Science.gov

Sample records for circadian pacemaker neurons

  1. Circadian Activators Are Expressed Days before They Initiate Clock Function in Late Pacemaker Neurons from Drosophila.

    PubMed

    Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E

    2015-06-01

    Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis.

  2. Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons.

    PubMed

    Lee, Youngseok; Montell, Craig

    2013-04-17

    Most animals from flies to humans count on circadian clocks to synchronize their physiology and behaviors. Daily light cycles are well known environmental cues for setting circadian rhythms. Warmer and cooler temperatures that mimic day and night are also effective in entraining circadian activity in most animals. Even vertebrate organisms can be induced to show circadian responses through exposure to temperature cycles. In poikilothermic animals such as Drosophila, temperature differences of only 2-3°C are sufficient to synchronize locomotor rhythms. However, the molecular sensors that participate in temperature regulation of circadian activity in fruit flies or other animals are enigmatic. It is also unclear whether such detectors are limited to the periphery or may be in the central brain. Here, we showed that Drosophila TRPA1 (transient receptor potential cation channel A1) was necessary for normal activity patterns during temperature cycles. The trpA1 gene was expressed in a subset of pacemaker neurons in the central brain. In response to temperature entrainment, loss of trpA1 impaired activity, and altered expression of the circadian clock protein period (Per) in a subset of pacemaker neurons. These findings underscore a role for a thermoTRP in temperature regulation that extends beyond avoidance of noxious or suboptimal temperatures. PMID:23595730

  3. Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons.

    PubMed

    Lee, Youngseok; Montell, Craig

    2013-04-17

    Most animals from flies to humans count on circadian clocks to synchronize their physiology and behaviors. Daily light cycles are well known environmental cues for setting circadian rhythms. Warmer and cooler temperatures that mimic day and night are also effective in entraining circadian activity in most animals. Even vertebrate organisms can be induced to show circadian responses through exposure to temperature cycles. In poikilothermic animals such as Drosophila, temperature differences of only 2-3°C are sufficient to synchronize locomotor rhythms. However, the molecular sensors that participate in temperature regulation of circadian activity in fruit flies or other animals are enigmatic. It is also unclear whether such detectors are limited to the periphery or may be in the central brain. Here, we showed that Drosophila TRPA1 (transient receptor potential cation channel A1) was necessary for normal activity patterns during temperature cycles. The trpA1 gene was expressed in a subset of pacemaker neurons in the central brain. In response to temperature entrainment, loss of trpA1 impaired activity, and altered expression of the circadian clock protein period (Per) in a subset of pacemaker neurons. These findings underscore a role for a thermoTRP in temperature regulation that extends beyond avoidance of noxious or suboptimal temperatures.

  4. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  5. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.

    PubMed

    Lelito, Katherine R; Shafer, Orie T

    2012-04-01

    The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.

  6. Electrical Hyperexcitation of Lateral Ventral Pacemaker Neurons Desynchronizes Downstream Circadian Oscillators in the Fly Circadian Circuit and Induces Multiple Behavioral Periods

    PubMed Central

    Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.

    2008-01-01

    Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545

  7. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  8. Caffeine increases light responsiveness of the mouse circadian pacemaker.

    PubMed

    van Diepen, Hester C; Lucassen, Eliane A; Yasenkov, Roman; Groenen, Inske; Ijzerman, Adriaan P; Meijer, Johanna H; Deboer, Tom

    2014-11-01

    Caffeine is the most commonly used psychoactive stimulant worldwide. It reduces sleep and sleepiness by blocking access to the adenosine receptor. The level of adenosine increases during sleep deprivation, and is thought to induce sleepiness and initiate sleep. Light-induced phase shifts of the rest-activity circadian rhythms are mediated by light-responsive neurons of the suprachiasmatic nucleus (SCN) of the hypothalamus, where the circadian clock of mammals resides. Previous studies have shown that sleep deprivation reduces circadian clock phase-shifting capacity and decreases SCN neuronal activity. In addition, application of adenosine agonists and antagonists mimics and blocks, respectively, the effect of sleep deprivation on light-induced phase shifts in behaviour, suggesting a role for adenosine. In the present study, we examined the role of sleep deprivation in and the effect of caffeine on light responsiveness of the SCN. We performed in vivo electrical activity recordings of the SCN in freely moving mice, and showed that the sustained response to light of SCN neuronal activity was attenuated after 6 h of sleep deprivation prior to light exposure. Subsequent intraperitoneal application of caffeine was able to restore the response to light. Finally, we performed behavioural recordings in constant conditions, and found enhanced period lengthening during chronic treatment with caffeine in drinking water in constant light conditions. The data suggest that increased homeostatic sleep pressure changes circadian pacemaker functioning by reducing SCN neuronal responsiveness to light. The electrophysiological and behavioural data together provide evidence that caffeine enhances clock sensitivity to light.

  9. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.

    PubMed

    Webb, Alexis B; Angelo, Nikhil; Huettner, James E; Herzog, Erik D

    2009-09-22

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm(2) eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling. PMID:19805326

  10. Physiological effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  11. Circadian rhythms in neuronal activity propagate through output circuits

    PubMed Central

    Cavey, Matthieu; Collins, Ben; Bertet, Claire; Blau, Justin

    2016-01-01

    24hr rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila. We found that Leucokinin neuropeptide (LK) and its receptor (LK-R) are required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK and LK-R expressing neurons. We also found pacemaker neuron-dependent activity rhythms in DH44-expressing neurons, a second circadian output pathway. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms. PMID:26928065

  12. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period.

    PubMed

    Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi

    2016-09-26

    As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. PMID:27568590

  13. Pacemaking Property of RVLM Presympathetic Neurons

    PubMed Central

    Accorsi-Mendonça, Daniela; da Silva, Melina P.; Souza, George M. P. R.; Lima-Silveira, Ludmila; Karlen-Amarante, Marlusa; Amorim, Mateus R.; Almado, Carlos E. L.; Moraes, Davi J. A.; Machado, Benedito H.

    2016-01-01

    Despite several studies describing the electrophysiological properties of RVLM presympathetic neurons, there is no consensus in the literature about their pacemaking property, mainly due to different experimental approaches used for recordings of neuronal intrinsic properties. In this review we are presenting a historical retrospective about the pioneering studies and their controversies on the intrinsic electrophysiological property of auto-depolarization of these cells in conjunction with recent studies from our laboratory documenting that RVLM presympathetic neurons present pacemaking capacity. We also discuss whether increased sympathetic activity observed in animal models of neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic electrophysiological properties of these cells or due to changes in modulatory inputs from neurons of the respiratory network. We also highlight the key role of INaP as the major current contributing to the pacemaking property of RVLM presympathetic neurons. PMID:27713705

  14. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  15. Phase shifting two coupled circadian pacemakers - Implications for jet lag

    NASA Technical Reports Server (NTRS)

    Gander, P. H.; Kronauer, R. E.; Graeber, R. C.

    1985-01-01

    Two Van der Pol oscillators with reciprocal linear velocity coupling are utilized to model the response of the human circadian timing system to abrupt displacements of the environmental time cues (zeitgebers). The core temperature rhythm and sleep-wake cycle simulated by the model are examined. The relationship between the masking of circadian rhythms by environmental variables and behavioral and physiological events and the rates of resynchronization is studied. The effects of zeitgeber phase shifts and zeitgeber strength on the resynchronization rates are analyzed. The influence of intrinsic pacemakers periods and coupling strength on resynchronization are investigated. The simulated data reveal that: resynchronization after a time zone shift depends on the magnitude of the shift; the time of day of the shift has little influence on resynchronization; the strength of zeitgebers affects the rate and direction of the resynchronization; the intrinsic pacemaker periods have a significant effect on resynchronization; and increasing the coupling between the oscillators results in an increase in the rate of resynchronization. The model data are compared to transmeridian flight studies data and similar resynchronization patterns are observed.

  16. Asynchronous response of coupled pacemaker neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2009-01-01

    We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input. PMID:19257636

  17. Putative Pacemakers in the Eyestalk and Brain of the Crayfish Procambarus clarkii Show Circadian Oscillations in Levels of mRNA for Crustacean Hyperglycemic Hormone

    PubMed Central

    Nelson-Mora, Janikua; Prieto-Sagredo, Julio; Loredo-Ranjel, Rosaura; Fanjul-Moles, María Luisa

    2013-01-01

    Crustacean hyperglycemic hormone (CHH) synthesizing cells in the optic lobe, one of the pacemakers of the circadian system, have been shown to be present in crayfish. However, the presence of CHH in the central brain, another putative pacemaker of the multi-oscillatory circadian system, of this decapod and its circadian transcription in the optic lobe and brain have yet to be explored. Therefore, using qualitative and quantitative PCR, we isolated and cloned a CHH mRNA fragment from two putative pacemakers of the multi-oscillatory circadian system of Procambarus clarkii, the optic lobe and the central brain. This CHH transcript synchronized to daily light-dark cycles and oscillated under dark, constant conditions demonstrating statistically significant daily and circadian rhythms in both structures. Furthermore, to investigate the presence of the peptide in the central brain of this decapod, we used immunohistochemical methods. Confocal microscopy revealed the presence of CHH-IR in fibers and cells of the protocerebral and tritocerebal clusters and neuropiles, particularly in some neurons located in clusters 6, 14, 15 and 17. The presence of CHH positive neurons in structures of P. clarkii where clock proteins have been reported suggests a relationship between the circadian clockwork and CHH. This work provides new insights into the circadian regulation of CHH, a pleiotropic hormone that regulates many physiological processes such as glucose metabolism and osmoregulatory responses to stress. PMID:24391849

  18. Decreased human circadian pacemaker influence after 100 days in space: a case study

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kennedy, K. S.; Rose, L. R.; Linenger, J. M.

    2001-01-01

    OBJECTIVE: The objectives of this study were (1) to assess the circadian rhythms and sleep of a healthy, 42-year-old male astronaut experiencing microgravity (weightlessness) for nearly 5 months while living aboard Space Station Mir as it orbited Earth and (2) to determine the effects of prolonged space flight on the endogenous circadian pacemaker, as indicated by oral temperature and subjective alertness rhythms, and their ramifications for sleep, alertness, and performance. METHODS: For three 12- to 14-day blocks of time (spread throughout the mission), oral temperatures were taken and subjective alertness was self-rated five times per day. Sleep diaries and performance tests were also completed daily during each block. RESULTS: Examination of the subject's circadian alertness and oral temperature rhythms suggested that the endogenous circadian pacemaker seemed to function quite well up to 90 days in space. Thereafter (on days 110-122), the influence of the endogenous circadian pacemaker on oral temperature and subjective alertness circadian rhythms was considerably weakened, with consequent disruptions in sleep. CONCLUSIONS: Space missions lasting more than 3 months might result in diminished circadian pacemaker influence in astronauts, leading to eventual sleep problems.

  19. Alterations induced by chronic lead exposure on the cells of circadian pacemaker of developing rats

    PubMed Central

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Rojas, Patricia; Chávez-Saldaña, Margarita; Pérez, Oscar Gutiérrez; Montes, Sergio; Ríos, Camilo

    2011-01-01

    Lead (Pb) exposure alters the temporal organization of several physiological and behavioural processes in which the suprachiasmatic nucleus (SCN) of the hypothalamus plays a fundamental role. In this study, we evaluated the effects of chronic early Pb exposure (CePbe) on the morphology, cellular density and relative optical density (OD) in the cells of the SCN of male rats. Female Wistar rats were exposed during gestation and lactation to a Pb solution containing 320 ppm of Pb acetate through drinking water. After weaning, the pups were maintained with the same drinking water until sacrificed at 90 days of age. Pb levels in the blood, hypothalamus, hippocampus and prefrontal cortex were significantly increased in the experimental group. Chronic early Pb exposure induced a significant increase in the minor and major axes and somatic area of vasoactive intestinal polypeptide (VIP)- and vasopressin (VP)-immunoreactive neurons. The density of VIP-, VP- and glial fibrillary acidic protein (GFAP)-immunoreactive cells showed a significant decrease in the experimental group. OD analysis showed a significant increase in VIP neurons of the experimental group. The results showed that CePbe induced alterations in the cells of the SCN, as evidenced by modifications in soma morphology, cellular density and OD in circadian pacemaker cells. These findings provide a morphological and cellular basis for deficits in circadian rhythms documented in Pb-exposed animals. PMID:21324006

  20. Cannabinoids excite circadian clock neurons.

    PubMed

    Acuna-Goycolea, Claudio; Obrietan, Karl; van den Pol, Anthony N

    2010-07-28

    Cannabinoids, the primary active agent in drugs of abuse such as marijuana and hashish, tend to generate a distorted sense of time. Here we study the effect of cannabinoids on the brain's circadian clock, the suprachiasmatic nucleus (SCN), using patch clamp and cell-attached electrophysiological recordings, RT-PCR, immunocytochemistry, and behavioral analysis. The SCN showed strong expression of the cannabinoid receptor CB1R, as detected with RT-PCR. SCN neurons, including those using GABA as a transmitter, and axons within the SCN, expressed CB1R immunoreactivity. Behaviorally, cannabinoids did not alter the endogenous free-running circadian rhythm in the mouse brain, but did attenuate the ability of the circadian clock to entrain to light zeitgebers. In the absence of light, infusion of the CB1R antagonist AM251 caused a modest phase shift, suggesting endocannabinoid modulation of clock timing. Interestingly, cannabinoids had no effect on glutamate release from the retinohypothalamic projection, suggesting a direct action of cannabinoids on the retinohypothalamic tract was unlikely to explain the inhibition of the phase shift. Within the SCN, cannabinoids were excitatory by a mechanism based on presynaptic CB1R attenuation of axonal GABA release. These data raise the possibility that the time dissociation described by cannabinoid users may result in part from altered circadian clock function and/or entrainment to environmental time cues. PMID:20668190

  1. Circadian neuron feedback controls the Drosophila sleep--activity profile.

    PubMed

    Guo, Fang; Yu, Junwei; Jung, Hyung Jae; Abruzzi, Katharine C; Luo, Weifei; Griffith, Leslie C; Rosbash, Michael

    2016-08-18

    Little is known about the ability of Drosophila circadian neurons to promote sleep. Here we show, using optogenetic manipulation and video recording, that a subset of dorsal clock neurons (DN1s) are potent sleep-promoting cells that release glutamate to directly inhibit key pacemaker neurons. The pacemakers promote morning arousal by activating these DN1s, implying that a late-day feedback circuit drives midday siesta and night-time sleep. To investigate more plastic aspects of the sleep program, we used a calcium assay to monitor and compare the real-time activity of DN1 neurons in freely behaving males and females. Our results revealed that DN1 neurons were more active in males than in females, consistent with the finding that male flies sleep more during the day. DN1 activity is also enhanced by elevated temperature, consistent with the ability of higher temperatures to increase sleep. These new approaches indicate that DN1s have a major effect on the fly sleep-wake profile and integrate environmental information with the circadian molecular program. PMID:27479324

  2. Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Dijk, D. J.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    The sensitivity of the human circadian system to light has been the subject of considerable debate. Using computer simulations of a recent quantitative model for the effects of light on the human circadian system, we investigated these effects of light during different experimental protocols. The results of the simulations indicate that the nonuniform distribution over the circadian cycle of exposure to ordinary room light seen in classical free-run studies, in which subjects select their exposure to light and darkness, can result in an observed period of approximately 25 h, even when the intrinsic period of the subject's endogenous circadian pacemaker is much closer to 24 h. Other simulation results suggest that accurate assessment of the true intrinsic period of the human circadian pacemaker requires low ambient light intensities (approximately 10-15 lx) during scheduled wake episodes, desynchrony of the imposed light-dark cycle from the endogenous circadian oscillator, and a study length of at least 20 days. Although these simulations await further experimental substantiation, they highlight the sensitivity to light of the human circadian system and the potential confounding influence of light on the assessment of the intrinsic period of the circadian pacemaker.

  3. The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

    PubMed Central

    Yaniv, Yael; Lakatta, Edward G.

    2015-01-01

    Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart’s pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system. [BMB Reports 2015; 48(12): 677-684] PMID:25999176

  4. Circadian pacemaker in the suprachiasmatic nuclei of teleost fish revealed by rhythmic period2 expression.

    PubMed

    Watanabe, Nanako; Itoh, Kae; Mogi, Makoto; Fujinami, Yuichiro; Shimizu, Daisuke; Hashimoto, Hiroshi; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2012-09-01

    In mammals, the role of the suprachiasmatic nucleus (SCN) as the primary circadian clock that coordinates the biological rhythms of peripheral oscillators is well known. However, in teleosts, it remains unclear whether the SCN also functions as a circadian pacemaker. We used in situ hybridization (ISH) techniques to demonstrate that the molecular clock gene, per2, is expressed in the SCN of flounder (Paralichthys olivaceus) larvae during the day and down-regulated at night, demonstrating that a circadian pacemaker exists in the SCN of this teleost. The finding that per2 expression in the SCN was also observed in the amberjack (Seriola dumerili), but not in medaka (Oryzias latipes), implies that interspecific variation exists in the extent to which the SCN controls the circadian rhythms of fish species, presumably reflecting their lifestyle. Rhythmic per2 expression was also detected in the pineal gland and pituitary, and aperiodic per2 expression was observed in the habenula, which is known to exhibit circadian rhythms in rodents. Since the ontogeny of per2 expression in the brain of early flounder larvae can be monitored by whole mount ISH, it is possible to investigate the effects of drugs and environmental conditions on the functional development of circadian clocks in the brain of fish larvae. In addition, flounder would be a good model for understanding the rhythmicity of marine fish. Our findings open a new frontier for investigating the role of the SCN in teleost circadian rhythms. PMID:22732079

  5. Dynamic resetting of the human circadian pacemaker by intermittent bright light

    NASA Technical Reports Server (NTRS)

    Rimmer, D. W.; Boivin, D. B.; Shanahan, T. L.; Kronauer, R. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    In humans, experimental studies of circadian resetting typically have been limited to lengthy episodes of exposure to continuous bright light. To evaluate the time course of the human endogenous circadian pacemaker's resetting response to brief episodes of intermittent bright light, we studied 16 subjects assigned to one of two intermittent lighting conditions in which the subjects were presented with intermittent episodes of bright-light exposure at 25- or 90-min intervals. The effective duration of bright-light exposure was 31% or 63% compared with a continuous 5-h bright-light stimulus. Exposure to intermittent bright light elicited almost as great a resetting response compared with 5 h of continuous bright light. We conclude that exposure to intermittent bright light produces robust phase shifts of the endogenous circadian pacemaker. Furthermore, these results demonstrate that humans, like other species, exhibit an enhanced sensitivity to the initial minutes of bright-light exposure.

  6. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  7. Influence of photoperiodic history on clock genes and the circadian pacemaker in the rat retina.

    PubMed

    Rohleder, Nils; Langer, Christina; Maus, Christian; Spiwoks-Becker, Isabella; Emser, Angela; Engel, Lydia; Spessert, Rainer

    2006-01-01

    The influence of seasonal lighting conditions on expression of clock genes and the circadian pacemaker was investigated in the rat retina. For this purpose, the 24-h profiles of nine clock genes (bmal1, clock, per1, per2, per3, dec1, dec2, cry1 and cry 2) and the arylalkylamine N-acetyltransferase gene as an indicator of the circadian pacemaker output were compared between light-dark periods of 8 : 16 and 16 : 8 h. The photoperiod influenced the daily patterns of the amount of transcript for per1, per3, dec2 and arylalkylamine N-acetyltransferase. This indicates that photoperiodic information modulates clock gene expression in addition to the circadian pacemaker of the retina. Under constant darkness, photoperiod-dependent changes in the daily profile of the level of transcript persisted for the arylalkylamine N-acetyltransferase gene but not for any of the clock genes. Hence, quantitative expression of each clock gene is influenced by the photoperiod only under the acute light-dark cycle, whereas the pacemaker is capable of storing photoperiodic information from past cycles.

  8. Stability, precision, and near-24-hour period of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Duffy, J. F.; Shanahan, T. L.; Brown, E. N.; Mitchell, J. F.; Rimmer, D. W.; Ronda, J. M.; Silva, E. J.; Allan, J. S.; Emens, J. S.; Dijk, D. J.; Kronauer, R. E.

    1999-01-01

    Regulation of circadian period in humans was thought to differ from that of other species, with the period of the activity rhythm reported to range from 13 to 65 hours (median 25.2 hours) and the period of the body temperature rhythm reported to average 25 hours in adulthood, and to shorten with age. However, those observations were based on studies of humans exposed to light levels sufficient to confound circadian period estimation. Precise estimation of the periods of the endogenous circadian rhythms of melatonin, core body temperature, and cortisol in healthy young and older individuals living in carefully controlled lighting conditions has now revealed that the intrinsic period of the human circadian pacemaker averages 24.18 hours in both age groups, with a tight distribution consistent with other species. These findings have important implications for understanding the pathophysiology of disrupted sleep in older people.

  9. Glial fibrillary acidic protein (GFAP) shows circadian oscillations in crayfish Procambarus clarkii putative pacemakers.

    PubMed

    Rodríguez-Muñoz, María de la Paz; Escamilla-Chimal, Elsa G

    2015-01-01

    Although several studies of glia have examined glial fibrillary acid protein (GFAP) and its relationship to the circadian rhythms of different organisms, they have not explored the daily GFAP oscillations in the putative pacemakers of the crayfish Procambarus clarkii or in other crustaceans. In this study we investigated the daily variations in GFAP concentrations in the eyestalk and brain, which are considered to be putative pacemakers in adult P. clarkii. In both structures, the glial GFAP was quantified using the indirect enzyme-linked immunosorbent assay (ELISA), and double labeling immunofluorescence was used to detect it and its co-localization with protein Period (PER), an important component of the circadian clock, in various regions of both structures. The ELISA results were analyzed using Cosinor and one-way ANOVA with Bonferroni and Scheffé's post hoc tests. The results of this analysis showed that the GFAP levels present circadian oscillations in both structures. Moreover, GFAP was localized in different structures of the eyestalk and brain; however, co-localization with PER occurred only in the lamina ganglionaris, specifically in the cartridges of the eyestalk and in some of the cluster 9 brain cells. These results suggest that as in other invertebrates and vertebrates, glial cells could be involved in the circadian system of P. clarkii; however, thus far we cannot know whether the glial cells are only effectors, participate in afferent pathways, or are part of the circadian clock.

  10. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Dijk, D. J.; Kronauer, R.; Brown, E.; Czeisler, C.

    2000-01-01

    Ocular exposure to early morning room light can significantly advance the timing of the human circadian pacemaker. The resetting response to such light has a non-linear relationship to illuminance. The dose-response relationship of the human circadian pacemaker to late evening light of dim to moderate intensity has not been well established. Twenty-three healthy young male and female volunteers took part in a 9 day protocol in which a single experimental light exposure6.5 h in duration was given in the early biological night. The effects of the light exposure on the endogenous circadian phase of the melatonin rhythm and the acute effects of the light exposure on plasma melatonin concentration were calculated. We demonstrate that humans are highly responsive to the phase-delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effects of light on plasma melatonin follow a logistic dose-response curve, as do many circadian responses to light in mammals. Contrary to expectations, we found that half of the maximal phase-delaying response achieved in response to a single episode of evening bright light ( approximately 9000 lux (lx)) can be obtained with just over 1 % of this light (dim room light of approximately 100 lx). The same held true for the acute suppressive effects of light on plasma melatonin concentrations. This indicates that even small changes in ordinary light exposure during the late evening hours can significantly affect both plasma melatonin concentrations and the entrained phase of the human circadian pacemaker.

  11. Association of sleep-wake habits in older people with changes in output of circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Dumont, M.; Duffy, J. F.; Steinberg, J. D.; Richardson, G. S.; Brown, E. N.; Sanchez, R.; Rios, C. D.; Ronda, J. M.

    1992-01-01

    Many elderly people complain of disturbed sleep patterns but there is not evidence that the need to sleep decreases with age; it seems rather that the timing and consolidation of sleep change. We tried to find out whether there is a concurrent change in the output of the circadian pacemaker with age. The phase and amplitude of the pacemaker's output were assessed by continuous measurement of the core body temperature during 40 h of sustained wakefulness under constant behavioural and environmental conditions. 27 young men (18-31 years) were compared with 21 older people (65-85 years; 11 men, 10 women); all were healthy and without sleep complaints. The mean amplitude of the endogenous circadian temperature oscillation (ECA) was 40% greater in young men than in the older group. Older men had a lower mean temperature ECA than older women. The minimum of the endogenous phase of the circadian temperature oscillation (ECP) occurred 1 h 52 min earlier in the older than in the young group. Customary bedtimes and waketimes were also earlier in the older group, as was their daily alertness peak. There was a close correlation between habitual waketime and temperature ECP in young men, which may lose precision with age, especially among women. These findings provide evidence for systematic age-related changes in the output of the human circadian pacemaker. We suggest that these changes may underlie the common complaints of sleep disturbance among elderly people. These changes could reflect the observed age-related deterioration of the hypothalamic nuclei that drive mammalian circadian rhythms.

  12. Cell culture models for oscillator and pacemaker function: recipes for dishes with circadian clocks?

    PubMed

    Earnest, David J; Cassone, Vincent M

    2005-01-01

    Primary cell cultures of avian pinealocytes and the mammalian suprachiasmatic nucleus (SCN), immortalized cell lines derived from the SCN (SCN2.2), and fibroblasts derived from mice and rats have been employed as in vitro models to study the cellular and molecular mechanisms underlying circadian biological clocks. This article compares and contrasts these model systems and describes methods for avian pinealocyte cultures, immortalized SCN2.2 cells, and mouse fibroblast culture. Each of these culture models has advantages and disadvantages. Avian pinealocytes are photoreceptive, contain a circadian pacemaker, and produce rhythms of an easily assayed endocrine output-melatonin. However, the molecular mechanisms underlying pinealocyte function are not understood. SCN2.2 cells express metabolic and molecular rhythms and can impose rhythmicity on cocultured cells as well as rat behavior when transplanted into the brain. Yet, the entrainment pathways are not experimentally established in these cells. Fibroblast cultures are simple to produce and express molecular clock gene rhythms, but they express neither physiological rhythmicity nor pacemaker properties. The relative merits of these culture systems, as well as their impact on understanding circadian organization in vivo, are also considered. PMID:15817312

  13. The human circadian pacemaker can see by the dawn's early light.

    PubMed

    Danilenko, K V; Wirz-Justice, A; Kräuchi, K; Weber, J M; Terman, M

    2000-10-01

    The authors' previous experiments have shown that dawn simulation at low light intensities can phase advance the circadian rhythm of melatonin in humans. The aim of this study was to compare the effect of repeated dawn signals on the phase position of circadian rhythms in healthy participants kept under controlled light conditions. Nine men participated in two 9-day laboratory sessions under an LD cycle 17.5:6.5 h, < 30:0 lux, receiving 6 consecutive daily dawn (average illuminance 155 lux) or control light (0.1 lux) signals from 0600 to 0730 h (crossover, random-order design). Two modified constant routine protocols before and after the light stimuli measured salivary melatonin (dim light melatonin onset DLMOn and offset DLMOff) and rectal temperature rhythms (midrange crossing time [MRCT]). Compared with initial values, participants significantly phase delayed after 6 days under control light conditions (at least -42 min DLMOn, -54 min DLMOff, -41 min MRCT) in spite of constant bedtimes. This delay was not observed with dawn signals (+10 min DLMOn, +2 min DLMOff, 0 min MRCT). Given that the endogenous circadian period of the human circadian pacemaker is slightly longer than 24 h, the findings suggest that a naturalistic dawn signal is sufficient to forestall this natural delay drift. Zeitgeber transduction and circadian system response are hypothesized to be tuned to the time-rate-of-change of naturalistic twilight signals.

  14. Pacemaker

    MedlinePlus

    ... Topics Arrhythmia Atrial Fibrillation Heart Block Implantable Cardioverter Defibrillators Long QT Syndrome Send a link to NHLBI ... arrhythmias with another device called an implantable cardioverter defibrillator (ICD). An ICD is similar to a pacemaker. ...

  15. Regulation of cAMP response element binding protein (CREB) binding in the mammalian clock pacemaker by light but not a circadian clock.

    PubMed

    Kako, K; Banasik, M; Lee, K; Ishida, N

    1997-02-01

    Mammalian circadian rhythms are considered to be regulated by a clock pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The molecular mechanism of entrainment and oscillation of circadian rhythm are not well understood but photic induction of immediate-early gene (IEG) expression in the SCN is thought to play a role. Here we show that under 12 h light:12 h dark (LD) condition, the cAMP response element binding protein (CREB) binding to cAMP responsive promoter element (CRE) of NMDAR1/zeta1 promoter region in the SCN is higher during the light than the dark by electro-mobility shift assay (EMSA). When animals are placed in constant dark, CREB DNA binding activity in the SCN is low and does not vary with circadian time when compared with cortex nuclear extract as a control. Most significantly, photic induction of CREB binding activity in the SCN occurs at all circadian times tested, indicating that CREB DNA binding in the SCN is not gated by the endogenous clock. These results implicate the role of CREB in photic neuronal signaling in the SCN and suggest that CREB DNA binding activities may not be regulated by a circadian clock. PMID:9030696

  16. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    PubMed

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output. PMID:24643294

  17. Central Control of Circadian Phase in Arousal-Promoting Neurons

    PubMed Central

    Mahoney, Carrie E.; McKinley Brewer, Judy; Bittman, Eric L.

    2013-01-01

    Cells of the dorsomedial/lateral hypothalamus (DMH/LH) that produce hypocretin (HCRT) promote arousal in part by activation of cells of the locus coeruleus (LC) which express tyrosine hydroxylase (TH). The suprachiasmatic nucleus (SCN) drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per) genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO) and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature. PMID:23826226

  18. Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus.

    PubMed

    Gorman, M R; Elliott, J A

    2004-08-01

    The circadian pacemaker of mammals comprises multiple oscillators that may adopt different phase relationships to determine properties of the coupled system. The effect of nocturnal illumination comparable to dim moonlight was assessed in male Siberian hamsters exposed to two re-entrainment paradigms believed to require changes in the phase relationship of underlying component oscillators. In experiment 1, hamsters were exposed to a 24-h light-dark-light-dark cycle previously shown to split circadian rhythms into two components such that activity is divided between the two daily dark periods. Hamsters exposed to dim illumination (<0.020 lx) during each scotophase were more likely to exhibit split rhythms compared to hamsters exposed to completely dark scotophases. In experiment 2, hamsters were transferred to winter photoperiods (10 h light, 14 h dark) from two different longer daylengths (14 h or 18 h light daily) in the presence or absence of dim nighttime lighting. Dim nocturnal illumination markedly accelerated adoption of the winter phenotype as reflected in the expansion of activity duration, gonadal regression and weight loss. The two experiments demonstrate substantial efficacy of light intensities generally viewed as below the threshold of circadian systems. Light may act on oscillator coupling through rod-dependent mechanisms.

  19. Electroconvulsive shock alters the rat overt rhythms of motor activity and temperature without altering the circadian pacemaker.

    PubMed

    Anglès-Pujolràs, Montserrat; Díez-Noguera, Antoni; Soria, Virginia; Urretavizcaya, Mikel; Menchón, José Manuel; Cambras, Trinitat

    2009-01-01

    The hypothetical relationship between circadian rhythms alterations and depression has prompted studies that examine the resultant effects of various antidepressants. Electroconvulsive therapy (ECT) exerts significant antidepressant effects that have been modelled in the laboratory via the use of electroconvulsive shock (ECS) in rats. However, data on the effects of ECT or ECS vis-à-vis the circadian rhythms remain scarce. Thus, we report here the effects of acute and chronic ECS administration on the temperature and motor activity circadian rhythms of rats. The motor activity and core body temperature of rats were continuously recorded to determine the circadian rhythms. We carried out three experiments. In the first, we analyzed the effects of acute ECS on both the phase and period when applied at different times of the subjective day. In the second and third experiments ECS was nearly daily applied to rats for 3 weeks: respectively, under dim red light, which allows a robust free-running circadian rhythm; and under light-dark cycles of 22 h (T22), a setting that implies dissociation in the circadian system. Acute ECS does not modify the phase or the period of circadian rhythms. Chronic administration of ECS produces an increase in motor activity and temperature, a decrease in the amplitude of circadian rhythms, although the period of the free-running rhythm remains unaffected. In conclusion, while chronic ECS does alter the overt rhythms of motor activity and temperature, it does not modify the functioning of the circadian pacemaker.

  20. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.

    2001-01-01

    Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.

  1. Refinement of a limit cycle oscillator model of the effects of light on the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Kronauer, R. E.; Brown, E. N. (Principal Investigator)

    1998-01-01

    In 1990, Kronauer proposed a mathematical model of the effects of light on the human circadian pacemaker. Although this model predicted many general features of the response of the human circadian pacemaker to light exposure, additional data now available enable us to refine the original model. We first refined the original model by incorporating the results of a dose response curve to light into the model's predicted relationship between light intensity and the strength of the drive onto the pacemaker. Data from three bright light phase resetting experiments were then used to refine the amplitude recovery characteristics of the model. Finally, the model was tested and further refined using data from an extensive phase resetting experiment in which a 3-cycle bright light stimulus was presented against a background of dim light. In order to describe the results of the four resetting experiments, the following major refinements to the original model were necessary: (i) the relationship between light intensity (I) and drive onto the pacemaker was reduced from I1/3 to I0.23 for light levels between 150 and 10,000 lux; (ii) the van der Pol oscillator from the original model was replaced with a higher-order limit cycle oscillator so that amplitude recovery is slower near the singularity and faster near the limit cycle; (iii) a direct effect of light on circadian period (tau x) was incorporated into the model such that as I increases, tau x decreases, which is in accordance with "Aschoff's rule". This refined model generates the following testable predictions: it should be difficult to enhance normal circadian amplitude via bright light; near the critical point of a type 0 phase response curve (PRC) the slope should be steeper than it is in a type 1 PRC; and circadian period measured during forced desynchrony should be directly affected by ambient light intensity.

  2. Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients

    NASA Technical Reports Server (NTRS)

    Jewett, M. E.; Rimmer, D. W.; Duffy, J. F.; Klerman, E. B.; Kronauer, R. E.; Czeisler, C. A.

    1997-01-01

    Fifty-six resetting trials were conducted across the subjective day in 43 young men using a three-cycle bright-light (approximately 10,000 lx). The phase-response curve (PRC) to these trials was assessed for the presence of a "dead zone" of photic insensitivity and was compared with another three-cycle PRC that had used a background of approximately 150 lx. To assess possible transients after the light stimulus, the trials were divided into 43 steady-state trials, which occurred after several baseline days, and 13 consecutive trials, which occurred immediately after a previous resetting trial. We found that 1) bright light induces phase shifts throughout subjective day with no apparent dead zone; 2) there is no evidence of transients in constant routine assessments of the fitted temperature minimum 1-2 days after completion of the resetting stimulus; and 3) the timing of background room light modulates the resetting response to bright light. These data indicate that the human circadian pacemaker is sensitive to light at virtually all circadian phases, implying that the entire 24-h pattern of light exposure contributes to entrainment.

  3. Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation.

    PubMed

    Lee, Euna; Cho, Eunjoo; Kang, Doo Hyun; Jeong, Eun Hee; Chen, Zheng; Yoo, Seung-Hee; Kim, Eun Young

    2016-08-16

    Circadian clocks are composed of transcriptional/translational feedback loops (TTFLs) at the cellular level. In Drosophila TTFLs, the transcription factor dCLOCK (dCLK)/CYCLE (CYC) activates clock target gene expression, which is repressed by the physical interaction with PERIOD (PER). Here, we show that amino acids (AA) 657-707 of dCLK, a region that is homologous to the mouse Clock exon 19-encoded region, is crucial for PER binding and E-box-dependent transactivation in S2 cells. Consistently, in transgenic flies expressing dCLK with an AA657-707 deletion in the Clock (Clk(out)) genetic background (p{dClk-Δ};Clk(out)), oscillation of core clock genes' mRNAs displayed diminished amplitude compared with control flies, and the highly abundant dCLKΔ657-707 showed significantly decreased binding to PER. Behaviorally, the p{dClk-Δ};Clk(out) flies exhibited arrhythmic locomotor behavior in the photic entrainment condition but showed anticipatory activities of temperature transition and improved free-running rhythms in the temperature entrainment condition. Surprisingly, p{dClk-Δ};Clk(out) flies showed pacemaker-neuron-dependent alterations in molecular rhythms; the abundance of dCLK target clock proteins was reduced in ventral lateral neurons (LNvs) but not in dorsal neurons (DNs) in both entrainment conditions. In p{dClk-Δ};Clk(out) flies, however, strong but delayed molecular oscillations in temperature cycle-sensitive pacemaker neurons, such as DN1s and DN2s, were correlated with delayed anticipatory activities of temperature transition. Taken together, our study reveals that the LNv molecular clockwork is more sensitive than the clockwork of DNs to dysregulation of dCLK by AA657-707 deletion. Therefore, we propose that the dCLK/CYC-controlled TTFL operates differently in subsets of pacemaker neurons, which may contribute to their specific functions. PMID:27489346

  4. A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

    PubMed Central

    Lu, Tom Z.; Feng, Zhong-Ping

    2011-01-01

    The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals. PMID:21526173

  5. The Nonlinear Phase Response Curve of the Human Circadian Pacemaker and How Complex Behaviors Might Arise in Nature

    NASA Astrophysics Data System (ADS)

    Leder, Ron S.

    2002-08-01

    Our example from nature is two groups of about 10,000 cells in the brain called Suprachiasmatic Nuclei (SCN) and how light can entrain free running endogenous periodic behavior via the retina's connection to the SCN. Our major question is how a complex behavior like this can arise in nature. Finally presented is a mathematical model and simulation showing how simple periodic signals can be coupled to produce spatio-temporal chaotic behavior and how two complex signals can combine to produce simple coherent behavior with a hypothetical analogy to phase resetting in biological circadian pacemakers.

  6. Fast synchronous oscillations of firing rate in cultured rat suprachiasmatic nucleus neurons: possible role in circadian synchronization in the intact nucleus.

    PubMed

    Kononenko, Nikolai I; Honma, Sato; Honma, Ken-Ichi

    2013-03-01

    The coherent circadian rhythm of the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN), is a result of synchronization of electrical activity of many SCN neurons possessing their own circadian oscillators. However, how the activity of these neurons is synchronized is not precisely known. By plotting the electrical firing rates of dispersed rat SCN neurons in multi-electrode array dishes with 20-s averaging of action-potential activity, we have investigated a novel phenomenon: fast (relative to the circadian cycle) oscillations of firing rate (FOFR) with duration of bursts ∼10min and interburst interval varying in a range from 20 to 60min in different cells, remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1mm recording area of an array exhibited correlated FOFR. FOFR of individual cells were positively or negatively correlated with those of other cells in a functioning neural network. Intriguingly, in occasional neuron pairs, transformation of their irregular firing to circadian peaks was accompanied by appearance of FOFR and an increase in the magnitude of firing correlation. We hypothesize that this FOFR observed in cultured SCN neurons contribute to synchronization of the circadian rhythm in the intact SCN.

  7. Metabolic control of neuronal pacemaker activity and the rhythmic organization of central nervous functions.

    PubMed

    Chaplain, R A

    1979-08-01

    The endogenous rhythmic activity of isolated pacemaker neurones of Aplysia californica appears to be controlled by the operation of a substrate cycle. The recycling of fructose-6-phosphate is mediated by two membrane-bound enzymes: phosphofructokinase (PFK) and fructose-1,6-diphosphatase (FDPase). Allosteric effectors which promote the PFK-FDPase system either increase the regular beating activity or induce bursting discharges, while inhibitory effectors reduce pacemaker activity. Associated with the PFK-FDPase cycle are slow oscillations in membrane potential, the postulate being that changes in amplitude and time period of the waves are brought about by the cyclic fluctuations of H+ ions and ATP in the immediate vicinity of the membrane. Other enzyme reactions which affect the concentrations of gluconeogenic substrates or PFK effectors can modulate the oscillatory driving input, a good example being the neurogenic amino acid glutamate. Modifiers of FDPase and PFK are equally effective in changing pacemaker activity within the intact neuronal network and, hence, the rhythmic body function connected to this network. This has been demonstrated with pacemaker neurones governing cardiovascular activity in Apylsia, blood pressure or heart beat in the cat, and respiration or thermoregulation in the rabbit. Nature appears to have achieved a functional differentiation between different pacemaker neurones by altering their response to at least one or two of the PFK and FDPase effectors. New periodicities can be entrained by current stimuli on the pre-existing rhythms of isolated Aplysia pacemaker neurones. Stimulus-induced resetting of the discharges is in fact accompanied by a redistribution between two kinetically distinct forms of PRK, and modifiers of this enzyme can stabilize the new periodicities or facilitate the conditioning effect of a stimulus. Memory facilitation and consolidation under PFK modifiers could also be demonstrated in avoidance and discrimination

  8. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  9. Heterogeneity induces rhythms of weakly coupled circadian neurons

    PubMed Central

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H. T.

