Sample records for cinnabar

  1. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  2. Evaluating the role of re-adsorption of dissolved Hg 2+ during cinnabar dissolution using isotope tracer technique

    DOE PAGES

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; ...

    2016-06-02

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg 2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L –1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Ping; Li, Yanbin; Liu, Guangliang

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg 2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L –1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less

  4. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    PubMed

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-05

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. (1)H NMR-Based Metabolomics and Neurotoxicity Study of Cerebrum and Cerebellum in Rats Treated with Cinnabar, a Traditional Chinese Medicine.

    PubMed

    Wei, Lai; Xue, Rong; Zhang, Panpan; Wu, Yijie; Li, Xiaojing; Pei, Fengkui

    2015-08-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. Nevertheless, the neurotoxic effects of cinnabar have also been noted. In this study, (1)H NMR-based metabolomics, combined with multivariate pattern recognition, were applied to investigate the neurotoxic effects of cinnabar after intragastrical administration (dosed at 2 and 5 g/kg body weight) on male Wistar rats. The metabolite variations induced by cinnabar were characterized by increased levels of glutamate, glutamine, myo-inositol, and choline, as well as decreased levels of GABA, taurine, NAA, and NAAG in tissue extracts of the cerebellum and cerebrum. These findings suggested that cinnabar induced glutamate excitotoxicity, neuronal cell loss, osmotic state changes, membrane fluidity disruption, and oxidative injury in the brain. We also show here that there is a dose- and time-dependent neurotoxicity of cinnabar, and that cerebellum was more sensitive to cinnabar induction than cerebrum. This work illustrates the utility and reliability of (1)H NMR-based metabolomics approach for examining the potential neurotoxic effects of cinnabar and other traditional Chinese medicines.

  6. Use and legacy of mercury in the Andes.

    PubMed

    Cooke, Colin A; Hintelmann, Holger; Ague, Jay J; Burger, Richard; Biester, Harald; Sachs, Julian P; Engstrom, Daniel R

    2013-05-07

    Both cinnabar (HgS) and metallic mercury (Hg(0)) were important resources throughout Andean prehistory. Cinnabar was used for millennia to make vermillion, a red pigment that was highly valued in pre-Hispanic Peru; metallic Hg(0) has been used since the mid-16th century to conduct mercury amalgamation, an efficient process of extracting precious metals from ores. However, little is known about which cinnabar deposits were exploited by pre-Hispanic cultures, and the environmental consequences of Hg mining and amalgamation remain enigmatic. Here we use Hg isotopes to source archeological cinnabar and to fingerprint Hg pollution preserved in lake sediment cores from Peru and the Galápagos Islands. Both pre-Inca (pre-1400 AD) and Colonial (1532-1821 AD) archeological artifacts contain cinnabar that matches isotopically with cinnabar ores from Huancavelica, Peru, the largest cinnabar-bearing district in Central and South America. In contrast, the Inca (1400-1532 AD) artifacts sampled are characterized by a unique Hg isotopic composition. In addition, preindustrial (i.e., pre-1900 AD) Hg pollution preserved in lake sediments matches closely the isotopic composition of cinnabar from the Peruvian Andes. Industrial-era Hg pollution, in contrast, is distinct isotopically from preindustrial emissions, suggesting that pre- and postindustrial Hg emissions may be distinguished isotopically in lake sediment cores.

  7. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Lai; Liao Peiqiu; Wu Huifeng

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time-more » and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.« less

  8. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar

    NASA Astrophysics Data System (ADS)

    Emslie, Steven D.; Brasso, Rebecka; Patterson, William P.; Carlos Valera, António; McKenzie, Ashley; Maria Silva, Ana; Gleason, James D.; Blum, Joel D.

    2015-10-01

    Cinnabar is a natural mercury sulfide (HgS) mineral of volcanic or hydrothermal origin that is found worldwide. It has been mined prehistorically and historically in China, Japan, Europe, and the Americas to extract metallic mercury (Hg0) for use in metallurgy, as a medicinal, a preservative, and as a red pigment for body paint and ceramics. Processing cinnabar via combustion releases Hg0 vapor that can be toxic if inhaled. Mercury from cinnabar can also be absorbed through the gut and skin, where it can accumulate in organs and bone. Here, we report moderate to high levels of total mercury (THg) in human bone from three Late Neolithic/Chalcolithic (5400-4100 B.P.) sites in southern Portugal that were likely caused by cultural use of cinnabar. We use light stable isotope and Hg stable isotope tracking to test three hypotheses on the origin of mercury in this prehistoric human bone. We traced Hg in two individuals to cinnabar deposits near Almadén, Spain, and conclude that use of this mineral likely caused mild to severe mercury poisoning in the prehistoric population. Our methods have applications to bioarchaeological investigations worldwide, and for tracking trade routes and mobility of prehistoric populations where cinnabar use is documented.

  9. Impact of microbial communities from tropical soils on the mobilization of trace metals during dissolution of cinnabar ore.

    PubMed

    Balland-Bolou-Bi, Clarisse; Turc, Benjamin; Alphonse, Vanessa; Bousserrhine, Noureddine

    2017-06-01

    Biodissolution experiments on cinnabar ore (mercury sulphide and other sulphide minerals, such as pyrite) were performed with microorganisms extracted directly from soil. These experiments were carried out in closed systems under aerobic and anaerobic conditions with 2 different soils sampled in French Guyana. The two main objectives of this study were (1) to quantify the ability of microorganisms to mobilize metals (Fe, Al, Hg) during the dissolution of cinnabar ore, and (2) to identify the links between the type and chemical properties of soils, environmental parameters such as season and the strategies developed by indigenous microorganisms extracted from tropical natural soils to mobilize metals. Results indicate that microbial communities extracted directly from various soils are able to (1) survive in the presence of cinnabar ore, as indicated by consumption of carbon sources and, (2) leach Hg from cinnabar in oxic and anoxic dissolution experiments via the acidification of the medium and the production of low molecular mass organic acids (LMMOAs). The dissolution rate of cinnabar in aerobic conditions with microbial communities ranged from 4.8×10 -4 to 2.6×10 -3 μmol/m 2 /day and was independent of the metabolites released by the microorganisms. In addition, these results suggest an indirect action by the microorganisms in the cinnabar dissolution. Additionally, because iron is a key element in the dynamics of Hg, microbes were stimulated by the presence of this metal, and microbes released LMMOAs that leached iron from iron-bearing minerals, such as pyrite and oxy-hydroxide of iron, in the mixed cinnabar ore. Copyright © 2016. Published by Elsevier B.V.

  10. Dissolution of cinnabar (HgS) in the presence of natural organic matter

    USGS Publications Warehouse

    Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.

    2005-01-01

    Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.

  11. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using (1)H NMR spectroscopy.

    PubMed

    Wang, Haifeng; Bai, Jiao; Chen, Gang; Li, Wen; Xiang, Rongwu; Su, Guangyue; Pei, Yuehu

    2013-03-27

    Zhusha Anshen Wan (ZSASW), a traditional Chinese medicine (TCM) prescription, composed of cinnabar (cinnabaris), Coptidis Rhizoma (Coptis chinensis French.), Angelicae Sinensis Radix (Angelica sinensis (oliv.) Diels), uncooked Rehmanniae Radix (Rehmannia glutinosa Libosch.), honey fried Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza uralensis Fisch.), has been widely used for sedative therapy. Cinnabar, the chief component of ZSASW, has been proved to possess the toxicities. In this study, a metabonomics approach based on high-resolution (1)H nuclear magnetic resonance spectroscopy was applied to investigate the protective effects of ZSASW on the toxic effects induced by cinnabar alone. Male Wistar rats were divided into three groups: control group, ZSASW group and cinnabar group. Partial least squares-discriminant analysis (PLS-DA) was performed to identify different metabolic profiles of urine and serum from rats. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The significant difference in metabolic profiling of urine and serum of the rats was observed between cinnabar treated group, control group, and the changes of endogenous metabolites related to the toxicities were identified. The results were also certified by the liver and kidney histopathology examinations and biochemical analysis of blood. Our results suggested that the four combined herbal medicines of ZSASW had the effects of protecting from the toxicity induced by cinnabar alone. This work showed that the NMR-based metabonomics approach might be a promising approach to study detoxification of Chinese medicines and reasonable combination of TCM prescriptions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Mercury isotope fractionation during ore retorting in the Almadén mining district, Spain

    USGS Publications Warehouse

    Gray, John E.; Pribil, Michael J.; Higueras, Pablo L.

    2013-01-01

    Almadén, Spain, is the world's largest mercury (Hg) mining district, which has produced over 250,000 metric tons of Hg representing about 30% of the historical Hg produced worldwide. The objective of this study was to measure Hg isotopic compositions of cinnabar ore, mine waste calcine (retorted ore), elemental Hg (Hg0(L)), and elemental Hg gas (Hg0(g)), to evaluate potential Hg isotopic fractionation. Almadén cinnabar ore δ202Hg varied from − 0.92 to 0.15‰ (mean of − 0.56‰, σ = 0.35‰, n = 7), whereas calcine was isotopically heavier and δ202Hg ranged from − 0.03‰ to 1.01‰ (mean of 0.43‰, σ = 0.44‰, n = 8). The average δ202Hg enrichment of 0.99‰ between cinnabar ore and calcines generated during ore retorting indicated Hg isotopic mass dependent fractionation (MDF). Mass independent fractionation (MIF) was not observed in any of the samples in this study. Laboratory retorting experiments of cinnabar also were carried out to evaluate Hg isotopic fractionation of products generated during retorting such as calcine, Hg0(L), and Hg0(g). Calcine and Hg0(L) generated during these retorting experiments showed an enrichment in δ202Hg of as much as 1.90‰ and 0.67‰, respectively, compared to the original cinnabar ore. The δ202Hg for Hg0(g) generated during the retorting experiments was as much as 1.16‰ isotopically lighter compared to cinnabar, thus, when cinnabar ore was roasted, the resultant calcines formed were isotopically heavier, whereas the Hg0(g) generated was isotopically lighter in Hg isotopes.

  13. Sulfur isotope analysis of cinnabar from Roman wall paintings by elemental analysis/isotope ratio mass spectrometry--tracking the origin of archaeological red pigments and their authenticity.

    PubMed

    Spangenberg, Jorge E; Lavric, Jost V; Meisser, Nicolas; Serneels, Vincent

    2010-10-15

    The most valuable pigment of the Roman wall paintings was the red color obtained from powdered cinnabar (Minium Cinnabaris pigment), the red mercury sulfide (HgS), which was brought from mercury (Hg) deposits in the Roman Empire. To address the question of whether sulfur isotope signatures can serve as a rapid method to establish the provenance of the red pigment in Roman frescoes, we have measured the sulfur isotope composition (δ(34)S value in ‰ VCDT) in samples of wall painting from the Roman city Aventicum (Avenches, Vaud, Switzerland) and compared them with values from cinnabar from European mercury deposits (Almadén in Spain, Idria in Slovenia, Monte Amiata in Italy, Moschellandsberg in Germany, and Genepy in France). Our study shows that the δ(34)S values of cinnabar from the studied Roman wall paintings fall within or near to the composition of Almadén cinnabar; thus, the provenance of the raw material may be deduced. This approach may provide information on provenance and authenticity in archaeological, restoration and forensic studies of Roman and Greek frescoes. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.

    1998-01-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (<2.5 nM) dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  15. Mineral resource of the month: mercury

    USGS Publications Warehouse

    Brooks, William E.

    2006-01-01

    The ore of mercury, cinnabar, is soft and dark red, and native mercury is one of a few metals that is liquid at room temperatures. Cinnabar from Almaden, Spain, the world’s oldest producing mercury mine, was used during Roman times, and the chemical symbol for mercury (Hg) is from "hydrargyrum," from the Greek word meaning liquid silver. Cinnabar and mercury are associated with some hydrothermal mineral deposits and occur in fine-grained or sedimentary and volcanic rocks near hot springs or volcanic centers. Mercury may be recovered as a byproduct of processing copper, gold, lead-zinc or silver.

  16. Neurotoxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.-F.; Liu, S.-H.; Lin-Shiau, S.-Y.

    2007-10-15

    Cinnabar, a naturally occurring mercuric sulfide (HgS), has long been used in combination with traditional Chinese medicine as a sedative for more than 2000 years. Up to date, its pharmacological and toxicological effects are still unclear, especially in clinical low-dose and long-term use. In this study, we attempted to elucidate the effects of cinnabar on the time course of changes in locomotor activities, pentobarbital-induced sleeping time, motor equilibrium performance and neurobiochemical activities in mice during 3- to 11-week administration at a clinical dose of 10 mg/kg/day. The results showed that cinnabar was significantly absorbed by gastrointestinal (G-I) tract and transportedmore » to brain tissues. The spontaneous locomotor activities of male mice but not female mice were preferentially suppressed. Moreover, frequencies of jump and stereotype-1 episodes were progressively decreased after 3-week oral administration in male and female mice. Pentobarbital-induced sleeping time was prolonged and the retention time on a rotating rod (60 rpm) was reduced after treatment with cinnabar for 6 weeks and then progressively to a greater extent until the 11-week experiment. In addition, the biochemical changes in blood and brain tissues were studied; the inhibition of Na{sup +}/K{sup +}-ATPase activities, increased production of lipid peroxidation (LPO) and nitric oxide (NO) were found with a greater extent in male mice than those in female mice, which were apparently correlated with their differences in the neurological responses observed. In conclusion, these findings, for the first time, provide evidence of the pharmacological and toxicological basis for understanding the sedative and neurotoxic effects of cinnabar used as a Chinese mineral medicine for more than 2000 years.« less

  17. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury

    PubMed Central

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142

  18. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury

    USGS Publications Warehouse

    Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.

    2009-01-01

    The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.

  19. An Exemplary High School Literary Magazine: "Cinnabar."

    ERIC Educational Resources Information Center

    Holbrook, Hilary Taylor, Comp.

    One of a series of 20 literary magazine profiles written to help faculty advisors wishing to start or improve their publication, this profile provides information on staffing and production of "Cinnabar," the magazine published by Ward Melville High School, Setauket, New York. The introduction describes the literary magazine contest (and…

  20. Geochemistry and exploration criteria for epithermal cinnabar and stibnite vein deposits in the Kuskokwim River region, southwestern Alaska

    USGS Publications Warehouse

    Gray, J.E.; Goldfarb, R.J.; Detra, D.E.; Slaughter, K.E.

    1991-01-01

    Cinnabar- and stibnite-bearing epithermal vein deposits are found throughout the Kuskokwim River region of southwestern Alaska. A geochemical orientation survey was carried out around several of these epithermal lodes to obtain information for planning regional geochemical surveys and to develop procedures which maximize the anomaly: threshold contrast of the deposits. Stream sediment, heavy-mineral concentrate, stream water, and vegetation samples were collected in drainages surrounding the Red Devil, Cinnabar Creek, White Mountain, Rhyolite, and Mountain Top deposits. Three sediment size fractions; nonmagnetic, paramagnetic and magnetic splits of the concentrate samples; stream waters; and the vegetation samples were analyzed for multi-element suites by a number of different chemical procedures. Nonmagnetic, heavy-mineral concentrates were also examined microscopically to identify their mineralogy. Results confirm Hg, Sb and As concentrations in minus-80-mesh stream sediments as effective pathfinder elements in exploration for epithermal cinnabar and stibnite deposits. Coarser-grained sediments are much less effective in the exploration for these deposits. Concentrations greater than 3 ppm Hg, 1 ppm Sb, and 15 ppm As in the minus-80-mesh stream sediment, regardless of the host lithology, are indicative of upstream cinnabar-stibnite deposits. Gold, Ag and base metals in the stream sediments are ineffective pathfinders for this epithermal deposit type. Collection of heavy-mineral concentrates provides little advantage in the exploration for these mineral deposits. Antimony and As dispersion patterns downstream from mineralized areas are generally more restricted in the concentrates than those in the stream sediments. Anomalous placer cinnabar observed in the concentrates has a similar spatial distribution pattern as anomalous Hg and Sb in corresponding sediments. Stream waters are less effective than the stream sediments or heavy-mineral concentrates, and vegetation is an ineffective geochemical sample medium in exploration for this deposit type. ?? 1991.

  1. T'ao-t'ieh, a motif of Chinese funerary art as the iconographic counterpart of Cinnabar, an alchemical drug.

    PubMed

    Mahdihassan, S

    1982-01-01

    The agency conferring resurrection is soul or its emblem. The earliest conception of soul is blood. Its Redness penetrates subsoil and is taken up by serpent, from whence arises snake-soul, later snake-god. Blood vapours is the other fraction arising upwards. It becomes wraith bird, later soul bird, and finally bird god. Blood as whole gave snake-god plus bird-god. A winged-cobra became snake-god and bird-god or together, one-as-all. Red Cock was its equivalent. As substance came cinnabar, red like blood and sublimable like soul. Dragon was idealized snake-god. Then Dragon-god plus Bird-god became the equal of blood soul, the magical power. T'ao-t'ieh is Dragon-plus-Bird, snake-god plus bird-god, the equivalent of Cosmic soul. Then cinnabar as the equal of blood soul and T'ao-t'ieh, the emblem of Cosmic soul, each were capable of conferring resurrection and have been interred in Chinese graves.

  2. Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides

    PubMed Central

    Jay, Jenny Ayla; Murray, Karen J.; Gilmour, Cynthia C.; Mason, Robert P.; Morel, François M. M.; Roberts, A. Lynn; Hemond, Harold F.

    2002-01-01

    The extracellular speciation of mercury may control bacterial uptake and methylation. Mercury-polysulfide complexes have recently been shown to be prevalent in sulfidic waters containing zero-valent sulfur. Despite substantial increases in total dissolved mercury concentration, methylation rates in cultures of Desulfovibrio desulfuricans ND132 equilibrated with cinnabar did not increase in the presence of polysulfides, as expected due to the large size and charged nature of most of the complexes. In natural waters not at saturation with cinnabar, mercury-polysulfide complexes would be expected to shift the speciation of mercury from HgS0(aq) toward charged complexes, thereby decreasing methylation rates. PMID:12406773

  3. ¹H-NMR-Based Metabonomics of the Protective Effect of Coptis chinensis and Berberine on Cinnabar-Induced Hepatotoxicity and Nephrotoxicity in Rats.

    PubMed

    Su, Guangyue; Wang, Haifeng; Gao, Yuxian; Chen, Gang; Pei, Yuehu; Bai, Jiao

    2017-11-02

    Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis . The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics.

  4. [Brief investigation on the issue of Zhen Dan(Cinnabar, HgS) irrelevant to Qian Dan (Minium, Pb(3)O(4))].

    PubMed

    Shen, S N

    2017-07-28

    Zhen Dan, the abbreviated form of Zhen Dan Sha, or called Zhu Sha (Cinnabar, HgS). It can be ruled out that Zhen Dan is the nickname of Qian Dan (Minium, Pb(3)O(4)) through the homologous formulas contrast. The prescriptions containing Zhen Dan in the Zheng lei ben cao ( Classified Materia Medica ) was put under the "attached prescriptions" of Qian Dan, while Zhong yao da ci dian ( Great Dictionary of Chinese Materia Medica )and Zhong hua ben cao ( Chinese Herbology )all definitelyconfirmed that Zhen Dan is the other name of Qian Dan, which are wrong and should be corrected.

  5. Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns.

    PubMed

    Reed, Robert D; McMillan, W Owen; Nagy, Lisa M

    2008-01-07

    Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.

  6. [Studies on subacute toxicity of Wansheng Huafeng Dan in rats].

    PubMed

    Peng, Fang; Yang, Hong; Wu, Qin; Liu, Jie; Shi, Jingzhen

    2012-04-01

    To compare sub-acute toxic effects of cinnabar and Wansheng Huafeng Dan with mercury chloride and methyl-mercury. Healthy SD rats were orally administered with Wansheng Huafeng Dan (0.42 g x kg(-1)), cinnabar (0.15 g x kg(-1)), HgS (0.15 g x kg(-1)), HgCl2 (0.02 g x kg(-1)), MeHg (0.001 g x kg(-1)) and saline for 21 days under observed and their weights were monitored. After the final administration, they were decapitated and their blood, liver, kidney and brain tissues were collected for calculating hepatic and renal indexes and detecting the contents of serum glutamic pyruvic transaminase, urea nitrogen and creatinine and the mercury accumulation in liver, kidney and brain tissues. Besides, relative expressions of liver metallothionein-1 (MT-1) and cytochrome P450 gene subtypes (Cyp1a1, Cyp2b1, Cyp2e1, Cyp3a2, Cyp4a10) mRNA. HgCl2 caused obvious weight lose in rats. Mercury contents in liver and kidney were markedly increased by HgCl2 and MeHg, and MeHg markedly increased mercury contents of brain either, but these advent effects were not notable in Wansheng Huafeng Dan and cinnabar groups. However, blood biochemistry and histopathology did not show significant changes in all groups. The expression of rat hepatic MT-1 mRNA was remarkably induced by both HgCl2 and MeHg. The expression of hepatic Cyp3a2 was increased by Wansheng Huafeng Dan and cinnabar, while the expression of Cyp2e1 was inhibited by HgCl2 and MeHg. The administration of Wansheng Huafeng Dan with equivalent dose for three weeks shows a much low sub-acute toxicity than HgCl2 and MeHg in rats.

  7. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area.

    PubMed

    Baptista-Salazar, Carluvy; Hintelmann, Holger; Biester, Harald

    2018-04-25

    Mercury (Hg) released by mining activities can be dispersed in the environment, where it is subject to species transformations. Hg isotope ratios have been used to track sources in Hg contaminated areas, although it is unclear to what extent variations in δ-values are attributed to distinct Hg species. Hg was mined as Hg sulphide (cinnabar) in Idrija, Slovenia for centuries. Sediments are loaded with mining-residues (cinnabar and calcine), whereas contaminated soils mainly contain Hg bound to natural organic matter (NOM-Hg) related to atmospheric Hg deposition. Hg released from soils and sediments is transported as suspended matter (SM) in the Idrijca river to the Gulf of Trieste (GT), Italy. We determine Hg isotope ratios in river SM, sediments and soils from the Idrijca-catchment to decipher the Hg isotope ratio variability related to Hg species distribution in different grain-size fractions. δ202Hg values of SM collected from tributaries corresponded to those found in soils ranging from -2.58 to 0.19‰ and from -2.27 to -0.88‰, respectively. Speciation measurements reveal that fine fractions (0.45-20 μm) are dominated by NOM-Hg, while larger fractions contain more cinnabar. More negative δ202Hg values were related to higher proportions of NOM-Hg, which are predominant in soils and SM. Rain events increase SM-loads in the river, mainly due to resuspension of coarse grain-size fractions of bottom sediments bearing larger proportions of cinnabar, which leads to more positive δ202Hg values. The large magnitude of variation in δ202Hg and the smaller magnitude of variation in Δ199Hg (-0.37 to 0.09‰) are likely related to fractionation during ore roasting. Soil samples with high NOM-Hg content show more negative δ202Hg values and larger variation of Δ199Hg. More negative δ202Hg values in GT sediments were rather linked to distant sedimentation of soil derived NOM-Hg than to sedimentation of autochthonous marine material. Heterogeneity in the Idrija ore and ore processing likely produce large variations in the Hg isotopic composition of cinnabar and released metallic Hg, which complicate the differentiation of Hg sources. Combining Hg isotope measurements with solid phase Hg speciation reveals that Hg isotope ratios rather indicate different Hg species and are not necessarily symptomatic for Hg pollution sources.

  8. [Research on whole blending end-point evaluation method of Angong Niuhuang Wan based on QbD concept].

    PubMed

    Liu, Xiao-Na; Zheng, Qiu-Sheng; Che, Xiao-Qing; Wu, Zhi-Sheng; Qiao, Yan-Jiang

    2017-03-01

    The blending end-point determination of Angong Niuhuang Wan (AGNH) is a key technology problem. The control strategy based on quality by design (QbD) concept proposes a whole blending end-point determination method, and provides a methodology for blending the Chinese materia medica containing mineral substances. Based on QbD concept, the laser induced breakdown spectroscopy (LIBS) was used to assess the cinnabar, realgar and pearl powder blending of AGNH in a pilot-scale experiment, especially the whole blending end-point in this study. The blending variability of three mineral medicines including cinnabar, realgar and pearl powder, was measured by moving window relative standard deviation (MWRSD) based on LIBS. The time profiles of realgar and pearl powder did not produce consistent results completely, but all of them reached even blending at the last blending stage, so that the whole proposal blending end point was determined. LIBS is a promising Process Analytical Technology (PAT) for process control. Unlike other elemental determination technologies such ICP-OES, LIBS does not need an elaborate digestion procedure, which is a promising and rapid technique to understand the blending process of Chinese materia medica (CMM) containing cinnabar, realgar and other mineral traditional Chinese medicine. This study proposed a novel method for the research of large varieties of traditional Chinese medicines.. Copyright© by the Chinese Pharmaceutical Association.

