingulate cortex as well as in the Precuneus compared to the HC group and in the anteromedial aspect of the temporal lobes compared to the AD P+G group, respectively, at 12 months follow-up (pcorr<0.05). Cognitive performance remained stable within groups over time indicating that resting-state fMRI may be sensitive for the detection of pharmacologically induced effects on brain function of AD patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  7. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity

    PubMed Central

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang

    2016-01-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. PMID:26400859

  8. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    PubMed

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  9. Network Disruption and Cerebrospinal Fluid Amyloid-Beta and Phospho-Tau Levels in Mild Cognitive Impairment.

    PubMed

    Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando

    2015-07-15

    Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities on neural function in mild cognitive impairment. Disruption in functional connectivity between several pairs of cortical regions associated with abnormal levels of biomarkers, cognitive deficits, or with impaired axonal integrity of hippocampal tracts. Amyloid deposition and tau protein-related neuronal injury in early Alzheimer's disease are associated with synaptic dysfunction and a dual pattern of cortical network disorganization (i.e., desynchronization and hypersynchronization) that affects key regions of the default mode network and temporal areas. Copyright © 2015 the authors 0270-6474/15/3510326-06$15.00/0.

  10. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing

    PubMed Central

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2018-01-01

    Abstract Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared with healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex. Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the dorsolateral prefrontal cortex as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. PMID:29069508

  11. Attention to Automatic Movements in Parkinson's Disease: Modified Automatic Mode in the Striatum

    PubMed Central

    Wu, Tao; Liu, Jun; Zhang, Hejia; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2015-01-01

    We investigated neural correlates when attending to a movement that could be made automatically in healthy subjects and Parkinson's disease (PD) patients. Subjects practiced a visuomotor association task until they could perform it automatically, and then directed their attention back to the automated task. Functional MRI was obtained during the early-learning, automatic stage, and when re-attending. In controls, attention to automatic movement induced more activation in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex, and rostral supplementary motor area. The motor cortex received more influence from the cortical motor association regions. In contrast, the pattern of the activity and connectivity of the striatum remained at the level of the automatic stage. In PD patients, attention enhanced activity in the DLPFC, premotor cortex, and cerebellum, but the connectivity from the putamen to the motor cortex decreased. Our findings demonstrate that, in controls, when a movement achieves the automatic stage, attention can influence the attentional networks and cortical motor association areas, but has no apparent effect on the striatum. In PD patients, attention induces a shift from the automatic mode back to the controlled pattern within the striatum. The shifting between controlled and automatic behaviors relies in part on striatal function. PMID:24925772

  12. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder.

    PubMed

    Tripp, Adam; Oh, Hyunjung; Guilloux, Jean-Philippe; Martinowich, Keri; Lewis, David A; Sibille, Etienne

    2012-11-01

    The subgenual anterior cingulate cortex is implicated in the pathology and treatment response of major depressive disorder. Low levels of brain-derived neurotrophic factor (BDNF) and reduced markers for GABA function, including in the amygdala, are reported in major depression, but their contribution to subgenual anterior cingulate cortex dysfunction is not known. Using polymerase chain reaction, we first assessed the degree to which BDNF controls mRNA expression (defined as BDNF dependency) of 15 genes relating to GABA and neuropeptide functions in the cingulate cortex of mice with reduced BDNF function (BDNF-heterozygous [Bdnf(+/-)] mice and BDNF exon-IV knockout [Bdnf(KIV)] mice). Gene expression was then quantified in the subgenual anterior cingulate cortex of 51 postmortem subjects with major depressive disorder and comparison subjects (total subjects, N=102; 49% were women) and compared with previous amygdala results. Based on the results in Bdnf(+/-) and Bdnf(KIV) mice, genes were sorted into high, intermediate, and no BDNF dependency sets. In postmortem human subjects with major depression, BDNF receptor (TRKB) expression, but not BDNF, was reduced. Postmortem depressed subjects exhibited down-regulation in genes with high and intermediate BDNF dependency, including markers of dendritic targeting interneurons (SST, NPY, and CORT) and a GABA synthesizing enzyme (GAD2). Changes extended to BDNF-independent genes (PVALB and GAD1). Changes were greater in men (potentially because of low baseline expression in women), displayed notable differences from prior amygdala results, and were not explained by demographic or clinical factors other than sex. These parallel human/mouse analyses provide direct (low TRKB) and indirect (low expression of BDNF-dependent genes) evidence in support of decreased BDNF signaling in the subgenual anterior cingulate cortex in individuals with major depressive disorder, implicate dendritic targeting GABA neurons and GABA synthesis, and, together, suggest a common BDNF-/GABA-related pathology in major depression with sex- and brain region-specific features.

  13. Pivotal response treatment prompts a functional rewiring of the brain among individuals with autism spectrum disorder.

    PubMed

    Venkataraman, Archana; Yang, Daniel Y-J; Dvornek, Nicha; Staib, Lawrence H; Duncan, James S; Pelphrey, Kevin A; Ventola, Pamela

    2016-09-28

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week pivotal response treatment (PRT) regimen. Our results suggest that the functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital-temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas.

  14. Pivotal Response Treatment Prompts a Functional Rewiring of the Brain amongst Individuals with Autism Spectrum Disorder

    PubMed Central

    Venkataraman, Archana; Yang, Daniel Y.-J.; Dvornek, Nicha; Staib, Lawrence H.; Duncan, James S.; Pelphrey, Kevin A.; Ventola, Pamela

    2016-01-01

    Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week Pivotal Response Treatment (PRT) regimen. Our results suggest that functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas. PMID:27532879

  15. Altered Resting State Effective Connectivity of Anterior Insula in Depression.

    PubMed

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas-anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls ( N  = 20) and medicated depressed patients ( N  = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions.

  16. Altered Resting State Effective Connectivity of Anterior Insula in Depression

    PubMed Central

    Kandilarova, Sevdalina; Stoyanov, Drozdstoy; Kostianev, Stefan; Specht, Karsten

    2018-01-01

    Depression has been associated with changes in both functional and effective connectivity of large scale brain networks, including the default mode network, executive network, and salience network. However, studies of effective connectivity by means of spectral dynamic causal modeling (spDCM) are still rare and the interaction between the different resting state networks has not been investigated in detail. Thus, we aimed at exploring differences in effective connectivity among eight right hemisphere brain areas—anterior insula, inferior frontal gyrus, middle frontal gyrus (MFG), frontal eye field, anterior cingulate cortex, superior parietal lobe, amygdala, and hippocampus, between a group of healthy controls (N = 20) and medicated depressed patients (N = 20). We found that patients not only had significantly reduced strength of the connection from the anterior insula to the MFG (i.e., dorsolateral prefrontal cortex) but also a significant connection between the amygdala and the anterior insula. Moreover, depression severity correlated with connectivity of the hippocampal node. In conclusion, the results from this resting state spDCM study support and enrich previous data on the role of the right anterior insula in the pathophysiology of depression. Furthermore, our findings add to the growing evidence of an association between depression severity and disturbances of the hippocampal function in terms of impaired connectivity with other brain regions. PMID:29599728

  17. A General Role for Medial Prefrontal Cortex in Event Prediction

    DTIC Science & Technology

    2014-07-11

    anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn . Neurosci . 18, 766–780. doi: 10.1162/jocn.2006.18.5.766...losses in the anterior cingulate cortex. Cogn . Affect. Behav. Neurosci . 7, 327–336. doi: 10.3758/cabn.7.4.327 Shima, K., and Tanji, J. (1998). Role of...COMPUTATIONAL NEUROSCIENCE ORIGINAL RESEARCH ARTICLE published: 11 July 2014 doi: 10.3389/fncom.2014.00069 A general role for medial prefrontal

  18. Age differences in the intrinsic functional connectivity of default network subsystems

    PubMed Central

    Campbell, Karen L.; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L.

    2013-01-01

    Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults. PMID:24294203

  19. Age differences in the intrinsic functional connectivity of default network subsystems.

    PubMed

    Campbell, Karen L; Grigg, Omer; Saverino, Cristina; Churchill, Nathan; Grady, Cheryl L

    2013-01-01

    Recent work suggests that the default mode network (DMN) includes two core regions, the ventromedial prefrontal cortex and posterior cingulate cortex (PCC), and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL) subsystem, active during remembering and future projection, and a dorsomedial prefrontal cortex (dmPFC) subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC) and dorsal (dPCC) regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  20. Novelty seeking and reward dependence-related large-scale brain networks functional connectivity variation during salience expectancy.

    PubMed

    Li, Shijia; Demenescu, Liliana Ramona; Sweeney-Reed, Catherine M; Krause, Anna Linda; Metzger, Coraline D; Walter, Martin

    2017-08-01

    A salience network (SN) anchored in the anterior insula (AI) and dorsal anterior cingulate cortex (dACC) plays a key role in switching between brain networks during salience detection and attention regulation. Previous fMRI studies have associated expectancy behaviors and SN activation with novelty seeking (NS) and reward dependence (RD) personality traits. To address the question of how functional connectivity (FC) in the SN is modulated by internal (expectancy-related) salience assignment and different personality traits, 68 healthy participants performed a salience expectancy task using functional magnetic resonance imaging, and psychophysiological interaction analysis (PPI) was conducted to determine salience-related connectivity changes during these anticipation periods. Correlation was then evaluated between PPI and personality traits, assessed using the temperament and character inventory of 32 male participants. During high salience expectancy, SN-seed regions showed reduced FC to visual areas and parts of the default mode network, but increased FC to the central executive network. With increasing NS, participants showed significantly increasing disconnection between right AI and middle cingulate cortex when expecting high-salience pictures as compared to low-salience pictures, while increased RD also predicted decreased right dACC and caudate FC for high salience expectancy. Our findings suggest a direct link between personality traits and internal salience processing mediated by differential network integration of the SN. SN activity and coordination may therefore be moderated by novelty seeking and reward dependency personality traits, which are associated with risk of addiction. Hum Brain Mapp 38:4064-4077, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Testing Proposed Neuronal Models of Effective Connectivity Within the Cortico-basal Ganglia-thalamo-cortical Loop During Loss of Consciousness.

    PubMed

    Crone, Julia Sophia; Lutkenhoff, Evan Scott; Bio, Branden Joseph; Laureys, Steven; Monti, Martin Max

    2017-04-01

    In recent years, a number of brain regions and connectivity patterns have been proposed to be crucial for loss and recovery of consciousness but have not been compared in detail. In a 3 T resting-state functional magnetic resonance imaging paradigm, we test the plausibility of these different neuronal models derived from theoretical and empirical knowledge. Specifically, we assess the fit of each model to the dynamic change in effective connectivity between specific cortical and subcortical regions at different consecutive levels of propofol-induced sedation by employing spectral dynamic causal modeling. Surprisingly, our findings indicate that proposed models of impaired consciousness do not fit the observed patterns of effective connectivity. Rather, the data show that loss of consciousness, at least in the context of propofol-induced sedation, is marked by a breakdown of corticopetal projections from the globus pallidus. Effective connectivity between the globus pallidus and the ventral posterior cingulate cortex, present during wakefulness, fades in the transition from lightly sedated to full loss of consciousness and returns gradually as consciousness recovers, thereby, demonstrating the dynamic shift in brain architecture of the posterior cingulate "hub" during changing states of consciousness. These findings highlight the functional role of a previously underappreciated direct pallido-cortical connectivity in supporting consciousness. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling

    PubMed Central

    Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard

    2011-01-01

    Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148

  3. Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters.

    PubMed

    Chen, Shuaiyu; Dong, Debo; Jackson, Todd; Su, Yanhua; Chen, Hong

    2016-01-29

    Theory and research have indicated that restrained eating (RE) increases risk for binge-eating and eating disorder symptoms. According to the goal conflict model, such risk may result from disrupted hedonic-feeding control and its interaction with reward-driven eating. However, RE-related alterations in functional interactions among associated underlying brain regions, especially between the cerebral hemispheres, have rarely been examined directly. Therefore, we investigated inter-hemispheric resting-state functional connectivity (RSFC) among female restrained eaters (REs) (n=23) and unrestrained eaters (UREs) (n=24) following food deprivation as well as its relation to overall bulimia nervosa (BN) symptoms using voxel-mirrored homotopic connectivity (VMHC). Seed-based RSFC associated with areas exhibiting significant VMHC differences was also assessed. Compared to UREs, REs showed reduced VMHC in the dorsal-lateral prefrontal cortex (DLPFC), an area involved in inhibiting hedonic overeating. REs also displayed decreased RSFC between the right DLPFC and regions associated with reward estimation--the ventromedial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC). Finally, bulimic tendencies had a negative correlation with VMHC in the DLPFC and a positive correlation with functional connectivity (DLPFC and VMPFC) among REs but not UREs. Findings suggested that reduced inter-hemispheric functional connectivity in appetite inhibition regions and altered functional connectivity in reward related regions may help to explain why some REs fail to control hedonically-motivated feeding and experience higher associated levels of BN symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Involvement of the Rat Anterior Cingulate Cortex in Control of Instrumental Responses Guided by Reward Expectancy

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2005-01-01

    The anterior cingulate cortex (ACC) plays a critical role in stimulus-reinforcement learning and reward-guided selection of actions. Here we conducted a series of experiments to further elucidate the role of the ACC in instrumental behavior involving effort-based decision-making and instrumental learning guided by reward-predictive stimuli. In…

  5. Errors without Conflict: Implications for Performance Monitoring Theories of Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    van Veen, V.; Holroyd, C.B.; Cohen, J.D.; Stenger, V.A.; Carter, C.S.

    2004-01-01

    Recent theories of the neural basis of performance monitoring have emphasized a central role for the anterior cingulate cortex (ACC). Replicating an earlier event-related potential (ERP) study, which showed an error feedback negativity that was modeled as having an ACC generator, we used event-related fMRI to investigate whether the ACC would…

  6. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  7. Increased Task Demand during Spatial Memory Testing Recruits the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Carr, Joshua K.; Fournier, Neil M.; Lehmann, Hugo

    2016-01-01

    We examined whether increasing retrieval difficulty in a spatial memory task would promote the recruitment of the anterior cingulate cortex (ACC) similar to what is typically observed during remote memory retrieval. Rats were trained on the hidden platform version of the Morris Water Task and tested three or 30 d later. Retrieval difficulty was…

  8. Role of the Anterior Cingulate Cortex in the Retrieval of Novel Object Recognition Memory after a Long Delay

    ERIC Educational Resources Information Center

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C. F.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and…

  9. The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

    PubMed Central

    Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J.

    2011-01-01

    Preface It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain. PMID:21331082

  10. Morphological and Glucose Metabolism Abnormalities in Alcoholic Korsakoff's Syndrome: Group Comparisons and Individual Analyses

    PubMed Central

    Pitel, Anne-Lise; Aupée, Anne-Marie; Chételat, Gaël; Mézenge, Florence; Beaunieux, Hélène; de la Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Desgranges, Béatrice

    2009-01-01

    Background Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS). Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. Methodology/Principal Findings Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. Conclusions/Significance These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker. PMID:19936229

  11. Abnormal Concentration of GABA and Glutamate in The Prefrontal Cortex in Schizophrenia.-An in Vivo 1H-MRS Study.

    PubMed

    Chen, Tianyi; Wang, Yingchan; Zhang, Jianye; Wang, Zuowei; Xu, Jiale; Li, Yao; Yang, Zhilei; Liu, Dengtang

    2017-10-25

    The etiology and pathomechanism of schizophrenia are unknown. The traditional dopamine (DA) hypothesis is unable to fully explain its pathology and therapeutics. The glutamate (Glu) and γ-aminobutyric acid (GABA) hypotheses suggest Glu or GABA concentrations are abnormal in the brains of patients with schizophrenia. Magnetic resonance spectroscopy (MRS) show glutamate level increases in the ventromedial prefrontal cortex (vmPFC) including the anterior cingulated cortex (ACC) in those with schizophrenia. To investigate the function of the glutamate system (glutamate and γ-aminobutyric acid) in the etiology and pathomechanism of schizophrenia. 24 drug naïve patients with schizophrenia and 24 healthy volunteers were matched by gender, age, and educational level. The Siemens 3T MRI system was used to collect the magnetic resonance spectroscopy (MRS) data of the subjects. The regions of interest included the left dorsolateral prefrontal cortex (IDLPFC), ventromedial prefrontal cortex (vmPFC), and anterior cingulate cortex (ACC). LCModel software was used to analyze the concentrations of γ-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln), N-acetylaspartate (NAA), and N-acetylaspartylglutamate (NAAG) in the region of interest. Meanwhile, the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression Scale (CGI) were used to assess the mental symptoms and severity of the disease. The median GABA concentrations in the anterior cingulate cortex of the schizophrenia group and the healthy control group were 1.90 (Q1=1.55, Q3=2.09) and 2.16 (Q1=1.87, Q3=2.59) respectively; the mean (sd) Glu concentrations were 6.07 (2.48) and 6.54 (1.99); the median Gln concentrations were 0.36 (Q1=0.00, Q3=0.74) and 0.29 (Q1=0.00, Q3=0.59); the between-group difference of the GABA concentrations was statistically significant ( Z =-2.95, p =0.003); the between-group difference of the GABA/(NAA+NAAG) was statistically significant ( Z =-2.72, p =0.012); the between-group difference of Glu and Gln was not statistically significant. The age of the schizophrenia group was negatively correlated with the GABA concentration in the anterior cingulate ( R =-0.494, p =0.014), and negatively correlated with GABA/ (NAA+NAAG) ( R =-0.473, p =0.020). Yet there was no such correlation in the control group. After calibration, no significant correlation was found between the clinical symptoms and the concentrations of the metabolites. The concentration of glutamate in the vemtromedial prefrontal cortex of patients with schizophrenia was abnormal, whereas the concentration of GABA in the anterior cingulate cortex decreased, supporting the hypothesis of abnormal glutamate -GABA in the brains of those individuals with schizophrenia. In patients with schizophrenia, the GABA in the anterior cingulate cortex had an accelerated decline with age. The clinical symptoms may be correlated to the metabolite concentration of the anterior cingulate cortex.

  12. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys

    PubMed Central

    Procyk, Emmanuel; Wilson, Charles R. E.; Stoll, Frederic M.; Faraut, Maïlys C. M.; Petrides, Michael; Amiez, Céline

    2016-01-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. PMID:25217467

  13. Financial literacy is associated with medial brain region functional connectivity in old age.

    PubMed

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Differences in resting corticolimbic functional connectivity in bipolar I euthymia

    PubMed Central

    Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L

    2012-01-01

    Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587

  15. Financial Literacy is Associated with Medial Brain Region Functional Connectivity in Old Age

    PubMed Central

    Han, S. Duke; Boyle, Patricia A.; Yu, Lei; Fleischman, Debra A.; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A.

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post-hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. PMID:24893911

  16. Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy.

    PubMed

    Zeng, Ling-Li; Long, Lili; Shen, Hui; Fang, Peng; Song, Yanmin; Zhang, Linlin; Xu, Lin; Gong, Jian; Zhang, Yunci; Zhang, Yong; Xiao, Bo; Hu, Dewen

    2015-10-01

    Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.

  17. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    PubMed

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. Copyright © 2015. Published by Elsevier Inc.

  18. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients

    PubMed Central

    Vanhaudenhuyse, Audrey; Noirhomme, Quentin; Tshibanda, Luaba J.-F.; Bruno, Marie-Aurelie; Boveroux, Pierre; Schnakers, Caroline; Soddu, Andrea; Perlbarg, Vincent; Ledoux, Didier; Brichant, Jean-François; Moonen, Gustave; Maquet, Pierre; Greicius, Michael D.

    2010-01-01

    The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology. PMID:20034928

  19. Functional connectivity patterns reflect individual differences in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao

    2015-04-01

    Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Association between heart rate variability and fluctuations in resting-state functional connectivity

    PubMed Central

    Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin

    2012-01-01

    Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859

  1. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity.

    PubMed

    Uddin, Lucina Q; Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A; Greicius, Michael D; Menon, Vinod

    2010-11-01

    The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus-regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition.

  2. Dissociable Connectivity within Human Angular Gyrus and Intraparietal Sulcus: Evidence from Functional and Structural Connectivity

    PubMed Central

    Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A.; Greicius, Michael D.; Menon, Vinod

    2010-01-01

    The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus—regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition. PMID:20154013

  3. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  4. Abnormalities in the Anterior Cingulate Cortex Associated with Attentional and Inhibitory Control Deficits: A Neurophysiological Study on Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chan, Agnes S.; Han, Yvonne M. Y.; Leung, Winnie Wing-man; Leung, Connie; Wong, Virginia C. N.; Cheung, Mei-chun

    2011-01-01

    Previous studies showed that the anterior cingulate cortex (ACC) is activated when individuals engage in attention and inhibitory control tasks. The present study examined whether ACC activity is associated with behavioral performance of the two tasks. Twenty normal and 20 children with autism spectrum disorders (ASDs) were subjected to…

  5. Inactivation of the Anterior Cingulate Cortex Impairs Extinction of Rabbit Jaw Movement Conditioning and Prevents Extinction-Related Inhibition of Hippocampal Activity

    ERIC Educational Resources Information Center

    Griffin, Amy L.; Berry, Stephen D.