    2016-01-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle. PMID:26898574

  10. Heterogeneity induces rhythms of weakly coupled circadian neurons.

    PubMed

    Gu, Changgui; Liang, Xiaoming; Yang, Huijie; Rohling, Jos H T

    2016-01-01

    The main clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms in mammals. The SCN is composed of approximately twenty thousand heterogeneous self-oscillating neurons, that have intrinsic periods varying from 22 h to 28 h. They are coupled through neurotransmitters and neuropeptides to form a network and output a uniform periodic rhythm. Previous studies found that the heterogeneity of the neurons leads to attenuation of the circadian rhythm with strong cellular coupling. In the present study, we investigate the heterogeneity of the neurons and of the network in the condition of constant darkness. Interestingly, we found that the heterogeneity of weakly coupled neurons enables them to oscillate and strengthen the circadian rhythm. In addition, we found that the period of the SCN network increases with the increase of the degree of heterogeneity. As the network heterogeneity does not change the dynamics of the rhythm, our study shows that the heterogeneity of the neurons is vitally important for rhythm generation in weakly coupled systems, such as the SCN, and it provides a new method to strengthen the circadian rhythm, as well as an alternative explanation for differences in free running periods between species in the absence of the daily cycle. PMID:26898574

  11. Noise Induces Oscillation and Synchronization of the Circadian Neurons.

    PubMed

    Gu, Changgui; Xu, Jinshan; Rohling, Jos; Yang, Huijie; Liu, Zonghua

    2015-01-01

    The principle clock of mammals, named suprachiasmatic nucleus (SCN), coordinates the circadian rhythms of behavioral and physiological activity to the external 24 h light-dark cycle. In the absence of the daily cycle, the SCN acts as an endogenous clock that regulates the ~24 h rhythm of activity. Experimental and theoretical studies usually take the light-dark cycle as a main external influence, and often ignore light pollution as an external influence. However, in modern society, the light pollution such as induced by electrical lighting influences the circadian clock. In the present study, we examined the effect of external noise (light pollution) on the collective behavior of coupled circadian oscillators under constant darkness using a Goodwin model. We found that the external noise plays distinct roles in the network behavior of neurons for weak or strong coupling between the neurons. In the case of strong coupling, the noise reduces the synchronization and the period of the SCN network. Interestingly, in the case of weak coupling, the noise induces a circadian rhythm in the SCN network which is absent in noise-free condition. In addition, the noise increases the synchronization and decreases the period of the SCN network. Our findings may shed new light on the impact of the external noise on the collective behavior of SCN neurons. PMID:26691765

  12. Circadian Regulation of Olfactory Receptor Neurons in the Cockroach Antenna

    PubMed Central

    Saifullah, A.S.M.; Page, Terry L.

    2013-01-01

    In the cockroach, olfactory sensitivity as measured by the amplitude of the electroantennogram (EAG) is regulated by the circadian system. We wished to determine how this rhythm in antennal response was reflected in the activity of individual olfactory receptor neurons. The amplitude of the electroantennogram (EAG) and the activity of olfactory receptor neurons (ORNs) in single olfactory sensilla were recorded simultaneously for 3–5 days in constant darkness from an antenna of the cockroach Leucophaea maderae. Both EAG amplitude and the spike frequency of the ORNs exhibited circadian rhythms with peak amplitude/activity occurring in the subjective day. The phases of the rhythms were dependent on the phase of the prior light cycle and thus were entrainable by light. Ablation of the optic lobes abolished the rhythm in EAG amplitude as has been previously reported. In contrast, the rhythm in ORN response persisted following surgery. These results indicated that a circadian clock outside the optic lobes can regulate the responses of olfactory receptor neurons and further that this modulation of the ORN response is not dependent on the circadian rhythm in EAG amplitude. PMID:19346451

  13. Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster.

    PubMed

    Weiss, Ron; Bartok, Osnat; Mezan, Shaul; Malka, Yuval; Kadener, Sebastian

    2014-04-01

    Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain. PMID:24698952

  14. Neuronal influence on peripheral circadian oscillators in pupal Drosophila prothoracic glands.

    PubMed

    Morioka, Eri; Matsumoto, Akira; Ikeda, Masayuki

    2012-01-01

    Rhythmic expression of period (per) and timeless (tim) genes in central circadian pacemaker neurons and prothoracic gland cells, part of the peripheral circadian oscillators in flies, may synergistically control eclosion rhythms, but their oscillatory profiles remain unclear. Here we show differences and interactions between peripheral and central oscillators using per-luciferase and cytosolic Ca(2+) reporter (yellow cameleon) imaging in organotypic prothoracic gland cultures with or without the associated central nervous system. Isolated prothoracic gland cells exhibit light-insensitive synchronous per-transcriptional rhythms. In prothoracic gland cells associated with the central nervous system, however, per transcription is markedly amplified following 12-h light exposure, resulting in the manifestation of day-night rhythms in nuclear PER immunostaining levels and spontaneous Ca(2+) spiking. Unlike PER expression, nuclear TIM expression is associated with day-night cycles that are independent of the central nervous system. These results demonstrate that photoreception and synaptic signal transduction in/from the central nervous system coordinate molecular 'gears' in endocrine oscillators to generate physiological rhythms.

  15. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  16. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    PubMed

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

  17. The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker

    PubMed Central

    Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P; Safi, Rachid; Takahashi, Joseph S; Delaunay, Franck; Laudet, Vincent

    2013-01-01

    Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain several E-box DNA sequences, which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK–BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3–6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK–BMAL1 heterodimer also regulates the zebrafish Rev-erbα gene. In line with these data Rev-erbα circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erbα circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erbα in the circadian clock output. PMID:15591021

  18. Influences of the circadian clock on neuronal susceptibility to excitotoxicity

    PubMed Central

    Karmarkar, Sumedha W.; Tischkau, Shelley A.

    2013-01-01

    Stroke is the third leading cause of death and the primary cause of morbidity in the United States, thus posing an enormous burden on the healthcare system. The factors that determine the risk of an individual toward precipitation of an ischemic event possess a strong circadian component as does the ischemic event itself. This predictability provided a window of opportunity toward the development of chronopharmaceuticals which provided much better clinical outcomes. Experiments from our lab showed for the first time that neuronal susceptibility to ischemic events follows a circadian pattern; hippocampal neurons being most susceptible to an ischemic insult occurring during peak activity in a rodent model of global cerebral ischemia. We also demonstrated that the SCN2.2 cells (like their in vivo counterpart) are resistant to excitotoxicity by glutamate and that this was dependent on activation of ERK signaling. We are currently working on elucidating the complete neuroprotective pathway that provides a barricade against glutamate toxicity in the SCN2.2 cells. Our future experiments will be engaged in hijacking the neuroprotective mechanism in the SCN2.2 cells and applying it to glutamate-susceptible entities in an effort to prevent their death in the presence of excitotoxicity. Despite the advancement in chronopharmaceuticals, optimal clinical outcome with minimal adverse events are difficult to come by at an affordable price. Superior treatment options require a better understanding of molecular mechanisms that define the disease, including the role of the circadian clock. PMID:24204346

  19. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    PubMed

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN.

  20. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    PubMed

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. PMID:25454592

  1. Circadian Factor BMAL1 in Histaminergic Neurons Regulates Sleep Architecture

    PubMed Central

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L.; Maywood, Elizabeth S.; Chesham, Johanna E.; Ma, Ying; Brickley, Stephen G.; Hastings, Michael H.; Franks, Nicholas P.; Wisden, William

    2014-01-01

    Summary Circadian clocks allow anticipation of daily environmental changes [1]. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body [1]. Although some peripheral clocks have established roles [1], it is unclear what local brain clocks do [2, 3]. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset [4–6]; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness [7–11]. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3 [12]) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. PMID:25454592

  2. Dual regulation of clock gene Per2 expression in discrete brain areas by the circadian pacemaker and methamphetamine-induced oscillator in rats.

    PubMed

    Natsubori, Akiyo; Honma, Ken-ichi; Honma, Sato

    2014-01-01

    Behavioral rhythms induced by methamphetamine (MAP) treatment in rats are independent of the circadian pacemaker in the suprachiasmatic nucleus (SCN). To know the site and mechanism of an underlying oscillation (MAP-induced oscillator; MAO), extra-SCN circadian rhythms in the discrete brain areas were examined in rats with and without the SCN. To fix the phase of MAO, MAP was supplied in drinking water at a restricted time of day for 14 days (R-MAP) and subsequently given ad libitum (ad-MAP). Plain water was given to the controls at the same restricted time (R-Water). Clock gene Per2 expression was measured by a bioluminescence reporter in cultured brain tissues. In SCN-intact rats, MAO was induced by R-MAP and behavioral rhythms were phase-delayed from the restricted time under ad-MAP with relative coordination. Circadian Per2 rhythms in R-MAP rats were not affected in the SCN but were slightly phase-advanced in the olfactory bulb (OB), caudate-putamen (CPU) and substantia nigra (SN) as compared with R-Water rats. Following SCN lesion, R-MAP-induced MAO phase-shifted more slowly and did not show a sign of relative coordination. In these rats, circadian Per2 rhythms were significantly phase-shifted in the OB and SN as compared with SCN-intact rats. These findings indicate that MAO was induced by MAP given at a restricted time of day in association with phase-shifts of the extra-SCN circadian oscillators in the brain dopaminergic areas. The findings also suggest that these extra-SCN oscillators are the components of MAO and receive dual regulation by MAO and the SCN circadian pacemaker.

  3. The transcription factor Mef2 is required for normal circadian behavior in Drosophila

    PubMed Central

    Blanchard, Florence J.; Collins, Ben; Cyran, Shawn A.; Hancock, Daniel H.; Taylor, Michael V.; Blau, Justin

    2010-01-01

    The transcription factor Mef2 has well-established roles in muscle development in Drosophila and in the differentiation of many cell types in mammals, including neurons. Here, we describe a role for Mef2 in the Drosophila pacemaker neurons that regulate circadian behavioral rhythms. We found that Mef2 is normally produced in all adult clock neurons and that Mef2 over-expression in clock neurons leads to long period and complex rhythms of adult locomotor behavior. Knocking down Mef2 expression via RNAi or expressing a repressor form of Mef2 caused flies to lose circadian behavioral rhythms. These behavioral changes are correlated with altered molecular clocks in pacemaker neurons: Mef2 over-expression causes the oscillations in individual pacemaker neurons to become desynchronized, while Mef2 knockdown strongly dampens molecular rhythms. Thus, a normal level of Mef2 activity is required in clock neurons to maintain robust and accurate circadian behavioral rhythms. PMID:20427646

  4. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    PubMed

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases. PMID:27668018

  5. Noise effects on robust synchronization of a small pacemaker neuronal ensemble via nonlinear controller: electronic circuit design.

    PubMed

    Megam Ngouonkadi, Elie Bertrand; Fotsin, Hilaire Bertrand; Kabong Nono, Martial; Louodop Fotso, Patrick Herve

    2016-10-01

    In this paper, we report on the synchronization of a pacemaker neuronal ensemble constituted of an AB neuron electrically coupled to two PD neurons. By the virtue of this electrical coupling, they can fire synchronous bursts of action potential. An external master neuron is used to induce to the whole system the desired dynamics, via a nonlinear controller. Such controller is obtained by a combination of sliding mode and feedback control. The proposed controller is able to offset uncertainties in the synchronized systems. We show how noise affects the synchronization of the pacemaker neuronal ensemble, and briefly discuss its potential benefits in our synchronization scheme. An extended Hindmarsh-Rose neuronal model is used to represent a single cell dynamic of the network. Numerical simulations and Pspice implementation of the synchronization scheme are presented. We found that, the proposed controller reduces the stochastic resonance of the network when its gain increases.

  6. PDF neuron firing phase-shifts key circadian activity neurons in Drosophila.

    PubMed

    Guo, Fang; Cerullo, Isadora; Chen, Xiao; Rosbash, Michael

    2014-06-17

    Our experiments address two long-standing models for the function of the Drosophila brain circadian network: a dual oscillator model, which emphasizes the primacy of PDF-containing neurons, and a cell-autonomous model for circadian phase adjustment. We identify five different circadian (E) neurons that are a major source of rhythmicity and locomotor activity. Brief firing of PDF cells at different times of day generates a phase response curve (PRC), which mimics a light-mediated PRC and requires PDF receptor expression in the five E neurons. Firing also resembles light by causing TIM degradation in downstream neurons. Unlike light however, firing-mediated phase-shifting is CRY-independent and exploits the E3 ligase component CUL-3 in the early night to degrade TIM. Our results suggest that PDF neurons integrate light information and then modulate the phase of E cell oscillations and behavioral rhythms. The results also explain how fly brain rhythms persist in constant darkness and without CRY.

  7. Central and peripheral circadian clocks in mammals.

    PubMed

    Mohawk, Jennifer A; Green, Carla B; Takahashi, Joseph S

    2012-01-01

    The circadian system of mammals is composed of a hierarchy of oscillators that function at the cellular, tissue, and systems levels. A common molecular mechanism underlies the cell-autonomous circadian oscillator throughout the body, yet this clock system is adapted to different functional contexts. In the central suprachiasmatic nucleus (SCN) of the hypothalamus, a coupled population of neuronal circadian oscillators acts as a master pacemaker for the organism to drive rhythms in activity and rest, feeding, body temperature, and hormones. Coupling within the SCN network confers robustness to the SCN pacemaker, which in turn provides stability to the overall temporal architecture of the organism. Throughout the majority of the cells in the body, cell-autonomous circadian clocks are intimately enmeshed within metabolic pathways. Thus, an emerging view for the adaptive significance of circadian clocks is their fundamental role in orchestrating metabolism.

  8. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum

    PubMed Central

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-01-01

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone. PMID:18565991

  9. Persistent Sodium Current Drives Conditional Pacemaking in CA1 Pyramidal Neurons under Muscarinic Stimulation

    PubMed Central

    Yamada-Hanff, Jason

    2013-01-01

    Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current–voltage curve was dominated by inward TTX-sensitive persistent sodium current (INaP) that activated near −75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near −70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near −70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of INaP, which then depolarizes the cell from −70 mV to spike threshold. We quantified the relative contributions of INaP, hyperpolarization-activated cation current (Ih), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of INaP in a positive feedback loop starting near −70 mV and providing increasing inward current to threshold. These results show that the pacemaking “engine” from INaP is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near −70 mV, as by muscarinic stimulation. PMID:24048831

  10. miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior

    PubMed Central

    Lamba, Pallavi; Guo, Peiyi

    2016-01-01

    Animals use circadian rhythms to anticipate daily environmental changes. Circadian clocks have a profound effect on behavior. In Drosophila, for example, brain pacemaker neurons dictate that flies are mostly active at dawn and dusk. miRNAs are small, regulatory RNAs (≈22 nt) that play important roles in posttranscriptional regulation. Here, we identify miR-124 as an important regulator of Drosophila circadian locomotor rhythms. Under constant darkness, flies lacking miR-124 (miR-124KO) have a dramatically advanced circadian behavior phase. However, whereas a phase defect is usually caused by a change in the period of the circadian pacemaker, this is not the case in miR-124KO flies. Moreover, the phase of the circadian pacemaker in the clock neurons that control rhythmic locomotion is not altered either. Therefore, miR-124 modulates the output of circadian clock neurons rather than controlling their molecular pacemaker. Circadian phase is also advanced under temperature cycles, but a light/dark cycle partially corrects the defects in miR-124KO flies. Indeed, miR-124KO shows a normal evening phase under the latter conditions, but morning behavioral activity is suppressed. In summary, miR-124 controls diurnal activity and determines the phase of circadian locomotor behavior without affecting circadian pacemaker function. It thus provides a potent entry point to elucidate the mechanisms by which the phase of circadian behavior is determined. SIGNIFICANCE STATEMENT In animals, molecular circadian clocks control the timing of behavioral activities to optimize them with the day/night cycle. This is critical for their fitness and survival. The mechanisms by which the phase of circadian behaviors is determined downstream of the molecular pacemakers are not yet well understood. Recent studies indicate that miRNAs are important regulators of circadian outputs. We found that miR-124 shapes diurnal behavioral activity and has a striking impact on the phase of circadian

  11. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron

    SciTech Connect

    Alekseev, S.I.; Kochetkova, N.V.; Ziskin, M.C.; Bolshakov, M.A.

    1997-05-01

    The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperature rises from 0.3 to 2.2 C, respectively. Irradiation at an SAR of 4,200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate followed by a gradual increase to a new level that was 68 {+-} 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 C) and the rate of temperature rise were equal to those produced by the irradiation. The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neutron found in warming experiments was a temperature rise of 0.0025 C/s.

  12. Developmental change in the contribution of voltage-gated Ca(2+) channels to the pacemaking of deep cerebellar nuclei neurons.

    PubMed

    Alviña, K; Tara, E; Khodakhah, K

    2016-05-13

    The activity of the deep cerebellar nuclei (DCN) neurons conveys the bulk of the output of the cerebellum. To generate these motor signals, DCN neurons integrate synaptic inputs with their own spontaneous activity. We have previously reported that N-type voltage-gated Ca(2+) channels modulate the spontaneous activity of the majority of juvenile DCN neurons in vitro. Specifically, pharmacologically blocking N-type Ca(2+) channels increases their firing rate causing DCN cells to burst. Adult DCN neurons however, behaved differently. To further investigate this change, we have studied here the effect of cadmium on the firing rate of DCN neurons in acute cerebellar slices obtained from adult (>2 months old) or juvenile (12-21 days old) rats and mice. Strikingly, and in contrast to juvenile DCN cells, cadmium did not affect the pacemaking of adult DCN cells. The activity of Purkinje cells (PCs) however was transformed into high-frequency bursting, regardless the age. Further, we questioned whether these findings could be due to an artifact associated with the added difficulty of preparing adult DCN slices. Hence we proceeded to examine the spontaneous activity of DCN neurons in anesthetized juvenile and adult rats and mice in vivo. When cadmium was injected into the DCN in vivo no significant change in firing rate was observed, conversely to most juvenile DCN neurons which showed high-frequency bursts after cadmium injection. In these same animals, PCs pacemaking showed no developmental difference. Thus our results demonstrate a remarkable age-dependent functional modification in the regulation of DCN neurons pacemaking. PMID:26902515

  13. Circadian and dark-pulse activation of orexin/hypocretin neurons

    PubMed Central

    Marston, Oliver J; Williams, Rhîannan H; Canal, Maria M; Samuels, Rayna E; Upton, Neil; Piggins, Hugh D

    2008-01-01

    Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN) and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH). Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock. PMID:19055781

  14. Interaction of NMDA receptor and pacemaking mechanisms in the midbrain dopaminergic neuron.

    PubMed

    Ha, Joon; Kuznetsov, Alexey

    2013-01-01

    Dopamine neurotransmission has been found to play a role in addictive behavior and is altered in psychiatric disorders. Dopaminergic (DA) neurons display two functionally distinct modes of electrophysiological activity: low- and high-frequency firing. A puzzling feature of the DA neuron is the following combination of its responses: N-methyl-D-aspartate receptor (NMDAR) activation evokes high-frequency firing, whereas other tonic excitatory stimuli (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR) activation or applied depolarization) block firing instead. We suggest a new computational model that reproduces this combination of responses and explains recent experimental data. Namely, somatic NMDAR stimulation evokes high-frequency firing and is more effective than distal dendritic stimulation. We further reduce the model to a single compartment and analyze the mechanism of the distinct high-frequency response to NMDAR activation vs. other stimuli. Standard nullcline analysis shows that the mechanism is based on a decrease in the amplitude of calcium oscillations. The analysis confirms that the nonlinear voltage dependence provided by the magnesium block of the NMDAR determine its capacity to elevate the firing frequency. We further predict that the moderate slope of the voltage dependence plays the central role in the frequency elevation. Additionally, we suggest a repolarizing current that sustains calcium-independent firing or firing in the absence of calcium-dependent repolarizing currents. We predict that the ether-a-go-go current (ERG), which has been observed in the DA neuron, is the best fit for this critical role. We show that a calcium-dependent and a calcium-independent oscillatory mechanisms form a structure of interlocked negative feedback loops in the DA neuron. The structure connects research of DA neuron firing with circadian biology and determines common minimal models for investigation of robustness of oscillations, which is

  15. "Caged calcium" in Aplysia pacemaker neurons. Characterization of calcium-activated potassium and nonspecific cation currents

    PubMed Central

    1989-01-01

    We have studied calcium-activated potassium current, IK(Ca), and calcium-activated nonspecific cation current, INS(Ca), in Aplysia bursting pacemaker neurons, using photolysis of a calcium chelator (nitr-5 or nitr-7) to release "caged calcium" intracellularly. A computer model of nitr photolysis, multiple buffer equilibration, and active calcium extrusion was developed to predict volume-average and front-surface calcium concentration transients. Changes in arsenazo III absorbance were used to measure calcium concentration changes caused by nitr photolysis in microcuvettes. Our model predicted the calcium increments caused by successive flashes, and their dependence on calcium loading, nitr concentration, and light intensity. Flashes also triggered the predicted calcium concentration jumps in neurons filled with nitr-arsenazo III mixtures. In physiological experiments, calcium- activated currents were recorded under voltage clamp in response to flashes of different intensity. Both IK(Ca) and INS(Ca) depended linearly without saturation upon calcium concentration jumps of 0.1-20 microM. Peak membrane currents in neurons exposed to repeated flashes first increased and then declined much like the arsenazo III absorbance changes in vitro, which also indicates a first-order calcium activation. Each flash-evoked current rose rapidly to a peak and decayed to half in 3-12 s. Our model mimicked this behavior when it included diffusion of calcium and nitr perpendicular to the surface of the neuron facing the flashlamp. Na/Ca exchange extruding about 1 pmol of calcium per square centimeter per second per micromolar free calcium appeared to speed the decline of calcium-activated membrane currents. Over a range of different membrane potentials, IK(Ca) and INS(Ca) decayed at similar rates, indicating similar calcium stoichiometries independent of voltage. IK(Ca), but not INS(Ca), relaxes exponentially to a different level when the voltage is suddenly changed. We have estimated

  16. Circadian gating of neuronal functionality: a basis for iterative metaplasticity1

    PubMed Central

    Iyer, Rajashekar; Wang, Tongfei A.; Gillette, Martha U.

    2014-01-01

    Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory. PMID:25285070

  17. Circadian Regulation of Cellular Physiology

    PubMed Central

    Peek, C.B; Ramsey, K.M; Levine, D.C; Marcheva, B; Perelis, M; Bass, J

    2015-01-01

    The circadian clock synchronizes behavioral and physiological processes on a daily basis in anticipation of the light–dark cycle. In mammals, molecular clocks are present in both the central pacemaker neurons and in nearly all peripheral tissues. Clock transcription factors in metabolic tissues coordinate metabolic fuel utilization and storage with alternating periods of feeding and fasting corresponding to the rest–activity cycle. In vitro and in vivo biochemical approaches have led to the discovery of mechanisms underlying the interplay between the molecular clock and the metabolic networks. For example, recent studies have demonstrated that the circadian clock controls rhythmic synthesis of the cofactor nicotinamide adenine dinucleotide (NAD+) and activity of NAD+-dependent sirtuin deacetylase enzymes to regulate mitochondrial function across the circadian cycle. In this chapter, we review current state-of-the-art methods to analyze circadian cycles in mitochondrial bioenergetics, glycolysis, and nucleotide metabolism in both cell-based and animal models. PMID:25707277

  18. Circadian regulation of cellular physiology.

    PubMed

    Peek, C B; Ramsey, K M; Levine, D C; Marcheva, B; Perelis, M; Bass, J

    2015-01-01

    The circadian clock synchronizes behavioral and physiological processes on a daily basis in anticipation of the light-dark cycle. In mammals, molecular clocks are present in both the central pacemaker neurons and in nearly all peripheral tissues. Clock transcription factors in metabolic tissues coordinate metabolic fuel utilization and storage with alternating periods of feeding and fasting corresponding to the rest-activity cycle. In vitro and in vivo biochemical approaches have led to the discovery of mechanisms underlying the interplay between the molecular clock and the metabolic networks. For example, recent studies have demonstrated that the circadian clock controls rhythmic synthesis of the cofactor nicotinamide adenine dinucleotide (NAD(+)) and activity of NAD(+)-dependent sirtuin deacetylase enzymes to regulate mitochondrial function across the circadian cycle. In this chapter, we review current state-of-the-art methods to analyze circadian cycles in mitochondrial bioenergetics, glycolysis, and nucleotide metabolism in both cell-based and animal models.

  19. Heterogeneous Expression of the Core Circadian Clock Proteins among Neuronal Cell Types in Mouse Retina

    PubMed Central

    Liu, Xiaoqin; Zhang, Zhijing; Ribelayga, Christophe P.

    2012-01-01

    Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue. PMID:23189207

  20. Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila.

    PubMed

    Collins, Ben; Kane, Elizabeth A; Reeves, David C; Akabas, Myles H; Blau, Justin

    2012-05-24

    Circadian rhythms offer an excellent opportunity to dissect the neural circuits underlying innate behavior because the genes and neurons involved are relatively well understood. We first sought to understand how Drosophila clock neurons interact in the simple circuit that generates circadian rhythms in larval light avoidance. We used genetics to manipulate two groups of clock neurons, increasing or reducing excitability, stopping their molecular clocks, and blocking neurotransmitter release and reception. Our results revealed that lateral neurons (LN(v)s) promote and dorsal clock neurons (DN(1)s) inhibit light avoidance, these neurons probably signal at different times of day, and both signals are required for rhythmic behavior. We found that similar principles apply in the more complex adult circadian circuit that generates locomotor rhythms. Thus, the changing balance in activity between clock neurons with opposing behavioral effects generates robust circadian behavior and probably helps organisms transition between discrete behavioral states, such as sleep and wakefulness.

  1. Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking

    PubMed Central

    Militi, Stefania; Maywood, Elizabeth S.; Sandate, Colby R.; Chesham, Johanna E.; Parsons, Michael J.; Vibert, Jennifer L.; Joynson, Greg M.; Partch, Carrie L.; Hastings, Michael H.; Nolan, Patrick M.

    2016-01-01

    The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1–CLOCK complexes is suppressed by PER–CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2Edo/Edo mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2Edo complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2Edo/Edo; Csnk1eTau/Tau mice and the SCN. These periods are unprecedented in mice. Thus, Per2Edo reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping. PMID:26903623

  2. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior.

    PubMed

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H; Chen, Wenbiao; Wang, Han

    2015-02-11

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.

  3. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior

    PubMed Central

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850

  4. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus.

    PubMed

    Meijer, Johanna H; Schwartz, William J

    2003-06-01

    Within the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is a circadian pacemaker that functions as a clock. Its endogenous period is adjusted to the external 24-h light-dark cycle, primarily by light-induced phase shifts that reset the pacemaker's oscillation. Evidence using a wide variety of neurobiological and molecular genetic tools has elucidated key elements that comprise the visual input pathway for SCN photoentrainment in rodents. Important questions remain regarding the intracellular signals that reset the autoregulatory molecular loop within photoresponsive cells in the SCN's retino-recipient subdivision, as well as the intercellular coupling mechanisms that enable SCN tissue to generate phase shifts of overt behavioral and physiological circadian rhythms such as locomotion and SCN neuronal firing rate. Multiple neurotransmitters, protein kinases, and photoinducible genes add to system complexity, and we still do not fully understand how dawn and dusk light pulses ultimately produce bidirectional, advancing and delaying phase shifts for pacemaker entrainment. PMID:12828281

  5. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    PubMed

    Rakai, Brooke D; Chrusch, Michael J; Spanswick, Simon C; Dyck, Richard H; Antle, Michael C

    2014-01-01

    The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock. PMID:24941219

  6. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons

    PubMed Central

    Cavanaugh, Daniel J.; Vigderman, Abigail S.; Dean, Terry; Garbe, David S.; Sehgal, Amita

    2016-01-01

    Study Objectives: Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Methods: Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibirets1, an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Results: Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. Conclusions: We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. Citation: Cavanaugh DJ, Vigderman AS, Dean T, Garbe DS, Sehgal A. The Drosophila circadian clock gates sleep through time-of-day dependent modulation of sleep-promoting neurons. SLEEP 2016;39(2):345–356. PMID:26350473

  7. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  8. Cell Autonomy and Synchrony of Suprachiasmatic Nucleus Circadian Oscillators

    PubMed Central

    Mohawk, Jennifer A.; Takahashi, Joseph S.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus is the site of the master circadian pacemaker in mammals. The individual cells of the SCN are capable of functioning independently from one another and therefore must form a cohesive circadian network through intercellular coupling. The network properties of the SCN lead to coordination of circadian rhythms among its neurons and neuronal subpopulations. There is increasing evidence for multiple interconnected oscillators within the SCN, and in this Review, we will highlight recent advances in our understanding of the complex organization and function of the cellular and network-level SCN clock. Understanding the way in which synchrony is achieved between cells in the SCN will provide insight into the means by which this important nucleus orchestrates circadian rhythms throughout the organism. PMID:21665298

  9. Spike firing pattern of output neurons of the Limulus circadian clock.

    PubMed

    Liu, Jiahui S; Passaglia, Christopher L

    2011-08-01

    The lateral eyes of the horseshoe crab (Limulus polyphemus) show a daily rhythm in visual sensitivity that is mediated by efferent nerve signals from a circadian clock in the crab's brain. How these signals communicate circadian messages is not known for this or other animals. Here the authors describe in quantitative detail the spike firing pattern of clock output neurons in living horseshoe crabs and discuss its possible significance to clock organization and function. Efferent fiber spike trains were recorded extracellularly for several hours to days, and in some cases, the electroretinogram was simultaneously acquired to monitor eye sensitivity. Statistical features of single- and multifiber recordings were characterized via interval distribution, serial correlation, and power spectral analysis. The authors report that efferent feedback to the eyes has several scales of temporal structure, consisting of multicellular bursts of spikes that group into clusters and packets of clusters that repeat throughout the night and disappear during the day. Except near dusk and dawn, the bursts occur every 1 to 2 sec in clusters of 10 to 30 bursts separated by a minute or two of silence. Within a burst, each output neuron typically fires a single spike with a preferred order, and intervals between bursts and clusters are positively correlated in length. The authors also report that efferent activity is strongly modulated by light at night and that just a brief flash has lasting impact on clock output. The multilayered firing pattern is likely important for driving circadian rhythms in the eye and other target organs. PMID:21775292

  10. Pacemaker (image)

    MedlinePlus

    A pacemaker is a small, battery-operated electronic device which is inserted under the skin to help the heart beat regularly and at an appropriate rate. The pacemaker has leads that travel through a large vein ...

  11. Effects of TWIN-OF-EYELESS on Clock Gene Expression and Central-Pacemaker Neuron Development in Drosophila.

    PubMed

    Glossop, Nicholas R J; Gummadova, Jennet O; Ghangrekar, Indrayani; Hardin, Paul E; Coutts, Graham A

    2014-06-10

    Circadian oscillators are autonomous molecular rhythms that reside in cells to align whole-organism physiology and behavior to the 24-h day. In flies, as in mammals, the oscillator operates in cells that coexpress CLOCK (CLK) and CYCLE (CYC). Recent work in Drosophila has shown that CLK is unique in its ability to generate heterologous oscillators, indicating that Clk gene expression defines the circadian cell fate. Here, using standard in vitro and in vivo techniques, we show that TWIN-OF-EYELESS (TOY; dPax6) regulates Clk expression in small ventrolateral neurons (s-LNvs) that coordinate sleep-wake cycles. Crucially, toy binds multiple sites at the Clk locus, is expressed independent of CLK-CYC in LNvs, regulates CLK protein levels under optimal photoperiodic conditions, and sets clock-speed during endogenous free-run. Furthermore, TOY is necessary for the onset of Clk expression in LNvs during embryogenesis. We propose that TOY contributes to a transcription complex that functions upstream of the oscillator to promote Clk expression in s-LNvs.

  12. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input.

    PubMed

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun's azimuth and the sky's polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  13. Transmedulla Neurons in the Sky Compass Network of the Honeybee (Apis mellifera) Are a Possible Site of Circadian Input

    PubMed Central

    Zeller, Maximilian; Held, Martina; Bender, Julia; Berz, Annuska; Heinloth, Tanja; Hellfritz, Timm; Pfeiffer, Keram

    2015-01-01

    Honeybees are known for their ability to use the sun’s azimuth and the sky’s polarization pattern for spatial orientation. Sky compass orientation in bees has been extensively studied at the behavioral level but our knowledge about the underlying neuronal systems and mechanisms is very limited. Electrophysiological studies in other insect species suggest that neurons of the sky compass system integrate information about the polarization pattern of the sky, its chromatic gradient, and the azimuth of the sun. In order to obtain a stable directional signal throughout the day, circadian changes between the sky polarization pattern and the solar azimuth must be compensated. Likewise, the system must be modulated in a context specific way to compensate for changes in intensity, polarization and chromatic properties of light caused by clouds, vegetation and landscape. The goal of this study was to identify neurons of the sky compass pathway in the honeybee brain and to find potential sites of circadian and neuromodulatory input into this pathway. To this end we first traced the sky compass pathway from the polarization-sensitive dorsal rim area of the compound eye via the medulla and the anterior optic tubercle to the lateral complex using dye injections. Neurons forming this pathway strongly resembled neurons of the sky compass pathway in other insect species. Next we combined tracer injections with immunocytochemistry against the circadian neuropeptide pigment dispersing factor and the neuromodulators serotonin, and γ-aminobutyric acid. We identified neurons, connecting the dorsal rim area of the medulla to the anterior optic tubercle, as a possible site of neuromodulation and interaction with the circadian system. These neurons have conspicuous spines in close proximity to pigment dispersing factor-, serotonin-, and GABA-immunoreactive neurons. Our data therefore show for the first time a potential interaction site between the sky compass pathway and the circadian

  14. Identification of a circadian output circuit for rest:activity rhythms in Drosophila.

    PubMed

    Cavanaugh, Daniel J; Geratowski, Jill D; Wooltorton, Julian R A; Spaethling, Jennifer M; Hector, Clare E; Zheng, Xiangzhong; Johnson, Erik C; Eberwine, James H; Sehgal, Amita

    2014-04-24

    Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.

  15. Identification of a circadian output circuit for rest:activity rhythms in Drosophila

    PubMed Central

    Cavanaugh, Daniel J.; Geratowski, Jill D.; Wooltorton, Julian R. A.; Spaethling, Jennifer M.; Hector, Clare E.; Zheng, Xiangzhong; Johnson, Erik C.; Eberwine, James H.; Sehgal, Amita

    2014-01-01

    SUMMARY Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain, and report here that cells of the pars intercerebralis (PI), a functional homologue of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GRASP analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin releasing factor (CRF) homologue, DH44, as a circadian output molecule that is specifically expressed by PI neurons and required for normal rest:activity rhythms. Notably, selective activation or ablation of just 6 DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms. PMID:24766812

  16. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health

    PubMed Central

    Ramkisoensing, Ashna; Meijer, Johanna H.

    2015-01-01

    In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders. PMID:26097465

  17. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health.

    PubMed

    Ramkisoensing, Ashna; Meijer, Johanna H

    2015-01-01

    In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN's electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN's electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders. PMID:26097465

  18. Programmable Pacemaker

    NASA Technical Reports Server (NTRS)

    1980-01-01

    St. Jude Medical's Cardiac Rhythm Management Division, formerly known as Pacesetter Systems, Inc., incorporated Apollo technology into the development of the programmable pacemaker system. This consists of the implantable pacemaker together with a physician's console containing the programmer and a data printer. Physician can communicate with patient's pacemaker by means of wireless telemetry signals transmitted through the communicating head held over the patient's chest. Where earlier pacemakers deliver a fixed type of stimulus once implanted, Programalith enables surgery free "fine tuning" of device to best suit the patient's changing needs.

  19. A defined heteromeric KV1 channel stabilizes the intrinsic pacemaking and regulates the output of deep cerebellar nuclear neurons to thalamic targets.

    PubMed

    Ovsepian, Saak V; Steuber, Volker; Le Berre, Marie; O'Hara, Liam; O'Leary, Valerie B; Dolly, J Oliver

    2013-04-01

    The output of the cerebellum to the motor axis of the central nervous system is orchestrated mainly by synaptic inputs and intrinsic pacemaker activity of deep cerebellar nuclear (DCN) projection neurons. Herein, we demonstrate that the soma of these cells is enriched with K(V)1 channels produced by mandatory multi-merization of K(V)1.1, 1.2 α and KV β2 subunits. Being constitutively active, the K(+) current (IK(V)1) mediated by these channels stabilizes the rate and regulates the temporal precision of self-sustained firing of these neurons. Placed strategically, IK(V)1 provides a powerful counter-balance to prolonged depolarizing inputs, attenuates the rebound excitation, and dampens the membrane potential bi-stability. Somatic location with low activation threshold render IK(V)1 instrumental in voltage-dependent de-coupling of the axon initial segment from the cell body of projection neurons, impeding invasion of back-propagating action potentials into the somato-dendritic compartment. The latter is also demonstrated to secure the dominance of clock-like somatic pacemaking in driving the regenerative firing activity of these neurons, to encode time variant inputs with high fidelity. Through the use of multi-compartmental modelling and retro-axonal labelling, the physiological significance of the described functions for processing and communication of information from the lateral DCN to thalamic relay nuclei is established.

  20. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons

    PubMed Central

    Jones, Jeff R.

    2016-01-01

    The brain’s biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping. PMID:27602274

  1. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons.

    PubMed

    Jones, Jeff R; McMahon, Douglas G

    2016-01-01

    The brain's biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping. PMID:27602274

  2. The core clock gene Per1 phases molecular and electrical circadian rhythms in SCN neurons

    PubMed Central

    Jones, Jeff R.

    2016-01-01

    The brain’s biological clock, the suprachiasmatic nucleus (SCN), exhibits endogenous 24-hour rhythms in gene expression and spontaneous firing rate; however, the functional relationship between these neuronal rhythms is not fully understood. Here, we used a Per1::GFP transgenic mouse line that allows for the simultaneous quantification of molecular clock state and firing rate in SCN neurons to examine the relationship between these key components of the circadian clock. We find that there is a stable, phased relationship between E-box-driven clock gene expression and spontaneous firing rate in SCN neurons and that these relationships are independent of light input onto the system or of GABAA receptor-mediated synaptic activity. Importantly, the concordant phasing of gene and neural rhythms is disrupted in the absence of the homologous clock gene Per1, but persists in the absence of the core clock gene Per2. These results suggest that Per1 plays a unique, non-redundant role in phasing gene expression and firing rate rhythms in SCN neurons to increase the robustness of cellular timekeeping.

  3. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus

    PubMed Central

    Guilding, Clare; Hughes, Alun TL; Brown, Timothy M; Namvar, Sara; Piggins, Hugh D

    2009-01-01

    Background In mammals, the synchronized activity of cell autonomous clocks in the suprachiasmatic nuclei (SCN) enables this structure to function as the master circadian clock, coordinating daily rhythms in physiology and behavior. However, the dominance of this clock has been challenged by the observations that metabolic duress can over-ride SCN controlled rhythms, and that clock genes are expressed in many brain areas, including those implicated in the regulation of appetite and feeding. The recent development of mice in which clock gene/protein activity is reported by bioluminescent constructs (luciferase or luc) now enables us to track molecular oscillations in numerous tissues ex vivo. Consequently we determined both clock activities and responsiveness to metabolic perturbations of cells and tissues within the mediobasal hypothalamus (MBH), a site pivotal for optimal internal homeostatic regulation. Results Here we demonstrate endogenous circadian rhythms of PER2::LUC expression in discrete subdivisions of the arcuate (Arc) and dorsomedial nuclei (DMH). Rhythms resolved to single cells did not maintain long-term synchrony with one-another, leading to a damping of oscillations at both cell and tissue levels. Complementary electrophysiology recordings revealed rhythms in neuronal activity in the Arc and DMH. Further, PER2::LUC rhythms were detected in the ependymal layer of the third ventricle and in the median eminence/pars tuberalis (ME/PT). A high-fat diet had no effect on the molecular oscillations in the MBH, whereas food deprivation resulted in an altered phase in the ME/PT. Conclusion Our results provide the first single cell resolution of endogenous circadian rhythms in clock gene expression in any intact tissue outside the SCN, reveal the cellular basis for tissue level damping in extra-SCN oscillators and demonstrate that an oscillator in the ME/PT is responsive to changes in metabolism. PMID:19712475

  4. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  5. Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping

    PubMed Central

    DeWoskin, Daniel; Myung, Jihwan; Belle, Mino D. C.; Piggins, Hugh D.; Takumi, Toru; Forger, Daniel B.

    2015-01-01

    The suprachiasmatic nuclei (SCN), the central circadian pacemakers in mammals, comprise a multiscale neuronal system that times daily events. We use recent advances in graphics processing unit computing to generate a multiscale model for the SCN that resolves cellular electrical activity down to the timescale of individual action potentials and the intracellular molecular events that generate circadian rhythms. We use the model to study the role of the neurotransmitter GABA in synchronizing circadian rhythms among individual SCN neurons, a topic of much debate in the circadian community. The model predicts that GABA signaling has two components: phasic (fast) and tonic (slow). Phasic GABA postsynaptic currents are released after action potentials, and can both increase or decrease firing rate, depending on their timing in the interspike interval, a modeling hypothesis we experimentally validate; this allows flexibility in the timing of circadian output signals. Phasic GABA, however, does not significantly affect molecular timekeeping. The tonic GABA signal is released when cells become very excited and depolarized; it changes the excitability of neurons in the network, can shift molecular rhythms, and affects SCN synchrony. We measure which neurons are excited or inhibited by GABA across the day and find GABA-excited neurons are synchronized by—and GABA-inhibited neurons repelled from—this tonic GABA signal, which modulates the synchrony in the SCN provided by other signaling molecules. Our mathematical model also provides an important tool for circadian research, and a model computational system for the many multiscale projects currently studying brain function. PMID:26130805

  6. Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia.