  9. Klimt artwork (Part II): material investigation by backscattering Fe-57 Mössbauer- and Raman- spectroscopy, SEM and p-XRF

    NASA Astrophysics Data System (ADS)

    Costa, B. F. O.; Lehmann, R.; Wengerowsky, D.; Blumers, M.; Sansano, A.; Rull, F.; Schmidt, H.-J.; Dencker, F.; Niebur, A.; Klingelhöfer, G.; Sindelar, R.; Renz, F.

    2016-12-01

    In a rediscovered Klimt-artwork " Trompetender Putto" material tests have been conducted. We report studies on different points of the painting. The spots are of different colors, mainly taken in spots of the painting not restaurated. MIMOS II Fe-57 Mössbauer spectroscopy revealed mainly haematite and nano particle oxides in red and red/brown colors. Brown colors also contain crystallized goethite. In brown/ochre colors the same pigments as in brown colors are observed, but there is less quantity of goethite and more quantity of haematite. The green colors show Fe-rich clays, like celadonite or glauconite and or lepidocrocite as main component. Raman spectroscopy revealed cinnabar in red colors of the Scarf; and massicot in brown/ochre points, i.e. in the Left Wing of the "Putto". With scanning electron microscopy, various layers of the original and of overpainting could be recognized. The investigations of sample 1 show three layers of colored materials, which were identified as zinc-white, cinnabar and galena as well as carbon compounds. In sample 2 four layers could be detected. These are identified (bottom to top) as gypsum and lead-white (layer 1), zinc-white (layer 2), lead-white and cinnabar (layer 3) and titanium-white (layer 4). The elementary composition was examined with the portable X-ray-fluorescence analysis for qualitative manner at different points.

  10. Mercury dispersion in soils of an abandoned lead-zinc-silver mine, San Quintín (Spain)

    NASA Astrophysics Data System (ADS)

    Esbrí, José Maria; Martín-Crespo, T.; Gómez-Ortiz, D.; Monescillo, C. I.; Lorenzo, S.; Higueras, P.

    2010-05-01

    The mine considered on this work, namely San Quintín, is a filonian field with hydrothermal ores exploited during almost fifty years (1887-1934), producing 550.000Tm of galena, 550Tm of silver and 5.000 of sphalerite. Some rewashing works of tailings muds was achieved in recent times (1973-1985), including flotation tests of cinnabar ore from Almadén mines. The main problems remaining on the site are an active acid mine drainage (with pH ~ 2) and heavy metal dispersion on soils including gaseous mercury emissions. We present here results of a survey including soils sampling with mercury analysis and other pedological parameters, as well as determinations of mercury inmission in the atmosphere, using a common sampling grid. Analysis of soils samples has been carried out using an atomic absorption spectrometer AMA254, while air determinations were made by the same technique, using a Lumex RA-915+. The maps have been obtained by means of SURFER 8 software, as well as by ArcGIS software, and puts forward dispersion of mercury from cinnabar ore dump (108 ?g×g-1) to nearby soils (0.3 ?g×g-1 at 700 m of distance). The dispersion of mercury vapor exceed WHO level for chronic exposure (200 ng×m-3) in a small area (250 meters from cinnabar dump).

  11. Estimation of bioaccessibility and potential human health risk of mercury in Chinese patent medicines.

    PubMed

    Liu, Lihong; Zhang, Yu; Yun, Zhaojun; He, Bin; Jiang, Guibin

    2016-01-01

    Mercury (Hg), mainly in cinnabar species, has been used in medicine for thousands of years in China, and worldwide concern has been raised on its toxicity. In this work, the amount of bioaccessible mercury in 16 Chinese patent medicines (CPMs) was measured by using an in vitro simulated digestion system, consisting of simulated gastric and intestinal fluid, to investigate the bioavailability of mercury in CPMs and evaluate its potential risk to human health. Total mercury and mercury in the gastrointestinal extracts were measured by inductively coupled plasma mass spectrometry (ICP-MS). The levels of total Hg in 16 CPMs ranged from not detected to 11.89 mg/g, with a mean value of 1.13 mg/g, while the extractable Hg ranged from not detected to 4.37 μg/g, with a mean value of 0.42 μg/g. Mercury bioaccessibility varied significantly in the investigated CPMs, depending on the ingredient. Compared to the CPMs without cinnabar (2.5%-30.9%), the percentage of mercury in the gastrointestinal supernatants for CPMs with cinnabar was quite a bit lower (0.037%). By comparing with the Food and Agricultural Organization/World Health Organization Joint Expert Committee on Food Additives (FAO/WHO) safety guideline, the average daily intake dose (ADD) of Hg in the medicines was then calculated to access the risk of mercury to human health from taking CPMs. Copyright © 2015. Published by Elsevier B.V.

  12. Mercury at the Oat Hill Extension Mine and James Creek, Napa County, California: Tailings, Sediment, Water, and Biota, 2003-2004

    USGS Publications Warehouse

    Slowey, Aaron J.; Rytuba, James J.; Hothem, Roger L.; May, Jason T.

    2007-01-01

    Executive Summary The Oat Hill Extension (OHE) Mine is one of several mercury mines located in the James Creek/Pope Creek watershed that produced mercury from the 1870's until 1944 (U.S. Bureau of Mines, 1965). The OHE Mine developed veins and mineralized fault zones hosted in sandstone that extended eastward from the Oat Hill Mine. Waste material from the Oat Hill Mine was reprocessed at the OHE Mine using gravity separation methods to obtain cinnabar concentrates that were processed in a retort. The U.S. Bureau of Land Management requested that the U.S. Geological Survey measure and characterize mercury and other chemical constituents that are potentially relevant to ecological impairment of biota in tailings, sediment, and water at the OHE Mine and in the tributaries of James Creek that drain the mine area (termed Drainage A and B) (Figs. 1 and 2). This report summarizes such data obtained from sampling of tailings and sediments at the OHE on October 17, 2003; water, sediment, and biota from James Creek on May 20, 2004; and biota on October 29, 2004. These data are interpreted to provide a preliminary assessment of the potential ecological impact of the mine on the James Creek watershed. The mine tailings are unusual in that they have not been roasted and contain relatively high concentrations of mercury (400 to 1200 ppm) compared to unroasted waste rock at other mines. These tailings have contaminated a tributary to James Creek with mercury primarily by erosion, on the basis of higher concentration of mercury (780 ng/L) measured in unfiltered (total mercury, HgT) spring water flowing from the OHE to James Creek compared to 5 to 14 ng/L HgT measured in James Creek itself. Tailing piles (presumably from past Oat Hill mine dumping) near the USBLM property boundary and upstream of the main OHE mine drainage channel (Drainage A; Fig. 2) also likely emit mercury, on the basis of their mercury composition (930 to 1200 ppm). The OHE spring water is likely an appreciable source of sulfate and carbonate to James Creek, because the spring water was enriched in sulfate (130 mg/L) and carbonate (430 mg/L as CaCO3) compared to James Creek water (70 to 100 mg/L SO42- and 110 to 170 mg/L as CaCO3) at the time of sampling. Concentrations of mercury in active channel sediment from James Creek are variable and potentially high, on the basis of chemical analysis (2.5 to 17 _g/g-wet sediment) and easily visible cinnabar grains in panned concentrates. Average (geometric mean) organic mercury (presumably monomethyl mercury (MMHg); ?2.3.3) concentrations in several invertebrate taxa collected from the James Creek watershed locations were higher than invertebrates taken from a Northern California location lacking a known point source of mercury. The mean proportion of MMHg to total mercury in James Creek predatory insect samples was 40 percent (1 standard deviation = 30 percent); only 40 percent of all insect samples had a MMHg/HgT proportion greater than 0.5. The low proportions of MMHg measured in invertebrates in James Creek and the presence of cinnabar in the creek suggest that some invertebrates may have anomolously high Hg concentrations as a result of the injestion or adhesion of extremely fine-grained cinnabar particles. Interpretation of HgT in frogs and fish as an indicator of mercury reactivity, biouptake, or trophic transfer is limited, pending MMHg measuremens, by the possibility of these whole-body samples having contained cinnabar particles at the time of analysis. To minimize this limitation, the gastrointestinal tracts and external surfaces of all amphibians, where cinnabar most likely resides, were carefully flushed to remove any visible particles. However, extremely fine-grained, invisible, adhesive cinnabar particles likely exist in the amphibians' habitats. HgT in foothill yellow-legged frogs collected from the James Creek study area, ranging from 0.1 to 0.6 ug/g Hg, was on average twice that of an extensive

  13. Les fards rouges cosmétiques et rituels a base de cinabre et d'ocre de l'époque punique en Tunisie: analyse, identification et caractérisation.

    PubMed

    Alatrache, A; Mahjoub, H; Ayed, N; Ben Younes, H

    2001-10-01

    Natural antique colorants include mainly red pigments such as cinnabar and ochre. These archeological pigments were used especially as funeral and cosmetic makeup and are a material proof of handicraft activities and exchanges. The identification and characterization of a group of punic colorants, corresponding to samples discovered during excavations at several Tunisian archeological sites (Cartage, Ksour Essef, Kerkouane, Bekalta, Makthar, Bou Arada), were conducted using the least destructive analysis techniques such us scanning electron microscopy coupled to X-ray fluorescence microprobe, direct current plasma emission spectroscopy, atomic absorption spectrometry, Fourier transform infrared spectrometry and X-ray diffraction. Eleven natural red colorants from punic period were subject to this investigation and were compared to contemporary substances. Five colorants were cinnabar and the other six were ochre.

  14. Mercury Production and Use in Colonial Andean Silver Production: Emissions and Health Implications

    PubMed Central

    Hagan, Nicole A.

    2012-01-01

    Background: Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. Objectives: We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564–1810). Discussion: Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. Conclusions: According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury. PMID:22334094

  15. Inferring Ancient Technology and Practices of the Elite Maya Kingship Through the Application of Materials Engineering Characterization Modalities

    NASA Astrophysics Data System (ADS)

    Cheung, Kristina Alyssa

    This project focuses on the characterization of materials from burial offerings and painted decoration in a royal Maya tomb at El Zotz, Guatemala, and their association with mortuary rituals. Archaeological findings included vessels, jade masks, organic materials (wood, cord, and textiles), specular hematite cubes, shells with powdered cinnabar, green (malachite) painted stucco assumed to have decorated the wooden bier where the king was resting, and caches of lip-to-lip Aguila Orange bowls containing human phalanges. This paper describes findings from non-invasive and non-destructive analytical techniques including XRF, VPSEM-EDS, and XRD, emphasizing the potential of these combined technologies in the identification of organic and inorganic markers to infer burial customs. The nature and location of the findings, the evidence of pigment coloration on the bones employing hematite and cinnabar, and the indication of exposure of the bones to high temperatures suggest highly complex, even protracted mortuary practices of Maya elite.

  16. An extensive colour palette in Roman villas in Burgos, Northern Spain: a Raman spectroscopic analysis.

    PubMed

    Villar, S E J; Edwards, H G M

    2005-05-01

    Seventy-five specimens from thirty fragments of Roman villa wall-paintings from sites in Burgos Castilla y Leon, Spain, have been analysed by Raman spectroscopy. This is the first time that a Raman spectrocopic study of Roman wall-paintings from Spain has been reported. The extensive range of tonalities and colour compositions contrasts with the results found in other provinces of the Roman Empire, for example Romano-British villas. Calcite, aragonite, haematite, caput mortuum, cinnabar, limonite, goethite, cuprorivaite, lazurite, green earth, carbon and verdigris have been found as pigments. Some mineral mixtures with different tonalities have been made using different strategies to those more usually found. Of particular interest is the assignation of the Tarna mine for the origin of the cinnabar used for obtaining the red colour in some specimens analysed here. The wide range of colours, tonalities and minerals found in some of the sites studied in this work is suggestive of a high social status for the community.

  17. A multi-analytical approach for the study of the pigments used in the wall paintings from a building complex on the Caelian Hill (Rome)

    NASA Astrophysics Data System (ADS)

    Fermo, Paola; Piazzalunga, Andrea; de Vos, Mariette; Andreoli, Martina

    2013-12-01

    In the present study, shards from Roman wall paintings (from the end of the first century to the fourth century A.D.) decorating the domus below the Basilica of SS. John and Paul on the Caelian Hill (Rome), were analyzed in order to identify the pigments used. The analytical techniques employed for the characterization of the pigments were the scanning electron microscope coupled with an energy dispersive spectrometer (SEM-EDS) and infrared spectroscopy (ATR and micro ATR). While SEM-EDS allowed to perform a qualitative analysis of the material, by FT-IR chemical species have been identified. The pigments identified were those mentioned in the literature for the Imperial Roman fresco painting: different types of ochre (yellow and red), mixtures containing lead, green earths and precious pigments such as cinnabar and Egyptian blue. They were often used as mixtures and the use of the most valuable pigments (cinnabar and Egyptian blue) were found in the most ancient rooms.

  18. Speciation and bioaccessibility of mercury in adobe bricks and dirt floors in Huancavelica, Peru

    EPA Science Inventory

    Background: Huancavelica, Peru, a historic cinnabar refining site, is one of the most mercury (Hg) contaminated urban areas in the world. Residents’ exposures are amplified because residents build their adobe brick homes from contaminated soil. Objectives: The objectives of th...

  19. Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru

    EPA Science Inventory

    Between 1564 and 1810, nearly 17,000 metric tons of mercury (Hg) vapor were released to the environment during cinnabar refining in the small town of Huancavelica, Peru. The present study characterizes individual exposure to mercury using total and speciated Hg from residential s...

  20. 43 CFR 3872.5 - Testimony at hearings to determine character of lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... place bearing gold, silver, cinnabar, lead, tin, copper, or other valuable deposit which has ever been... are raised thereon, the value thereof; the number of acres actually cultivated for crops of cereals or... subdivisions embrace the improvements, giving in detail the extent and value of the improvements, such as house...

  1. 43 CFR 3872.5 - Testimony at hearings to determine character of lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... place bearing gold, silver, cinnabar, lead, tin, copper, or other valuable deposit which has ever been... are raised thereon, the value thereof; the number of acres actually cultivated for crops of cereals or... subdivisions embrace the improvements, giving in detail the extent and value of the improvements, such as house...

  2. 43 CFR 3872.5 - Testimony at hearings to determine character of lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... place bearing gold, silver, cinnabar, lead, tin, copper, or other valuable deposit which has ever been... are raised thereon, the value thereof; the number of acres actually cultivated for crops of cereals or... subdivisions embrace the improvements, giving in detail the extent and value of the improvements, such as house...

  3. Bacterial Influence on the Solubility of Cinnabar and Metacinnabar at New Idria, CA

    NASA Astrophysics Data System (ADS)

    Jew, A. D.; Rytuba, J. J.; Spormann, A. M.; Brown, G. E.

    2007-12-01

    Mercury in the forms of cinnabar (α-HgS) and metacinnabar (β-HgS) is generally considered to be unreactive and of little environmental concern. To determine if this current belief is valid, a consortium of bacteria (including a Thiomonas intermedia-like bacterium) was taken from the acid mine drainage (AMD) pond at the New Idria Hg Mine, San Benito Co., CA, and inoculated into filter-sterilized AMD pond water (pH = 4) containing either ground cinnabar or metacinnabar crystals (<45 μm in diameter), with sampling occurring every 3 days. Under aerobic conditions the samples showed a pronounced increase in aqueous Hg concentration over background water concentrations (350(±20)ng/L). Bacteria growing on α-HgS increased the Hg concentration to 597(±10)μg/L, while bacteria growing on β-HgS resulted in levels of 8.0(±0.2)mg/L; both maxima occurred after 18 days of incubation. Experiments conducted with (1) α- HgS or β-HgS in the presence of killed bacteria (anaerobic), (2) α-HgS with pond water (abiotic), and (3) β-HgS with AMD pond water (abiotic) showed drops in aqueous Hg to below the detection limit (0.1ng/L) within 12 days. Anaerobic growth of the bacterial consortium showed a pattern similar to those of the abiotic water-HgS experiments, except that Hg levels dropped below detection limit within 6 days. These combined results suggest that HgS degradation by this bacterial consortium is an aerobic process. Killed bacteria incubated aerobically showed a slight increase in Hg levels over background water levels (<10x increase) then dropped below detection limit. This observation suggests that enzymes might be involved in the dissolution of HgS and were still viable for ~6 days after sterilization. In aerobic living incubations, the activities of different mercury and sulfide species were estimated using the thermodynamic modeling program Minteq with AMD pond water chemistry determined by ICP-MS and total mercury and total sulfide analyses. These calculations give an equilibrium solubility product for the dissolution of HgS up to 25 orders of magnitude higher than HgS under standard conditions. When compared to calculations by Paquette et al., 1997 and Benoit et al., 1999, the bacterial consortium at New Idria causes an increase in the pK for all reported reactions including H+, HS-, and H2S of 11-13 orders of magnitude. These results indicate that the biofilm consortium at the New Idria AMD pond has a profound effect on the solubility of cinnabar and metacinnabar, suggesting that a reassessment of HgS stability in aerobic AMD environments is needed.

  4. Mineral resource of the month: mercury

    USGS Publications Warehouse

    ,

    2012-01-01

    The article offers information on mercury, a mineral commodity used in industrial and small-scale gold mining applications. Mercury has been reported to be used for amalgamation with gold since the Roman times. Mercury from cinnabar from Almadén, Spain has been used by Romans and has been continued to be used through the Middle Ages and the Colonial era.

  5. THE HERMAN PIT AND ITS ROLE IN MERCURY TRANSPORT AT THE SULPHUR BANK MERCURY MINE SUPERFUND SITE, CLEAR LAKE, CALIFORNIA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine (SBMM) is an abandoned sulphur and cinnabar mine located on the eastern shore of the Oaks Arm of Clear Lake, Lake County, California. SBMM was one of the largest mercury producers in California and has been described as one of the most productive sh...

  6. Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector.

    PubMed

    Lobo, N F; Hua-Van, A; Li, X; Nolen, B M; Fraser, M J

    2002-04-01

    Mosquito-vectored diseases such as yellow fever and dengue fever continue to have a substantial impact on human populations world-wide. Novel strategies for control of these mosquito vectored diseases can arise through the development of reliable systems for genetic manipulation of the insect vector. A piggyBac vector marked with the Drosophila melanogaster cinnabar (cn) gene was used to transform the white-eyed khw strain of Aedes aegypti. Microinjection of preblastoderm embryos resulted in four families of cinnabar transformed insects. An overall transformation frequency of 4%, with a range of 0% to as high as 13% for individual experiments, was achieved when using a heat-shock induced transposase providing helper plasmid. Southern hybridizations indicated multiple insertion events in three of four transgenic lines, while the presence of duplicated target TTAA sites at either ends of individual insertions confirmed characteristic piggyBac transposition events in these three transgenic lines. The transgenic phenotype has remained stable for more than twenty generations. The transformations effected using the piggyBac element establish the potential of this element as a germ-line transformation vector for Aedine mosquitoes.

  7. Mediaeval cantorals in the Valladolid Biblioteca: FT-Raman spectroscopic study.

    PubMed

    Edwards, H G; Farwell, D W; Rull Perez, F; Medina Garcia, J

    2001-03-01

    Raman spectroscopic studies of three mediaeval cantorals in the Biblioteca of the University of Valladolid has revealed information about the pigments used on these large manuscripts. Although executed in a simple colour palette, very pure cinnabar was used as the major colourant, offsetting the carbon black of the verses and script. A dark blue colour was achieved using a mixture of azurite (basic copper carbonate) and carbon, whereas a light blue colour was azurite alone. A grey colour was achieved using azurite, carbon particles and a calcareous 'limewash'. A yellow pigment, used sparely in the cantorals was ascribed to saffron; unusually, there was no evidence for the presence of the yellow mineral pigments orpiment, realgar and massicot. In several regions of the vellum specimens, evidence for biodeterioration was observed through the signatures of hydrated calcium oxalate. We report for the first time the Raman spectra of pigment in situ on a vellum fragment, which also shows evidence of substrate bands; comparison of black and red pigmented regions of vellum specimens has shown the presence of calcium oxalate in the black pigmented script but not in the red pigment regions, which suggests that the cinnabar in the red-pigmented regions acts as a toxic protectant for the vellum substrate against biological colonisation processes.

  8. Mercury methylation in mine wastes collected from abandoned mercury mines in the USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.; Biester, H.; Lasorsa, B.K.; ,

    2003-01-01

    Speciation and transformation of Hg was studied in mine wastes collected from abandoned Hg mines at McDermitt, Nevada, and Terlingua, Texas, to evaluate formation of methyl-Hg, which is highly toxic. In these mine wastes, we measured total Hg and methyl-Hg contents, identified various Hg compounds using a pyrolysis technique, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Mine wastes contain total Hg contents as high as 14000 ??g/g and methyl-Hg concentrations as high as 88 ng/g. Mine wastes were found to contain variable amounts of cinnabar, metacinnabar, Hg salts, Hg0, and Hg0 and Hg2+ sorbed onto matrix particulates. Samples with Hg0 and matrix-sorbed Hg generally contained significant methyl-Hg contents. Similarly, samples containing Hg0 compounds generally produced significant Hg methylation rates, as much as 26%/day. Samples containing mostly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Methyl-Hg demethylation was by both oxidative and microbial pathways. The correspondence of mine wastes containing Hg0 compounds and measured Hg methylation suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

  9. Biological control of tansy ragwort (Senecio jacobaeae, L.) by the Cinnabar moth, Tyria jacobaeae (CL) (Lepidoptera: Arctiidae), in the northern Rockies

    Treesearch

    G. P. Markin; J. L. Littlefield

    2008-01-01

    The control of tansy ragwort on the coast of western North America is a major success story for weed biological control. However, tansy ragwort is still expanding into the colder interior regions of the Pacific Northwest of the United States where previous efforts to establish the same complex of agents have failed. We have successfully established one of the...

  10. Use of different spectroscopic techniques in the analysis of Roman age wall paintings.

    PubMed

    Agnoli, Francesca; Calliari, Irene; Mazzocchin, Gian-Antonio

    2007-01-01

    In this paper the analysis of samples of Roman age wall paintings coming from: Pordenone, Vicenza and Verona is carried out by using three different techniques: energy dispersive x-rays spectroscopy (EDS), x-rays fluorescence (XRF) and proton induced x-rays emission (PIXE). The features of the three spectroscopic techniques in the analysis of samples of archaeological interest are discussed. The studied pigments were: cinnabar, yellow ochre, green earth, Egyptian blue and carbon black.

  11. Low lattice thermal conductivity and good thermoelectric performance of cinnabar

    NASA Astrophysics Data System (ADS)

    Zhao, Yinchang; Dai, Zhenhong; Lian, Chao; Zeng, Shuming; Li, Geng; Ni, Jun; Meng, Sheng

    2017-11-01

    Based on the combination of first-principles calculations, Boltzmann transport equation, and electron-phonon interaction (EPI), we investigate the thermal and electronic transport properties of crystalline cinnabar (α -HgS ). The calculated lattice thermal conductivity κL is remarkably low, e.g., 0.60 Wm-1K-1 at 300 K , which is about 30 % of the value for the typical thermoelectric material PbTe. Via taking fully into account the k dependence of the electron relaxation time computed from the EPI matrix, the accurate numerical results of thermopower S , electrical conductivity σ , and electronic thermal conductivity κE are obtained. The calculated power factor S2σ is relatively high while the value of κE is negligible, which, together with the fairly low κL, leads to a good thermoelectric performance in the n -type doped α -HgS , with the figure of merit z T even exceeding 1.4. Our analyses reveal that (i) the large weighted phase space and the quite low phonon group velocity result in the low κL, (ii) the presence of flat band around the Fermi level combined with the large band gap causes the high S , and (iii) the small electron linewidths of the conduction band lead to a large relaxation time and thus a relatively high σ . These results support that α -HgS is a potential candidate for thermoelectric applications.

  12. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Hintelmann, Holger; Lu, ShengYong

    2003-06-01

    Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.

  13. Raman spectroscopic analysis of an important Visigothic historiated manuscript

    PubMed Central

    Perez, Fernando Rull; Garcia, Jesús Medina

    2016-01-01

    Raman spectroscopy has been used to study fragments of early Visigothic historiated manuscripts from the important mediaeval library at Santo Domingo de Silos which were a part of a Beato dating from the tenth to the mid-eleventh centuries. These fragments are from some of the oldest manuscripts in the scriptorium of the monastery. In this study, a comparison is made between the pigments and inks used on these manuscripts and those used in a previous study of the unique Visigothic Beato de Valcavado in Santa Cruz, Valladolid, completed in the year 970, which is noted for its quality of execution as well as its content and is remarkable eschatologically in being identifiable as the complete work of only a single scribe. For comparative purposes, the pigments and inks used in the Silos Monastery Beato and a series of historiated early manuscripts from mediaeval times through to the Renaissance also held in the monastic library were analysed. Raman spectroscopy identified a range of mineral and organic pigments such as cinnabar, orpiment, minium, azurite and indigo. In addition, a number of admixtures were found, for example, indigo and orpiment to produce vergaut (green) and a mixture of cinnabar with iron-gall ink and cerussite to produce darker and lighter shades of red. Some interesting conclusions were drawn about the use of iron-gall and carbon-based inks. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799425

  14. Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases. The speciation of Hg in mine wastes is similar to that in distributed sediments located downstream from the same waste piles, indicating that the transport of Hg from mine waste piles does not significantly impact Hg speciation. Hg LIII-EXAFS analysis of samples from Au mining regions, where elemental Hg(0) was introduced to aid in the Au recovery process, identified the presence of Hg-sulfides and schuetteite (Hg3O2SO4), which may have formed as a result of long-term Hg(0) burial in reducing high-sulfide sediments. ?? 2003 Elsevier Ltd. All rights reserved.