    2004-01-01

    Although past research has highlighted the involvement of limbic structures such as the anterior cingulate cortex (ACC) and hippocampus in learning, few have addressed the nature of their interaction. The current study of rabbit jaw movement conditioning used a combination of reversible lesions and electrophysiology to examine the involvement of…

  6. Involvement of the Anterior Cingulate Cortex in Formation, Consolidation, and Reconsolidation of Recent and Remote Contextual Fear Memory

    ERIC Educational Resources Information Center

    Einarsson, Einar O.; Nader, Karim

    2012-01-01

    It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…

  7. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    PubMed

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  8. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations. Copyright 2002 IBRO

  9. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    PubMed

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder.

    PubMed

    Fan, Jie; Zhong, Mingtian; Zhu, Xiongzhao; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Yi, Jinyao; Tan, Changlian

    2017-01-01

    Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD), though the salience network (SN) has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs) functional connectivity (FC) of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI) data from 21 OCD patients with good insight (OCD-GI), 19 OCD patients with poor insight (OCD-PI), and 24 healthy controls (HCs). Seed-based whole-brain FC and ROI (region of interest)-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI) and dorsal anterior cingulate cortex (dACC). The right AI-right medial orbital frontal cortex (mOFC) connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC). Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  11. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. Copyright © 2017 the authors 0270-6474/17/374103-14$15.00/0.

  12. Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression

    PubMed Central

    Liston, Conor; Chen, Ashley C.; Zebley, Benjamin D.; Drysdale, Andrew T.; Gordon, Rebecca; Leuchter, Bruce; Voss, Henning U.; Casey, B.J.; Etkin, Amit; Dubin, Marc J.

    2014-01-01

    Background Repetitive transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) is an established treatment for depression, but its underlying mechanism of action remains unknown. Abnormalities in two large-scale neuronal networks—the frontoparietal central executive network (CEN) and the medial prefrontal-medial parietal default mode network (DMN)—are consistent findings in depression and potential therapeutic targets for TMS. Here, we assessed the impact of TMS on activity in these networks and their relation to treatment response. Methods We used resting state functional magnetic resonance imaging (rs-fMRI) to measure functional connectivity within and between the DMN and CEN in 17 depressed patients, before and after a five-week course of TMS. Motivated by prior reports, we focused on connectivity seeded from the DLPFC and the subgenual cingulate, a key region closely aligned with the DMN in depression. Connectivity was also compared to a cohort of 35 healthy controls. Results Prior to treatment, functional connectivity in depressed patients was abnormally elevated within the DMN and diminished within the CEN, and connectivity between these two networks was altered. TMS normalized depression-related subgenual hyperconnectivity in the DMN but did not alter connectivity in the CEN. TMS also induced anticorrelated connectivity between the DLPFC and medial prefrontal DMN nodes. Baseline subgenual connectivity predicted subsequent clinical improvement. Conclusions TMS selectively modulates functional connectivity both within and between the CEN and DMN, and modulation of subgenual cingulate connectivity may play an important mechanistic role in alleviating depression. The results also highlight potential neuroimaging biomarkers for predicting treatment response. PMID:24629537

  13. Altered Functional Connectivity of Fronto-Cingulo-Striatal Circuits during Error Monitoring in Adolescents with a History of Childhood Abuse

    PubMed Central

    Hart, Heledd; Lim, Lena; Mehta, Mitul A.; Curtis, Charles; Xu, Xiaohui; Breen, Gerome; Simmons, Andrew; Mirza, Kah; Rubia, Katya

    2018-01-01

    Childhood maltreatment is associated with error hypersensitivity. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA) interaction on functional brain connectivity during error processing in medication/drug-free adolescents. Functional connectivity was compared, using generalized psychophysiological interaction (gPPI) analysis of functional magnetic resonance imaging (fMRI) data, between 22 age- and gender-matched medication-naïve and substance abuse-free adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed an individually adjusted tracking stop-signal task, designed to elicit 50% inhibition failures. During inhibition failures, abused participants relative to healthy controls exhibited reduced connectivity between right and left putamen, bilateral caudate and anterior cingulate cortex (ACC), and between right supplementary motor area (SMA) and right inferior and dorsolateral prefrontal cortex. Abuse-related connectivity abnormalities were associated with longer abuse duration. No group differences in connectivity were observed for successful inhibition. The findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-cingulo-striatal networks during error processing. Furthermore that the severity of connectivity abnormalities increases with abuse duration. Reduced connectivity of error detection networks in maltreated individuals may be linked to constant monitoring of errors in order to avoid mistakes which, in abusive contexts, are often associated with harsh punishment. PMID:29434543

  14. Altered thalamo-cortical resting state functional connectivity in smokers.

    PubMed

    Wang, Chaoyan; Bai, Jie; Wang, Caihong; von Deneen, Karen M; Yuan, Kai; Cheng, Jingliang

    2017-07-13

    The thalamus has widespread connections with the prefrontal cortex (PFC) and modulates communication between the striatum and PFC, which is crucial to the neural mechanisms of smoking. However, relatively few studies focused on the thalamic resting state functional connectivity (RSFC) patterns and their association with smoking behaviors in smokers. 24 young male smokers and 24 non-smokers were enrolled in our study. Fagerström Test for Nicotine Dependence (FTND) was used to assess the nicotine dependence level. The bilateral thalamic RSFC patterns were compared between smokers and non-smokers. The relationship between neuroimaging findings and smoking behaviors (FTND and pack-years) were also investigated in smokers. Relative to nonsmokers, smokers showed reduced RSFC strength between the left thalamus and several brain regions, i.e. the right dorsolateral prefrontal cortex (dlPFC), the anterior cingulate cortex (ACC) and the bilateral caudate. In addition, the right thalamus showed reduced RSFC with the right dlPFC as well as the bilateral insula in smokers. Therefore, the findings in the current study revealed the reduced RSFC of the thalamus with the dlPFC, the ACC, the insula and the caudate in smokers, which provided new insights into the roles of the thalamus in nicotine addiction from a function integration perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity.

    PubMed

    Hauck, Michael; Schröder, Sven; Meyer-Hamme, Gesa; Lorenz, Jürgen; Friedrichs, Sunja; Nolte, Guido; Gerloff, Christian; Engel, Andreas K

    2017-11-24

    Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.

  16. The neural correlates of risk propensity in males and females using resting-state fMRI

    PubMed Central

    Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi

    2014-01-01

    Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649

  17. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  18. The Impact of Mirth-Inducing Ventral Striatal Deep Brain Stimulation on Functional and Effective Connectivity

    PubMed Central

    Gibson, William S; Cho, Shinho; Abulseoud, Osama A; Gorny, Krzysztof R; Felmlee, Joel P; Welker, Kirk M; Klassen, Bryan T; Min, Hoon-Ki; Lee, Kendall H

    2017-01-01

    Abstract Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect. PMID:27001680

  19. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder

    PubMed Central

    Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel

    2012-01-01

    Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617

  20. Income change alters default mode network connectivity for adolescents in poverty.

    PubMed

    Weissman, David G; Conger, Rand D; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E

    2018-04-01

    Experiencing poverty during childhood and adolescence may affect brain function. However, income is dynamic, and studies have not addressed whether income change relates to brain function. In the present study, we investigated whether intrinsic functional connectivity of default mode network (DMN) regions was influenced by mean family income and family income change. Parents of 68 Mexican-origin adolescents (35 females) reported family income annually when adolescents were 10-16 years old. Intercept and slope of income at each of these ages were calculated for each participant. At age 16 years, adolescents completed a resting state functional neuroimaging scan. Adolescents from high and low income families did not differ in their functional connectivity, but for adolescents in families with lower incomes, their connectivity patterns depended on their income slope. Low-income adolescents whose income increased demonstrated greater connectivity between the posterior cingulate cortex (PCC) and the medial prefrontal cortex (mPFC), both DMN regions, and between the PCC and the right inferior frontal gyrus. Increases in income were associated with greater connectivity of the mPFC with the right inferior frontal gyrus and the left superior parietal lobule regardless of mean income. Increases in income, especially among adolescents in poverty, may alleviate stressors, influencing the development of brain networks. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. [Pain information pathways from the periphery to the cerebral cortex].

    PubMed

    Kuroda, Ryotaro; Kawabata, Atsufumi

    2003-07-01

    A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

  2. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    PubMed

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Effects of subconcussive head trauma on the default mode network of the brain.

    PubMed

    Johnson, Brian; Neuberger, Thomas; Gay, Michael; Hallett, Mark; Slobounov, Semyon

    2014-12-01

    Although they are less severe than a full blown concussive episodes, subconcussive impacts happen much more frequently and current research has suggested this form of head trauma may have an accumulative effect and lead to neurological impairment later in life. To investigate the acute effects that subconcussive head trauma may have on the default mode network of the brain resting-state, functional magnetic resonance was performed. Twenty-four current collegiate rugby players were recruited and all subjects underwent initial scanning 24 h prior to a scheduled full contact game to provide a baseline. Follow-up scanning of the rugby players occurred within 24 h following that game to assess acute effects from subconcussive head trauma. Differences between pre-game and post-game scans showed both increased connectivity from the left supramarginal gyrus to bilateral orbitofrontal cortex and decreased connectivity from the retrosplenial cortex and dorsal posterior cingulate cortex. To assess whether or not a history of previous concussion may lead to a differential response following subconcussive impacts, subjects were further divided into two subgroups based upon history of previous concussion. Individuals with a prior history of concussion exhibited only decreased functional connectivity following exposure to subconcussive head trauma, while those with no history showed increased connectivity. Even acute exposure to subconcussive head trauma demonstrates the ability to alter functional connectivity and there is possible evidence of a differential response in the brain for those with and without a history of concussion.

  4. Neural activation and memory for natural scenes: Explicit and spontaneous retrieval.

    PubMed

    Weymar, Mathias; Bradley, Margaret M; Sege, Christopher T; Lang, Peter J

    2018-05-06

    Stimulus repetition elicits either enhancement or suppression in neural activity, and a recent fMRI meta-analysis of repetition effects for visual stimuli (Kim, 2017) reported cross-stimulus repetition enhancement in medial and lateral parietal cortex, as well as regions of prefrontal, temporal, and posterior cingulate cortex. Repetition enhancement was assessed here for repeated and novel scenes presented in the context of either an explicit episodic recognition task or an implicit judgment task, in order to study the role of spontaneous retrieval of episodic memories. Regardless of whether episodic memory was explicitly probed or not, repetition enhancement was found in medial posterior parietal (precuneus/cuneus), lateral parietal cortex (angular gyrus), as well as in medial prefrontal cortex (frontopolar), which did not differ by task. Enhancement effects in the posterior cingulate cortex were significantly larger during explicit compared to implicit task, primarily due to a lack of functional activity for new scenes. Taken together, the data are consistent with an interpretation that medial and (ventral) lateral parietal cortex are associated with spontaneous episodic retrieval, whereas posterior cingulate cortical regions may reflect task or decision processes. © 2018 Society for Psychophysiological Research.

  5. [The neurobiology of antisocial behaviour].

    PubMed

    Loomans, M M; Tulen, J H M; van Marle, H J C

    2010-01-01

    Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.

  6. The Development of the Neural Substrates of Cognitive Control in Adolescents with Autism Spectrum Disorders

    PubMed Central

    Solomon, Marjorie; Yoon, Jong; Ragland, J. Daniel; Niendam, Tara; Lesh, Tyler A.; Fairbrother, Wonja; Carter, Cameron S.

    2013-01-01

    Background Autism spectrum disorders (ASD) involve impairments in cognitive control. In typical development (TYP), neural systems underlying cognitive control undergo substantial maturation during adolescence. Development is delayed in adolescents with ASD. Little is known about the neural substrates of this delay. Method We used event-related functional magnetic resonance imaging (fMRI) and a cognitive control task involving overcoming a prepotent response tendency to examine the development of cognitive control in young (ages 12–15; n = 13 with ASD and n = 13 with TYP) and older (ages 16–18; n= 14 with ASD and n = 14 with TYP) adolescents with whole-brain voxel-wise univariate and task-related functional connectivity analyses. Results Older ASD and TYP showed reduced activation in sensory and premotor areas relative to younger ones. The older ASD group showed reduced left parietal activation relative to TYP. Functional connectivity analyses showed a significant age by group interaction with the older ASD group exhibiting increased functional connectivity strength between the ventrolateral prefrontal cortex (VLPFC) and the anterior cingulate cortex (ACC), bilaterally. This functional connectivity strength was related to task performance in ASD, whereas that between DLPFC and parietal cortex (BA 9 and BA 40) was related to task performance in TYP. Conclusions Adolescents with ASD rely more on “reactive” cognitive control, involving last minute conflict detection and control implementation by the ACC and VLPFC, versus “proactive” cognitive control requiring processing by DLPFC and parietal cortex. Findings await replication in larger longitudinal studies that examine their functional consequences and amenability to intervention. PMID:24209777

  7. Dopamine D1 Receptors in the Anterior Cingulate Cortex Regulate Effort-Based Decision Making

    ERIC Educational Resources Information Center

    Schweimer, Judith; Hauber, Wolfgang

    2006-01-01

    The anterior cingulate cortex (ACC) has been implicated in encoding whether or not an action is worth performing in view of the expected benefit and the cost of performing the action. Dopamine input to the ACC may be critical for this form of effort-based decision making; however, the role of distinct ACC dopamine receptors is yet unknown.…

  8. Post-Learning Infusion of Anisomycin into the Anterior Cingulate Cortex Impairs Instrumental Acquisition through an Effect on Reinforcer Valuation

    ERIC Educational Resources Information Center

    Jonkman, Sietse; Everitt, Barry J.

    2009-01-01

    The integrity of the rodent anterior cingulate cortex (ACC) is essential for various aspects of instrumental behavior, but it is not clear if the ACC is important for the acquisition of a simple instrumental response. Here, it was demonstrated that post-session infusions of anisomycin into the rat ACC completely prevented the acquisition of…

  9. Altered structure and function in the hippocampus and medial prefrontal cortex in patients with burning mouth syndrome.

    PubMed

    Khan, Shariq A; Keaser, Michael L; Meiller, Timothy F; Seminowicz, David A

    2014-08-01

    Burning mouth syndrome (BMS) is a debilitating, idiopathic chronic pain condition. For many BMS patients, burning oral pain begins in late morning and becomes more intense throughout the day, peaking by late afternoon or evening. We investigated brain gray matter volume (GMV) with voxel-based morphometry (VBM), white matter fractional anisotropy (FA) with diffusion tensor imaging (DTI), and functional connectivity in resting state functional MRI (rsfMRI) in a tightly screened, homogeneous sample of 9 female, postmenopausal/perimenopausal BMS patients and 9 matched healthy control subjects. Patients underwent 2 scanning sessions in the same day: in the morning, when ongoing pain/burning was low, and in the afternoon, when pain/burning was significantly higher. Patients had increased GMV and lower FA in the hippocampus (Hc), and decreased GMV in the medial prefrontal cortex (mPFC). rsfMRI revealed altered connectivity patterns in different states of pain/burning, with increased connectivity between mPFC (a node in the default mode network) and anterior cingulate cortex, occipital cortex, ventromedial PFC, and bilateral Hc/amygdala in the afternoon compared with the morning session. Furthermore, mPFC-Hc connectivity was higher in BMS patients than control subjects for the afternoon but not the morning session. mPFC-Hc connectivity was related to Beck depression inventory scores both between groups and between burning states within patients, suggesting that depression and anxiety partially explain pain-related brain dysfunction in BMS. Overall, we provide multiple lines of evidence supporting aberrant structure and function in the mPFC and Hc, and implicate a circuit involving the mPFC and Hc in regulating mood and depressive symptoms in BMS. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. HIV, Vascular and Aging Injuries in the Brain of Clinically Stable HIV-Infected Adults: A 1H MRS Study

    PubMed Central

    Cysique, Lucette A.; Moffat, Kirsten; Moore, Danielle M.; Lane, Tammy A.; Davies, Nicholas W. S.; Carr, Andrew; Brew, Bruce J.; Rae, Caroline

    2013-01-01

    Background Cardiovascular disease (CVD) and premature aging have been hypothesized as new risk factors for HIV associated neurocognitive disorders (HAND) in adults with virally-suppressed HIV infection. Moreover, their significance and relation to more classical HAND biomarkers remain unclear. Methods 92 HIV− infected (HIV+) adults stable on combined antiretroviral therapy (cART) and 30 age-comparable HIV-negative (HIV−) subjects underwent 1H Magnetic Resonance Spectroscopy (MRS) of the frontal white matter (targeting HIV, normal aging or CVD-related neurochemical injury), caudate nucleus (targeting HIV neurochemical injury), and posterior cingulate cortex (targeting normal/pathological aging, CVD-related neurochemical changes). All also underwent standard neuropsychological (NP) testing. CVD risk scores were calculated. HIV disease biomarkers were collected and cerebrospinal fluid (CSF) neuroinflammation biomarkers were obtained in 38 HIV+ individuals. Results Relative to HIV− individuals, HIV+ individuals presented mild MRS alterations: in the frontal white matter: lower N-Acetyl-Aspartate (NAA) (p<.04) and higher myo-inositol (mIo) (p<.04); in the caudate: lower NAA (p = .01); and in the posterior cingulate cortex: higher mIo (p<.008– also significant when Holm-Sidak corrected) and higher Choline/NAA (p<.04). Regression models showed that an HIV*age interaction was associated with lower frontal white matter NAA. CVD risk factors were associated with lower posterior cingulate cortex and caudate NAA in both groups. Past acute CVD events in the HIV+ group were associated with increased mIo in the posterior cingulate cortex. HIV duration was associated with lower caudate NAA; greater CNS cART penetration was associated with lower mIo in the posterior cingulate cortex and the degree of immune recovery on cART was associated with higher NAA in the frontal white matter. CSF neopterin was associated with higher mIo in the posterior cingulate cortex and frontal white matter. Conclusions In chronically HIV+ adults with long-term viral suppression, current CVD risk, past CVD and age are independent factors for neuronal injury and inflammation. This suggests a tripartite model of HIV, CVD and age likely driven by chronic inflammation. PMID:23620788

  11. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    PubMed

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder.

    PubMed

    Brinkmann, L; Buff, C; Feldker, K; Tupak, S V; Becker, M P I; Herrmann, M J; Straube, T

    2017-11-01

    Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.

  13. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  14. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  15. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    PubMed

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  16. Differences in functional connectivity between alcohol dependence and internet gaming disorder

    PubMed Central

    Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F.

    2017-01-01

    Introduction Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. Methods We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Results Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. Conclusions AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. PMID:25282597

  17. Differences in functional connectivity between alcohol dependence and internet gaming disorder.

    PubMed

    Han, Ji Won; Han, Doug Hyun; Bolo, Nicolas; Kim, BoAh; Kim, Boong Nyun; Renshaw, Perry F

    2015-02-01

    Internet gaming disorder (IGD) and alcohol dependence (AD) have been reported to share clinical characteristics including craving and over-engagement despite negative consequences. However, there are also clinical factors that differ between individuals with IGD and those with AD in terms of chemical intoxication, prevalence age, and visual and auditory stimulation. We assessed brain functional connectivity within the prefrontal, striatum, and temporal lobe in 15 patients with IGD and in 16 patients with AD. Symptoms of depression, anxiety, and the attention deficit hyperactivity disorder were assessed in patients with IGD and in patients with AD. Both AD and IGD subjects have positive functional connectivity between the dorsolateral prefrontal cortex (DLPFC), cingulate, and cerebellum. In addition, both groups have negative functional connectivity between the DLPFC and the orbitofrontal cortex. However, the AD subjects have positive functional connectivity between the DLPFC, temporal lobe and striatal areas while IGD subjects have negative functional connectivity between the DLPFC, temporal lobe and striatal areas. AD and IGD subjects may share deficits in executive function, including problems with self-control and adaptive responding. However, the negative connectivity between the DLPFC and the striatal areas in IGD subjects, different from the connectivity observed in AD subjects, may be due to the earlier prevalence age, different comorbid diseases as well as visual and auditory stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Midcingulate Motor Map and Feedback Detection: Converging Data from Humans and Monkeys.

    PubMed

    Procyk, Emmanuel; Wilson, Charles R E; Stoll, Frederic M; Faraut, Maïlys C M; Petrides, Michael; Amiez, Céline

    2016-02-01

    The functional and anatomical organization of the cingulate cortex across primate species is the subject of considerable and often confusing debate. The functions attributed to the midcingulate cortex (MCC) embrace, among others, feedback processing, pain, salience, action-reward association, premotor functions, and conflict monitoring. This multiplicity of functional concepts suggests either unresolved separation of functional contributions or integration and convergence. We here provide evidence from recent experiments in humans and from a meta-analysis of monkey data that MCC feedback-related activity is generated in the rostral cingulate premotor area by specific body maps directly related to the modality of feedback. As such, we argue for an embodied mechanism for adaptation and exploration in MCC. We propose arguments and precise tools to resolve the origins of performance monitoring signals in the medial frontal cortex, and to progress on issues regarding homology between human and nonhuman primate cingulate cortex. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Cortical midline involvement in autobiographical memory

    PubMed Central

    Summerfield, Jennifer J.; Hassabis, Demis; Maguire, Eleanor A.