    PubMed Central

    Heyer, C B; Lux, H D

    1976-01-01

    The net outward current in bursting pace-maker neurones of the snail (Helix pomatia) during sustained and repeated voltage clamp pulses was studied. The properties of currents remaining in cobalt-Ringer or after TEA injection were compared with those in untreated cells. 2. With sustained voltage clamp depolarizations the net outward current first increases to a maximum at 150 msec and then declines to 60% or less of its peak intensity. This depression, which is greater during repetition of short pulses (e.g. 100 msec pulses at 0-5 sec intervals), represents a true decrease in the outward flow of K (designated IK) and is not due to a decreased driving force resulting from extracellular K accumulation. The steady-state current-voltage (I-V) relationship for IK is N-shaped (Heyer & Lux, 1976). 3. A component of IK persists when Ca and Mg in the medium are replaced by Co (ICo-res). With voltage clamp depolarizations ICo-res increases rapidly to a maximum and then partially inactivates with voltage dependent time constants of hundredths or tenths of seconds. Repolarization removes the inactivation. Thus, repeated stimulation with short pulses does not increase the depression of ICo-res-ICo-res (e.g. measured during voltage steps from holding potentials of -50 to near 0 mV) is smaller in test pulses preceded by depolarization and larger in pulses preceded by hyperpolarization. The steady state I-V relationship is not N-shaped. ICo-res is blocked by intracellular injection of tetraethylammonium (TEA). 4. Repeated voltage clamp depolarization to near 0 mV with 100 msec pulses for neurones with large Ca currents in normal Ringer produces a long-term depression which is maximal with 300-400 msec repolarizations (to -50 mV) between pulses. This corresponds with stimulus parameters for the maximum Ca current (Heyer & Lux, 1976). Intracellular injection of Ca2+ (also Ba2+ and Co2+) likewise reduces the total net outward current and especially the delayed outward current under

  7. Advanced Pacemaker

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  8. Heart pacemaker

    MedlinePlus

    ... 1 ounce. Most pacemakers have 2 parts: The generator contains the battery and the information to control ... are wires that connect the heart to the generator and carry the electrical messages to the heart. ...

  9. Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.

    PubMed

    Ikeda, Masayuki; Ikeda, Masaaki

    2014-09-01

    The hypothalamic suprachiasmatic nucleus (SCN) plays a pivotal role in the mammalian circadian clock system. Bmal1 is a clock gene that drives transcriptional-translational feedback loops (TTFLs) for itself and other genes, and is expressed in nearly all SCN neurons. Despite strong evidence that Bmal1-null mutant mice display arrhythmic behavior under constant darkness, the function of Bmal1 in neuronal activity is unknown. Recently, periodic changes in the levels of intracellular signaling messengers, such as cytosolic Ca(2+) and cAMP, were suggested to regulate TTFLs. However, the opposite aspect of how clock gene TTFLs regulate cytosolic signaling remains unclear. To investigate intracellular Ca(2+) dynamics under Bmal1 perturbations, we cotransfected some SCN neurons with yellow cameleon together with wild-type or dominant-negative Bmal1 using a gene-gun applied for mouse organotypic cultures. Immunofluorescence staining for a tag protein linked to BMAL1 showed nuclear expression of wild-type BMAL1 and its degradation within 1 week after transfection in SCN neurons. However, dominant-negative BMAL1 did not translocate into the nucleus and the cytosolic signals persisted beyond 1 week. Consistently, circadian Ca(2+) rhythms in SCN neurons were inhibited for longer periods by dominant-negative Bmal1 overexpression. Furthermore, SCN neurons transfected with a Bmal1 shRNA lengthened, whereas those overexpressing wild-type Bmal1 shortened, the periods of Ca(2+) rhythms, with a significant reduction in their amplitude. BMAL1 expression was intact in the majority of neighboring neurons in organotypic cultures. Therefore, we conclude that proper intrinsic Bmal1 expression, but not passive signaling via cell-to-cell interactions, is the determinant of circadian Ca(2+) rhythms in SCN neurons. PMID:25186748

  10. Circadian and ultradian rhythms in the crayfish caudal photoreceptor.

    PubMed

    Rodríguez-Sosa, Leonardo; Calderón-Rosete, Gabina; Flores, Gonzalo

    2008-09-01

    The study of circadian clocks in crustaceans has led to the hypothesis of a distributed circadian system of pacemakers. In this review, we investigate the role of the crayfish caudal photoreceptor (CPR) as a candidate to form part of this pacemaking circadian system. Two circadian rhythms are documented for CPR electrical activity. These rhythms correspond to the spontaneous and light-induced discharge of action potentials. The intrinsic characterization of the rhythms is made through the analysis of the firing rate of the corresponding action potentials. The discharges were extracellularly recorded in the isolated 6th abdominal ganglion (AG) in an organ culture kept at constant temperature for up to 5 days. For preparations kept in the dark, spontaneous activity varies in a circadian manner, with a period of 24.7 h and the acrophase at subjective nighttime (2140). For light-induced activity, pulses of constant intensity applied regularly throughout the 24-h cycle show that the firing rate at peak and latency vary rhythmically. The period for this rhythm is 24.24 h and the acrophase is at subjective dawn (0326). Additionally, an ultradian rhythm of a approximately 12-h period was observed for both rhythms. When tested with light pulses of different intensities, the CPR responsiveness at night is almost one log unit greater than in daytime. The effect of temperature on both activities is also described. The phase-shift caused by temperature for these circadian rhythms depends on the application time. These results show that the 6th AG is capable of generating a circadian rhythm of electrical activity in the CPR, which in turn is likely to be part of the crayfish circadian system. A possible interaction of different pacemakers forming the distributed circadian system is also discussed. The role of serotonin as a possible modulator of the CPR electrical activity is documented. In addition, the level of the 5-HT(1A) receptors displays a diurnal rhythm in the 6th AG

  11. How coupling determines the entrainment of circadian clocks

    NASA Astrophysics Data System (ADS)

    Bordyugov, G.; Granada, A. E.; Herzel, H.

    2011-08-01

    Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism's fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.

  12. Programmable Pacemaker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.

  13. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.

    PubMed

    Wiater, M F; Mukherjee, S; Li, A-J; Dinh, T T; Rooney, E M; Simasko, S M; Ritter, S

    2011-11-01

    Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.

  14. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice

    PubMed Central

    Gallardo, Christian M; Darvas, Martin; Oviatt, Mia; Chang, Chris H; Michalik, Mateusz; Huddy, Timothy F; Meyer, Emily E; Shuster, Scott A; Aguayo, Antonio; Hill, Elizabeth M; Kiani, Karun; Ikpeazu, Jonathan; Martinez, Johan S; Purpura, Mari; Smit, Andrea N; Patton, Danica F; Mistlberger, Ralph E; Palmiter, Richard D; Steele, Andrew D

    2014-01-01

    Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To determine where dopamine exerts its effect, we limited expression of dopamine signaling to the dorsal striatum of dopamine-deficient mice; these mice developed FAA. Within the dorsal striatum, the daily rhythm of clock gene period2 expression was markedly suppressed in D1R KO mice. Pharmacological activation of D1R at the same time daily was sufficient to establish anticipatory activity in wild-type mice. These results demonstrate that dopamine signaling to D1R-expressing neurons in the dorsal striatum plays an important role in manifestation of FAA, possibly by synchronizing circadian oscillators that modulate motivational processes and behavioral output. DOI: http://dx.doi.org/10.7554/eLife.03781.001 PMID:25217530

  15. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei

    PubMed Central

    Landgraf, Dominic; Koch, Christiane E.; Oster, Henrik

    2014-01-01

    In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12–15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development. PMID:25520627

  16. Circadian rhythm of temperature preference and its neural control in Drosophila

    PubMed Central

    Kaneko, Haruna; Head, Lauren M.; Ling, Jinli; Tang, Xin; Liu, Yilin; Hardin, Paul E.; Emery, Patrick; Hamada, Fumika N.

    2012-01-01

    A daily body temperature rhythm (BTR) is critical for the maintenance of homeostasis in mammals. While mammals use internal energy to regulate body temperature, ectotherms typically regulate body temperature behaviorally [1]. Some ectotherms maintain homeostasis via a daily temperature preference rhythm (TPR) [2], but the underlying mechanisms are largely unknown. Here, we show that Drosophila exhibit a daily circadian clock dependent TPR that resembles mammalian BTR. Pacemaker neurons critical for locomotor activity are not necessary for TPR; instead, the dorsal neuron 2s (DN2s), whose function was previously unknown, is sufficient. This indicates that TPR, like BTR, is controlled independently from locomotor activity. Therefore, the mechanisms controlling temperature fluctuations in fly TPR and mammalian BTR may share parallel features. Taken together, our results reveal the existence of a novel DN2- based circadian neural circuit that specifically regulates TPR; thus, understanding the mechanisms of TPR will shed new light on the function and neural control of circadian rhythms. PMID:22981774

  17. NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators

    PubMed Central

    Landgraf, Dominic; Wang, Lexie L.; Diemer, Tanja; Welsh, David K.

    2016-01-01

    Heterodimers of CLOCK and BMAL1 are the major transcriptional activators of the mammalian circadian clock. Because the paralog NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN), the master circadian pacemaker, CLOCK-deficient mice maintain circadian rhythms in behavior and in tissues in vivo. However, when isolated from the SCN, CLOCK-deficient peripheral tissues are reportedly arrhythmic, suggesting a fundamental difference in circadian clock function between SCN and peripheral tissues. Surprisingly, however, using luminometry and single-cell bioluminescence imaging of PER2 expression, we now find that CLOCK-deficient dispersed SCN neurons and peripheral cells exhibit similarly stable, autonomous circadian rhythms in vitro. In CLOCK-deficient fibroblasts, knockdown of Npas2 leads to arrhythmicity, suggesting that NPAS2 can compensate for loss of CLOCK in peripheral cells as well as in SCN. Our data overturn the notion of an SCN-specific role for NPAS2 in the molecular circadian clock, and instead indicate that, at the cellular level, the core loops of SCN neuron and peripheral cell circadian clocks are fundamentally similar. PMID:26895328

  18. Impaired clock output by altered connectivity in the circadian network.

    PubMed

    Fernández, María de la Paz; Chu, Jessie; Villella, Adriana; Atkinson, Nigel; Kay, Steve A; Ceriani, María Fernanda

    2007-03-27

    Substantial progress has been made in elucidating the molecular processes that impart a temporal control to physiology and behavior in most eukaryotes. In Drosophila, dorsal and ventral neuronal networks act in concert to convey rhythmicity. Recently, the hierarchical organization among the different circadian clusters has been addressed, but how molecular oscillations translate into rhythmic behavior remains unclear. The small ventral lateral neurons can synchronize certain dorsal oscillators likely through the release of pigment dispersing factor (PDF), a neuropeptide central to the control of rhythmic rest-activity cycles. In the present study, we have taken advantage of flies exhibiting a distinctive arrhythmic phenotype due to mutation of the potassium channel slowpoke (slo) to examine the relevance of specific neuronal populations involved in the circadian control of behavior. We show that altered neuronal function associated with the null mutation specifically impaired PDF accumulation in the dorsal protocerebrum and, in turn, desynchronized molecular oscillations in the dorsal clusters. However, molecular oscillations in the small ventral lateral neurons are properly running in the null mutant, indicating that slo is acting downstream of these core pacemaker cells, most likely in the output pathway. Surprisingly, disrupted PDF signaling by slo dysfunction directly affects the structure of the underlying circuit. Our observations demonstrate that subtle structural changes within the circadian network are responsible for behavioral arrhythmicity. PMID:17369364

  19. mTORC1 signaling in Agrp neurons mediates circadian expression of Agrp and NPY but is dispensable for regulation of feeding behavior.

    PubMed

    Albert, Verena; Cornu, Marion; Hall, Michael N

    2015-08-21

    Orexigenic agouti-related protein/neuropeptide Y (Agrp/NPY) neurons and an orexigenic pro-opiomelanocortin (POMC) neurons of the hypothalamus regulate feeding behavior and energy homeostasis. An understanding of the molecular signaling pathways that regulate Agrp/NPY and POMC function could lead to novel treatments for metabolic disorders. Target of Rapamycin Complex 1 (TORC1) is a nutrient-activated protein kinase and central controller of growth and metabolism. We therefore investigated the role of mammalian TORC1 (mTORC1) in Agrp neurons. We generated and characterized Agrp neuron-specific raptor knockout (Agrp-raptor KO) mice. Agrp-raptor KO mice displayed reduced, non-circadian expression of Agrp and NPY but normal feeding behavior and energy homeostasis on both normal and high fat diet. Thus, mTORC1 in Agrp neurons controls circadian expression of orexigenic neuropeptides but is dispensable for the regulation of feeding behavior and energy metabolism.

  20. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour

    PubMed Central

    Doi, Masao; Murai, Iori; Kunisue, Sumihiro; Setsu, Genzui; Uchio, Naohiro; Tanaka, Rina; Kobayashi, Sakurako; Shimatani, Hiroyuki; Hayashi, Hida; Chao, Hsu-Wen; Nakagawa, Yuuki; Takahashi, Yukari; Hotta, Yunhong; Yasunaga, Jun-ichirou; Matsuoka, Masao; Hastings, Michael H.; Kiyonari, Hiroshi; Okamura, Hitoshi

    2016-01-01

    G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz. PMID:26882873

  1. Circadian Clocks, Stress, and Immunity

    PubMed Central

    Dumbell, Rebecca; Matveeva, Olga; Oster, Henrik

    2016-01-01

    In mammals, molecular circadian clocks are present in most cells of the body, and this circadian network plays an important role in synchronizing physiological processes and behaviors to the appropriate time of day. The hypothalamic–pituitary–adrenal endocrine axis regulates the response to acute and chronic stress, acting through its final effectors – glucocorticoids – released from the adrenal cortex. Glucocorticoid secretion, characterized by its circadian rhythm, has an important role in synchronizing peripheral clocks and rhythms downstream of the master circadian pacemaker in the suprachiasmatic nucleus. Finally, glucocorticoids are powerfully anti-inflammatory, and recent work has implicated the circadian clock in various aspects and cells of the immune system, suggesting a tight interplay of stress and circadian systems in the regulation of immunity. This mini-review summarizes our current understanding of the role of the circadian clock network in both the HPA axis and the immune system, and discusses their interactions. PMID:27199894

  2. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer's disease.

    PubMed

    Mirmiran, M; Swaab, D F; Kok, J H; Hofman, M A; Witting, W; Van Gool, W A

    1992-01-01

    Circadian rhythms are already present in the fetus. At a certain stage of pre-natal hypothalamic development (around 30 weeks of gestation) the fetus becomes responsive to maternal circadian signals. Moreover, recent studies showed that the fetal biological clock is able to generate circadian rhythms, as exemplified by the rhythms of body temperature and heart rate of pre-term babies in the absence of maternal or environmental entrainment factors. Pre-term babies that are deprived of maternal entrainment and kept under constant environmental conditions (e.g., continuous light) in the neonatal intensive care unit run the risk of developing a biological clock dysfunctioning. However, the fact should be acknowledged that at least in mice the development of the circadian pacemaker (i.e., SCN) does not depend on environmental influences (Davis and Menaker, 1981), although other data suggest that severe disruption of the maternal circadian rhythm indeed abolishes the circadian rhythm of the fetal SCN (Shibata and Moore, 1988). During aging and in particular in AD circadian rhythms are disturbed. These disturbances include phase advance and reduced period and amplitude, as well as an increased intradaily variability and a decreased interdaily stability of the rhythm. Among the factors underlying these changes the loss of SCN neurons seems to play a central role. Other contributory factors may be reduced amount of light, degenerative changes in the visual system and the level of activity and decreased melatonin. PMID:1480747

  3. Dominant-Negative CK2α Induces Potent Effects on Circadian Rhythmicity

    PubMed Central

    Smith, Elaine M; Lin, Jui-Ming; Meissner, Rose-Anne; Allada, Ravi

    2008-01-01

    Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER) represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of this contribution is unclear; it is not certain where and when CK2 acts to regulate circadian rhythms. To determine its temporal and spatial functions, a dominant negative mutant of the catalytic alpha subunit, CK2αTik, was targeted to circadian neurons. Behaviorally, CK2αTik induces severe period lengthening (∼33 h), greater than nearly all known circadian mutant alleles, and abolishes detectable free-running behavioral rhythmicity at high levels of expression. CK2αTik, when targeted to a subset of pacemaker neurons, generates period splitting, resulting in flies exhibiting both long and near 24-h periods. These behavioral effects are evident even when CK2αTik expression is induced only during adulthood, implicating an acute role for CK2α function in circadian rhythms. CK2αTik expression results in reduced PER phosphorylation, delayed nuclear entry, and dampened cycling with elevated trough levels of PER. Heightened trough levels of per transcript accompany increased protein levels, suggesting that CK2αTik disturbs negative feedback of PER on its own transcription. Taken together, these in vivo data implicate a central role of CK2α function in timing PER negative feedback in adult circadian neurons. PMID:18208335

  4. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  5. Circadian clocks and cell division

    PubMed Central

    2010-01-01

    Evolution has selected a system of two intertwined cell cycles: the cell division cycle (CDC) and the daily (circadian) biological clock. The circadian clock keeps track of solar time and programs biological processes to occur at environmentally appropriate times. One of these processes is the CDC, which is often gated by the circadian clock. The intermeshing of these two cell cycles is probably responsible for the observation that disruption of the circadian system enhances susceptibility to some kinds of cancer. The core mechanism underlying the circadian clockwork has been thought to be a transcription and translation feedback loop (TTFL), but recent evidence from studies with cyanobacteria, synthetic oscillators and immortalized cell lines suggests that the core circadian pacemaking mechanism that gates cell division in mammalian cells could be a post-translational oscillator (PTO). PMID:20890114

  6. Pacemaker insertion

    PubMed Central

    Kotsakou, Maria; Kioumis, Ioannis; Lazaridis, George; Pitsiou, Georgia; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Karapantzos, Ilias; Karapantzou, Chrysanthi; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    A pacemaker (PM) (or artificial PM, so as not to be confused with the heart’s natural PM) is a medical device that uses electrical impulses, delivered by electrodes contracting the heart muscles, to regulate the beating of the heart. The primary purpose of this device is to maintain an adequate heart rate, either because the heart’s natural PM is not fast enough, or there is a block in the heart’s electrical conduction system. Modern PMs are externally programmable and allow the cardiologist to select the optimum pacing modes for individual patients. Some combine a PM and defibrillator in a single implantable device. PMs can be temporary or permanent. Temporary PMs are used to treat short-term heart problems, such as a slow heartbeat that’s caused by a heart attack, heart surgery, or an overdose of medicine. Permanent PMs are used to control long-term heart rhythm problems. A PM can relieve some arrhythmia symptoms, such as fatigue and fainting. A PM also can help a person who has abnormal HRs resume a more active lifestyle. In the current mini review we will focus on the insertion of a PM and the possible pneumothorax that can be caused. PMID:25815303

  7. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  8. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability.

    PubMed

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L; White, Kevin P; Dinner, Aaron R; Lear, Bridget C; Ren, Dejian; Diekman, Casey O; Raman, Indira M; Allada, Ravi

    2015-08-13

    Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  9. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability.

    PubMed

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L; White, Kevin P; Dinner, Aaron R; Lear, Bridget C; Ren, Dejian; Diekman, Casey O; Raman, Indira M; Allada, Ravi

    2015-08-13

    Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake.

  10. A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability

    PubMed Central

    Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi

    2015-01-01

    Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633

  11. Heart pacemaker - discharge

    MedlinePlus

    ... on your chest below your collarbone. The pacemaker generator was then placed under the skin at this ... with your pacemaker. Stay away from large motors, generators, and equipment. Do not lean over the open ...

  12. Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide.

    PubMed

    Gautier, Hélène; Auger, Jacques; Legros, Christian; Lapied, Bruno

    2008-01-01

    Dimethyl disulfide (DMDS), a plant-derived insecticide, is a promising fumigant as a substitute for methyl bromide. To further understand the mode of action of DMDS, we examined its effect on cockroach octopaminergic neurosecretory cells, called dorsal unpaired median (DUM) neurons, using whole-cell patch-clamp technique, calcium imaging and antisense oligonucleotide strategy. At low concentration (1 microM), DMDS modified spontaneous regular spike discharge into clear bursting activity associated with a decrease of the amplitude of the afterhyperpolarization. This effect led us to suspect alterations of calcium-activated potassium currents (IKCa) and [Ca(2+)](i) changes. We showed that DMDS reduced amplitudes of both peak transient and sustained components of the total potassium current. IKCa was confirmed as a target of DMDS by using iberiotoxin, cadmium chloride, and pSlo antisense oligonucleotide. In addition, we showed that DMDS induced [Ca(2+)](i) rise in Fura-2-loaded DUM neurons. Using calcium-free solution, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxy-phenyl)ethyl]-acetamide (LOE 908) [an inhibitor of transient receptor potential (TRP)gamma], we demonstrated that TRPgamma initiated calcium influx. By contrast, omega-conotoxin GVIA (an inhibitor of N-type high-voltage-activated calcium channels), did not affect the DMDS-induced [Ca(2+)](i) rise. Finally, the participation of the calcium-induced calcium release mechanism was investigated using thapsigargin, caffeine, and ryanodine. Our study revealed that DMDS-induced elevation in [Ca(2+)](i) modulated IKCa in an unexpected bell-shaped manner via intracellular calcium. In conclusion, DMDS affects multiple targets, which could be an effective way to improve pest control efficacy of fumigation. PMID:17942746

  13. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time

    PubMed Central

    Myung, Jihwan; Hong, Sungho; DeWoskin, Daniel; De Schutter, Erik; Forger, Daniel B.; Takumi, Toru

    2015-01-01

    The mammalian suprachiasmatic nucleus (SCN) forms not only the master circadian clock but also a seasonal clock. This neural network of ∼10,000 circadian oscillators encodes season-dependent day-length changes through a largely unknown mechanism. We show that region-intrinsic changes in the SCN fine-tune the degree of network synchrony and reorganize the phase relationship among circadian oscillators to represent day length. We measure oscillations of the clock gene Bmal1, at single-cell and regional levels in cultured SCN explanted from animals raised under short or long days. Coupling estimation using the Kuramoto framework reveals that the network has couplings that can be both phase-attractive (synchronizing) and -repulsive (desynchronizing). The phase gap between the dorsal and ventral regions increases and the overall period of the SCN shortens with longer day length. We find that one of the underlying physiological mechanisms is the modulation of the intracellular chloride concentration, which can adjust the strength and polarity of the ionotropic GABAA-mediated synaptic input. We show that increasing day-length changes the pattern of chloride transporter expression, yielding more excitatory GABA synaptic input, and that blocking GABAA signaling or the chloride transporter disrupts the unique phase and period organization induced by the day length. We test the consequences of this tunable GABA coupling in the context of excitation–inhibition balance through detailed realistic modeling. These results indicate that the network encoding of seasonal time is controlled by modulation of intracellular chloride, which determines the phase relationship among and period difference between the dorsal and ventral SCN. PMID:26130804

  14. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time.

    PubMed

    Myung, Jihwan; Hong, Sungho; DeWoskin, Daniel; De Schutter, Erik; Forger, Daniel B; Takumi, Toru

    2015-07-21

    The mammalian suprachiasmatic nucleus (SCN) forms not only the master circadian clock but also a seasonal clock. This neural network of ∼10,000 circadian oscillators encodes season-dependent day-length changes through a largely unknown mechanism. We show that region-intrinsic changes in the SCN fine-tune the degree of network synchrony and reorganize the phase relationship among circadian oscillators to represent day length. We measure oscillations of the clock gene Bmal1, at single-cell and regional levels in cultured SCN explanted from animals raised under short or long days. Coupling estimation using the Kuramoto framework reveals that the network has couplings that can be both phase-attractive (synchronizing) and -repulsive (desynchronizing). The phase gap between the dorsal and ventral regions increases and the overall period of the SCN shortens with longer day length. We find that one of the underlying physiological mechanisms is the modulation of the intracellular chloride concentration, which can adjust the strength and polarity of the ionotropic GABAA-mediated synaptic input. We show that increasing day-length changes the pattern of chloride transporter expression, yielding more excitatory GABA synaptic input, and that blocking GABAA signaling or the chloride transporter disrupts the unique phase and period organization induced by the day length. We test the consequences of this tunable GABA coupling in the context of excitation-inhibition balance through detailed realistic modeling. These results indicate that the network encoding of seasonal time is controlled by modulation of intracellular chloride, which determines the phase relationship among and period difference between the dorsal and ventral SCN.

  15. Neurobiology of Circadian Rhythm Regulation.

    PubMed

    Rosenwasser, Alan M; Turek, Fred W

    2015-12-01

    Over the past few decades, multilevel research has elucidated the basic neuroanatomy, neurochemistry, and molecular neurobiology of the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). The circadian timing system is composed of a large number of cellular oscillators located in the SCN, in non-SCN brain structures, and throughout the body. Cellular-level oscillations are generated by a molecular feedback loop in which circadian clock genes rhythmically regulate their own transcription, as well as that of hundreds of clock-controlled genes. The maintenance of proper coordination within this network of cellular- and tissue-level clocks is essential for health and well-being. PMID:26568118

  16. Neurobiology of Circadian Rhythm Regulation.

    PubMed

    Rosenwasser, Alan M; Turek, Fred W

    2015-12-01

    Over the past few decades, multilevel research has elucidated the basic neuroanatomy, neurochemistry, and molecular neurobiology of the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). The circadian timing system is composed of a large number of cellular oscillators located in the SCN, in non-SCN brain structures, and throughout the body. Cellular-level oscillations are generated by a molecular feedback loop in which circadian clock genes rhythmically regulate their own transcription, as well as that of hundreds of clock-controlled genes. The maintenance of proper coordination within this network of cellular- and tissue-level clocks is essential for health and well-being.

  17. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila.

    PubMed

    Kim, Minkyung; Lee, Hoyeon; Hur, Jin-Hoe; Choe, Joonho; Lim, Chunghun

    2016-01-01

    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species. PMID:27577611

  18. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila.

    PubMed

    Kim, Minkyung; Lee, Hoyeon; Hur, Jin-Hoe; Choe, Joonho; Lim, Chunghun

    2016-08-31

    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.

  19. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila

    PubMed Central

    Kim, Minkyung; Lee, Hoyeon; Hur, Jin-Hoe; Choe, Joonho; Lim, Chunghun

    2016-01-01

    Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species. PMID:27577611

  20. Association of intrinsic circadian period with morningness-eveningness, usual wake time, and circadian phase

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Rimmer, D. W.; Czeisler, C. A.

    2001-01-01

    The biological basis of preferences for morning or evening activity patterns ("early birds" and "night owls") has been hypothesized but has remained elusive. The authors reported that, compared with evening types, the circadian pacemaker of morning types was entrained to an earlier hour with respect to both clock time and wake time. The present study explores a chronobiological mechanism by which the biological clock of morning types may be set to an earlier hour. Intrinsic period, a fundamental property of the circadian system, was measured in a month-long inpatient study. A subset of participants also had their circadian phase assessed. Participants completed a morningness-eveningness questionnaire before study. Circadian period was correlated with morningness-eveningness, circadian phase, and wake time, demonstrating that a fundamental property of the circadian pacemaker is correlated with the behavioral trait of morningness-eveningness.

  1. Etiology, pathogenesis, and treatment of seasonal and non-seasonal mood disorders: possible role of circadian rhythm abnormalities related to developmental alcohol exposure.

    PubMed

    Sher, Leo

    2004-01-01

    Developmental alcohol exposure adversely influences the developing brain. Alcohol exposure during rapid brain growth causes cell loss, alters connections between brain regions, and lowers the production of biological substances responsible for the communication among neurons. It is reasonable to suggest that alcohol may adversely affect the development of suprachiasmatic nuclei (SCN), the master circadian pacemaker. Multiple research reports suggest that abnormalities in circadian rhythms are involved in the etiopathogenesis of seasonal affective disorder (SAD), a syndrome in which depression develops during autumn or winter and remits the following spring or summer. Several lines of evidence suggest that changes in the circadian system are also involved in the development of nonseasonal mood disorders, such as major depression and bipolar disorder. Thus, developmental alcohol exposure produces subtle abnormalities in circadian rhythms that may contribute to the development of seasonal and nonseasonal mood disorders. Pharmacological, psychological, and light treatments of mood disorders have multiple effects on circadian function. The state of the circadian system may affect a response to treatment. Circadian rhythms have been reported for neurotransmitters, receptors, enzymes, and the second messenger system in the brain that are involved in the effects of treatments. Some of these rhythms have amplitudes as large as several 100%. Effects of many psychotropic medications depend on the time of administration in relation to body rhythmicity. Therefore, subtle circadian rhythm abnormalities related to developmental alcohol exposure may affect treatment response in patients with mood disorders.

  2. Parent-of-origin genetic background affects the transcriptional levels of circadian and neuronal plasticity genes following sleep loss

    PubMed Central

    Tinarelli, Federico; Garcia-Garcia, Celina; Nicassio, Francesco; Tucci, Valter

    2014-01-01

    Sleep homoeostasis refers to a process in which the propensity to sleep increases as wakefulness progresses and decreases as sleep progresses. Sleep is tightly organized around the circadian clock and is regulated by genetic and epigenetic mechanisms. The homoeostatic response of sleep, which is classically triggered by sleep deprivation, is generally measured as a rebound effect of electrophysiological measures, for example delta sleep. However, more recently, gene expression changes following sleep loss have been investigated as biomarkers of sleep homoeostasis. The genetic background of an individual may affect this sleep-dependent gene expression phenotype. In this study, we investigated whether parental genetic background differentially modulates the expression of genes following sleep loss. We tested the progeny of reciprocal crosses of AKR/J and DBA/2J mouse strains and we show a parent-of-origin effect on the expression of circadian, sleep and neuronal plasticity genes following sleep deprivation. Thus, we further explored, by in silico, specific functions or upstream mechanisms of regulation and we observed that several upstream mechanisms involving signalling pathways (i.e. DICER1, PKA), growth factors (CSF3 and BDNF) and transcriptional regulators (EGR2 and ELK4) may be differentially modulated by parental effects. This is the first report showing that a behavioural manipulation (e.g. sleep deprivation) in adult animals triggers specific gene expression responses according to parent-of-origin genomic mechanisms. Our study suggests that the same mechanism may be extended to other behavioural domains and that the investigation of gene expression following experimental manipulations should take seriously into account parent-of-origin effects. PMID:24446504

  3. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    NASA Technical Reports Server (NTRS)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  4. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus

    PubMed Central

    Smyllie, Nicola J.; Chesham, Johanna E.; Hamnett, Ryan; Maywood, Elizabeth S.; Hastings, Michael H.

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  5. Temporally chimeric mice reveal flexibility of circadian period-setting in the suprachiasmatic nucleus.

    PubMed

    Smyllie, Nicola J; Chesham, Johanna E; Hamnett, Ryan; Maywood, Elizabeth S; Hastings, Michael H

    2016-03-29

    The suprachiasmatic nucleus (SCN) is the master circadian clock controlling daily behavior in mammals. It consists of a heterogeneous network of neurons, in which cell-autonomous molecular feedback loops determine the period and amplitude of circadian oscillations of individual cells. In contrast, circuit-level properties of coherence, synchrony, and ensemble period are determined by intercellular signals and are embodied in a circadian wave of gene expression that progresses daily across the SCN. How cell-autonomous and circuit-level mechanisms interact in timekeeping is poorly understood. To explore this interaction, we used intersectional genetics to create temporally chimeric mice with SCN containing dopamine 1a receptor (Drd1a) cells with an intrinsic period of 24 h alongside non-Drd1a cells with 20-h clocks. Recording of circadian behavior in vivo alongside cellular molecular pacemaking in SCN slices in vitro demonstrated that such chimeric circuits form robust and resilient circadian clocks. It also showed that the computation of ensemble period is nonlinear. Moreover, the chimeric circuit sustained a wave of gene expression comparable to that of nonchimeric SCN, demonstrating that this circuit-level property is independent of differences in cell-intrinsic periods. The relative dominance of 24-h Drd1a and 20-h non-Drd1a neurons in setting ensemble period could be switched by exposure to resonant or nonresonant 24-h or 20-h lighting cycles. The chimeric circuit therefore reveals unanticipated principles of circuit-level operation underlying the emergent plasticity, resilience, and robustness of the SCN clock. The spontaneous and light-driven flexibility of period observed in chimeric mice provides a new perspective on the concept of SCN pacemaker cells. PMID:26966234

  6. PDP1ε functions downstream of the circadian oscillator to mediate behavioral rhythms Abbreviated title: PDP1ε function in the circadian clock

    PubMed Central

    Benito, Juliana; Zheng, Hao; Hardin, Paul E.

    2007-01-01

    The Drosophila circadian oscillator is comprised of autoregulatory period/timeless (per/tim) and Clock (Clk) feedback loops that control rhythmic transcription. In the Clk loop, CLOCK-CYCLE (CLK-CYC) heterodimers activate vrille (vri) and PAR domain protein 1ε (Pdp1ε) transcription, then sequential repression by VRI and activation by PDP1ε mediate rhythms in Clk transcription. Since VRI and PDP1ε bind the same regulatory element, the VRI/PDP1ε ratio is thought to control the level of Clk transcription. Thus, constant high or low PDP1ε levels in clock cells should eliminate Clk mRNA cycling and disrupt circadian oscillator function. Here we show that reducing PDP1ε levels in clock cells by ~70% via RNA interference or increasing PDP1ε levels by ~10-fold in clock cells does not alter Clk mRNA cycling or circadian oscillator function. However, constant low or high PDP1ε levels in clock cells disrupt locomotor activity rhythms despite persistent circadian oscillator function in brain pacemaker neurons that extend morphologically normal projections into the dorsal brain. These results demonstrate that the VRI/PDP1ε ratio neither controls Clk mRNA cycling nor circadian oscillator function, and argue that PDP1ε is not essential for Clk activation. PDP1ε is nevertheless required for behavioral rhythmicity, which suggests that it functions to regulate oscillator output. PMID:17344391

  7. How Does a Pacemaker Work?

    MedlinePlus

    ... the NHLBI on Twitter. How Does a Pacemaker Work? A pacemaker consists of a battery, a computerized ... these recordings to adjust your pacemaker so it works better for you. Your doctor can program the ...

  8. Distinct visual pathways mediate Drosophila larval light avoidance and circadian clock entrainment.

    PubMed

    Keene, Alex C; Mazzoni, Esteban O; Zhen, Jamie; Younger, Meg A; Yamaguchi, Satoko; Blau, Justin; Desplan, Claude; Sprecher, Simon G

    2011-04-27

    Visual organs perceive environmental stimuli required for rapid initiation of behaviors and can also entrain the circadian clock. The larval eye of Drosophila is capable of both functions. Each eye contains only 12 photoreceptors (PRs), which can be subdivided into two subtypes. Four PRs express blue-sensitive rhodopsin5 (rh5) and eight express green-sensitive rhodopsin6 (rh6). We found that either PR-subtype is sufficient to entrain the molecular clock by light, while only the Rh5-PR subtype is essential for light avoidance. Acetylcholine released from PRs confers both functions. Both subtypes of larval PRs innervate the main circadian pacemaker neurons of the larva, the neuropeptide PDF (pigment-dispersing factor)-expressing lateral neurons (LNs), providing sensory input to control circadian rhythms. However, we show that PDF-expressing LNs are dispensable for light avoidance, and a distinct set of three clock neurons is required. Thus we have identified distinct sensory and central circuitry regulating light avoidance behavior and clock entrainment. Our findings provide insights into the coding of sensory information for distinct behavioral functions and the underlying molecular and neuronal circuitry. PMID:21525293

  9. [Circadian rhythm sleep disorder].

    PubMed

    Mishima, Kazuo

    2013-12-01

    Primary pathophysiology of circadian rhythm sleep disorders(CRSDs) is a misalignment between the endogenous circadian rhythm phase and the desired or socially required sleep-wake schedule, or dysfunction of the circadian pacemaker and its afferent/efferent pathways. CRSDs consist of delayed sleep phase type, advanced sleep phase type, free-running type, irregular sleep-wake type, shift work type and jet lag type. Chronotherapy using strong zeitgebers (time cues), such as bright light and melatonin/ melatonin type 2 receptor agonist, is effective when administered with proper timing. Bright light is the strongest entraining agent of circadian rhythms. Bright light therapy (appropriately-timed exposure to bright light) for CRSDs is an effective treatment option, and can shift the sleep-wake cycle to earlier or later times, in order to correct for misalignment between the circadian system and the desired sleep-wake schedule. Timed administration of melatonin, either alone or in combination with light therapy has also been shown to be useful in the treatment of CRSDs.

  10. Photopic transduction implicated in human circadian entrainment

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Kronauer, R. E.; Czeisler, C. A.

    1997-01-01

    Despite the preeminence of light as the synchronizer of the circadian timing system, the phototransductive machinery in mammals which transmits photic information from the retina to the hypothalamic circadian pacemaker remains largely undefined. To determine the class of photopigments which this phototransductive system uses, we exposed a group (n = 7) of human subjects to red light below the sensitivity threshold of a scotopic (i.e. rhodopsin/rod-based) system, yet of sufficient strength to activate a photopic (i.e. cone-based) system. Exposure to this light stimulus was sufficient to reset significantly the human circadian pacemaker, indicating that the cone pigments which mediate color vision can also mediate circadian vision.

  11. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands.

    PubMed

    Noguchi, Takako; Ikeda, Masaaki; Ohmiya, Yoshihiro; Nakajima, Yoshihiro

    2012-01-01

    In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc) and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR), respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR) antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that this co

  12. Circadian Rhythms

    MedlinePlus

    ... chronobiology. Are circadian rhythms the same thing as biological clocks? No, but they are related. Our biological clocks drive our circadian rhythms. What are biological clocks? The biological clocks that control circadian rhythms ...

  13. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging

    PubMed Central

    Shafer, Orie T.; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O.; Lohse, Martin J.; Taghert, Paul H.

    2008-01-01

    Summary The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of ~150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases, and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH 31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus the network of ~150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with sub-cellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network. PMID:18439407

  14. Circadian Periods of Sensitivity for Ramelteon on the onset of Running-wheel Activity and the Peak of Suprachiasmatic Nucleus Neuronal Firing Rhythms in C3H/HeN Mice

    PubMed Central

    Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.

    2016-01-01

    Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro

  15. Plasticity of circadian clocks and consequences for metabolism.

    PubMed

    Coomans, C P; Lucassen, E A; Kooijman, S; Fifel, K; Deboer, T; Rensen, P C N; Michel, S; Meijer, J H

    2015-09-01

    The increased prevalence of metabolic disorders and obesity in modern society, together with the widespread use of artificial light at night, have led researchers to investigate whether altered patterns of light exposure contribute to metabolic disorders. This article discusses the experimental evidence that perturbed environmental cycles induce rhythm disorders in the circadian system, thus leading to metabolic disorders. This notion is generally supported by animal studies. Distorted environmental cycles, including continuous exposure to light, affect the neuronal organization of the central circadian pacemaker in the suprachiasmatic nucleus (SCN), its waveform and amplitude of the rhythm in electrical activity. Moreover, repeated exposure to a shifted light cycle or the application of dim light at night are environmental cues that cause a change in SCN function. The effects on the SCN waveform are the result of changes in synchronization among the SCN's neuronal cell population, which lead consistently to metabolic disturbances. Furthermore, we discuss the effects of sleep deprivation and the time of feeding on metabolism, as these factors are associated with exposure to disturbed environmental cycles. Finally, we suggest that these experimental studies reveal a causal relationship between the rhythm disorders and the metabolic disorders observed in epidemiological studies performed in humans.

  16. Plasticity of circadian clocks and consequences for metabolism.

    PubMed

    Coomans, C P; Lucassen, E A; Kooijman, S; Fifel, K; Deboer, T; Rensen, P C N; Michel, S; Meijer, J H

    2015-09-01

    The increased prevalence of metabolic disorders and obesity in modern society, together with the widespread use of artificial light at night, have led researchers to investigate whether altered patterns of light exposure contribute to metabolic disorders. This article discusses the experimental evidence that perturbed environmental cycles induce rhythm disorders in the circadian system, thus leading to metabolic disorders. This notion is generally supported by animal studies. Distorted environmental cycles, including continuous exposure to light, affect the neuronal organization of the central circadian pacemaker in the suprachiasmatic nucleus (SCN), its waveform and amplitude of the rhythm in electrical activity. Moreover, repeated exposure to a shifted light cycle or the application of dim light at night are environmental cues that cause a change in SCN function. The effects on the SCN waveform are the result of changes in synchronization among the SCN's neuronal cell population, which lead consistently to metabolic disturbances. Furthermore, we discuss the effects of sleep deprivation and the time of feeding on metabolism, as these factors are associated with exposure to disturbed environmental cycles. Finally, we suggest that these experimental studies reveal a causal relationship between the rhythm disorders and the metabolic disorders observed in epidemiological studies performed in humans. PMID:26332970

  17. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse.

    PubMed

    Tsuchiya, Yoshiki; Minami, Yoichi; Umemura, Yasuhiro; Watanabe, Hitomi; Ono, Daisuke; Nakamura, Wataru; Takahashi, Tomoyuki; Honma, Sato; Kondoh, Gen; Matsuishi, Toyojiro; Yagita, Kazuhiro

    2015-12-01

    Methyl-CpG-binding protein 2 (Mecp2) is an X-linked gene encoding a methylated DNA-binding nuclear protein which regulates transcriptional activity. The mutation of MECP2 in humans is associated with Rett syndrome (RTT), a neurodevelopmental disorder. Patients with RTT frequently show abnormal sleep patterns and sleep-associated problems, in addition to autistic symptoms, raising the possibility of circadian clock dysfunction in RTT. In this study, we investigated circadian clock function in Mecp2-deficient mice. We successfully generated both male and female Mecp2-deficient mice on the wild-type C57BL/6 background and PER2(Luciferase) (PER2(Luc)) knock-in background using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Generated Mecp2-deficient mice recapitulated reduced activity in mouse models of RTT, and their activity rhythms were diminished in constant dark conditions. Furthermore, real-time bioluminescence imaging showed that the amplitude of PER2(Luc)-driven circadian oscillation was significantly attenuated in Mecp2-deficient SCN neurons. On the other hand, in vitro circadian rhythm development assay using Mecp2-deficient mouse embryonic stem cells (ESCs) did not show amplitude changes of PER2(Luc) bioluminescence rhythms. Together, these results show that Mecp2 deficiency abrogates the circadian pacemaking ability of the SCN, which may be a therapeutic target to treat the sleep problems of patients with RTT.

  18. The Implantable Cardiac Pacemaker

    PubMed Central

    Trimble, A. S.; Heimbecker, R. O.; Bigelow, W. G.