  15. Bacterially Mediated Breakdown of Cinnabar and Metacinnabar and Environmental Implications

    NASA Astrophysics Data System (ADS)

    Jew, A. D.; Rogers, S. B.; Rytuba, J.; Spormann, A. M.; Brown, G. E.

    2006-12-01

    Mercury in the forms of cinnabar (α-HgS) and metacinnabar (β-HgS) is considered by the EPA to be unreactive and of little environmental concern because of their relatively low solubilities. To determine if this current belief is valid, a consortium of bacteria (including a Thiomonas intermedia-like bacterium) was taken from the acid mine drainage (AMD) pond at the New Idria Hg Mine, San Benito Co., CA, and inoculated into filter-sterilized AMD pond water containing either ground cinnabar or metacinnabar crystals (<45μm in diameter), with sampling occurring approximately every 3 days. Under aerobic conditions the samples showed a pronounced increase in aqueous Hg concentration over background water concentrations (390(±20)ng/L). Bacteria growing on α-HgS increased the Hg concentration to 297(±10)μg/L, while bacteria growing on β-HgS resulted in levels of 4.6(±0.2)mg/L; both maxima occurred at 18 days incubation. Experiments conducted with (1) α-HgS or β-HgS in the presence of killed bacteria (anaerobic), (2) α-HgS with pond water (abiotic), and (3) β-HgS with pond water (abiotic) showed drops in aqueous Hg to below the detection limit (0.1ng/L) within 12 days. Anaerobic growth of the bacterial consortium showed a pattern similar to those of the water and HgS experiments, except that Hg levels dropped below detection limit within 6 days. These combined results suggest that HgS degradation by this bacterial consortium is an aerobic process. Killed bacteria incubated aerobically showed a slight increase in Hg levels over background water levels (<10x increase) then dropped below detection limit. This observation suggests that enzymes might be involved in the dissolution of HgS and were still viable for ~6 days after sterilization. The New Idria AMD pond consists of an inlet stream and an outlet pipe, separated from each other by ~3m. The Hg concentration in the ferrihydrite-rich sediments at the inlet is 37mg/kg, dry weight, while the concentration at the outlet is 216mg/kg, dry weight. Surface water concentrations of Hg at the AMD pond are generally <100μg/L, suggesting that the sediments sequester Hg. During the wet season (October- March), the AMD pond receives considerable amounts of run-off from precipitation, which flushes Hg associated with ferrihydrite out of the region into the San Joaquin river s stem, representing a possible mode of Hg transport out of the New Idria Hg mining district.

  16. Infrared spectra of some sulfides and their analogs of binary composition in the long-wave region

    NASA Technical Reports Server (NTRS)

    Povarennykh, A. S.; Sidorenko, G. A.; Solntseva, L. S.; Solntsev, B. P.

    1981-01-01

    The far infrared spectra (500-60/cm) of some simple sulfides and their analogs were studied. In all, 22 minerals with different structure types were investigated, out of which 14 are sulfides (galena, alabandite, pyrrhotite, sphalerite, wurtzite, cinnabar, realgar, orpiment, getchelite antimonite, molybdenite, pyrite, marcasite and heazlewoodite) 6 arsenides (niccolite, domeykite, arsenopyrite, lollingite, rammelsbergite and skutterudite), one telluride (tetradymite) and native arsenic. The main bands of infrared absorption spectra of the minerals are compared with the relative strength of the interatomic bonds and their interpretation is given.

  17. Investigation of Optical and Electrical Properties of Wide Band Gap Materials

    DTIC Science & Technology

    1976-06-01

    porous and heterogeneous. 22 IF 3. CRYSTAL GROWTH OF HgS A. Background fI’ Mercury sulfide is a wide bandgap semiconductor which is of considerable...I24 I 23 Mercury sulfide exists in two modifications, cinnabar (a-HgS) and metacinnabar (0-HgS). The a phase crystallizes in an unusual, dihedrally...5.817 ) at 26 °C, with Eg = -0.15 eV. An early technique, reported by Hamilton 31, on the synthesis of single crystals of the sulphides of Zn, Cd

  18. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).

    PubMed

    Protano, Giuseppe; Nannoni, Francesco

    2018-05-01

    A geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability. Soils of roasting zone showed the highest Hg contamination levels mainly due to the deposition of Hg released as Hg 0 by furnaces during cinnabar roasting. High Hg contents were also measured in waste from the lower part of mining dump due to the presence of cinnabar. The fractionation pattern suggested that Hg was largely as volatile species in both uncontaminated and contaminated soils and mining waste, and concentrations of these Hg species increased as contamination increased. These findings were in agreement with the fact that the ASS mining site is characterized by high Hg concentrations in the air and the presence of Hg 0 liquid droplets in soil. Volatile Hg species were also prevalent in uncontaminated soils likely because the Monte Amiata region is an area characterized by anomalous fluxes of gaseous Hg from natural and anthropogenic inputs. At the ASS mining site soils were also contaminated by Sb, while As contents were comparable with its local background in soil. In all soil and waste samples Sb and As were preferentially in residual fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mercury Analysis of Acid- and Alkaline-Reduced Biological Samples: Identification of meta-Cinnabar as the Major Biotransformed Compound in Algae†

    PubMed Central

    Kelly, David; Budd, Kenneth; Lefebvre, Daniel D.

    2006-01-01

    The biotransformation of HgII in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only β-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of HgII applied as HgCl2 into a form with the analytical properties of β-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of β-HgS in biological samples. Under aerobic conditions, HgII is biotransformed mainly into β-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats. PMID:16391065

  20. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.

    PubMed

    Kelly, David; Budd, Kenneth; Lefebvre, Daniel D

    2006-01-01

    The biotransformation of Hg(II) in pH-controlled and aerated algal cultures was investigated. Previous researchers have observed losses in Hg detection in vitro with the addition of cysteine under acid reduction conditions in the presence of SnCl2. They proposed that this was the effect of Hg-thiol complexing. The present study found that cysteine-Hg, protein and nonprotein thiol chelates, and nucleoside chelates of Hg were all fully detectable under acid reduction conditions without previous digestion. Furthermore, organic (R-Hg) mercury compounds could not be detected under either the acid or alkaline reduction conditions, and only beta-HgS was detected under alkaline and not under acid SnCl2 reduction conditions. The blue-green alga Limnothrix planctonica biotransformed the bulk of Hg(II) applied as HgCl2 into a form with the analytical properties of beta-HgS. Similar results were obtained for the eukaryotic alga Selenastrum minutum. No evidence for the synthesis of organomercurials such as CH3Hg+ was obtained from analysis of either airstream or biomass samples under the aerobic conditions of the study. An analytical procedure that involved both acid and alkaline reduction was developed. It provides the first selective method for the determination of beta-HgS in biological samples. Under aerobic conditions, Hg(II) is biotransformed mainly into beta-HgS (meta-cinnabar), and this occurs in both prokaryotic and eukaryotic algae. This has important implications with respect to identification of mercury species and cycling in aquatic habitats.

  1. Speciation of mercury and mode of transport from placer gold mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 ??g/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed. ?? 2005 American Chemical Society.

  2. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers.

    PubMed

    Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian

    2014-01-01

    This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Mercury in the national parks

    USGS Publications Warehouse

    Pritz, Colleen Flanagan; Eagles-Smith, Collin A.; Krabbenhoft, David

    2014-01-01

    One thing is certain: Even for trained researchers, predicting mercury’s behavior in the environment is challenging. Fundamentally it is one of 98 naturally occurring elements, with natural sources, such as volcanoes, and concentrated ore deposits, such as cinnabar. Yet there are also human-caused sources, such as emissions from both coal-burning power plants and mining operations for gold and silver. There are elemental forms, inorganic or organic forms, reactive and unreactive species. Mercury is emitted, then deposited, then re-emitted—thus earning its mercurial reputation. Most importantly, however, it is ultimately transferred into food chains through processes fueled by tiny microscopic creatures: bacteria.

  4. Continued development of room temperature semiconductor nuclear detectors

    NASA Astrophysics Data System (ADS)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  5. BASIC CONCEPTS TO BE RECKONED IN A PROPER HISTORY OF ALCHEMY

    PubMed Central

    Mahdihassan, S.

    1986-01-01

    Use of simple synthetic drug called Chin – Yeh, Gold – plus – plant juice or red colloidal gold. Gold made body everlasting and the herbal principle, as soul, increased life-span. Dialectally it was called Kim – Iya. Arabicized as Al – Kimiya it finally appeared as Alchemy. Chin – Yeh as drug was only brick – red when mercury, and sulphur – with traces of gold were sublimated there resulted Chin – Tan, Gold – plus – cinnabar. It was blood – red and with redness as soul it became the ideal drug of longevity. PMID:22557523

  6. 248 mine, Terlingua quicksilver district, Brewster County, Texas

    USGS Publications Warehouse

    Yates, Robert G.; Thompson, George A.

    1944-01-01

    The 248 quicksilver mine is in Section 248, Block G-4, 2 miles east of Terlingua and 86 miles by dirt road from Alpine, Tex., the nearest railway shipping point (see accompanying maps). Cinnabar, the quicksilver mineral, was discovered before 1902. By 1934 there were only about 700 feet of subsurface workings, but in recent years the Esperado Mining Co., which has the property under lease, has greatly extended exploratory workings and has built a Herreshoff furnace rated at 40 tons per day. At the present time there are 1 1/3 miles of underground workings and 800 feet of surface trenches.

  7. Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA

    USGS Publications Warehouse

    Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.

    2000-01-01

    Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than 5% of the total Hg. Muscle samples of fish collected downstream from mines contain as much as 620 ng/g Hg (wet wt.), of which 90-100% is methylmercury. Although these Hg concentrations are several times higher than that in fish collected from regional baseline sites, the concentration of Hg in fish is below the 1000 ng/g action level for edible fish established by the US Food and Drug Administration (FDA). Salmon contain less than 100 ng/g Hg, which are among the lowest Hg contents observed for fish in the study, and well below the FDA action level. (C) 2000 Elsevier Science B.V.

  8. Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy.

    PubMed

    Bellander, T; Merler, E; Ceccarelli, F; Boffetta, P

    1998-02-01

    Metallic mercury production from cinnabar ore may result in high exposures to inorganic mercury, that are difficult to assess separately from the exposures originating from underground extraction, and previously have only been scantily described. We retrieved and analysed the air and biological mercury determinations on workers involved in the smelting process of the Abbadia San Salvatore mine (Monte Amiata, Italy). Native mercury was not present in the ore, and the exposure in the underground extraction was low. The smelter operated from 1897 to 1983. Blood and urine (24/h urine collections and concentration samples) had been sampled in 1968 to 1982, and analysed for mercury by atomic absorption spectrophotometry, and relate to all subjects. Exposure to mercury in air had been determined in a small set of personal samples in 1982. The data relate to all jobs in the smelter process, and all jobs entailed substantial exposure to mercury. The overall distribution of breathing zone air, blood and urinary levels is right-skewed and similar to the log-normal distribution (air, median 48 micrograms/m3, n = 49; blood, arithmetic mean AM 49 micrograms/L; geometric mean GM 26 micrograms/L, n = 192; urinary excretion, AM 140 micrograms/24 h, GM 78 micrograms/24 h, n = 839; and urinary concentration, AM 160 micrograms/L, GM 83 micrograms/L, n = 632). Air, blood and urinary values show a high ratio of the between- and within-job variance, indicating differences in exposure by job. Cinnabar pigment production, of which the exposure has not been characterised previously, was the job with the highest air (AM 160 micrograms/m3) and urinary levels (excretion AM 690 micrograms/24 h; concentration AM 1100 micrograms/L). Other jobs with high urinary levels were soot purification, laboratory work, and bottling. Cleaning of condensers showed the highest blood level (AM 280 micrograms/L). There is a downwards time trend in mercury concentration in blood and in urine. The corresponding trend is not seen for urinary excretion levels, the reason for this being unclear. Roasters, which is the most frequently monitored group, show however a decreasing trend in all sets of data (e.g. the mean of urinary excretion decreased from 300 micrograms/24 h in 1968/69 to 50 micrograms/24 h in 1980/81). The mercury exposure experienced by the smelters of Abbadia San Salvatore is in line with the few available data on workers from other mercury mines and smelters, and our data confirm the high exposure levels in this occupational group, in particular at cinnabar pigment production, soot purification, and condenser cleaning.

  9. Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

    NASA Astrophysics Data System (ADS)

    Hu, Ting-Jing; Cui, Xiao-Yan; Li, Xue-Fei; Wang, Jing-Shu; Lv, Xiu-Mei; Wang, Ling-Sheng; Yang, Jing-Hai; Gao, Chun-Xiao

    2015-11-01

    We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure. Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).

  10. Alchemy, Chinese versus Greek, an etymological approach: a rejoinder.

    PubMed

    Mahdihassan, S

    1988-01-01

    The theory generally accepted maintains that Alchemy arose at Alexandria as a child of Greek culture. It has two names, Chemeia as the earlier and Chumeia as the later. There is another theory that Alchemy arose in China. Its founder was the aged ascetic who longed after drugs of longevity. He first tried jade, next gold and cinnabar, but the ideal was a drug which was red like cinnabar and fire-proof like gold. But what was actually prepared was red colloidal gold or "calcined gold," by grinding gold granules in a decoction of an herb of longevity. It was called Chin-I; Chin = gold and I = plant juice. In Fukin dialect Chin-I = Kim-Iya. This was Arabicized, by pre-Islamic Arabs trading in silk with China, as Kimiya, whence arose Al-Kimiya and finally Al-chemy. It was first accepted by Bucharic speaking Copts in Egypt who transliterated Kimiya = Chemeia, pronouncing it as the Arabs did. With the increase of trade in silk the Chinese also went to Alexandria and helped the Greeks to translate Chin-I as Chrusozomion meaning, gold (making) ferment, instead of gold making plant juice. Consistent with this origin of the word Chemeia is the fact that the earlier Alchemists were not Greeks but probably Bucharic speaks Copts or Egyptians. The consumer of Chin-I or Chemeia became "a drug-made immortal" called Chin-Jen, Golden-Man. This was translated into Greek as Chrusanthropos. Thus the etymoloogy of two Greek words Chrusozomion and Chrusanthropos support the origin of the loan word, Chemeia as Chinese. To save space it is not proposed to discuss the origin of Chumeia.

  11. Raman spectroscopic analysis of a 'noli me tangere' painting.

    PubMed

    Hibberts, Stephen; Edwards, Howell G M; Abdel-Ghani, Mona; Vandenabeele, Peter

    2016-12-13

    The discovery of an oil painting in seriously damaged condition with an important historical and a heterodox detail with possible origins in the late fifteenth century has afforded the opportunity for Raman microscopic analysis prior to its restoration being undertaken. The painting depicts a risen Christ following His crucifixion in a 'noli me tangere' pose with three women in an Italian terrace garden with a stone balustrade overlooking a rural landscape and an undoubted view of late-medieval Florence. The picture has suffered much abuse and is in very poor condition, which is possibly attributable to its controversial portrayal of a polydactylic Christ with six toes on His right foot. By the late sixteenth century, after the Council of Trent, this portrayal would almost certainly have been frowned upon by the Church authorities or more controversially as a depiction of the holy. Raman spectroscopic analysis of the pigments places the painting as being consistent chronologically with the Renaissance period following the identification of cinnabar, haematite, red lead, lead white, goethite, verdigris, caput mortuum and azurite with no evidence of more modern synthetic pigments or of modern restoration having been carried out. An interesting pigment mixture found here is that of the organic dye carmine and cinnabar to produce a particular bright red pigment coloration. Stratigraphic examination of the paint fragments has demonstrated the presence of an orange resin layer immediately on top of the canvas substrate, effectively rendering the pigment as a sandwich between this substratal resin and the overlying varnish. The Raman spectroscopic evidence clearly indicates that an attribution of the artwork to the Renaissance is consistent with the scientific analysis of the pigment composition.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  12. Raman spectroscopic analysis of a `noli me tangere' painting

    NASA Astrophysics Data System (ADS)

    Hibberts, Stephen; Edwards, Howell G. M.; Abdel-Ghani, Mona; Vandenabeele, Peter

    2016-12-01

    The discovery of an oil painting in seriously damaged condition with an important historical and a heterodox detail with possible origins in the late fifteenth century has afforded the opportunity for Raman microscopic analysis prior to its restoration being undertaken. The painting depicts a risen Christ following His crucifixion in a `noli me tangere' pose with three women in an Italian terrace garden with a stone balustrade overlooking a rural landscape and an undoubted view of late-medieval Florence. The picture has suffered much abuse and is in very poor condition, which is possibly attributable to its controversial portrayal of a polydactylic Christ with six toes on His right foot. By the late sixteenth century, after the Council of Trent, this portrayal would almost certainly have been frowned upon by the Church authorities or more controversially as a depiction of the holy. Raman spectroscopic analysis of the pigments places the painting as being consistent chronologically with the Renaissance period following the identification of cinnabar, haematite, red lead, lead white, goethite, verdigris, caput mortuum and azurite with no evidence of more modern synthetic pigments or of modern restoration having been carried out. An interesting pigment mixture found here is that of the organic dye carmine and cinnabar to produce a particular bright red pigment coloration. Stratigraphic examination of the paint fragments has demonstrated the presence of an orange resin layer immediately on top of the canvas substrate, effectively rendering the pigment as a sandwich between this substratal resin and the overlying varnish. The Raman spectroscopic evidence clearly indicates that an attribution of the artwork to the Renaissance is consistent with the scientific analysis of the pigment composition. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  13. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Adelman, Zachary N; Jasinskiene, Nijole; James, Anthony A

    2002-04-30

    Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.

  14. Identification of Pigments in Colored Layers of a Painting by Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrova, O. I.; Pankin, D. V.; Povolotckaia, A. V.; Borisov, E. V.; Beznosova, M. O.; Krivul'ko, T. A.; Kurochkin, A. V.

    2017-12-01

    Using the method of Raman spectroscopy the pigment composition is investigated of, and the brushwork technique used in, the original layer of a 19th century painting is established. It is an overdoor worked, presumably, by Antoine Jean-Etienne Faivre. It is established that the artist used the following pigments: cinnabar and dyes on the basis of goethite and hematite (for red, yellow-orange, and brown shades), ultramarine and Prussian blue (for blue shades), and Emerald green and a mixture of blue and yellow shades (to obtain a green color). It is determined that white lead was used a primer.

  15. Photoassisted carbon dioxide reduction and formation of twoand three-carbon compounds. [prebiological photosynthesis

    NASA Technical Reports Server (NTRS)

    Halmann, M.; Aurian-Blajeni, B.; Bloch, S.

    1981-01-01

    The photoassisted reduction of aqueous carbon dioxide in the presence of naturally occurring minerals is investigated as a possible abiotic precursor of photosynthesis. Aqueous carbon dioxide saturated suspensions or surfaces of the minerals nontronite, bentonite, anatase, wolframite, molybdenite, minium, cinnabar and hematite were irradiated with high-pressure mercury lamps or sunlight. Chemical analyses reveal the production of formic acid, formaldehyde, methanol and methane, and the two and three-carbon compounds glyoxal (CHOCHO) and malonaldehyde (CH2(CHO)2). It is suggested that such photosynthetic reactions with visible light in the presence of semiconducting minerals may provide models for prebiological carbon and nitrogen fixation in both oxidized and reduced atmospheres.

  16. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    PubMed

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from the "Cerco Metalúrgico de Almadenejos" decommissioned metallurgical precinct were estimated at 16.4 kg Hg y(-1), with significant differences between seasons.

  17. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.

  18. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    PubMed

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.

  19. XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)

    NASA Astrophysics Data System (ADS)

    Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.

    2018-05-01

    Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.

  20. Raman spectroscopic analysis of the Maya wall paintings in Ek'Balam, Mexico

    NASA Astrophysics Data System (ADS)

    Vandenabeele, P.; Bodé, S.; Alonso, A.; Moens, L.

    2005-08-01

    Raman spectroscopy has been applied to the examination of wall painting fragments from the archaeological site of Ek'Balam (Yucatán, Mexico). Thirty-three samples have been studied, all originating from room 23 of the Acropolis, and being representative of the painting technique at Ek'Balam during the late Classic Maya period. Several pigments such as haematite, calcite, carbon, cinnabar and indigo were identified in these samples. The latter pigment was presumed to be present as 'Maya blue', which is an intercalation product of indigo and palygorskite clay. The observed Raman spectra are reported and some band assignments have been made. This survey is the first Raman spectroscopic examination of a whole set of pigments in archaeological Maya wall painting fragments.

  1. Characteristics of HgS nanoparticles formed in hair by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Walter, P.; Van Elslande, E.; Ayache, J.; Castaing, J.

    2013-01-01

    A chemical reaction, derived from an ancient recipe for hair dyeing, is used to precipitate nanoparticles of mercury sulphide in hair by the simple process of immersion in a water solution of Ca(OH)2 and HgO. After several days, HgS nanoparticles appear throughout the hair and are particularly numerous in the various interfaces. The formation of these nanoparticles has been studied by analytical and atomic resolution electron microscopy. High resolution quantitative analysis allowed the determination of two varieties of HgS precipitate crystal structures formed: a hexagonal cinnabar and a cubic metacinnabar structure. This very simple process of a chemical reaction in hair is a particularly inexpensive way to fabricate semiconductor sulphide nanoparticles with specific properties.

  2. Mercury stabilization in chemically bonded phosphate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, A. S.; Singh, D.; Jeong, S. Y.

    2000-04-04

    Mercury stabilization and solidification is a significant challenge for conventional stabilization technologies. This is because of the stringent regulatory limits on leaching of its stabilized products. In a conventional cement stabilization process, Hg is converted at high pH to its hydroxide, which is not a very insoluble compound; hence the preferred route for Hg sulfidation to convert it into insoluble cinnabar (HgS). Unfortunately, efficient formation of this compound is pH-dependent. At a high pH, one obtains a more soluble Hg sulfate, in a very low pH range, insufficient immobilization occurs because of the escape of hydrogen sulfide, while efficient formationmore » of HgS occurs only in a moderately acidic region. Thus, the pH range of 4 to 8 is where stabilization with Chemically Bonded Phosphate Ceramics (CBPC) is carried out. This paper discusses the authors experience on bench-scale stabilization of various US Department of Energy (DOE) waste streams containing Hg in the CBPC process. This process was developed to treat DOE's mixed waste streams. It is a room-temperature-setting process based on an acid-base reaction between magnesium oxide and monopotassium phosphate solution that forms a dense ceramic within hours. For Hg stabilization, addition of a small amount (< 1 wt.%) of Na{sub 2}S or K{sub 2}S is sufficient in the binder composition. Here the Toxicity Characteristic Leaching Procedure (TCLP) results on CBPC waste forms of surrogate waste streams representing secondary Hg containing wastes such as combustion residues and Delphi DETOX{trademark} residues are presented. The results show that although the current limit on leaching of Hg is 0.2 mg/L, the results from the CBPC waste forms are at least one order lower than this stringent limit. Encouraged by these results on surrogate wastes, they treated actual low-level Hg-containing mixed waste from their facility at Idaho. TCLP results on this waste are presented here. The efficient stabilization in all these cases is attributed to chemical immobilization as both a sulfide (cinnabar) and a phosphate, followed by its physical encapsulation in a dense matrix of the ceramic.« less

  3. Porphyry Cu indicator minerals in till as an exploration tool: Example from the giant pebble porphyry Cu-Au-Mo deposit, Alaska, USA

    USGS Publications Warehouse

    Kelley, Karen D.; Eppinger, Robert G.; Lang, J.; Smith, Steven M.; Fey, David L.

    2011-01-01

    Porphyry Cu indicator minerals are mineral species in clastic sediments that indicate the presence of mineralization and hydrothermal alteration associated with porphyry Cu and associated skarn deposits. Porphyry Cu indicator minerals recovered from shallow till samples near the giant Pebble Cu-Au-Mo porphyry deposit in SW Alaska, USA, include apatite, andradite garnet, Mn-epidote, visible gold, jarosite, pyrite, and cinnabar. Sulphide minerals other than pyrite are absent from till, most likely due to the oxidation of the till. The distribution of till samples with abundant apatite and cinnabar suggest sources other than the Pebble deposit. With three exceptions, all till samples up-ice of the Pebble deposit contain 40grains/10kg) are in close proximity to smaller porphyry and skarn occurrences in the region. The distribution of Mn-epidote closely mimics the distribution of garnet in the till samples and further supports the interpretation that these minerals most likely reflect skarns associated with the porphyry deposits. All but two till samples, including those up-ice from the deposit, contain some gold grains. However, tills immediately west and down-ice of Pebble contain more abundant gold grains, and the overall number of grains decreases in the down-ice direction. Furthermore, all samples in the immediate vicinity of Pebble contain more than 65% pristine and modified grains compared to mostly re-shaped grains in distal samples. The pristine gold in till reflects short transport distances and/or liberation of gold during in-situ weathering of transported chalcopyrite grains. Jarosite is also abundant (1-2 500 grains/10kg) in samples adjacent to and up to 7 km down-ice from the deposit. Most jarosite grains are rounded and preliminary Ar/Ar dates suggest the jarosite formed prior to glaciation and it implies that a supergene cap existed over Pebble West. Assuming this interpretation is accurate, it suggests a shallow level of erosion of the Pebble deposit by glacial processes. Overall the results of this study indicate that porphyry Cu indicator minerals in till samples may be useful in the exploration for porphyry deposits in SW Alaska.