    2009-01-01

    Recollecting autobiographical memories of personal past experiences is an integral part of our everyday lives and relies on a distributed set of brain regions. Their occurrence externally in the real world (‘realness’) and their self-relevance (‘selfness’) are two defining features of these autobiographical events. Distinguishing between personally experienced events and those that happened to other individuals, and between events that really occurred and those that were mere figments of the imagination, is clearly advantageous, yet the respective neural correlates remain unclear. Here we experimentally manipulated and dissociated realness and selfness during fMRI using a novel paradigm where participants recalled self (autobiographical) and non-self (from a movie or television news clips) events that were either real or previously imagined. Distinct sub-regions within dorsal and ventral medial prefrontal cortex, retrosplenial cortex and along the parieto-occipital sulcus preferentially coded for events (real or imagined) involving the self. By contrast, recollection of autobiographical events that really happened in the external world activated different areas within ventromedial prefrontal cortex and posterior cingulate cortex. In addition, recall of externally experienced real events (self or non-self) was associated with increased activity in areas of dorsomedial prefrontal cortex and posterior cingulate cortex. Taken together our results permitted a functional deconstruction of anterior (medial prefrontal) and posterior (retrosplenial cortex, posterior cingulate cortex, precuneus) cortical midline regions widely associated with autobiographical memory but whose roles have hitherto been poorly understood. PMID:18973817

  20. Transcranial magnetic stimulation potentiates glutamatergic neurotransmission in depressed adolescents.

    PubMed

    Croarkin, Paul E; Nakonezny, Paul A; Wall, Christopher A; Murphy, Lauren L; Sampson, Shirlene M; Frye, Mark A; Port, John D

    2016-01-30

    Abnormalities in glutamate neurotransmission may have a role in the pathophysiology of adolescent depression. The present pilot study examined changes in cortical glutamine/glutamate ratios in depressed adolescents receiving high-frequency repetitive transcranial magnetic stimulation. Ten adolescents with treatment-refractory major depressive disorder received up to 30 sessions of 10-Hz repetitive transcranial magnetic stimulation at 120% motor threshold with 3000 pulses per session applied to the left dorsolateral prefrontal cortex. Baseline, posttreatment, and 6-month follow-up proton magnetic resonance spectroscopy scans of the anterior cingulate cortex and left dorsolateral prefrontal cortex were collected at 3T with 8-cm(3) voxels. Glutamate metabolites were quantified with 2 distinct proton magnetic resonance spectroscopy sequences in each brain region. After repetitive transcranial magnetic stimulation and at 6 months of follow-up, glutamine/glutamate ratios increased in the anterior cingulate cortex and left dorsolateral prefrontal cortex with both measurements. The increase in the glutamine/glutamate ratio reached statistical significance with the TE-optimized PRESS sequence in the anterior cingulate cortex. Glutamine/glutamate ratios increased in conjunction with depressive symptom improvement. This reached statistical significance with the TE-optimized PRESS sequence in the left dorsolateral prefrontal cortex. High-frequency repetitive transcranial magnetic stimulation applied to the left dorsolateral prefrontal cortex may modulate glutamate neurochemistry in depressed adolescents. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    PubMed

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  2. Neural Correlates of Memories of Childhood Sexual Abuse in Women With and Without Posttraumatic Stress Disorder

    PubMed Central

    Bremner, J. Douglas; Narayan, Meena; Staib, Lawrence H.; Southwick, Steven M.; McGlashan, Thomas; Charney, Dennis S.

    2011-01-01

    Objective Childhood sexual abuse is very common in our society, but little is known about the long-term effects of abuse on brain function. The purpose of this study was to measure neural correlates of memories of childhood abuse in sexually abused women with and without the diagnosis of posttraumatic stress disorder (PTSD). Method Twenty-two women with a history of childhood sexual abuse underwent injection of [15O]H2O, followed by positron emission tomography imaging of the brain while they listened to neutral and traumatic (personalized childhood sexual abuse events) scripts. Brain blood flow during exposure to traumatic and neutral scripts was compared for sexually abused women with and without PTSD. Results Memories of childhood sexual abuse were associated with greater increases in blood flow in portions of anterior prefrontal cortex (superior and middle frontal gyri—areas 6 and 9), posterior cingulate (area 31), and motor cortex in sexually abused women with PTSD than in sexually abused women without PTSD. Abuse memories were associated with alterations in blood flow in medial prefrontal cortex, with decreased blood flow in subcallosal gyrus (area 25), and a failure of activation in anterior cingulate (area 32). There was also decreased blood flow in right hippocampus, fusiform/inferior temporal gyrus, supramarginal gyrus, and visual association cortex in women with PTSD relative to women without PTSD. Conclusions These findings implicate dysfunction of medial prefrontal cortex (subcallosal gyrus and anterior cingulate), hippocampus, and visual association cortex in pathological memories of childhood abuse in women with PTSD. Increased activation in posterior cingulate and motor cortex was seen in women with PTSD. Dysfunction in these brain areas may underlie PTSD symptoms provoked by traumatic reminders in subjects with PTSD. PMID:10553744

  3. Age-Related Changes in Amygdala-Frontal Connectivity during Emotional Face Processing from Childhood into Young Adulthood

    PubMed Central

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H.; Fitzgerald, Daniel A.; Klumpp, Heide; Fitzgerald, Kate D.; Monk, Christopher S.; Phan, K. Luan

    2016-01-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful and happy faces) in 61 healthy subjects aged 7–25 years. We found age-related decreases in ventral medial prefrontal cortex (vmPFC) activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. PMID:26931629

  4. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    PubMed Central

    Müller, Veronika I.; Cieslik, Edna C.; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2013-01-01

    The inferior parietal cortex (IPC) is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition) in schizophrenia. By using task-independent (resting state) and task-dependent meta-analytic connectivity modeling (MACM) analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC), medial orbitofrontal cortex (mOFC), left middle frontal (MFG) as well as inferior frontal (IFG) gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups. PMID:23781190

  5. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex

    PubMed Central

    O’Reilly, Jill X.; Schüffelgen, Urs; Cuell, Steven F.; Behrens, Timothy E. J.; Mars, Rogier B.; Rushworth, Matthew F. S.

    2013-01-01

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback–Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect. PMID:23986499

  6. Neural foundation of human moral reasoning: an ALE meta-analysis about the role of personal perspective.

    PubMed

    Boccia, M; Dacquino, C; Piccardi, L; Cordellieri, P; Guariglia, C; Ferlazzo, F; Ferracuti, S; Giannini, A M

    2017-02-01

    Moral sense is defined as a feeling of the rightness or wrongness of an action that knowingly causes harm to people other than the agent. The large amount of data collected over the past decade allows drawing some definite conclusions about the neurobiological foundations of moral reasoning as well as a systematic investigation of methodological variables during fMRI studies. Here, we verified the existence of converging and consistent evidence in the current literature by means of a meta-analysis of fMRI studies of moral reasoning, using activation likelihood estimation meta-analysis. We also tested for a possible neural segregation as function of the perspective used during moral reasoning i.e., first or third person perspectives. Results demonstrate the existence of a wide network of areas underpinning moral reasoning, including orbitofrontal cortex, insula, amygdala, anterior cingulate cortex as well as precuneus and posterior cingulate cortex. Within this network we found a neural segregation as a function of the personal perspective, with 1PP eliciting higher activation in the bilateral insula and superior temporal gyrus as well as in the anterior cingulate cortex, lingual and fusiform gyri, middle temporal gyrus and precentral gyrus in the left hemisphere, and 3PP eliciting higher activation in the bilateral amygdala, the posterior cingulate cortex, insula and supramarginal gyrus in the left hemisphere as well as the medial and ventromedial prefrontal cortex in the right hemisphere. These results shed some more light on the contribution of these areas to moral reasoning, strongly supporting a functional specialization as a function of the perspective used during moral reasoning.

  7. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms.

    PubMed

    Ferri, J; Ford, J M; Roach, B J; Turner, J A; van Erp, T G; Voyvodic, J; Preda, A; Belger, A; Bustillo, J; O'Leary, D; Mueller, B A; Lim, K O; McEwen, S C; Calhoun, V D; Diaz, M; Glover, G; Greve, D; Wible, C G; Vaidya, J G; Potkin, S G; Mathalon, D H

    2018-02-15

    Schizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities. Resting state seed-based functional connectivity was used to investigate thalamus to whole brain connectivity using multi-site data including 183 SZ patients and 178 matched HCs. Statistical significance was based on a voxel-level FWE-corrected height threshold of p < 0.001. The relationships between positive and negative symptoms of SZ and regions of the brain demonstrating group differences in thalamic connectivity were examined. HC and SZ participants both demonstrated widespread positive connectivity between the thalamus and cortical regions. Compared with HCs, SZ patients had reduced thalamic connectivity with bilateral cerebellum and anterior cingulate cortex. In contrast, SZ patients had greater thalamic connectivity with multiple sensory-motor regions, including bilateral pre- and post-central gyrus, middle/inferior occipital gyrus, and middle/superior temporal gyrus. Thalamus to middle temporal gyrus connectivity was positively correlated with hallucinations and delusions, while thalamus to cerebellar connectivity was negatively correlated with delusions and bizarre behavior. Thalamic hyperconnectivity with sensory regions and hypoconnectivity with cerebellar regions in combination with their relationship to clinical features of SZ suggest that thalamic dysconnectivity may be a core neurobiological feature of SZ that underpins positive symptoms.

  8. Glutamine and Glutamate Levels in Children and Adolescents with Bipolar Disorder: A 4.0-T Proton Magnetic Resonance Spectroscopy Study of the Anterior Cingulate Cortex

    ERIC Educational Resources Information Center

    Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.

    2007-01-01

    Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…

  9. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  10. Behavioral conflict, anterior cingulate cortex, and experiment duration: implications of diverging data.

    PubMed

    Erickson, Kirk I; Milham, Michael P; Colcombe, Stanley J; Kramer, Arthur F; Banich, Marie T; Webb, Andrew; Cohen, Neal J

    2004-02-01

    We investigated the relationship between behavioral measures of conflict and the degree of activity in the anterior cingulate cortex (ACC). We reanalyzed an existing data set that employed the Stroop task using functional magnetic resonance imaging [Milham et al., Brain Cogn 2002;49:277-296]. Although we found no changes in the behavioral measures of conflict from the first to the second half of task performance, we found a reliable reduction in the activity of the anterior cingulate cortex. This result suggests the lack of a strong relationship between behavioral measurements of conflict and anterior cingulate activity. A concomitant increase in dorsolateral prefrontal cortex activity was also found, which may reflect a tradeoff in the neural substrates involved in supporting conflict resolution, detection, or monitoring processes. A second analysis of the data revealed that the duration of an experiment can dramatically affect interpretations of the results, including the roles in which particular regions are thought to play in cognition. These results are discussed in relation to current conceptions of ACC's role in attentional control. In addition, we discuss the implication of our results with current conceptions of conflict and of its instantiation in the brain. Hum. Brain Mapping 21:96-105, 2004. Copyright 2003 Wiley-Liss, Inc.

  11. The Neural Correlates of Anomalous Habituation to Negative Emotional Pictures in Borderline and Avoidant Personality Disorder Patients

    PubMed Central

    Koenigsberg, Harold W.; Denny, Bryan T.; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Jo Mayson, Sarah; Rimsky, Liza; New, Antonia S.; Goodman, Marianne; Siever, Larry J

    2013-01-01

    Objective Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor would be diminished ability to engage the mechanism of emotional habituation. We tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy controls, and a psychopathological control group of avoidant personality disorder patients. Method During fMRI scan acquisition, borderline patients, healthy controls and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeat versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Results Unlike healthy controls, neither borderline nor avoidant personality disorder participants showed increased activity in dorsal anterior cingulate cortex when viewing repeat versus novel pictures. This failure to increase dorsal anterior cingulate activity was associated with greater affective instability in borderline participants. In addition, borderline and avoidant participants showed smaller insula-amygdala connectivity increases than healthy participants and did not show habituation in ratings of the emotional intensity of the images as did healthy participants. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate connectivity during habituation. Conclusions Borderline patients fail to habituate to negative pictures as do healthy participants and differ from both healthy controls and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline patients. PMID:24275960

  12. Does resting-state connectivity reflect depressive rumination? A tale of two analyses.

    PubMed

    Berman, Marc G; Misic, Bratislav; Buschkuehl, Martin; Kross, Ethan; Deldin, Patricia J; Peltier, Scott; Churchill, Nathan W; Jaeggi, Susanne M; Vakorin, Vasily; McIntosh, Anthony R; Jonides, John

    2014-12-01

    Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Neural and computational processes underlying dynamic changes in self-esteem

    PubMed Central

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  14. Neural and computational processes underlying dynamic changes in self-esteem.

    PubMed

    Will, Geert-Jan; Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-10-24

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an 'interpersonal vulnerability' dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability.

  15. The Neural Correlates of Desire

    PubMed Central

    Kawabata, Hideaki; Zeki, Semir

    2008-01-01

    In an event-related fMRI study, we scanned eighteen normal human subjects while they viewed three categories of pictures (events, objects and persons) which they classified according to desirability (desirable, indifferent or undesirable). Each category produced activity in a distinct part of the visual brain, thus reflecting its functional specialization. We used conjunction analysis to learn whether there is a brain area which is always active when a desirable picture is viewed, regardless of the category to which it belongs. The conjunction analysis of the contrast desirable > undesirable revealed activity in the superior orbito-frontal cortex. This activity bore a positive linear relationship to the declared level of desirability. The conjunction analysis of desirable > indifferent revealed activity in the mid-cingulate cortex and in the anterior cingulate cortex. In the former, activity was greater for desirable and undesirable stimuli than for stimuli classed as indifferent. Other conjunction analyses produced no significant effects. These results show that categorizing any stimulus according to its desirability activates three different brain areas: the superior orbito-frontal, the mid-cingulate, and the anterior cingulate cortices. PMID:18728753

  16. Impaired cortico-limbic functional connectivity in schizophrenia patients during emotion processing.

    PubMed

    Comte, Magali; Zendjidjian, Xavier Y; Coull, Jennifer T; Cancel, Aïda; Boutet, Claire; Schneider, Fabien C; Sage, Thierry; Lazerges, Pierre-Emmanuel; Jaafari, Nematollah; Ibrahim, El Chérif; Azorin, Jean-Michel; Blin, Olivier; Fakra, Eric

    2017-10-23

    Functional dysconnection is increasingly recognized as a core pathological feature in schizophrenia. Aberrant interactions between regions of the cortico-limbic circuit may underpin the abnormal emotional processing associated with this illness. We used a functional magnetic resonance imaging (fMRI) paradigm designed to dissociate the various components of the cortico-limbic circuit (i.e. a ventral automatic circuit that is intertwined with a dorsal cognitive circuit), in order to explore bottom-up appraisal as well as top-down control during emotion processing. In schizophrenia patients compared to healthy controls, bottom-up processes were associated with reduced interaction between the amygdala and both the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC). Contrariwise, top-down control processes led to stronger connectivity between the ventral affective and the dorsal cognitive circuits, i.e. heightened interactions between the ventral ACC and the DLPFC as well as between dorsal and ventral ACC. These findings offer a comprehensive view of the cortico-limbic dysfunction in schizophrenia. They confirm previous results of impaired propagation of information between the amygdala and the prefrontal cortex and suggest a defective functional segregation in the dorsal cognitive part of the cortico-limbic circuit. © The Author (2017). Published by Oxford University Press.

  17. Left Posterior Orbitofrontal Cortex Is Associated With Odor-Induced Autobiographical Memory: An fMRI Study.

    PubMed

    Watanabe, Keiko; Masaoka, Yuri; Kawamura, Mitsuru; Yoshida, Masaki; Koiwa, Nobuyoshi; Yoshikawa, Akira; Kubota, Satomi; Ida, Masahiro; Ono, Kenjiro; Izumizaki, Masahiko

    2018-01-01

    Autobiographical odor memory (AM-odor) accompanied by a sense of realism of a specific memory elicits strong emotions. AM-odor differs from memory triggered by other sensory modalities, possibly because olfaction involves a unique sensory process. Here, we examined the orbitofrontal cortex (OFC), using functional magnetic resonance imaging (fMRI) to determine which OFC subregions are related to AM-odor. Both AM-odor and a control odor successively increased subjective ratings of comfortableness and pleasantness. Importantly, AM-odor also increased arousal levels and the vividness of memories, and was associated with a deep and slow breathing pattern. fMRI analysis indicated robust activation in the left posterior OFC (L-POFC). Connectivity between the POFC and whole brain regions was estimated using psychophysiological interaction analysis (PPI). We detected several trends in connectivity between L-POFC and bilateral precuneus, bilateral rostral dorsal anterior cingulate cortex (rdACC), and left parahippocampus, which will be useful for targeting our hypotheses for future investigations. The slow breathing observed in AM-odor was correlated with rdACC activation. Odor associated with emotionally significant autobiographical memories was accompanied by slow and deep breathing, possibly involving rdACC processing.

  18. Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans.

    PubMed

    Qiu, Yunhai; Inui, Koji; Wang, Xiaohong; Nguyen, Binh Thi; Tran, Tuan Diep; Kakigi, Ryusuke

    2004-03-01

    Using magnetoencephalography (MEG), we evaluated the cerebral regions relating to second pain perception ascending through C-fibers and investigated the effect of distraction on each region. Thirteen normal subjects participated in this study. CO2 laser pulses were delivered to the dorsum of the left hand to selectively activate C-fibers. The MEG responses were analyzed using a multi-dipole model. (1) primary somatosensory cortex (SI), and (2) secondary somatosensory cortex (SII)--insula were the main generators for the primary component, 1M, whose mean peak latency was 744 ms. In addition to (1) and (2), (3) cingulate cortex and (4) medial temporal area (MT) were also activated for the subsequent component, 2M, whose mean peak latency was 947 ms. During a mental calculation task (Distraction), all 6 sources were significantly reduced in amplitude, but the SII-insula (P < 0.01) and cingulate cortex (P < 0.001) were more sensitive than the SI (P < 0.05) and MT (P < 0.05). We confirmed that SI in the contralateral hemisphere and SII-insula, cingulate cortex and MT in bilateral hemispheres play a major role in second pain perception, and all sites were much affected by a change of attention, indicating that these regions are related to the cognitive aspect of second pain perception. The SI, SII, cingulate and MT were activated during the C-fiber-related MEG response, and responses in these regions were significantly diminished during mental distraction.

  19. Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty.

    PubMed

    Luttrell, Andrew; Stillman, Paul E; Hasinski, Adam E; Cunningham, William A

    2016-04-01

    People's behaviors are often guided by valenced responses to objects in the environment. Beyond positive and negative evaluations, attitudes research has documented the importance of attitude strength--qualities of an attitude that enhance or attenuate its impact and durability. Although neuroscience research has extensively investigated valence, little work exists on other related variables like metacognitive judgments about one's attitudes. It remains unclear, then, whether the various indicators of attitude strength represent a single underlying neural process or whether they reflect independent processes. To examine this, we used functional MRI (fMRI) to identify the neural correlates of attitude strength. Specifically, we focus on ambivalence and certainty, which represent metacognitive judgments that people can make about their evaluations. Although often correlated, prior neuroscience research suggests that these 2 attributes may have distinct neural underpinnings. We investigate this by having participants make evaluative judgments of visually presented words while undergoing fMRI. After scanning, participants rated the degree of ambivalence and certainty they felt regarding their attitudes toward each word. We found that these 2 judgments corresponded to distinct brain regions' activity during the process of evaluation. Ambivalence corresponded to activation in anterior cingulate cortex, dorsomedial prefrontal cortex, and posterior cingulate cortex. Certainty, however, corresponded to activation in unique areas of the precuneus/posterior cingulate cortex. These results support a model treating ambivalence and certainty as distinct, though related, attitude strength variables, and we discuss implications for both attitudes and neuroscience research. (c) 2016 APA, all rights reserved).

  20. Causal relationship between effective connectivity within the default mode network and mind-wandering regulation and facilitation.

    PubMed

    Kajimura, Shogo; Kochiyama, Takanori; Nakai, Ryusuke; Abe, Nobuhito; Nomura, Michio

    2016-06-01

    Transcranial direct current stimulation (tDCS) can modulate mind wandering, which is a shift in the contents of thought away from an ongoing task and/or from events in the external environment to self-generated thoughts and feelings. Although modulation of the mind-wandering propensity is thought to be associated with neural alterations of the lateral prefrontal cortex (LPFC) and regions in the default mode network (DMN), the precise neural mechanisms remain unknown. Using functional magnetic resonance imaging (fMRI), we investigated the causal relationships among tDCS (one electrode placed over the right IPL, which is a core region of the DMN, and another placed over the left LPFC), stimulation-induced directed connection alterations within the DMN, and modulation of the mind-wandering propensity. At the behavioral level, anodal tDCS on the right IPL (with cathodal tDCS on the left LPFC) reduced mind wandering compared to the reversed stimulation. At the neural level, the anodal tDCS on the right IPL decreased the afferent connections of the posterior cingulate cortex (PCC) from the right IPL and the medial prefrontal cortex (mPFC). Furthermore, mediation analysis revealed that the changes in the connections from the right IPL and mPFC correlated with the facilitation and inhibition of mind wandering, respectively. These effects are the result of the heterogeneous function of effective connectivity: the connection from the right IPL to the PCC inhibits mind wandering, whereas the connection from the mPFC to the PCC facilitates mind wandering. The present study is the first to demonstrate the neural mechanisms underlying tDCS modulation of mind-wandering propensity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability.