    1964-01-01

    The transistorized implanted pacemaker is proving to be an effective and reliable method for long-term pacing of the heart. All patients suffering from Stokes-Adams seizures were first given a trial period of conservative therapy, including isoproterenol (Isuprel), ephedrine, atropine and steroids. Twenty-four pacemaker implants were performed on 23 patients over a 21-month period. The preoperative insertion of a pacemaker cardiac catheter was a very valuable safety precaution. In this way the heart could be safely and reliably paced during the period of preoperative assessment and during the critical periods of anesthetic induction and thoracotomy. Infection did not occur, probably because of careful gas sterilization of the units. Various models of pacemakers are compared, and the reasons for two pacemaker failures are presented. There were two early deaths and one late death in the series. The relationship of progressive coronary disease to recent infarction is stressed. Patients having intermittent heart block frequently showed the picture of “competing pacemakers” postoperatively, but without deleterious effect. Twenty patients, between 54 and 88 years of age, are alive and well at the time of reporting, with excellent pacemaker response and no further Stokes-Adams attacks. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14118681

  19. Insights into the Role of the Habenular Circadian Clock in Addiction

    PubMed Central

    Salaberry, Nora L.; Mendoza, Jorge

    2016-01-01

    Drug addiction is a brain disease involving alterations in anatomy and functional neural communication. Drug intake and toxicity show daily rhythms in both humans and rodents. Evidence concerning the role of clock genes in drug intake has been previously reported. However, the implication of a timekeeping brain locus is much less known. The epithalamic lateral habenula (LHb) is now emerging as a key nucleus in drug intake and addiction. This brain structure modulates the activity of dopaminergic neurons from the ventral tegmental area, a central part of the reward system. Moreover, the LHb has circadian properties: LHb cellular activity (i.e., firing rate and clock genes expression) oscillates in a 24-h range, and the nucleus is affected by photic stimulation and has anatomical connections with the main circadian pacemaker, the suprachiasmatic nucleus. Here, we describe the current insights on the role of the LHb as a circadian oscillator and its possible implications on the rhythmic regulation of the dopaminergic activity and drug intake. These data could inspire new strategies to treat drug addiction, considering circadian timing as a principal factor. PMID:26779042

  20. [A case of pacemaker-induced tachycardia].

    PubMed

    Krauss, H

    1980-05-01

    Report of a pacemaker induced tachycardia. Because of congestive heart failure therapy consisted in immediate replacement of the defective pacemaker. Analysis of the explanted pacemaker revealed a defect in the rate determining circuit. The rate protection limit prevented pacemaker runaway.

  1. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

    PubMed Central

    Tataroglu, Ozgur; Zhao, Xiaohu; Busza, Ania; Ling, Jinli; O’Neill, John S.; Emery, Patrick

    2015-01-01

    Summary Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles. PMID:26590423

  2. Feeding and circadian clocks.

    PubMed

    Pardini, Lissia; Kaeffer, Bertrand

    2006-01-01

    The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may possess the molecular components allowing tissues and organs to constitute peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by lighting cues captured and integrated by the melanopsin cells of the retina and define the daily rhythms of locomotor activity and associated physiological regulatory pathways like feeding and metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic environmental cues and uncoupled from the central one depending on the nature and the strength of the circadian signal. The human circadian clock and its functioning in central or peripheral tissues are currently being explored to increase the therapeutic efficacy of timed administration of drugs or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers suffering from jet lag and for night workers' comfort. However, the molecular mechanism driving and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting, feeding, physical or social activities) remains a mystery.

  3. Physiology of circadian entrainment.

    PubMed

    Golombek, Diego A; Rosenstein, Ruth E

    2010-07-01

    Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments. PMID:20664079

  4. Phase sensitivity analysis of circadian rhythm entrainment.

    PubMed

    Gunawan, Rudiyanto; Doyle, Francis J

    2007-04-01

    As a biological clock, circadian rhythms evolve to accomplish a stable (robust) entrainment to environmental cycles, of which light is the most obvious. The mechanism of photic entrainment is not known, but two models of entrainment have been proposed based on whether light has a continuous (parametric) or discrete (nonparametric) effect on the circadian pacemaker. A novel sensitivity analysis is developed to study the circadian entrainment in silico based on a limit cycle approach and applied to a model of Drosophila circadian rhythm. The comparative analyses of complete and skeleton photoperiods suggest a trade-off between the contribution of period modulation (parametric effect) and phase shift (nonparametric effect) in Drosophila circadian entrainment. The results also give suggestions for an experimental study to (in)validate the two models of entrainment.

  5. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells.

    PubMed

    Hwang, Christopher K; Chaurasia, Shyam S; Jackson, Chad R; Chan, Guy C-K; Storm, Daniel R; Iuvone, P Michael

    2013-09-18

    Spatial variation in light intensity, called spatial contrast, comprises much of the visual information perceived by mammals, and the relative ability to detect contrast is referred to as contrast sensitivity (Purves et al., 2012). Recently, retinal dopamine D4 receptors (D4Rs) have been implicated in modulating contrast sensitivity (Jackson et al., 2012); however, the cellular and molecular mechanisms have not been elucidated. Our study demonstrates a circadian rhythm of contrast sensitivity that peaks during the daytime, and that its regulation involves interactions of D4Rs, the clock gene Npas2, and the clock-controlled gene adenylyl cyclase 1 (Adcy1) in a subset of retinal ganglion cells (RGCs). Targeted disruption of the gene encoding D4Rs reduces the amplitude of the contrast sensitivity rhythm by reducing daytime sensitivity and abolishes the rhythmic expression of Npas2 and Adcy1 mRNA in the ganglion cell layer (GCL) of the retina. Npas2(-/-) and Adcy1(-/-) mice show strikingly similar reductions in the contrast sensitivity rhythm to that in mice lacking D4Rs. Moreover, Adcy1 transcript rhythms were abolished in the GCL of Npas2(-/-) mice. Luciferase reporter assays demonstrated that the Adcy1 promoter is selectively activated by neuronal PAS-domain protein 2 (NPAS2)/BMAL1. Our results indicate that the contrast sensitivity rhythm is modulated by D4Rs via a signaling pathway that involves NPAS2-mediated circadian regulation of Adcy1. Hence, we have identified a circadian clock mechanism in a subset of RGCs that modulates an important aspect of retinal physiology and visual processing.

  6. Radiation effect on implanted pacemakers

    SciTech Connect

    Pourhamidi, A.H.

    1983-10-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.

  7. Getting through to circadian oscillators: why use constant routines?

    NASA Technical Reports Server (NTRS)

    Duffy, Jeanne F.; Dijk, Derk-Jan

    2002-01-01

    Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.

  8. Circadian light-input pathways in Drosophila.

    PubMed

    Yoshii, Taishi; Hermann-Luibl, Christiane; Helfrich-Förster, Charlotte

    2016-01-01

    Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been well-studied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called "clock neurons" and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock. PMID:27066180

  9. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  10. Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson’s disease: insights from a transgenic mouse model

    PubMed Central

    Willison, L. David; Kudo, Takashi; Loh, Dawn H.; Kuljis, Dika; Colwell, Christopher S.

    2014-01-01

    Sleep disorders are nearly ubiquitous among patients with Parkinson’s disease (PD), and they manifest early in the disease process. While there are a number of possible mechanisms underlying these sleep disturbances, a primary dysfunction of the circadian system should be considered as a contributing factor. Our laboratory’s behavioral phenotyping of a well-validated transgenic mouse model of PD reveals that the electrical activity of neurons within the master pacemaker of the circadian system, the suprachiasmatic nuclei (SCN), is already disrupted at the onset of motor symptoms, although the core features of the intrinsic molecular oscillations in the SCN remain functional. Our observations suggest that the fundamental circadian deficit in these mice lies in the signaling output from the SCN, which may be caused by known mechanisms in PD etiology: oxidative stress and mitochondrial disruption. Disruption of the circadian system is expected to have pervasive effects throughout the body and may itself lead to neurological and cardiovascular disorders. In fact, there is much overlap in the non-motor symptoms experienced by PD patients and in the consequences of circadian disruption. This raises the possibility that the sleep and circadian dysfunction experienced by PD patients may not merely be a subsidiary of the motor symptoms, but an integral part of the disease. Furthermore, we speculate that circadian dysfunction can even accelerate the pathology underlying PD. If these hypotheses are correct, more aggressive treatment of the circadian misalignment and sleep disruptions in PD patients early in the pathogenesis of the disease may be powerful positive modulators of disease progression and patient quality of life. PMID:23353924

  11. Pacemakers (Beyond the Basics)

    MedlinePlus

    ... is pulsed on and off at a rapid rate. For most patients with a pacemaker, this procedure is a relative contraindication. ● Transcutaneous electrical nerve/muscle stimulators (TENS), a method of pain control. ● Diathermy, which heats body tissues with high-frequency electromagnetic radiation or ...

  12. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction

    PubMed Central

    Li, Ai-Jun; Dinh, Thu T.; Jansen, Heiko T.; Ritter, Sue

    2013-01-01

    Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues. PMID:23986359

  13. Acute exposure to 2G phase shifts the rat circadian timing system

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, T. M.; Murakami, D. M.; Tandon, T.; Fuller, C. A.

    1995-01-01

    The circadian timing system (CTS) provides internal and external temporal coordination of an animal's physiology and behavior. In mammals, the generation and coordination of these circadian rhythms is controlled by a neural pacemaker, the suprachiasmatic nucleus (SCN), located within the hypothalamus. The pacemaker is synchronized to the 24 hour day by time cures (zeitgebers) such as the light/dark cycle. When an animal is exposed to an environment without time cues, the circadian rhythms maintain internal temporal coordination, but exhibit a 'free-running' condition in which the period length is determined by the internal pacemaker. Maintenance of internal and external temporal coordination are critical for normal physiological and psychological function in human and non-human primates. Exposure to altered gravitational environments has been shown to affect the amplitude, mean, and timing of circadian rhythms in species ranging from unicellular organisms to man. However, it has not been determined whether altered gravitational fields have a direct effect on the neural pacemaker, or affect peripheral parameters. In previous studies, the ability of a stimulus to phase shift circadian rhythms was used to determine whether a stimulus has a direct effect on the neural pacemaker. The present experiment was performed in order to determine whether acute exposure to a hyperdynamic field could phase shift circadian rhythms.

  14. Impact of nutrients on circadian rhythmicity

    PubMed Central

    Oosterman, Johanneke E.; Kalsbeek, Andries; la Fleur, Susanne E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock. PMID:25519730

  15. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.

    PubMed

    Schibler, Ueli; Gotic, Ivana; Saini, Camille; Gos, Pascal; Curie, Thomas; Emmenegger, Yann; Sinturel, Flore; Gosselin, Pauline; Gerber, Alan; Fleury-Olela, Fabienne; Rando, Gianpaolo; Demarque, Maud; Franken, Paul

    2015-01-01

    In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs.

  16. The role of circadian rhythm in breast cancer.

    PubMed

    Li, Shujing; Ao, Xiang; Wu, Huijian

    2013-08-01

    The circadian rhythm is an endogenous time keeping system shared by most organisms. The circadian clock is comprised of both peripheral oscillators in most organ tissues of the body and a central pacemaker located in the suprachiasmatic nucleus (SCN) of the central nervous system. The circadian rhythm is crucial in maintaining the normal physiology of the organism including, but not limited to, cell proliferation, cell cycle progression, and cellular metabolism; whereas disruption of the circadian rhythm is closely related to multi-tumorigenesis. In the past several years, studies from different fields have revealed that the genetic or functional disruption of the molecular circadian rhythm has been found in various cancers, such as breast, prostate, and ovarian. In this review, we will investigate and present an overview of the current research on the influence of circadian rhythm regulating proteins on breast cancer.

  17. [Sport for pacemaker patients].

    PubMed

    Israel, C W

    2012-06-01

    Sport activity is an important issue in many patients with a pacemaker either because they performed sport activities before pacemaker implantation to reduce the cardiovascular risk or to improve the course of an underlying cardiovascular disease (e.g. coronary artery disease, heart failure) by sports. Compared to patients with an implantable cardioverter defibrillator (ICD) the risks from underlying cardiovascular disease (e.g. ischemia, heart failure), arrhythmia, lead dysfunction or inappropriate therapy are less important or absent. Sport is contraindicated in dyspnea at rest, acute heart failure, new complex arrhythmia, acute myocarditis and acute myocardial infarction, valvular disease with indications for intervention and surgery and comorbidities which prevent physical activity. Patients with underlying cardiovascular disease (including hypertension) should preferably perform types and levels of physical activity that are aerobic (with dynamic exercise) such as running, swimming, cycling instead of sport with high anaerobic demands and high muscular workload. In heart failure, studies demonstrated advantages of isometric sport that increases the amount of muscle, thereby preventing cardiac cachexia. Sport with a risk of blows to the chest or physical contact (e.g. boxing, rugby, martial arts) should be avoided. Implantation, programming and follow-up should respect specific precautions to allow optimal physical activity with a pacemaker including implantation of bipolar leads on the side contralateral to the dominant hand, individual programming of the upper sensor and tracking rate and regular exercise testing. PMID:22854824

  18. Integration of human sleep-wake regulation and circadian rhythmicity

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan; Lockley, Steven W.

    2002-01-01

    The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.

  19. Circadian Disruption

    PubMed Central

    Voigt, Robin M.; Forsyth, Christopher B.; Keshavarzian, Ali

    2013-01-01

    Circadian rhythms are a prominent and critical feature of cells, tissues, organs, and behavior that help an organism function most efficiently and anticipate things such as food availability. Therefore, it is not surprising that disrupted circadian rhythmicity, a prominent feature of modern-day society, promotes the development and/or progression of a wide variety of diseases, including inflammatory, metabolic, and alcohol-associated disorders. This article will discuss the influence of interplay between alcohol consumption and circadian rhythmicity and how circadian rhythm disruption affects immune function and metabolism as well as potential epigenetic mechanisms that may be contributing to this phenomenon. PMID:24313168

  20. Circadian clocks: lessons from fish.

    PubMed

    Idda, M Laura; Bertolucci, Cristiano; Vallone, Daniela; Gothilf, Yoav; Sánchez-Vázquez, Francisco Javier; Foulkes, Nicholas S

    2012-01-01

    Our understanding of the molecular and cellular organization of the circadian timing system in vertebrates has increased enormously over the past decade. In large part, progress has been based on genetic studies in the mouse as well as on fundamental similarities between vertebrate and Drosophila clocks. The zebrafish was initially considered as a potentially attractive genetic model for identifying vertebrate clock genes. However, instead, fish have ultimately proven to be valuable complementary models for studying various aspects of clock biology. For example, many fish can shift from diurnal to nocturnal activity implying specific flexibility in their clock function. We have learned much about the function of light input pathways, and the ontogeny and function of the pineal organ, the fish central pacemaker. Finally, blind cavefish have also provided new insight into the evolution of the circadian clock under extreme environmental conditions. PMID:22877658

  1. Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks.

    PubMed

    Colavito, Valeria; Tesoriero, Chiara; Wirtu, Amenu T; Grassi-Zucconi, Gigliola; Bentivoglio, Marina

    2015-07-01

    The paraventricular thalamic nucleus (PVT), the main component of the dorsal thalamic midline, receives multiple inputs from the brain stem and hypothalamus, and targets the medial prefrontal cortex, nucleus accumbens and amygdala. PVT has been implicated in several functions, especially adaptation to chronic stress, addiction behaviors and reward, mood, emotion. We here focus on the wiring and neuronal properties linking PVT with circadian timing and sleep/wake regulation, and their behavioral implications. PVT is interconnected with the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus, receives direct and indirect photic input, is densely innervated by orexinergic neurons which play a key role in arousal and state transitions. Endowed with prominent wake-related Fos expression which is suppressed by sleep, and with intrinsic neuronal properties showing a diurnal oscillation unique in the thalamus, PVT could represent a station of interaction of thalamic and hypothalamic sleep/wake-regulatory mechanisms. PVT could thus play a strategic task by funneling into limbic and limbic-related targets circadian timing and state-dependent behavior information, tailoring it for cognitive performance and motivated behaviors.

  2. [Molecular mechanisms of circadian clock functioning].

    PubMed

    Karbovskyĭ, L L; Minchenko, D O; Garmash, Ia A; Minchenko, O G

    2011-01-01

    Most physiological processes of all organisms are rhythmic with a period of about 24 h and are generated by an endogenous biological CLOCK present in all cells. However, there is also a central CLOCK--the primary circadian pacemaker which is localized in the suprachiasmatic nuclei of the mammalian hypothalamus. Factors of groups Period (PER1, PER2 and PER3), BMAL (BMAL1 and BMAL2), CRYptochromes (CRY1 and CRY2) as well as some other factors are the components of this circadian CLOCK system. Some of these genes contain E-box sequences and their expression is regulated by a transcription factor complex CLOCK-BMAL1. The enzymes responsible for the post-translational modification of circadian gene products are also the components of circadian CLOCK system. These enzymes define CLOCK's work and determine the duration of circadian biorhythm and functional state of the whole organism. The most important of these enzymes are casein kinase-1epsilon and -1delta. We have analysed data about the interconnection between the circadian CLOCK system, cell cycle, and cancerogenesis as well as about the sensitivity of circadian gene expression to the action of toxic agents and nanomaterials.

  3. Experimental evidence of a chaotic region in a neural pacemaker

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Jia, Bing; Chen, Guan-Rong

    2013-03-01

    In this Letter, we report the finding of period-adding scenarios with chaos in firing patterns, observed in biological experiments on a neural pacemaker, with fixed extra-cellular potassium concentration at different levels and taken extra-cellular calcium concentration as the bifurcation parameter. The experimental bifurcations in the two-dimensional parameter space demonstrate the existence of a chaotic region interwoven with the periodic region thereby forming a period-adding sequence with chaos. The behavior of the pacemaker in this region is qualitatively similar to that of the Hindmarsh-Rose neuron model in a well-known comb-shaped chaotic region in two-dimensional parameter spaces.

  4. Trends in Cardiac Pacemaker Batteries

    PubMed Central

    Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N.Srinivasa

    2004-01-01

    Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934

  5. Trends in cardiac pacemaker batteries.

    PubMed

    Mallela, Venkateswara Sarma; Ilankumaran, V; Rao, N Srinivasa

    2004-01-01

    Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future. PMID:16943934

  6. Defibrillator/monitor/pacemakers.

    PubMed

    2003-05-01

    Defibrillator/monitors allow operators to assess and monitor a patient's ECG and, when necessary, deliver a defibrillating shock to the heart. When integral noninvasive pacing is added, the device is called a defibrillator/monitor/pacemaker. In this Evaluation, we present our findings for two newly evaluated models, the Welch Allyn PIC 50 and the Zoll M Series CCT, and we summarize our findings for the previously evaluated models that are still on the market. We rate the models for the following applications: general crash-cart use, in-hospital transport use, and emergency medical service (EMS) use.

  7. Light-induced suppression of endogenous circadian amplitude in humans

    NASA Technical Reports Server (NTRS)

    Jewett, Megan; Czeisler, Charles A.; Kronauer, Richard E.

    1991-01-01

    A recent demonstration that the phase of the human circadian pacemaker could be inverted using an unconventional three-cycle stimulus has led to an investigation of whether critically timed exposure to a more moderate stimulus could drive that oscillator toward its singularity, a phaseless position at which the amplitude of circadian oscillation is zero. It is reported here that exposure of humans to fewer cycles of bright light, centered around the time at which the human circadian pacemaker is most sensitive to light-induced phase shifts, can markedly attenuate endogenous cicadian amplitude. In some cases this results in an apparent loss of rhythmicity, as expected to occur in the region of singularity.

  8. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    PubMed Central

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  9. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network.

    PubMed

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-07-19

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons.

  10. 1978 Pacemaker Newspaper Awards: What Makes a Pacemaker?

    ERIC Educational Resources Information Center

    Brasler, Wayne

    1979-01-01

    Lists the nine high school and college newspapers, and the one newsmagazine, that won Pacemaker Awards in 1978; discusses characteristics that make each of them outstanding, and provides reproductions of a front page from each publication. (GT)

  11. Differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. [X-rays

    SciTech Connect

    Woolum, J.C.; Strumwasser, F.

    1980-09-01

    Ionizing radiation has been used to selectively separate the circadian oscillator function of the eye of Aplysia from some of its other functions-synchronous compound action potential (CAP) generation, the light response, synaptic transmission between photoreceptors and output neurons, and the bursting pacemaker mechanism. Doses of 4-krad (50 kV peak) x-rays have a minimal effect on the circadian rhythm of CAP frequency, measured from the optic nerve, whereas irradiation with a 40-krad dose abolishes the rhythm without affecting any of the four other functions of this eye. We estimate a 50% survival of the oscillator function at doses of about 6 krad. The results, including those from selective irradiation of the anterior or posterior poles of the eye, suggest that there are a number of circadian oscillators in the eye-most of them in the posterior portion near the optic nerve. An approximate target size has been obtained from target theory, approx. =10/sup 8/ A/sup 3/, which is somewhat larger than the target size for viral infectivity function, as one example. However, this approximate target size and the fact that recovery or repair can occur in vivo suggest that the oscillator may involve nucleic acid molecules.

  12. Synergic entrainment of Drosophila's circadian clock by light and temperature.

    PubMed

    Yoshii, Taishi; Vanin, Stefano; Costa, Rodolfo; Helfrich-Förster, Charlotte

    2009-12-01

    Daily light and temperature cycles are considered the most important zeitgebers for circadian clocks in many organisms. The influence of each single zeitgeber on the clock has been well studied, but little is known about any synergistic effects of both zeitgebers on the clock. In nature, light and temperature show characteristic daily oscillations with the temperature rising during the light phase and reaching its maximum in the late afternoon. Here, we studied behavioral and molecular rhythms in Drosophila melanogaster under simulated natural low light-dark (LD) and temperature (T) cycles that typically occur during the September equinox. Wild-type flies were either subjected to simulated LD or T cycles alone or to a combination of both. Behavioral rhythms and molecular rhythms in the different clock neurons were assessed under the 3 different conditions. Although behavioral rhythms entrained to all conditions, the rhythms were most robust under the combination of LD and T cycles. The clock neurons responded differently to LD and T cycles. Some were not entrained by T cycles alone; others were only slightly entrained by LD cycles alone. The amplitude of the molecular cycling was not different between LD alone and T cycles alone; but LD alone could set the pacemaker neurons to similar phases, whereas T cycles alone could not. The combination of the 2 zeitgebers entrained all clock neurons not only with similar phase but also enhanced the amplitude of Timeless cycling in the majority of cells. Our results show that the 2 zeitgebers synergistically entrain behavioral and molecular rhythms of Drosophila melanogaster. PMID:19926805

  13. Gut clock: implication of circadian rhythms in the gastrointestinal tract.

    PubMed

    Konturek, P C; Brzozowski, T; Konturek, S J

    2011-04-01

    Circadian and seasonal rhythms are a fundamental feature of all living organisms and their organelles. Biological rhythms are responsible for daily food intake; the period of hunger and satiety is controlled by the central pacemaker, which resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, and communicates with tissues via bidirectional neuronal and humoral pathways. The molecular basis for circadian timing in the gastrointestinal tract (GIT) involves interlocking transcriptional/translational feedback loops which culminate in the rhythmic expression and activity of a set of clock genes and related hormones. Interestingly, it has been found that clocks in the GIT are responsible for the periodic activity (PA) of its various segments and transit along the GIT; they are localized in special interstitial cells, with unstable membrane potentials located between the longitudinal and circular muscle layers. The rhythm of slow waves is controlled in various segments of the GIT: in the stomach (about 3 cycles per min), in the duodenum (12 cycle per min), in the jejunum and ileum (from 7 to 10 cycles per min), and in the colon (12 cycles per min). The migrating motor complex (MMC) starts in the stomach and moves along the gut causing peristaltic contractions when the electrical activity spikes are superimposed on the slow waves. GIT hormones, such as motilin and ghrelin, are involved in the generation of MMCs, while others (gastrin, ghrelin, cholecystokinin, serotonin) are involved in the generation of spikes upon the slow waves, resulting in peristaltic or segmental contractions in the small (duodenum, jejunum ileum) and large bowel (colon). Additionally, melatonin, produced by neuro-endocrine cells of the GIT mucosa, plays an important role in the internal biological clock, related to food intake (hunger and satiety) and the myoelectric rhythm (produced primarily by the pineal gland during the dark period of the light-dark cycle). This appears to be an

  14. Possible involvement of central pacemakers in clinical disorders of movement.

    PubMed

    DeLong, M R

    1978-06-01

    This review considers the evidence for possible involvement of central nervous system pacemaker neurons in several clinical disorders of movement. Two basic types of tremor are discussed from this point of view, i.e., 4--7/sec parkinsonian tremor, of possible thalamocortical origin, and 7--11/sec essential tremor of possible olivo-cerebellar origin. The importance of motor programs and abnormalities in their utilization are considered with reference to the loss of motor function in parkinsonism (? loss of motor programs), and the inappropriate release of such programs as a possible basis for the involuntary movements seen in other movement disorders, such as chorea, athetosis, dystonia, and hemiballismus. The possible role of pacemaker neurons controlling such programs is considered. Finally, the subject of locomotion and the pacemaker model of the spinal locomotor pattern generator for stepping are considered in relation to clinical disorders of gait. While critical evidence is lacking for pacemaker inovlvement in any of these disorders, their possible role is emphasized. PMID:350632

  15. Pacemaker and Defibrillator Lead Extraction

    MedlinePlus

    ... to cure the infection without completely removing all hardware from the body. This requires removal of the ... Footnotes References Figures & Tables Info & Metrics eLetters Article Tools Print Citation Tools Pacemaker and Defibrillator Lead Extraction ...

  16. A rare case of "runaway" pacemaker in a modern CPU-controlled pacemaker.

    PubMed

    Makaryus, Amgad N; Patrick, Carol; Maccaro, Paul

    2005-09-01

    "Runaway" pacemaker is a rare entity that occurs when a malfunctioning artificial cardiac pacemaker abruptly accelerates its pacing rate above the set upper rate limit. This can result in life-threatening dysrhythmia. Runaway pacemaker used to occur more frequently in older model pacemakers, but now with newer pacemaker generators, runaway pacemaker is a rare entity. We report the case of a runaway pacemaker in a modern CPU-controlled pacemaker in a 79-year-old man presenting with lightheadedness and review the literature regarding this rare entity.

  17. Circadian rhythms and addiction: Mechanistic insights and future directions

    PubMed Central

    Logan, Ryan W.; Williams, Wilbur P.; McClung, Colleen A.

    2014-01-01

    Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes, may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction, and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction. PMID:24731209

  18. The Effects of Spaceflight on the Rat Circadian Timing System

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Murakami, Dean M.; Hoban-Higgins, Tana M.; Fuller, Patrick M.; Robinson, Edward L.; Tang, I.-Hsiung

    2003-01-01

    Two fundamental environmental influences that have shaped the evolution of life on Earth are gravity and the cyclic changes occurring over the 24-hour day. Light levels, temperature, and humidity fluctuate over the course of a day, and organisms have adapted to cope with these variations. The primary adaptation has been the evolution of a biological timing system. Previous studies have suggested that this system, named the circadian (circa - about; dies - a day) timing system (CTS), may be sensitive to changes in gravity. The NASA Neurolab spaceflight provided a unique opportunity to evaluate the effects of microgravity on the mammalian CTS. Our experiment tested the hypotheses that microgravity would affect the period, phasing, and light sensitivity of the CTS. Twenty-four Fisher 344 rats were exposed to 16 days of microgravity on the Neurolab STS-90 mission, and 24 Fisher 344 rats were also studied on Earth as one-G controls. Rats were equipped with biotelemetry transmitters to record body temperature (T(sub b)) and heart rate (HR) continuously while the rats moved freely. In each group, 18 rats were exposed to a 24-hour light-dark (LD 12:12) cycle, and six rats were exposed to constant dim red-light (LL). The ability of light to induce a neuronal activity marker (c-fos) in the circadian pacemaker of the brain, the suprachiasmatic nucleus (SCN), was examined in rats studied on flight days two (FD2) and 14 (FD14), and postflight days two (R+1) and 14 (R+13). The flight rats in LD remained synchronized with the LD cycle. However, their T(sub b), rhythm was markedly phase-delayed relative to the LD cycle. The LD flight rats also had a decreased T(sub b) and a change in the waveform of the T(sub b) rhythm compared to controls. Rats in LL exhibited free-running rhythms of T(sub b), and HR; however, the periods were longer in microgravity. Circadian period returned to preflight values after landing. The internal phase angle between rhythms was different in flight than

  19. IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.

    PubMed

    Granados-Fuentes, Daniel; Hermanstyne, Tracey O; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D

    2015-10-01

    Neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, display daily rhythms in electrical activity with more depolarized resting potentials and higher firing rates during the day than at night. Although these daily variations in the electrical properties of SCN neurons are required for circadian rhythms in physiology and behavior, the mechanisms linking changes in neuronal excitability to the molecular clock are not known. Recently, we reported that mice deficient for either Kcna4 (Kv1.4(-/-)) or Kcnd2 (Kv4.2(-/-); but not Kcnd3, Kv4.3(-/-)), voltage-gated K(+) (Kv) channel pore-forming subunits that encode subthreshold, rapidly activating, and inactivating K(+) currents (IA), have shortened (0.5 h) circadian periods in SCN firing and in locomotor activity compared with wild-type (WT) mice. In the experiments here, we used a mouse (Per2(Luc)) line engineered with a bioluminescent reporter construct, PERIOD2::LUCIFERASE (PER2::LUC), replacing the endogenous Per2 locus, to test the hypothesis that the loss of Kv1.4- or Kv4.2-encoded IA channels also modifies circadian rhythms in the expression of the clock protein PERIOD2 (PER2). We found that SCN explants from Kv1.4(-/-)Per2(Luc) and Kv4.2(-/-) Per2(Luc), but not Kv4.3(-/-)Per2(Luc), mice have significantly shorter (by approximately 0.5 h) circadian periods in PER2 rhythms, compared with explants from Per2(Luc) mice, revealing that the membrane properties of SCN neurons feedback to regulate clock (PER2) expression. The combined loss of both Kv1.4- and Kv4.2-encoded IA channels in Kv1.4(-/-)/Kv4.2(-/-)Per2(Luc) SCN explants did not result in any further alterations in PER2 rhythms. Interestingly, however, mice lacking both Kv1.4 and Kv4.2 show a striking (approximately 1.8 h) advance in their daily activity onset in a light cycle compared with WT mice, suggesting additional roles for Kv1.4- and Kv4.2-encoded IA channels in controlling the light-dependent responses of neurons within

  20. Plasticity of the Intrinsic Period of the Human Circadian Timing System

    PubMed Central

    Scheer, Frank A.J.L.; Wright, Kenneth P.; Kronauer, Richard E.; Czeisler, Charles A.

    2007-01-01

    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration. PMID:17684566

  1. Defibrillator/monitor/pacemakers.

    PubMed

    2005-06-01

    In this Evaluation, we present our test results and ratings for two newly evaluated defibrillator/monitor/pacemakers--the Medtronic ERS Lifepak 20 and the Philips HeartStart MRx. We also summarize and update our findings for eight previously evaluated models that are still on the market. We rate the models based on their desirability for in-hospital applications, such as general crash-cart use and in-hospital transport use, and for prehospital applications, specifically emergency medical service (EMS) use. The primary function of the devices examined in this study is to allow operators to assess and monitor a patient's ECG and, when necessary, deliver a defibrillating shock to the heart. However, currently available models can also be equipped to do much more during a resuscitation attempt - from monitoring multiple physiologic parameters to providing noninvasive pacing capability to functioning as an automated external defibrillator (AED). Our testing examined all these capabilities to help hospital and EMS purchasers make effective selection decisions.

  2. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.

    PubMed

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan; Rehfeld, Jens F; Friis-Hansen, Lennart

    2010-09-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei.

  3. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  4. Clinical experience with nuclear pacemakers.

    PubMed

    Parsonnet, V; Myers, G H; Gilbert, L; Zucker, I R

    1975-12-01

    Approximately 1,400 nuclear pacemakers have been implanted in patients since April, 1970, without a single battery failure; 64 of these have been implanted at the Newark Beth Israel Medical Center. All except four of the 64 pulse generators were attached to transvenous electrodes, 39 to pacing wires already in place. Fifty-nine of the 64 units are in service and continue to function normally in a follow-up period of up to 2 years. In the total worldwide experience, 70 pacemakers are out of service, approximately half because of the patient's death, and the rest for infection or lead problems, and only three or four because of difficulties with components. The first 15 ARCO pacemakers implanted 2 years ago continue to function well. Of the 15 control pacemakers implanted at the same time, one unit has failed. We have concluded that a nuclear pacemaker should not be used in a patient with limited life expectancy or in an infant, but for the otherwise healthy young or middle-age individual, it should be the unit of choice.

  5. Devices That May Interfere with Pacemakers

    MedlinePlus

    ... and the devices that may interfere with pulse generators. Carry your pacemaker ID card to prove that ... 3 watts) don't appear to damage pulse generators or affect how the pacemaker works. Technology is ...

  6. Regulation of circadian rhythms in mammals by behavioral arousal.

    PubMed

    Webb, Ian C; Antle, Michael C; Mistlberger, Ralph E

    2014-06-01

    Circadian rhythms in most mammals are synchronized to local time by phase and period resetting actions of daily light-dark cycles on a retino-recipient, light-entrainable circadian pacemaker, the suprachiasmatic nucleus (SCN). The SCN receives input from other brain regions, some of which mediate the phase and period resetting actions of behavioral arousal on circadian rhythms. We review historical milestones in the discovery of so-called "nonphotic" circadian clock resetting induced by environmentally stimulated arousal, or by feedback from clock-controlled rest-activity cycles. Topics include species generality, interactions between concurrent or successive photic and nonphotic inputs to the circadian clock, neural pathways, neurotransmitters, and clock cell responses that mediate resetting by behavioral arousal. The role of behavioral inputs to the circadian clock in determining the phase of entrainment to local time in natural environments is not well understood. Nonetheless, nonphotic effects are of sufficient magnitude to raise issues for the design of experiments in behavioral neuroscience (any procedure that is sufficiently arousing may alter the timing of circadian clocks that regulate dependent variables of primary interest). Nonphotic inputs to the clock may be exploited in strategies to reset or strengthen circadian rhythms in humans. PMID:24773430

  7. Regulation of circadian rhythms in mammals by behavioral arousal.

    PubMed

    Webb, Ian C; Antle, Michael C; Mistlberger, Ralph E

    2014-06-01

    Circadian rhythms in most mammals are synchronized to local time by phase and period resetting actions of daily light-dark cycles on a retino-recipient, light-entrainable circadian pacemaker, the suprachiasmatic nucleus (SCN). The SCN receives input from other brain regions, some of which mediate the phase and period resetting actions of behavioral arousal on circadian rhythms. We review historical milestones in the discovery of so-called "nonphotic" circadian clock resetting induced by environmentally stimulated arousal, or by feedback from clock-controlled rest-activity cycles. Topics include species generality, interactions between concurrent or successive photic and nonphotic inputs to the circadian clock, neural pathways, neurotransmitters, and clock cell responses that mediate resetting by behavioral arousal. The role of behavioral inputs to the circadian clock in determining the phase of entrainment to local time in natural environments is not well understood. Nonetheless, nonphotic effects are of sufficient magnitude to raise issues for the design of experiments in behavioral neuroscience (any procedure that is sufficiently arousing may alter the timing of circadian clocks that regulate dependent variables of primary interest). Nonphotic inputs to the clock may be exploited in strategies to reset or strengthen circadian rhythms in humans.

  8. Factors defining a pacemaker region for synchrony in the hippocampus

    PubMed Central

    Wittner, Lucia; Miles, Richard

    2007-01-01

    Synchronous activities of neuronal populations are often initiated in a pacemaker region and spread to recruit other regions. Here we examine factors that define a pacemaker site. The CA3a region acts as the pacemaker for disinhibition induced synchrony in guinea pig hippocampal slices and CA3b is a follower region. We found CA3a pyramidal cells were more excitable and fired in bursts more frequently than CA3b cells. CA3a cells had more complex dendritic arbors than CA3b cells especially in zones targetted by recurrent synapses. The product of the density of pyramidal cell axon terminals and dendritic lengths in innervated zones predicted a higher recurrent synaptic connectivity in the CA3a than in the CA3b region. We show that some CA3a cells but few CA3b cells behave as pacemaker cells by firing early during population events and by recruiting follower cells to fire. With a greater excitability and enhanced synaptic connectivity these CA3a cells may also possess initiating functions for other hippocampal ensemble activities initiated in this region. PMID:17823211

  9. Introduction: circadian rhythm and its disruption: impact on reproductive function.

    PubMed

    Casper, Robert F; Gladanac, Bojana

    2014-08-01

    Almost all forms of life have predictable daily or circadian rhythms in molecular, endocrine, and behavioral functions. In mammals, a central pacemaker located in the suprachiasmatic nuclei coordinates the timing of these rhythms. Daily light exposure that affects the retina of the eye directly influences this area, which is required to align endogenous processes to the appropriate time of day. The present "Views and Reviews" articles discuss the influence of circadian rhythms, especially nightly secretion of melatonin, on reproductive function and parturition. In addition, an examination is made of problems that arise from recurrent circadian rhythm disruption associated with changes in light exposure patterns common to modern day society. Finally, a possible solution to prevent disruptions in circadian phase markers by filtering out short wavelengths from nocturnal light is reviewed.

  10. 21 CFR 870.3670 - Pacemaker charger.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a...

  11. 21 CFR 870.3670 - Pacemaker charger.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a...

  12. 21 CFR 870.3670 - Pacemaker charger.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a...

  13. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to change noninvasively one or more...

  14. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more...

  15. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker programmers. 870.3700 Section 870.3700...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker programmers. (a) Identification. A pacemaker programmer is a device used to noninvasively change one or more...

  16. Circadian biology: rhythms leave their imprint.

    PubMed

    Ray, David W

    2015-03-01

    A recent study has revealed that loss of neuronal expression of the paternally imprinted gene Ube3a in Angelman syndrome results in selective neuronal loss of robust circadian oscillations, with a resulting behavioural phenotype, and adipose tissue accumulation. PMID:25734270

  17. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster.

    PubMed

    Helfrich-Förster, Charlotte; Shafer, Orie T; Wülbeck, Corinna; Grieshaber, Eva; Rieger, Dirk; Taghert, Paul

    2007-01-01

    The clock-gene-expressing lateral neurons are essential for the locomotor activity rhythm of Drosophila melanogaster. Traditionally, these neurons are divided into three groups: the dorsal lateral neurons (LN(d)), the large ventral lateral neurons (l-LN(v)), and the small ventral lateral neurons (s-LN(v)), whereby the latter group consists of four neurons that express the neuropeptide pigment-dispersing factor (PDF) and a fifth PDF-negative neuron. So far, only the l-LN(v) and the PDF-positive s-LN(v) have been shown to project into the accessory medulla, a small neuropil that contains the circadian pacemaker center in several insects. We show here that the other lateral neurons also arborize in the accessory medulla, predominantly forming postsynaptic sites. Both the l-LN(v) and LN(d) are anatomically well suited to connect the accessory medullae. Whereas the l-LN(v) may receive ipsilateral photic input from the Hofbauer-Buchner eyelet, the LN(d) invade mainly the contralateral accessory medulla and thus may receive photic input from the contralateral side. Both the LN(d) and the l-LN(v) differentiate during midmetamorphosis. They do so in close proximity to one another and the fifth PDF-negative s-LN(v), suggesting that these cell groups may derive from common precursors. PMID:17099895

  18. Lithium pacemaker batteries - an overview

    SciTech Connect

    Liang, C.C.; Holmes, C.F.

    1980-01-01

    Batteries used as power sources in cardiac pacemakers are expected to have high energy density, long storage and operating life and high reliability. They must be nonhazardous under normal operating as well as abusive conditions. Intensive research activities on the past 10-15 years have resulted in the development of a variety of high energy density batteries using Li as the anode material (Li-batteries). At least six different chemical systems with Li anodes are in use as power sources for cardiac pacemakers. Some basic characteristics of these systems are discussed. 11 refs.

  19. Gastrin Releasing Peptide Modulates Fast Delayed Rectifier Potassium Current in Per1-Expressing SCN Neurons

    PubMed Central

    Gamble, Karen L.; Kudo, Takashi; Colwell, Christopher S.; McMahon, Douglas G.

    2011-01-01

    The mammalian circadian clock in the suprachiasmatic nucleus (SCN) drives and maintains 24-h physiological rhythms, the phases of which are set by the local environmental light-dark cycle. Gastrin releasing peptide (GRP) communicates photic phase setting signals in the SCN by increasing neurophysiological activity of SCN neurons. Here, the ionic basis for persistent GRP-induced changes in neuronal activity was investigated in SCN slice cultures from Per1::GFP reporter mice during the early night. Recordings from Per1-fluorescent neurons in SCN slices several hours after GRP treatment revealed a significantly greater action potential frequency, a significant increase in voltage-activated outward current at depolarized potentials, and a significant increase in 4-aminopyridine (4-AP) sensitive fast delayed rectifier (fDR) potassium currents when compared to vehicle-treated slices. In addition, the persistent increase in spike rate following early night GRP application was blocked in SCN neurons from mice deficient in Kv3 channel proteins. Because fDR currents are regulated by the clock and are elevated in amplitude during the day, the present results support the model that GRP delays the phase of the clock during the early night by prolonging day-like membrane properties of SCN cells. Furthermore, these findings implicate fDR currents in the ionic basis for GRP-mediated entrainment of the primary mammalian circadian pacemaker. PMID:21454290

  20. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  1. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.