  4. Mercury speciation on three European mining districts by XANES techniques

    NASA Astrophysics Data System (ADS)

    Esbri, J. M.; Garcia-Noguero, E. M.; Guerrero, B.; Kocman, D.; Bernaus, A.; Gaona, X.; Higueras, P.; Alvarez, R.; Loredo, J.; Horvat, M.; Ávila, M.

    2009-04-01

    The mobility, bioavailability and toxicity of mercury in the environment depend on the chemical species in which is present in soil, sediments, water or air. In this work we used synchrotron radiation to determine mercury species in geological samples of three mercury mining districts: Almadén (Spain), Idria (Slovenia) and Asturias (Spain). The aim of this study was to find differences on mobility and bioavailability of mercury on three mining districts with different type of mineralization. For this porpoises we selected samples of ore, calcines, soils and stream sediments from the three sites, completely characterized by the Almadén School of Mines, Josef Stefan Institute of Ljubljana and Oviedo School of Mines. Speciation of mercury was carried out on Synchrotron Laboratories of Hamburg (HASYLAB) by XANES techniques. Spectra of pure compounds [HgCl2, HgSO4, HgO, CH3HgCl, Hg2Cl2 (calomel), HgSred (cinnabar), HgSblack (metacinnabar), Hg2NCl0.5(SO4)0.3(MoO4)0.1(CO3)0.1(H2O) (mosesite), Hg3S2Cl2 (corderoite), Hg3(SO4)O2 (schuetteite) y Hg2ClO (terlinguaite)] were obtained on transmittance mode. The number and type of the compounds required to reconstruct experimental spectra for each sample was obtained by PCA analysis and linear fitting of minimum quadratics of the pure compounds spectra. This offers a semiquantitative approach to the mineralogical constitution of each analyzed sample. The results put forward differences on the efficiency of roasting furnaces from the three studied sites, evidenced by the presence of metacinnabar on the less efficient (Almadén and Asturias) and absence on the most efficient (Idria). For the three studied sites, sulfide species (cinnabar and metacinnabar) were largely more abundant than soluble species (chlorides and sulfates). On the other hand, recent results on the mobility of both Hg and As on the target sites will be presented. These results correlate with the related chemical species found by XANES techniques.

  5. A scientific approach to the characterization of the painting materials of Fra Mattia della Robbia polychrome terracotta altarpiece

    NASA Astrophysics Data System (ADS)

    Amadori, M. L.; Barcelli, S.; Casoli, A.; Mazzeo, R.; Prati, S.

    2013-12-01

    During the last restoration (2008-2011) of the polychrome terracotta altarpiece called Coronation of Virgin between Saints Rocco, Sebastian, Peter martyr and Antonio abbot, located in the collegiate church of S. Maria Assunta in Montecassiano (Macerata, Italy), scientific investigations were carried out to acquire detailed information about the painting technique. The identification of materials allowed a correct restoration. The altarpiece is almost entirely realized by Marco della Robbia (Fra Mattia), dates back to the first half of the XVI century and represents an interesting example of painted terracotta produced by using two different techniques: glazed polychrome terracotta and the "cold painting" technique. The characterization of the samples' material constituents was obtained by analysing the cross-sections and the fragments by different techniques (optical, SEM-EDS and ATR-FTIR microscopy as well as GC-MS), as the real nature of a component is often difficult to assess with one single technique. The optical microscope examination of paint cross-sections shows the presence of many layers, indicating the complexity of the paint stratigraphic morphologies. The original polychromy of della Robbia's masterpiece is constituted of cinnabar, red lake, red lead, orpiment, red ochre, lead white, lead tin yellow, green earth and raw umber. Two different types of gilding technique have been distinguished. The first one presents a glue mordant, and the second one shows an oil mordant composed by a mixture of red lead, red ochre, cinnabar and orpiment. The GC-MS analysis allowed the characterisation of linseed oil and a mixture of animal glue and egg as binding media stratigraphically located by the use of ATR-FTIR mapping microscopy. The analytical results of the painted terracotta integrated investigations show that original technique adopted is characterised by the application of pigments in an oil-binding medium directly applied on the substrates, probably treated with oil and animal glue. A large number of overpaintings above the original scheme of polychromy was found, which could be ascribed to almost three different interventions; the absence of modern pigments suggests that they could be realized long ago.

  6. Cooperative expression of atomic chirality in inorganic nanostructures.

    PubMed

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-02-02

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  7. Cooperative expression of atomic chirality in inorganic nanostructures

    PubMed Central

    Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-01-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957

  8. Mercury

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Mercury has been used by humans for over 2,000 years and was associated with premature deaths of cinnabar (mercuric sulfide) miners as early as 700 B.C. More recent human poisonings have been related to agricultural and industrial uses of mercury. One of the best documented of these cases occurred in the 1950s in Minamata Bay, Japan, when mercury was discharged into the environment and accumulated in fish and shellfish used as human food. In addition to human poisonings, mercury poisoning or toxicosis has been identified in many other species.Mercury is sometimes used to recover gold from stream sediments, and it may pose hazards to wildlife if it is released to the environment during ore recovery. Fungicidal treatment of seeds with mercury was common in the 1950s and 1960s, but this agricultural practice has been largely halted in the Northern Hemisphere.

  9. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  10. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    DOE PAGES

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less

  11. Non-invasive and micro-destructive investigation of the Domus Aurea wall painting decorations.

    PubMed

    Clementi, Catia; Ciocan, Valeria; Vagnini, Manuela; Doherty, Brenda; Tabasso, Marisa Laurenzi; Conti, Cinzia; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2011-10-01

    The paper reports on the exploitation of an educated multi-technique analytical approach based on a wide non invasive step followed by a focused micro-destructive step, aimed at the minimally invasive identification of the pigments decorating the ceiling of the Gilded Vault of the Domus Aurea in Rome. The combination of elemental analysis with molecular characterization provided by X-ray fluorescence and UV-vis spectroscopies, respectively, allowed for the in situ non-invasive identification of a remarkable number of pigments, namely Egyptian blue, green earth, cinnabar, red ochre and an anthraquinonic lake. The study was completed with the Raman analysis of two bulk samples, in particular, SERS measurements allowed for the speciation of the anthraquinonic pigment. Elemental mapping by scanning electron microscopy-energy dispersive spectrometer combined with micro-fluorimetry on cross-section gave an insight into both the distribution of different blend of pigments and on the nature of the inorganic support of the red dye.

  12. SANTA LUCIA WILDERNESS, AND GARCIA MOUNTAIN, BLACK MOUNTAIN, LA PANZA, MACHESNA MOUNTAIN, LOS MACHOS HILLS, BIG ROCKS, AND STANLEY MOUNTAIN ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Frizzell, Virgil A.; Kuizon, Lucia

    1984-01-01

    The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.

  13. Leather material found on a 6th B.C. Chinese bronze sword: A technical study

    NASA Astrophysics Data System (ADS)

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO 3) and Fe (existing as Fe 2O 3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China.

  14. Chemical dissolution of sulfide minerals

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  15. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA

    USGS Publications Warehouse

    Gray, J.E.; Crock, J.G.; Fey, D.L.

    2002-01-01

    The Humboldt River is a closed basin and is the longest river in Nevada. Numerous abandoned Hg mines are located within the basin, and because Hg is a toxic heavy metal, the potential transport of Hg from these mines into surrounding ecosystems, including the Humboldt River, is of environmental concern Samples of ore, sediment, water, calcines (roasted ore), and leachates of the calcines were analyzed for Hg and other heavy metals to evaluate geochemical dispersion from the mines. Cinnabar-bearing ore samples collected from the mines contain highly elevated Hg concentrations, up to 6.9 %, whereas calcines collected from the mines contain up to 2000 mg Hg/kg. Stream-sediment samples collected within 1 km of the mines contain as much as 170 mg Hg/kg, but those collected distal from the mines (> 5 km) contain 8 km from the Humboldt River, and Hg is transported and diluted through a large volume of pediment before it reaches the Humboldt River. ?? 2002 Elsevier Science Ltd. All rights reserved.

  16. Preliminary study on mercury uptake by Rosmarinus officinalis L. (Rosemary) in a mining area (Mt. Amiata, Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barghigiani, C.; Ristori, T.

    1995-04-01

    Among the different plants analyzed to assess environmental mercury contamination of mining areas, lichens are those most studied, followed by brooms together with pine, which was also used in other areas, and spruce. Other species, both naturally occurring and cultivated, have also been studied. This work reports on the results of mercury uptake and accumulation in rosemary in relation to metal concentrations in both air and soil. R. officinalis is a widespread endemic Mediterranean evergreen shrub, which in Italy grows naturally and is also cultivated as a culinary herb. This research was carried out in Tuscany (Italy), in the Mt.more » Amiata area, which is characterized by the presence of cinnabar (HgS) deposits and has been used for mercury extraction and smelting from Etruscan times until 1980, and in the country near the town of Pisa, 140 km away from Mt. Amiata. 16 refs., 3 figs., 1 tab.« less

  17. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the pH range of 3.2-7.1 in streams impacted by mine drainage. The dissolved fraction of both mercury species is depleted and concentrated in iron oxyhydroxide such that the amount of iron oxyhydroxide in the water column reflects the concentration of mercury species. In streams impacted by mine drainage, mercury and methylmercury are transported and adsorbed onto particulate phases. During periods of low stream flow, fine-grained iron hydroxide sediment accumulates in the bed load of the stream and adsorbs mercury and methylmercury such that both forms of mercury become highly enriched in the iron oxyhydroxide sediment. During high-flow events, mercury- and methylmercury-enriched iron hydroxide sediment is transported into larger aquatic systems producing a high flux of bioavailable mercury. (C) 2000 Elsevier Science B.V.

  18. Leather material found on a 6th B.C. Chinese bronze sword: a technical study.

    PubMed

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO3) and Fe (existing as Fe2O3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.

    PubMed

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico

    2010-08-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Determination of mercury and inorganic ions in rainwater collected in two different regions of Queretaro, Mexico from 2009 to 2014

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Peralta, O.; Alvarez, H.; Carrasco, M.

    2016-12-01

    The objective of this study was to evaluate the concentration of mercury (Hg) and inorganic ions in rainwater collected in Juriquilla and San Joaquin during the rainy seasons from 2009 to 2014. A total of 380 rainwater samples were collected and analyzed for pH, conductivity, the ions NO3-, SO42-, Cl-, Ca2+, Mg2+, Na+, K+, NH4+ and Hg. The ions were measured by Ion Chromatography (IC) and Hg was measured by Hydride Vapor Generator system coupled to an Atomic Absorption Spectrometer (HVG-AAS). Ammonium presented the higher volume-weighted-mean-concentration (VWMC), followed by SO42-, NO3-, Ca2+, Cl-, Na+, Mg2+ and K+. Sulfate showed a significant increasing trend emission in San Joaquin due to the burning cinnabar (HgS) for the extraction of mercury in artisanal ovens. The authors emphasized that the associations between Hg concentrations and local meteorological conditions, such as wind's speed and direction, play an important role in the study of the chemical of precipitation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, D.F.; Corbin, W.E.

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damagemore » growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.« less

  2. Maps showing mineralogical data for nonmagnetic heavy-mineral concentrates in the Talkeetna Quadrangle, Alaska

    USGS Publications Warehouse

    Tripp, R.B.; Karlson, R.C.; Curtin, G.C.

    1978-01-01

    Reconnaissance geochemical and mineralogical sampling was done in the Talkeetna Quadrangle during 1975 and 1976 as part of the Alaska Mineral Resource Assessment Program (AMRAP). These maps show the distribution of gold, scheelite, chalcopyrite, arsenopyrite, galena, fluorite, cinnabar, and malachite in the nonmagnetic fraction of heavy-mineral concentrates. Heavy-mineral concentrate samples were collected at 812 sites from active stream channels. The heavy-mineral concentrates were obtained by panning stream sediment in the field to remove most of the light minerals. The panned samples were then sieved through a 20-mesh (0.8 mm) sieve in the laboratory, and the minus-20-mesh fraction was further separated with bromoform (specific gravity, 2.86) to remove any remaining light-mineral grains. Magnetite and other strongly magnetic heavy minerals were removed from the heavy-mineral fraction by use of a hand magnet. The remaining sample was passed through a Frantz Isodynamic Separator and a nonmagnetic fraction was examined for its mineralogical content with the aid of a binocular microscope and an x-ray diffractometer. The nonmagnetic concentrates primarily contain phyllite fragments, muscovite, sphene, zircon, apatite, tourmaline, rutile, and anatase. Most ore and ore-related minerals also occur in this fraction.

  3. THz Spectroscopic Identification of Red Mineral Pigments in Ancient Chinese Artworks

    NASA Astrophysics Data System (ADS)

    Yang, Yuping; Zhai, Dongwei; Zhang, Zhenwei; Zhang, Cunlin

    2017-10-01

    Nondestructive analysis of historical objects is of significance for cultural heritage conservation. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to distinguish seven red mineral pigments used in ancient Chinese artworks. Two absorption features of natural minerals HgS and four highly resolved spectral features of mineral pigment Pb3O4 were observed and identified as their fingerprints in the range 0.2 to 3.0 THz, based on which the spatial distribution of individual chemical substances including cinnabar, vermilion, and red lead were clearly revealed at various frequencies using terahertz spectroscopy imaging. Moreover, a noncontact evaluation of thickness changing and dehydration of a wet painting was monitored by inferring time delay as well as signal amplitude of THz pulses transmitted through the painting. In order to demonstrate the feasibility of THz-TDS and THz imaging for authentic artworks detection, a complete set of THz analysis of two nineteenth century wall paintings discovered in the Fuchen Temple of the Forbidden City, Beijing, was performed and the results indicate that THz measurement techniques provide a noninvasive and nondestructive solution for the care, preservation, and restoration of cultural relics.

  4. Analysis of Roman age wall paintings found in Pordenone, Trieste and Montegrotto.

    PubMed

    Mazzocchin, G A; Agnoli, F; Salvadori, M

    2004-10-20

    The aim of the present work is the study of many fragments of wall painting from archaeological excavations in three different Roman age sites dating back to the I Century before Common Era: Pordenone (località Torre); Trieste (Crosada) and Padova (Montegrotto). The techniques used were optical microscopy, scanning electron microscopy (SEM), equipped with a EDS microanalysis detector, X-rays powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Fourier transform Raman spectroscopy (FT-Raman) and electron paramagnetic resonance (EPR) spectroscopy. The identified pigments were: cinnabar, hematite, celadonite, glauconite, cuprorivaite (Egyptian blue), yellow and red ochre, calcite, limonite, coal black. In general, the mortar preparation did not correspond to the complex procedure suggested by Vitruvius (De Architectura), but generally showed a porous layer, with crushed grains under the pigment layer. In some cases, two superimposed pigment layers were found: yellow superimposed on both red and pink, black on pink, green on black. The slight differences we found in the use of the pigments in the three studied sites might show that the same technology, culture and taste spread all over the Roman Empire in North Eastern Italy (X(a) Regio Venetia et Histria).

  5. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  6. Effects of ageing on different binders for retouching and on some binder-pigment combinations used for restoration of wall paintings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ropret, P.; Zoubek, R.; Skapin, A. Sever

    2007-11-15

    In restoration of colour layers, the selection of the most appropriate retouching binder is a very important step that may have a crucial impact on materials durability. As different weather conditions can have versatile influence on stability of colour layers, we determined the effect of ageing on carefully selected samples of binders (Tylose, Klucel, ammonium caseinate, gum arabicum, fish and skin glues and some other synthetic binders) as well as on several binder-pigment combinations (the pigments in combinations being cinnabar, green earth and smalt). The samples were subjected to accelerated ageing tests in climatic chambers. In these tests the temperaturemore » and the relative humidity were daily oscillating between - 20 deg. C and 50 deg. C and 50% to 90%, respectively, for a period of one month. Then the samples were exposed to UV and visible light generated by a metal halide lamp for a month. The differences in microstructure before and after ageing were determined by optical and scanning electron microscopy, while the ageing of the organic structures in binders was investigated by Fourier transform infrared (FTIR) microscopy.« less

  7. Bond compressibility and bond Grüneisen parameters of CdTe

    NASA Astrophysics Data System (ADS)

    Fornasini, P.; Grisenti, R.; Irifune, T.; Shinmei, T.; Mathon, O.; Pascarelli, S.; Rosa, A. D.

    2018-06-01

    Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases—zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)—are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd–Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.

  8. Spatial and seasonal variations in mercury methylation and microbial community structure in a historic mercury mining area, Yolo County, California

    USGS Publications Warehouse

    Holloway, J.M.; Goldhaber, M.B.; Scow, K.M.; Drenovsky, R.E.

    2009-01-01

    The relationships between soil parent lithology, nutrient concentrations, microbial biomass and community structure were evaluated in soils from a small watershed impacted by historic Hg mining. Upland and wetland soils, stream sediments and tailings were collected and analyzed for nutrients (DOC, SO4=, NO3-), Hg, MeHg, and phospholipid fatty acids (PLFA). Stream sediment was derived from serpentinite, siltstone, volcanic rocks and mineralized serpentine with cinnabar, metacinnabar and other Hg phases. Soils from different parent materials had distinct PLFA biomass and community structures that are related to nutrient concentrations and toxicity effects of trace metals including Hg. The formation of MeHg appears to be most strongly linked to soil moisture, which in turn has a correlative relationship with PLFA biomass in wetland soils. The greatest concentrations of MeHg (> 0.5??ng g- 1 MeHg) were measured in wetland soils and soil with a volcanic parent (9.5-37????g g- 1 Hg). Mercury methylation was associated with sulfate-reducing bacteria, including Desulfobacter sp. and Desulfovibrio sp., although these organisms are not exclusively responsible for Hg methylation. Statistical models of the data demonstrated that soil microbial communities varied more with soil type than with season.

  9. Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses.

    PubMed

    Unković, Nikola; Grbić, Milica Ljaljević; Stupar, Miloš; Savković, Željko; Jelikić, Aleksa; Stanojević, Dragan; Vukojević, Jelena

    2016-04-01

    Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a "mock painting" in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.

  10. Mercury (Hg) mineral evolution: Supercontinent assembly, ocean geochemistry and the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Downs, R. T.; Golden, J.; Grew, E. S.; Azzolini, D.; Sverjensky, D. A.

    2011-12-01

    Temporal and geographic distribution of 90 known Hg minerals exemplify principals of mineral evolution. Since the appearance of cinnabar at ~3 Ga, Hg minerals have been present continuously at or near Earth's surface (Fig.1). Mercury mineral evolution is characterized by episodic deposition and diversification associated with the supercontinent cycle. Increases in reported Hg mineral localities and new Hg species occur during intervals of presumed supercontinent assembly and associated orogenies of Kenorland, Nuna and Pangea (Fig.2), while few Hg deposits are reported from intervals of supercontinent stability and breakup. Pangean supercontinent stability and breakup (~250-65 Ma) shows declines in mercury mineralization; however, rocks of the last 65 Ma are characterized by numerous ephemeral near-surface Hg deposits. Hg was effectively sequestered during the sulfidic "intermediate ocean" (~1.85-0.85 Ga); consequently, few Hg deposits formed during the aggregation of Rodinia. Mercury mineralization is enhanced by interactions with organic matter, so a recent pulse of Hg minerals may reflect the rise of a terrestrial biosphere at ~400 Ma.

  11. How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.

    Lustre was one of the most sophisticated techniques for the decoration of majolicas during the Renaissance period. Lustre consists of a thin metallic film containing silver, copper and other substances like iron oxide and cinnabar applied in a reducing atmosphere on a previously glazed ceramic. In this way, beautiful iridescent reflections of different colours (in particular gold and ruby-red) are obtained. The characterisation and the study of lustre-decorated majolicas is of great interest for archaeologists, but also offers possibilities for producing pottery with outstanding decoration today, following ancient examples, since nowadays Italian artisans are interested in the reproduction of the ancient recipes and procedures. Moreover, it can even suggest new procedures for obtaining uniform thin metallic films for technological applications. A study has been carried out on ancient lustre layers using numerous different analytical techniques such as XRD, SEM-EDX, TEM-EDX-SAED, ETAAS, ICP-OES, UV-vis reflectance spectroscopy and SAXS. Lustre films were shown to be formed by copper and silver clusters of nanometric dimension. The colour and the properties of the lustre films depend on the elemental composition of the impasto applied to the ceramic surface as well as on other factors like the metallic nanocluster dimension, the firing conditions, the underlying glaze composition and the procedure used.

  12. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II).

    PubMed

    Hassanien, Mohamed M; Abou-El-Sherbini, Khaled S; Al-Muaikel, Nayef S

    2010-06-15

    Methylene blue was immobilized onto bentonite (BNT). The modified clay (MB-BNT) was used to extract Hg(2+) at pH 6.0 yielding Hg-MB-BNT. BNT, MB-BNT and Hg-MB-BNT were characterized by X-ray diffractometry, infrared spectra, and elemental and thermogravimetric analyses. MB is suggested to be intercalated into the major phase of BNT; montmorillonite mineral (MMT), lying parallel to the aluminosilicate layers, with a capacity of 36 mequiv./100g. MB-BNT shows good stability in 0.1-1M hydrochloric or nitric acids, ammonium hydroxide, and concentrated Na(+), K(+) or NH(4)(+) chlorides or iodides. It shows good selectivity towards Hg(2+) with an extraction capacity of 37 mequiv./100g in the presence of I(-) giving rise to a ratio of MB/Hg(2+)/I(-) 1:1:3 in the clay phase. Extracted Hg(2+) could be quantitatively recovered by ammonia buffer at pH 8.5. MB-BNT was successfully applied to recover Hg(2+) from spiked natural water and cinnabar mineral samples using the optimum conditions; pH 6.0, time of stirring 10 min and 10 mL of 0.05 M NH(4)Cl/NH(4)OH at pH 8.5 as eluent. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Collagen-based proteinaceous binder-pigment interaction study under UV ageing conditions by MALDI-TOF-MS and principal component analysis.

    PubMed

    Romero-Pastor, Julia; Navas, Natalia; Kuckova, Stepanka; Rodríguez-Navarro, Alejandro; Cardell, Carolina

    2012-03-01

    This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI-TOF-MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.

  14. A glimpse into the early origins of medieval anatomy through the oldest conserved human dissection (Western Europe, 13th c. A.D.)

    PubMed Central

    Huynh-Charlier, Isabelle; Poupon, Joël; Lancelot, Eloïse; Campos, Paula F.; Favier, Dominique; Jeannel, Gaël-François; Bonati, Maurizio Rippa; de la Grandmaison, Geoffroy Lorin; Hervé, Christian

    2013-01-01

    Introduction Medieval autopsy practice is very poorly known in Western Europe, due to a lack of both descriptive medico-surgical texts and conserved dissected human remains. This period is currently considered the dark ages according to a common belief of systematic opposition of Christian religious authorities to the opening of human cadavers. Material and methods The identification in a private collection of an autopsied human individual dated from the 13th century A.D. is an opportunity for better knowledge of such practice in this chrono-cultural context, i.e. the early origins of occidental dissections. A complete forensic anthropological procedure was carried out, completed by radiological and elemental analyses. Results The complete procedure of this body opening and internal organs exploration is explained, and compared with historical data about forensic and anatomical autopsies from this period. During the analysis, a red substance filling all arterial cavities, made of mercury sulfide (cinnabar) mixed with vegetal oil (oleic and palmitic acids) was identified; it was presumably used to highlight vascularization by coloring in red such vessels, and help in the preservation of the body. Conclusions Of particular interest for the description of early medical and anatomical knowledge, this “human preparation” is the oldest known yet, and is particularly important for the fields of history of medicine, surgery and anatomical practice. PMID:24904674

  15. Influence of ns-laser wavelength in laser-induced breakdown spectroscopy for discrimination of painting techniques

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Syvilay, Delphine; Wilkie-Chancellier, Nicolas; Texier, Annick; Martinez, Loic; Serfaty, Stéphane; Martos-Levif, Dominique; Detalle, Vincent

    2017-08-01

    The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.