    PubMed

    Jennings, J Richard; Sheu, Lei K; Kuan, Dora C-H; Manuck, Stephen B; Gianaros, Peter J

    2016-04-01

    Resting high-frequency heart rate variability (HF-HRV) relates to cardiac vagal control and predicts individual differences in health and longevity, but its functional neural correlates are not well defined. The medial prefrontal cortex (mPFC) encompasses visceral control regions that are components of intrinsic networks of the brain, particularly the default mode network (DMN) and the salience network (SN). Might individual differences in resting HF-HRV covary with resting state neural activity in the DMN and SN, particularly within the mPFC? This question was addressed using fMRI data from an eyes-open, 5-min rest period during which echoplanar brain imaging yielded BOLD time series. Independent component analysis yielded functional connectivity estimates defining the DMN and SN. HF-HRV was measured in a rest period outside of the scanner. Midlife (52% female) adults were assessed in two studies (Study 1, N = 107; Study 2, N = 112). Neither overall DMN nor SN connectivity strength was related to HF-HRV. However, HF-HRV related to connectivity of one region within mPFC shared by the DMN and SN, namely, the perigenual anterior cingulate cortex, an area with connectivity to other regions involved in autonomic control. In sum, HF-HRV does not seem directly related to global resting state activity of intrinsic brain networks, but rather to more localized connectivity. A mPFC region was of particular interest as connectivity related to HF-HRV was shared by the DMN and SN. These findings may indicate a functional basis for the coordination of autonomic cardiac control with engagement and disengagement from the environment. © 2015 Society for Psychophysiological Research.

  2. Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis.

    PubMed

    Wotruba, Diana; Michels, Lars; Buechler, Roman; Metzler, Sibylle; Theodoridou, Anastasia; Gerstenberg, Miriam; Walitza, Susanne; Kollias, Spyros; Rössler, Wulf; Heekeren, Karsten

    2014-09-01

    The task-positive network (TPN) is anticorrelated with activity in the default mode network (DMN), and possibly reflects competition between the processing of external and internal information, while the salience network (SN) is pivotal in regulating TPN and DMN activity. Because abnormal functional connectivity in these networks has been related to schizophrenia, we tested whether alterations are also evident in subjects at risk for psychosis. Resting-state functional magnetic resonance imaging was tested in 28 subjects with basic symptoms reporting subjective cognitive-perceptive symptoms; 19 with attenuated or brief, limited psychotic symptoms; and 29 matched healthy controls. We characterized spatial differences in connectivity patterns, as well as internetwork connectivity. Right anterior insula (rAI) was selected as seed region for identifying the SN; medioprefrontal cortex (MPFC) for the DMN and TPN. The 3 groups differed in connectivity patterns between the MPFC and right dorsolateral prefrontal cortex (rDLPFC), and between the rAI and posterior cingulate cortex (PCC). In particular, the typically observed antagonistic relationship in MPFC-rDLPFC, rAI-PCC, and internetwork connectivity of DMN-TPN was absent in both at-risk groups. Notably, those connectivity patterns were associated with symptoms related to reality distortions, whereas enhanced connectivity strengths of MPFC-rDLPFC and TPN-DMN were related to poor performance in cognitive functions. We propose that the loss of a TPN-DMN anticorrelation, accompanied by an aberrant spatial extent in the DMN, TPN, and SN in the psychosis risk state, reflects the confusion of internally and externally focused states and disturbance of cognition, as seen in psychotic disorders. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Midbrain dopamine neurons regulate preprotachykinin-A mRNA expression in the rat forebrain during development.

    PubMed

    Brené, S; Lindefors, N; Persson, H

    1992-06-01

    Intracerebroventricular 6-hydroxydopamine injections were performed at postnatal days 3 and 6 in animals pretreated with the norepinephrine uptakeblocker desimipramine in order to generate a selective lesion of dopamine neurons. In situ hybridization was then used to analyze preprotachykinin-A (PPT-A) mRNA expression in the lesioned as well as in saline-injected control animals. The midbrain dopaminergic lesion caused a 22-25% increase in the level of PPT-A mRNA in cingulate cortex and frontoparietal cortex when analysed at 2 weeks of age, compared to saline-injected control animals. In contrast, the lesion caused no change in PPT-A mRNA expression in the neonatal caudate-putamen. These results indicate that dopamine neurons downregulate the expression of PPT-A mRNA specifically in cingulate cortex and frontoparietal cortex during early postnatal brain development. In the adult rat forebrain, lesioned at P3 and P6, no change in the level of PPT-A mRNA was seen in cingulate cortex and frontoparietal cortex. However, a 29% decrease in PPT-A mRNA was seen in the lateral caudate-putamen with no significant change in neurons of medial caudate-putamen. Thus, dopamine neurons appears to exert a region specific influence on PPT-A mRNA expression during brain development.

  4. Rapid treatment-induced brain changes in pediatric CRPS.

    PubMed

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2016-03-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.

  5. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    PubMed

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  6. Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2016-01-01

    In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women. PMID:27733537

  7. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    PubMed

    Peeters, Sanne C T; van de Ven, Vincent; Gronenschild, Ed H B M; Patel, Ameera X; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  8. Regional specificity of aberrant thalamocortical connectivity in autism.

    PubMed

    Nair, Aarti; Carper, Ruth A; Abbott, Angela E; Chen, Colleen P; Solders, Seraphina; Nakutin, Sarah; Datko, Michael C; Fishman, Inna; Müller, Ralph-Axel

    2015-11-01

    Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions. © 2015 Wiley Periodicals, Inc.

  9. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala.

    PubMed

    Ghashghaei, H T; Hilgetag, C C; Barbas, H

    2007-02-01

    The prefrontal cortex and the amygdala have synergistic roles in regulating purposive behavior, effected through bidirectional pathways. Here we investigated the largely unknown extent and laminar relationship of prefrontal input-output zones linked with the amygdala using neural tracers injected in the amygdala in rhesus monkeys. Prefrontal areas varied vastly in their connections with the amygdala, with the densest connections found in posterior orbitofrontal and posterior medial cortices, and the sparsest in anterior lateral prefrontal areas, especially area 10. Prefrontal projection neurons directed to the amygdala originated in layer 5, but significant numbers were also found in layers 2 and 3 in posterior medial and orbitofrontal cortices. Amygdalar axonal terminations in prefrontal cortex were most frequently distributed in bilaminar bands in the superficial and deep layers, by columns spanning the entire cortical depth, and less frequently as small patches centered in the superficial or deep layers. Heavy terminations in layers 1-2 overlapped with calbindin-positive inhibitory neurons. A comparison of the relationship of input to output projections revealed that among the most heavily connected cortices, cingulate areas 25 and 24 issued comparatively more projections to the amygdala than they received, whereas caudal orbitofrontal areas were more receivers than senders. Further, there was a significant relationship between the proportion of 'feedforward' cortical projections from layers 2-3 to 'feedback' terminations innervating the superficial layers of prefrontal cortices. These findings indicate that the connections between prefrontal cortices and the amygdala follow similar patterns as corticocortical connections, and by analogy suggest pathways underlying the sequence of information processing for emotions.

  10. Altered Intrinsic Functional Brain Architecture in Children at Familial Risk of Major Depression

    PubMed Central

    Chai, Xiaoqian J.; Hirshfeld-Becker, Dina; Biederman, Joseph; Uchida, Mai; Doehrmann, Oliver; Leonard, Julia; Salvatore, John; Kenworthy, Tara; Brown, Ariel; Kagan, Elana; de los Angeles, Carlo; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan

    2015-01-01

    Background Neuroimaging studies of patients with major depression have revealed abnormal intrinsic functional connectivity measured during the resting state in multiple, distributed networks. However, it is unclear whether these findings reflect the state of major depression or reflect trait neurobiological underpinnings of risk for major depression. Methods We compared resting-state functional connectivity, measured with functional magnetic resonance imaging (fMRI), between unaffected children of parents who had documented histories of major depression (at-risk, n = 27; 8–14 years of age) and age-matched children of parents with no lifetime history of depression (controls, n = 16). Results At-risk children exhibited hyperconnectivity between the default mode network (DMN) and subgenual anterior cingulate cortex (sgACC) / orbital frontal cortex (OFC), and the magnitude of connectivity positively correlated with individual symptom scores. At-risk children also exhibited (1) hypoconnectivity within the cognitive control network, which also lacked the typical anticorrelation with the DMN; (2) hypoconnectivity between left dorsolateral prefrontal cortex (DLPFC) and sgACC; and (3) hyperconnectivity between the right amygdala and right inferior frontal gyrus, a key region for top-down modulation of emotion. Classification between at-risk children and controls based on resting-state connectivity yielded high accuracy with high sensitivity and specificity that was superior to clinical rating scales. Conclusions Children at familial risk for depression exhibited atypical functional connectivity in the default-mode, cognitive-control, and affective networks. Such task-independent functional brain measures of risk for depression in children could be used to promote early intervention to reduce the likelihood of developing depression. PMID:26826874

  11. Altered functional connectivity in default mode network in Internet gaming disorder: Influence of childhood ADHD.

    PubMed

    Lee, Deokjong; Lee, Junghan; Lee, Jung Eun; Jung, Young-Chul

    2017-04-03

    Internet gaming disorder (IGD) is a type of behavioral addiction characterized by abnormal executive control, leading to loss of control over excessive gaming. Attention deficit and hyperactivity disorder (ADHD) is one of the most common comorbid disorders in IGD, involving delayed development of the executive control system, which could predispose individuals to gaming addiction. We investigated the influence of childhood ADHD on neural network features of IGD. Resting-state functional magnetic resonance imaging analysis was performed on 44 young, male IGD subjects with and without childhood ADHD and 19 age-matched, healthy male controls. Posterior cingulate cortex (PCC)-seeded connectivity was evaluated to assess abnormalities in default mode network (DMN) connectivity, which is associated with deficits in executive control. IGD subjects without childhood ADHD showed expanded functional connectivity (FC) between DMN-related regions (PCC, medial prefrontal cortex, thalamus) compared with controls. These subjects also exhibited expanded FC between the PCC and brain regions implicated in salience processing (anterior insula, orbitofrontal cortex) compared with IGD subjects with childhood ADHD. IGD subjects with childhood ADHD showed expanded FC between the PCC and cerebellum (crus II), a region involved in executive control. The strength of connectivity between the PCC and cerebellum (crus II) was positively correlated with self-reporting scales reflecting impulsiveness. Individuals with IGD showed altered PCC-based FC, the characteristics of which might be dependent upon history of childhood ADHD. Our findings suggest that altered neural networks for executive control in ADHD would be a predisposition for developing IGD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    PubMed Central

    Chen, Xue; Wang, Yao; Zhou, Yan; Sun, Yawen; Ding, Weina; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-01-01

    This study investigated changes in resting-state functional connectivity (rsFC) of posterior cingulate cortex (PCC) in smokers and nonsmokers with Internet gaming addiction (IGA). Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group) underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA. PMID:25506057

  13. Atypical Learning in Autism Spectrum Disorders: A Functional Magnetic Resonance Imaging Study of Transitive Inference

    PubMed Central

    Solomon, Marjorie; Ragland, J. Daniel; Niendam, Tara A.; Lesh, Tyler A.; Beck, Jonathan S.; Matter, John C.; Frank, Michael J.; Carter, Cameron S.

    2015-01-01

    Objective To investigate the neural mechanisms underlying impairments in generalizing learning shown by adolescents with autism spectrum disorder (ASD). Method Twenty-one high-functioning individuals with ASD aged 12–18 years, and 23 gender, IQ, and age-matched adolescents with typical development (TYP) completed a transitive inference (TI) task implemented using rapid event-related functional magnetic resonance imaging (fMRI). They were trained on overlapping pairs in a stimulus hierarchy of colored ovals where A>B>C>D>E>F and then tested on generalizing this training to new stimulus pairings (AF, BD, BE) in a “Big Game.” Whole-brain univariate, region of interest, and functional connectivity analyses were used. Results During training, TYP exhibited increased recruitment of the prefrontal cortex (PFC), while the group with ASD showed greater functional connectivity between the PFC and the anterior cingulate cortex (ACC). Both groups recruited the hippocampus and caudate comparably; however, functional connectivity between these regions was positively associated with TI performance for only the group with ASD. During the Big Game, TYP showed greater recruitment of the PFC, parietal cortex, and the ACC. Recruitment of these regions increased with age in the group with ASD. Conclusion During TI, TYP recruited cognitive control-related brain regions implicated in mature problem solving/reasoning including the PFC, parietal cortex, and ACC, while the group with ASD showed functional connectivity of the hippocampus and the caudate that was associated with task performance. Failure to reliably engage cognitive control-related brain regions may produce less integrated flexible learning in those with ASD unless they are provided with task support that in essence provides them with cognitive control, but this pattern may normalize with age. PMID:26506585

  14. Anomalous prefrontal-limbic activation and connectivity in youth at high-risk for bipolar disorder.

    PubMed

    Chang, Kiki; Garrett, Amy; Kelley, Ryan; Howe, Meghan; Sanders, Erica Marie; Acquaye, Tenah; Bararpour, Layla; Li, Sherrie; Singh, Manpreet; Jo, Booil; Hallmayer, Joachim; Reiss, Allan

    2017-11-01

    Abnormal prefrontal-limbic brain activation in response to facial expressions has been reported in pediatric bipolar disorder (BD). However, it is less clear whether these abnormalities exist prior to onset of mania, thus representing a biomarker predicting development of BD. We examined brain activation in 50 youth at high risk for BD (HR-BD), compared with 29 age- and gender-matched healthy control (HC) subjects. HR-BD was defined as having a parent with BD, as well as current mood or attentiondeficit/ hyperactivity disorder (ADHD) symptoms, or a history of at least one depressive episode. FMRI data were collected during an implicit emotion perception task using facial expression stimuli. Activation to fearful faces versus calm faces was compared between HR-BD and HC groups, including analyses of functional connectivity, and comparison of allele subgroups of the serotonin transporter (5-HTTLPR) gene. While viewing fearful versus calm faces, HR-BD youth had significantly greater activation than HC youth in the right amygdala, ventrolateral prefrontal cortex (VLPFC), superior frontal cortex, cerebellum, and lingual gyrus. HR-BD youth, relative to HC youth, had greater functional connectivity between the right amygdala and the VLPFC as well as visual cortical regions Within the HR-BD group, youth with the s-allele had a trend for greater activation in the right amygdala and subgenual cingulate cortex CONCLUSIONS: Similar to youth with BD, youth at high risk for BD have greater activation than healthy controls in the amygdala and ventrolateral prefrontal cortex in response to fearful faces, as well greater functional connectivity between these regions. HR-BD youth with the s-allele of the 5-HTTLPR gene may be at greatest risk for developing BD. Copyright © 2017. Published by Elsevier B.V.

  15. Common and Distinct Neural Mechanisms of Attentional Switching and Response Conflict

    PubMed Central

    Kim, Chobok; Johnson, Nathan F.; Gold, Brian T.

    2012-01-01

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. PMID:22750124

  16. Threatening faces induce fear circuitry hypersynchrony in soldiers with post-traumatic stress disorder.

    PubMed

    Dunkley, Benjamin T; Pang, Elizabeth W; Sedge, Paul A; Jetly, Rakesh; Doesburg, Sam M; Taylor, Margot J

    2016-01-01

    Post-traumatic stress disorder (PTSD) is associated with atypical responses to emotional face stimuli with preferential processing given to threat-related facial expressions via hyperactive amygdalae disengaged from medial prefrontal modulation. We examined implicit emotional face perception in soldiers with (n = 20) and without (n = 25) PTSD using magnetoencephalography to define spatiotemporal network interactions, and a subsequent region-of-interest analysis to characterize the network role of the right amygdala and medial prefrontal cortex in threatening face perception. Contrasts of network interactions revealed the PTSD group were hyperconnected compared to controls in the phase-locking response in the 2-24 Hz range for angry faces, but not for happy faces when contrasting groups. Hyperconnectivity in PTSD was greatest in the posterior cingulate, right ventromedial prefrontal cortex, right parietal regions and the right temporal pole, as well as the right amygdala. Graph measures of right amygdala and medial prefrontal connectivity revealed increases in node strength and clustering in PTSD, but not inter-node connectivity. Additionally, these measures were found to correlate with anxiety and depression. In line with prior studies, amygdala hyperconnectivity was observed in PTSD in relation to threatening faces, but the medial prefrontal cortex also displayed enhanced connectivity in our network-based approach. Overall, these results support preferential neurophysiological encoding of threat-related facial expressions in those with PTSD.

  17. Common and distinct neural mechanisms of attentional switching and response conflict.

    PubMed

    Kim, Chobok; Johnson, Nathan F; Gold, Brian T

    2012-08-21

    The human capacities for overcoming prepotent actions and flexibly switching between tasks represent cornerstones of cognitive control. Functional neuroimaging has implicated a diverse set of brain regions contributing to each of these cognitive control processes. However, the extent to which attentional switching and response conflict draw on shared or distinct neural mechanisms remains unclear. The current study examined the neural correlates of response conflict and attentional switching using event-related functional magnetic resonance imaging (fMRI) and a fully randomized 2×2 design. We manipulated an arrow-word version of the Stroop task to measure conflict and switching in the context of a single task decision, in response to a common set of stimuli. Under these common conditions, both behavioral and imaging data showed significant main effects of conflict and switching but no interaction. However, conjunction analyses identified frontal regions involved in both switching and response conflict, including the dorsal anterior cingulate cortex (dACC) and left inferior frontal junction. In addition, connectivity analyses demonstrated task-dependent functional connectivity patterns between dACC and inferior temporal cortex for attentional switching and between dACC and posterior parietal cortex for response conflict. These results suggest that the brain makes use of shared frontal regions, but can dynamically modulate the connectivity patterns of some of those regions, to deal with attentional switching and response conflict. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Segregated fronto‐cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors

    PubMed Central

    Savage, Michael Anthony; McQuade, Richard

    2017-01-01

    Abstract The orchestration of orienting behaviors requires the interaction of many cortical and subcortical areas, for example the superior colliculus (SC), as well as prefrontal areas responsible for top–down control. Orienting involves different behaviors, such as approach and avoidance. In the rat, these behaviors are at least partially mapped onto different SC subdomains, the lateral (SCl) and medial (SCm), respectively. To delineate the circuitry involved in the two types of orienting behavior in mice, we injected retrograde tracer into the intermediate and deep layers of the SCm and SCl, and thereby determined the main input structures to these subdomains. Overall the SCm receives larger numbers of afferents compared to the SCl. The prefrontal cingulate area (Cg), visual, oculomotor, and auditory areas provide strong input to the SCm, while prefrontal motor area 2 (M2), and somatosensory areas provide strong input to the SCl. The prefrontal areas Cg and M2 in turn connect to different cortical and subcortical areas, as determined by anterograde tract tracing. Even though connectivity pattern often overlap, our labeling approaches identified segregated neural circuits involving SCm, Cg, secondary visual cortices, auditory areas, and the dysgranular retrospenial cortex likely to be involved in avoidance behaviors. Conversely, SCl, M2, somatosensory cortex, and the granular retrospenial cortex comprise a network likely involved in approach/appetitive behaviors. PMID:28177526

  19. A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control.

    PubMed

    Tolomeo, Serenella; Christmas, David; Jentzsch, Ines; Johnston, Blair; Sprengelmeyer, Reiner; Matthews, Keith; Douglas Steele, J

    2016-06-01

    Converging evidence has linked the anterior mid-cingulate cortex to negative affect, pain and cognitive control. It has previously been proposed that this region uses information about punishment to control aversively motivated actions. Studies on the effects of lesions allow causal inferences about brain function; however, naturally occurring lesions in the anterior mid-cingulate cortex are rare. In two studies we therefore recruited 94 volunteers, comprising 15 patients with treatment-resistant depression who had received bilateral anterior cingulotomy, which consists of lesions made within the anterior mid-cingulate cortex, 20 patients with treatment-resistant depression who had not received surgery and 59 healthy control subjects. Using the Ekman 60 faces paradigm and two Stroop paradigms, we tested the hypothesis that patients who received anterior cingulotomy were impaired in recognizing negative facial affect expressions but not positive or neutral facial expressions, and impaired in Stroop cognitive control, with larger lesions being associated with more impairment. Consistent with this hypothesis, we found that larger volume lesions predicted more impairment in recognizing fear, disgust and anger, and no impairment in recognizing facial expressions of surprise or happiness. However, we found no impairment in recognizing expressions of sadness. Also consistent with the hypothesis, we found that larger volume lesions predicted impaired Stroop cognitive control. Notably, this relationship was only present when anterior mid-cingulate cortex lesion volume was defined as the overlap between cingulotomy lesion volume and Shackman's meta-analysis-derived binary masks for negative affect and cognitive control. Given substantial evidence from healthy subjects that the anterior mid-cingulate cortex is part of a network associated with the experience of negative affect and pain, engaging cognitive control processes for optimizing behaviour in the presence of such stimuli, our findings support the assertion that this region has a causal role in these processes. While the clinical justification for cingulotomy is empirical and not theoretical, it is plausible that lesions within a brain region associated with the subjective experience of negative affect and pain may be therapeutic for patients with otherwise intractable mood, anxiety and pain syndromes. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices

    PubMed Central

    Mansouri, Farshad A.; Buckley, Mark J.; Mahboubi, Majid; Tanaka, Keiji

    2015-01-01

    Frontal pole cortex (FPC) and posterior cingulate cortex (PCC) have close neuroanatomical connections, and imaging studies have shown coactivation or codeactivation of these brain regions during performance of certain tasks. However, they are among the least well-understood regions of the primate brain. One reason for this is that the consequences of selective bilateral lesions to either structure have not previously been studied in any primate species. We studied the effects of circumscribed bilateral lesions to FPC or PCC on monkeys’ ability to perform an analog of Wisconsin Card Sorting Test (WCST) and related tasks. In contrast to lesions in other prefrontal regions, neither posttraining FPC nor PCC lesions impaired animals’ abilities to follow the rule switches that frequently occurred within the WCST task. However, FPC lesions were not without effect, because they augmented the ability of animals to adjust cognitive control after experiencing high levels of conflict (whereas PCC lesions did not have any effect). In addition, FPC-lesioned monkeys were more successful than controls or PCC-lesioned animals at remembering the relevant rule across experimentally imposed distractions involving either an intervening secondary task or a surprising delivery of free reward. Although prefrontal cortex posterior to FPC is specialized for mediating efficient goal-directed behavior to maximally exploit reward opportunities from ongoing tasks, our data led us to suggest that FPC is, instead, specialized for disengaging executive control from the current task and redistributing it to novel sources of reward to explore new opportunities/goals. PMID:26150522

  1. Functional brain correlates of heterosexual paedophilia.

    PubMed

    Schiffer, Boris; Paul, Thomas; Gizewski, Elke; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Kruger, Tillmann H C

    2008-05-15

    Although the neuronal mechanisms underlying normal sexual motivation and function have recently been examined, the alterations in brain function in deviant sexual behaviours such as paedophilia are largely unknown. The objective of this study was to identify paedophilia-specific functional networks implicated in sexual arousal. Therefore a consecutive sample of eight paedophile forensic inpatients, exclusively attracted to females, and 12 healthy age-matched heterosexual control participants from a comparable socioeconomic stratum participated in a visual sexual stimulation procedure during functional magnetic resonance imaging. The visual stimuli were sexually stimulating photographs and emotionally neutral photographs. Immediately after the imaging session subjective responses pertaining to sexual desire were recorded. Principally, the brain response of heterosexual paedophiles to heteropaedophilic stimuli was comparable to that of heterosexual males to heterosexual stimuli, including different limbic structures (amygdala, cingulate gyrus, and hippocampus), the substantia nigra, caudate nucleus, as well as the anterior cingulate cortex, different thalamic nuclei, and associative cortices. However, responses to visual sexual stimulation were found in the orbitofrontal cortex in healthy heterosexual males, but not in paedophiles, in whom abnormal activity in the dorsolateral prefrontal cortex was observed. Thus, in line with clinical observations and neuropsychological studies, it seems that central processing of sexual stimuli in heterosexual paedophiles may be altered by a disturbance in the prefrontal networks, which, as has already been hypothesized, may be associated with stimulus-controlled behaviours, such as sexual compulsive behaviours. Moreover, these findings may suggest a dysfunction (in the functional and effective connectivity) at the cognitive stage of sexual arousal processing.