  2. Circadian activity rhythms in selectively bred ethanol-preferring and nonpreferring rats.

    PubMed

    Rosenwasser, Alan M; Fecteau, Matthew E; Logan, Ryan W; Reed, Jeffrey D; Cotter, Shawnia J N; Seggio, Joseph A

    2005-06-01

    Chronic alcohol intake is associated with dramatic disruptions in sleep and other circadian biological rhythms in both humans and experimental animals. In human alcoholics, these disruptions persist during extended abstinence and appear to promote relapse to drinking. Whereas chronic ethanol intake alters fundamental properties of the circadian pacemaker in unselected rats, nothing is known concerning circadian pacemaker function in selectively bred ethanol-preferring and nonpreferring rats, which are the most widely accepted animal models of genetic predisposition to alcoholism. The present experiments were designed to characterize free-running circadian activity (wheel-running) rhythms under both constant darkness and constant light in selectively bred ethanol-preferring (P, HAD2) and nonpreferring (NP, LAD2) rats. Differences in circadian organization between ethanol-preferring and nonpreferring animals were seen for both pairs of selected lines (P vs. NP; HAD2 vs. LAD2), but these differences were not identical in the two line pairs. For example, although P rats showed shorter free-running periods than NP rats only in constant light, HAD2 rats showed shorter free-running periods than LAD2 rats only in constant darkness. In addition, ethanol-preferring HAD2 rats showed a high rate of rhythm "splitting" that was not seen in any of the other three lines. Taken together, these results suggest that the circadian pacemakers of P and NP rats differ mainly in light sensitivity, whereas those of HAD2 and LAD2 rats differ in their intrinsic period.

  3. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  4. Optimal resources for implantable cardiac pacemakers. Pacemaker Study Group.

    PubMed

    Parsonnet, V; Furman, S; Smyth, N P; Bilitch, M

    1983-07-01

    In this document, the 1974 Inter-Society Commission for Heart Disease Resources (ICHD) report, Implantable Cardiac Pacemakers, has been revised and updated to emphasize the increased complexity of present-day pacing, to propose realistic guidelines for various aspects of pacing practivce, and to identify the resources needed for delivery of this important mode of health care. The first section of the report describes the several types of pacemakers currently available, how they function, and how and to what purpose they may be modified through noninvasive programming. Recommendations are given for a modified and updated version of the widely accepted ICHD code for identification of pacing modes. The emphasis of the second section of the report is on physical and personnel resources. Matters considered in some depth include the training and qualification of the various medical, technical, and paramedical specialists involved in an implantation procedure; requirements for, and methods of achieving, short and long-term surveillance of pacemaker patients; and the role of the hospital, the manufacturers, and the FDA in this new era of complex dual-chamber, multiprogrammable pacemakers. PMID:6681266

  5. Phenotyping Circadian Rhythms in Mice

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of twenty-four hours, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the “central pacemaker” of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hours as manifest when an animal is placed into constant dark- or “free running”- conditions. Simple measurements of an organism's activity in free running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their home cage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are outlined here including the process of entrainment, determination of tau (period length) in free running conditions, determination of circadian periodicity in response to light disruption (i.e. jet lag studies), and evaluation of clock plasticity in non-twenty-four hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of one's environmental surroundings. PMID:26331760

  6. Avian circadian organization: a chorus of clocks.

    PubMed

    Cassone, Vincent M

    2014-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  7. Avian Circadian Organization: A Chorus of Clocks

    PubMed Central

    Cassone, Vincent M

    2013-01-01

    In birds, biological clock function pervades all aspects of biology, controlling daily changes in sleep: wake, visual function, song, migratory patterns and orientation, as well as seasonal patterns of reproduction, song and migration. The molecular bases for circadian clocks are highly conserved, and it is likely the avian molecular mechanisms are similar to those expressed in mammals, including humans. The central pacemakers in the avian pineal gland, retinae and SCN dynamically interact to maintain stable phase relationships and then influence downstream rhythms through entrainment of peripheral oscillators in the brain controlling behavior and peripheral tissues. Birds represent an excellent model for the role played by biological clocks in human neurobiology; unlike most rodent models, they are diurnal, they exhibit cognitively complex social interactions, and their circadian clocks are more sensitive to the hormone melatonin than are those of nocturnal rodents. PMID:24157655

  8. [Wide QRS tachycardia preceded by pacemaker spikes].

    PubMed

    Romero, M; Aranda, A; Gómez, F J; Jurado, A

    2014-04-01

    The differential diagnosis and therapeutic management of wide QRS tachycardia preceded by pacemaker spike is presented. The pacemaker-mediated tachycardia, tachycardia fibrillo-flutter in patients with pacemakers, and runaway pacemakers, have a similar surface electrocardiogram, but respond to different therapeutic measures. The tachycardia response to the application of a magnet over the pacemaker could help in the differential diagnosis, and in some cases will be therapeutic, as in the case of a tachycardia-mediated pacemaker. Although these conditions are diagnosed and treated in hospitals with catheterization laboratories using the application programmer over the pacemaker, patients presenting in primary care clinic and emergency forced us to make a diagnosis and treat the haemodynamically unstable patient prior to referral. PMID:23768570

  9. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.

    PubMed

    Harrison, Elizabeth M; Gorman, Michael R

    2015-12-01

    Daily rhythms in mammalian physiology and behavior are generated by a central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN), the timing of which is set by light from the environment. When the ambient light-dark cycle is shifted, as occurs with travel across time zones, the SCN and its output rhythms must reset or re-entrain their phases to match the new schedule-a sluggish process requiring about 1 day per hour shift. Using a global assay of circadian resetting to 6 equidistant time-zone meridians, we document this characteristically slow and distance-dependent resetting of Syrian hamsters under typical laboratory lighting conditions, which mimic summer day lengths. The circadian pacemaker, however, is additionally entrainable with respect to its waveform (i.e., the shape of the 24-h oscillation) allowing for tracking of seasonally varying day lengths. We here demonstrate an unprecedented, light exposure-based acceleration in phase resetting following 2 manipulations of circadian waveform. Adaptation of circadian waveforms to long winter nights (8 h light, 16 h dark) doubled the shift response in the first 3 days after the shift. Moreover, a bifurcated waveform induced by exposure to a novel 24-h light-dark-light-dark cycle permitted nearly instant resetting to phase shifts from 4 to 12 h in magnitude, representing a 71% reduction in the mismatch between the activity rhythm and the new photocycle. Thus, a marked enhancement of phase shifting can be induced via nonpharmacological, noninvasive manipulation of the circadian pacemaker waveform in a model species for mammalian circadian rhythmicity. Given the evidence of conserved flexibility in the human pacemaker waveform, these findings raise the promise of flexible resetting applicable to circadian disruption in shift workers, frequent time-zone travelers, and any individual forced to adjust to challenging schedules.

  10. Circadian Regulation of Lipid Mobilization in White Adipose Tissues

    PubMed Central

    Shostak, Anton; Meyer-Kovac, Judit; Oster, Henrik

    2013-01-01

    In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, ClockΔ19, and Bmal1−/− circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis. PMID:23434933

  11. Circadian Rhythm Disruption in Cancer Biology

    PubMed Central

    Savvidis, Christos; Koutsilieris, Michael

    2012-01-01

    Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized “shiftwork that involves circadian disruption [as] probably carcinogenic to humans” (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes. PMID:22811066

  12. Entrainment of circadian clocks in mammals by arousal and food.

    PubMed

    Mistlberger, Ralph E; Antle, Michael C

    2011-06-30

    Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light-dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks. PMID:21819388

  13. [Future cardiac pacemakers – technical visions].

    PubMed

    Haeberlin, Andreas; Zurbuchen, Adrian; Pfenniger, Aloïs; Fuhrer, Jürg; Vogel, Rolf

    2015-08-01

    Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems. PMID:26227982

  14. [Future cardiac pacemakers – technical visions].

    PubMed

    Haeberlin, Andreas; Zurbuchen, Adrian; Pfenniger, Aloïs; Fuhrer, Jürg; Vogel, Rolf

    2015-08-01

    Cardiac pacemakers are routinely used for the treatment of bradyarrhythmias. Contemporary pacemakers are reliable and allow for a patient specific programming. However, pacemaker replacements due to battery depletion are common (~25 % of all implantation procedures) and bear the risk of complications. Batteryless pacemakers may allow overcoming this limitation. To power a batteryless pacemaker, a mechanism for intracorporeal energy harvesting is required. Such a generator may consist out of subcutaneously implanted solar cells, transforming the small amount of transcutaneously available light into electrical energy. Alternatively, intravascular turbines may harvest energy from the blood flow. Energy may also be harvested from the ventricular wall motion by a dedicated mechanical clockwork converting motion into electrical energy. All these approaches have successfully been tested in vivo. Pacemaker leads constitute another Achilles heel of contemporary pacemakers. Thus, leadless devices are desired. Miniaturized pacemaker circuits and suitable energy harvesting mechanisms (incorporated in a single device) may allow catheter-based implantation of the pacemaker in the heart. Such miniaturized battery- and leadless pacemakers would combine the advantages of both approaches and overcome major limitations of today’s systems.

  15. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.

  16. Dose-response relationships for resetting of human circadian clock by light

    NASA Technical Reports Server (NTRS)

    Boivin, D. B.; Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.

  17. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.

  18. The effect of lens aging and cataract surgery on circadian rhythm.

    PubMed

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  19. The effect of lens aging and cataract surgery on circadian rhythm

    PubMed Central

    Yan, Shen-Shen; Wang, Wei

    2016-01-01

    Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm. PMID:27500118

  20. Lithium-iodine pacemaker cell

    SciTech Connect

    Schneider, A.A.; Snyder, S.E.; DeVan, T.; Harney, M.J.; Harney, D.E.

    1980-01-01

    The lithium-iodine pacemaker cell is described as supplied by several manufacturers. The features of each design are discussed along with their effect on energy density, self-discharge and shape of the discharge curve. Differences in performance characteristics are related to morphology of the lithium iodine electrolyte and to the form of the cathode. A new, high-drain cell is mentioned which can supply 60 /mu/a/cm/sup 2/. 10 refs.

  1. The bird circadian clock: insights from a computational model.

    PubMed

    Woller, Aurore; Gonze, Didier

    2013-12-01

    The circadian timekeeping system appears more complex in birds than in mammals. In mammals, the main pacemaker is centralized in the suprachiasmatic nuclei, whereas in birds, the pacemaker involves the interplay between the pineal and hypothalamic oscillators. In order to investigate the consequence of this complex mechanism, we propose here a mathematical model for the bird circadian clock. The model is based on the internal resonance between the pineal and hypothalamic oscillators, each described by Goodwin-like equations. We show that, consistently with experimental observations, self-sustained oscillations can be generated by mutual inhibitory coupling of the 2 clocks, even if individual oscillators present damped oscillations. We study the effect of constant and periodic administrations of melatonin, which, in intact birds, acts as the coupling variable between the pineal and the hypothalamus, and compare the prediction of the model with the experiments performed in pinealectomized birds. We also assess the entrainment properties when the system is subject to light-dark cycles. Analyses of the entrainment range, resynchronization time after jet lag, and entrainment phase with respect to the photoperiod lead us to formulate hypotheses about the physiological advantage of the particular architecture of the avian circadian clock. Although minimal, our model opens promising perspectives in modeling and understanding the bird circadian clock.

  2. Space Derived Health Aids (Cardiac Pacemaker)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    St. Jude Medical's Cardiac Rhythm Management Division's (formerly known as Pacesetter Systems, Inc.) pacer is a rechargeable cardiac pacemaker that eliminates the recurring need for surgery to implant a new battery. The Programalith is an advanced cardiac pacing system which permits a physician to reprogram a patient's implanted pacemaker without surgery. System consists of a pacemaker, together with a physician's console containing the programmer and a data printer. Signals are transmitted by wireless telemetry. Two-way communications, originating from spacecraft electrical power systems technology, allows physician to interrogate the pacemaker as to the status of the heart, then to fine tune the device to best suit the patient's needs.

  3. The nuclear pacemaker: Is renewed interest warranted

    SciTech Connect

    Parsonnet, V.; Berstein, A.D.; Perry, G.Y. )

    1990-10-01

    From 1973 through 1987, 155 radioisotope-powered nuclear pacemakers were implanted in 132 patients at the Newark Beth Israel Medical Center. The longevity of the first 15 devices, all of which were fixed-rate (VOO) pacemakers, was significantly better than that of 15 lithium-chemistry demand (VVI) pacemakers used as control devices (p = 0.0002). Of the entire cohort of 155 nuclear pacemakers, 136 were VVI devices and 19 were VOO units. The patients with VOO pacemakers needed reoperations more often than did those with VVI pacemakers, chiefly for mode change (p less than 0.001). Power-source failure was observed in only 1 case, but 47 nuclear pacemakers were removed for other reasons, including component malfunction (15 units), mode change (12 units), high pacing thresholds (8 units) and lead or connector problems (5 units). The actuarial survival at 15 years was 99% for power sources and 82% for the entire pacing systems (pulse generators plus leads). The frequency of malignancy was similar to that of the population at large and primary tumor sites were randomly distributed. Deaths most commonly were due to cardiac causes (68%). Thus, nuclear pacemakers are safe and reliable and their greater initial cost appears to be offset by their longevity and the resulting decrease in the frequency of reoperations. It is reasonable to suggest that further use be made of long-lasting nuclear power sources for modern pacemakers and other implantable rhythm-management devices.

  4. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  5. Blunt trauma-induced pacemaker failure.

    PubMed

    Brown, K R; Carter, W; Lombardi, G E

    1991-08-01

    A 54-year-old man with an artificial pacemaker sustained blunt trauma to his chest when he was struck with a baseball bat. Within 15 minutes after the injury, the patient experienced cardiovascular collapse. His pacemaker failed, and he required insertion of a temporary transvenous pacemaker. At surgery, the defect was traced to failure of the pulse generator, a rare cause of pacemaker failure. Emergency department evaluation should include prompt and continuous ECG monitoring, an overpenetrated chest radiograph, and telemetry evaluation after discharge.

  6. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.

  7. Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

    PubMed

    Abe, Jun; Hiyama, Takuya B; Mukaiyama, Atsushi; Son, Seyoung; Mori, Toshifumi; Saito, Shinji; Osako, Masato; Wolanin, Julie; Yamashita, Eiki; Kondo, Takao; Akiyama, Shuji

    2015-07-17

    Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle. PMID:26113637

  8. Strategies for the preflight circadian shifting of Space Shuttle crews.

    PubMed

    Santy, P A; Faulk, D M; Davis, J R

    1994-05-01

    In June, 1990, a workshop was put together at NASA/Johnson Space Center to address difficulties the astronauts were having in adjusting their wake and sleep schedule, both immediately before and during Space Shuttle missions. The workshop members, prominent investigators in human circadian research, developed a number of strategies by which astronauts could tackle the problem of circadian adaptation within the demanding timetable of a Space Shuttle mission. The strategies included both abrupt and gradual methods, and some approaches used artificial "very bright lights" to reset the physiologic circadian pacemaker. The strategies have since been operationally implemented on Space Shuttle flights, with good success. This is a report of the problems addressed by the workshop and its recommendations.

  9. Keeping circadian time with hormones.

    PubMed

    Challet, E

    2015-09-01

    Daily variations of metabolism, physiology and behaviour are controlled by a network of coupled circadian clocks, comprising a master clock in the suprachiasmatic nuclei of the hypothalamus and a multitude of secondary clocks in the brain and peripheral organs. Light cues synchronize the master clock that conveys temporal cues to other body clocks via neuronal and hormonal signals. Feeding at unusual times can reset the phase of most peripheral clocks. While the neuroendocrine aspect of circadian regulation has been underappreciated, this review aims at showing that the role of hormonal rhythms as internal time-givers is the rule rather than the exception. Adrenal glucocorticoids, pineal melatonin and adipocyte-derived leptin participate in internal synchronization (coupling) within the multi-oscillatory network. Furthermore, pancreatic insulin is involved in food synchronization of peripheral clocks, while stomach ghrelin provides temporal signals modulating behavioural anticipation of mealtime. Circadian desynchronization induced by shift work or chronic jet lag has harmful effects on metabolic regulation, thus favouring diabetes and obesity. Circadian deregulation of hormonal rhythms may participate in internal desynchronization and associated increase in metabolic risks. Conversely, adequate timing of endocrine therapies can promote phase-adjustment of the master clock (e.g. via melatonin agonists) and peripheral clocks (e.g. via glucocorticoid agonists).

  10. Circadian influences on myocardial infarction

    PubMed Central

    Virag, Jitka A. I.; Lust, Robert M.

    2014-01-01

    Components of circadian rhythm maintenance, or “clock genes,” are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations. PMID:25400588

  11. Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice.

    PubMed

    Abe, Hiroshi; Honma, Sato; Honma, Ken-Ichi

    2007-01-01

    Circadian rhythms in clock gene expressions in the suprachiasmatic nucleus (SCN) of CS mice and C57BL/6J mice were measured under a daily restricted feeding (RF) schedule in continuous darkness (DD), and entrainment of the SCN circadian pacemaker to RF was examined. After 2-3 wk under a light-dark cycle with free access to food, animals were released into DD and fed for 3 h at a fixed time of day for 3-4 wk. Subsequently, they returned to having free access to food for 2-3 wk. In CS mice, wheel-running rhythms entrained to RF with a stable phase relationship between the activity onset and feeding time, and the rhythms started to free run from the feeding time after the termination of RF. mPer1, mPer2, and mBMAL1 mRNA rhythms in the SCN showed a fixed phase relationship with feeding time, indicating that the circadian pacemaker in the SCN entrained to RF. On the other hand, in C57BL/6J mice, wheel-running rhythms free ran under RF, and clock gene expression rhythms in the SCN showed a stable phase relation not to feeding time but to the behavioral rhythms, indicating that the circadian pacemaker in the SCN did not entrain. These results indicate that the SCN circadian pacemaker of CS mice is entrainable to RF under DD and suggest that CS mice have a circadian clock system that can be reset by a signal associated with feeding time.

  12. Ethanol consumption in mice: relationships with circadian period and entrainment

    PubMed Central

    Trujillo, Jennifer L.; Do, David T.; Grahame, Nicholas J.; Roberts, Amanda J.; Gorman, Michael R.

    2011-01-01

    A functional connection between the circadian timing system and alcohol consumption is suggested by multiple lines of converging evidence. Ethanol consumption perturbs physiological rhythms in hormone secretion, sleep and body temperature, and conversely, genetic and environmental perturbations of the circadian system can alter alcohol intake. A fundamental property of the circadian pacemaker, the endogenous period of its cycle under free-running conditions, was previously shown to differ between selectively bred High- (HAP) and Low- (LAP) Alcohol Preferring replicate 1 mice. To test whether there is a causal relationship between circadian period and ethanol intake, we induced experimental, rather than genetic, variations in free-running period. Male inbred C57Bl/6J mice and replicate 2 male and female HAP2 and LAP2 mice were entrained to light:dark cycles of 26 h or 22 h or remained in a standard 24 h cycle. Upon discontinuation of the light:dark cycle, experimental animals exhibited longer and shorter free-running periods, respectively. Despite robust effects on circadian period and clear circadian rhythms in drinking, these manipulations failed to alter the daily ethanol intake of the inbred strain or selected lines. Likewise, driving the circadian system at long and short periods produced no change in alcohol intake. In contrast with replicate 1 HAP and LAP lines, there was no difference in free-running period between ethanol naïve HAP2 and LAP2 mice. HAP2 mice, however, were significantly more active than LAP2 mice as measured by general home-cage movement and wheel running, a motivated behavior implicating a selection effect on reward systems. Despite a marked circadian regulation of drinking behavior, the free-running and entrained period of the circadian clock does not determine daily ethanol intake. PMID:20880659

  13. Circadian Role in Daily Pattern of Cardiovascular Risk

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  14. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  15. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice.

    PubMed

    Takasu, Nana N; Kurosawa, Gen; Tokuda, Isao T; Mochizuki, Atsushi; Todo, Takeshi; Nakamura, Wataru

    2012-01-01

    In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.

  16. Circadian Organization of Behavior and Physiology in Drosophila

    PubMed Central

    Allada, Ravi; Chung, Brian Y.

    2010-01-01

    Circadian clocks organize behavior and physiology to adapt to daily environmental cycles. Genetic approaches in the fruit fly, Drosophila melanogaster, have revealed widely conserved molecular gears of these 24-h timers. Yet much less is known about how these cell-autonomous clocks confer temporal information to modulate cellular functions. Here we discuss our current knowledge of circadian clock function in Drosophila, providing an overview of the molecular underpinnings of circadian clocks. We then describe the neural network important for circadian rhythms of locomotor activity, including how these molecular clocks might influence neuronal function. Finally, we address a range of behaviors and physiological systems regulated by circadian clocks, including discussion of specific peripheral oscillators and key molecular effectors where they have been described. These studies reveal a remarkable complexity to circadian pathways in this “simple” model organism. PMID:20148690

  17. Circadian rhythm sleep disorders.

    PubMed

    Zhu, Lirong; Zee, Phyllis C

    2012-11-01

    There have been remarkable advances in our understanding of the molecular, cellular, and physiologic mechanisms underlying the regulation of circadian rhythms, and of the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance, and safety. CRSDs are caused by alterations of the central circadian timekeeping system, or a misalignment of the endogenous circadian rhythm and the external environment. This article reviews circadian biology and discusses the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice.

  18. Circadian regulation of chloroplasts.

    PubMed

    Atkins, Kelly A; Dodd, Antony N

    2014-10-01

    Circadian rhythms produce a biological measure of time that increases plant performance. The mechanisms that underlie this increase in productivity require investigation to provide information that will underpin future crop improvement. There is a growing body of evidence that a sophisticated signalling network interconnects the circadian oscillator and chloroplasts. We consider this in the context of circadian signalling to chloroplasts and the relationship between retrograde signalling and circadian regulation. We place circadian signalling to chloroplasts by sigma factors within an evolutionary context. We describe selected recent developments in the integration of light and circadian signals that control chloroplast gene expression.

  19. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  20. Quantification of Circadian Rhythms in Single Cells

    PubMed Central

    Westermark, Pål O.; Welsh, David K.; Okamura, Hitoshi; Herzel, Hanspeter

    2009-01-01

    Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber). PMID:19956762

  1. The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia.

    PubMed Central

    Woolum, J C; Strumwasser, F

    1980-01-01

    Ionizing radiation has been used to selectively separate the circadian oscillator function of the eye of Aplysia from some of its other functions--synchronous compound action potential (CAP) generation, the light response, synaptic transmission between photoreceptors and output neurons, and the bursting pacemaker mechanism. Doses of 4-krad (50 kV peak) x-rays have a minimal effect on the circadian rhythm of CAP frequency, measured from the otpic nerve, whereas irradiation with a 40-krad dose abolishes the rhythm without affecting any of the four other functions of this eye (1 rad = 0.01 J/kg = 0.01/Gy). We estimate a 50% survival of the oscillator function at doses of about 6 krad. The oscillators of irradiated eyes are not merely desynchronized when the rhythm is abolished, because in vitro light-dark entrainment does not restore free-running rhythmicity. The results, including those from selective irradiation of the anterior or posterior poles of the eye, suggest that there are a number of circadian oscillators in the eye--most of them in the posterior portion near the optic nerve. An approximate target size has been obtained from target theory approximately equal to 10(8) A3, which is somewhat larger than the target size for viral infectivity function, as one example. There are reservations about estimating target size in a complex organ such as the eye. However, this approximate target size and the fact that recovery or repair can occur in vivo suggest that the oscillator may involve nucleic acid molecules. Images PMID:6933570

  2. A circadian neuropeptide PDF in the honeybee, Apis mellifera: cDNA cloning and expression of mRNA.

    PubMed

    Sumiyoshi, Miho; Sato, Seiji; Takeda, Yukimasa; Sumida, Kazunori; Koga, Keita; Itoh, Tsunao; Nakagawa, Hiroyuki; Shimohigashi, Yasuyuki; Shimohigashi, Miki

    2011-12-01

    Pigment-dispersing factor (PDF) is a pacemaker hormone regulating the locomotor rhythm in insects. In the present study, we cloned the cDNAs encoding the Apis PDF precursor protein, and found that there are at least seven different pdf mRNAs yielded by an alternative splicing site and five alternative polyadenylation sites in the 5'UTR and 3'UTR regions. The amino acid sequence of Apis PDF peptide has a characteristic novel amino acid residue, aspargine (Asn), at position 17. Quantitative real-time PCR of total and 5'UTR insertion-type pdf mRNAs revealed, for the first time, that the expression levels change in a circadian manner with a distinct trough at the beginning of night in LD conditions, and at the subjective night under DD conditions. In contrast, the expression level of 5'UTR deletion-type pdf mRNAs was about half of that of the insertion type, and the expression profile failed to show a circadian rhythm. As the expression profile of the total pdf mRNA exhibited a circadian rhythm, transcription regulated at the promoter region was supposed to be controlled by some of the clock components. Whole mount in situ hybridization revealed that 14 lateral neurons at the frontal margin of the optic lobe express these mRNA isoforms. PDF expressing cells examined with a newly produced antibody raised against Apis PDF were also found to have a dense supply of axon terminals in the optic lobes and the central brain. PMID:22132787

  3. Pacemaker interactions induce reentrant wave dynamics in engineered cardiac culture

    NASA Astrophysics Data System (ADS)

    Borek, Bartłomiej; Shajahan, T. K.; Gabriels, James; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Pacemaker interactions can lead to complex wave dynamics seen in certain types of cardiac arrhythmias. We use experimental and mathematical models of pacemakers in heterogeneous excitable media to investigate how pacemaker interactions can be a mechanism for wave break and reentrant wave dynamics. Embryonic chick ventricular cells are cultured invitro so as to create a dominant central pacemaker site that entrains other pacemakers in the medium. Exposure of those cultures to a potassium channel blocker, E-4031, leads to emergence of peripheral pacemakers that compete with each other and with the central pacemaker. Waves emitted by faster pacemakers break up over the slower pacemaker to form reentrant waves. Similar dynamics are observed in a modified FitzHugh-Nagumo model of heterogeneous excitable media with two distinct sites of pacemaking. These findings elucidate a mechanism of pacemaker-induced reentry in excitable media.

  4. Pacemaker failure resulting from radiation damage

    SciTech Connect

    Quertermous, T.; Megahy, M.S.; Das Gupta, D.S.; Griem, M.L.

    1983-07-01

    The authors present a case of radiation-induced pacemaker failure. After 2000 rad (20 Gy) of photon irradiation for metastatic bronchogenic carcinoma, the pulse generator circuitry failed, producing a runaway rhythm. This suggests that present pacemaker circuitry may be more susceptible to irradiation than previously believed, and that even modest radiation doses can induce life-threatening arrhythmias.

  5. 21 CFR 870.3670 - Pacemaker charger.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger....

  6. 21 CFR 870.3670 - Pacemaker charger.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger....

  7. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker programmers. 870.3700 Section 870.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker...

  8. 21 CFR 870.3700 - Pacemaker programmers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker programmers. 870.3700 Section 870.3700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3700 Pacemaker...

  9. Reconsideration of pacemakers and MR imaging.

    PubMed

    Loewy, John; Loewy, Amanda; Kendall, Edward J

    2004-01-01

    The presence of an implanted pacemaker is widely regarded as an absolute contraindication to magnetic resonance (MR) imaging; however, this viewpoint is based largely on safety concerns in the 1982-1996 period. Since 1996, changes in pacemaker electronics including decreased ferromagnetic content, increased sophistication of the circuitry, and onboard computer capabilities suggest that the absolute contraindication of MR imaging for pacemaker patients should be reconsidered. In addition, there are now data from prospective trials of 232 patients with demand pacemakers who underwent MR imaging at 0.5-1.5 T. Although a variety of pacemaker parameters were evaluated before, during, immediately after, and 3 months after MR imaging, no significant pacemaker changes were identified. No patients reported abnormal sensations such as pacemaker movement or irregular heartbeats even at direct questioning. These results suggest that peripheral locations such as the brain and knee may be considered for MR imaging. Thus, pacemaker patients should be assessed individually for their suitability for MR imaging, which may be performed safely under defined conditions.

  10. A Percutaneously Implantable Fetal Pacemaker

    PubMed Central

    Zhou, Li; Vest, Adriana N.; Chmait, Ramen H.; Bar-Cohen, Yaniv; Pruetz, Jay; Silka, Michael; Zheng, Kaihui; Peck, Ray; Loeb, Gerald E.

    2015-01-01

    A miniaturized, self-contained pacemaker that could be implanted with a minimally invasive technique would dramatically improve the survival rate for fetuses that develop hydrops fetalis as a result of congenital heart block. We are currently validating a device that we developed to address this bradyarrhythmia. Preclinical studies in a fetal sheep model are underway to demonstrate that the device can be implanted via a minimally invasive approach, can mechanically withstand the harsh bodily environment, can induce effective contractions of the heart muscle with an adequate safety factor, and can successfully operate for the required device lifetime of three months using the previously-developed closed loop transcutaneous recharging system. PMID:25570982

  11. Lithium lengthens circadian period of cultured brain slices in area specific manner.

    PubMed

    Yoshikawa, Tomoko; Honma, Sato

    2016-11-01

    Lithium has been used for the treatment of bipolar disorder (BD). However, the mechanisms how lithium exerts its mood stabilizing effects remain to be studied. The disorder in circadian pacemaking has been suggested as an underlying mechanism of the characteristic mood instability of the BD. Lithium is also known to lengthen the circadian periods. We recently proposed that chronic methamphetamine treatment induced circadian oscillation as a complex oscillator including multiple dopaminergic brain areas, and the complex oscillator regulates behavior rhythm independent from the central circadian oscillator in the suprachiasmatic nucleus (SCN). Sleep-wake pattern of rapid cycling BD exhibits similar rhythm disorganization to methamphetamine treated animals. Therefore, we hypothesized that the dysregulated circadian rhythm in BD patients is caused by desynchronization of sleep-wake rhythms from the central clock in the SCN, and that mood stabilizing effect of lithium is achieved through their resynchronization. In the present experiment, we examined how lithium affects the circadian rhythms of brain areas involved in the complex oscillator as well as the SCN. Here we report that lithium lengthens the circadian periods in the SCN, olfactory bulb, median eminence and substantia nigra with dose and area specific manner. The effective lithium dose was much higher than the plasma levels that are required for lengthening the circadian behavior rhythms as well for therapeutic use. Low dose of lithium did not lengthen the period but enhanced the amplitude of circadian rhythms, which may exert therapeutic effects on BD. PMID:27478137

  12. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  13. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.

  14. Pacemakers charging using body energy.

    PubMed

    Bhatia, Dinesh; Bairagi, Sweeti; Goel, Sanat; Jangra, Manoj

    2010-01-01

    Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient's heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat). Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists - typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery.

  15. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice.

    PubMed

    Jones, Kelly A; Han, Ji Eun; DeBruyne, Jason P; Philpot, Benjamin D

    2016-01-01

    Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3a(m-/p+)) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting. PMID:27306933

  16. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice

    PubMed Central

    Jones, Kelly A.; Han, Ji Eun; DeBruyne, Jason P.; Philpot, Benjamin D.

    2016-01-01

    Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3am–/p+) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting. PMID:27306933

  17. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation.

    PubMed

    Klose, Markus; Duvall, Laura B; Li, Weihua; Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H

    2016-05-18

    The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. PMID:27161526

  18. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  19. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity.

    PubMed

    Parekh, Puja K; McClung, Colleen A

    2015-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  20. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  1. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  2. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  3. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  4. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  5. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implantable pacemaker pulse generator. 870.3610... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has... implantable pacemaker pulse generator device that was in commercial distribution before May 28, 1976, or...

  6. Changing the Waveform of Circadian Rhythms: Considerations for Shift-Work

    PubMed Central

    Harrison, Elizabeth M.; Gorman, Michael R.

    2012-01-01

    Circadian disruption in shift-work is common and has deleterious effects on health and performance. Current efforts to mitigate these harms reasonably focus on the phase of the circadian pacemaker, which unfortunately in humans, shifts slowly and often incompletely. Temporal reorganization of rhythmic waveform (i.e., the shape of its 24 h oscillation), rather than phase, however, may better match performance demands of shift-workers and can be quickly and feasibly implemented in animals. In fact, a bifurcated pacemaker waveform may permit stable entrainment of a bimodal sleep/wake rhythm promoting alertness in both night and daylight hours. Although bifurcation has yet to be formally assessed in humans, evidence of conserved properties of circadian organization and plasticity predict its occurrence: humans respond to conventional manipulations of waveform (e.g., photoperiodism); behaviorally, the sleep/wake rhythm is adaptable; and finally, the human circadian system likely derives from the same multiple cellular oscillators that permit waveform flexibility in the rodent pacemaker. In short, investigation into untried manipulations of waveform in humans to facilitate adjustment to challenging schedules is justified. PMID:22557994

  7. DsRNA as a stimulator of cell pacemaker activity

    SciTech Connect

    Airapetyan, S.N.; Zakharyan, R.A.; Rychkov, G.E.; Dadalyan, S.S.; Bakunts, I.S.; Agabalyan, A.S.

    1986-03-01

    The authors study the action of double-stranded RNAs (dsRNA) on the characteristics of neuron pacemaker activity which permits prediction of the character of action of dsRNA on the pacemaker activity of cells and organs, and takes the investigators closer to an understanding of the membrane mechanisms underlying the action of dsRNA on the cell. The methods for isolating and fractionating dsRNA from yeasts and the intracellular recording of the electrical activity of the snail giant neuron have been described by the authors earlier. The authors determined the dependence of Ca/sup 2 +/ entry upon dsRNA concentration using the isotope /sup 45/Ca. Preweighed ganglia were incubated five each for an hour in 2 ml Ringer's solution containing dsRNA and 5 microliters /sup 45/CaCl/sub 2/ of 12.5 mCi activity. After incubation, the ganglia were rinsed three times for 8 min each time in normal Ringers solution. The washed ganglia were dissolved for one day in KOH. The amount of isotope entering was counted using Brav's scintillator and an RGT counter tuned to the /sup 45/Ca isotope. The physiological saline used for the isolated ganglion contained 85 mmole NaCl, 4 mmole KCl, 8 mmole CaCl/sub 2/, 10 mmole MgCl/sub 2/, 10 mmole Tris-HCl, and 5 mmole glucose.

  8. Pacemaker assessment in the ambulant patient.

    PubMed Central

    Murray, A; Jordan, R S; Gold, R G

    1981-01-01

    A new technique for assessing implanted cardiac pacemaker function in the ambulant patient has been introduced and assessed. A modified portable electrocardiograph recorder is used to store 24 hours of electrocardiograms along with marker pulses indicating the timing of pacemaker impulses. The recorder detects this narrow impulse and records a wider marker pulse on a second channel. The false positive detection rate was estimated from recordings, each of 24 hours, taken from 10 patients. All of these patients were ambulant and none had a cardiac pacemaker. There was on average less than one false positive per 24 hours. When similar recordings were taken from a group of 15 patients with pacemakers, the average false positive rate in 13 of these patients was also less than on per 24 hours. In the two other recordings artefacts resulted in false positive rates of 28 and 960 per 24 hours. Failure to detect pacemaker pulses was confirmed in only one patient. In addition to determining the accuracy of pacemaker pulse detection, the clinical usefulness of this technique was assessed. Two patients had fixed-rate pacemakers and 13 had demand pacemakers. Of the latter, two patients had a total of three episodes of failure to sense, one patient frequently failed to capture, and six patients had episodes of inappropriate inhibition of the pacemaker, the number of episodes ranging from one to 21 in 24 hours. Paced complexes were easily identified even when they occurred as fusion complexes. The frequency of paced complexes was quantified in each patient and varied from 21 to over 100 000 impulses in the 24 hour period. PMID:7317218

  9. Pacemaker failure associated with therapeutic radiation

    SciTech Connect

    Brooks, C.; Mutter, M.

    1988-11-01

    A 48-year-old white man with a multiprogrammable Intramedics 259-01 pacemaker was treated for inoperable lung cancer with a course of cobalt-60 radiotherapy (total 3500 rad). Several weeks subsequent to his last radiation treatment, the patient presented to the emergency department with chest and abdominal pain, shortness of breath, hypotension, and tachycardia. A paced tachycardia was noted, and application of a magnet over the pacemaker completely inhibited its function, allowing a normal sinus rhythm to ensue and the patient's symptoms to be relieved. Pacemaker failure probably was a complication of radiotherapy.

  10. GRK2: putting the brakes on the circadian clock

    PubMed Central

    Mendoza-Viveros, Lucia; Cheng, Arthur H.

    2016-01-01

    G protein-coupled receptor kinases (GRKs) are a family of serine/threonine protein kinases that terminate G protein-coupled receptor (GPCR) signaling by phosphorylating the receptor and inducing its internalization. In addition to their canonical function, some GRKs can phosphorylate non-GPCR substrates and regulate GPCR signaling in a kinase-independent manner. GPCRs are abundantly expressed in the suprachiasmatic nucleus (SCN), a structure in the mammalian brain that serves as the central circadian pacemaker. Various facets of circadian timekeeping are under the influence of GPCR signaling, and thus are potential targets for GRK regulation. Despite this, little attention has been given to the role of GRKs in circadian rhythms. In this research highlight, we discuss our latest findings on the functional involvement of GRK2 in mammalian circadian timekeeping in the SCN. Using grk2 knockout mice, we demonstrate that GRK2 is critical for maintaining proper clock speed and ensuring that the clock is appropriately synchronized to environmental light cycles. Although grk2 deficiency expectedly alters the expression of a key GPCR in the SCN, our study also reveals that GRK2 has a more direct function that touches the heart of the circadian clock. PMID:27088110

  11. The circadian timing system in ethanol consumption and dependence.

    PubMed

    Damaggio, Amanda S; Gorman, Michael R

    2014-06-01

    The use of alcohol is an important part of the daily lives of many individuals that may be experienced as a single nightly drink with a meal or a debilitating pattern of intoxication. The circadian timing system imposes a daily temporal order throughout the brain and body. Ethanol, with its complex and broad pharmacology, can thereby alter circadian physiology at multiple levels of organization. Here, we review data from animal models demonstrating that (a) perturbations of the circadian timing system are often, but not necessarily, reflected in altered drinking behaviors or ethanol response; (b) alcohol can act to alter the circadian entrainment and pacemaking functions of the suprachiasmatic nuclei; and (c) the temporal patterning of alcohol exposure and withdrawal in a circadian context can influence processes related to addiction development, particularly increased voluntary alcohol consumption and development of physical dependence as reflected in the physiological withdrawal reaction. New data are presented to show that the withdrawal reaction elicited after long-duration alcohol vapor sessions is significantly modulated according to the time of day that it is initiated. Further application of chronobiological principles to alcohol research should enhance mechanistic understanding and suggest potential therapeutic approaches.

  12. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics.

    PubMed

    Dijk, D J; Duffy, J F

    1999-04-01

    The light-entrainable circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus regulates the timing and consolidation of sleep by generating a paradoxical rhythm of sleep propensity; the circadian drive for wakefulness peaks at the end of the day spent awake, ie close to the onset of melatonin secretion at 21.00-22.00 h and the circadian drive for sleep crests shortly before habitual waking-up time. With advancing age, ie after early adulthood, sleep consolidation declines, and time of awakening and the rhythms of body temperature, plasma melatonin and cortisol shift to an earlier clock hour. The variability of the phase relationship between the sleep-wake cycle and circadian rhythms increases, and in old age sleep is more susceptible to internal arousing stimuli associated with circadian misalignment. The propensity to awaken from sleep advances relative to the body temperature nadir in older people, a change that is opposite to the phase delay of awakening relative to internal circadian rhythms associated with morningness in young people. Age-related changes do not appear to be associated with a shortening of the circadian period or a reduction of the circadian drive for wake maintenance. These changes may be related to changes in the sleep process itself, such as reductions in slow-wave sleep and sleep spindles as well as a reduced strength of the circadian signal promoting sleep in the early morning hours. Putative mediators and modulators of circadian sleep regulation are discussed. PMID:10344586

  13. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.; Duffy, J. F.

    1999-01-01

    The light-entrainable circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus regulates the timing and consolidation of sleep by generating a paradoxical rhythm of sleep propensity; the circadian drive for wakefulness peaks at the end of the day spent awake, ie close to the onset of melatonin secretion at 21.00-22.00 h and the circadian drive for sleep crests shortly before habitual waking-up time. With advancing age, ie after early adulthood, sleep consolidation declines, and time of awakening and the rhythms of body temperature, plasma melatonin and cortisol shift to an earlier clock hour. The variability of the phase relationship between the sleep-wake cycle and circadian rhythms increases, and in old age sleep is more susceptible to internal arousing stimuli associated with circadian misalignment. The propensity to awaken from sleep advances relative to the body temperature nadir in older people, a change that is opposite to the phase delay of awakening relative to internal circadian rhythms associated with morningness in young people. Age-related changes do not appear to be associated with a shortening of the circadian period or a reduction of the circadian drive for wake maintenance. These changes may be related to changes in the sleep process itself, such as reductions in slow-wave sleep and sleep spindles as well as a reduced strength of the circadian signal promoting sleep in the early morning hours. Putative mediators and modulators of circadian sleep regulation are discussed.

  14. Circadian behaviour in neuroglobin deficient mice.

    PubMed

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  15. Circadian Behaviour in Neuroglobin Deficient Mice

    PubMed Central

    Hundahl, Christian A.; Fahrenkrug, Jan; Hay-Schmidt, Anders; Georg, Birgitte; Faltoft, Birgitte; Hannibal, Jens

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night. PMID:22496809

  16. Effects of gravity on the circadian period in rats

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Demaria, Victor H.; Fuller, Charles A.

    1991-01-01

    The effect of increased gravity force on the circadian period of body temperature and activity of rats was investigated using rats implanted with a small radio telemetry device and, after a 2-week recovery and a 3-week control period at 1G, rotated at for 4 weeks at a constant 2G field in a 18-ft-diam centrifuge. Measurements of the mean freerunning period of the temperature and activity rhythms after 10 days showed that the exposure to 2G led to a functional separation of the pacemakers that regulate the activity and the temperature in the animals. Each pacemaker reacted differently: the activity period increased and the temperature period decreased. By the third or the fourth week, the activity and the temperature periods have returned to 1G control levels.