  16. Mercury speciation in the Mt. Amiata mining district (Italy): interplay between urban activities and mercury contamination

    USGS Publications Warehouse

    Rimondi, Valentina; Bardelli, Fabrizio; Benvenuti, Marco; Costagliola, Pilario; Gray, John E.; Lattanzi, Pierfranco

    2014-01-01

    A fundamental step to evaluate the biogeochemical and eco-toxicological significance of Hg dispersion in the environment is to determine speciation of Hg in solid matrices. In this study, several analytical techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), sequential chemical extractions (SCEs), and X-ray absorption spectroscopy (XANES) were used to identify Hg compounds and Hg speciation in samples collected from the Mt. Amiata Hg mining district, southern Tuscany, Italy. Different geological materials, such as mine waste calcine (retorted ore), soil, stream sediment, and stream water suspended particulate matter were analyzed. Results show that the samples were generally composed of highly insoluble Hg compounds such as sulphides (HgS, cinnabar and metacinnabar), and more soluble Hg halides such as those associated with the mosesite group. Other moderately soluble Hg compounds, HgCl2, HgO and Hg0, were also identified in stream sediments draining the mining area. The presence of these minerals suggests active and continuous runoff of soluble Hg compounds from calcines, where such Hg compounds form during retorting, or later in secondary processes. Specifically, we suggest that, due to the proximity of Hg mines to the urban center of Abbadia San Salvatore, the influence of other anthropogenic activities was a key factor for Hg speciation, resulting in the formation of unusual Hg-minerals such as mosesite.

  17. A glimpse into the early origins of medieval anatomy through the oldest conserved human dissection (Western Europe, 13(th) c. A.D.).

    PubMed

    Charlier, Philippe; Huynh-Charlier, Isabelle; Poupon, Joël; Lancelot, Eloïse; Campos, Paula F; Favier, Dominique; Jeannel, Gaël-François; Bonati, Maurizio Rippa; de la Grandmaison, Geoffroy Lorin; Hervé, Christian

    2014-05-12

    Medieval autopsy practice is very poorly known in Western Europe, due to a lack of both descriptive medico-surgical texts and conserved dissected human remains. This period is currently considered the dark ages according to a common belief of systematic opposition of Christian religious authorities to the opening of human cadavers. The identification in a private collection of an autopsied human individual dated from the 13(th) century A.D. is an opportunity for better knowledge of such practice in this chrono-cultural context, i.e. the early origins of occidental dissections. A complete forensic anthropological procedure was carried out, completed by radiological and elemental analyses. The complete procedure of this body opening and internal organs exploration is explained, and compared with historical data about forensic and anatomical autopsies from this period. During the analysis, a red substance filling all arterial cavities, made of mercury sulfide (cinnabar) mixed with vegetal oil (oleic and palmitic acids) was identified; it was presumably used to highlight vascularization by coloring in red such vessels, and help in the preservation of the body. Of particular interest for the description of early medical and anatomical knowledge, this "human preparation" is the oldest known yet, and is particularly important for the fields of history of medicine, surgery and anatomical practice.

  18. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    USGS Publications Warehouse

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  19. Biotransformation of Hg(II) by cyanobacteria.

    PubMed

    Lefebvre, Daniel D; Kelly, David; Budd, Kenneth

    2007-01-01

    The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl(2) in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl(2). Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (beta-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of beta-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into beta-HgS. In addition, increasing the temperature enhanced the amount of beta-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into beta-HgS. Furthermore, the efficiency of conversion into beta-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury.

  20. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    PubMed

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  1. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project.

    PubMed

    Vaselli, Orlando; Higueras, Pablo; Nisi, Barbara; María Esbrí, José; Cabassi, Jacopo; Martínez-Coronado, Alba; Tassi, Franco; Rappuoli, Daniele

    2013-08-01

    The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Raman spectroscopic signatures of the yellow and ochre paints from artist palette of J. Matejko (1838-1893)

    NASA Astrophysics Data System (ADS)

    Żmuda-Trzebiatowska, Iwona; Wachowiak, Mirosław; Klisińska-Kopacz, Anna; Trykowski, Grzegorz; Śliwiński, Gerard

    2015-02-01

    The Raman and complementary spectroscopic analyses were performed using the exceptional possibility of research on the XIX c. original paint materials of the artist palette of J. Matejko stored in the National Museum in Cracow. The yellow and ochre-based paints characteristic for Matejko's workshop and selected from the ensemble of 273 labelled tubes (brand of R. Ainé/Paris) supplied during the period of 1880-1893 were investigated. Highly specific Raman spectra were obtained for paints containing mixtures of the Zn- and Sn-modified Pb-Sb pigment, and also for the ochre-based ones. A clear pigment discrimination of the mixture of cadmium yellow (CdS), cinnabar (HgS) and lead white (2PbCO3ṡPb(OH)2) was possible by means of Raman data collected under different excitations at 514 nm and 785 nm. It was shown that the Raman spectra complemented by the XRF, SEM-EDX and in some cases also by the LIPS and FTIR data ensure reliable pigment identification in multi-component paints containing secondary species and impurities. The reported spectral signatures will be used for non-destructive investigation of the collection of about 300 oil paintings of J. Matejko. In view of the comparative research on polish painting which point out that richness of modified Naples yellows clearly distinguish Matejko's artworks from other ones painted in the period of 1850-1883, the Raman data of these paints can provide support in the authentication studies.

  3. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia).

    PubMed

    Bavec, Špela; Gosar, Mateja; Miler, Miloš; Biester, Harald

    2017-06-01

    A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6-120 mg/kg) and slightly elevated As content (1-13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg 0 ), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006-0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9-31.5 %) in the dust samples.

  4. Investigation of the Cross-Section Stratifications of Icons Using Micro-Raman and Micro-Fourier Transform Infrared (FT-IR) Spectroscopy.

    PubMed

    Lazidou, Dimitra; Lampakis, Dimitrios; Karapanagiotis, Ioannis; Panayiotou, Costas

    2018-01-01

    The cross-section stratifications of samples, which were removed from six icons, are studied using optical microscopy, micro-Raman spectroscopy, and micro-Fourier transform infrared (FT-IR) spectroscopy. The icons, dated from the 14th to 19th centuries, are prominent examples of Byzantine painting art and are attributed to different artistic workshops of ​​northern Greece. The following materials are identified in the cross-sections of the icon samples using micro-Raman spectroscopy: anhydrite; calcite; carbon black; chrome yellow; cinnabar; gypsum; lead white; minium; orpiment; Prussian blue; red ochre; yellow ochre; and a paint of organic origin which can be either indigo ( Indigofera tinctoria L. and others) or woad ( Isatis tinctoria L.). The same samples are investigated using micro-FT-IR which leads to the following identifications: calcite; calcium oxalates; chrome yellow; gypsum; kaolinite; lead carboxylates; lead sulfate (or quartz); lead white; oil; protein; Prussian blue; saponified oil; shellac; silica; and tree resin. The study of the cross-sections of the icon samples reveals the combinations of the aforementioned inorganic and organic materials. Although the icons span over a long period of six centuries, the same stratification comprising gypsum ground layer, paint layers prepared by modified "egg tempera" techniques (proteinaceous materials mixed with oil and resins), and varnish layer is revealed in the investigated samples. Moreover, the presence of three layers of varnishes, one at the top and other two as intermediate layers, in the cross-section analysis of a sample from Virgin and Child provide evidence of later interventions.

  5. [History of hot spring bath treatment in China].

    PubMed

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment.

  6. Temporal trends in gaseous mercury evasion from the Mediterranean seawaters.

    PubMed

    Ferrara, R; Mazzolai, B; Lanzillotta, E; Nucaro, E; Pirrone, N

    2000-10-02

    Mercury evasion from seawaters is considered to be one of the main natural sources of mercury released to the atmosphere. The temporal evolution of this mechanism is related to biotic and abiotic processes that produce mercury in its elemental form and as DGM. The efficiency of these processes depends upon the intensity of the solar radiation, the ambient temperature of the air parcel above the seawater, and the water temperature. In the Mediterranean region, the magnitude of these mechanisms are particularly significant, due to favorable climate conditions and to the presence of large cinnabar deposits that cross the whole region; all these synergic factors yield significant evasional fluxes of mercury from the surface water during most of the annual period. In this work, mercury fluxes were measured by using a floating flux chamber connected to an atomic absorption analyzer. Photosynthetic active radiation (PAR) and UV components of the solar radiation were measured using the same system adopted in the EC 'ELDONet project'. The measurements of the mercury evasional fluxes were carried out at three sites of the northern Tyrrhenian Sea during 1998. Two sites were located at unpolluted and polluted coastal areas, and the third was an offshore site. The evasional flux showed a typical daily trend, highest at midday when the ambient temperature and solar radiation were at the maximum, and lowest, near to zero, during the night. Besides the day-night behavior, a seasonal trend was also observed, with minimum values during the winter period (0.7-2.0 ng/m2 h) and maximum values during the summer (10-13 ng/m2 h).

  7. Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns.

    PubMed

    Daniels, Emily V; Murad, Rabi; Mortazavi, Ali; Reed, Robert D

    2014-12-01

    In the eastern United States, the buckeye butterfly, Junonia coenia, shows seasonal wing colour plasticity where adults emerging in the spring are tan, while those emerging in the autumn are dark red. This variation can be artificially induced in laboratory colonies, thus making J. coenia a useful model system to examine the mechanistic basis of plasticity. To better understand the developmental basis of seasonal plasticity, we used RNA-seq to quantify transcription profiles associated with development of alternative seasonal wing morphs. Depending on the developmental stage, between 547 and 1420 transfrags were significantly differentially expressed between morphs. These extensive differences in gene expression stand in contrast to the much smaller numbers of differentially expressed transcripts identified in previous studies of genetic wing pattern variation in other species and suggest that environmentally induced phenotypic shifts arise from very broad systemic processes. Analyses of candidate endocrine and pigmentation transcripts revealed notable genes upregulated in the red morph, including several ecdysone-associated genes, and cinnabar, an ommochrome pigmentation gene implicated in colour pattern variation in other butterflies. We also found multiple melanin-related transcripts strongly upregulated in the red morph, including tan and yellow-family genes, leading us to speculate that dark red pigmentation in autumn J. coenia may involve nonommochrome pigments. While we identified several endocrine and pigmentation genes as obvious candidates for seasonal colour morph differentiation, we speculate that the majority of observed expression differences were due to thermal stress response. The buckeye transcriptome provides a basis for further developmental studies of phenotypic plasticity. © 2014 John Wiley & Sons Ltd.

  8. Speciation and bioaccessibility of mercury in adobe bricks and dirt floors in Huancavelica, Peru.

    PubMed

    Hagan, Nicole; Robins, Nicholas; Gonzales, Ruben Dario Espinoza; Hsu-Kim, Heileen

    2015-04-01

    Huancavelica, Peru, a historic cinnabar refining site, is one of the most mercury (Hg)-contaminated urban areas in the world. Exposure is amplified because residents build their adobe brick homes from contaminated soil. The objectives of this study were to compare two Hg-leaching procedures, and their application as risk-assessment screening tools in Hg-contaminated adobe brick homes in Huancavelica. The purpose was to evaluate potential health implications, particularly for children, after ingestion of Hg-contaminated particles. Hg was measured in adobe brick and dirt floor samples from 60 households by total Hg extraction, simulated gastric fluid (GF) extraction, and sequential selective extraction (SSE), which provides more detailed data but is resource-intensive. Most of the Hg present in samples was relatively insoluble, although in some households soluble Hg species were present at concentrations that may be of concern after ingestion. A strong correlation was identified between results from simulated GF extraction of adobe bricks and dirt floors and the more soluble fractions of Hg from SSE. Simulated GF extraction data were combined with ingestion and body mass characteristics for small children to compare potential risk of ingestion of Hg-contaminated soil with current health standards. Simulated GF extraction can be used as a risk assessment screening tool for effective allocation of time and resources to households that have measurable concentrations of bioaccessible Hg. Combining simulated GF extraction data with health standards enables intervention strategies targeted at households with the greatest potential health threat from ingestion of Hg-contaminated particles.

  9. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a

  10. Mercury transfer from soil to olive trees. A comparison of three different contaminated sites.

    PubMed

    Higueras, Pablo L; Amorós, José Á; Esbrí, José Maria; Pérez-de-los-Reyes, Caridad; López-Berdonces, Miguel A; García-Navarro, Francisco J

    2016-04-01

    Mercury contents in soil and olive tree leaves have been studied in 69 plots around three different source areas of this element in Spain: Almadén (Ciudad Real), Flix (Tarragona) and Jódar (Jaén). Almadén was the world's largest cinnabar (HgS) mining district and was active until 2003, Flix is the oldest Spanish chlor-alkali plant (CAP) and has been active from 1898 to the present day and Jódar is a decommissioned CAP that was active for 14 years (1977-1991). Total mercury contents have been measured by high-frequency modulation atomic absorption spectrometry with Zeeman effect (ZAAS-HFM) in the soils and olive tree leaves from the three studied areas. The average soil contents range from 182 μg kg(-1) in Flix to 23,488 μg kg(-1) in Almadén, while the average leaf content ranges from 161 μg kg(-1) in Jódar to 1213 μg kg(-1) in Almadén. Despite the wide range of data, a relationship between soil-leaf contents has been identified: in Almadén and Jódar, multiplicative (bilogarithmic) models show significant correlations (R = 0.769 and R = 0.484, respectively). Significant correlations were not identified between soil and leaf contents in Flix. The continuous activity of the Flix CAP, which remains open today, can explain the different uptake patterns for mercury, which is mainly atmospheric in origin, in comparison to the other two sites, where activity ceased more than 10 years ago and only soil uptake patterns based on the Michaelis-Menten enzymatic model curve are observed.

  11. Assessment of mercury in the Savannah River Site environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city ofmore » Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.« less

  12. Exposure to mercury in the mine of Almadén

    PubMed Central

    Gómez, Montserrat García; Klink, José Diego Caballero; Boffetta, Paolo; Español, Santiago; Sällsten, Gerd; Quintana, Javier Gómez

    2007-01-01

    Objectives To describe the process for obtaining mercury and the historical exposure of Almadén miners to mercury. Methods Information on every workplace and historical data on production, technological changes in the productive process and biological and environmental values of mercury was collected. A job‐exposure matrix was built with these values and the exposure to inorganic mercury was estimated quantitatively as μg/l of urine mercury. A cumulative exposure index was calculated for every worker by adding the estimates for every year in the different workplaces. Results In the mine, the highest exposures occurred during drilling, with values up to 2.26 mg/m3 in air, 2194 μg/l in urine and 374 μg/l in blood. Furnace operation and cleaning were the tasks with the highest values in metallurgy, peaking up to 3.37 mg/m3. The filling of bottles with mercury by free fall gave values within a range of 1.13–2.43 mg/m3 in air; these values dropped to 0.32–0.83 mg/m3 after introducing a new ventilation system. The toxicity effects of high doses of inorganic mercury on the central nervous and urinary systems have been known for decades. Conclusions The exposure of the workers in Almadén mines to mercury has been very high. The extremely high content cinnabar ore of the mine explains the increased concentrations of mercury in air at the work places. This, together with inadequate working conditions, explains the high mercury levels found in blood and urine during the study period. PMID:17227836

  13. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  14. Genesis of Silica-Carbonate Type Mercury Ore Deposits in Coast Range California from Mantle Derived Fluids

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Kirby, S. H.; Kellner, C. R.

    2016-12-01

    In the Coast Range of California 51 major mercury (Hg) deposits and numerous smaller Hg occurrences began forming when subduction transitioned to the transpressive continental-transform kinematics of the San Andreas Fault System. The Hg deposits become progressively younger to the north reflecting the change in tectonic environment as the Mendocino Triple Junction moved 400 km northward since the Miocene to its present location in northern California. The silica-carbonate mercury deposits are vein and replacement ore bodies developed within and adjacent to serpentinite that was emplaced along regional faults and altered to an assemblage of silica and carbonate minerals. The initial alteration process consists of the addition of carbonate to the serpentinite followed by introduction of silica into the central core. The peripheral zone of calcite-dolomite veining may extend for several kilometers outward from a mercury deposit. The large Hg deposits formed in structural traps, such as antiformal structures, and the ores locally extend into adjacent clastic metasedimentary rocks. The mineralogy of the primary ores is simple consisting of cinnabar, metacinnabar and elemental Hg. The deposits formed from low-temperature, <120oC, CO2-CH4-H2S-rich fluids. The hydrothermal fluids are consistent with a mantle source water derived from the former forearc during subduction and after the transition to transpressive continental-transform boundary as proposed by Kirby et al. (EPS, 2014). Some of the silica-carbonate Hg deposits are overprinted by younger hot spring type Hg mineralization associated temporally with volcanic vents. These Hg deposits have distinctly different types of alteration and geochemistry and formed in the near surface from meteoric waters.

  15. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques

    NASA Astrophysics Data System (ADS)

    Garrote, M. A.; Robador, M. D.; Perez-Rodriguez, J. L.

    2017-02-01

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art.

  16. On the origin of the livingstonite deposits at Huitzuco, Guerrero, Mexico

    USGS Publications Warehouse

    Tunell, G.; Learned, R.E.; Lawrence, E.F.

    1976-01-01

    Livingstonite is the principal ore mineral in the deposits of the Huitzuco District in the State of Guerrero, Mexico. The ore is found in the lower part of the Morelos Formation, which consists of a thick bed of sedimentary anhydrite containing lenses of dolomite and dolomite breccia. In the unweathered ore practically all the mercury is in the livingstonite, whereas the antimony occurs partly in the livingstonite and partly in stibnite. Native sulfur forms pockets as much as 30 centimeters in diameter in the ore and is also found in gypsum on the surface away from the ore. It appears that the deposition of livingstonite, rather than of the combination of cinnabar and stibnite that is more usual in other districts, was caused by the native sulfur present in considerable quantity scattered through the sedimentary dolomite and anhydrite above, below, and in the ore. Since the formula of livingstonite is actually HgSb4S8 (not HgSb4S7 as was previously supposed), it is not stable in solutions containing only HgS, Sb2S3, Na2S, and H2O. It has been proved by one of us, experimentally, that in order to form livingstonite, the solutions must contain elemental sulfur in addition to HgS, Sb2S3, Na2S, and H2O. In such solutions the solubility of mercuric sulfide is extremely low. However, the problem of transport is overcome if the elemental sulfur is already present in the wall rock. In that case, the reaction of the elemental sulfur with a solution containing mercuric sulfide and antimony sulfide, but not saturated with either, would precipitate livingstonite, as was proved by our experimental work. ?? 1976 Springer-Verlag.

  17. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques.

    PubMed

    Garrote, M A; Robador, M D; Perez-Rodriguez, J L

    2017-02-15

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Residential Mercury Contamination in Adobe Brick Homes in Huancavelica, Peru

    PubMed Central

    Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Espinoza Gonzales, Ruben Dario; Richter, Daniel deB.; Vandenberg, John

    2013-01-01

    This is the first study of adobe brick contamination anywhere in the world. Huancavelica, Peru is the site of historic cinnabar refining and one of the most mercury (Hg) contaminated urban areas in the world. Over 80% of homes in Huancavelica are constructed with adobe bricks made from Hg contaminated soil. In this study we measured total Hg concentrations in adobe brick, dirt floor, surface dust, and air samples from the interior of 60 adobe brick houses located in four neighborhoods. Concentrations of total Hg in adobe bricks, dirt floors, and surface dust ranged from 8.00 to 1070 µg/g, 3.06 to 926 µg/g, and 0.02 to 9.69 µg/wipe, respectively, with statistically significant differences between the four neighborhoods. Concentrations of Hg in adobe brick and dirt floor samples in Huancavelica were orders of magnitude higher than in Ayacucho, a non-mining town in Peru. A strong correlation exists between total Hg concentrations in adobe bricks and dirt floors which confirms that adobe bricks were being made on-site and not purchased from an off-site source. A strong correlation between surface dust and adobe bricks and dirt floors indicates that walls and floors serve as indoor sources of Hg contamination. Elemental Hg vapor concentrations were below detection (<0.5 µg/m3) in most homes; however in homes with detectable levels, concentrations up to 5.1 µg/m3 were observed. No statistically significant differences in Hg vapor measurements were observed between neighborhoods. This study demonstrates that building materials used widely in developing communities, such as adobe bricks, may be a substantial source of residential Hg exposure in silver or gold refining communities where Hg is produced or used for amalgamation in artisanal gold production. PMID:24040399

  19. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation.

    PubMed

    Qian, Xiaoli; Wu, Yonggui; Zhou, Hongyun; Xu, Xiaohang; Xu, Zhidong; Shang, Lihai; Qiu, Guangle

    2018-08-01

    Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg] root /[THg] soil , [MMHg] root /[MMHg] soil ) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076-140 μg/g THg and 0.19-87 ng/g MMHg in roots, 0.19-106 μg/g THg and 0.06-31 ng/g MMHg in shoots, and 0.74-1440 μg/g THg and 0.41-820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Mercury and methylmercury contents in mine-waste calcine, water, and sediment collected from the Palawan Quicksilver mine, Philippines

    USGS Publications Warehouse

    Gray, J.E.; Greaves, I.A.; Bustos, D.M.; Krabbenhoft, D.P.

    2003-01-01

    The Palawan Quicksilver mine, Philippines, produced about 2,900 t of mercury during mining of cinnabar ore from 1953 to 1976. More than 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining, much of which were used to construct a jetty in nearby Honda Bay. Since 1995, high Hg contents have been found in several people living near the mine, and 21 of these people were treated for mercury poisoning. Samples of mine-waste calcine contain high total Hg concentrations ranging from 43-660 ??g/g, whereas total Hg concentrations in sediment samples collected from a mine pit lake and local stream vary from 3.7-400 ??g/g. Mine water flowing through the calcines is acidic, pH 3.1-4.3, and total Hg concentrations ranging from 18-31 ??g/l in this water significantly exceed the 1.0-??g/l drinking water standard for Hg recommended by the World Health Organization (WHO). Total Hg contents are generally lower in water samples collected from surrounding domestic wells, the mine pit lake, Honda Bay, and the nearby stream, varying from 0.008-1.4 ??g/l. Methylmercury concentrations in water draining mine calcines range from <0.02-1.4 ng/l, but methylmercury is highest in the pit lake water, ranging from 1.7-3.1 ng/l. Mercury methylation at the Palawan mine is similar to or higher than that found in other mercury mines worldwide. Much of the methylmercury generated in Palawan mine-waste calcines and those in Honda Bay is transferred to water, and then to marine fish and seafood. A food source pathway of Hg to humans is most likely in this coastal, high fish-consuming population.

  1. Mobilization of Ag, heavy metals and Eu from the waste deposit of the Las Herrerias mine (Almería, SE Spain)

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Cardellach, E.

    2009-02-01

    We studied the mobility of silver, heavy metals and europium in waste from the Las Herrerías mine in Almería (SE Spain). The most abundant primary mineral phases in the mine wastes are hematite, hydrohematite, barite, quartz, muscovite, anorthite, calcite and phillipsite. The minor phase consisted of primary minerals including ankerite, cinnabar, digenite, magnesite, stannite, siderite and jamesonite, and secondary minerals such as glauberite, szomolnokite, thenardite and uklonscovite. The soils show high concentrations of Ag (mean 21.6 mg kg-1), Ba (mean 2.5%), Fe (mean 114,000 mg kg-1), Sb (mean 342.5 mg kg-1), Pb (mean 1,229.8 mg kg-1), Zn (mean 493 mg kg-1), Mn (mean 4,321.1 mg kg-1), Cd (mean 1.2 mg kg-1) and Eu (mean 4.0 mg kg-1). The column experiments showed mobilization of Ag, Al, Ba, Cu, Cd, Eu, Fe, Mn, Ni, Sb, Pb and Zn, and the inverse modelling showed that the dissolution of hematite, hausmannite, pyrolusite and anglesite can largely account for the mobilization of Fe, Mn and Pb in the leaching experiment. The mobility of silver may be caused by the presence of kongsbergite and chlorargyrite in the waste, while the mobility of Eu seems to be determined by Eu(OH)3, which controls the solubility of Eu in the pH-Eh conditions of the experiments. The mineralogy, pH, Eh and geochemical composition of the mine wastes may explain the possible mobilization of heavy metals and metalloids. However, the absence of contaminants in the groundwater may be caused by the carbonate-rich environment of “host-rocks” that limits their mobility.

  2. Chemical Characterization of an Ayurvedic Herbo-Mineral Formulation - Vasantakusumākara Rasa: A Potential Tool for Quality Assurance.