  2. Decreased prefrontal Myo-inositol in major depressive disorder.

    PubMed

    Coupland, Nick J; Ogilvie, Catherine J; Hegadoren, Kathleen M; Seres, Peter; Hanstock, Chris C; Allen, Peter S

    2005-06-15

    Postmortem studies have shown robust prefrontal cortex glial losses and more subtle neuronal changes in major depressive disorder (MDD). Earlier proton magnetic resonance spectroscopy (1H-MRS) studies of the glial marker myo-inositol in MDD were subject to potential confounds. The primary hypothesis of this study was that MDD patients would show reduced prefrontal/anterior cingulate cortex levels of myo-inositol. Thirteen nonmedicated moderate-severe MDD patients and 13 matched control subjects were studied (six male, seven female per group). Proton magnetic resonance spectroscopy stimulated echo acquisition mode spectra (3.0 T; echo time=168 msec; mixing time=28 msec; repetition time=3000 msec) were obtained from prefrontal/anterior cingulate cortex. Metabolite data were adjusted for tissue composition. Patients with MDD showed significantly lower myo-inositol/creatine ratios (.94+/-.23) than control subjects (1.32+/-.37) [F(1,23)=6.9; p=.016]. These data suggest a reduction of myo-inositol in prefrontal/anterior cingulate cortex in MDD, which could be a consequence of glial loss or altered glial metabolism. Additional in vivo studies of glial markers could add to the understanding of the pathophysiology of MDD.

  3. Brain-heart coupling at the P300 latency is linked to anterior cingulate cortex and insula--a cardio-electroencephalographic covariance tracing study.

    PubMed

    Panitz, Christian; Wacker, Jan; Stemmler, Gerhard; Mueller, Erik M

    2013-09-01

    Prior work on the coupling of cortical and cardiac responses to feedback demonstrated that feedback-evoked single-trial EEG magnitudes 300 ms post-stimulus predict the degree of subsequent cardiac acceleration. The main goal of the current study was to explore the neural sources of this phenomenon using (a) independent component analysis in conjunction with dipole fitting and (b) low resolution electromagnetic tomography (LORETA) in N=14 participants who performed a gambling task with feedback presented after each trial. It was shown that independent components localized near anterior cingulate cortex produced robust within-subjects correlations with feedback-evoked heart-period, suggesting that anterior cingulate cortex activity 300ms after feedback presentation predicts the strength of subsequent cardiac acceleration. Moreover, interindividual differences in evoked left insular cortex LORETA-estimated activity at around 300ms moderated within-subjects EEG-heart period correlations. These results suggest that key regions of central autonomic control are involved in cortico-cardiac coupling evoked by feedback stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Default Mode Functional Connectivity is Associated with Social Functioning in Schizophrenia

    PubMed Central

    Fox, Jaclyn M.; Abram, Samantha V.; Reilly, James L.; Eack, Shaun; Goldman, Morris B.; Csernansky, John G.; Wang, Lei; Smith, Matthew J.

    2017-01-01

    Individuals with schizophrenia display notable deficits in social functioning. Research indicates that neural connectivity within the default mode network (DMN) is related to social cognition and social functioning in healthy and clinical populations. However, the association between DMN connectivity, social cognition, and social functioning has not been studied in schizophrenia. For the present study, we used resting-state neuroimaging data to evaluate connectivity between the main DMN hubs (i.e., the medial prefrontal cortex (mPFC) and the posterior cingulate cortex-anterior precuneus (PPC)) in individuals with schizophrenia (n=28) and controls (n=32). We also examined whether DMN connectivity was associated with social functioning via social attainment (measured by the Specific Levels of Functioning Scale) and social competence (measured by the Social Skills Performance Assessment), and if social cognition mediates the association between DMN connectivity and these measures of social functioning. Results revealed that DMN connectivity did not differ between individuals with schizophrenia and controls. However, connectivity between the mPFC and PCC hubs was significantly associated with social competence and social attainment in individuals with schizophrenia but not in controls as reflected by a significant group-by-connectivity interaction. Social cognition did not mediate the association between social functioning and DMN connectivity in individuals with schizophrenia. Our findings suggest that fronto-parietal DMN connectivity in particular may be differentially associated with social functioning in schizophrenia and controls. As a result, DMN connectivity may be used as a neuroimaging marker to monitor treatment response or as a potential target for interventions that aim to enhance social functioning in schizophrenia. PMID:28358526

  5. Neural correlates of strategic processes underlying episodic memory in women with major depression: A 15O-PET study.

    PubMed

    Ottowitz, William E; Deckersbach, Thilo; Savage, Cary R; Lindquist, Martin A; Dougherty, Darin D

    2010-01-01

    To evaluate the functional integrity of brain regions underlying strategic mnemonic processing in patients with major depressive disorder, the authors administered a modified version of the California Verbal Learning Test to depressed patients during presentation of lists of unrelated words and, conversely, during presentation of lists of related words with and without orientation regarding the relatedness of the words (eight healthy females, IQ=122, and eight depressed females, IQ=107). Brain function evaluated across all three conditions showed that patients with major depressive disorder revealed activation of the right anterior cingulate cortex, left ventrolateral prefrontal cortex, both hippocampi, and the left orbitofrontal cortex. Further analysis showed that patients with major depressive disorder had greater activation of the right anterior cingulate cortex during semantic organization and the right ventrolateral prefrontal cortex during strategy initiation.

  6. Altered topography of intrinsic functional connectivity in childhood risk for social anxiety

    PubMed Central

    Taber-Thomas, Bradley C.; Morales, Santiago; Hillary, Frank G.; Pérez-Edgar, Koraly E.

    2016-01-01

    Background Extreme shyness in childhood arising from behavioral inhibition (BI) is among the strongest risk factors for developing social anxiety. Although no imaging studies of intrinsic brain networks in BI children have been reported, adults with a history of BI exhibit altered functioning of frontolimbic circuits and enhanced processing of salient, personally-relevant information. BI in childhood may be marked by increased coupling of salience (insula) and default (ventromedial prefrontal cortex) network hubs. Methods We tested this potential relation in 42 children ages 9 to 12, oversampled for high-BI. Participants provided resting-state functional magnetic resonance imaging. A novel topographical pattern analysis of salience network intrinsic functional connectivity was conducted, and the impact of salience-default coupling on the relation between BI and social anxiety symptoms was assessed via moderation analysis. Results High-BI children exhibit altered salience network topography, marked by reduced insula connectivity to dorsal anterior cingulate and increased insula connectivity to ventromedial prefrontal cortex. Whole-brain analyses revealed increased connectivity of salience, executive, and sensory networks with default network hubs in children higher in BI. Finally, the relation between insula-ventromedial prefrontal connectivity and social anxiety symptoms was strongest among the highest BI children. Conclusions BI is associated with an increase in connectivity to default network hubs that may bias processing toward personally-relevant information during development. These altered patterns of connectivity point to potential biomarkers of the neural profile of risk for anxiety in childhood. PMID:27093074

  7. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair

    2014-06-01

    Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  8. Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood.

    PubMed

    Wu, Minjie; Kujawa, Autumn; Lu, Lisa H; Fitzgerald, Daniel A; Klumpp, Heide; Fitzgerald, Kate D; Monk, Christopher S; Phan, K Luan

    2016-05-01

    The ability to process and respond to emotional facial expressions is a critical skill for healthy social and emotional development. There has been growing interest in understanding the neural circuitry underlying development of emotional processing, with previous research implicating functional connectivity between amygdala and frontal regions. However, existing work has focused on threatening emotional faces, raising questions regarding the extent to which these developmental patterns are specific to threat or to emotional face processing more broadly. In the current study, we examined age-related changes in brain activity and amygdala functional connectivity during an fMRI emotional face matching task (including angry, fearful, and happy faces) in 61 healthy subjects aged 7-25 years. We found age-related decreases in ventral medial prefrontal cortex activity in response to happy faces but not to angry or fearful faces, and an age-related change (shifting from positive to negative correlation) in amygdala-anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC) functional connectivity to all emotional faces. Specifically, positive correlations between amygdala and ACC/mPFC in children changed to negative correlations in adults, which may suggest early emergence of bottom-up amygdala excitatory signaling to ACC/mPFC in children and later development of top-down inhibitory control of ACC/mPFC over amygdala in adults. Age-related changes in amygdala-ACC/mPFC connectivity did not vary for processing of different facial emotions, suggesting changes in amygdala-ACC/mPFC connectivity may underlie development of broad emotional processing, rather than threat-specific processing. Hum Brain Mapp 37:1684-1695, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Abnormal functional connectivity of the posterior cingulate cortex is associated with depressive symptoms in patients with Alzheimer’s disease

    PubMed Central

    Zhang, Jiangtao; Guo, Zhongwei; Liu, Xiaozheng; Jia, Xize; Li, Jiapeng; Li, Yaoyao; Lv, Danmei; Chen, Wei

    2017-01-01

    Background Depressive symptoms are significant and very common psychiatric complications in patients with Alzheimer’s disease (AD), which can aggravate the decline in social function. However, changes in the functional connectivity (FC) of the brain in AD patients with depressive symptoms (D-AD) remain unclear. Objective To investigate whether any differences exist in the FC of the posterior cingulate cortex (PCC) between D-AD patients and non-depressed AD patients (nD-AD). Materials and methods We recruited 15 D-AD patients and 17 age-, sex-, educational level-, and Mini-Mental State Examination (MMSE)-matched nD-AD patients to undergo tests using the Neuropsychiatric Inventory, Hamilton Depression Rating Scale, and 3.0T resting-state functional magnetic resonance imaging. Bilateral PCC were selected as the regions of interest and between-group differences in the PCC FC network were assessed using Student’s t-test. Results Compared with the nD-AD group, D-AD patients showed increased PCC FC in the right amygdala, right parahippocampus, right superior temporal pole, right middle temporal lobe, right middle temporal pole, and right hippocampus (AlphaSim correction; P<0.05). In the nD-AD group, MMSE scores were positively correlated with PCC FC in the right superior temporal pole and right hippocampus (false discovery rate corrected; P<0.05). Conclusion Differences were detected in PCC FC between nD-AD and D-AD patients, which may be related to depressive symptoms. Our study provides a significant enhancement to our understanding of the functional mechanisms underlying D-AD. PMID:29066900

  10. Integrating automatic and controlled processes into neurocognitive models of social cognition.

    PubMed

    Satpute, Ajay B; Lieberman, Matthew D

    2006-03-24

    Interest in the neural systems underlying social perception has expanded tremendously over the past few decades. However, gaps between behavioral literatures in social perception and neuroscience are still abundant. In this article, we apply the concept of dual-process models to neural systems in an effort to bridge the gap between many of these behavioral studies and neural systems underlying social perception. We describe and provide support for a neural division between reflexive and reflective systems. Reflexive systems correspond to automatic processes and include the amygdala, basal ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and lateral temporal cortex. Reflective systems correspond to controlled processes and include lateral prefrontal cortex, posterior parietal cortex, medial prefrontal cortex, rostral anterior cingulate cortex, and the hippocampus and surrounding medial temporal lobe region. This framework is considered to be a working model rather than a finished product. Finally, the utility of this model and its application to other social cognitive domains such as Theory of Mind are discussed.

  11. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  12. Brain regions with abnormal network properties in severe epilepsy of Lennox-Gastaut phenotype: Multivariate analysis of task-free fMRI.

    PubMed

    Pedersen, Mangor; Curwood, Evan K; Archer, John S; Abbott, David F; Jackson, Graeme D

    2015-11-01

    Lennox-Gastaut syndrome, and the similar but less tightly defined Lennox-Gastaut phenotype, describe patients with severe epilepsy, generalized epileptic discharges, and variable intellectual disability. Our previous functional neuroimaging studies suggest that abnormal diffuse association network activity underlies the epileptic discharges of this clinical phenotype. Herein we use a data-driven multivariate approach to determine the spatial changes in local and global networks of patients with severe epilepsy of the Lennox-Gastaut phenotype. We studied 9 adult patients and 14 controls. In 20 min of task-free blood oxygen level-dependent functional magnetic resonance imaging data, two metrics of functional connectivity were studied: Regional homogeneity or local connectivity, a measure of concordance between each voxel to a focal cluster of adjacent voxels; and eigenvector centrality, a global connectivity estimate designed to detect important neural hubs. Multivariate pattern analysis of these data in a machine-learning framework was used to identify spatial features that classified disease subjects. Multivariate pattern analysis was 95.7% accurate in classifying subjects for both local and global connectivity measures (22/23 subjects correctly classified). Maximal discriminating features were the following: increased local connectivity in frontoinsular and intraparietal areas; increased global connectivity in posterior association areas; decreased local connectivity in sensory (visual and auditory) and medial frontal cortices; and decreased global connectivity in the cingulate cortex, striatum, hippocampus, and pons. Using a data-driven analysis method in task-free functional magnetic resonance imaging, we show increased connectivity in critical areas of association cortex and decreased connectivity in primary cortex. This supports previous findings of a critical role for these association cortical regions as a final common pathway in generating the Lennox-Gastaut phenotype. Abnormal function of these areas is likely to be important in explaining the intellectual problems characteristic of this disorder. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  13. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward

    PubMed Central

    Fox, Glenn R.; Sobhani, Mona; Aziz-Zadeh, Lisa

    2013-01-01

    How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI) study, Caucasian Jewish male participants viewed videos of (1) disliked, hateful, anti-Semitic individuals, and (2) liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex (ACC), and the somatosensory cortex), reward processing (the striatum), and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left ACC and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person's pain. PMID:24167496

  14. Interpersonal violence in posttraumatic women: brain networks triggered by trauma-related pictures.

    PubMed

    Neumeister, Paula; Feldker, Katharina; Heitmann, Carina Y; Helmich, Ruth; Gathmann, Bettina; Becker, Michael P I; Straube, Thomas

    2017-04-01

    Interpersonal violence (IPV) is one of the most frequent causes for the development of posttraumatic stress disorder (PTSD) in women. Trauma-related triggers have been proposed to evoke automatic emotional responses in PTSD. The present functional magnetic resonance study investigated the neural basis of trauma-related picture processing in women with IPV-PTSD (n = 18) relative to healthy controls (n = 18) using a newly standardized trauma-related picture set and a non-emotional vigilance task. We aimed to identify brain activation and connectivity evoked by trauma-related pictures, and associations with PTSD symptom severity. We found hyperactivation during trauma-related vs neutral picture processing in both subcortical [basolateral amygdala (BLA), thalamus, brainstem] and cortical [anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), insula, occipital cortex] regions in IPV-PTSD. In patients, brain activation in amygdala, ACC, insula, occipital cortex and brainstem correlated positively with symptom severity. Furthermore, connectivity analyses revealed hyperconnectivity between BLA and dorsal ACC/mPFC. Results show symptom severity-dependent brain activation and hyperconnectivity in response to trauma-related pictures in brain regions related to fear and visual processing in women suffering from IPV-PTSD. These brain mechanisms appear to be associated with immediate responses to trauma-related triggers presented in a non-emotional context in this PTSD subgroup. © The Author (2016). Published by Oxford University Press.

  15. A Coordinate-Based Meta-Analysis of Overlaps in Regional Specialization and Functional Connectivity across Subjective Value and Default Mode Networks.

    PubMed

    Acikalin, M Yavuz; Gorgolewski, Krzysztof J; Poldrack, Russell A

    2017-01-01

    Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings.

  16. Mode of effective connectivity within a putative neural network differentiates moral cognitions related to care and justice ethics.

    PubMed

    Cáceda, Ricardo; James, G Andrew; Ely, Timothy D; Snarey, John; Kilts, Clinton D

    2011-02-25

    Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses.

  17. Neural intrinsic connectivity networks associated with risk aversion in old age.

    PubMed

    Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra A; Yu, Lei; Edmonds, Emily C; Bennett, David A

    2012-02-01

    Risk aversion is associated with several important real world outcomes. Although the neurobiological correlates of risk aversion have been studied in young persons, little is known of the neurobiological correlates of risk aversion among older persons. Resting-state functional MRI data were collected on 134 non-demented participants of the Rush Memory and Aging Project, a community-based cohort study of aging. Risk aversion was measured using a series of standard questions in which participants were asked to choose between a certain monetary payment ($15) versus a gamble in which they could gain more than $15 or gain nothing, with potential gains varied across questions. Participants determined to be "high" (n=27) and "low" (n=27) in risk aversion were grouped accordingly. Using a spherical seed region of interest in the anterior cingulate cortex, voxel-wise functional connectivity network similarities were observed in bilateral frontal, anterior and posterior cingulate, insula, basal ganglia, temporal, parietal, and thalamic regions. Differences in functional connectivity were observed such that those low in risk aversion had greater connectivity to clusters in the superior, middle, and medial frontal regions, as well as cerebellar, parietal, occipital, and inferior temporal regions. Those high in risk aversion had greater connectivity to clusters in the inferior and orbital frontal, parahippocampal, and insula regions, as well as thalamic, parietal, precentral gyrus, postcentral gyrus, and middle temporal regions. Similarities and differences in functional connectivity patterns may reflect the historical recruitment of specific brain regions as a network in the active processing of risk in older adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Neural Intrinsic Connectivity Networks Associated with Risk Aversion in Old Age

    PubMed Central

    Han, S. Duke; Boyle, Patricia A.; Arfanakis, Konstantinos; Fleischman, Debra A.; Yu, Lei; Edmonds, Emily C.; Bennett, David A.