  17. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  18. The Circadian Timing System: A Recent Addition in the Physiological Mechanisms Underlying Pathological and Aging Processes

    PubMed Central

    Arellanes-Licea, Elvira; Caldelas, Ivette; De Ita-Pérez, Dalia; Díaz-Muñoz, Mauricio

    2014-01-01

    Experimental findings and clinical observations have strengthened the association between physio-pathologic aspects of several diseases, as well as aging process, with the occurrence and control of circadian rhythms. The circadian system is composed by a principal pacemaker in the suprachiasmatic nucleus (SNC) which is in coordination with a number of peripheral circadian oscillators. Many pathological entities such as metabolic syndrome, cancer and cardiovascular events are strongly connected with a disruptive condition of the circadian cycle. Inadequate circadian physiology can be elicited by genetic defects (mutations in clock genes or circadian control genes) or physiological deficiencies (desynchronization between SCN and peripheral oscillators). In this review, we focus on the most recent experimental findings regarding molecular defects in the molecular circadian clock and the altered coordination in the circadian system that are related with clinical conditions such as metabolic diseases, cancer predisposition and physiological deficiencies associated to jet-lag and shiftwork schedules. Implications in the aging process will be also reviewed. PMID:25489492

  19. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities

    PubMed Central

    Altimus, C.M.; Güler, A.D.; Alam, N.M.; Arman, A.C.; Prusky, G.T.; Sampath, A.P.; Hattar, S

    2010-01-01

    In mammals, synchronization of the circadian pacemaker in the hypothalamus is achieved through direct input from the eyes conveyed by intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian photoentrainment can be maintained by rod and cone photoreceptors, but their functional contributions and their retinal circuits that impinge on ipRGCs are not well understood. We demonstrate in genetic mouse models lacking functional rods, or where rods are the only functional photoreceptors, that rods are solely responsible for photoentrainment at scotopic light intensities. Surprisingly, rods were also capable of driving circadian photoentrainment at photopic intensities where they were incapable of supporting a visually–guided behavior. Using animals in which cone photoreceptors were ablated, we demonstrate that rods signal through cones at high light intensities, but not low light intensities. Thus two distinct retinal circuits drive ipRGC function to support circadian photoentrainment across a wide range of light intensities. PMID:20711184

  20. How Will a Pacemaker Affect My Lifestyle?

    MedlinePlus

    ... High-tension wires Metal detectors Industrial welders Electrical generators These devices can disrupt the electrical signaling of ... 2 feet away from industrial welders and electrical generators. Some medical procedures can disrupt your pacemaker. These ...

  1. Communication between circadian clusters: The key to a plastic network.

    PubMed

    Beckwith, Esteban J; Ceriani, M Fernanda

    2015-11-14

    Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions. It is increasingly clear that the fly clock employs multiple signalling cues, such as neuropeptides, fast neurotransmitters, and other signalling molecules, in the dynamic interplay between neuronal clusters. These neuronal groups seem to interact in a plastic fashion, e.g., rearranging their hierarchy in response to changing environmental conditions. A picture is emerging supporting that these dynamic mechanisms are in place to provide an optimal balance between flexibility and an extraordinary accuracy. PMID:26297822

  2. Mangalith: a new lithium pacemaker battery

    SciTech Connect

    Gerbier, G.; Lehmann, G.

    1980-01-01

    An original lithium battery system is being developed for pacemaker application. The material used, lithium-manganese dioxide, industrially available at the present time for a variety of electronic applications, has been modified and adapted for pacemaker power requirements. The utilization of a different modification of manganese dioxide offers performance advantages. The cell technology is described and performance comparisons between this new cathode material and the industrial counterpart are reported. 7 refs.

  3. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock.

    PubMed

    Nesbit, Katherine T; Christie, Andrew E

    2014-12-01

    Copepods of the genus Tigriopus have been proposed as marine models for investigations of environmental perturbation. One rapidly increasing anthropogenic stressor for intertidal organisms is light pollution. Given the sensitivity of circadian rhythms to exogenous light, the genes/proteins of a Tigriopus circadian pacemaker represent a potential system for investigating the influences of artificial light sources on circadian behavior in an intertidal species. Here, the molecular components of a putative Tigriopus californicus circadian clock were identified using publicly accessible transcriptome data; the recently deduced circadian proteins of the copepod Calanus finmarchicus were used as a reference. Transcripts encoding homologs of all commonly recognized ancestral arthropod core clock proteins were identified (i.e. CLOCK, CRYPTOCHROME 2, CYCLE, PERIOD and TIMELESS), as were ones encoding proteins likely to modulate the core clock (i.e. CASEIN KINASE II, CLOCKWORK ORANGE, DOUBLETIME, PROTEIN PHOSPHATASE 1, PROTEIN PHOSPHATASE 2A, SHAGGY, SUPERNUMERARY LIMBS and VRILLE) or to act as inputs to it (i.e. CRYPTOCHROME 1). PAR DOMAIN PROTEIN 1 was the only circadian-associated protein not identified in Tigriopus; it appears absent in Calanus too. These data represent just the third full set of molecular components for a crustacean circadian pacemaker (Daphnia pulex and C. finmarchicus previously), and only the second obtained from transcribed sequences (C. finmarchicus previously). Given Tigriopus' proposed status as a model for investigating the influences of anthropogenic stressors in the marine environment, these data provide the first suite of gene/protein targets for understanding how light pollution may influence circadian physiology and behavior in an intertidal organism.

  4. Mathematical Models of Cardiac Pacemaking Function

    NASA Astrophysics Data System (ADS)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  5. Ontogeny of circadian organization in the rat.

    PubMed

    Yamazaki, Shin; Yoshikawa, Tomoko; Biscoe, Elizabeth W; Numano, Rika; Gallaspy, Lauren M; Soulsby, Stacy; Papadimas, Evagelia; Pezuk, Pinar; Doyle, Susan E; Tei, Hajime; Sakaki, Yoshiyuki; Block, Gene D; Menaker, Michael

    2009-02-01

    The mammalian circadian system is orchestrated by a master pacemaker in the brain, but many peripheral tissues also contain independent or quasi-independent circadian oscillators. The adaptive significance of clocks in these structures must lie, in large part, in the phase relationships between the constituent oscillators and their micro- and macroenvironments. To examine the relationship between postnatal development, which is dependent on endogenous programs and maternal/environmental influences, and the phase of circadian oscillators, the authors assessed the circadian phase of pineal, liver, lung, adrenal, and thyroid tissues cultured from Period 1-luciferase (Per1-luc ) rat pups of various postnatal ages. The liver, thyroid, and pineal were rhythmic at birth, but the phases of their Per1-luc expression rhythms shifted remarkably during development. To determine if the timing of the phase shift in each tissue could be the result of changing environmental conditions, the behavior of pups and their mothers was monitored. The circadian phase of the liver shifted from the day to night around postnatal day (P) 22 as the pups nursed less during the light and instead ate solid food during the dark. Furthermore, the phase of Per1-luc expression in liver cultures from nursing neonates could be shifted experimentally from the day to the night by allowing pups access to the dam only during the dark. Peak Per1-luc expression also shifted from midday to early night in thyroid cultures at about P20, concurrent with the shift in eating times. The phase of Per1-luc expression in the pineal gland shifted from day to night coincident with its sympathetic innervation at around P5. Per1-luc expression was rhythmic in adrenal cultures and peaked around the time of lights-off throughout development; however, the amplitude of the rhythm increased at P25. Lung cultures were completely arrhythmic until P12 when the pups began to leave the nest. Taken together, the data suggest that the

  6. SCN: ringmaster of the circadian circus or conductor of the circadian orchestra?

    PubMed

    Davidson, Alec J; Yamazaki, Shin; Menaker, Michael

    2003-01-01

    The mammalian circadian system is composed of multiple circadian oscillators in both the brain and the periphery. Unravelling the organization of this system is a major challenge that the field is only beginning to take on. Clearly the suprachiasmatic nucleus of the hypothalamus (SCN) plays a key role and sits at or near the top of the organizational hierarchy, the details of which are largely unknown. The SCN has often been characterized as a 'master oscillator' that controls other oscillators downstream in the hierarchy, but there is little information about the nature of that control or how rigid or flexible it may be. Indeed, characterization of the SCN as 'master' may be exaggerated since other central circadian pacemakers are known to exist and the extent of feedback onto the SCN from other oscillators remains unexplored. We have tried to make some of the issues concerning the role of the SCN within the entire system more explicit using the somewhat fanciful metaphor referred to in the title.

  7. The pineal and circadian rhythms of temperature selection and locomotion in lizards.

    PubMed

    Innocenti, A; Minutini, L; Foà, A

    1993-05-01

    The existence of a circadian rhythm of behavioral temperature selection has been demonstrated in lizards (Podarcis sicula) held on a thermal gradient in constant darkness. This rhythm becomes temporarily abolished during 1 week following parietalectomy and 2-3 weeks following pinealectomy. Parietalectomy does not affect the locomotor rhythm, while pinealectomy invariably lengthens the freerunning period of this rhythm. These results support the contention of separate control systems for the temperature selection rhythm and the locomotor rhythm. As neither rhythm is definitively abolished by parietalectomy and pinealectomy, other pacemaking components exist elsewhere in the circadian system of Podarcis sicula which can control both rhythms.

  8. Aging and Circadian Rhythms.

    PubMed

    Duffy, Jeanne F; Zitting, Kirsi-Marja; Chinoy, Evan D

    2015-12-01

    Aging is associated with numerous changes, including changes in sleep timing, duration, and quality. The circadian timing system interacts with a sleep-wake homeostatic system to regulate human sleep, including sleep timing and structure. This article reviews key features of the human circadian timing system, age-related changes in the circadian timing system, and how those changes may contribute to the observed alterations in sleep. PMID:26568120

  9. Circadian Clocks and Metabolism

    PubMed Central

    Marcheva, Biliana; Ramsey, Kathryn M.; Peek, Clara B.; Affinati, Alison; Maury, Eleonore; Bass, Joseph

    2014-01-01

    Circadian clocks maintain periodicity in internal cycles of behavior, physiology, and metabolism, enabling organisms to anticipate the 24-h rotation of the Earth. In mammals, circadian integration of metabolic systems optimizes energy harvesting and utilization across the light/dark cycle. Disruption of clock genes has recently been linked to sleep disorders and to the development of cardiometabolic disease. Conversely, aberrant nutrient signaling affects circadian rhythms of behavior. This chapter reviews the emerging relationship between the molecular clock and metabolic systems and examines evidence that circadian disruption exerts deleterious consequences on human health. PMID:23604478

  10. Phase shifting the circadian rhythm of neuronal activity in the isolated Aplysia eye with puromycin and cycloheximide. Electrophysiological and biochemical studies

    PubMed Central

    1976-01-01

    The effects of pulse application of puromycin (PURO) or cycloheximide (CHX) were tested on the circadian rhythm (CR) of spontaneous compound action potential (CAP) activity in the isolated Aplysia eye. CAP activity was recorded from the optic nerve in constant darkness at 15degreesC. PURO pulses (6, 12 h; 12--134 mug/ml) and CHX pulses (12 h, 500--2,000 mug/ml) caused dose-dependent phase delays in the CR when administered during projected night. PURO pulses (6 h, 125 mug/ml) caused phase advances when given during projected day and caused phase delays when given during projected night. In biochemical experiments PURO (12 h, 20 mug/ml) and CHX (12 h, 500 mug/ml) inhibited leucine incorporation into the eye by about 50%. PURO (12 h; 50, 125 mug/ml) also changed the molecular weight distribution of proteins synthesized by the eye during the pulse. The effect of PURO (12 h, 125 mug/ml) on the level of incorporation was almost completely reversible within the next 12 h but the phase-shifted eye showed an latered spectrum of proteins for up to 28 h after the pulse. In electrophysiological experiments spontaneous CAP activity and responses to light were measured before, during, and after drug treatments. In all, eight parameters in three periods were analyzed quantitatively. Of these 24 indices, only 3 showed significant changes. PURO increased spontaneous CAP frequency by 67% 0-7 h after the drug pulse and increased the CAP amplitude of the tonic light response by 23% greater than 7 h after the pulse. CHX increased the intraburst spontaneous CAP frequency by 33% during the pulse and CAP frequency of the tonic light response by 32% 0- 7 h after the pulse. The above data indicate that phase-shifting doses of PURO and CHX inhibit protein synthesis in the eye without causing adverse electrophysiological effects, and suggest that protein synthesis is involved in the production of the CR of the isolated Aplysia eye. PMID:993764

  11. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators

    PubMed Central

    Malloy, Jaclyn N.; Paulose, Jiffin K.; Li, Ye

    2012-01-01

    Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhythms, and the sympathetic nervous system in regulation of circadian GI rhythms in the mouse Mus musculus. Surgical ablation of the SCN abolishes circadian locomotor, feeding, and stool output rhythms when animals are presented with food ad libitum, while restricted feeding reestablishes these rhythms temporarily. In intact mice, chemical sympathectomy with 6-hydroxydopamine has no effect on feeding and locomotor rhythmicity in light-dark cycles or constant darkness but attenuates stool weight and stool number rhythms. Again, however, restricted feeding reestablishes rhythms in locomotor activity, feeding, and stool output rhythms. Ex vivo, intestinal tissue from PER2::LUC transgenic mice expresses circadian rhythms of luciferase bioluminescence. Chemical sympathectomy has little effect on these rhythms, but timed administration of the β-adrenergic agonist isoproterenol causes a phase-dependent shift in PERIOD2 expression rhythms. Collectively, the data suggest that the SCN are required to maintain feeding, locomotor, and stool output rhythms during ad libitum conditions, acting at least in part through daily activation of sympathetic activity. Even so, this input is not necessary for entrainment to timed feeding, which may be the province of oscillators within the intestines themselves or other components of the GI system. PMID:22723262

  12. Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions.

    PubMed

    Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R

    2012-10-01

    Because the circadian clock in the mammalian brain derives from a network of interacting cellular oscillators, characterizing the nature and bases of circadian coupling is fundamental to understanding how the pacemaker operates. Various phenomena involving plasticity in circadian waveform have been theorized to reflect changes in oscillator coupling; however, it remains unclear whether these different behavioral paradigms reference a unitary underlying process. To test whether disparate coupling assays index a common mechanism, we examined whether there is covariation among behavioral responses to various lighting conditions that produce changes in circadian waveform. Siberian hamsters, Phodopus sungorus, were transferred from long to short photoperiods to distinguish short photoperiod responders (SP-R) from nonresponders (SP-NR). Short photoperiod chronotyped hamsters were subsequently transferred, along with unselected controls, to 24-h light:dark:light: dark cycles (LDLD) with dim nighttime illumination, a procedure that induces bifurcated entrainment. Under LDLD, SP-R hamsters were more likely to bifurcate their rhythms than were SP-NR hamsters or unselected controls. After transfer from LDLD to constant dim light, SP-R hamsters were also more likely to become arrhythmic compared to SP-NR hamsters and unselected controls. In contrast, short photoperiod chronotype did not influence more transient changes in circadian waveform. The present data reveal a clear relationship in the plasticity of circadian waveform across 3 distinct lighting conditions, suggesting a common mechanism wherein individual differences reflect variation in circadian coupling.

  13. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    PubMed

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes.

  14. Research on sleep, circadian rhythms and aging - Applications to manned spaceflight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Chiasera, August J.; Duffy, Jeanne F.

    1991-01-01

    Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA Space Shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.

  15. Acute light exposure suppresses circadian rhythms in clock gene expression.

    PubMed

    Grone, Brian P; Chang, Doris; Bourgin, Patrice; Cao, Vinh; Fernald, Russell D; Heller, H Craig; Ruby, Norman F

    2011-02-01

    Light can induce arrhythmia in circadian systems by several weeks of constant light or by a brief light stimulus given at the transition point of the phase response curve. In the present study, a novel light treatment consisting of phase advance and phase delay photic stimuli given on 2 successive nights was used to induce circadian arrhythmia in the Siberian hamster ( Phodopus sungorus). We therefore investigated whether loss of rhythms in behavior was due to arrhythmia within the suprachiasmatic nucleus (SCN). SCN tissue samples were obtained at 6 time points across 24 h in constant darkness from entrained and arrhythmic hamsters, and per1, per2 , bmal1, and cry1 mRNA were measured by quantitative RT-PCR. The light treatment eliminated circadian expression of clock genes within the SCN, and the overall expression of these genes was reduced by 18% to 40% of entrained values. Arrhythmia in per1, per2, and bmal1 was due to reductions in the amplitudes of their oscillations. We suggest that these data are compatible with an amplitude suppression model in which light induces singularity in the molecular circadian pacemaker.

  16. The role of the circadian system in fractal neurophysiological control.

    PubMed

    Pittman-Polletta, Benjamin R; Scheer, Frank A J L; Butler, Matthew P; Shea, Steven A; Hu, Kun

    2013-11-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.

  17. The role of the circadian system in fractal neurophysiological control

    PubMed Central

    Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun

    2013-01-01

    Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942

  18. Swim pacemakers in box jellyfish are modulated by the visual input.

    PubMed

    Garm, A; Bielecki, J

    2008-07-01

    A major part of the cubozoan central nervous system is situated in the eye-bearing rhopalia. One of the neuronal output channels from the rhopalia carries a swim pacemaker signal, which has a one-to-one relation with the swim contractions of the bell shaped body. Given the advanced visual system of box jellyfish and that the pacemaker signal originates in the vicinity of these eyes, it seems logical to assume that the pacemakers are modified by the visual input. Here, the firing frequency and distribution of inter-signal intervals (ISIs) of single pacemakers are examined in the Caribbean box jellyfish, Tripedalia cystophora. It is shown that the absolute ambient light intensity, if kept constant, has no influence on the signal, but if the intensity changes, it has a major impact on both frequency and ISIs. If the intensity suddenly drops there is an increase in firing frequency, and the ISIs become more homogeneously distributed. A rise in intensity, on the other hand, produces a steep decline in the frequency and makes the ISIs highly variable. These electrophysiological data are correlated with behavioral observations from the natural habitat of the medusae. PMID:18446348

  19. Later endogenous circadian temperature nadir relative to an earlier wake time in older people

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Dijk, D. J.; Klerman, E. B.; Czeisler, C. A.

    1998-01-01

    The contribution of the circadian timing system to the age-related advance of sleep-wake timing was investigated in two experiments. In a constant routine protocol, we found that the average wake time and endogenous circadian phase of 44 older subjects were earlier than that of 101 young men. However, the earlier circadian phase of the older subjects actually occurred later relative to their habitual wake time than it did in young men. These results indicate that an age-related advance of circadian phase cannot fully account for the high prevalence of early morning awakening in healthy older people. In a second study, 13 older subjects and 10 young men were scheduled to a 28-h day, such that they were scheduled to sleep at many circadian phases. Self-reported awakening from scheduled sleep episodes and cognitive throughput during the second half of the wake episode varied markedly as a function of circadian phase in both groups. The rising phase of both rhythms was advanced in the older subjects, suggesting an age-related change in the circadian regulation of sleep-wake propensity. We hypothesize that under entrained conditions, these age-related changes in the relationship between circadian phase and wake time are likely associated with self-selected light exposure at an earlier circadian phase. This earlier exposure to light could account for the earlier clock hour to which the endogenous circadian pacemaker is entrained in older people and thereby further increase their propensity to awaken at an even earlier time.

  20. The Arabidopsis Circadian System

    PubMed Central

    McClung, C. Robertson; Salomé, Patrice A.; Michael, Todd P.

    2002-01-01

    Rhythms with periods of approximately 24 hr are widespread in nature. Those that persist in constant conditions are termed circadian rhythms and reflect the activity of an endogenous biological clock. Plants, including Arabidopsis, are richly rhythmic. Expression analysis, most recently on a genomic scale, indicates that the Arabidopsis circadian clock regulates a number of key metabolic pathways and stress responses. A number of sensitive and high-throughput assays have been developed to monitor the Arabidopsis clock. These assays have facilitated the identification of components of plant circadian systems through genetic and molecular biological studies. Although much remains to be learned, the framework of the Arabidopsis circadian system is coming into focus. Dedication This review is dedicated to the memory of DeLill Nasser, a wonderful mentor and an unwavering advocate of both Arabidopsis and circadian rhythms research. PMID:22303209

  1. Circadian rhythm sleep disorders.

    PubMed

    Kanathur, Naveen; Harrington, John; Lee-Chiong, Teofilo

    2010-06-01

    Because there is insufficient cellular energy for organisms to perform their functions at the same constant rate and at the same time, all biologic processes show rhythmicity, each with its own unique frequency, amplitude, and phase. Optimal sleep and wakefulness requires proper timing and alignment of desired sleep-wake schedules and circadian rhythm-related periods of alertness. Persistent or recurrent mismatch between endogenous circadian rhythms and the conventional sleep-wake schedules of the environmental day can give rise to several circadian rhythm sleep disorders. Evaluation of suspected circadian rhythm sleep disorders requires proper monitoring of sleep diaries, often over several days to weeks. This article discusses the disorders of the circadian sleep-wake cycle and the therapeutic measures to correct the same.

  2. Relationship between Human Pupillary Light Reflex and Circadian System Status.

    PubMed

    Bonmati-Carrion, Maria Angeles; Hild, Konstanze; Isherwood, Cheryl; Sweeney, Stephen J; Revell, Victoria L; Skene, Debra J; Rol, Maria Angeles; Madrid, Juan Antonio

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460-490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input. PMID:27636197

  3. Relationship between Human Pupillary Light Reflex and Circadian System Status

    PubMed Central

    Bonmati-Carrion, Maria Angeles; Hild, Konstanze; Isherwood, Cheryl; Sweeney, Stephen J.; Revell, Victoria L.; Skene, Debra J.; Rol, Maria Angeles; Madrid, Juan Antonio

    2016-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex (PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of the circadian system. Thus, evaluating PLR under short wavelength light (λmax ≤ 500 nm) and creating an integrated PLR parameter, as a possible tool to indirectly assess the status of the circadian system, becomes of interest. Nine monochromatic, photon-matched light stimuli (300 s), in 10 nm increments from λmax 420 to 500 nm were administered to 15 healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations between the different PLR parameters and circadian status index obtained from WT, WA and L recordings and scores from questionnaires were calculated. In summary, we found markers of robust circadian rhythms, namely high stability, reduced fragmentation, high amplitude, phase advance and low internal desynchronization, were correlated with a reduced PLR to 460–490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR) parameters are proposed, that also showed an inverse correlation. These results demonstrate, for the first time, the existence of a close relationship between the circadian system robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC input. PMID:27636197

  4. Pacemaker lead endocarditis caused by Staphylococcus hominis.

    PubMed

    Sunbul, Mustafa; Demirag, Mustafa Kemal; Yilmaz, Ozcan; Yilmaz, Hava; Ozturk, Recep; Leblebicioglu, Hakan

    2006-05-01

    Infective endocarditis related to pacemaker is a rare but serious condition in permanent venous tracing. A 65-year-old man was admitted to the hospital with high fever and chills. A DDD pacemaker had been implanted via the right subclavian vein because of sick sinus syndrome 6 years earlier. Transesophageal echocardiogram identified an oscillating round hyperechoic mass with a stalk near the tricuspid valve. Blood cultures grew Staphylococcus hominis. The patient was treated with antibiotics and operated on after the acute phase of the illness had subsided. We hereby report a case of lead endocarditis caused by S. hominis in a patient with pacemaker, which has been rarely reported in the English literature.

  5. 21 CFR 870.3730 - Pacemaker service tools.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen...

  6. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  7. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  8. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  9. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended...

  10. 21 CFR 870.3730 - Pacemaker service tools.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen...

  11. 21 CFR 870.3710 - Pacemaker repair or replacement material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is...

  12. 21 CFR 870.3710 - Pacemaker repair or replacement material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is...

  13. 21 CFR 870.3730 - Pacemaker service tools.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker service tools. 870.3730 Section 870.3730...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker service tools. (a) Identification. Pacemaker service tools are devices such as screwdrivers and Allen...

  14. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended...

  15. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended...

  16. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External transcutaneous cardiac pacemaker... § 870.5550 External transcutaneous cardiac pacemaker (noninvasive). (a) Identification. An external transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended...

  17. 21 CFR 870.3710 - Pacemaker repair or replacement material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker repair or replacement material. 870.3710... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3710 Pacemaker repair or replacement material. (a) Identification. A pacemaker repair or replacement material is...

  18. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered...

  19. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered...

  20. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered...

  1. 21 CFR 870.3640 - Indirect pacemaker generator function analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker...

  2. 21 CFR 870.3630 - Pacemaker generator function analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker generator function analyzer. 870.3630... generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is connected to a pacemaker pulse generator to test any or all of the generator's parameters, including...

  3. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  4. 21 CFR 870.3630 - Pacemaker generator function analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker generator function analyzer. 870.3630... generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is connected to a pacemaker pulse generator to test any or all of the generator's parameters, including...

  5. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  6. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  7. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  8. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External pacemaker pulse generator. 870.3600 Section 870.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has...

  9. 21 CFR 870.3630 - Pacemaker generator function analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker generator function analyzer. 870.3630... generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is connected to a pacemaker pulse generator to test any or all of the generator's parameters, including...

  10. 21 CFR 870.3640 - Indirect pacemaker generator function analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker...

  11. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External programmable pacemaker pulse generator... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker pulse generators is a device that can be programmed to produce one or more pulses at...

  12. 21 CFR 870.3630 - Pacemaker generator function analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker generator function analyzer. 870.3630... generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is connected to a pacemaker pulse generator to test any or all of the generator's parameters, including...

  13. 21 CFR 870.3640 - Indirect pacemaker generator function analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker...

  14. 21 CFR 870.3640 - Indirect pacemaker generator function analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker...

  15. 21 CFR 870.3640 - Indirect pacemaker generator function analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indirect pacemaker generator function analyzer. 870.3640 Section 870.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Indirect pacemaker generator function analyzer. (a) Identification. An indirect pacemaker...

  16. 21 CFR 870.3630 - Pacemaker generator function analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker generator function analyzer. 870.3630... generator function analyzer. (a) Identification. A pacemaker generator function analyzer is a device that is connected to a pacemaker pulse generator to test any or all of the generator's parameters, including...

  17. Circadian Rhythm Abnormalities

    PubMed Central

    Zee, Phyllis C.; Attarian, Hrayr; Videnovic, Aleksandar

    2013-01-01

    Purpose: This article reviews the recent advances in understanding of the fundamental properties of circadian rhythms and discusses the clinical features, diagnosis, and treatment of circadian rhythm sleep disorders (CRSDs). Recent Findings: Recent evidence strongly points to the ubiquitous influence of circadian timing in nearly all physiologic functions. Thus, in addition to the prominent sleep and wake disturbances, circadian rhythm disorders are associated with cognitive impairment, mood disturbances, and increased risk of cardiometabolic disorders. The recent availability of biomarkers of circadian timing in clinical practice has improved our ability to identify and treat these CRSDs. Summary: Circadian rhythms are endogenous rhythms with a periodicity of approximately 24 hours. These rhythms are synchronized to the physical environment by social and work schedules by various photic and nonphotic stimuli. CRSDs result from a misalignment between the timing of the circadian rhythm and the external environment (eg, jet lag and shift work) or a dysfunction of the circadian clock or its afferent and efferent pathways (eg, delayed sleep-phase, advanced sleep-phase, non–24-hour, and irregular sleep-wake rhythm disorders). The most common symptoms of these disorders are difficulties with sleep onset and/or sleep maintenance and excessive sleepiness that are associated with impaired social and occupational functioning. Effective treatment for most of the CRSDs requires a multimodal approach to accelerate circadian realignment with timed exposure to light, avoidance of bright light at inappropriate times, and adherence to scheduled sleep and wake times. In addition, pharmacologic agents are recommended for some of the CRSDs. For delayed sleep-phase, non–24-hour, and shift work disorders, timed low-dose melatonin can help advance or entrain circadian rhythms; and for shift work disorder, wake-enhancing agents such as caffeine, modafinil, and armodafinil are options

  18. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time.

    PubMed

    Husse, Jana; Eichele, Gregor; Oster, Henrik

    2015-10-01

    A vast network of cellular circadian clocks regulates 24-hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light-reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more "federated" and tissue-specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions.

  19. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice.

    PubMed

    Ono, Daisuke; Honma, Ken-ichi; Honma, Sato

    2015-01-01

    In mammals, the temporal order of physiology and behavior is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Rhythms are generated in cells by an auto-regulatory transcription/translation feedback loop, composed of several clock genes and their protein products. Taking advantage of bioluminescence reporters, we have succeeded in continuously monitoring the expression of clock gene reporters Per1-luc, PER2::LUC and Bmal1-ELuc in the SCN of freely moving mice for up to 3 weeks in constant darkness. Bioluminescence emitted from the SCN was collected with an implanted plastic optical fiber which was connected to a cooled photomultiplier tube. We found robust circadian rhythms in the clock gene expression, the phase-relation of which were the same as those observed ex vivo. The circadian rhythms were superimposed by episodic bursts which had ultradian periods of approximately 3.0 h. Episodic bursts often accompanied activity bouts, but stoichiometric as well as temporal analyses revealed no causality between them. Clock gene expression in the SCN in vivo is regulated by the circadian pacemaker and ultradian rhythms of unknown origin. PMID:26194231

  20. Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional Coactivator PGC-1α

    PubMed Central

    Li, Siming; Chen, Xiao-Wei; Yu, Lei; Saltiel, Alan R.

    2011-01-01

    Circadian clock coordinates behavior and physiology in mammals in response to light and feeding cycles. Disruption of normal clock function is associated with increased risk for cardiovascular and metabolic diseases, underscoring the emerging concept that temporal regulation of tissue metabolism is a fundamental aspect of energy homeostasis. We have previously demonstrated that transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), coordinates circadian metabolic rhythms through simultaneous regulation of metabolic and clock gene expression. In this study, we found that PGC-1α physically interacts with, and is phosphorylated by, casein kinase 1δ (CK1δ), a core component of the circadian pacemaker. CK1δ represses the transcriptional function of PGC-1α in cultured hepatocytes, resulting in decreased gluconeogenic gene expression and glucose secretion. At the molecular level, CK1δ phosphorylation of PGC-1α within its arginine/serine-rich domain enhances its degradation through the proteasome system. Together, these results elucidate a novel mechanism through which circadian pacemaker transduces timing signals to the metabolic regulatory network that controls hepatic energy metabolism. PMID:22052997

  1. Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice

    PubMed Central

    Ono, Daisuke; Honma, Ken-ichi; Honma, Sato

    2015-01-01

    In mammals, the temporal order of physiology and behavior is primarily regulated by the circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Rhythms are generated in cells by an auto-regulatory transcription/translation feedback loop, composed of several clock genes and their protein products. Taking advantage of bioluminescence reporters, we have succeeded in continuously monitoring the expression of clock gene reporters Per1-luc, PER2::LUC and Bmal1-ELuc in the SCN of freely moving mice for up to 3 weeks in constant darkness. Bioluminescence emitted from the SCN was collected with an implanted plastic optical fiber which was connected to a cooled photomultiplier tube. We found robust circadian rhythms in the clock gene expression, the phase-relation of which were the same as those observed ex vivo. The circadian rhythms were superimposed by episodic bursts which had ultradian periods of approximately 3.0 h. Episodic bursts often accompanied activity bouts, but stoichiometric as well as temporal analyses revealed no causality between them. Clock gene expression in the SCN in vivo is regulated by the circadian pacemaker and ultradian rhythms of unknown origin. PMID:26194231

  2. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    PubMed

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  3. Circadian metabolic regulation through crosstalk between casein kinase 1δ and transcriptional coactivator PGC-1α.

    PubMed

    Li, Siming; Chen, Xiao-Wei; Yu, Lei; Saltiel, Alan R; Lin, Jiandie D

    2011-12-01

    Circadian clock coordinates behavior and physiology in mammals in response to light and feeding cycles. Disruption of normal clock function is associated with increased risk for cardiovascular and metabolic diseases, underscoring the emerging concept that temporal regulation of tissue metabolism is a fundamental aspect of energy homeostasis. We have previously demonstrated that transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), coordinates circadian metabolic rhythms through simultaneous regulation of metabolic and clock gene expression. In this study, we found that PGC-1α physically interacts with, and is phosphorylated by, casein kinase 1δ (CK1δ), a core component of the circadian pacemaker. CK1δ represses the transcriptional function of PGC-1α in cultured hepatocytes, resulting in decreased gluconeogenic gene expression and glucose secretion. At the molecular level, CK1δ phosphorylation of PGC-1α within its arginine/serine-rich domain enhances its degradation through the proteasome system. Together, these results elucidate a novel mechanism through which circadian pacemaker transduces timing signals to the metabolic regulatory network that controls hepatic energy metabolism.

  4. The past, present, and future of pacemaker therapies.

    PubMed

    Boink, Gerard J J; Christoffels, Vincent M; Robinson, Richard B; Tan, Hanno L

    2015-11-01

    Since its introduction into clinical practice, electronic pacing has saved many lives. Despite continuous improvements, electronic pacemakers have important shortcomings, which stimulated the development of biological alternatives. Biological pacemakers generate the cardiac impulse using genes or cells to treat bradycardias. Over the past decade, significant improvements have been made in biological pacemakers, but issues remain in relation to long-term outcomes and safety. Concurrently, efforts to improve electronic pacemakers have also intensified. Whether new generations of electronic pacemakers will erase lingering concerns with regard to electronic pacing or whether biologicals will ultimately supplement or supplant electronics remains to be seen.

  5. Effects of pacemaker currents on creation and modulation of human ventricular pacemaker: theoretical study with application to biological pacemaker engineering.

    PubMed

    Kurata, Yasutaka; Matsuda, Hiroyuki; Hisatome, Ichiro; Shibamoto, Toshishige

    2007-01-01

    A cardiac biological pacemaker (BP) has been created by suppression of the inward rectifier K(+) current (I(K1)) or overexpression of the hyperpolarization-activated current (I(h)). We theoretically investigated the effects of incorporating I(h), T-type Ca(2+) current (I(Ca,T)), sustained inward current (I(st)), and/or low-voltage-activated L-type Ca(2+) channel current (I(Ca,LD)) on 1) creation of BP cells, 2) robustness of BP activity to electrotonic loads of nonpacemaking (NP) cells, and 3) BP cell ability to drive NP cells. We used a single-cell model for human ventricular myocytes (HVMs) and also coupled-cell models composed of BP and NP cells. Bifurcation structures of the model cells were explored during changes in conductance of the currents and gap junction. Incorporating the pacemaker currents did not yield BP activity in HVM with normal I(K1) but increased the critical I(K1) conductance for BP activity to emerge. Expressing I(h) appeared to be most helpful in facilitating creation of BP cells via I(K1) suppression. In the coupled-cell model, I(st) significantly enlarged the gap conductance (G(C)) region where stable BP cell pacemaking and NP cell driving occur, reducing the number of BP cells required for robust pacemaking and driving. In contrast, I(h) enlarged the G(C) region of pacemaking and driving only when I(K1) of the NP cell was relatively low. I(Ca,T) or I(Ca,LD) exerted effects similar to those of I(st) but caused shrinkage or irregularity of BP oscillations. These findings suggest that expressing I(st) most effectively improves the structural stability of BPs to electrotonic loads and the BP ability to drive the ventricle.

  6. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock

    PubMed Central

    Husse, Jana; Eichele, Gregor

    2015-01-01

    A vast network of cellular circadian clocks regulates 24‐hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light‐reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more “federated” and tissue‐specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions. PMID:26252253

  7. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study

    PubMed Central

    Nakayama, Shinsuke; Shimono, Ken; Liu, Hong-Nian; Jiko, Hideyasu; Katayama, Noburu; Tomita, Tadao; Goto, Kazunori

    2006-01-01

    Gastrointestinal (GI) motility is well organized. GI muscles act as a functional syncytium to achieve physiological functions under the control of neurones and pacemaker cells, which generate basal spontaneous pacemaker electrical activity. To date, it is unclear how spontaneous electrical activities are coupled, especially within a micrometre range. Here, using a microelectrode array, we show a spatio-temporal analysis of GI spontaneous electrical activity. The muscle preparations were isolated from guinea-pig stomach, and fixed in a chamber with an array of 8 × 8 planar multielectrodes (with 300 μm in interpolar distance). The electrical activities (field potentials) were simultaneously recorded through a multichannel amplifier system after high-pass filtering at 0.1 Hz. Dihydropyridine Ca2+ channel antagonists are known to differentiate the electrical pacemaker activity of interstitial cells of Cajal (ICCs) by suppressing smooth muscle activity. In the presence of nifedipine, we observed spontaneous electrical activities that were well synchronized over the array area, but had a clear phase shift depending on the distance. The additional application of tetrodotoxin (TTX) had little effect on the properties of the electrical activity. Furthermore, by constructing field potential images, we visualized the synchronization of pacemaker electrical activities resolving phase shifts that were measurable over several hundred micrometres. The results imply a phase modulation mechanism other than neural activity, and we postulate that this mechanism enables smooth GI motility. In addition, some preparations clearly showed plasticity of the pacemaker phase shift. PMID:16990400

  8. MRI-conditional pacemakers: current perspectives

    PubMed Central

    Ferreira, António M; Costa, Francisco; Tralhão, António; Marques, Hugo; Cardim, Nuno; Adragão, Pedro

    2014-01-01

    Use of both magnetic resonance imaging (MRI) and pacing devices has undergone remarkable growth in recent years, and it is estimated that the majority of patients with pacemakers will need an MRI during their lifetime. These investigations will generally be denied due to the potentially dangerous interactions between cardiac devices and the magnetic fields and radio frequency energy used in MRI. Despite the increasing reports of uneventful scanning in selected patients with conventional pacemakers under close surveillance, MRI is still contraindicated in those circumstances and cannot be considered a routine procedure. These limitations prompted a series of modifications in generator and lead engineering, designed to minimize interactions that could compromise device function and patient safety. The resulting MRI-conditional pacemakers were first introduced in 2008 and the clinical experience gathered so far supports their safety in the MRI environment if certain conditions are fulfilled. With this technology, new questions and controversies arise regarding patient selection, clinical impact, and cost-effectiveness. In this review, we discuss the potential risks of MRI in patients with electronic cardiac devices and present updated information regarding the features of MRI-conditional pacemakers and the clinical experience with currently available models. Finally, we provide some guidance on how to scan patients who have these devices and discuss future directions in the field. PMID:24851058

  9. Clinical assessment of pacemaker power sources

    SciTech Connect

    Bilitch, M.; Parsonnet, V.; Furman, S.

    1980-01-01

    The development of power sources for cardiac pacemakers has progressed from a 15-year usage of mercury-zinc batteries to widely used and accepted lithium cells. At present, there are about 6 different types of lithium cells incorporated into commercially distributed pacemakers. The authors reviewed experience over a 5-year period with 1711 mercury-zinc, 130 nuclear (P238) and 1912 lithium powered pacemakers. The lithium units have included 698 lithium-iodide, 270 lithium-silver chromate, 135 lithium-thionyl chloride, 31 lithium-lead and 353 lithium-cupric sulfide batteries. 57 of the lithium units have failed (91.2% component failure and 5.3% battery failure). 459 mercury-zinc units failed (25% component failure and 68% battery depletion). The data show that lithium powered pacemaker failures are primarily component, while mercury-zinc failures are primarily battery related. It is concluded that mercury-zinc powered pulse generators are obsolete and that lithium and nuclear (P238) power sources are highly reliable over the 5 years for which data are available. 3 refs.

  10. Intrapericardial pacemaker in a 2-kilogram newborn.

    PubMed

    Gil-Jaurena, Juan-Miguel; Castillo, Rafael; Rubio, Lorena

    2012-08-01

    A 2-kilogram child had a pacemaker implanted by a subxyphoid approach with the generator located under the rectus sheath. Days later, the battery eroded the abdominal wall and the peritoneum. The whole system was removed and a new one was implanted inside the pericardium on an emergent basis.

  11. Is metabolic rate a universal 'pacemaker' for biological processes?

    PubMed

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  12. Is metabolic rate a universal 'pacemaker' for biological processes?

    PubMed

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  13. A two-clock model of circadian timing in the immune system of mammals.

    PubMed

    Berger, J

    2008-07-01

    It has been confirmed that clock genes, as well as the pineal hormone, have a role in the hypothalamic suprachiasmatic nucleus, the circadian endogenous pacemaker. It seems that the peripheral clock genes in the cells of the immune system subtly control biorhythms; their seeming lack of impact only showing that they work well. Some biorhythms even seem to be independent of a light/dark circadian regime. This apparent conflict in the mammalian time structure can be resolved by a two-clocks control model involving: (a) the endogenous gene clock, which is dominant in the neural system and (b) the exogenous clock of the immune system. Interactions between these two clocks can explain both the frequently observed individual differences in circadian rhythms and the subtle role of the peripheral clock genes. The endogenous clock facilitates an alternation in the immune system which counters external attacks in daytime and induces repair and advancement by night.

  14. Altered rest-activity patterns evolve via circadian independent mechanisms in cave adapted balitorid loaches.

    PubMed

    Duboué, Erik R; Borowsky, Richard L

    2012-01-01

    Circadian rhythms and rest homeostasis are independent processes, each regulating important components of rest-activity patterns. Evolutionarily, the two are distinct from one another; total rest time is maintained unaffected even when circadian pacemaker cells are ablated. Throughout the animal kingdom, there exists a huge variation in rest-activity patterns, yet it is unclear how these behaviors have evolved. Here we show that four species of balitorid cavefish have greatly reduced rest times in comparison to rest times of their surface relatives. All four cave species retained biological rhythmicity, and in three of the four there is a pronounced 24-hour rhythm; in the fourth there is an altered rhythmicity of 38-40 hours. Thus, consistent changes in total rest have evolved in these species independent of circadian rhythmicity. Taken together, our data suggest that consistent reduction in total rest times were accomplished evolutionarily through alterations in rest homeostasis. PMID:22348026

  15. Resetting of circadian melatonin and cortisol rhythms in humans by ordinary room light

    NASA Technical Reports Server (NTRS)

    Boivin, D. B.; Czeisler, C. A.