    PubMed

    Ota, Sarada; Singh, Arjun; Srikanth, Narayana; Sreedhar, Bojja; Ruknuddin, Galib; Dhiman, Kartar Singh

    2017-01-01

    Herbo-mineral formulations of Ayurveda contain specified metals or minerals as composition, which have their beneficial effects on biological systems. These metals or minerals are transformed into non-toxic forms through meticulous procedures explained in Ayurveda. Though literature is available on quality aspects of such herbo-mineral formulations; contemporary science is raising concerns at regular intervals on such formulations. Thus, it becomes mandate to develop quality profiles of all formulations that contain metals or minerals in their composition. Considering this, it is planned to evaluate analytical profile of Vasantakusumākara Rasa . To prepare Vasantakusumākara Rasa as per Standard operating Procedures (SoP) mentioned in classical text and to characterize it chemically using modern analytical techniques. The drug ( Vasantakusumākara Rasa ) in three batches was prepared in GMP certified pharmacy. Physico-chemical analysis, Assay of elements and HPTLC were carried out as per API. XRD was conducted using Rigaku Ultima-IV X-ray diffractometer. The analysis shown the presence of Mercury, Tin, Gold, Silver, Iron, Zinc and Calcium etc., and HPTLC revealed presence of organic constituents from plant material. The XRD indicated the presence of cinnabar (mercury sulphide from Rasa Sindhura ), cassiterite (tin oxide from Vaṅga Bhasma ), massicot (lead oxide from Nāga bhasma ) and Magnetite (di-iron oxide from Loha bhasma ). The physico chemical analysis reveals that VKR prepared by following classical guidelines is very effective in converting the macro elements into therapeutically effective medicines in micro form. Well prepared herbo-mineral drugs offer many advantages over plant medicines due to their longer shelf life, lesser doses, easy storing facilities, better palatability etc. The inferences and the standards laid down in this study certainly can be utilized as baseline data of standardization and QC.

  3. [Monitoring early toxicity of heavy metals including Hg using a HSE-SEAP reporter gene].

    PubMed

    Yu, Zhan-Jiang; Yang, Qin; Yang, Xiao-Da; Wang, Kui

    2006-08-01

    To develop a cellular assay based on heat shock signal pathway and secreted alkaline phosphatase (SEAP) reporter gene for investigating/predicting the early toxicity of heavy metals on HeLa cells in Chinese traditional medicine (TCM). The pHSE-SEAP plasmid was transfected into HeLa cells to build a HSE-SEAP-HeLa cell model. For validation of the model, the transfected cells were treated by either heating at 42 degrees C for 1 h or incubated with 5 mol x L(-1) CdCl2 for 4 h. Then the cells were covered in complete DMEM culture medium for 48 h and the activity of SEAP (reflecting the cellular level of heat shock protein) in cultural supernatants was measured; meanwhile, cell viability was determined by MTT assays. In addition, the cells were treated by four mercury compounds, HgCl2, merthilate sodium, HgS and cinnabar at the sub-lethal concentrations (determined by MTT assays). Then the heat shock response was detected likewise. Significant level of secreted alkaline phosphatase (SEAP) was found in pHSE-SEAP transfected HeLa cells treated either by heating (42 degrees C) or incubating with CdCl2. The heat shock protein was induced by CdCl2 before decrease of cell viability was observed. All four mercury compounds induced heat shock response in both time and concentration-dependant manner. However, there were big differences among the mercury compounds, suggesting potential differences for early-stage toxicity in vivo. The pHSE-SEAP transfected HeLa cells respond effectively to heat shock and metal stresses, and therefore provide a practical and repeatable assay for investigating/predicting the early toxicity of heavy metals and mineral-containing drugs in TCM.

  4. Using X-ray Microscopy and Hg L3 XANES to study Hg Binding in the Rhizosphere of Spartina Cordgrass

    PubMed Central

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-01-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to one million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission x-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for one week. Absorption contrast images of micron-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micron-sized roots (60–120 microns in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a “snapshot” of mercury methylation in progress. PMID:19848152

  5. Reconnaissance study of the Taylor Mountains pluton, southwestern Alaska

    USGS Publications Warehouse

    Hudson, Travis L.; Miller, Marti L.; Klimasauskas, Edward P.; Layer, Paul W.

    2010-01-01

    The Taylor Mountains pluton is a Late Cretaceous to early Tertiary (median age 65 + or ? 2 Ma) epizonal, composite biotite granite stock located about 235 km (145 mi) northeast of Dillingham in southwestern Alaska. This 30 km2 (12 mi2) pluton has sharp and discordant contacts with hornfels that developed in Upper Cretaceous clastic sedimentary rocks of the Kuskokwim Group. The three intrusive phases in the Taylor Mountains pluton, in order of emplacement, are (1) porphyritic granite containing large K-feldspar phenocrysts in a coarse-grained groundmass, (2) porphyritic granite containing large K-feldspar and smaller, but still coarse, plagioclase, quartz, and biotite phenocrysts in a fine-grained groundmass, and (3) fine-grained, leucocratic, equigranular granite. The porphyritic granites have different emplacement histories, but similar compositions; averages are 69.43 percent SiO2, 1.62 percent CaO, 5.23 percent FeO+MgO, 3.11 percent Na2O, and 4.50 percent K2O. The fine-grained, equigranular granite is distinctly felsic compared to porphyritic granite; it averages 75.3 percent SiO2, 0.49 percent CaO, 1.52 percent FeO+MgO, 3.31 percent Na2O, and 4.87 percent K2O. Many trace elements including Ni, Cr, Sc, V, Ba, Sr, Zr, Y, Nb, La, Ce, Th, and Nd are strongly depleted in fine-grained equigranular granite. Trace elements are not highly enriched in any of the granites. Known hydrothermal alteration is limited to one tourmaline-quartz replacement zone in porphyritic granite. Mineral deposits in the Taylor Mountains area are primarily placer gold (plus wolframite, cassiterite, and cinnabar); sources for these likely include scattered veins in hornfels peripheral to the Taylor Mountain pluton. The granite magmas that formed the Taylor Mountains pluton are thought to represent melted continental crust that possibly formed in response to high heat flow in the waning stage of Late Cretaceous subduction beneath interior Alaska.

  6. Using X-ray microscopy and Hg L3 XANES to study Hg binding in the rhizosphere of Spartina cordgrass.

    PubMed

    Patty, Cynthia; Barnett, Brandy; Mooney, Bridget; Kahn, Amanda; Levy, Silvio; Liu, Yijin; Pianetta, Piero; Andrews, Joy C

    2009-10-01

    San Francisco Bay has been contaminated historically by mercury from mine tailings as well as contemporary industrial sources. Native Spartina foliosa and non-native S. alterniflora-hybrid cordgrasses are dominant florae within the SF Bay estuary environment. Understanding mercury uptake and transformations in these plants will help to characterize the significance of their roles in mercury biogeochemical cycling in the estuarine environment. Methylated mercury can be biomagnified up the food web, resulting in levels in sport fish up to 1 million times greater than in surrounding waters and resulting in advisories to limit fish intake. Understanding the uptake and methylation of mercury in the plant rhizosphere can yield insight into ways to manage mercury contamination. The transmission X-ray microscope on beamline 6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) was used to obtain absorption contrast images and 3D tomography of Spartina foliosa roots that were exposed to 1 ppm Hg (as HgCl2) hydroponically for 1 week. Absorption contrast images of micrometer-sized roots from S. foliosa revealed dark particles, and dark channels within the root, due to Hg absorption. 3D tomography showed that the particles are on the root surface, and slices from the tomographic reconstruction revealed that the particles are hollow, consistent with microorganisms with a thin layer of Hg on the surface. Hg L3 XANES of ground-up plant roots and Hg L3 micro-XANES from microprobe analysis of micrometer-sized roots (60-120 microm in size) revealed three main types of speciation in both Spartina species: Hg-S ligation in a form similar to Hg(II) cysteine, Hg-S bonding as in cinnabar and metacinnabar, and methylmercury-carboxyl bonding in a form similar to methylmercury acetate. These results are interpreted within the context of obtaining a "snapshot" of mercury methylation in progress.

  7. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil.

    PubMed

    O'Connor, David; Peng, Tianyue; Li, Guanghe; Wang, Shuxiao; Duan, Lei; Mulder, Jan; Cornelissen, Gerard; Cheng, Zhenglin; Yang, Shengmao; Hou, Deyi

    2018-04-15

    Mercury (Hg) contamination of surface soils has increased by ~86Giga grams due to anthropogenic activities. There is an urgent need to find new, effective and preferably 'green' remediation technologies to protect human health and the environment. Sulfur-modification of sorbents can greatly enhance Hg sorption capacity - by forming low solubility HgS (cinnabar). However, S-modified sorbents are not considered suitable for soil remediation due to the economic cost and secondary environmental impacts of sorbents such as granulated activated carbon (GAC), and the toxicity of S-modifiers such as thiol compounds. It was previously found that if biochar is used as an alternative to GAC then the overall environmental impact can be significantly reduced. However, due to a lack of experimental evidence, the practicality of S-modified biochar remains uncertain. The present study was undertaken to provide a proof-of-concept for the 'green' remediation of Hg contaminated soils with rice husk biochar modified with non-toxic elemental S. It was found that the S modification process increased the biochar S content from 0.2% to 13.04% via surface deposition or volume pore filling. This increased the biochar's Hg 2+ adsorptive capacity (Q max ) by ~73%, to 67.11mg/g. To assess the performance of S-modified rice husk biochar for soil remediation it was applied to a high 1000mg/kg Hg 2+ contaminated soil. Treatment dosages of 1%, 2% and 5% (dry wt.) were found to reduce freely available Hg in TCLP (toxicity characterization leaching procedure) leachates by 95.4%, 97.4% and 99.3%, respectively, compared to untreated soil. In comparison, unmodified rice husk biochar reduced Hg concentrations by 94.9%, 94.9% and 95.2% when applied at the same treatment dosage rates, respectively. This study has revealed that S-modified rice husk biochar has potential to stabilize Hg as a 'green' method for the remediation of contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNear, Jr., David H.; Afton, Scott E.; Caruso, Joseph A.

    While continuing efforts are devoted to studying the mutually protective effect of mercury and selenium in mammals, few studies have investigated the mercury-selenium antagonism in plants. In this study, we report the metabolic fate of mercury and selenium in Allium fistulosum (green onion) after supplementation with sodium selenite and mercuric chloride. Analysis of homogenized root extracts via capillary reversed phase chromatography coupled with inductively coupled plasma mass spectrometry (capRPLC-ICP-MS) suggests the formation of a mercury-selenium containing compound. Micro-focused synchrotron X-ray fluorescence mapping of freshly excised roots show Hg sequestered on the root surface and outlining individual root cells, while Semore » is more evenly distributed throughout the root. There are also discrete Hg-only, Se-only regions and an overall strong correlation between Hg and Se throughout the root. Analysis of the X-ray absorption near edge structure (XANES) spectra show a 'background' of methylselenocysteine within the root with discrete spots of SeO{sub 3}{sup 2-}, Se{sup 0} and solid HgSe on the root surface. Mercury outlining individual root cells is possibly binding to sulfhydryl groups or plasma membrane or cell wall proteins, and in some places reacting with reduced selenium in the rhizosphere to form a mercury(II) selenide species. Together with the formation of the root-bound mercury(II) selenide species, we also report on the formation of cinnabar (HgS) and Hg{sup 0} in the rhizosphere. The results presented herein shed light on the intricate chemical and biological processes occurring within the rhizosphere that influence Hg and Se bioavailability and will be instrumental in predicting the fate and assisting in the remediation of these metals in the environment and informing whether or not fruit and vegetable food selection from aerial plant compartments or roots from plants grown in Hg contaminated soils, are safe for consumption.« less

  9. Fate and transport of mercury in soil systems : a numerical model in HP1 and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Jacques, Diederik

    2013-04-01

    Mercury (Hg) poses threats for human health and the environment, notably due to its persistence and its ability to bioaccumulate in ecosystems. Anthropogenic activities are major contributors of mercury release to soils. Main sources of contamination include manufacturing (chlor-alkali plants, manometer spill), mine tailings from mercury, gold and silver mining industries, wood preservation. The objective of this study was to develop a reactive transport model for simulating mercury fate and transport in the unsaturated zone, and to gain insight in the fate and transport of Hg following anthropogenic soil contamination. The present work is done in the framework of the IMaHg project, which aims at providing recommendations to improve management of sites contaminated by mercury within the SNOWMAN funding framework. A model of mercury fate and transport in soil systems was developed using the reactive transport code HP1 (Jacques and Šimůnek, 2010). The geochemical database THERMODDEM (Blanc et al., 2012) is used, augmented with some speciation data from (Skyllberg, 2012). The main processes accounted for in the model are : Hg aqueous speciation (including complexation with dissolved organic matter (DOM) - humic and fulvic acids, and thiol groups), Hg sorption to solid organic matter (SOM), dissolution of solid phase Hg (e.g. cinnabar HgS(s)), dissolution of Hg non-aqueous liquid phase (NAPL), sunlight-driven Hg(II) reduction to Hg(0), Hg(0) diffusion in the gas phase and volatilization, DOM sorption to soil minerals. Colloid facilitated transport is implicitly accounted for by solute transport of Hg-DOM complexes. Because we focused on soil systems having a high Hg contamination, some processes showing relatively smaller Hg fluxes could be neglected such as vegetation uptake and atmospheric wet and dry deposition. NAPL migration and entrapment is not modelled, as pollution is assumed to be historical and only residual NAPL to be present. Mercury methylation and demethylation was not implemented, because it could be neglected in an oxidising environment. However, if the model is to be tested in more reducing conditions (e.g. shallow groundwater table), methyl- and dimethylmercury formation can be non negligible. Using 50 year time series of daily weather observations in Dessel (Belgium) and a typical sandy soil with deep groundwater (free drainage, oxic conditions), a sensitivity analysis was performed to assess the relative importance of processes and parameters within the model. We used the elementary effects method (Morris, 1991; Campolongo et al., 2007), which draws trajectories across the parameter space to derive information on the global sensitivity of the selected input parameters. The impact of different initial contamination phases (solid, NAPL, aqueous and combinations of these) was also tested. Simulation results are presented in terms of (i) Hg volatilized to the atmosphere; (ii) Hg leached out of the soil profile; (iii) Hg still present in the soil horizon originally polluted; and (iv) Hg still present in the soil profile but below the original contaminated horizon. Processes and parameters identified as critical based on the sensitivity analysis differ from one scenario to the other ; depending on pollution type (cinnabar, NAPL, aqueous Hg), on the indicator assessed and on time (after 5, 25 or 50 years). However, in general DOM in soil water was the most critical parameter. Other important parameters were those related to Hg sorption on SOM (thiols, and humic and fulvic acids), and to Hg complexation with DOM. Initial Hg concentration was also often identified as a sensitive parameter. Interactions between factors and non linear effects as measured by the elementary effect method were generally important, but also dependent on the type of contamination and on time. No model calibration was performed until now. The numerical tool could greatly benefit from partial model calibration and/or validation. Ideally, detailed speciation data on a contaminated sites would be required, together with a good characterization of the pollution source. References : Blanc, P., Lassin, A. and Piantone, P. (2012), THERMODDEM a database devoted to waste minerals, BRGM, Orléans, France. http://thermoddem.brgm.fr Campolongo, F., Cariboni, J. and Saltelli, A. (2007), An effective screening design for sensitivity analysis of large models, Environmental Modelling & Software 22(10): 1509-1518. Jacques, D. and Šimůnek, J. (2010), Notes on HP1 - a software package for simulating variably-saturated water flow, heat transport, solute transport and biogeochemistry in porous media, HP1 Version 2.2 SCK•CEN-BLG-1068, Waste & Disposal Department, SCK•CEN, Mol, Belgium: 113 p. Morris, M. D. (1991), Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics 33(2): 161-174. Skyllberg, U. (2012), Chemical Speciation of Mercury in Soil and Sediment. Environmental Chemistry and Toxicology of Mercury, John Wiley & Sons, Inc.: 219-258.

  10. GENETIC EFFECTS OF SPACEFLIGHT FACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glembotskii, Ya.L.; Parfenov, G.P.

    1962-12-01

    With the object of investigating effects of spaceflight factors on heredity, Drosophila melanogaster was carried on the second, fourth, and fifth orbital spaceships and on Vostok-1 and Vostok-2. Four different spaceflight effects were investigated. Nondisjunction of chromosomes was investigated by exposing unfertilized white-eyed Drosophila females on Vostoks 1 and 2 and mating them on their return with red-eyed males. Primary nondisjunction of chromosomes resulted in the appearance of four times as many unusual genotypes (XXY females and XO males) among the progeny of the exposed group as among offspring of the controls. However, the increase in nondisjunction cannot be ascribedmore » to radiation effects. Induced crossovers were investigated by exposing heterozygotic males (having normal phenotypes but three recessive genes in the second chromosome) on the fifth orbital spaceship and on Vostoks 1 and 2. Upon return they were mated with homozygotic females displaying the three recessive characteristics (black body, cinnabar eyes, and vestigial wings). Drosophila carried in the fifth orbital spaceship with no protection against low-frequency vibrations showed crossover incidence of 0.50 450 deg C in a 0.12%, compared to an incidence of 0.05 450 deg C in a 0.05% or none at all on Vostok spaceships, where the insect containers were cushioned against vibration. Dominant lethal mutations were investigated by exposing two strains of Drosophila melanogaster (D- 18 with a high rate of spontaneous lethal mutations, and D-32 with a low rate for the same mutations) of the five spacecraft. The number of dominant lethal mutations was found to increase somewhat in all groups exposed to space flight. Sex-linked recessive lethal mutations were investigated by exposing young males of the D-18 and D-32 strains of Drosophila melanogaster on all five vehicles. Exposure on the second and fourth orbital spaceships and on Vostok-1 resulted in statistically significant numbers of sex-linked recessive lethal mutations for spermatozoa and spermatids of both strains. However, no increase in mutations was observed following exposure on the fifth orbital spaceship and on Vostok-2. (TCO)« less

  11. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution. The isolated carbonate platform (as a basin paleo-high) and related syndepositional fault system, together with the unconformity-related facies succession, may have controlled the migration pathway of ore-forming basinal fluids and subsequently determined the location of SMG deposits in the Youjiang basin. Unlike Carlin-type gold deposits, SMG mineralization in the Youjiang basin may represent an integral aspect of the dynamic evolution of extensional basins along divergent continental margins.

  12. Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Kathryn L.

    2015-08-18

    Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood.more » The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6) we investigated the biogeochemical controls on the release of mercury in simulated flooding experiments using loose soils and intact soil cores from East Fork Poplar Creek.« less

  13. Small-scale studies of roasted ore waste reveal extreme ranges of stable mercury isotope signatures

    NASA Astrophysics Data System (ADS)

    Smith, Robin S.; Wiederhold, Jan G.; Jew, Adam D.; Brown, Gordon E.; Bourdon, Bernard; Kretzschmar, Ruben

    2014-07-01

    Active and closed Hg mines are significant sources of Hg contamination to the environment, mainly due to large volumes of mine waste material disposed of on-site. The application of Hg isotopes as source tracer from such contaminated sites requires knowledge of the Hg isotope signatures of different materials potentially released to the environment. Previous work has shown that calcine, the waste residue of the on-site ore roasting process, can exhibit distinct Hg isotope signatures compared with the primary ore. Here, we report results from a detailed small-scale study of Hg isotope variations in calcine collected from the closed New Idria Hg mine, San Benito County, CA, USA. The calcine samples exhibited different internal layering features which were investigated using optical microscopy, micro X-ray fluorescence, micro X-ray absorption spectroscopy (μ-XAS), and stable Hg isotope analysis. Significant Fe, S, and Hg concentration gradients were found across the different internal layers. Isotopic analyses revealed an extreme variation with pronounced isotopic gradients across the internal layered features. Overall, δ202Hg (±0.10‰, 2 SD) describing mass-dependent fractionation (MDF) ranged from -5.96 to 14.49‰, which is by far the largest range of δ202Hg values reported for any environmental sample. In addition, Δ199Hg (±0.06‰, 2 SD) describing mass-independent fractionation (MIF) ranged from -0.17 to 0.21‰. The μ-XAS analyses suggested that cinnabar and metacinnabar are the dominant Hg-bearing phases in the calcine. Our results demonstrate that the incomplete roasting of HgS ores in Hg mines can cause extreme mass-dependent Hg isotope fractionations at the scale of individual calcine pieces with enrichments in both light and heavy Hg isotopes relative to the primary ore signatures. This finding has important implications for the application of Hg isotopes as potential source tracers for Hg released to the environment from closed Hg mines and highlights the need for detailed source signature identification.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakellariou, E.; Zorba, T.; Pavlidou, E.

    The 'St. 40 Martyrs' church is the most famous medieval building in Veliko Turnovo, Bulgaria. It is located in Assenova mahala, just next to Tsarevets. It was built and its walls were painted during the reign of Bulgarian king Ivan Assen II after the victory against Epyrus despot Theodoros Comninos (1230 AD). It consists of two buildings - a six-column basilica and another, smaller building on its western wall, which was built later. During the presence of the Ottoman Turks, maybe until the first half of the 18th century, the church remained christian. When it was converted to a mosque,more » all the christian symbols in it were destroyed. The archeological researches on site were initiated in 1969. As it is clear, the 40 Martyrs church is a historical monument of culture with great significance. The church had murals, from the earlier period, but in the following years and especially during the Ottoman period, the church has suffered many and different destructions. Nevertheless, the very few pieces of murals that are rescued till nowadays provide important information for the technique and the pigments that were used on its wall paintings. In the present work, twelve series of samples from the wall paintings were studied in order to characterize the materials and the technique used for church iconography. The study was based on the micro-analytical techniques of the Fourier Transform Infrared micro-spectroscopy (mus-FTIR), the Optical Microscopy and the Scanning Electron Microscopy (SEM) coupled to an Energy Dispersive X-ray Spectrometer (EDS). In the FTIR spectra of all pigments the characteristic peaks of calcite were detected, confirming the use of fresco technique for the creation of murals. The combination of FTIR spectroscopy and SEM-EDS analysis, reveal the existence of lapis-lazuli for the blue color, green earth for the green color, cinnabar for the red color, calcite for the white color and carbon black for the black color. Moreover, in other chromatic layers, the presence of iron oxides (hematite and limonite) indicating the use of ochre for the yellow and red pigments, is identified. Finally, the surface of some samples was covered by a transparent and tensile material. This material was characterized by mus-FTIR spectroscopy as an organic substance, probably a natural resin that was used to protect the murals in the early ages.« less

  15. Mercury methylation influenced by areas of past mercury mining in the Terlingua district, Southwest Texas, USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.; Biester, H.

    2006-01-01

    Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 ??g/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 ??g/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Vulnerability of soils towards mining operations in gold-bearing sands in Chile

    NASA Astrophysics Data System (ADS)

    Jordán, Manuel Miguel; González, Irma; Bech, Jaume; Sanfeliu, Teófilo; Pardo, Francisco

    2015-04-01

    The contamination levels in handicraft mining, despite less production and processing less equipment, have high repercussions upon the environment in many cases. High-grade ore extraction, flotation, gravity concentration, acid leaching cementation and mercury amalgamation are the main metallurgical technologies employed. Gold recovery involving milling and amalgamation appears to the most contamination source of mercury. This research work is only a starting point for carrying out a risk probability mapping of pollutants of the gold bearing sands. In southern Chile, with a mild and rainy climate, high levels of pollutants have been detected in some gold placer deposits. The handicraft gold-bearing sands studied are located in X Region of "Los Lagos" in southern Chile. A great quantity of existing secondary deposits in the X Region is located in the coastal mountain range. The lithological units that are found in this range correspond with metamorphic rocks of a Paleozoic crystalline base that present an auriferous content liberated from the successive erosive processes suffered. Metasedimentary and metavolcanic rocks also make up part of this range, but their auriferous load is much smaller. The methodology used in the characterization of the associated mineralization consists of testing samples with a grain size distribution, statistical parameter analysis and mineralogical analysis using a petrographic microscope, XRD and SEM/EDX. The chemical composition was determined by means of XRF and micro-chemical analysis. The major concentrations of heavy minerals are located in areas of dynamic river energy. In the studied samples, more the 75 % of the heavy minerals were distributed among grain sizes corresponding to thin sand (0.25-0.05 mm) with good grain selection. The main minerals present in the selected analysed samples were gold, zircon, olivine, ilmenite, hornblende, hematite, garnet, choromite, augite, epidote, etc. The main heavy metals found were mercury, lead, cadmium, crome, zinc, cobalt, cooper, platinum, gold, indium, tellurium, etc., and as well some traces of cerium, praseodymium, gadolinium, neodymium, samarium and lanthanum. The recurring presence of Pb, sulphur and Hg, among others, in mineral species like galena and cinnabar reveal accumulation indices, a product of the contaminating action of human beings. This is notable since no records exist of natural deposits of these minerals that can justify their presence, and records were utilized from semi-industrial exploitations for the extaction of gold where Hg is utilized in the amalgamation processes.