    2011-01-01

    Risk aversion is associated with several important real world outcomes. Although the neurobiological correlates of risk aversion have been studied in young persons, little is known of the neurobiological correlates of risk aversion among older persons. Resting-state functional MRI data were collected on 134 non-demented participants of the Rush Memory and Aging Project, a community-based cohort study of aging. Risk aversion was measured using a series of standard questions in which participants were asked to choose between a certain monetary payment ($15) versus a gamble in which they could gain more than $15 or gain nothing, with potential gains varied across questions. Participants determined to be “high” (n=27) and “low” (n=27) in risk aversion were grouped accordingly. Using a spherical seed region of interest in the anterior cingulate cortex, voxel-wise functional connectivity network similarities were observed in bilateral frontal, anterior and posterior cingulate, insula, basal ganglia, temporal, parietal, and thalamic regions. Differences in functional connectivity were observed such that those low in risk aversion had greater connectivity to clusters in the superior, middle, and medial frontal regions, as well as cerebellar, parietal, occipital, and inferior temporal regions. Those high in risk aversion had greater connectivity to clusters in the inferior and orbital frontal, parahippocampal, and insula regions, as well as thalamic, parietal, precentral gyrus, postcentral gyrus, and middle temporal regions. Similarities and differences in functional connectivity patterns may reflect the historical recruitment of specific brain regions as a network in the active processing of risk in older adults. PMID:22044475

  19. Functional asymmetries in early learning during right, left, and bimanual performance in right-handed subjects.

    PubMed

    Aznárez-Sanado, Maite; Fernández-Seara, Maria A; Loayza, Francis R; Pastor, Maria A

    2013-03-01

    To elucidate differences in activity and connectivity during early learning due to the performing hand. Twenty right-handed subjects were recruited. The neural correlates of explicit visuospatial learning executed with the right, the left hand, and bimanually were investigated using functional magnetic resonance imaging. Connectivity analyses were carried out using the psychophysiological interactions model, considering right and left anterior putamen as index regions. A common neural network was found for the three tasks during learning. Main activity increases were located in posterior cingulate cortex, supplementary motor area, parietal cortex, anterior putamen, and cerebellum (IV-V), whereas activity decrements were observed in prefrontal regions. However, the left hand task showed a greater recruitment of left hippocampal areas when compared with the other tasks. In addition, enhanced connectivity between the right anterior putamen and motor cortical and cerebellar regions was found for the left hand when compared with the right hand task. An additional recruitment of brain regions and increased striato-cortical and striato-cerebellar functional connections is needed when early learning is performed with the nondominant hand. In addition, access to brain resources during learning may be directed by the dominant hand in the bimanual task. Copyright © 2012 Wiley Periodicals, Inc.

  20. Anterior Cingulate Cortex γ-Aminobutyric Acid in Depressed Adolescents

    PubMed Central

    Gabbay, Vilma; Mao, Xiangling; Klein, Rachel G.; Ely, Benjamin A.; Babb, James S.; Panzer, Aviva M.; Alonso, Carmen M.; Shungu, Dikoma C.

    2013-01-01

    Context Anhedonia, a core symptom of major depressive disorder (MDD) and highly variable among adolescents with MDD, may involve alterations in the major inhibitory amino acid neurotransmitter system of γ-aminobutyric acid (GABA). Objective To test whether anterior cingulate cortex (ACC) GABA levels, measured by proton magnetic resonance spectroscopy, are decreased in adolescents with MDD. The associations of GABA alterations with the presence and severity of anhedonia were explored. Design Case-control, cross-sectional study using single-voxel proton magnetic resonance spectroscopy at 3 T. Setting Two clinical research divisions at 2 teaching hospitals. Participants Twenty psychotropic medication-free adolescents with MDD (10 anhedonic, 12 female, aged 12–19 years) with episode duration of 8 weeks or more and 21 control subjects group matched for sex and age. Main Outcome Measures Anterior cingulate cortex GABA levels expressed as ratios relative to unsuppressed voxel tissue water (w) and anhedonia scores expressed as a continuous variable. Results Compared with control subjects, adolescents with MDD had significantly decreased ACC GABA/w (t= 3.2; P<.003). When subjects with MDD were categorized based on the presence of anhedonia, only anhedonic patients had decreased GABA/w levels compared with control subjects (t=4.08; P<.001; PTukey<.001). Anterior cingulate cortex GABA/w levels were negatively correlated with anhedonia scores for the whole MDD group (r = −0.50; P = .02), as well as for the entire participant sample including the control subjects (r=−0.54; P<.001). Anterior cingulate cortex white matter was also significantly decreased in adolescents with MDD compared with controls (P=.04). Conclusions These findings suggest that GABA, the major inhibitory neurotransmitter in the brain, may be implicated in adolescent MDD and, more specifically, in those with anhedonia. In addition, use of a continuous rather than categorical scale of anhedonia, as in the present study, may permit greater specificity in evaluating this important clinical feature. PMID:21969419

  1. Monitoring glutamate levels in the posterior cingulate cortex of thyroid dysfunction patients with TE-averaged PRESS at 3T.

    PubMed

    Zhang, Qiujuan; Bai, Zhilan; Gong, Yan; Liu, Xinxin; Dai, Xiaoqing; Wang, Shejiao; Liu, Feng

    2015-07-01

    Patients with thyroid dysfunction frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety and mania, which suggest brain dysfunction. However, the underlying process of this dysfunction remains unclear. Recent studies of the glutamatergic system have offered important insight into the neuropsychiatric process. Thus, this study investigates changes in glutamate concentration in patients with thyroid dysfunction. It also clarifies whether Glu levels are related to thyroid hormones via proton magnetic resonance spectroscopy. 36 untreated patients with thyroid dysfunction (18 hyperthyroidism patients and 18 hypothyroidism patients) and 18 age- and gender-matched controls were included in this study. The posterior cingulate cortex was examined by MRS with TE-averaged PRESS at 3T. The intensity of glutamate, choline, N-acetylaspartate, and creatine was assessed using jMRUI v4.0 software. We found a significant difference among hyper-/hypo- and control groups in Glu (P=0.003) and Cho (P=0.015). The concentrations of glutamate increased (P=0.006) in the posterior cingulate cortex in patients with hypothyroidism and significantly decreased (P=0.002) in hyperthyroidism patients relative to controls. There were no difference in the concentrations of choline between hyperthyroidism patients and controls (P=0.679). Versus the hyperthyroidism group, the hypothyroidism group showed increased glutamate (P=0.018) and choline (P=0.001) in the posterior cingulate cortex. There was no significant difference in the concentrations of NAA or creatine across the three groups (P>0.05). The Glu level correlates with TT3 (P=0.000) and FT3 (P=0.022). The signal intensity of glutamate shows significant differences in the region of the posterior cingulate cortex in patients with thyroid dysfunction. This change indicates a potential role of glutamate in the brain dysfunction experience by patients with thyroid hormone disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  3. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  4. A longitudinal fMRI investigation in acute post-traumatic stress disorder (PTSD).

    PubMed

    Ke, Jun; Zhang, Li; Qi, Rongfeng; Li, Weihui; Hou, Cailan; Zhong, Yuan; He, Zhong; Li, Lingjiang; Lu, Guangming

    2016-11-01

    Background Neuroimaging studies have implicated limbic, paralimbic, and prefrontal cortex in the pathophysiology of chronic post-traumatic stress disorder (PTSD). However, little is known about the neural substrates of acute PTSD and how they change with symptom improvement. Purpose To examine the neural circuitry underlying acute PTSD and brain function changes during clinical recovery from this disorder. Material and Methods Nineteen acute PTSD patients and nine non-PTSD subjects who all experienced a devastating mining accident underwent clinical assessment as well as functional magnetic resonance imaging (fMRI) scanning while viewing trauma-related and neutral pictures. Two years after the accident, a subgroup of 17 patients completed a second clinical evaluation, of which 13 were given an identical follow-up scan. Results Acute PTSD patients demonstrated greater activation in the vermis and right posterior cingulate, and greater deactivation in the bilateral medial prefrontal cortex and inferior parietal lobules than controls in the traumatic versus neutral condition. At follow-up, PTSD patients showed symptom reduction and decreased activation in the right middle frontal gyrus, bilateral posterior cingulate/precuneus, and cerebellum. Correlation results confirmed these findings and indicated that brain activation in the posterior cingulate/precuneus and vermis was predictive of PTSD symptom improvement. Conclusion The findings support the involvement of the medial prefrontal cortex, inferior parietal lobule, posterior cingulate, and vermis in the pathogenesis of acute PTSD. Brain activation in the vermis and posterior cingulate/precuneus appears to be a biological marker of recovery potential from PTSD. Furthermore, decreased activation of the middle frontal gyrus, posterior cingulate/precuneus, and cerebellum may reflect symptom improvement.

  5. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.

    PubMed

    Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A

    2016-07-01

    Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Enhanced affective brain representations of chocolate in cravers vs. non-cravers.

    PubMed

    Rolls, Edmund T; McCabe, Ciara

    2007-08-01

    To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.

  7. Higher Media Multi-Tasking Activity Is Associated with Smaller Gray-Matter Density in the Anterior Cingulate Cortex

    PubMed Central

    Loh, Kep Kee; Kanai, Ryota

    2014-01-01

    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences. PMID:25250778

  8. Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa

    PubMed Central

    Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan

    2017-01-01

    Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813

  9. Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex?

    PubMed

    Kanske, Philipp; Kotz, Sonja A

    2011-04-01

    It has been hypothesized that processing of conflict is facilitated by emotion. Emotional stimuli signal significance in a situation. Thus, when an emotional stimulus is task relevant, more resources may be devoted to conflict processing to reduce the time that an organism is unable to act. In the present electroencephalography and functional magnetic resonance imaging (fMRI) studies, we employed a conflict task and manipulated the emotional content and prosody of auditory target stimuli. In line with our hypothesis, reaction times revealed faster conflict resolution for emotional stimuli. Early stages of event-related potential conflict processing were modulated by emotion as indexed in an enhanced frontocentral negativity at 420 ms. FMRI yielded conflict activation in the dorsal anterior cingulate cortex (dACC), a crucial part of the executive control network. The right ventral ACC (vACC) was activated for conflict processing in emotional stimuli, suggesting that it is additionally activated for conflict processing in emotional stimuli. The amygdala was also activated by emotion. Furthermore, emotion increased functional connectivity between the vACC and activity in the amygdala and the dACC. The results support the hypothesis that emotion speeds up conflict processing and suggest a new role for the vACC in processing conflict in particularly significant situations signaled by emotion.

  10. Distracted and down: neural mechanisms of affective interference in subclinical depression

    PubMed Central

    Andrews-Hanna, Jessica R.; Spielberg, Jeffrey M.; Warren, Stacie L.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy; Banich, Marie T.

    2015-01-01

    Previous studies have shown that depressed individuals have difficulty directing attention away from negative distractors, a phenomenon known as affective interference. However, findings are mixed regarding the neural mechanisms and network dynamics of affective interference. The present study addressed these issues by comparing neural activation during emotion-word and color-word Stroop tasks in participants with varying levels of (primarily subclinical) depression. Depressive symptoms predicted increased activation to negative distractors in areas of dorsal anterior cingulate cortex (dACC) and posterior cingulate cortex (PCC), regions implicated in cognitive control and internally directed attention, respectively. Increased dACC activity was also observed in the group-average response to incongruent distractors, suggesting that dACC activity during affective interference is related to overtaxed cognitive control. In contrast, regions of PCC were deactivated across the group in response to incongruent distractors, suggesting that PCC activity during affective interference represents task-independent processing. A psychophysiological interaction emerged in which higher depression predicted more positively correlated activity between dACC and PCC during affective interference, i.e. greater connectivity between cognitive control and internal-attention systems. These findings suggest that, when individuals high in depression are confronted by negative material, increased attention to internal thoughts and difficulty shifting resources to the external world interfere with goal-directed behavior. PMID:25062838

  11. Neural substrates of self-referential processing in Chinese Buddhists

    PubMed Central

    Gu, Xiaosi; Mao, Lihua; Ge, Jianqiao; Wang, Gang; Ma, Yina

    2010-01-01

    Our recent work showed that self-trait judgment is associated with increased activity in the ventral medial prefrontal cortex (VMPFC) in non-religious Chinese, but in the dorsal medial prefrontal cortex (DMPFC) in Chinese Christians. The current work further investigated neural substrates of self-referential processing in Chinese Buddhists. Using functional magnetic resonance imaging, we scanned 14 Chinese Buddhists, while they conducted trait judgments of the self, Zhu Rongji (the former Chinese premier), Sakyamuni (the Buddhist leader) and Jesus (the Christian leader). We found that, relative to Zhu Rongji judgment, self-judgment in Buddhist participants failed to generate increased activation in the VMPFC but induced increased activations in the DMPFC/rostral anterior cingulate cortex, midcingulate and the left frontal/insular cortex. Self-judgment was also associated with decreased functional connectivity between the DMPFC and posterior parietal cortex compared with Zhu Rongji judgment. The results suggest that Buddhist doctrine of No-self results in weakened neural coding of stimulus self-relatedness in the VMPFC, but enhanced evaluative processes of self-referential stimuli in the DMPFC. Moreover, self-referential processing in Buddhists is characterized by monitoring the conflict between the doctrine of No-self and self-focus thinking during self-trait judgment. PMID:19620181

  12. Fronto-limbic effective connectivity as possible predictor of antidepressant response to SSRI administration.

    PubMed

    Vai, Benedetta; Bulgarelli, Chiara; Godlewska, Beata R; Cowen, Philip J; Benedetti, Francesco; Harmer, Catherine J

    2016-12-01

    The timely selection of the optimal treatment for depressed patients is critical to improve remission rates. The detection of pre-treatment variables able to predict differential treatment response may provide novel approaches for treatment selection. Selective serotonin reuptake inhibitors (SSRIs) modulate the fronto-limbic functional response and connectivity, an effect preceding the overt clinical antidepressant effects. Here we investigated whether the cortico-limbic connectivity associated with emotional bias measured before SSRI administration predicts the efficacy of antidepressant treatment in MDD patients. fMRI and Dynamic Causal Modeling (DCM) were combined to study if effective connectivity might differentiate healthy controls (HC) and patients affected by major depression who later responded (RMDD, n=21), or failed to respond (nRMDD, n=12), to 6 weeks of escitalopram administration. Sixteen DCMs exploring connectivity between anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), Amygdala (Amy), and fusiform gyrus (FG) were constructed. Analyses revealed that nRMDD had reduced endogenous connectivity from Amy to VLPFC and to ACC, with an increased connectivity and modulation of the ACC to Amy connectivity when processing of fearful emotional stimuli compared to HC. RMDD and HC did not significantly differ among themselves. Pre-treatment effective connectivity in fronto-limbic circuitry could be an important factor affecting antidepressant response, and highlight the mechanisms which may be involved in recovery from depression. These results suggest that fronto-limbic connectivity might provide a neural biomarker to predict the clinical outcome to SSRIs administration in major depression. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  13. Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression.

    PubMed

    Barch, Deanna; Pagliaccio, David; Belden, Andy; Harms, Michael P; Gaffrey, Michael; Sylvester, Chad M; Tillman, Rebecca; Luby, Joan

    2016-06-01

    In this study, the authors tested the hypothesis that poverty experienced in early childhood, as measured by income-to-needs ratio, has an impact on functional brain connectivity at school age, which in turn mediates influences on child negative mood/depression. Participants were from a prospective longitudinal study of emotion development. Preschoolers 3-5 years of age were originally ascertained from primary care and day care sites in the St. Louis area and then underwent annual behavioral assessments for up to 12 years. Healthy preschoolers and those with a history of depression symptoms underwent neuroimaging at school age. Using functional MRI, the authors examined whole brain resting-state functional connectivity with the left and right hippocampus and amygdala. Lower income-to-needs ratio at preschool age was associated with reduced connectivity between hippocampus and amygdala and a number of regions at school age, including the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen. Lower income-to-needs ratio predicted greater negative mood/depression severity at school age, as did connectivity between the left hippocampus and the right superior frontal cortex and between the right amygdala and the right lingual gyrus. Connectivity mediated the relationship between income-to-needs ratio and negative mood/depression at the time of scanning. These findings suggest that poverty in early childhood, as assessed by at least one measure, may influence the development of hippocampal and amygdala connectivity in a manner leading to negative mood symptoms during later childhood.

  14. Brain activity and connectivity changes in response to glucose ingestion.

    PubMed

    van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J

    2018-05-27

    The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.

  15. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

    PubMed

    Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara

    2015-09-10

    The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  16. Neural Correlates and Connectivity underlying Stress-related Impulse Control Difficulties in Alcoholism

    PubMed Central

    Seo, Dongju; Lacadie, Cheryl M.; Sinha, Rajita

    2016-01-01

    BACKGROUND Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. METHOD The current study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients and 37 demographically-matched healthy controls were examined during brief individualized imagery trials of stress, alcohol-cue and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale (DERS). RESULTS Impulse control difficulties in AUD patients were significantly associated with hypoactive response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p<0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex (ACC) compared to controls, which are core regions of emotion regulation, suggesting AUD patients’ decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p<0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p<0.05, with adjusted Bonferroni correction). CONCLUSION Hypoactive response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. PMID:27501356

  17. Neural Correlates and Connectivity Underlying Stress-Related Impulse Control Difficulties in Alcoholism.

    PubMed

    Seo, Dongju; Lacadie, Cheryl M; Sinha, Rajita

    2016-09-01

    Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. This study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients, and 37 demographically matched healthy controls were examined during brief individualized imagery trials of stress, alcohol cue, and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale. Impulse control difficulties in AUD patients were significantly associated with hypo-active response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p < 0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex compared to controls, which are core regions of emotion regulation, suggesting AUD patients' decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p < 0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p < 0.05, with adjusted Bonferroni correction). Hypo-active response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. Copyright © 2016 by the Research Society on Alcoholism.

  18. Functional neuroimaging of extraversion-introversion.

    PubMed

    Lei, Xu; Yang, Tianliang; Wu, Taoyu

    2015-12-01

    Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

  19. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    PubMed

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN.

  20. Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients

    PubMed Central

    Cavaliere, Carlo; Aiello, Marco; Di Perri, Carol; Amico, Enrico; Martial, Charlotte; Thibaut, Aurore; Laureys, Steven; Soddu, Andrea

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS) patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions exist, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI) of 16 sub-acute and chronic MCS patients (6 tDCS responders) who successively received a single left dorsolateral prefrontal cortex (DLPFC) tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network (ECN) and default-mode network (DMN) was performed. tDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders (NR) MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus. Our findings suggest that a prior high connectivity with regions belonging to ECN can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS. PMID:27857682

  1. Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients.

    PubMed

    Cavaliere, Carlo; Aiello, Marco; Di Perri, Carol; Amico, Enrico; Martial, Charlotte; Thibaut, Aurore; Laureys, Steven; Soddu, Andrea

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS) patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions exist, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI) of 16 sub-acute and chronic MCS patients (6 tDCS responders) who successively received a single left dorsolateral prefrontal cortex (DLPFC) tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network (ECN) and default-mode network (DMN) was performed. tDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders (NR) MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus. Our findings suggest that a prior high connectivity with regions belonging to ECN can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  2. Decreased functional connectivity of insula-based network in young adults with internet gaming disorder.

    PubMed

    Zhang, Yanzhen; Mei, Wei; Zhang, John X; Wu, Qiulin; Zhang, Wei

    2016-09-01

    The insula is a region that integrates interoception and drug urges, but little is known about its role in behavioral addiction such as internet addiction. We investigated insula-based functional connectivity in participants with internet gaming disorder (IGD) and healthy controls (HC) using resting-state functional MRI. The right and left insula subregions (posterior, ventroanterior, and dorsoanterior) were used as seed regions in a connectivity analysis. Compared with the HC group, the IGD group showed decreased functional connectivity between left posterior insula and bilateral supplementary motor area and middle cingulated cortex, between right posterior insula and right superior frontal gyrus, and decreased functional integration between insular subregions. The finding of reduced functional connectivity between the interoception and the motor/executive control regions is interpreted to reflect reduced ability to inhibit motor responses to internet gaming or diminished executive control over craving for internet gaming in IGD. The results support the hypothesis that IGD is associated with altered insula-based network, similar to substance addiction such as smoking.

  3. Default Mode Network Connectivity as a Function of Familial and Environmental Risk for Psychotic Disorder

    PubMed Central

    Peeters, Sanne C. T.; van de Ven, Vincent; Gronenschild, Ed H. B. M; Patel, Ameera X.; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Background Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. Results There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Discussion Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure. PMID:25790002

  4. Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users.

    PubMed

    Hwang, Jaeuk; Lyoo, In Kyoon; Kim, Seog Ju; Sung, Young Hoon; Bae, Soojeong; Cho, Sung-Nam; Lee, Ho Young; Lee, Dong Soo; Renshaw, Perry F

    2006-04-28

    The aim of the current study was to explore changes of relative regional cerebral blood flow (rCBF) in short-term and long-term abstinent methamphetamine (MA) users. Relative rCBF in 40 abstinent MA users and 23 healthy comparison subjects was compared by the technetium-99m-hexamethyl-propylene amine oxime ((99m)Tc-HMPAO) single photon emission computed tomography (SPECT). Relative rCBF in areas that were found to differ significantly was also compared in groups of MA users with short-term (<6 months) and long-term (>or=6 months) abstinence. MA users showed decreased relative rCBF in the right anterior cingulate cortex (Brodmann area 32) relative to healthy comparison subjects. Long-term abstinent MA users had significantly greater rCBF than short-term abstinent MA users. We report that abstinent MA users have decreased rCBF in the anterior cingulate cortex with smaller relative decreases in subjects with prolonged abstinence.

  5. DRD2 genotype-based variation of default mode network activity and of its relationship with striatal DAT binding.

    PubMed

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with "increased" activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([(123)I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.

  6. DRD2 Genotype-Based Variation of Default Mode Network Activity and of Its Relationship With Striatal DAT Binding

    PubMed Central

    Sambataro, Fabio; Fazio, Leonardo; Taurisano, Paolo; Gelao, Barbara; Porcelli, Annamaria; Mancini, Marina; Sinibaldi, Lorenzo; Ursini, Gianluca; Masellis, Rita; Caforio, Grazia; Di Giorgio, Annabella; Niccoli-Asabella, Artor; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2013-01-01

    The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling. PMID:21976709

  7. Altered structural network architecture is predictive of the presence of psychotic symptoms in patients with 22q11.2 deletion syndrome.