    1998-01-01

    The present study was designed to investigate whether a weak photic stimulus can reset the endogenous circadian rhythms of plasma melatonin and plasma cortisol in human subjects. A stimulus consisting of three cycles of 5 h exposures to ordinary room light (approximately 180 lux), centered 1.5 h after the endogenous temperature nadir, significantly phase-advanced the plasma melatonin rhythm in eight healthy young men compared with the phase delays observed in eight control subjects who underwent the same protocol but were exposed to darkness (p < or = 0.003). After light-induced phase advances, the circadian rhythms of plasma melatonin and plasma cortisol maintained stable temporal relationships with the endogenous core body temperature cycle, consistent with the conclusion that exposure to ordinary indoor room light had shifted a master circadian pacemaker.

  16. Circadian variation of brain histamine in goldfish.

    PubMed

    Burns, Tiffany A; Huston, Joseph P; Spieler, Richard E

    2003-01-15

    Teleosts may make an excellent model to study brain histamine function. Fishes are phylogenetically closer to the basic vertebrate blueprint than higher vertebrates. They appear to have a simpler histaminergic system in terms of central nervous system distribution and, contrary to higher vertebrates, brain histamine appears to be strictly neuronal. In this preliminary study, we examined circadian variation of brain histamine in goldfish, Carassius auratus, as this neurotransmitter correlates with circadian behavior of some mammals. Two groups of juvenile goldfish were held in 24 60L aquaria, six fish per aquarium, on reversed photoperiods; L:D 12:12 with light onset either at 0700 or 1900h. Fish were sampled every 4h. At a sampling time, all the fish in a tank were taken; each sampling, for both groups, was done in replicate. Brain histamine was determined by immunoassay. There was a significant circadian variation in histamine on both photoperiod regimes with the highest levels during the photophase. These results support the hypothesis of an early phylogenic role for histamine in vertebrate circadian physiology.

  17. Generation of cardiac pacemaker cells by programming and differentiation.

    PubMed

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  18. Delay-induced multiple stochastic resonances on scale-free neuronal networks.

    PubMed

    Wang, Qingyun; Perc, Matjaz; Duan, Zhisheng; Chen, Guanrong

    2009-06-01

    We study the effects of periodic subthreshold pacemaker activity and time-delayed coupling on stochastic resonance over scale-free neuronal networks. As the two extreme options, we introduce the pacemaker, respectively, to the neuron with the highest degree and to one of the neurons with the lowest degree within the network, but we also consider the case when all neurons are exposed to the periodic forcing. In the absence of delay, we show that an intermediate intensity of noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble, irrespective to its placing, thus providing evidences for stochastic resonance on the scale-free neuronal networks. Interestingly thereby, if the forcing in form of a periodic pulse train is introduced to all neurons forming the network, the stochastic resonance decreases as compared to the case when only a single neuron is paced. Moreover, we show that finite delays in coupling can significantly affect the stochastic resonance on scale-free neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances independently of the placing of the pacemaker, but they can also altogether destroy stochastic resonance. Delay-induced multiple stochastic resonances manifest as well-expressed maxima of the correlation measure, appearing at every multiple of the pacemaker period. We argue that fine-tuned delays and locally active pacemakers are vital for assuring optimal conditions for stochastic resonance on complex neuronal networks.

  19. Modeling circadian and sleep-homeostatic effects on short-term interval timing

    PubMed Central

    Späti, Jakub; Aritake, Sayaka; Meyer, Andrea H.; Kitamura, Shingo; Hida, Akiko; Higuchi, Shigekazu; Moriguchi, Yoshiya; Mishima, Kazuo

    2015-01-01

    Short-term interval timing i.e., perception and action relating to durations in the seconds range, has been suggested to display time-of-day as well as wake dependent fluctuations due to circadian and sleep-homeostatic changes to the rate at which an underlying pacemaker emits pulses; pertinent human data being relatively sparse and lacking in consistency however, the phenomenon remains elusive and its mechanism poorly understood. To better characterize the putative circadian and sleep-homeostatic effects on interval timing and to assess the ability of a pacemaker-based mechanism to account for the data, we measured timing performance in eighteen young healthy male subjects across two epochs of sustained wakefulness of 38.67 h each, conducted prior to (under entrained conditions) and following (under free-running conditions) a 28 h sleep-wake schedule, using the methods of duration estimation and duration production on target intervals of 10 and 40 s. Our findings of opposing oscillatory time courses across both epochs of sustained wakefulness that combine with increasing and, respectively, decreasing, saturating exponential change for the tasks of estimation and production are consistent with the hypothesis that a pacemaker emitting pulses at a rate controlled by the circadian oscillator and increasing with time awake determines human short-term interval timing; the duration-specificity of this pattern is interpreted as reflecting challenges to maintaining stable attention to the task that progressively increase with stimulus magnitude and thereby moderate the effects of pacemaker-rate changes on overt behavior. PMID:25741253

  20. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa.

    PubMed

    Proietto, Marco; Bianchi, Michele Maria; Ballario, Paola; Brenna, Andrea

    2015-01-01

    Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  1. Measuring pacemaker dose: A clinical perspective

    SciTech Connect

    Studenski, Matthew T.; Xiao Ying; Harrison, Amy S.

    2012-07-01

    Recently in our clinic, we have seen an increased number of patients presenting with pacemakers and defibrillators. Precautions are taken to develop a treatment plan that minimizes the dose to the pacemaker because of the adverse effects of radiation on the electronics. Here we analyze different dosimeters to determine which is the most accurate in measuring pacemaker or defibrillator dose while at the same time not requiring a significant investment in time to maintain an efficient workflow in the clinic. The dosimeters analyzed here were ion chambers, diodes, metal-oxide-semiconductor field effect transistor (MOSFETs), and optically stimulated luminescence (OSL) dosimeters. A simple phantom was used to quantify the angular and energy dependence of each dosimeter. Next, 8 patients plans were delivered to a Rando phantom with all the dosimeters located where the pacemaker would be, and the measurements were compared with the predicted dose. A cone beam computed tomography (CBCT) image was obtained to determine the dosimeter response in the kilovoltage energy range. In terms of the angular and energy dependence of the dosimeters, the ion chamber and diode were the most stable. For the clinical cases, all the dosimeters match relatively well with the predicted dose, although the ideal dosimeter to use is case dependent. The dosimeters, especially the MOSFETS, tend to be less accurate for the plans, with many lateral beams. Because of their efficiency, we recommend using a MOSFET or a diode to measure the dose. If a discrepancy is observed between the measured and expected dose (especially when the pacemaker to field edge is <10 cm), we recommend analyzing the treatment plan to see whether there are many lateral beams. Follow-up with another dosimeter rather than repeating multiple times with the same type of dosimeter. All dosimeters should be placed after the CBCT has been acquired.

  2. Biophotonics: Circadian photonics

    NASA Astrophysics Data System (ADS)

    Rea, Mark S.

    2011-05-01

    A growing body of medical evidence suggests that disrupting the body's biological clock can have adverse effects on health. Researchers are now creating the photonic tools to monitor, predict and influence the circadian rhythm.

  3. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle.

    PubMed

    Wang, Bin; Kettenbach, Arminja N; Gerber, Scott A; Loros, Jennifer J; Dunlap, Jay C

    2014-09-01

    In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100-200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and in vitro, binds to the Clock box in the frq promoter, and is required both for circadian remodeling of nucleosomes at frq and for rhythmic frq expression; interestingly, SWI/SNF is not required for light-induced frq expression. These data suggest a model in which WC-1 recruits SWI/SNF to remodel and loop chromatin at frq, thereby activating frq expression to initiate the circadian cycle.

  4. Quantifying the robustness of circadian oscillations at the single-cell level

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Rust, Michael

    2014-03-01

    Cyanobacteria are light-harvesting microorganisms that contribute to 30% of the photosynthetic activity on Earth and contain one of the simplest circadian systems in the animal kingdom. In Synechococcus elongatus , a species of freshwater cyanobacterium, circadian oscillations are regulated by the KaiABC system, a trio of interacting proteins that act as a biomolecular pacemaker of the circadian system. While the core oscillator precisely anticipates Earth's 24h light/dark cycle, it is unclear how much individual cells benefit from the expression and maintenance of a circadian clock. By studying the growth dynamics of individual S . elongatus cells under sudden light variations, we show that several aspects of cellular growth, such as a cell's division probability and its elongation rate, are tightly coupled to the circadian clock. We propose that the evolution and maintenance of a circadian clock increases the fitness of cells by allowing them to take advantage of cyclical light/dark environments by alternating between two phenotypes: expansionary, where cells grow and divide at a fast pace during the first part of the day, and conservative, where cells enter a more quiescent state to better prepare to the stresses associated with the night's prolonged darkness.

  5. Analysis Method and Experimental Conditions Affect Computed Circadian Phase from Melatonin Data

    PubMed Central

    Klerman, Hadassa; St. Hilaire, Melissa A.; Kronauer, Richard E.; Gooley, Joshua J.; Gronfier, Claude; Hull, Joseph T.; Lockley, Steven W.; Santhi, Nayantara; Wang, Wei; Klerman, Elizabeth B.

    2012-01-01

    Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used. PMID:22511928

  6. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue

    PubMed Central

    Welsh, David K.

    2016-01-01

    Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+. PMID:27459195

  7. Circadian clocks and breast cancer.

    PubMed

    Blakeman, Victoria; Williams, Jack L; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, and link this to increased tumour risk in women who work irregular shift patterns. Understanding the influence of circadian rhythms on breast cancer could lead to more efficacious therapies, reformed public health policy and improved patient outcome. PMID:27590298

  8. Peripheral circadian oscillators in mammals: time and food.

    PubMed

    Schibler, Ueli; Ripperger, Juergen; Brown, Steven A

    2003-06-01

    Peripheral cells from mammalian tissues, while perfectly capable of circadian rhythm generation, are not light sensitive and thus have to be entrained by nonphotic cues. Feeding time is the dominant zeitgeber for peripheral mammalian clocks: Daytime feeding of nocturnal laboratory rodents completely inverts the phase of circadian gene expression in many tissues, including liver, heart, kidney, and pancreas, but it has no effect on the SCN pacemaker. It is thus plausible that in intact animals, the SCN synchronizes peripheral docks primarily through temporal feeding patterns that are imposed through behavioral rest-activity cycles. In addition, body temperature rhythms, which are themselves dependent on both feeding patterns and rest-activity cycles, can sustain circadian, clock gene activity in vivo and in vitro. The SCN may also influence the phase of rhythmic gene expression in peripheral tissues through direct chemical pathways. In fact, many chemical signals induce circadian gene expression in tissue culture cells. Some of these have been shown to elicit phase shifts when injected into intact animals and are thus candidates for physiologically relevant timing cues. While the response of the SCN to light is strictly gated to respond only during the night, peripheral oscillators can be chemically phase shifted throughout the day. For example, injection of dexamethasone, a glucocorticoid receptor agonist, resets the phase of circadian liver gene expression during the entire 24-h day. Given the bewildering array of agents capable of influencing peripheral clocks, the identification of physiologically relevant agents used by the SCN to synchronize peripheral clocks will clearly be an arduous undertaking. Nevertheless, we feel that experimental systems by which this enticing problem can be tackled are now at hand.

  9. Influence of D-net (European GSM-Standard) cellular phones on pacemaker function in 50 patients with permanent pacemakers.

    PubMed

    Wilke, A; Grimm, W; Funck, R; Maisch, B

    1996-10-01

    The widespread use of cellular phones in the last years has prompted some recent studies to suggest an interference of pacemaker function by cellular phone usage. To determine the risk of pacemaker patients using D-net cellular phones, we tested 50 patients with permanent pacemakers after routine pacemaker check by short phone calls using a cellular phone (Ericsson, D-net, frequency 890-915 MHz, digital information coding, equivalent to the European Groupe Systemes Mobiles standard). A six-channel surface ECG was continuously recorded from each patient to detect any interactions between pacemakers and cellular phones. Phone calls were repeated during the following pacemaker settings: (1) preexisting setting; (2) minimum ventricular rate of 90 beats/min and preexisting sensitivity; and (3) minimum ventricular rate of 90 beats/min and maximum sensitivity without T wave oversensing. Only 2 (4%) of 50 patients repeatedly showed intermittent pacemaker inhibition during calls with the cellular phone. Both pacemakers had unipolar sensing. Therefore, although interactions between cellular phone use and pacemaker function appear to be rare in our study, pacemaker dependent patients in particular should avoid the use of cellular phones.

  10. microRNA modulation of circadian clock period and entrainment

    PubMed Central

    Cheng, Hai-Ying M.; Papp, Joseph W.; Varlamova, Olga; Dziema, Heather; Russell, Brandon; Curfman, John P.; Nakazawa, Takanobu; Shimizu, Kimiko; Okamura, Hitoshi; Impey, Soren; Obrietan, Karl

    2007-01-01

    microRNAs (miRNAs) are a class of small, non-coding, RNAs that regulate the stability or translation of mRNA transcripts. Although recent work has implicated miRNAs in development and in disease, the expression and function of miRNAs in the adult mammalian nervous system has not been extensively characterized. Here, we examine the role of two brain-specific miRNAs, miR-219 and miR-132, in modulating the circadian clock located in the suprachiasmatic nucleus. miR-219 is a target of the CLOCK/BMAL1 complex, exhibits robust circadian rhythms of expression and the in vivo knockdown of miR-219 lengthens the circadian period. miR-132 is induced by photic entrainment cues via a MAPK/CREB-dependent mechanism, modulates clock gene expression, and attenuates the entraining effects of light. Collectively, these data reveal miRNAs as clock- and light-regulated genes and provide a mechanistic examination of their roles as effectors of pacemaker activity and entrainment. PMID:17553428

  11. Influence of gravity on the circadian timing system

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.

    1994-01-01

    The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.

  12. Influence of gravity on the circadian timing system

    NASA Astrophysics Data System (ADS)

    Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.

    1994-08-01

    The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.

  13. [Magnets, pacemaker and defibrillator: fatal attraction?].

    PubMed

    Bergamin, C; Graf, D

    2015-05-27

    This article aims at clarifying the effects of a clinical magnet on pacemakers and Implantable Cardioverter Defibrillators. The effects of electromagnetic interferences on such devices, including interferences linked to electrosurgery and magnetic resonance imaging are also discussed. In general, a magnet provokes a distinctive effect on a pacemaker by converting it into an asynchronous mode of pacing, and on an Implantable Cardioverter Defibrillator by suspending its own antitachyarythmia therapies without affecting the pacing. In the operating room, the magnet has to be used cautiously with precisely defined protocols which respect the type of the device used, the type of intervention planned, the presence or absence of EMI and the pacing-dependency of the patient.

  14. Shockwave lithotripsy and pacemakers: experience with 20 cases.

    PubMed

    Albers, D D; Lybrand, F E; Axton, J C; Wendelken, J R

    1995-08-01

    Lithotripsy treatment of urinary tract calculi initially excluded patients with cardiac pacemakers. Continued research and clinical study of patient outcomes has promoted a change in that initial concept. The Oklahoma Lithotripsy Center has successfully treated 20 patients with various types of pacemakers. No significant cardiovascular events occurred during treatment. Patients should be evaluated before the procedure by a cardiologist, and dual-chamber pacemakers should be reprogrammed to the single-chamber mode. Patients who cannot tolerate this should not undergo SWL. Rate-responsive pacemakers should be programmed to the non-rate-responsive (VVI) mode. The pacemaker should be at least 5 cm from the blast path. With these precautions and careful monitoring, SWL can be performed safely in most patients with pacemakers.

  15. Socially synchronized circadian oscillators

    PubMed Central

    Bloch, Guy; Herzog, Erik D.; Levine, Joel D.; Schwartz, William J.

    2013-01-01

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian ‘clock’). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day–night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the ‘group’ level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature. PMID:23825203

  16. Circadian Rhythms in Cyanobacteria.

    PubMed

    Cohen, Susan E; Golden, Susan S

    2015-12-01

    Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  17. Inhibition of bipolar demand pacemaker by diaphragmatic myopotentials.

    PubMed

    Barold, S S; Ong, L S; Falkoff, M D; Heinle, R A

    1977-10-01

    This report describes inhibition of a normally functioning bipolar demand pulse generator by diaphragmatic myopotentials. Transient pacemaker suppression occurred repeatedly with deep respiration, straining, the Valsalva maneuver, coughing, sneezing and laughing. When the magnet was applied, none of these maneuvers inhibited the pacemaker. Extensive investigations ruled out an intermittent electrode problem such as a wire fracture or insulation break. Sensing of diaphragmatic myopotentials should be considered in the differential diagnosis of unexplained pacemaker pauses. PMID:902394

  18. Pacemaker lead erosion simulating "Loch Ness Monster": conservative management.

    PubMed

    Garg, Naveen; Moorthy, Nagaraja

    2012-12-01

    The majority of pacemaker pocket or lead erosions are due to either mechanical erosion by the bulky pulse generator or secondary to pacemaker pocket infection. We describe an unusual case of delayed pacemaker lead erosion causing extrusion of a portion of the pacing lead, with separate entry and exit points, with the gap filled with new skin formation, simulating the "Loch Ness Monster", which was successfully managed conservatively by surgical reinsertion.

  19. Recurrent candidaemia and pacemaker wire infection with Candida albicans.

    PubMed

    Glöckner, A

    2011-12-01

    Recurrent candidaemia is both a cause and a symptom of deep organ candidiasis or infection of foreign bodies (e.g. central venous line, other indwelling catheter or pacemaker wire) and is associated with significant morbidity and mortality. This case report demonstrates that in the event of pacemaker wire infection with Candida and when it is not possible to remove the infected pacemaker wire, treatment with an echinocandin, such as anidulafungin, can be safe and successful.

  20. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  1. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra

    PubMed Central

    Zhang, Lin; Hastings, Michael H.; Green, Edward W.; Tauber, Eran; Sladek, Martin; Webster, Simon G.; Kyriacou, Charalambos P.; Wilcockson, David C.

    2013-01-01

    Summary Background Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart. Results We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ∼12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. Conclusions We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism. PMID:24076244

  2. Circadian dysfunction in a rotenone-induced parkinsonian rodent model.

    PubMed

    Lax, Pedro; Esquiva, Gema; Esteve-Rudd, Julian; Otalora, Beatriz Baño; Madrid, Juan Antonio; Cuenca, Nicolás

    2012-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder that also involves circadian rhythm alterations. Modifications of circadian rhythm parameters have been shown to occur in both PD patients and toxin-induced PD animal models. In the latter case, rotenone, a potent inhibitor of mitochondrial complex I (nicotinamide adenine dinucleotide [NADH]-quinone reductase), has been used to elicit degeneration of dopaminergic neurons and development of parkinsonian syndrome. The present work addresses alterations induced by rotenone on both locomotor and body temperature circadian rhythms in rats. Rotenone-treated rats exhibited abnormalities in equilibrium, postural instability, and involuntary movements. Long-term subcutaneous administration of rotenone significantly reduced mean daily locomotor activity in most animals. During rotenone administration, mean body temperatures (BTs) and BT rhythm amplitudes were significantly lower than those observed in the control group. After long-term rotenone administration, the circadian rhythms of both locomotor activity (LA) and BT displayed decreased amplitudes, lower interdaily phase stability, and higher rhythm fragmentation, as compared to the control rats. The magnitude of the LA and BT circadian rhythm alterations induced by rotenone positively correlated with degree of motor impairment. These results indicate that rotenone induces circadian dysfunction in rats through some of the same mechanisms as those responsible for the development of motor disturbances.

  3. CCL2 mediates the circadian response to low dose endotoxin.

    PubMed

    Duhart, José M; Brocardo, Lucila; Mul Fedele, Malena L; Guglielmotti, Angelo; Golombek, Diego A

    2016-09-01

    The mammalian circadian system is mainly originated in a master oscillator located in the suprachiasmatic nuclei (SCN) in the hypothalamus. Previous reports from our and other groups have shown that the SCN are sensitive to systemic immune activation during the early night, through a mechanism that relies on the action of proinflammatory factors within this structure. Chemokine (C-C motif) ligand 2 (CCL2) is induced in the brain upon peripheral immune activation, and it has been shown to modulate neuronal physiology. In the present work we tested whether CCL2 might be involved in the response of the circadian clock to peripheral endotoxin administration. The CCL2 receptor, C-C chemokine receptor type 2 (CCR2), was detected in the SCN of mice, with higher levels of expression during the early night, when the clock is sensitive to immune activation. Ccl2 was induced in the SCN upon intraperitoneal lipopolysaccharide (LPS) administration. Furthermore, mice receiving an intracerebroventricular (Icv) administration of a CCL2 synthesis inhibitor (Bindarit), showed a reduction LPS-induced circadian phase changes and Icv delivery of CCL2 led to phase delays in the circadian clock. In addition, we tested the possibility that CCL2 might also be involved in the photic regulation of the clock. Icv administration of Bindarit did not modify the effects of light pulses on the circadian clock. In summary, we found that CCL2, acting at the SCN level is important for the circadian effects of immune activation.

  4. [Pacemaking in Cracow in years 1966-1980].

    PubMed

    Machejek, Jakub; Lelakowski, Jacek; Bednarek, Jacek; Majewski, Jacek

    2003-01-01

    Permanent pacemaking, a new and effective bradycardia--treatment method, has appeared in the sixties. In Cracow the first emergency temporary stimulation by means of transvenously inserted intracardiac electrode was performed in 1966. Permanent technique of artificial pacing was introduced soon after. The number of pacemaker implantations grew successfully, obtaining 750 of the end of the seventies when the Institute of Cardiology of Nicolaus Copernicus Medical Academy was established. Assortment of implantable devices also became wider, including such rare constructions like nuclear pacemakers and an inductive coupled pacemaker.

  5. Gene therapy: Biological pacemaker created by gene transfer

    NASA Astrophysics Data System (ADS)

    Miake, Junichiro; Marbán, Eduardo; Nuss, H. Bradley

    2002-09-01

    The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

  6. Effects of Gravity on Insect Circadian Rhythmicity

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  7. Circadian Rhythm Sleep Disorders

    PubMed Central

    Kim, Min Ju; Lee, Jung Hie; Duffy, Jeanne F.

    2014-01-01

    Objective To review circadian rhythm sleep disorders, including underlying causes, diagnostic considerations, and typical treatments. Methods Literature review and discussion of specific cases. Results Survey studies 1,2 suggest that up to 3% of the adult population suffers from a circadian rhythm sleep disorder (CRSD). However, these sleep disorders are often confused with insomnia, and an estimated 10% of adult and 16% of adolescent sleep disorders patients may have a CRSD 3-6. While some CRSD (such as jet lag) can be self-limiting, others when untreated can lead to adverse medical, psychological, and social consequences. The International Classification of Sleep Disorders classifies CRSD as dyssomnias, with six subtypes: Advanced Sleep Phase Type, Delayed Sleep Phase Type, Irregular Sleep Wake Type, Free Running Type, Jet Lag Type, and Shift Work Type. The primary clinical characteristic of all CRSD is an inability to fall asleep and wake at the desired time. It is believed that CRSD arise from a problem with the internal biological clock (circadian timing system) and/or misalignment between the circadian timing system and the external 24-hour environment. This misalignment can be the result of biological and/or behavioral factors. CRSD can be confused with other sleep or medical disorders. Conclusions Circadian rhythm sleep disorders are a distinct class of sleep disorders characterized by a mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep. If untreated, CRSD can lead to insomnia and excessive daytime sleepiness, with negative medical, psychological, and social consequences. It is important for physicians to recognize potential circadian rhythm sleep disorders so that appropriate diagnosis, treatment, and referral can be made. PMID:25368503

  8. Circadian regulation of slow waves in human sleep: Topographical aspects.

    PubMed

    Lazar, Alpar S; Lazar, Zsolt I; Dijk, Derk-Jan

    2015-08-01

    Slow waves (SWs, 0.5-4Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  9. Circadian Disruption in Psychiatric Disorders.

    PubMed

    Jones, Stephanie G; Benca, Ruth M

    2015-12-01

    Evidence suggests that abnormalities in circadian rhythms might prove causally or pathophysiologically significant in psychiatric illness. The circadian regulation of hormonal and behavioral timekeeping processes is often altered in patients with major depression, bipolar disorder, and schizophrenia, and a susceptibility to rhythm instability may contribute to the functional impairment. For some patients, interventions that stabilize or resynchronize circadian rhythms prove therapeutically effective. Circadian disruption in the clinical profiles of most psychiatric illnesses and the treatment efficacy of chronobiological interventions suggest that attention to circadian phenotypes in a range of psychiatric disorders may help to uncover shared pathophysiologic mechanisms. PMID:26568124

  10. Social influences on circadian rhythms and sleep in insects.

    PubMed

    Eban-Rothschild, Ada; Bloch, Guy

    2012-01-01

    The diverse social lifestyle and the small and accessible nervous system of insects make them valuable for research on the adaptive value and the organization principles of circadian rhythms and sleep. We focus on two complementary model insects, the fruit fly Drosophila melanogaster, which is amenable to extensive transgenic manipulations, and the honey bee Apis mellifera, which has rich and well-studied social behaviors. Social entrainment of activity rhythms (social synchronization) has been studied in many animals. Social time givers appear to be specifically important in dark cavity-dwelling social animals, but here there are no other clear relationships between the degree of sociality and the effectiveness of social entrainment. The olfactory system is important for social entrainment in insects. Little is known, however, about the molecular and neuronal pathways linking olfactory neurons to the central clock. In the honey bee, the expression, phase, and development of circadian rhythms are socially regulated, apparently by different signals. Peripheral clocks regulating pheromone synthesis and the olfactory system have been implicated in social influences on circadian rhythms in the fruit fly. An enriched social environment increases the total amount of sleep in both fruit flies and honey bees. In fruit flies, these changes have been linked to molecular and neuronal processes involved in learning, memory, and synaptic plasticity. The studies on insects suggest that social influences on the clock are richer than previously appreciated and have led to important breakthroughs in our understanding of the mechanisms underlying social influences on sleep and circadian rhythms. PMID:22902124

  11. Aggressive and sexual social stimuli do not phase shift the circadian temperature rhythm in rats.

    PubMed

    Meerlo, P; Daan, S

    1998-05-01

    The objective of the present study was to determine whether the rat circadian system is sensitive to social stimuli. Male rats were subjected to a sociosexual interaction with an estrous female or to an aggressive interaction with a dominant male conspecific. The interactions lasted for 1 h and took place in the middle of the circadian resting phase. Control animals were picked up and handled for a few minutes, but were otherwise left undisturbed. Animals were housed under constant dim red light during the whole period of the experiment. To assess the effects of the interactions on free-running circadian rhythmicity, body temperature was measured by means of radio telemetry. neither the sociosexual interaction with a female nor the aggressive interaction with another male induced phase shifts or changes in the free-running period. The rat circadian system does not seem to be sensitive to social stimuli directly. Moreover, the finding that aggressive interactions do not phase shift circadian rhythms indicates that the endogenous pacemaker in rats is not sensitive to stressors. PMID:9653577

  12. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation

    PubMed Central

    Xie, Zhongwen; Su, Wen; Liu, Shu; Zhao, Guogang; Esser, Karyn; Schroder, Elizabeth A.; Lefta, Mellani; Stauss, Harald M.; Guo, Zhenheng; Gong, Ming Cui

    2014-01-01

    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator–like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption. PMID:25485682

  13. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  14. Circadian clock system in the pineal gland.

    PubMed

    Fukada, Yoshitaka; Okano, Toshiyuki

    2002-02-01

    The pineal gland is a neuroendocrine organ that functions as a central circadian oscillator in a variety of nonmammalian vertebrates. In many cases, the pineal gland retains photic input and endocrinal-output pathways both linked tightly to the oscillator. This contrasts well with the mammalian pineal gland equipped only with the output of melatonin production that is subject to neuronal regulation by central circadian oscillator located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Molecular studies on animal clock genes were performed first in Drosophila and later developed in rodents. More recently, clock genes such as Per, Cry, Clock, and Bmal have been found in a variety of vertebrate clock structures including the avian pineal gland. The profiles of the temporal change of the clock gene expression in the avian pineal gland are more similar to those in the mammalian SCN rather than to those in the mammalian pineal gland. Avian pineal gland and mammalian SCN seem to share a fundamental molecular framework of the clock oscillator composed of a transcription/translation-based autoregulatory feedback loop. The circadian time-keeping mechanism also requires several post-translational events, such as protein translocation and degradation processes, in which protein phosphorylation plays a very important role for the stable 24-h cycling of the oscillator and/or the photic-input pathway for entrainment of the clock. PMID:11890455

  15. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  16. Circadian rhythm in handwriting.

    PubMed

    Jasper, Isabelle; Häussler, Andreas; Marquardt, Christian; Hermsdörfer, Joachim

    2009-06-01

    The aim of the present study was to determine whether the motor process of handwriting is influenced by a circadian rhythm. Nine healthy young male subjects underwent a 40-h sleep deprivation protocol under constant routine conditions. Starting at 09:00 hours, subjects performed every 3 h two handwriting tasks of different complexity. Handwriting performance was evaluated by writing speed, writing fluency and script size. The frequency of handwriting, as a measure of movement speed, revealed a circadian rhythm, validated by harmonic regression, with a slowing at the time of the onset of melatonin secretion (22:17 hours) and a trough in the very early morning at around 03:30 hours. In the temporal variability of handwriting an effect of task complexity was suggested in the direction of circadian variations in parallel with speed only for the sentence. Despite deficits of speed and temporal variability, writing fluency did not change significantly across sessions indicating that the basic automation of handwriting was preserved at any time. On the second day, daytime levels of the kinematics of handwriting did not reflect impaired performance after sleep deprivation. Our results show for the first time a clear circadian rhythm for the production of handwriting.

  17. Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock

    PubMed Central

    Belle, Mino D.C.; Hughes, Alun T.L.; Bechtold, David A.; Cunningham, Peter; Pierucci, Massimo; Burdakov, Denis

    2014-01-01

    Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock. Here we show both orexinergic innervation and expression of genes encoding orexin receptors (OX1 and OX2) in the mouse SCN, with OX1 being upregulated at dusk. Remarkably, we find through in vitro physiological recordings that orexin predominantly suppresses mouse SCN Period1 (Per1)-EGFP-expressing clock cells. The mechanisms underpinning these suppressions vary across the circadian cycle, from presynaptic modulation of inhibitory GABAergic signaling during the day to directly activating leak K+ currents at night. Orexin also augments the SCN clock-resetting effects of neuropeptide Y (NPY), another neurochemical correlate of arousal, and potentiates NPY's inhibition of SCN Per1-EGFP cells. These results build on emerging literature that challenge the widely held view that orexin signaling is exclusively excitatory and suggest new mechanisms for avoiding conflicts between circadian clock signals and homeostatic cues in the brain. PMID:24599460

  18. 21 CFR 870.3730 - Pacemaker service tools.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker service tools. 870.3730 Section 870.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker...

  19. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test...

  20. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker...

  1. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker...

  2. 21 CFR 870.3730 - Pacemaker service tools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker service tools. 870.3730 Section 870.3730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3730 Pacemaker...

  3. 21 CFR 870.3690 - Pacemaker test magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test...

  4. 21 CFR 870.5550 - External transcutaneous cardiac pacemaker (noninvasive).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External transcutaneous cardiac pacemaker (noninvasive). 870.5550 Section 870.5550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... transcutaneous cardiac pacemaker (noninvasive) is a device used to supply a periodic electrical pulse intended...

  5. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  6. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  7. 21 CFR 870.3720 - Pacemaker electrode function tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker electrode function tester. 870.3720 Section 870.3720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... electrode function tester. (a) Identification. A pacemaker electrode function tester is a device which...

  8. Endotoxin impairs the human pacemaker current If.

    PubMed

    Zorn-Pauly, Klaus; Pelzmann, Brigitte; Lang, Petra; Mächler, Heinrich; Schmidt, Hendrik; Ebelt, Henning; Werdan, Karl; Koidl, Bernd; Müller-Werdan, Ursula

    2007-12-01

    LPSs trigger the development of sepsis by gram-negative bacteria and cause a variety of biological effects on host cells, including alterations on ionic channels. Because heart rate variability is reduced in human sepsis and endotoxemia, we hypothesized that LPS affects the pacemaker current I(f) in human heart, which might--at least in part--explain this phenomenon. Isolated human myocytes from right atrial appendages were incubated for 6 to 10 h with LPS (1 and 10 microg/mL) and afterwards used to investigate the pacemaker current I(f). I(f) was measured with the whole-cell patch-clamp technique (at 37 degrees C). Incubation of atrial myocytes with 10 microg/mL LPS was found to significantly impair I(f) by suppressing the current at membrane potentials positive to -80 mV and slowing down current activation, but without effecting maximal current conductance. Furthermore, in incubated cells (10 microg/mL), the response of I(f) to [beta]-adrenergic stimulation (1 microM isoproterenol) was significantly larger compared with control cells (shift of half-maximal activation voltage to more positive potentials amounted to -10 and -14 mV in untreated and treated cells, respectively). Simulations using a spontaneously active sinoatrial cell model demonstrated that LPS-induced I(f) impairment reduced the responsiveness of the model cell to fluctuations of autonomic input. This study showed a direct impact of LPS on the cardiac pacemaker current I(f). The LPS-induced I(f) impairment may contribute to the clinically observed reduction in heart rate variability under septic conditions and in cardiac diseases such as heart failure, where endotoxin can be of pathophysiological relevance.

  9. A new multiprogrammable isotopic powered cardiac pacemaker

    SciTech Connect

    Smyth, N.P.; Purdy, D.L.; Sager, D.; Keshishian, J.M.

    1982-09-01

    A new multiprogrammable, isotopic-powered cardiac pacemaker was implanted in six patients as a custom device. Five were initial implants and one was a replacement. The patients were studied for up to two years. In five of the six cases it was found advantageous to change one of the programmable parameters. Multiprogrammability is obviously as important in an isotopic pulse generator as in a lithium unit, if not more so, because of the unit's greater longevity. Further studies are continuing in an FDA approved clinical trial.

  10. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    PubMed Central

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    , can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. Major conclusions Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future. PMID:26977390

  11. SCOP/PHLPP1β mediates circadian regulation of long-term recognition memory

    PubMed Central

    Shimizu, Kimiko; Kobayashi, Yodai; Nakatsuji, Erika; Yamazaki, Maya; Shimba, Shigeki; Sakimura, Kenji; Fukada, Yoshitaka

    2016-01-01

    Learning and memory depend on the time of day in various organisms, but it is not clear whether and how the circadian clock regulates memory performance. Here we show that consolidation of long-term recognition memory is a circadian-regulated process, which is blunted by disruption of the hippocampal clock. We focused on SCOP, a key molecule regulating hippocampus-dependent long-term memory for objects. The amounts of SCOP and its binding partner K-Ras in the hippocampal membrane rafts exhibit robust circadian changes, and SCOP knockdown in the hippocampal CA1 impairs long-term memory at night. Circadian changes in stimulus-dependent activation of ERK in the hippocampal neurons are dependent on the SCOP levels in the membrane rafts, while Scop knockout abrogates the activation rhythm. We conclude that long-term memory formation is regulated by the circadian clock through SCOP dynamics in the membrane rafts of the hippocampal CA1. PMID:27686624

  12. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    PubMed

    Malik, Astha; Kondratov, Roman V; Jamasbi, Roudabeh J; Geusz, Michael E

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  13. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination

    PubMed Central

    Kondratov, Roman V.; Jamasbi, Roudabeh J.

    2015-01-01

    Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during

  14. Circadian Rhythm Disorders and Melatonin Production in 127 Blind Women with and without Light Perception.

    PubMed

    Flynn-Evans, Erin E; Tabandeh, Homayoun; Skene, Debra J; Lockley, Steven W

    2014-06-10

    Light is the major environmental time cue that synchronizes the endogenous central circadian pacemaker, located in the suprachiasmatic nuclei of the hypothalamus, and is detected exclusively by the eyes primarily via specialized non-rod, non-cone ganglion cell photoreceptors. Consequently, most blind people with no perception of light (NPL) have either nonentrained or abnormally phased circadian rhythms due to this inability to detect light. Conversely, most visually impaired participants with some degree of light perception (LP) exhibit normal entrainment, emphasizing the functional separation of visual and "nonvisual" photoreception. The aims of the study were to identify the prevalence of circadian disorders in blind women, with the further aim of examining how eye disease may relate to the type of circadian disorder. Participants (n = 127, age 50.8 ± 13.4 years) completed an 8-week field study including daily sleep diaries and sequential 4 to 8 hourly urine collections over 48 h on 2 to 3 occasions separated by at least 2 weeks. Circadian type was determined from the timing and time course of the melatonin rhythm measured by cosinor-derived urinary 6-sulfatoxymelatonin rhythm peak. Of the participants with NPL (n = 41), the majority were abnormally phased (24%) or nonentrained (39%), with 37% classified as normally entrained. Of the participants with LP (n = 86), the majority were normally entrained (69%). Eighteen LP participants (21%) were abnormally phased (8 advanced, 10 delayed). Nine LP participants (10%) were nonentrained. The eye conditions most associated with abnormal phase and/or nonentrained circadian rhythms were bilateral enucleation (67%) and retinopathy of prematurity (57%). By contrast, 84% of participants with retinitis pigmentosa and 83% of those with age-related macular degeneration were normally entrained. These findings suggest that the etiology of blindness in addition to LP status is related to an individual's ability to process the

  15. Melatonin Signaling Controls Circadian Swimming Behavior in Marine Zooplankton

    PubMed Central

    Tosches, Maria Antonietta; Bucher, Daniel; Vopalensky, Pavel; Arendt, Detlev

    2014-01-01

    Summary Melatonin, the “hormone of darkness,” is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii. We find that melatonin is produced in brain photoreceptors with a vertebrate-type opsin-based phototransduction cascade and a light-entrained clock. Melatonin released at night induces rhythmic burst firing of cholinergic neurons that innervate locomotor-ciliated cells. This establishes a nocturnal behavioral state by modulating the length and the frequency of ciliary arrests. Based on our findings, we propose that melatonin signaling plays a role in the circadian control of ciliary swimming to adjust the vertical position of zooplankton in response to ambient light. PMID:25259919

  16. A circadian biosignature in the labeled release data from Mars?

    NASA Astrophysics Data System (ADS)

    Van Dongen, Hans P. A.; Miller, Joseph D.; Levin, Gilbert V.; Straat, Patricia A.

    2005-09-01

    Organisms on Earth commonly exhibit a circadian rhythm, which is synchronized to the 24-hour day-night (diurnal) cycle of the planet. However, if isolated from strong environmental time cues (e.g., light-dark, temperature, etc.), many organisms revert to a "free-running" rhythm that is close to, but significantly different from, the diurnal cycle. Such a free-running rhythm is a distinct biological feature, as it requires an endogenous pacemaker that is not just passively driven by rhythms in the environment. On Mars, a free-running rhythm (i.e., significantly different from the Martian diurnal cycle of 24.66 hours) would constitute independent proof of the presence of living organisms. Evidence for such a circadian biosignature from Mars has been sought in the data sent by the 1976 Viking Labeled Release (LR) life detection experiment . In the search for circadian rhythmicity, oscillatory fluctuations in the amount of radiolabeled gas in the headspace of the LR test cell of Viking Lander 2, test cycle 3, were studied. The cycle duration of the LR oscillations examined did not differ significantly from that of the daily cell temperature oscillations controlled ultimately by the Martian diurnal cycle. Thus, these specific LR oscillations produced no independent evidence for an endogenous biological origin. However, it was found that the amplitudes of the oscillations in the gas (presumably CO2) were greater than could be accounted for by the most likely non-biological mechanism (i.e., temperature-induced changes in soil solubility of CO2). The possibility thus remained that biological activity, synchronized to the Martian diurnal cycle, could be responsible for at least part of the oscillatory activity in the LR signals. We now propose to consider all data from the nine active and control cycles of the Martian LR experiment. A comprehensive set of null and alternative hypotheses is proposed for statistical testing using the digitized data. Advanced, statistically

  17. Melanopsin--shedding light on the elusive circadian photopigment.

    PubMed

    Brown, R Lane; Robinson, Phyllis R

    2004-03-01

    Circadian photoentrainment is the process by which the brain's internal clock becomes synchronized with the daily external cycle of light and dark. In mammals, this process is mediated exclusively by a novel class of retinal ganglion cells that send axonal projections to the suprachiasmatic nuclei (SCN), the region of the brain that houses the circadian pacemaker. In contrast to their counterparts that mediate image-forming vision, SCN-projecting RGCs are intrinsically sensitive to light, independent of synaptic input from rod and cone photoreceptors. The recent discovery of these photosensitive RGCs has challenged the long-standing dogma of retinal physiology that rod and cone photoreceptors are the only retinal cells that respond directly to light and has explained the perplexing finding that mice lacking rod and cone photoreceptors can still reliably entrain their circadian rhythms to light. These SCN-projecting RGCs selectively express melanopsin, a novel opsin-like protein that has been proposed as a likely candidate for the photopigment in these cells. Research in the past three years has revealed that disruption of the melanopsin gene impairs circadian photo- entrainment, as well as other nonvisual responses to light such as the pupillary light reflex. Until recently, however, there was no direct demonstration that melanopsin formed a functional photopigment capable of catalyzing G-protein activation in a light-dependent manner. Our laboratory has recently succeeded in expressing melanopsin in a heterologous tissue culture system and reconstituting a pigment with the 11-cis-retinal chromophore. In a reconstituted biochemical system, the reconstituted melanopsin was capable of activating transducin, the G-protein of rod photoreceptors, in a light-dependent manner. The absorbance spectrum of this heterologously expressed melanopsin, however, does not match that predicted by previous behavioral and electophysiological studies. Although melanopsin is clearly the

  18. [Infections secondary to implantation of cardiac pacemakers].