  17. Hypogenic speleogenesis in quartzite: The case of Corona 'e Sa Craba Cave (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Sauro, Francesco; De Waele, Jo; Onac, Bogdan P.; Galli, Ermanno; Dublyansky, Yuri; Baldoni, Eleonora; Sanna, Laura

    2014-04-01

    The paper presents a detailed study demonstrating the hypogenic origin of the Corona 'e Sa Craba quartzite cave in SW Sardinia (Italy). Although the quartzite host-rock of this cave derived from silicification of Cambrian dolostones and dissolution of carbonate remnants could have had a role in the speleogenesis, detailed morphologic and petrographic investigation revealed clear evidence of quartz dissolution without signs of mechanical erosion by running waters. Thin section microscopy and scanning electron microscope (SEM) images show pervasive dissolution morphologies, such as pits and notches on quartz crystals causing the deep arenization of the cave walls, suggesting that the dissolution of quartz had a primary role in the formation of the void. The study of secondary cave minerals and the sulfur isotopic composition of sulfates and sulfides, coupled with data on fluid inclusions, allowed reconstruction of the peculiar speleogenetic history of this hypogenic hydrothermal quartzite cave. The cave formed by reduced hydrothermal fluids, probably under basic-neutral pH in phreatic conditions. The presence of abundant cations of Ba2 + in reduced Cl-rich fluids enhanced the quartz dissolution rate, allowing the formation of the voids in deep settings. During the Late Oligocene uplift of the area, the hydrothermal fluids in the cave reached oxygen-rich conditions, thus a minerogenetic phase started with the deposition of barite when the temperature of the fluid was ≤ 50 °C. The presence of cinnabar crusts in the lower part of the cave walls and on the boulders suggests a later volcanic phase with Hg-rich vapors ascending from below. Other minerals such as alunite, basaluminite, gypsum and halloysite (typical of an acid sulfate alteration environment), and phosphates were formed in a final, much more recent stage. The δ34S values of the cave sulfate minerals indicate that S is derived from the remobilization of original Precambrian Pb-Zn Mississippi Valley Type ores. These last two stages did not significantly affect the morphology of the cave. The Corona 'e Sa Craba appears to be the world's first example of a hypogenic cave in quartzite where the speleogenetic mechanisms have been studied and reconstructed in detail, using a variety of modern methods. This study confirms that dissolution of quartz by thermal alkaline fluids at depth can produce large dissolutional voids in the apparently poorly soluble quartzite rocks.

  18. The Byzantine Church of ``40 Holy Martyrs'' in Veliko Turnovo, Bulgaria: Pigments and Technique

    NASA Astrophysics Data System (ADS)

    Sakellariou, E.; Zorba, T.; Pavlidou, E.; Angelova, S.; Paraskevopoulos, K. M.

    2010-01-01

    The "St. 40 Martyrs" church is the most famous medieval building in Veliko Turnovo, Bulgaria. It is located in Assenova mahala, just next to Tsarevets. It was built and its walls were painted during the reign of Bulgarian king Ivan Assen II after the victory against Epyrus despot Theodoros Comninos (1230 AD). It consists of two buildings - a six-column basilica and another, smaller building on its western wall, which was built later. During the presence of the Ottoman Turks, maybe until the first half of the 18th century, the church remained christian. When it was converted to a mosque, all the christian symbols in it were destroyed. The archeological researches on site were initiated in 1969. As it is clear, the 40 Martyrs church is a historical monument of culture with great significance. The church had murals, from the earlier period, but in the following years and especially during the Ottoman period, the church has suffered many and different destructions. Nevertheless, the very few pieces of murals that are rescued till nowadays provide important information for the technique and the pigments that were used on its wall paintings. In the present work, twelve series of samples from the wall paintings were studied in order to characterize the materials and the technique used for church iconography. The study was based on the micro-analytical techniques of the Fourier Transform Infrared micro-spectroscopy (μs-FTIR), the Optical Microscopy and the Scanning Electron Microscopy (SEM) coupled to an Energy Dispersive X-ray Spectrometer (EDS). In the FTIR spectra of all pigments the characteristic peaks of calcite were detected, confirming the use of fresco technique for the creation of murals. The combination of FTIR spectroscopy and SEM-EDS analysis, reveal the existence of lapis-lazuli for the blue color, green earth for the green color, cinnabar for the red color, calcite for the white color and carbon black for the black color. Moreover, in other chromatic layers, the presence of iron oxides (hematite and limonite) indicating the use of ochre for the yellow and red pigments, is identified. Finally, the surface of some samples was covered by a transparent and tensile material. This material was characterized by μs-FTIR spectroscopy as an organic substance, probably a natural resin that was used to protect the murals in the early ages.

  19. Release of Mercury Mine Tailings from Mine Impacted Watersheds by Extreme Events Resulting from Climate Change

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.

    2015-12-01

    An increase in intensity and frequency of extreme events resulting from climate change is expected to result in extreme precipitation events on both regional and local scales. Extreme precipitation events have the potential to mobilize large volumes of mercury (Hg) mine tailings in watersheds where tailings reside in the floodplain downstream from historic Hg mines. The California Hg mineral belt produced one third of the worlds Hg from over 100 mines from the 1850's to 1972. In the absence of environmental regulations, tailings were disposed of into streams adjacent to the mines in order to have them transported from the mine site during storm events. Thus most of the tailings no longer reside at the mine site. Addition of tailings to the streams resulted in stream aggradation, increased over-bank flow, and deposition of tailings in the floodplain for up to 25 kms downstream from the mines. After cessation of mining, the decrease in tailings entering the streams resulted in degradation, incision of the streams into the floodplain, and inability of the streams to access the floodplain. Thus Hg tailings have remained stored in the floodplain since cessation of mining. Hg phases in these tailings consist of cinnabar, metacinnabar and montroydite based on EXAFS analysis. Size analysis indicates that Hg phases are fine grained, less than 1 um. The last regional scale extreme precipitation events to effect the entire area of the California Hg mineral belt were the ARkStorm events of 1861-1862 that occurred prior to large scale Hg mining. Extreme regional ARkStorm precipitation events as well as local summer storms, such as the July 2006 flood in the Clear Creek Hg mining district, are expected to increase in frequency and have the potential to remobilize the large volume of tailings stored in floodplain deposits. Although Hg mine remediation has decreased Hg release from mine sites in a period of benign climate, no remediation efforts have addressed the large source of Hg residing in floodplain deposits. This Hg source in a period of climate change poses a significant environmental risk to aquatic systems downstream from Hg mine-impacted watersheds. An extreme ARkStorm event is estimated to potentially remobilize an amount of Hg equivalent to that released in the past during the peak period of unregulated Hg mining in California.

  20. Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): combining imaging and spectroscopic techniques.

    PubMed

    Bracci, S; Caruso, O; Galeotti, M; Iannaccone, R; Magrini, D; Picchi, D; Pinna, D; Porcinai, S

    2015-06-15

    This paper demonstrates that an educated methodology based on both non-invasive and micro invasive techniques in a two-step approach is a powerful tool to characterize the materials and stratigraphies of an Egyptian coffin, which was restored several times. This coffin, belonging to a certain Mesiset, is now located at the Museo Civico Archeologico of Bologna (inventory number MCABo EG 1963). Scholars attributed it to the late 22nd/early 25th dynasty by stylistic comparison. The first step of the diagnostic approach applied imaging techniques on the whole surface in order to select measurements spots and to unveil both original and restored areas. Images and close microscopic examination of the polychrome surface allowed selecting representative areas to be investigated in situ by portable spectroscopic techniques: X-ray Fluorescence (XRF), Fiber Optic Reflectance Spectroscopy (FORS) and Fourier Transform Infrared spectroscopy (FTIR). After the analysis of the results coming from the first step, very few selected samples were taken to clarify the stratigraphy of the polychrome layers. The first step, based on the combination of imaging and spectroscopic techniques in a totally non-invasive modality, is quite unique in the literature on Egyptian coffins and enabled us to reveal many differences in the ground layer's composition and to identify a remarkable number of pigments in the original and restored areas. This work offered also a chance to check the limitations of the non-invasive approach applied on a complex case, namely the right localization of different materials in the stratigraphy and the identification of binding media. Indeed, to dissolve any remaining doubts on superimposed layers belonging to different interventions, it was necessary to sample few micro-fragments in some selected areas and analyze them prepared as cross-sections. The original ground layer is made of calcite, while the restored areas show the presence of either a mixture of calcite and silicates or a gypsum ground, overlapped by lead white. The original pigments were identified as orpiment, cinnabar and red clay, Egyptian blue and green copper based pigments. Some other pigments, such as white lead, Naples yellow, cerulean blue and azurite were only found in the restored areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Framework on drug interactions between herbal medicine and western medicine: building Ⅰ/Ⅱ/Ⅲ class pathways of interactions].

    PubMed

    Jin, Rui; Huang, Jian-Mei; Wang, Yu-Guang; Zhang, Bing

    2016-02-01

    Combined use of Chinese medicine and western medicine is one of the hot spots in the domestic medical and academic fields for many years. There are lots of involved reports and studies on interaction problems due to combined used of Chinese medicine and western medicine, however, framework understanding is still rarely seen, affecting the clinical rationality of drug combinations. Actually, the inference ideas of drug interactions in clinical practice are more extensive and practical, and the overall viewpoint and pragmatic idea are the important factors in evaluating the rationality of clinical drug combinations. Based on above points, this paper systemically analyzed the existing information and examples, deeply discuss the embryology background (environment and action mechanism of interactions), and principally divided the interactions into three important and independent categories. Among the three categories, the first category (Ⅰapproach) was defined as the physical/chemical reactions after direct contact in vivo or in vitro, such as the combination of Chinese medicine injections and western medicine injections (in vitro), combination of bromide and Chinese medicines containing cinnabar (in vivo). The evaluation method for such interactions may be generalized theory of Acid-Base reaction. The second category (Ⅱ approach) was defined as the interactions through the pharmacokinetic process including absorption (such as the combination of aspirin and Huowei capsule), distribution (such as the combination of artosin and medicinal herbs containing coumarin), metabolism (such as the combination of phenobarbital and glycyrrhiza) and excretion (such as the combination of furadantin and Crataegi Fructus). The existing pharmacokinetic theory can act as the evaluation method for this type of interaction. The third category (Ⅲ approach) was defined as the synergy/antagonism interactions by pharmacological effects or biological pathways. The combination of warfarin and Salvia miltiorrhiza is an example for synergy interaction, while the combination of guanethidine and ephedra is an example for anatagonism interaction. The repeated application of Chinese and western medicine compound preparations and same type of western medicine also belongs to this approach. The receptor competition theory under the view of the overall pathways might act as the evaluation method for this type of interactions. Above all, the research framework on interactions between Chinese medicine and western medicine was proposed, providing overall thinking and support for the essential study on combined application of Chinese medicine and western medicine. Copyright© by the Chinese Pharmaceutical Association.

  2. Antimicrobial potential of two traditional herbometallic drugs against certain pathogenic microbial species.

    PubMed

    Wijenayake, A U; Abayasekara, C L; Pitawala, H M T G A; Bandara, B M R

    2016-09-15

    Mineral based preparations are widely used for centuries as antimicrobial agents. However, the efficacy and the mode of action of mineral based preparations are uncertain due to the insufficient antimicrobial studies. Arogyawardhana Vati (AV) and Manikya Rasa (MR) are such two Rasashastra herbo-minerallic drugs commonly in India and other countries in South Asia. Despite of their well known traditional use of skin diseases, reported antimicrobial and mineralogical studies are limited. Therefore, in this study antimicrobial activities of the drugs and their organic, inorganic fractions were evaluated against Pseudomonas aeruginosa, Escherischia coli, Staphylococcus aureus, Methecilline Resistance Staphylococcus aureus - MRSA and Candida albicans. Antimicrobial activity of the drugs, their inorganic residues and organic extracts were determined using four assay techniques viz agar well diffusion, modified well diffusion, Miles and Misra viable cell counting and broth turbidity measurements. Mineralogical constituents of the drugs were determined using X-ray diffraction, while total cation constituents and water soluble cation constituents were determined using inductively coupled plasma-mass spectrometer and the atomic absorption spectrophotometer respectively. Thermogravimetric analysis was used to determine the weight percentages of organic and inorganic fraction of the drugs. Particle sizes of the drugs were determined using the particle size analyzer. AV and MR drugs showed antibacterial activity against both gram positive and gram negative bacterial species when analyzed separately. Inorganic residues of the drugs and organic extracts showed activity at least against two or more bacterial species tested. All tested components were inactive against C. albicans. Common mineral constituents of drugs are cinnabar, biotite and Fe-rich phases. Drugs were rich in essential elements such as Na, K, Ca, Mg and Fe and toxic elements such as Zn, Cu and As. However, the water soluble concentrations of the toxic elements were below the detection limits. Both drugs have significantly higher percentages of organic constituents and volatile minerals and particle sizes of drugs are in the nanometer range. AV and MR Rasashastra preparations could provide alternatives to synthetic antibiotics against human bacterial infections. Improved solubility and reduced particle sizes are influential physicochemical properties used to enhance the antimicrobial efficacy of the drugs. Therefore, traditional knowledge on the use of antimicrobial mineral sources could provide a novel path for the producing of effective antimicrobial drugs. However, further chemical and toxicological studies are urgently needed for a greater understanding of their toxicity to humans.

  3. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites.

    PubMed

    Henny, Charles J; Kaiser, James L; Packard, Heidi A; Grove, Robert A; Taft, Michael R

    2005-10-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10-20x) may be used, but with caution, to screen headwater streams for potential Hg-related effects on dippers. When actual feather concentrations or projected feather concentrations are equal to or lower than concentrations reported for the Coast Fork, dippers are expected to reproduce well (assuming adequate prey and suitable nest sites). When Hg concentrations are substantially higher, more detailed investigations may be required. Birds feeding almost exclusively on fish (e.g., osprey [Pandion haliaetus]) and usually found further downstream from the headwaters would not be adequately represented by dippers given the higher MeHg concentrations in fish resulting from biomagnification, compared to lower trophic level invertebrates.

  4. Assessing mercury exposure and effects to American dippers in headwater streams near mining sites

    USGS Publications Warehouse

    Henny, Charles J.; Kaiser, James L.; Packard, Heidi A.; Grove, Robert A.; Taft, Mike R.

    2005-01-01

    To evaluate mercury (Hg) exposure and possible adverse effects of Hg on American dipper (Cinclus mexicanus) reproduction, we collected eggs and nestling feathers and the larval/nymph form of three Orders of aquatic macroinvertebrates (Ephemeroptera, Plecoptera and Trichoptera = EPT) important in their diet from three major headwater tributaries of the upper Willamette River, Oregon in 2002. The Coast Fork Willamette River is contaminated with Hg due to historical cinnabar (HgS) mining at the Black Butte Mine; the Row River is affected by past gold-mining operations located within the Bohemia Mining District, where Hg was used in the amalgamation process to recover gold; and the Middle Fork Willamette River is the reference area with no known mining. Methyl mercury (MeHg) concentrations (geometric mean) in composite EPT larvae (111.9 ng/g dry weight [dw] or 19.8 ng/g wet weight [ww]), dipper eggs (38.5 ng/g ww) and nestling feathers (1158 ng/g ww) collected from the Coast Fork Willamette were significantly higher than MeHg concentrations in EPT and dipper samples from other streams. Total mercury (THg) concentrations in surface sediments along the same Hg-impacted streams were investigated by others in 1999 (Row River tributaries) and 2002 (Coast Fork). The reported sediment THg concentrations paralleled our biological findings. Dipper breeding territories at higher elevations had fewer second clutches; however, dipper reproductive success along all streams (including the lower elevation and most Hg-contaminated Coast Fork), was judged excellent compared to other studies reviewed. Furthermore, MeHg concentrations in EPT samples from this study were well below dietary concentrations in other aquatic bird species, such as loons and ducks, reported to cause Hg-related reproductive problems. Our data suggest that either dipper feathers or EPT composites used to project MeHg concentrations in dipper feathers (with biomagnification factor of 10a??20??) may be used, but with caution, to screen headwater streams for potential Hg-related effects on dippers. When actual feather concentrations or projected feather concentrations are equal to or lower than concentrations reported for the Coast Fork, dippers are expected to reproduce well (assuming adequate prey and suitable nest sites). When Hg concentrations are substantially higher, more detailed investigations may be required. Birds feeding almost exclusively on fish (e.g., osprey [Pandion haliaetus]) and usually found further downstream from the headwaters would not be adequately represented by dippers given the higher MeHg concentrations in fish resulting from biomagnification, compared to lower trophic level invertebrates.

  5. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings

    USGS Publications Warehouse

    Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rock were heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.

  6. Geophysical investigation of Red Devil mine using direct-current resistivity and electromagnetic induction, Red Devil, Alaska, August 2010

    USGS Publications Warehouse

    Burton, Bethany L.; Ball, Lyndsay B.

    2011-01-01

    Red Devil Mine, located in southwestern Alaska near the Village of Red Devil, was the state's largest producer of mercury and operated from 1933 to 1971. Throughout the lifespan of the mine, various generations of mills and retort buildings existed on both sides of Red Devil Creek, and the tailings and waste rock were deposited across the site. The mine was located on public Bureau of Land Management property, and the Bureau has begun site remediation by addressing mercury, arsenic, and antimony contamination caused by the minerals associated with the ore deposit (cinnabar, stibnite, realgar, and orpiment). In August 2010, the U.S. Geological Survey completed a geophysical survey at the site using direct-current resistivity and electromagnetic induction surface methods. Eight two-dimensional profiles and one three-dimensional grid of direct-current resistivity data as well as about 5.7 kilometers of electromagnetic induction profile data were acquired across the site. On the basis of the geophysical data and few available soil borings, there is not sufficient electrical or electromagnetic contrast to confidently distinguish between tailings, waste rock, and weathered bedrock. A water table is interpreted along the two-dimensional direct-current resistivity profiles based on correlation with monitoring well water levels and a relatively consistent decrease in resistivity typically at 2-6 meters depth. Three settling ponds used in the last few years of mine operation to capture silt and sand from a flotation ore processing technique possessed conductive values above the interpreted water level but more resistive values below the water level. The cause of the increased resistivity below the water table is unknown, but the increased resistivity may indicate that a secondary mechanism is affecting the resistivity structure under these ponds if the depth of the ponds is expected to extend below the water level. The electromagnetic induction data clearly identified the three monofills and indicate, in conjunction with the three-dimensional resistivity data, additional possible landfill features on the north side of Red Devil Creek. No obvious shallow feature was identified as a possible source for a spring that is feeding into Red Devil Creek from the north bank. However, a discrete, nearly vertical conductive feature observed on the direct-current resistivity line that passes within 5 meters of the spring may be worth investigating. Additional deep soil borings that better differentiate between tailings, waste rock, and weathered bedrock may be very useful in more confidently identifying these rock types in the direct-current resistivity data.

  7. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.

    PubMed

    Craw, D

    2005-02-01

    Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.

  8. Biogeochemistry of mercury in soils and sediments in a mining-impacted watershed, California

    NASA Astrophysics Data System (ADS)

    Holloway, J. M.; Goldhaber, M. B.

    2004-12-01

    The East Davis Creek watershed, located in the California Coast Ranges, is host to historic mines that provided mercury for recovery of gold in the Sierra Nevada goldfields in the mid-to-late 1800s. Bedrock in this watershed includes marine sedimentary rock, serpentinite, and hydrothermally altered serpentinite. Cinnabar (HgS) found in the altered serpentinite is the primary ore mineral for mercury. We evaluated the hypothesis that mercury is sequestered in soil organic matter downstream from source areas, releasing a fraction as water-soluble methylmercury. Microbial biomass and the presence of sulfur-reducing bacteria implicated in mercury methylation were quantified using phospholipid fatty acid (PLFA) data. Methylation incubations were performed on soil and sediment inoculated with water from Davis Creek Reservoir and sealed in glass containers under an anoxic headspace for 21 days. Methylmercury was measured on extracts of the soils at the start and at the end of the incubation period. Two sources of mercury to stream sediments, a soil with an altered serpentinite parent and mine tailings, were incubated. Stream sediment, an overbank deposit soil and a wetland soil forming from these sediments were also incubated. The overbank deposit soil is periodically flooded. The wetland soil around the edge of Davis Creek Reservoir is perennially saturated with water. The altered serpentinite soil and mine tailings had the highest total mercury concentrations (170 and 150 ng Hg /g, respectively). Total mercury concentrations in stream sediments are low (¡Ü1 ng Hg/g), with higher mercury concentrations in the overbank (3 ng/g) and wetland soils (18 ng Hg/g). Mercury leached from altered serpentinite soils and mine tailings may be transported downstream and sequestered through sorption to organic matter in the overbank and wetland soils. PLFA biomarkers for Desulfobacter (10Me16:0) and Desulfovibrio (i17:1) were present in all incubated materials, with lower concentrations in mine tailings and stream sediment relative to the three soils examined. Methylmercury was initially present in greater concentrations in the overbank deposit (23 ng HgMe/g) soils. The elevated methyl mercury in the overbank deposit soil may be due to the greater biomass of sulfur reducing bacteria indicated by the 10Me16:0 and i17:1 biomarkers. During the 21-day incubation, methylmercury increased from 0.6 to 15 ng HgMe/g in the wetland soil concomitantly with sulfate decreasing from 130 to 7.0 mg SO4=/g. Methylmercury concentrations did not change appreciably in the other soils, although sulfate decreased from 19 to 2.0 mg SO4=/g in the overbank deposit soil. These data suggest that overbank deposits and wetland soils sequester mercury leached from upstream sources, with a fraction of this mercury released through microbial methylation.

  9. Study by micro-Raman spectroscopy of wall paints (external parts and cross-sections) from reales alcazares of Seville (Spain)

    NASA Astrophysics Data System (ADS)

    Perez-Rodriguez, José Luis; Centeno, Miguel Angel; Robador, María Dolores; Siguenza, Belinda; Durán, Adrián

    2013-04-01

    The Reales Alcazares of Sevilla was originally builded by the Arabic in the year 913. The Mudejar Palace was built by Christian King Pedro I between 1364 and 1366. At the end of XV century the Catholic Kings, Isabel and Fernando made important transformations especially in the Mudejar Palace. Recently, wall paints from Catholic Kings periods were found during works of conservations in the first floor of the Palace. The study of these paints by non-destructive techniques was considered of great interest in order to determine the technology of manufacture and the originality of the artwork. The main objective of this work was to apply the Raman spectroscopy technique on the surface of the wall and on the different layers of the cross-sections prepared in order to characterize the pigments and the plaster present in these wall paints. Little information was obtained using a portable Raman spectrometer. In this case the dispersive integrated Horiba Jobin-Yvon LabRaman HR800 system was employed. Small samples of black, red, yellow, white and green colour were taken from the artwork. The surface of the samples were directly studed by the Raman spectroscopy instrument using red (785 nm) and green (522 nm) lasers, similarly to non-invasive experimental technique. This technique showed the presence of gypsum (SO4Ca.2H2O) and calcite (CaCO3) in all the studied samples However, the pigments responsible of different colours were not detected. The surface of these wall paints was covered with gypsum and calcite due to contamination. These mineras were also characterized by XRD and SEM-EDX. The presence of these compounds and the heterogeneous surface did not permit the characterization of the pigments responsible of the colour. In order to better characterization of the pigments and plaster used the study was carried out on cross-sections. The black colour was performed using carbon black. Two different red layers were detected one constituted by cinnabar and lead carbonate and the other one by iron oxides. The green and white colours were constituted by atacamite and calcite, respectively. In addition lead white was detected in green colour. The white layers (plaster) located under the colour layers were constituted by calcite, quartz and feldspars. These data confirm the use of fresco technique. The study of the surface (external part) by micro-Raman spectroscopy limited the characterization of the pigments present in these wall pains, due to the presence of a layer of gypsum deposited on the surface. By other hand, the study by Raman spectroscopy of the cross-sections allowed the characterization of different pigments and support used in the manufacture of these wall paints.

  10. Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): Sources, distribution and speciation

    NASA Astrophysics Data System (ADS)

    Acquavita, Alessandro; Covelli, Stefano; Emili, Andrea; Berto, Daniela; Faganeli, Jadran; Giani, Michele; Horvat, Milena; Koron, Neža; Rampazzo, Federico

    2012-11-01

    The existence of mining tailings in Idrija (Slovenia) and their subsequent transportation via the Isonzo River has been the primary source of mercury (Hg) in the northern Adriatic Sea for almost 500 years, making the Gulf of Trieste and the adjacent Marano and Grado Lagoon two of the most contaminated marine areas in the world. A further, more recent, contribution of Hg has been added by the operation of a chlor-alkali plant (CAP) located in the drainage basin flowing into the Lagoon. On the basis of previous research, as well as new data obtained from the "MIRACLE" project (Mercury Interdisciplinary Research for Appropriate Clam farming in a Lagoon Environment), the spatial distribution of Hg and its relationships with methylmercury (MeHg), organic matter and several geochemical parameters in surface sediments were investigated. The predominant and long-term impacts of the cinnabar-rich Isonzo River particulate matter in the Lagoon surface sediments are evident and confirmed by a decreasing concentration gradient from east (>11 μg g-1) to west (0.7 μg g-1). Hg originated from the CAP is only significant in the central sector of the Lagoon. Hg is primarily associated with fine-grained sediments (<16 μm), as a consequence of transport and dispersion from the fluvial source through littoral and tidal currents. However, speciation analyses highlighted the presence of Hg sulphides in the coarse sandy fraction of sediments from the eastern area, as expected given the origin of the sedimentary material. Unlike Hg, the distribution of MeHg (0.47-7.85 ng g-1) does not show a clear trend. MeHg constitutes, on average, 0.08% of total Hg and percentages are comparable to those obtained in similar lagoon environments. Higher MeHg concentrations in low to intermediate Hg-contaminated sediments indicate that the metal availability is not a limiting factor for MeHg occurrence, thus suggesting a major role played by environmental conditions and/or speciation. The reasonably good correlation between MeHg normalized to humic acid (HA) content and humic δ13C indicates that MeHg is preferentially associated with autochthonous δ13C-enriched HAs in lagoon surface sediments, suggesting that the structure of "marine" HAs, less refractory and less aromatic, could favor MeHg binding and/or production. In the context of the potential hazard of Hg and MeHg accumulation in reared clams, the choice of a site for the extension of farming activities inside the Marano and Grado Lagoon is dependent on several factors and cannot be decided solely on the basis of the total Hg content in the sediment.