    PubMed

    Padula, Maria C; Scariati, Elisa; Schaer, Marie; Sandini, Corrado; Ottet, Marie Christine; Schneider, Maude; Van De Ville, Dimitri; Eliez, Stephan

    2017-01-01

    22q11.2 deletion syndrome (22q11DS) represents a homogeneous model of schizophrenia particularly suitable for the search of neural biomarkers of psychosis. Impairments in structural connectivity related to the presence of psychotic symptoms have been reported in patients with 22q11DS. However, the relationships between connectivity changes in patients with different symptomatic profiles are still largely unknown and warrant further investigations. In this study, we used structural connectivity to discriminate patients with 22q11DS with ( N  = 31) and without ( N  = 31) attenuated positive psychotic symptoms. Different structural connectivity measures were used, including the number of streamlines connecting pairs of brain regions, graph theoretical measures, and diffusion measures. We used univariate group comparisons as well as predictive multivariate approaches. The univariate comparison of connectivity measures between patients with or without attenuated positive psychotic symptoms did not give significant results. However, the multivariate prediction revealed that altered structural network architecture discriminates patient subtypes (accuracy = 67.7%). Among the regions contributing to the classification we found the anterior cingulate cortex, which is known to be associated to the presence of psychotic symptoms in patients with 22q11DS. Furthermore, a significant discrimination (accuracy = 64%) was obtained with fractional anisotropy and radial diffusivity in the left inferior longitudinal fasciculus and the right cingulate gyrus. Our results point to alterations in structural network architecture and white matter microstructure in patients with 22q11DS with attenuated positive symptoms, mainly involving connections of the limbic system. These alterations may therefore represent a potential biomarker for an increased risk of psychosis that should be further tested in longitudinal studies.

  8. Portraying the unique contribution of the default mode network to internally driven mnemonic processes

    PubMed Central

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-01-01

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval. PMID:23479650

  9. The retrosplenial cortex: A memory gateway between the cortical default mode network and the medial temporal lobe.

    PubMed

    Kaboodvand, Neda; Bäckman, Lars; Nyberg, Lars; Salami, Alireza

    2018-05-01

    The default mode network (DMN) involves interacting cortical areas, including the posterior cingulate cortex (PCC) and the retrosplenial cortex (RSC), and subcortical areas, including the medial temporal lobe (MTL). The degree of functional connectivity (FC) within the DMN, particularly between MTL and medial-parietal subsystems, relates to episodic memory (EM) processes. However, past resting-state studies investigating the link between posterior DMN-MTL FC and EM performance yielded inconsistent results, possibly reflecting heterogeneity in the degree of connectivity between MTL and specific cortical DMN regions. Animal work suggests that RSC has structural connections to both cortical DMN regions and MTL, and may thus serve as an intermediate layer that facilitates information transfer between cortical and subcortical DMNs. We studied 180 healthy old adults (aged 64-68 years), who underwent comprehensive assessment of EM, along with resting-state fMRI. We found greater FC between MTL and RSC than between MTL and the other cortical DMN regions (e.g., PCC), with the only significant association with EM observed for MTL-RSC FC. Mediational analysis showed that MTL-cortical DMN connectivity increased with RSC as a mediator. Further analysis using a graph-theoretical approach on DMN nodes revealed the highest betweenness centrality for RSC, confirming that a high proportion of short paths among DMN regions pass through RSC. Importantly, the degree of RSC mediation was associated with EM performance, suggesting that individuals with greater mediation have an EM advantage. These findings suggest that RSC forms a critical gateway between MTL and cortical DMN to support EM in older adults. © 2018 Wiley Periodicals, Inc.

  10. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    PubMed

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Changes in cue-induced, prefrontal cortex activity with video-game play.

    PubMed

    Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F

    2010-12-01

    Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.

  12. Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach.

    PubMed

    Feng, Chunliang; Zhu, Zhiyuan; Gu, Ruolei; Wu, Xia; Luo, Yue-Jia; Krueger, Frank

    2018-06-08

    A large number of studies have demonstrated costly punishment to unfair events across human societies. However, individuals exhibit a large heterogeneity in costly punishment decisions, whereas the neuropsychological substrates underlying the heterogeneity remain poorly understood. Here, we addressed this issue by applying a multivariate machine-learning approach to compare topological properties of resting-state brain networks as a potential neuromarker between individuals exhibiting different punishment propensities. A linear support vector machine classifier obtained an accuracy of 74.19% employing the features derived from resting-state brain networks to distinguish two groups of individuals with different punishment tendencies. Importantly, the most discriminative features that contributed to the classification were those regions frequently implicated in costly punishment decisions, including dorsal anterior cingulate cortex (dACC) and putamen (salience network), dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (mentalizing network), and lateral prefrontal cortex (central-executive network). These networks are previously implicated in encoding norm violation and intentions of others and integrating this information for punishment decisions. Our findings thus demonstrated that resting-state functional connectivity (RSFC) provides a promising neuromarker of social preferences, and bolster the assertion that human costly punishment behaviors emerge from interactions among multiple neural systems. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. [Review of the effects of mindfulness meditation on mental and physical health and its mechanisms of action].

    PubMed

    Ngô, Thanh-Lan

    2013-01-01

    Interventions based on mindfulness have become increasingly popular. This article reviews the empirical literature on its effects on mental and physical health, discusses presumed mechanisms of action as well as its proposed neurobiological underpinning. Mindfulness is associated with increased well-being as well as reduced cognitive reactivity and behavioral avoidance. It seems to contribute to enhance immune functions, diminish inflammation, diminish the reactivity of the autonomic nervous system, increase telomerase activity, lead to higher levels of plasmatic melatonin and serotonin. It enhances the quality of life for patients suffering from chronic pain, fibromylagia and HIV infection. It facilitates adaptation to the diagnosis of cancer and diabetes. It seems to lead to symptomatic improvement in irritable bowel syndrome, chronic fatigue syndrome, hot flashes, insomnia, stress related hyperphagia. It diminishes craving in substance abuse. The proposed mechanism of action are enhanced metacognitive conscience, interoceptive exposure, experiential acceptance, self-management, attention control, memory, relaxation. Six mechanism of actions for which neurological underpinnings have been published are: attention regulation (anterior cingulate cortex), body awareness (insula, temporoparietal junction), emotion regulation (modulation of the amygdala by the lateral prefrontal cortex), cognitive re-evaluation (activation of the dorsal medial prefrontal cortex or diminished activity in prefrontal regions), exposure/extinction/reconsolidation (ventromedial prefrontal cortex, hippocampus, amygdala) and flexible self-concept (prefrontal median cortex, posterior cingulated cortex, insula, temporoparietal junction). The neurobiological effects of meditation are described. These are: (1) the deactivation of the default mode network that generates spontaneous thoughts, contributes to the maintenance of the autobiographical self and is associated with anxiety and depression; (2) the anterior cingulate cortex that underpins attention functions; (3) the anterior insula associated with the perception of visceral sensation, the detection of heartbeat and respiratory rate, and the affective response to pain; (4) the posterior cingulate cortex which helps to understand the context from which a stimulus emerges; (5) the temporoparietal junction which assumes a central role in empathy and compassion; (6) the amygdala implicated in fear responses. The article ends with a short review of the empirical basis supporting the efficacy for mindfulness based intervention and suggested directions for future research.

  14. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sliding-window analysis tracks fluctuations in amygdala functional connectivity associated with physiological arousal and vigilance during fear conditioning.

    PubMed

    Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M

    2017-06-01

    We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    PubMed

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Impaired functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis use disorder: Effects of cannabis and THC.

    PubMed

    Fischer, Adina S; Whitfield-Gabrieli, Susan; Roth, Robert M; Brunette, Mary F; Green, Alan I

    2014-09-01

    Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15 mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. Copyright © 2014. Published by Elsevier B.V.

  18. Resting-state functional connectivity of antero-medial prefrontal cortex sub-regions in major depression and relationship to emotional intelligence.

    PubMed

    Sawaya, Helen; Johnson, Kevin; Schmidt, Matthew; Arana, Ashley; Chahine, George; Atoui, Mia; Pincus, David; George, Mark S; Panksepp, Jaak; Nahas, Ziad

    2015-03-05

    Major depressive disorder has been associated with abnormal resting-state functional connectivity (FC), especially in cognitive processing and emotional regulation networks. Although studies have found abnormal FC in regions of the default mode network (DMN), no study has investigated the FC of specific regions within the anterior DMN based on cytoarchitectonic subdivisions of the antero-medial pre-frontal cortex (PFC). Studies from different areas in the field have shown regions within the anterior DMN to be involved in emotional intelligence. Although abnormalities in this region have been observed in depression, the relationship between the ventromedial PFC (vmPFC) function and emotional intelligence has yet to be investigated in depressed individuals. Twenty-one medication-free, non-treatment resistant, depressed patients and 21 healthy controls underwent a resting state functional magnetic resonance imaging session. The participants also completed an ability-based measure of emotional intelligence: the Mayer-Salovey-Caruso Emotional Intelligence Test. FC maps of Brodmann areas (BA) 25, 10 m, 10r, and 10p were created and compared between the two groups. Mixed-effects analyses showed that the more anterior seeds encompassed larger areas of the DMN. Compared to healthy controls, depressed patients had significantly lower connectivity between BA10p and the right insula and between BA25 and the perigenual anterior cingulate cortex. Exploratory analyses showed an association between vmPFC connectivity and emotional intelligence. These results suggest that individuals with depression have reduced FC between antero-medial PFC regions and regions involved in emotional regulation compared to control subjects. Moreover, vmPFC functional connectivity appears linked to emotional intelligence. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  19. Impaired Functional Connectivity of Brain Reward Circuitry in Patients with Schizophrenia and Cannabis Use Disorder: Effects of Cannabis and THC

    PubMed Central

    Fischer, Adina S.; Whitfield-Gabrieli, Susan; Roth, Robert M.; Brunette, Mary F.; Green, Alan I.

    2016-01-01

    Cannabis use disorder (CUD) occurs in up to 42% of patients with schizophrenia and substantially worsens disease progression. The basis of CUD in schizophrenia is unclear and available treatments are rarely successful at limiting cannabis use. We have proposed that a dysregulated brain reward circuit (BRC) may underpin cannabis use in these patients. In the present pilot study, we used whole-brain seed-to-voxel resting state functional connectivity (rs-fc) to examine the BRC of patients with schizophrenia and CUD, and to explore the effects of smoked cannabis and orally administered delta-9-tetrahydrocannabinol (THC) on the BRC. 12 patients with schizophrenia and CUD and 12 control subjects each completed two fMRI resting scans, with patients administered either a 3.6% THC cannabis cigarette (n=6) or a 15mg THC capsule (n=6) prior to their second scan. Results revealed significantly reduced connectivity at baseline in patients relative to controls, with most pronounced hypoconnectivity found between the nucleus accumbens and prefrontal cortical BRC regions (i.e., anterior prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex). Both cannabis and THC administration increased connectivity between these regions, in direct correlation with increases in plasma THC levels. This study is the first to investigate interregional connectivity of the BRC and the effects of cannabis and THC on this circuit in patients with schizophrenia and CUD. The findings from this pilot study support the use of rs-fc as a means of measuring the integrity of the BRC and the effects of pharmacologic agents acting on this circuit in patients with schizophrenia and CUD. PMID:25037524

  20. Impacts of religious semantic priming on an intertemporal discounting task: Response time effects and neural correlates.

    PubMed

    Morgan, Jonathan; Clark, Dustin; Tripodis, Yorghos; Halloran, Christopher S; Minsky, April; Wildman, Wesley J; Durso, Raymon; McNamara, Patrick

    2016-08-01

    The purpose of this study is to test the hypothesis that religious primes would influence intertemporal discounting behaviors in neurotypical older adults, but not in participants with Parkinson's disease (PD). Furthermore, we predicted that this priming effect would be related to functional connectivity within neural networks mediating religious cognition, decision-making, reward valuing, and prospection processes. Contrary to past research with young adults, we found a significant positive relationship between religiosity and discounting rates. Religious semantic primes did not reliably shift individual discounting rates. But religious controls did respond more quickly to intertemporal decisions under the religious priming condition than the neutral condition, compared to response time differences among the participants with PD. Differences in response time were significantly associated with functional connectivity between the nucleus accumbens and various regions, including the left anterior cingulate cortex and Brodmann areas 10 and 46 in the right dorsolateral prefrontal cortex. These results suggest that religious primes influence discounting behavior via dopaminergic meso-limbic and right dorsolateral prefrontal supporting cognitive valuation and prospection processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    PubMed

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  2. What Do I Want and When Do I Want It: Brain Correlates of Decisions Made for Self and Other

    PubMed Central

    Albrecht, Konstanze; Volz, Kirsten G.; Sutter, Matthias; von Cramon, D. Yves

    2013-01-01

    A number of recent functional Magnetic Resonance Imaging (fMRI) studies on intertemporal choice behavior have demonstrated that so-called emotion- and reward-related brain areas are preferentially activated by decisions involving immediately available (but smaller) rewards as compared to (larger) delayed rewards. This pattern of activation was not seen, however, when intertemporal choices were made for another (unknown) individual, which speaks to that activation having been triggered by self-relatedness. In the present fMRI study, we investigated the brain correlates of individuals who passively observed intertemporal choices being made either for themselves or for an unknown person. We found higher activation within the ventral striatum, medial prefrontal and orbitofrontal cortex, pregenual anterior cingulate cortex, and posterior cingulate cortex when an immediate reward was possible for the observer herself, which is in line with findings from studies in which individuals actively chose immediately available rewards. Additionally, activation in the dorsal anterior cingulate cortex, posterior cingulate cortex, and precuneus was higher for choices that included immediate options than for choices that offered only delayed options, irrespective of who was to be the beneficiary. These results indicate that (1) the activations found in active intertemporal decision making are also present when the same decisions are merely observed, thus supporting the assumption that a robust brain network is engaged in immediate gratification; and (2) with immediate rewards, certain brain areas are activated irrespective of whether the observer or another person is the beneficiary of a decision, suggesting that immediacy plays a more general role for neural activation. An explorative analysis of participants’ brain activation corresponding to chosen rewards, further indicates that activation in the aforementioned brain areas depends on the mere presence, availability, or actual reception of immediate rewards. PMID:23991196

  3. Neural correlates underlying micrographia in Parkinson’s disease

    PubMed Central

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  4. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    PubMed

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-09-01

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.

  5. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings.

    PubMed

    Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian

    2013-10-16

    Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination. © 2013 Elsevier B.V. All rights reserved.

  6. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.

    PubMed

    Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C

    2011-10-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.

  7. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.

    PubMed

    Morgan, V; Pickens, D; Gautam, S; Kessler, R; Mertz, H

    2005-05-01

    Irritable bowel syndrome (IBS) is a disorder of intestinal hypersensitivity and altered motility, exacerbated by stress. Functional magnetic resonance imaging (fMRI) during painful rectal distension in IBS has demonstrated greater activation of the anterior cingulate cortex (ACC), an area relevant to pain and emotions. Tricyclic antidepressants are effective for IBS. The aim of this study was to determine if low dose amitriptyline reduces ACC activation during painful rectal distension in IBS to confer clinical benefits. Secondary aims were to identify other brain regions altered by amitriptyline, and to determine if reductions in cerebral activation are greater during mental stress. Nineteen women with painful IBS were randomised to amitriptyline 50 mg or placebo for one month and then crossed over to the alternate treatment after washout. Cerebral activation during rectal distension was compared between placebo and amitriptyline groups by fMRI. Distensions were performed alternately during auditory stress and relaxing music. Rectal pain induced significant activation of the perigenual ACC, right insula, and right prefrontal cortex. Amitriptyline was associated with reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress. The tricyclic antidepressant amitriptyline reduces brain activation during pain in the perigenual (limbic) anterior cingulated cortex and parietal association cortex. These reductions are only seen during stress. Amitriptyline is likely to work in the central nervous system rather than peripherally to blunt pain and other symptoms exacerbated by stress in IBS.

  8. Linking pain and the body: neural correlates of visually induced analgesia.

    PubMed

    Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick

    2012-02-22

    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

  9. Neurocircuitry underlying risk and resilience to social anxiety disorder

    PubMed Central

    Clauss, Jacqueline A.; Avery, Suzanne N.; VanDerKlok, Ross M.; Rogers, Baxter P.; Cowan, Ronald L.; Benningfield, Margaret M.; Blackford, Jennifer Urbano

    2015-01-01

    Background Almost half of children with an inhibited temperament will develop social anxiety disorder by late adolescence. Importantly, this means that half of children with an inhibited temperament will not develop social anxiety disorder. Studying adults with an inhibited temperament provides a unique opportunity to identify neural signatures of both risk and resilience to social anxiety disorder. Methods Functional MRI was used to measure brain activation during the anticipation of viewing fear faces in 34 young adults (17 inhibited, 17 uninhibited). To identify neural signatures of risk, we tested for group differences in functional activation and connectivity in regions implicated in social anxiety disorder, including the prefrontal cortex, amygdala, and insula. To identify neural signatures of resilience, we tested correlations between brain activation and both emotion regulation and social anxiety scores. Results Inhibited subjects had greater activation of a prefrontal network when anticipating viewing fear faces, relative to uninhibited subjects. No group differences were identified in the amygdala. Inhibited subjects had more negative connectivity between the rostral anterior cingulate cortex (ACC) and the bilateral amygdala. Within the inhibited group, those with fewer social anxiety symptoms and better emotion regulation skills had greater ACC activation and greater functional connectivity between the ACC and amygdala. Conclusions These finding suggest that engaging regulatory prefrontal regions during anticipation may be a protective factor, or putative neural marker of resilience, in high-risk individuals. Cognitive training targeting prefrontal cortex function may provide protection against anxiety, especially in high-risk individuals, such as those with inhibited temperament. PMID:24753211

  10. Transient alcohol craving suppression by rTMS of dorsal anterior cingulate: an fMRI and LORETA EEG study.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Kovacs, Silvia; Sunaert, Stefan; Dom, Geert

    2011-05-27

    It has recently become clear that alcohol addiction might be related to a brain dysfunction, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse has been linked to abnormal activity in the orbitofrontal cortex, dorsal anterior cingulated cortex (dACC) and amygdala. We report the results of a patient who underwent rTMS targeting the dACC using a double cone coil in an attempt to suppress very severe intractable alcohol craving. Functional imaging studies consisting of fMRI and resting state EEG were performed before rTMS, after successful rTMS and after unsuccessful rTMS with relapse. Craving was associated with EEG beta activity and connectivity between the dACC and PCC in the patient in comparison to a healthy population, which disappeared after successful rTMS. Cue induced worsening of craving pre-rTMS activated the ACC-vmPFC and PCC on fMRI, as well as the nucleus accumbens area, and lateral frontoparietal areas. The nucleus accumbens, ACC-vmPFC and PCC activation disappeared on fMRI following successful rTMS. Relapse was associated with recurrence of ACC and PCC EEG activity, but in gamma band, in comparison to a healthy population. On fMRI nucleus accumbens, ACC and PCC activation returned to the initial activation pattern. A pathophysiological approach is described to suppress alcohol craving temporarily by rTMS directed at the anterior cingulate. Linking functional imaging changes to craving intensity suggests this approach warrants further exploration. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2004-05-01

    Membrane phospholipid and high-energy abnormalities measured with phosphorus magnetic resonance spectroscopy ((31)P-MRS) have been reported in patients with schizophrenia in several brain regions. Using improved imaging techniques, previously inaccessible brain regions were examined in patients with first-episode schizophrenia and healthy volunteers with 4.0 T (31)P-MRS. Brain spectra were collected in vivo from 15 patients with first-episode schizophrenia and 15 healthy volunteers from 15 cm(3) effective voxels in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex and parieto-occipital cortex. People with first-episode schizophrenia showed increased levels of glycerophosphocholine in the anterior cingulate. Inorganic phosphate, phosphocreatine and adenosine triphosphate concentrations were also increased in the anterior cingulate in this group. The increased phosphodiester and high-energy phosphate levels in the anterior cingulate of brains of people with first-episode schizophrenia may indicate neural overactivity in this region during the early stages of the illness, resulting in increased excitotoxic neural membrane breakdown.

  12. Cognitive Strategy Use as an Index of Developmental Differences in Neural Responses to Feedback

    ERIC Educational Resources Information Center

    Andersen, Lau M.; Visser, Ingmar; Crone, Eveline A.; Koolschijn, P. Cédric M. P.; Raijmakers, Maartje E. J.