  11. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions.

    PubMed

    Hylander, Lars D; Meili, Markus

    2003-03-20

    Since pre-industrial times, anthropogenic emissions of Hg have at least doubled global atmospheric Hg deposition rates. In order to minimize environmental and human health effects, efforts have been made to reduce Hg emissions from industries and power plants, while less attention has been paid to Hg mining. This paper is a compilation of available data on primary Hg production and associated emissions with regional and annual resolution since colonial times. Globally, approximately one million tons of metallic Hg has been extracted from cinnabar and other ores during the past five centuries, half already before 1925. Roughly half has been used for mining of gold and silver, but the annual Hg production peaked during a short period of recent industrial uses. Comparison with total historic Hg deposition from global anthropogenic emissions (0.1-0.2 Mtons) suggests that only a few percent of all mined Hg have escaped to the atmosphere thus far. While production of primary Hg has changed dramatically over time and among mines, the global production has always been dominant in the region of the mercuriferous belt between the western Mediterranean and central Asia, but appears to be shifting to the east. Roughly half of the registered Hg has been extracted in Europe, where Spanish mines alone have contributed one third of the world's mined Hg. Approximately one fourth has been mined in the Americas, and most of the remaining registered Hg in Asia. However, the Asian figures may be largely underestimated. Presently, the dominant Hg mines are in Almadén in Spain (236 t of Hg produced in 2000), Khaydarkan in Kyrgyzstan (550 t), Algeria (estimated 240 t) and China (ca. 200 t). Mercury by-production from mining of other metals (e.g. copper, zinc, gold, silver) in 2000 includes 48 t from Peru, 45 t from Finland and at least 15 t from the USA. Since 1970, the recorded production of primary Hg has been reduced by almost an order of magnitude to approximately 2000 t in the year 2000. Mining is thus still of similar magnitude as all current anthropogenic Hg emissions to the atmosphere, and mined Hg may account for more than one third of these emissions. Also before use, mercury is emitted from Hg mines locally during the mining and refining processes and from mining waste. Global direct emissions to the atmosphere amount to 10-30 t per year currently (up to 10 at Almadén alone), and probably exceed 10000 t historically. Termination of Hg mining will reduce associated local emissions to the atmosphere and biosphere. Since several economically viable Hg-free alternatives exist for practically all applications of Hg, the production and use of Hg can be further reduced and all primary production of Hg other than by-production terminated.

  12. Hanawaltite, Hg1+6Hg2+[Cl,(OH)]2O3 - A new mineral from the Clear Creek claim, San Benito County, California: Description and crystal structure

    USGS Publications Warehouse

    Roberts, Andrew C.; Grice, Joel D.; Gault, Robert A.; Criddle, A.J.; Erd, Richard C.

    1996-01-01

    Hanawaltite, ideally Hg1+6Hg2+O3Cl2, is orthorhombic, Pbma (57), with unit-cell parameters refined from powder data: a=11.790(3), b=13.881(4), c=6.450(2) A??, V=1055.7(6) A??3, a:b:c =0.8494:1:0.4647, Z=4. The strongest six lines of the X-ray powder-diffraction pattern [d in A?? (I)(hkl)] are: 5.25 (80)(111), 3.164 (60)(231), 3.053 (100)(041), 2.954 (70)(141), 2.681 (50)(401), and 2.411 (50)(232,341). The mineral is an extremely rare constituent in a small prospect pit near the long-abandoned Clear Creek mercury mine, New Idria district, San Benito County, California. It was found on a single-fracture surface where it is intimately associated with calomel, native mercury, cinnabar, montroydite, and quartz. Individual crystals are subhedral to anhedral, platy to somewhat bladed, and average about 50 ??m in longest dimension. The largest known crystal is approximately 0.3??0.3 mm in size and is striated parallel [001]. Hanawaltite is opaque to translucent (on very thin edges), black to very dark brown-black in color, with a black to dark red-brown streak. Other physical properties include: metallic luster; cleavage {001} good; uneven fracture; brittle; nonfluorescent; H<5; calculated density (for the empirical formula) 9.51 g/cm3. In polished section, hanawaltite is moderately to strongly bireflectant and is pleochroic white (R1) to blue-white (R2). In reflected plane-polarized light, it is white with orange-red internal reflections in very thin grains and at grain margins. The anisotropy is strong with bright metallic blue rotation tints. Measured reflectance values, in air and in oil, are tabulated. Electron-microprobe analysis yielded Hg2O 82.46, HgO 14.27, Cl 3.33, H2O [0.34], sum [100.40], less O=Cl 0.75, total [99.65] wt. %, corresponding to Hg1+6.00H2+1.00[Cl 1.43(OH)0.57]??2.00O3.00, based on O+C1=5. After the crystal structure was determined, the original microprobe value for Hg2O, 96.2, was partitioned in a ratio of 6Hg2O:HgO and (OH) was calculated, such that Cl+(OH)=2. The hanawaltite structure consists of undulatory [Hg-Hg]2+ ribbons which roughly parallel (100). The diatomic [Hg-Hg]2+ groups have anion tails which, in turn, serve as cross linkages between dimer ribbons through [Hg2+O2Cl2] planar rhombs. The structure is compared to that of other mercury oxychlorides and each is found to have its own unique structural features. This structural diversity is attributed to the inherent ability of mercury to adopt either metallic or ionic types of bonds. The mineral name honors the late Dr. J. D. (Don) Hanawalt (1903-1987), who was a pioneer in the field of X-ray powder diffraction. ?? 1996 International Centre for Diffraction Data.

  13. Terlinguacreekite, Hg32+O2 Cl2, a new mineral species from the Perry pit, Mariposa mine, Terlingua mining district, Brewster County, Texas, U.S.A

    USGS Publications Warehouse

    Roberts, Andrew C.; Gault, Robert A.; Paar, W.H.; Cooper, M.A.; Hawthorne, F.C.; Burns, P.C.; Cisneros, S.; Foord, E.E.

    2005-01-01

    Terlinguacreekite, ideally Hg32+O2 Cl2, has a very pronounced subcell that is orthorhombic, space-group choices Imam, Imcm, Ima2 and 12cm, with unit-cell parameters refined from powder data: a 6.737(3), b 25.528(10), c 5.533(2) A??, V951.6(6) A??3, a:b:c 0.2639:1:0.2167, Z=8. The true symmetry, supercell unit-cell parameters, and details regarding the crystal structure are unknown. The strongest nine lines of the X-ray powder-diffraction pattern [d in A?? (I)(subcell hkl)] are: 5.413(30)(011), 4.063(80)(121), 3.201(50)(080), 3.023(50)(161), 2.983(60)(240), 2.858(30)(211), 2.765(50)(002), 2.518(100b)(091, 251) and 2.026(30)(242). The mineral is found in an isolated area measuring approximately 1 ?? 0.5 m in the lower level of the Perry pit, Mariposa mine, Terlingua mining district, Brewster County, Texas (type locality), as mm-sized anhedral dark orange to reddish orange crusts of variable thickness on calcite, and rarely as 0.5 mm-sized aggregates of crystals of the same color. It has also been identified at the McDermitt mine, Humboldt County, Nevada, U.S.A., where it occurs with kleinite and calomel in silicified volcanic rocks and sediments. Terlinguacreekite is a secondary phase, most probably formed from the alteration of primary cinnabar or native mercury. At Terlingua, most crusts are thin, almost cryptocrystalline, with no discernable forms, and are resinous and translucent to opaque. Crystals are up to 0.2 mm in length, subhedral, acicular to prismatic, elongation [001], with a maximum length-to-width ratio of 4:1. They are vitreous, transparent, and some crystals have brightly reflecting faces, which may be {010} and {110}. The streak is yellow, and the mineral is brittle with an uneven fracture, no observable cleavage, and is soft, nonfluorescent under both long- and short-wave ultraviolet light. D (calc.) is 9.899 g/cm3 (empirical formula). Material from the McDermitt mine is reversibly photosensitive, and turns from vivid orange to black in strong light. In reflected plane-polarized light, it is bluish grey, with very weak (in air) to distinct (in oil) bireflectance, nonpleochroic, and distinctly anisotropic, with colors masked by ubiquitous yellowish orange to orange internal reflections. Measured values of reflectance obtained in air and in oil are tabulated. Averaged results of electron-microprobe analysis give HgO 92.03, Cl 9.54, Br 1.22, sum 102.79, less O = Cl + Br 2.28, total 100.51 wt.%. The empirical formula is Hg2+3.00O2.00(Cl1.90Br0.11) ??2.01, based on O + Cl + Br = 4 atoms per formula unit. The mineral name recalls the creek that flows through the Terlingua mining district and into the Rio Grande River.

  14. Geology of the Ivanhoe Hg-Au district, northern Nevada: Influence of Miocene volcanism, lakes, and active faulting on epithermal mineralization

    USGS Publications Warehouse

    Wallace, A.R.

    2003-01-01

    The mercury-gold deposits of the Ivanhoe mining district in northern Nevada formed when middle Miocene rhyolitic volcanism and high-angle faulting disrupted a shallow lacustrine environment. Sinter and replacement mercury deposits formed at and near the paleosurface, and disseminated gold deposits and high-grade gold-silver veins formed beneath the hot spring deposits. The lacustrine environment provided abundant meteoric water; the rhyolites heated the water; and the faults, flow units, and lakebeds provided fluid pathways for the hydrothermal fluids. A shallow lake began to develop in the Ivanhoe area about 16.5 Ma. The lake progressively expanded and covered the entire area with fine-grained lacustrine sediments. Lacustrine sedimentation continued to at least 14.4 Ma, and periodic fluctuations in the size and extent of the lake may have been responses to both climate and nearby volcanism. The eruption of rhyolite and andesite flows and domes periodically disrupted the lacustrine environment and produced interfingered flows and lake sediments. The major pulse of rhyolitic volcanism took place between 15.16 ± 0.05 and 14.92 ± 0.05 Ma. High-angle faulting began in the basement about 15.2 Ma, penetrated to and disrupted the paleosurface after 15.10 ± 0.06 Ma, and largely ceased by 14.92 ± 0.05 Ma. Ground motion related to both faulting and volcanism created debris flows and soft-sediment deformation in the lakebeds. Mercury-gold mineralization was coeval with rhyolite volcanism and high-angle faulting, and it took place about 15.2 to 14.9 Ma. At and near the paleosurface, hydrothermal fluids migrated through tuffaceous sediments above relatively impermeable volcanic and Paleozoic units, creating chalcedonic, cinnabar-bearing replacement bodies and sinters. Disseminated gold was deposited in sedimentary and volcanic rocks beneath the mercury deposits, although the hydrologic path between the two ore types is unclear. Higher-grade gold-silver deposits formed in massive rhyolites and Paleozoic quartzites at deeper levels, and these mineralized zones possibly represent the feeder zones for the higher-level deposits. Fluctuations in the ground-water table locally produced hydrothermal oxidation of the near-surface mercury and disseminated gold deposits. The locus of mineralization shifted with time, moving south and east from its inception point in the west-central part of the district. Thus, although mineralization in the district took place during a span of 300,000 years, the duration of mineralization at any one place probably was much shorter. The low-sulfidation deposits of the Ivanhoe district formed at the same time and under similar conditions as those in the nearby Midas district, 15 km to the northwest, which includes the large, high-grade Ken Snyder gold-silver epithermal vein deposit. The exposures in the Ivanhoe district are interpreted to represent the near-surface example of the paleosurface that originally was present above the Midas mineralizing system. The resulting combined Ivanhoe-Midas model provides an exploration guide for epithermal deposits in similar geologic environments in northern Nevada.

  15. The Influences of Dissolved Organic Matter on Mercury Biogeochemistry in Mesocosm Experiments in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Aiken, G. R.; Gilmour, C. A.; Krabbenhoft, D. P.; Orem, W.

    2007-12-01

    Interactions of mercury (Hg) with dissolved organic matter (DOM) play important roles in controlling reactivity, bioavailability and transport of Hg in aquatic systems. Laboratory experiments using a variety of organic matter isolates from surface waters in the Florida Everglades indicate that DOM binds Hg very strongly and is the dominant ligand for Hg in the absence of sulfide. These experiments have also shown that the presence of DOM influences the geochemical behavior of cinnabar (HgS) through the stabilization of nanocolloidal HgS resulting in relatively high Hg concentrations under supersaturated conditions with respect to HgS, a common condition in waters containing measurable sulfide concentrations. In this paper, the results of in-situ mesocosm experiments designed to directly measure the effects of DOM -Hg interactions on Hg biogeochemistry will be described. In these experiments, mesocosms (wetland enclosures), located in the central Everglades region of Water Conservation Area 3A (WCA 3A15), were amended with isotopically enriched Hg (200Hg, 202Hg), sulfate (SO4=) and the hydrophobic organic acid (HPOA) fraction of DOM from a site (F1) in the eutrophic northern Everglades. The use of stable isotope spikes in these studies allowed us to examine the delivery of Hg to surface soils (which are the predominant zones of methylation); partitioning of Hg and MeHg among phases (which impacts bioavailability); net MeHg production; loss of Hg and MeHg through photodemethylation, reduction and volatization; and bioaccumulation. The F1 HPOA isolate, obtained using XAD resins, was more aromatic, had a greater specific ultra-violet absorbance and had previously been shown to be more reactive with Hg than the DOM present at the 3A15 site. The F1 HPOA isolate formed strong DOM-Hg complexes (KDOM') = 1023.2 L kg-1 at pH = 7.0 and I = 0.1) and effectively inhibited the precipitation of HgS in laboratory experiments. Select mesocosms were amended with either F1-HPOA or SO4= resulting in a range of concentrations for each constituent. For the DOM amended mesocosms, DOC concentrations increased from 50-100% and the overall SUVA increased from 2.9 to 3.7 L mg C-1 m-1 relative to control mesocosms, indicating that both the concentration and overall reactivity of the DOM in the amended mesocosms had been altered substantially. In these mesocosms, the concentrations of both ambient and isotopically enriched dissolved Hg increased significantly compared to controls. Greater concentrations of both dissolved ambient and labeled methylmercury were also observed in the DOM amended mesocosms indicating that the added DOM increased Hg bioavailabilty of both Hg pools for methylation. In addition, DOM shielded Hg and MeHg from photodemethylation and volatilization, however, it inhibited subsequent MeHg bioaccumulation. Overall, the addition of DOM resulted in increased concentrations of labeled methylmercury comparable to those measured in mesocosms amended with SO4= suggesting that DOM is an important constituent influencing the methylation of Hg. This effect is likely due to increased concentrations of dissolved Hg in the DOM amended mesocosms.

  16. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China

    USGS Publications Warehouse

    Mao, J.; Qiu, Yumin; Goldfarb, R.J.; Zhang, Z.; Garwin, S.; Fengshou, R.

    2002-01-01

    Gold deposits of the western Qinling belt occur within the western part of the Qinling-Dabie-Sulu orogen, which is located between the Precambrian North China and Yangtze cratons and east of the Songpan-Ganzi basin. The early Paleozoic to early Mesozoic orogen can be divided into northern, central, and southern zones, separated by the Shangdan and Lixian-Shanyang thrust fault systems. The northern zone consists of an early Paleozoic arc accreted to the North China craton by ca. 450 Ma. The central zone, which contains numerous orogenic gold deposits, is dominated by clastic rocks formed in a late Paleozoic basin between the converging cratonic blocks. The southern zone is characterized by the easternmost exposure of Triassic sedimentary rocks of the Songpan-Ganzi basin. These Early to Late Triassic turbidities, in part calcareous, of the immense Songpan-Ganzi basin also border the western Qinling belt to the west. Carlinlike gold deposits are abundant (1) along a westward extension of the southern zone defined by a window of early Paleozoic clastic rocks extending into the basin, and (2) within the easternmost margin of the basinal rocks to the south of the extension, and in adjacent cover rocks of the Yangtze craton. Triassic and Early Jurassic synkinematic granitoids are widespread across the western Qinling belt, as well as in the Songpan-Ganzi basin. Orogenic lode gold deposits along brittle-ductile shear zones occur within greenschist-facies, highly deformed, Devonian and younger clastic rocks of the central zone. Mainly coarse-grained gold, along with pyrite, pyrrhotite, arsenopyrite, and minor base metal sulfides, occur in networks of quartz veinlets, brecciated wall rock, and are dissminated in altered wall rock. Isotopic dates suggest that the deposits formed during the Late Triassic to Middle Jurassic as the leading edge of the Yangtze craton was thrust beneath rocks of the western Qinling belt. Many gold-bearing placers are distributed along the river systems that flow south from the lode-bearing central zone. Carlin-like gold deposits have only been identified during the last decade in the southern zone of the western Qinling and in the northeastern corner of the Songpan-Ganzi basin. The deposits mainly contain micron-diameter gold in arsenical pyrite; are characterized by the common occurence of cinnabar, stibnite, realgar, and orpiment; exhibit strong silicification, carbonatization, pyritization, and decalcification dissolution textures; and are structurally controlled. The lack of reactive host lithologies may have prevented development of large (> 100 tones of gold), stratigraphically-controlled orebodies, which are typical of the Carlin deposits in the western USA. These deposits are hosted by Triassic turbidities and shallow-water carbonates, and an early Paleozoic inlier in the Songpan-Ganzi basin that extends in an east-west belt for about 300 km. Rather than true "Carlin" deposits, these Carlin-like deposits may be some type of shallow-crustal (i.e., epithermal) hybrid with features intermediate to Nevada-style Carlin deposits and the orogenic gold deposits to the immediate north. These Carlin-like deposits also overlap in age with the early Mesozoic orogenic gold deposits and, therefore, also formed during the final stages of collision between the cratons and intermediate basin closure.

  17. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Zheng, Youye; Pirajno, Franco; McCuaig, T. Campbell; Yu, Miao; Xia, Shenlan; Song, Qingjie; Chang, Huifang

    2018-03-01

    Several Au, Sb, Sb-Au, Pb-Zn, and Sb-Pb-Zn-Ag deposits are present throughout the North Himalaya in southern Tibet, China. The largest Sb-Pb-Zn-Ag deposit is Zhaxikang (18 Mt at 0.6 wt% Sb, 2.0 wt% Pb, 3.5 wt% Zn, and 78 g/t Ag). Zhaxikang veins are hosted within N-S trending faults, which crosscut the Early-Middle Jurassic Ridang Formation consisting of shale interbedded with sandstone and limestone deposited on a passive continental margin. Ore paragenesis indicates that Zhaxikang mineralization occurred in two main phases composed of six total stages. The initial phase was characterized by assemblages of fine-grained Mn-Fe carbonate + arsenopyrite + pyrite + sphalerite (stage 1), followed by relatively coarse-grained Mn-Fe carbonate + Fe-rich sphalerite + galena + pyrite (stage 2). The second phase was marked by assemblages of quartz + pyrite + Fe-poor sphalerite and Ag-rich galena + tetrahedrite + sericite (stage 3), quartz + Sb-Pb sulfosalt minerals mainly composed of boulangerite and jamesonite (stage 4), quartz + stibnite ± cinnabar (stage 5), and quartz ± calcite (stage 6). Sulfides of stage 2 have δ34SV-CDT of 8.4-12.0‰, 206Pb/204Pb ratios of 19.648 to 19.659, 207Pb/204Pb ratios of 15.788 to 15.812, and 208Pb/204Pb ratios of 40.035 to 40.153. Sulfides of stage 3 have similar δ34SV-CDT of 6.1-11.2‰ and relatively more radiogenic lead isotopes (206Pb/204Pb = 19.683-19.792). Stage 4 Sb-Pb sulfosalt minerals have δ34SV-CDT of 5.0-7.2‰ and even more radiogenic lead (206Pb/204Pb = 19.811-19.981). By contrast, stibnite of stage 5 has δ34SV-CDT of 4.5-7.8‰ and less radiogenic lead (206Pb/204Pb = 18.880-18.974). Taken together with the geological observations that the Pb-Zn-bearing Mn-Fe carbonate veins were crosscut by various types of quartz veins, sphalerite and galena of stage 2 underwent dissolution and remobilization, and that Sb-Pb(-Fe) sulfosalts formed at the expense of Pb from stage 2 galena and of Fe from stage 2 sphalerite, we argue that the early Pb-Zn veins were overprinted by later Sb-rich fluids. Stage 2 fluids were likely acidic and oxidized and leached lead from high-grade metamorphic rocks of the Greater Himalayan crystalline complex (GHC) and sulfur from reduced rocks, such as slate of the Ridang Formation, along N-S trending faults, leading to precipitation of Pb-Zn sulfides and Mn-Fe carbonate and formation of solution collapse breccias. Later Sb-rich fluids leached Pb from the GHC and the pre-existing sulfides and deposited Fe-poor sphalerite, Ag-rich galena, tetrahedrite, Sb-Pb sulfosalts, and stibnite in quartz veins that cut pre-existing Pb-Zn-bearing Mn-Fe carbonate veins. The Sb-rich fluids also likely leached Pb from Early Cretaceous gabbro and formed stibnite at shallow levels where early Pb-Zn-bearing Mn-Fe carbonate veins are absent. A sericite 40Ar-39Ar plateau age of 17.9 ± 0.5 Ma from stage 3 veins represents the timing of the onset of stage 3 mineralization.

  18. Geology of the Anlauf and Drain Quadrangles, Douglas and Lane Counties, Oregon

    USGS Publications Warehouse

    Hoover, Linn

    1963-01-01

    The Anlauf and Drain quadrangles, Oregon, lie about 20 miles south of the city of Eugene, in Douglas and Lane Counties. They constitute an area of about 435 square miles that includes parts of both the Cascade Range and Coast Range physiographic provinces. A sequence of lower Tertiary sedimentary and volcanic rocks with a maximum thickness of about 20,000 feet is exposed in the area. The oldest part of this sequence is the Umpqua formation of early Eocene age consisting of a lower member of vesicular and amygdaloidal olivine basalt flows, a middle member of water-laid vitric and lapilli crystal tuff, and an upper member of interbedded fissile siltstone and basaltic sandstone which contains a 300-foot tongue of massive to thick-bedded basaltic sandstone near its top. These rocks are predominantly of marine origin, although the general absence of pillow structures which are common in basaltic lavas of equivalent age elsewhere in the Coast Ranges suggests that some of the flows were poured out subaerially. The overlying tuff member, however, contains Foraminifera and in places has a lime content slightly in excess of 10 percent. Mollusca and Foraminifera indicate that the Umpqua formation is of early Eocene age and is a correlative of the Capay formation of California. The Tyee formation of middle Eocene age overlies the Umpqua formation and consists of more than 5,000 feet of rhythmically deposited sandstone and siltstone in beds 2 to 30 feet thick. The basal part of each bed consists of medium- to coarse-grained sandstone that grades upward into fine-grained sand- stone and siltstone. The principal constituents of the sandstone are quartz, partly a1tered feldspar, mica, clay, and fragments of basalt, fine-grained argillaceous rocks, and mica schist. Other detrital minerals include epidote, garnet, blue-green hornblende, tourmaline, and zoisite. The depositional environment of the Tyee formation is poorly known, although the rhythmic-graded bedding suggests turbidity currents. About 500 feet of sandstone and siltstone assigned to the Spencer formation of late Eocene age unconformably overlies the Tyee formation. The Spencer formation, better exposed in the east-central part of the Coast Ranges, contains marine fossils but also has thin impure coal beds, indicative of strand-line accumulation. The sandstone in the Spencer formation is very similar to that in the Tyee formation, from which it was probably derived. The Fisher formation contains about 5,500 feet of nonmarine pyroclastic and volcanic rocks that are related to the volcanic rock sequences of the western Cascade Range. The formation is characterized by a wide variety of rock types, including conglomerate, tuffaceous sandstone and siltstone, vitric and crystal tuff, waterlaid and mudflow breccia, and andesitic lava flows. These rocks gen- erally occur in lenticular beds that have little stratigraphic significance. The rocks apparently accumulated on a plain slightly above sea level that was subjected alternately to fiooding by running water and to desiccation. Fossil leaves from the lowermost part of the Fisher formation are of late Eocene age; the upper part of the formation is of early, and possibly niiddle, Oligocene age. A few exposures of olivine basalt were mapped in the extreme northern part of the Anlauf quadrangle. The flows, more extensively exposed to the north, overlie the Fisher formation, and, therefore, are tentatively considered to be post-Oligocene in age. All these stratigraphic units, but principally the Fisher formation, are cut by dikes, sills, and stocklike bodies of 'porphyritic basalt, diabase, and norite. Contemporaneously with the emplacement of most of these rocks, in late Miocene (?) time, hydrothermal solutions locailly altered the sedimentary and extrusive igneous racks and deposited cinnabar and other sulfide minerals, carbonates, and silica. Three parallel nartheastward-trending

Top