    2014-01-01

    Developmental differences in dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and superior parietal cortex (SPC) activation are associated with differences in how children, adolescents, and adults learn from performance feedback in rule-learning tasks (Crone, Zanolie, Leijenhorst, Westenberg, & Rombouts, 2008). Both…

  13. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  14. Executive Dysfunction in Obsessive-Compulsive Disorder and Anterior Cingulate-Based Resting State Functional Connectivity

    PubMed Central

    Yun, Je-Yeon; Jang, Joon Hwan; Jung, Wi Hoon; Shin, Na Young; Kim, Sung Nyun; Hwang, Jae Yeon

    2017-01-01

    Objective Executive dysfunction might be an important determinant for response to pharmacotherapy in obsessive-compulsive disorder (OCD), and could be sustained independently of symptom relief. The anterior cingulate cortex (ACC) has been indicated as a potential neural correlate of executive functioning in OCD. The present study examined the brain-executive function relationships in OCD from the ACC-based resting state functional connectivity networks (rs-FCNs), which reflect information processing mechanisms during task performance. Methods For a total of 58 subjects [OCD, n=24; healthy controls (HCs), n=34], four subdomains of executive functioning were measured using the Rey-Osterrieth Complex Figure Test (RCFT), the Stroop Color-Word Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Trail Making Test part B (TMT-B). To probe for differential patterns of the brain-cognition relationship in OCD compared to HC, the ACC-centered rs-FCN were calculated using five seed regions systemically placed throughout the ACC. Results Significant differences between the OCD group and the HCs with respect to the WCST perseverative errors, SCWT interference scores, and TMT-B reaction times (p<0.05) were observed. Moreover, significant interactions between diagnosis×dorsal ACC [S3]-based rs-FCN strength in the right dorsolateral prefrontal cortex for RCFT organization summary scores as well as between diagnosis×perigenual ACC [S7]-based rs-FCN strength in the left frontal eye field for SCWT color-word interference scores were unveiled. Conclusion These network-based neural foundations for executive dysfunction in OCD could become a potential target of future treatment, which could improve global domains of functioning broader than symptomatic relief. PMID:28539952

  15. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Modulation of Oscillatory Power and Connectivity in the Human Posterior Cingulate Cortex Supports the Encoding and Retrieval of Episodic Memories.

    PubMed

    Lega, Bradley; Germi, James; Rugg, Michael

    2017-08-01

    Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70-180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items.

  17. Electroconvulsive Therapy Response in Major Depressive Disorder: A Pilot Functional Network Connectivity Resting State fMRI Investigation

    PubMed Central

    Abbott, Christopher C.; Lemke, Nicholas T.; Gopal, Shruti; Thoma, Robert J.; Bustillo, Juan; Calhoun, Vince D.; Turner, Jessica A.

    2013-01-01

    Major depressive disorder (MDD) is associated with increased functional connectivity in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treatment for acute, treatment-resistant MDD, but temporal dependencies between networks associated with ECT response have yet to be investigated. In the present longitudinal, case–control investigation, we used independent component analysis to identify distinct networks of brain regions with temporally coherent hemodynamic signal change and functional network connectivity (FNC) to assess component time course correlations across these networks. MDD subjects completed imaging and clinical assessments immediately prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In an older sample of ECT subjects (n = 12) with MDD, remission associated with the ECT series reverses the relationship from negative to positive between the posterior default mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex (l_DLPFC). Relative to demographically healthy subjects (n = 12), the FNC between the p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following treatment did not correlate with symptom improvement; however, a direct comparison between ECT remitters and non-remitters showed the pattern of increased FNC between the p_DM and l_DLPFC following ECT to be specific to those who responded to the treatment. The differences between ECT remitters and non-remitters suggest that this increased FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate and potential biomarker of recovery from a depressed episode. PMID:23459749

  18. Electroconvulsive therapy response in major depressive disorder: a pilot functional network connectivity resting state FMRI investigation.

    PubMed

    Abbott, Christopher C; Lemke, Nicholas T; Gopal, Shruti; Thoma, Robert J; Bustillo, Juan; Calhoun, Vince D; Turner, Jessica A

    2013-01-01

    Major depressive disorder (MDD) is associated with increased functional connectivity in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treatment for acute, treatment-resistant MDD, but temporal dependencies between networks associated with ECT response have yet to be investigated. In the present longitudinal, case-control investigation, we used independent component analysis to identify distinct networks of brain regions with temporally coherent hemodynamic signal change and functional network connectivity (FNC) to assess component time course correlations across these networks. MDD subjects completed imaging and clinical assessments immediately prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In an older sample of ECT subjects (n = 12) with MDD, remission associated with the ECT series reverses the relationship from negative to positive between the posterior default mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex (l_DLPFC). Relative to demographically healthy subjects (n = 12), the FNC between the p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following treatment did not correlate with symptom improvement; however, a direct comparison between ECT remitters and non-remitters showed the pattern of increased FNC between the p_DM and l_DLPFC following ECT to be specific to those who responded to the treatment. The differences between ECT remitters and non-remitters suggest that this increased FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate and potential biomarker of recovery from a depressed episode.

  19. Dissociable Roles of Right Inferior Frontal Cortex and Anterior Insula in Inhibitory Control: Evidence from Intrinsic and Task-Related Functional Parcellation, Connectivity, and Response Profile Analyses across Multiple Datasets

    PubMed Central

    Ryali, Srikanth; Chen, Tianwen; Li, Chiang-Shan R.

    2014-01-01

    The right inferior frontal cortex (rIFC) and the right anterior insula (rAI) have been implicated consistently in inhibitory control, but their differential roles are poorly understood. Here we use multiple quantitative techniques to dissociate the functional organization and roles of the rAI and rIFC. We first conducted a meta-analysis of 70 published inhibitory control studies to generate a commonly activated right fronto-opercular cortex volume of interest (VOI). We then segmented this VOI using two types of features: (1) intrinsic brain activity; and (2) stop-signal task-evoked hemodynamic response profiles. In both cases, segmentation algorithms identified two stable and distinct clusters encompassing the rAI and rIFC. The rAI and rIFC clusters exhibited several distinct functional characteristics. First, the rAI showed stronger intrinsic and task-evoked functional connectivity with the anterior cingulate cortex, whereas the rIFC had stronger intrinsic and task-evoked functional connectivity with dorsomedial prefrontal and lateral fronto-parietal cortices. Second, the rAI showed greater activation than the rIFC during Unsuccessful, but not Successful, Stop trials, and multivoxel response profiles in the rAI, but not the rIFC, accurately differentiated between Successful and Unsuccessful Stop trials. Third, activation in the rIFC, but not rAI, predicted individual differences in inhibitory control abilities. Crucially, these findings were replicated in two independent cohorts of human participants. Together, our findings provide novel quantitative evidence for the dissociable roles of the rAI and rIFC in inhibitory control. We suggest that the rAI is particularly important for detecting behaviorally salient events, whereas the rIFC is more involved in implementing inhibitory control. PMID:25355218

  20. The effect of donepezil on increased regional cerebral blood flow in the posterior cingulate cortex of a patient with Parkinson's disease dementia.

    PubMed

    Imamura, Keiko; Wada-Isoe, Kenji; Kowa, Hisanori; Tanabe, Yoshio; Nakashima, Kenji

    2008-01-01

    It has been reported that the cholinesterase inhibitor, donepezil, improves cognitive decline in patients with Parkinson's disease dementia (PDD). However, this improvement was dominant for frontal lobe dysfunction, and the increase in the Mini-Mental State Examination (MMSE) score was minimal. We report a PDD patient with a decline of regional cerebral blood flow (rCBF) in the posterior cingulate cortex, precunei, and bilateral parietotemporal association cortex, as determined by single-photon emission computed tomography (SPECT) using the easy Z-scores imaging system (e-ZIS). Upon administration of donepezil, both the rCBF and MMSE score increased. The effectiveness of donepezil may vary based on the rCBF pattern in PDD.

  1. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter.

    PubMed

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-04-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.

  2. No Laughing Matter: Intranasal Oxytocin Administration Changes Functional Brain Connectivity during Exposure to Infant Laughter

    PubMed Central

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-01-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent–infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter. PMID:22189289

  3. Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills.

    PubMed

    Merkley, Tricia L; Larson, Michael J; Bigler, Erin D; Good, Daniel A; Perlstein, William M

    2013-09-01

    Impairments of attention and executive functions are common sequelae of traumatic brain injury (TBI). The anterior cingulate is implicated in conflict-related task performance, such as the Stroop, and is susceptible to TBI-related injury due to its frontal location and proximity to the rough surface of the falx cerebri. We investigated the relationship between cingulate cortex volume and performance on tasks of selective attention and cognitive flexibility (single-trial Stroop and Auditory Consonant Trigrams [ACT]). Participants consisted of 12 adults with severe TBI and 18 controls. T1-weighted volumetric MRI data were analyzed using automated cortical reconstruction, segmentation, parcellation, and volume measurement. Cortical volume reductions were prominent bilaterally in frontal, temporal, and inferior parietal regions.Specific regional reduction of the cingulate cortex was observed only for cortical volume of right caudal anterior cingulate(cACC). The TBI group performed significantly worse than control participants on the Stroop and ACT tasks. Findings suggest that atrophy of the right cACC may contribute to reduced performance on executive function tasks, such as the Stroop and ACT, although this is likely but one node of an extensive brain network involved in these cognitive processes.

  4. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    PubMed

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p < 0.01) and GRIN2C mRNA (laminae I-VI; -27%, p < 0.05) were lower in the anterior cingulate cortex and NMDAR binding was lower in the outer lamina IV of the dorsolateral prefrontal cortex (-19%, p < 0.01). In major depressive disorders, levels of GRIN2D mRNA were higher in frontal pole (+22%, p < 0.05). In suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p < 0.01) but lower (-35%, p = 0.02) in dorsolateral prefrontal cortex while post-synaptic density protein 95 was higher (+26%, p < 0.05) in anterior cingulate cortex. These data suggest that differences in cortical NMDAR expression and post-synaptic density protein 95 are present in psychiatric disorders and suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  5. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain

    PubMed Central

    Yu, Rongjun; Gollub, Randy L.; Spaeth, Rosa; Napadow, Vitaly; Wasan, Ajay; Kong, Jian

    2014-01-01

    Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). PAG seed based functional connectivity (FC) analysis of the functional MR imaging data was performed to investigate the difference among the connectivity maps in the cLBP in the low or high pain condition and HC groups as well as within the cLBP at differing endogenous back pain intensities. Results showed that FC between the PAG and the ventral medial prefrontal cortex (vmPFC)/rostral anterior cingulate cortex (rACC) increased in cLBP patients compared to matched controls. In addition, we also found significant negative correlations between pain ratings and PAG–vmPFC/rACC FC in cLBP patients after pain-inducing maneuver. The duration of cLBP was negatively correlated with PAG–insula and PAG–amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest. PMID:25379421

  6. Fiction feelings in Harry Potter: haemodynamic response in the mid-cingulate cortex correlates with immersive reading experience.

    PubMed

    Hsu, Chun-Ting; Conrad, Markus; Jacobs, Arthur M

    2014-12-03

    Immersion in reading, described as a feeling of 'getting lost in a book', is a ubiquitous phenomenon widely appreciated by readers. However, it has been largely ignored in cognitive neuroscience. According to the fiction feeling hypothesis, narratives with emotional contents invite readers more to be empathic with the protagonists and thus engage the affective empathy network of the brain, the anterior insula and mid-cingulate cortex, than do stories with neutral contents. To test the hypothesis, we presented participants with text passages from the Harry Potter series in a functional MRI experiment and collected post-hoc immersion ratings, comparing the neural correlates of passage mean immersion ratings when reading fear-inducing versus neutral contents. Results for the conjunction contrast of baseline brain activity of reading irrespective of emotional content against baseline were in line with previous studies on text comprehension. In line with the fiction feeling hypothesis, immersion ratings were significantly higher for fear-inducing than for neutral passages, and activity in the mid-cingulate cortex correlated more strongly with immersion ratings of fear-inducing than of neutral passages. Descriptions of protagonists' pain or personal distress featured in the fear-inducing passages apparently caused increasing involvement of the core structure of pain and affective empathy the more readers immersed in the text. The predominant locus of effects in the mid-cingulate cortex seems to reflect that the immersive experience was particularly facilitated by the motor component of affective empathy for our stimuli from the Harry Potter series featuring particularly vivid descriptions of the behavioural aspects of emotion.

  7. Functional resting-state networks are differentially affected in schizophrenia

    PubMed Central

    Woodward, Neil D.; Rogers, Baxter; Heckers, Stephan

    2011-01-01

    Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia. PMID:21458238

  8. Striatal connectivity changes following gambling wins and near-misses: Associations with gambling severity.

    PubMed

    van Holst, Ruth J; Chase, Henry W; Clark, Luke

    2014-01-01

    Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. 'Near-miss' events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the 'illusion of control'). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the 'non-categorical' nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling.

  9. Neuroimaging self-esteem: a fMRI study of individual differences in women

    PubMed Central

    Lundberg, Erica; Brimson-Théberge, Melanie; Théberge, Jean

    2013-01-01

    Although neuroimaging studies strongly implicate the medial prefrontal cortex (ventral and dorsal), cingulate gyrus (anterior and posterior), precuneus and temporoparietal cortex in mediating self-referential processing (SRP), little is known about the neural bases mediating individual differences in valenced SRP, that is, processes intrinsic to self-esteem. This study investigated the neural correlates of experimentally engendered valenced SRP via the Visual–Verbal Self-Other Referential Processing Task in 20 women with fMRI. Participants viewed pictures of themselves or unknown other women during separate trials while covertly rehearsing ‘I am’ or ‘She is’, followed by reading valenced trait adjectives, thus variably associating the self/other with positivity/negativity. Response within dorsal and ventral medial prefrontal cortex, cingulate cortex and left temporoparietal cortex varied with individual differences in both pre-task rated self-descriptiveness of the words, as well as task-induced affective responses. Results are discussed as they relate to a social cognitive and affective neuroscience view of self-esteem. PMID:22403154

  10. Feelings of shame, embarrassment and guilt and their neural correlates: A systematic review.

    PubMed

    Bastin, Coralie; Harrison, Ben J; Davey, Christopher G; Moll, Jorge; Whittle, Sarah

    2016-12-01

    This systematic review aimed to provide a comprehensive summary of the current literature on the neurobiological underpinnings of the experience of the negative moral emotions: shame, embarrassment and guilt. PsycINFO, PubMed and MEDLINE were used to identify existing studies. Twenty-one functional and structural magnetic resonance imaging and positron emission tomography studies were reviewed. Although studies differed considerably in methodology, their findings highlight both shared and distinct patterns of brain structure/function associated with these emotions. Shame was more likely to be associated with activity in the dorsolateral prefrontal cortex, posterior cingulate cortex and sensorimotor cortex; embarrassment was more likely to be associated with activity in the ventrolateral prefrontal cortex and amygdala; guilt was more likely to be associated with activity in ventral anterior cingulate cortex, posterior temporal regions and the precuneus. Although results point to some common and some distinct neural underpinnings of these emotions, further research is required to replicate findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off

    PubMed Central

    Kennerley, Steven W.; Friston, Karl; Bestmann, Sven

    2016-01-01

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. SIGNIFICANCE STATEMENT The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because energetic requirements play an integral role in our day-to-day choices and instrumental behavior, and a diminished willingness to exert effort is a characteristic feature of a range of neurological disorders. We use a new behavioral characterization of how humans trade off reward maximization with effort minimization to examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. We find the critical neural signature of decision-making, a signal that reflects the comparison of value between choice options, in human cingulate cortex, whereas two distinct brain circuits drive behavior toward reward maximization or effort minimization. PMID:27683898

  12. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.

    PubMed

    Klein-Flügge, Miriam C; Kennerley, Steven W; Friston, Karl; Bestmann, Sven

    2016-09-28

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because energetic requirements play an integral role in our day-to-day choices and instrumental behavior, and a diminished willingness to exert effort is a characteristic feature of a range of neurological disorders. We use a new behavioral characterization of how humans trade off reward maximization with effort minimization to examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. We find the critical neural signature of decision-making, a signal that reflects the comparison of value between choice options, in human cingulate cortex, whereas two distinct brain circuits drive behavior toward reward maximization or effort minimization. Copyright © 2016 Klein-Flügge et al.

  13. Mode of Effective Connectivity within a Putative Neural Network Differentiates Moral Cognitions Related to Care and Justice Ethics

    PubMed Central

    Cáceda, Ricardo; James, G. Andrew; Ely, Timothy D.; Snarey, John; Kilts, Clinton D.

    2011-01-01

    Background Moral sensitivity refers to the interpretive awareness of moral conflict and can be justice or care oriented. Justice ethics is associated primarily with human rights and the application of moral rules, whereas care ethics is related to human needs and a situational approach involving social emotions. Among the core brain regions involved in moral issue processing are: medial prefrontal cortex, anterior (ACC) and posterior (PCC) cingulate cortex, posterior superior temporal sulcus (pSTS), insula and amygdala. This study sought to inform the long standing debate of whether care and justice moral ethics represent one or two different forms of cognition. Methodology/Principal Findings Model-free and model-based connectivity analysis were used to identify functional neural networks underlying care and justice ethics for a moral sensitivity task. In addition to modest differences in patterns of associated neural activity, distinct modes of functional and effective connectivity were observed for moral sensitivity for care and justice issues that were modulated by individual variation in moral ability. Conclusions/Significance These results support a neurobiological differentiation between care and justice ethics and suggest that human moral behavior reflects the outcome of integrating opposing rule-based, self-other perspectives, and emotional responses. PMID:21364916

  14. Global brain dynamics during social exclusion predict subsequent behavioral conformity

    PubMed Central

    Wasylyshyn, Nick; Hemenway Falk, Brett; Garcia, Javier O; Cascio, Christopher N; O’Donnell, Matthew Brook; Bingham, C Raymond; Simons-Morton, Bruce; Vettel, Jean M; Falk, Emily B

    2018-01-01

    Abstract Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences. PMID:29529310

  15. Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder

    PubMed Central

    Barlow, David H.; Whitfield-Gabrieli, Susan; Gabrieli, John D.E.; Deckersbach, Thilo

    2017-01-01

    Abstract Recent emotion dysregulation models of generalized anxiety disorder (GAD) propose chronic worry in GAD functions as a maladaptive attempt to regulate anxiety related to uncertain or unpredictable outcomes. Emotion acceptance is an adaptive emotion regulation strategy increasingly incorporated into newer cognitive behavioral therapy (CBT) approaches to GAD to counter chronic worry. The current study explores the mechanisms of emotion acceptance as an alternate emotion regulation strategy to worry or emotion suppression using functional magnetic resonance imaging. Twenty-one female participants diagnosed with GAD followed counterbalanced instructions to regulate responses to personally relevant worry statements by engaging in either emotion acceptance, worry or emotion suppression. Emotion acceptance resulted in lower ratings of distress than worry and was associated with increased dorsal anterior cingulate cortex (dACC) activation and increased ventrolateral prefrontal cortex (VLPFC)-amygdala functional connectivity. In contrast, worry showed significantly greater distress ratings than acceptance or suppression and was associated with increased precuneus, VLPFC, amygdala and hippocampal activation. Suppression did not significantly differ from acceptance in distress ratings or amygdala recruitment, but resulted in significantly greater insula and VLPFC activation and decreased VLPFC-amygdala functional connectivity. Emotion acceptance closely aligned with activation and connectivity patterns reported in studies of contextual extinction learning and mindful awareness. PMID:28402571

  16. Conflict processing in the anterior cingulate cortex constrains response priming.

    PubMed

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  17. Assessing the Molecular Genetics of the Development of Executive Attention in Children: Focus on Genetic Pathways Related to the Anterior Cingulate Cortex and Dopamine

    PubMed Central

    Brocki, Karin; Clerkin, Suzanne M.; Guise, Kevin G.; Fan, Jin; Fossella, John A.

    2009-01-01

    It is well-known that children show gradual and protracted improvement in an array of behaviors involved in the conscious control of thought and emotion. Non-invasive neuroimaging in developing populations has revealed many neural correlates of behavior, particularly in the developing cingulate cortex and fronto-striatal circuits. These brain regions, themselves, undergo protracted molecular and cellular change in the first two decades of human development and, as such, are ideal regions of interest for cognitive- and imaging-genetic studies that seek to link processes at the biochemical and synaptic levels to brain activity and behavior. We review our research to-date that employs both adult and child-friendly versions of the Attention Network Task (ANT) in an effort to begin to describe the role of specific genes in the assembly of a functional attention system. Presently, we constrain our predictions for genetic association studies by focusing on the role of the anterior cingulate cortex (ACC) and of dopamine in the development of executive attention. PMID:19344637

  18. Generation of novel motor sequences: the neural correlates of musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  19. Response Monitoring, Repetitive Behaviour and Anterior Cingulate Abnormalities in Autism Spectrum Disorders (ASD)

    ERIC Educational Resources Information Center

    Thakkar, Katharine N.; Polli, Frida E.; Joseph, Robert M.; Tuch, David S.; Hadjikhani, Nouchine; Barton, Jason J. S.; Manoach, Dara S.

    2008-01-01

    Autism spectrum disorders (ASD) are characterized by inflexible and repetitive behaviour. Response monitoring involves evaluating the consequences of behaviour and making adjustments to optimize outcomes. Deficiencies in this function, and abnormalities in the anterior cingulate cortex (ACC) on which it relies, have been reported as contributing…

  20. Reduced Anterior Cingulate Glutamatergic Concentrations in Childhood Ocd and Major Depression Versus Healthy Controls

    ERIC Educational Resources Information Center

    Rosenberg, David R.; Mirza, Yousha; Russell, Aileen; Tang, Jennifer; Smith, Janet M.; Banerjee, Preeya S.; Bhandari, Rashmi; Rose, Michelle; Ivey, Jennifer; Boyd, Courtney; Moore, Gregory J.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. Method: Single-voxel proton magnetic resonance spectroscopic examinations…

Top