    PubMed

    Da Costa, A; Kirkorian, G; Chevalier, P; Cerisier, A; Chalvidan, T; Obadia, J F; Etienne, J; Isaaz, K; Touboul, P

    1998-06-01

    Infectious complications of pacemaker implantation are not common but may be particularly severe. Localised wound infections at the site of implantation have been reported in 0.5% of cases in the most recent series with an average of about 2%. The incidence of septicaemia and infectious endocarditis is lower, about 0.5% of cases. The operator's experience, the duration of the procedure and repeat procedures are considered to be predisposing factors. The main cause of these infections is though to be local contamination during the implantation. The commonest causal organism is the staphylococcus (75 to 92%), the staphylococcus aureus being the cause of acute infections whereas the staphylococcus epidermis is associated with cases of secondary infection. The usual clinical presentation is infection at the site of the pacemaker but other forms such as abscess, endocarditis, rejection of the implanted material, septic emboli and septic phlebitis have been described. The diagnosis is confirmed by local and systemic biological investigations and by echocardiography (especially transoesophageal echocardiography) in cases of right heart endocarditis. There are two axes of treatment: bactericidal double antibiotherapy and surgical ablation of the infected material either percutaneously or by cardiotomy. Though controversial, and unsupported by scientific evidence, the role of systematic, preoperative, prophylactic antibiotic therapy in the prevention of these complications seems to be increasing. PMID:9749192

  19. N-NITROSOMELATONIN ENHANCES PHOTIC SYNCHRONIZATION OF MAMMALIAN CIRCADIAN RHYTHMS

    PubMed Central

    Baidanoff, Fernando M.; Plano, Santiago A.; Doctorovich, Fabio; Suárez, Sebastián A.; Golombek, Diego A.; Chiesa, Juan J.

    2014-01-01

    Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a two-fold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of cFOS and PER1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-hour delay). Here we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances. PMID:24261470

  20. CIRCADIAN REGULATION OF METABOLISM

    PubMed Central

    Bailey, Shannon M.; Udoh, Uduak S.; Young, Martin E.

    2014-01-01

    In association with sleep/wake and fasting/feeding cycles, organisms experience dramatic oscillations in energetic demands and nutrient supply. It is therefore not surprising that various metabolic parameters, ranging from the activity status of molecular energy sensors to circulating nutrient levels, oscillate in time-of-day-dependent manners. It has become increasingly clear that rhythms in metabolic processes are not simply in response to daily environmental/behavioral influences, but are driven in part by cell autonomous circadian clocks. By synchronizing the cell with its environment, clocks modulate a host of metabolic processes in a temporally appropriate manner. The purpose of this article is to review current understanding of the interplay between circadian clocks and metabolism, in addition to the pathophysiologic consequences of disruption of this molecular mechanism, in terms of cardiometabolic disease development. PMID:24928941

  1. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  2. Sleep and circadian schedule disorders.

    PubMed

    Labyak, Susan

    2002-12-01

    The timing and synchronization of human circadian rhythms is important for health and well-being. Some individuals, for reasons that remain unclear, display less resilience or flexibility in their ability to synchronize to the 24-hour world and are thus diagnosed with a circadian schedule disorder. The objective of this article is to briefly introduce concepts about human circadian timing and to review what is known about chronic, long-term circadian schedule disorders such as delayed sleep phase syndrome, advanced sleep phase syndrome, irregular sleep-wake patterns, and non-24-hour sleep-wake disorder. Practical considerations for the clinician caring for these individuals are discussed. PMID:12587363

  3. Circadian Regulation of Synaptic Plasticity

    PubMed Central

    Frank, Marcos G.

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  4. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  5. Modern Perspectives on Numerical Modeling of Cardiac Pacemaker Cell

    PubMed Central

    Maltsev, Victor A.; Yaniv, Yael; Maltsev, Anna V.; Stern, Michael D.; Lakatta, Edward G.

    2015-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent “coupled-clock” theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies, such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  6. Modern perspectives on numerical modeling of cardiac pacemaker cell.

    PubMed

    Maltsev, Victor A; Yaniv, Yael; Maltsev, Anna V; Stern, Michael D; Lakatta, Edward G

    2014-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age. PMID:24748434

  7. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    SciTech Connect

    Oshiro, Yoshiko Sugahara, Shinji; Noma, Mio; Sato, Masato; Sakakibara, Yuzuru; Sakae, Takeji; Hayashi, Yasutaka; Nakayama, Hidetsugu; Tsuboi, Koji; Fukumitsu, Nobuyoshi; Kanemoto, Ayae; Hashimoto, Takayuki; Tokuuye, Koichi

    2008-11-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined before and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.

  8. The Circadian Clock Is a Key Driver of Steroid Hormone Production in Drosophila.

    PubMed

    Di Cara, Francesca; King-Jones, Kirst

    2016-09-26

    Biological clocks allow organisms to anticipate daily environmental changes such as temperature fluctuations, abundance of daylight, and nutrient availability. Many circadian-controlled physiological states are coordinated by the release of systemically acting hormones, including steroids and insulin [1-7]. Thus, hormones relay circadian outputs to target tissues, and disrupting these endocrine rhythms impairs human health by affecting sleep patterns, energy homeostasis, and immune functions [8-10]. It is largely unclear, however, whether circadian circuits control hormone levels indirectly via central timekeeping neurons or whether peripheral endocrine clocks can modulate hormone synthesis directly. We show here that perturbing the circadian clock, specifically in the major steroid hormone-producing gland of Drosophila, the prothoracic gland (PG), unexpectedly blocks larval development due to an inability to produce sufficient steroids. This is surprising, because classic circadian null mutants are viable and result in arrhythmic adults [4, 11-14]. We found that Timeless and Period, both core components of the insect clock [15], are required for transcriptional upregulation of steroid hormone-producing enzymes. Timeless couples the circadian machinery directly to the two canonical pathways that regulate steroid synthesis in insects, insulin and PTTH signaling [16], respectively. Activating insulin signaling directly modulates Timeless function, suggesting that the local clock in the PG is normally synced with systemic insulin cues. Because both PTTH and systemic insulin signaling are themselves under circadian control, we conclude that de-synchronization of a local endocrine clock with external circadian cues is the primary cause for steroid production to fail.

  9. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian

  10. Phase Resetting in Duper Hamsters: Specificity to Photic Zeitgebers and Circadian Phase

    PubMed Central

    Manoogian, Emily N. C.; Leise, Tanya L.; Bittman, Eric L.

    2015-01-01

    The duper mutation in Syrian hamsters shortens the free-running period of locomotor activity (τDD) to about 23 h and results in a type 0 phase-response curve (PRC) to 15-min light pulses. To determine whether exaggerated phase shifts are specific to photic cues and/or restricted to subjective night, we subjected hamsters to novel wheel confinements and dark pulses during subjective day. Small phase shifts elicited by the nonphotic cue were comparable in mutant and wild-type (WT) hamsters, but dark pulses triggered larger shifts in dupers. To assess further the effects of the duper mutation on light-dark transitions, we transferred hamsters between constant light (LL) and constant dark (DD) or between DD and LL at various circadian phases. Duper hamsters displayed significantly larger phase shifts than WT hamsters when transferred from LL to DD during subjective day and from DD to LL during subjective night. The variability of phase shifts in response to all light/dark transitions was significantly greater in duper hamsters at all time points. In addition, most duper hamsters, but none of the WTs, displayed transient ultradian wheel-running patterns for 5 to 12 days when transferred from light to dark at CT 18. The χ2 periodogram and autocorrelation analyses indicate that these ultradian patterns differ from the disruption of rhythmicity by SCN lesions or exposure to constant bright light. We conclude that the duper mutation specifically amplifies phase shifts to photic cues and may destabilize coupling of circadian organization upon photic challenge due to weakened coupling among components of the circadian pacemaker. Mathematical modeling of the circadian pacemaker supports this hypothesis. PMID:25633984

  11. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.

    PubMed

    Manoogian, Emily N C; Leise, Tanya L; Bittman, Eric L

    2015-04-01

    The duper mutation in Syrian hamsters shortens the free-running period of locomotor activity (τDD) to about 23 h and results in a type 0 phase-response curve (PRC) to 15-min light pulses. To determine whether exaggerated phase shifts are specific to photic cues and/or restricted to subjective night, we subjected hamsters to novel wheel confinements and dark pulses during subjective day. Small phase shifts elicited by the nonphotic cue were comparable in mutant and wild-type (WT) hamsters, but dark pulses triggered larger shifts in dupers. To assess further the effects of the duper mutation on light-dark transitions, we transferred hamsters between constant light (LL) and constant dark (DD) or between DD and LL at various circadian phases. Duper hamsters displayed significantly larger phase shifts than WT hamsters when transferred from LL to DD during subjective day and from DD to LL during subjective night. The variability of phase shifts in response to all light/dark transitions was significantly greater in duper hamsters at all time points. In addition, most duper hamsters, but none of the WTs, displayed transient ultradian wheel-running patterns for 5 to 12 days when transferred from light to dark at CT 18. The χ(2) periodogram and autocorrelation analyses indicate that these ultradian patterns differ from the disruption of rhythmicity by SCN lesions or exposure to constant bright light. We conclude that the duper mutation specifically amplifies phase shifts to photic cues and may destabilize coupling of circadian organization upon photic challenge due to weakened coupling among components of the circadian pacemaker. Mathematical modeling of the circadian pacemaker supports this hypothesis.

  12. Endogenous pacemaker activity of rat tumour somatotrophs

    PubMed Central

    Kwiecien, Renata; Robert, Christophe; Cannon, Robert; Vigues, Stephan; Arnoux, Annie; Kordon, Claude; Hammond, Constance

    1998-01-01

    Cells derived from a rat pituitary tumour (GC cell line) that continuously release growth hormone behave as endogenous pacemakers. In simultaneous patch clamp recordings and cytosolic Ca2+ concentration ([Ca2+]i) imaging, they displayed rhythmic action potentials (44.7 ± 2.7 mV, 178 ± 40 ms, 0.30 ± 0.04 Hz) and concomitant [Ca2+]i transients (374 ± 57 nM, 1.0 ± 0.2 s, 0.27 ± 0.03 Hz). Action potentials and [Ca2+]i transients were reversibly blocked by removal of external Ca2+, addition of nifedipine (1 μM) or Ni2+ (40 μM), but were insensitive to TTX (1 μM). An L-type Ca2+ current activated at -33.6 ± 0.4 mV (holding potential (Vh), −40 mV), peaked at -1.8 ± 1.3 mV, was reduced by nifedipine and enhanced by S-(+)-SDZ 202 791. A T/R-type Ca2+ current activated at -41.7 ± 2.7 mV (Vh, -80 or -60 mV), peaked at -9.2 ± 3.0 mV, was reduced by low concentrations of Ni2+ (40 μM) or Cd2+ (10 μM) and was toxin resistant. Parallel experiments revealed the expression of the class E calcium channel α1-subunit mRNA. The K+ channel blockers TEA (25 mM) and charybdotoxin (10–100 nM) enhanced spike amplitude and/or duration. Apamin (100 nM) also strongly reduced the after-spike hyperpolarization. The outward K+ tail current evoked by a depolarizing step that mimicked an action potential reversed at −69.8 ± 0.3 mV, presented two components, lasted 2–3 s and was totally blocked by Cd2+ (400 μM). The slow pacemaker depolarization (3.5 ± 0.4 s) that separated consecutive spikes corresponded to a 2- to 3-fold increase in membrane resistance, was strongly Na+ sensitive but TTX insensitive. Computer simulations showed that pacemaker activity can be reproduced by a minimum of six currents: an L-type Ca2+ current underlies the rising phase of action potentials that are repolarized by a delayed rectifier and Ca2+-activated K+ currents. In between spikes, the decay of Ca2+-activated K+ currents and a persistent inward cationic current depolarize the membrane

  13. Of pacemakers and statistics: the actuarial method extended.

    PubMed

    Dussel, J; Wolbarst, A B; Scott-Millar, R N; Obel, I W

    1980-01-01

    Pacemakers cease functioning because of either natural battery exhaustion (nbe) or component failure (cf). A study of four series of pacemakers shows that a simple extension of the actuarial method, so as to incorporate Normal statistics, makes possible a quantitative differentiation between the two modes of failure. This involves the separation of the overall failure probability density function PDF(t) into constituent parts pdfnbe(t) and pdfcf(t). The approach should allow a meaningful comparison of the characteristics of different pacemaker types.

  14. Preliminary experience with the use of a programmable pacemaker.

    PubMed

    Morse, D; Fernandez, J; Samuel, A; Lemole, G; Parsonnet, V

    1975-05-01

    One hundred sixty-four patients, in whom new externally programmable pacemakers had been inserted, were studied over a two year period, beginning July, 1972. Following implantation, the rate and current output of this pacemaker could be changed at any time by a non-invasive technique involving electromagnetic pulse trains emitted by an external "programmer". In 89 percent of the patients it was possible to reduce battery output by half, implying greater longevity of the pacer in these cases. In 15 percent of the patients, manipulative control of the pacemaker rate was employed and found beneficial.

  15. Relationships between behavioral rhythms, plasma corticosterone and hypothalamic circadian rhythms.

    PubMed

    Kafka, M S; Benedito, M A; Steele, L K; Gibson, M J; Zerbe, R L; Jacobowitz, D M; Roth, R H; Zander, K

    1986-01-01

    Circadian rhythms in physiological processes and behaviors were compared with hypothalamic circadian rhythms in norepinephrine (NE) metabolites, adrenergic transmitter receptors, cAMP, cGMP and suprachiasmatic nucleus (SCN) arginine vasopressin (AVP) in a single population of rats under D:D conditions. Eating, drinking and locomotor activity were high during the subjective night (the time when lights were out in L:D) and low during the subjective day (the time when lights were on in L:D). Plasma corticosterone concentration rose at subjective dusk and remained high until subjective dawn. Binding to hypothalamic alpha 1- and beta-adrenergic receptors also peaked during the subjective night. Cyclic cGMP concentration was elevated throughout the 24-hr period except for a trough at dusk, whereas DHPG concentration peaked at dawn. Arginine vasopressin levels in the suprachiasmatic nucleus peaked in the middle of the day. No rhythm was found either in binding to the alpha 2-adrenergic receptor, or in MHPG or cAMP concentration. Behavioral and corticosterone rhythms, therefore, are parallel to rhythms in hypothalamic alpha 1- and beta-receptor binding and NE-release. Cyclic GMP falls only at dusk, suggesting the possibility that cGMP inhibits activity much of the day and that at dusk the inhibition of nocturnal activity is removed. SCN AVP, on the other hand, peaking at 1400 hr, may play a role in the pacemaking function of the SCN that drives these other rhythms.

  16. [Circadian rhythm sleep-wake disorder (circadian rhythm sleep disorder)].

    PubMed

    Tagaya, Hirokuni; Murayama, Norio; Fukase, Yuko

    2015-06-01

    The role of the circadian system is forecasting the daily and yearly change of environment. Circadian rhythm sleep-wake disorder (CRSWD) is defined as physical and social impairment caused by misalignment between circadian rhythm and desirable social schedule. CRSWDs are induced by medical or environmental factors as well as dysfunctions of circadian system. Clinicians should be aware that sleep-inducing medications, restless legs syndrome, delirium and less obedience to social schedule are frequent cause of CRSWD among elderly. Bright light therapy and orally administered small dose of melatonin or melatonin agonist at proper circadian phase are recommended treatments. Sleep-inducing medications should not be considered as CRSWD treatments, especially to elderly.

  17. Materials aspects of implantable cardiac pacemaker leads.

    PubMed

    Bruck, S D; Mueller, E P

    1988-01-01

    The reliability of the leads of the entire pacemaker system is vital as the risks of failure include: (1) loss of pacing due to the deterioration of the polymeric insulator in the physiological environment; (2) thromboembolism due to inadequate blood compatibility of the insulator; (3) tissue reactions at the electrode/tissue interface; (4) general foreign body rejection phenomena; (5) perforation of the leads; and (6) excessive stress applied by sutures causing abrasion and stress cracking. Although silicone has been used widely, some years ago Pellethane (a segmented polyetherurethane-urea) has been introduced as an alternate lead insulator, chiefly because it can be extruded using additives into smooth and thin tubes. The additives (antioxidants), extrusion aids, and low molecular weight polymer chains (oligomers) together represent up to approximately 8% by weight of leachables, depending on the extraction medium. The in vivo degradation of Pellethane is biologic in nature and is most likely associated with the absorption and premeation of body fluids from the surrounding physiologic environment leading to stress cracking via the formation of microvoids. Thermally and biologically unstable biuret and allophonate groups in this polyurethane, exposure of the polymer to high extrusion temperatures, and stresses created within the polymer also play key roles in the degradation process. In the case of electrodes, some corrosion can occur even with noble metals and ions formed with the involvement of penetrating body fluids which may combine with the urethane and/or urea groups of the polyurethane, leading to its further degradation in vivo. The totality of the situation indicates a need for the development of a standard guideline for the uniform and consistent pre-clinical testing and evaluation of new materials and fabrication processes of implantable pacemaker leads. Such guidelines should take into consideration, among others, the physiological environment

  18. Materials aspects of implantable cardiac pacemaker leads.

    PubMed

    Bruck, S D; Mueller, E P

    1988-01-01

    The reliability of the leads of the entire pacemaker system is vital as the risks of failure include: (1) loss of pacing due to the deterioration of the polymeric insulator in the physiological environment; (2) thromboembolism due to inadequate blood compatibility of the insulator; (3) tissue reactions at the electrode/tissue interface; (4) general foreign body rejection phenomena; (5) perforation of the leads; and (6) excessive stress applied by sutures causing abrasion and stress cracking. Although silicone has been used widely, some years ago Pellethane (a segmented polyetherurethane-urea) has been introduced as an alternate lead insulator, chiefly because it can be extruded using additives into smooth and thin tubes. The additives (antioxidants), extrusion aids, and low molecular weight polymer chains (oligomers) together represent up to approximately 8% by weight of leachables, depending on the extraction medium. The in vivo degradation of Pellethane is biologic in nature and is most likely associated with the absorption and premeation of body fluids from the surrounding physiologic environment leading to stress cracking via the formation of microvoids. Thermally and biologically unstable biuret and allophonate groups in this polyurethane, exposure of the polymer to high extrusion temperatures, and stresses created within the polymer also play key roles in the degradation process. In the case of electrodes, some corrosion can occur even with noble metals and ions formed with the involvement of penetrating body fluids which may combine with the urethane and/or urea groups of the polyurethane, leading to its further degradation in vivo. The totality of the situation indicates a need for the development of a standard guideline for the uniform and consistent pre-clinical testing and evaluation of new materials and fabrication processes of implantable pacemaker leads. Such guidelines should take into consideration, among others, the physiological environment

  19. Circadian systems biology in Metazoa.

    PubMed

    Lin, Li-Ling; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-11-01

    Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.

  20. Circadian Disorganization Alters Intestinal Microbiota

    PubMed Central

    Voigt, Robin M.; Forsyth, Christopher B.; Green, Stefan J.; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H.; Turek, Fred W.; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  1. Circadian disorganization alters intestinal microbiota.

    PubMed

    Voigt, Robin M; Forsyth, Christopher B; Green, Stefan J; Mutlu, Ece; Engen, Phillip; Vitaterna, Martha H; Turek, Fred W; Keshavarzian, Ali

    2014-01-01

    Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases. PMID:24848969

  2. Circadian gene variants in cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostas...

  3. Circadian timing in cancer treatments.

    PubMed

    Lévi, Francis; Okyar, Alper; Dulong, Sandrine; Innominato, Pasquale F; Clairambault, Jean

    2010-01-01

    The circadian timing system is composed of molecular clocks, which drive 24-h changes in xenobiotic metabolism and detoxification, cell cycle events, DNA repair, apoptosis, and angiogenesis. The cellular circadian clocks are coordinated by endogenous physiological rhythms, so that they tick in synchrony in the host tissues that can be damaged by anticancer agents. As a result, circadian timing can modify 2- to 10-fold the tolerability of anticancer medications in experimental models and in cancer patients. Improved efficacy is also seen when drugs are given near their respective times of best tolerability, due to (a) inherently poor circadian entrainment of tumors and (b) persistent circadian entrainment of healthy tissues. Conversely, host clocks are disrupted whenever anticancer drugs are administered at their most toxic time. On the other hand, circadian disruption accelerates experimental and clinical cancer processes. Gender, circadian physiology, clock genes, and cell cycle critically affect outcome on cancer chronotherapeutics. Mathematical and systems biology approaches currently develop and integrate theoretical, experimental, and technological tools in order to further optimize and personalize the circadian administration of cancer treatments.

  4. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity.

    PubMed

    Stoleru, Dan; Peng, Ying; Nawathean, Pipat; Rosbash, Michael

    2005-11-10

    The biochemical machinery that underlies circadian rhythms is conserved among animal species and drives self-sustained molecular oscillations and functions, even within individual asynchronous tissue-culture cells. Yet the rhythm-generating neural centres of higher eukaryotes are usually composed of interconnected cellular networks, which contribute to robustness and synchrony as well as other complex features of rhythmic behaviour. In mammals, little is known about how individual brain oscillators are organized to orchestrate a complex behavioural pattern. Drosophila is arguably more advanced from this point of view: we and others have recently shown that a group of adult brain clock neurons expresses the neuropeptide PDF and controls morning activity (small LN(v) cells; M-cells), whereas another group of clock neurons controls evening activity (CRY+, PDF- cells; E-cells). We have generated transgenic mosaic animals with different circadian periods in morning and evening cells. Here we show, by behavioural and molecular assays, that the six canonical groups of clock neurons are organized into two separate neuronal circuits. One has no apparent effect on locomotor rhythmicity in darkness, but within the second circuit the molecular and behavioural timing of the evening cells is determined by morning-cell properties. This is due to a daily resetting signal from the morning to the evening cells, which run at their genetically programmed pace between consecutive signals. This neural circuit and oscillator-coupling mechanism ensures a proper relationship between the timing of morning and evening locomotor activity. PMID:16281038

  5. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value.

    PubMed

    Bloch, Guy; Barnes, Brian M; Gerkema, Menno P; Helm, Barbara

    2013-08-22

    Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles.

  6. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork.

    PubMed

    Barclay, Johanna L; Husse, Jana; Bode, Brid; Naujokat, Nadine; Meyer-Kovac, Judit; Schmid, Sebastian M; Lehnert, Hendrik; Oster, Henrik

    2012-01-01

    Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers.

  7. Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork

    PubMed Central

    Barclay, Johanna L.; Husse, Jana; Bode, Brid; Naujokat, Nadine; Meyer-Kovac, Judit; Schmid, Sebastian M.; Lehnert, Hendrik; Oster, Henrik

    2012-01-01

    Shiftwork is associated with adverse metabolic pathophysiology, and the rising incidence of shiftwork in modern societies is thought to contribute to the worldwide increase in obesity and metabolic syndrome. The underlying mechanisms are largely unknown, but may involve direct physiological effects of nocturnal light exposure, or indirect consequences of perturbed endogenous circadian clocks. This study employs a two-week paradigm in mice to model the early molecular and physiological effects of shiftwork. Two weeks of timed sleep restriction has moderate effects on diurnal activity patterns, feeding behavior, and clock gene regulation in the circadian pacemaker of the suprachiasmatic nucleus. In contrast, microarray analyses reveal global disruption of diurnal liver transcriptome rhythms, enriched for pathways involved in glucose and lipid metabolism and correlating with first indications of altered metabolism. Although altered food timing itself is not sufficient to provoke these effects, stabilizing peripheral clocks by timed food access can restore molecular rhythms and metabolic function under sleep restriction conditions. This study suggests that peripheral circadian desynchrony marks an early event in the metabolic disruption associated with chronic shiftwork. Thus, strengthening the peripheral circadian system by minimizing food intake during night shifts may counteract the adverse physiological consequences frequently observed in human shift workers. PMID:22629359

  8. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value

    PubMed Central

    Bloch, Guy; Barnes, Brian M.; Gerkema, Menno P.; Helm, Barbara

    2013-01-01

    Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles. PMID:23825202

  9. Chronic Ethanol Intake Alters Circadian Phase Shifting and Free-Running Period in Mice

    PubMed Central

    Seggio, Joseph A.; Fixaris, Michael C.; Reed, Jeffrey D.; Logan, Ryan W.; Rosenwasser, Alan M.

    2011-01-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker—including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli—in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes. PMID:19625732

  10. Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries.

    PubMed

    Sandu, Cristina; Dumas, Marc; Malan, André; Sambakhe, Diariétou; Marteau, Clarisse; Nizard, Carine; Schnebert, Sylvianne; Perrier, Eric; Challet, Etienne; Pévet, Paul; Felder-Schmittbuhl, Marie-Paule

    2012-10-01

    Skin acts as a barrier between the environment and internal organs and performs functions that are critical for the preservation of body homeostasis. In mammals, a complex network of circadian clocks and oscillators adapts physiology and behavior to environmental changes by generating circadian rhythms. These rhythms are induced in the central pacemaker and peripheral tissues by similar transcriptional-translational feedback loops involving clock genes. In this work, we investigated the presence of functional oscillators in the human skin by studying kinetics of clock gene expression in epidermal and dermal cells originating from the same donor and compared their characteristics. Primary cultures of fibroblasts, keratinocytes, and melanocytes were established from an abdominal biopsy and expression of clock genes following dexamethasone synchronization was assessed by qPCR. An original mathematical method was developed to analyze simultaneously up to nine clock genes. By fitting the oscillations to a common period, the phase relationships of the genes could be determined accurately. We thereby show the presence of functional circadian machinery in each cell type. These clockworks display specific periods and phase relationships between clock genes, suggesting regulatory mechanisms that are particular to each cell type. Taken together, our data demonstrate that skin has a complex circadian organization. Oscillators are present not only in fibroblasts but also in epidermal keratinocytes and melanocytes and are likely to act in coordination to drive rhythmic functions within the skin.

  11. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value.

    PubMed

    Bloch, Guy; Barnes, Brian M; Gerkema, Menno P; Helm, Barbara

    2013-08-22

    Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles. PMID:23825202

  12. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2.

    PubMed

    Smyllie, Nicola J; Pilorz, Violetta; Boyd, James; Meng, Qing-Jun; Saer, Ben; Chesham, Johanna E; Maywood, Elizabeth S; Krogager, Toke P; Spiller, David G; Boot-Handford, Raymond; White, Michael R H; Hastings, Michael H; Loudon, Andrew S I

    2016-07-25

    Transcriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5-7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock. PMID:27374340

  13. Drosophila spaghetti and doubletime link the circadian clock and light to caspases, apoptosis and tauopathy.

    PubMed

    Means, John C; Venkatesan, Anandakrishnan; Gerdes, Bryan; Fan, Jin-Yuan; Bjes, Edward S; Price, Jeffrey L

    2015-05-01

    While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in the optic lobes.

  14. Circadian Regulation of Macronutrient Absorption.

    PubMed

    Hussain, M Mahmood; Pan, Xiaoyue

    2015-12-01

    Various intestinal functions exhibit circadian rhythmicity. Disruptions in these rhythms as in shift workers and transcontinental travelers are associated with intestinal discomfort. Circadian rhythms are controlled at the molecular level by core clock and clock-controlled genes. These clock genes are expressed in intestinal cells, suggesting that they might participate in the circadian regulation of intestinal functions. A major function of the intestine is nutrient absorption. Here, we will review absorption of proteins, carbohydrates, and lipids and circadian regulation of various transporters involved in their absorption. A better understanding of circadian regulation of intestinal absorption might help control several metabolic disorders and attenuate intestinal discomfort associated with disruptions in sleep-wake cycles.

  15. Development of the Circadian Timing System in Rat Pups Exposed to Microgravity during Gestation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    2000-01-01

    Ten pregnant Sprague Dawley rat dams were exposed to spaceflight aboard the Space Shuttle (STS-70) for gestational days 11-20 (G 11-20; FILT group). Control dams were maintained in either a flight-like (FIDS group) or vivarium cage environment (VIV group) on earth. All dams had ad lib access to food and water and were exposed to a light-dark cycle consisting of 12 hours of light (- 30 lux) followed by 12 hours of darkness. The dams were closely monitored from G 22 until parturition. All pups were cross-fostered at birth; each foster dam had a litter of 10 pups. Pups remained with their foster dam until post-natal day 21 (PN 21). Pup body mass was measured twice weekly. At PN14 FILT pups had a smaller body mass than did the VIV pups (p < 0.01). Circadian rhythms of body temperature and activity of pups from two FILT dams (n = 8), two FIDS dams (n = 9) and two VIV dams (n = 7) were studied starting from age PN 21. All pups had circadian rhythms of temperature and activity at this age. There were no significant differences in rhythms between groups that could be attributed to microgravity exposure. We also examined the development of neural structures involved in circadian rhythmicity: the retina, the intergeniculate leaflet (IGL) and the circadian pacemaker, the suprachiasmatic nucleus (SCN). There were small differences between the flight and control groups at very early stages of development (G 20 and PN3) which indicated that the development of both the SCN and the IGL. These results indicate that exposure to the microgravity environment of spaceflight during this embryonic development period does not affect the development of the circadian rhythms of body temperature and activity, but may affect the early development of the neural structures involved in circadian timing.

  16. The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.

    PubMed

    Lubinski, Alexander J; Page, Terry L

    2016-04-01

    The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain. PMID:26714872

  17. The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.

    PubMed

    Lubinski, Alexander J; Page, Terry L

    2016-04-01

    The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain.

  18. Engineered Biological Pacemakers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Aging's Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

  19. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development.

    PubMed

    Vedantham, Vasanth

    2015-12-01

    Irreversible degeneration of the cardiac conduction system is a common disease that can cause activity intolerance, fainting, and death. While electronic pacemakers provide effective treatment, alternative approaches are needed when long-term indwelling hardware is undesirable. Biological pacemakers comprise electrically active cells that functionally integrate with the heart. Recent findings on cardiac pacemaker cells (PCs) within the sinoatrial node (SAN), along with developments in stem cell technology, have opened a new era in biological pacing. Recent experiments that have derived PC-like cells from non-PCs have brought the field closer than ever before to biological pacemakers that can faithfully recapitulate SAN activity. In this review, I discuss these approaches in the context of SAN biology and address the potential for clinical translation. PMID:26611337

  20. [Management of patients after pacemaker implanation (author's transl)].

    PubMed

    Petri, H; Rudolph, W

    1978-12-01

    Although pacemaker therapy is characterized by a high degree of reliability, follow-up of pacemaker patients is necessary to provide early detection of pacemaker failure and optimal setting of programable pacemakers as well as to render adequate treatment of underlying disease. The most common cause of pacemaker failure is battery depletion. In spite of the available data on the mean life-expectancy of the various batteries, the individual time of depletion cannot be predicted with accuracy. Furthermore, a defect in the electronic circuitry and/or electrode may still be rarely encountered even though technical standards are high and, occasionally, threshold elevation or lead dislocation may occur in spite of conscientious implantation technique. For patients with programable pacemakers, follow-up monitoring also enables adjustment for optimal pacemaker function. Thus, through lowering of the current or narrowing of the pulse width, the life of the battery can be prolonged or, on incrementation of these 2 parameters, an increasing threshold can be compensated for within certain limits. More important, however, is the possibility of inductive pacemaker rate changes through external programing to yield the most favorable pulse interval with respect to the underlying disease. Since, in addition to impairment of the cardiac conduction system, other disease processes are frequently presented--approximately one in three patients has coronary artery disease and almost half of the patients have congestive heart failure--follow-up visits not only serve the purpose of monitoring pacemaker function but also provide an opportunity to insure an optimal clinical condition of the patient. Accurate interpretation of pacemaker function prerequisites knowledge of the type of stimulation (fixed rate, synchronized, hysteresis, magnet rate, interference frequencies), of the battery (mercury-zinc, lihium, nickel-cadmium, isotope), of the programability (rate, current, pulse width) as

  1. A Multi-Oscillatory Circadian System Times Female Reproduction.

    PubMed

    Simonneaux, Valérie; Bahougne, Thibault

    2015-01-01

    Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans.

  2. A Multi-Oscillatory Circadian System Times Female Reproduction

    PubMed Central

    Simonneaux, Valérie; Bahougne, Thibault

    2015-01-01

    Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans. PMID:26539161

  3. Venous obstruction in permanent pacemaker patients: an isotopic study

    SciTech Connect

    Pauletti, M.; Di Ricco, G.; Solfanelli, S.; Marini, C.; Contini, C.; Giuntini, C.

    1981-01-01

    Isotope venography was used to study the venous circulation proximal to the superior vena cava in two groups of pacemaker patients, one with a single endocavitary electrode and the other with multiple pacing catheters. A control group of patients without pacemakers was also studied. Numerous abnormalities were found, especially in the group with multiple electrodes. These findings suggest that venous obstruction is a common complication of endocardial pacing.

  4. Interaction of a commercial heart rate monitor with implanted pacemakers.

    PubMed

    Joglar, J A; Hamdan, M H; Welch, P J; Page, R L

    1999-03-01

    Dry-electrode heart rate monitors allow display of heart rate by transmitting a signal to the receiving device, which typically is on the wrist or exercise machine, but due to the potential for electromagnetic interference, their use has been contraindicated in patients with pacemakers. In 12 patients, we found no adverse effect on pacemaker function; in addition, the monitors generally were accurate in measuring heart rate during pacing.

  5. Electrophysiological Evidence for Intrinsic Pacemaker Currents in Crayfish Parasol Cells

    PubMed Central

    Mellon, DeForest

    2016-01-01

    I used sharp intracellular electrodes to record from parasol cells in the semi-isolated crayfish brain to investigate pacemaker currents. Evidence for the presence of the hyperpolarization-activated inward rectifier potassium current was obtained in about half of the parasol cells examined, where strong, prolonged hyperpolarizing currents generated a slowly-rising voltage sag, and a post-hyperpolarization rebound. The amplitudes of both the sag voltage and the depolarizing rebound were dependent upon the strength of the hyperpolarizing current. The voltage sag showed a definite threshold and was non-inactivating. The voltage sag and rebound depolarization evoked by hyperpolarization were blocked by the presence of 5–10 mM Cs2+ ions, 10 mM tetraethyl ammonium chloride, and 10 mM cobalt chloride in the bathing medium, but not by the drug ZD 7288. Cs+ ions in normal saline in some cells caused a slight increase in mean resting potential and a reduction in spontaneous burst frequency. Many of the neurons expressing the hyperpolarization-activated inward potassium current also provided evidence for the presence of the transient potassium current IA, which was inferred from experimental observations of an increased latency of post-hyperpolarization response to a depolarizing step, compared to the response latency to the depolarization alone. The latency increase was reduced in the presence of 4-aminopyridine (4-AP), a specific blocker of IA. The presence of 4-AP in normal saline also induced spontaneous bursting in parasol cells. It is conjectured that, under normal physiological conditions, these two potassium currents help to regulate burst generation in parasol cells, respectively, by helping to maintain the resting membrane potential near a threshold level for burst generation, and by regulating the rate of rise of membrane depolarizing events leading to burst generation. The presence of post-burst hyperpolarization may depend upon IA channels in parasol cells

  6. Electrophysiological Evidence for Intrinsic Pacemaker Currents in Crayfish Parasol Cells.

    PubMed

    Mellon, DeForest

    2016-01-01

    I used sharp intracellular electrodes to record from parasol cells in the semi-isolated crayfish brain to investigate pacemaker currents. Evidence for the presence of the hyperpolarization-activated inward rectifier potassium current was obtained in about half of the parasol cells examined, where strong, prolonged hyperpolarizing currents generated a slowly-rising voltage sag, and a post-hyperpolarization rebound. The amplitudes of both the sag voltage and the depolarizing rebound were dependent upon the strength of the hyperpolarizing current. The voltage sag showed a definite threshold and was non-inactivating. The voltage sag and rebound depolarization evoked by hyperpolarization were blocked by the presence of 5-10 mM Cs2+ ions, 10 mM tetraethyl ammonium chloride, and 10 mM cobalt chloride in the bathing medium, but not by the drug ZD 7288. Cs+ ions in normal saline in some cells caused a slight increase in mean resting potential and a reduction in spontaneous burst frequency. Many of the neurons expressing the hyperpolarization-activated inward potassium current also provided evidence for the presence of the transient potassium current IA, which was inferred from experimental observations of an increased latency of post-hyperpolarization response to a depolarizing step, compared to the response latency to the depolarization alone. The latency increase was reduced in the presence of 4-aminopyridine (4-AP), a specific blocker of IA. The presence of 4-AP in normal saline also induced spontaneous bursting in parasol cells. It is conjectured that, under normal physiological conditions, these two potassium currents help to regulate burst generation in parasol cells, respectively, by helping to maintain the resting membrane potential near a threshold level for burst generation, and by regulating the rate of rise of membrane depolarizing events leading to burst generation. The presence of post-burst hyperpolarization may depend upon IA channels in parasol cells. PMID

  7. Pinealectomy shortens resynchronisation times of house sparrow ( Passer domesticus) circadian rhythms

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Gwinner, Eberhard

    2005-09-01

    In many birds periodic melatonin secretion by the pineal organ is essential for the high-amplitude self-sustained output of the circadian pacemaker, and thus for the persistence of rhythmicity in 24 h oscillations controlled by it. The elimination of the pineal melatonin rhythm, or a reduction of its amplitude, renders the circadian pacemaker a less self-sustained, often highly damped, oscillatory system. A reduction in the degree of self-sustainment of a rhythm should not only increase its range of entrainment but also shorten the resynchronization times following phase-shifts of the zeitgeber. This hypothesis has not yet been directly tested. We therefore carried out the present study in which house sparrows (Passer domesticus) were subjected to both 6-h advance and 6-h delay phase-shifts of the light-dark cycle before and after the pinealectomy, and the rhythms in locomotion and feeding were recorded. The results indicate that following the delay, but not the advance, phase shift, resynchronization times were significantly shorter after pinealectomy. The dependence of resynchronization times on the presence or absence of the pineal organ is not only of theoretical interest but might also be of functional significance in the natural life of birds. A reduction or elimination of the amplitude of the melatonin secretion rhythm by the pineal organ might be responsible for faster adjustment to changes in zeitgeber conditions in nature.

  8. Evidence for clock genes circadian rhythms in human full-term placenta.

    PubMed

    Pérez, Silvia; Murias, Lucía; Fernández-Plaza, Catalina; Díaz, Irene; González, Celestino; Otero, Jesús; Díaz, Elena

    2015-01-01

    Biological rhythms are driven by endogenous biological clocks; in mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. This master pacemaker can synchronize other peripheral oscillators in several tissues such as some involved in endocrine or reproductive functions. The presence of an endogenous placental clock has received little attention. In fact, there are no studies in human full-term placentas. To test the existence of an endogenous pacemaker in this tissue we have studied the expression of circadian locomoter output cycles kaput (Clock), brain and muscle arnt-like (Bmal)1, period (Per)2, and cryptochrome (Cry)1 mRNAs at 00, 04, 08, 12, 16, and 20 hours by qPCR. The four clock genes studied are expressed in full-term human placenta. The results obtained allow us to suggest that a peripheral oscillator exists in human placenta. Data were analyzed using Fourier series where only the Clock and Bmal1 expression shows a circadian rhythm.

  9. Circadian timing in central and peripheral tissues in a migratory songbird: dependence on annual life-history states.

    PubMed

    Singh, Devraj; Trivedi, Amit Kumar; Rani, Sangeeta; Panda, Satchidananda; Kumar, Vinod

    2015-10-01

    Predictable seasonal change in photoperiod triggers a sequential change in the daily activity-rest pattern, adaptive for migration in several bird species. The night-migratory black-headed bunting (Emberiza melanocephala) is day active under short photoperiods (8 h light:16 h dark, short day sensitive). Under long photoperiods (16 h light:8 h dark), the buntings are initially day active (long day premigratory) but subsequently become intensely night active (long day migratory) and after few weeks again return to a day active pattern (long day refractory). However, it is unclear how the daily expression of circadian genes changes during photoperiod-induced seasonal life-history states (LHSs). We measured period 2 (Per2), cryptochrome 1 (Cry1), brain and muscle arnt-like protein 1 (Bmal1), and circadian locomotor output cycles kaput (Clock) mRNA expressions in various neural and peripheral tissues of buntings in different LHSs and discovered differences of ∼2 to 6 h in the phase and 2- to 4-fold in amplitude of circadian oscillations of Per2, Cry1, and Bmal1 between photoperiod-induced LHSs. Phase relationship in mRNA oscillations was altered between oscillator components in the circadian pacemaker system (retina, pineal, hypothalamus) as well as in the peripheral (liver, muscle) tissues. These results show for the first time altered waveforms of clock gene expressions in all tissues in parallel with behavioral shifts and suggest the involvement of circadian system in photoperiod induction of seasonal LHSs in a migratory species.

  10. Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6

    PubMed Central

    Clark, Daniel D.; Gorman, Michael R.; Hatori, Megumi; Meadows, Jason D.; Panda, Satchidananda; Mellon, Pamela L.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is the central pacemaker for peripheral and organismal circadian rhythms. The development of this hypothalamic structure depends on genetic programs throughout embryogenesis. We have investigated the role of the homeodomain transcription factor Six6 in the development of the SCN. We first showed that Six6 mRNA has circadian regulation in the mouse SCN. We then characterized the behavioral activity patterns of Six6-null mice under various photoperiod manipulations and stained their hypothalami using SCN-specific markers. Six6-null mice display abnormal patterns of circadian behavior indicative of SCN abnormalities. The ability of light exposure to reset rhythms correlates with the presence or absence of optic nerves, but all Six6-null mice show irregular rhythms. In contrast, wild-type mice with crushed optic nerves maintain regular rhythms regardless of light exposure. Using immunohistochemistry for arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), and β-galactosidase, we demonstrated the lack of these SCN markers in all Six6- null mice regardless of the presence of optic nerve or partial circadian rhythms. Therefore, Six6 is required for the normal development of the SCN, and the Six6-null mouse can mount independent, although irregular, circadian rhythms despite the apparent absence of a histochemically defined SCN. PMID:23382588

  11. Circadian gene variants in cancer.

    PubMed

    Kettner, Nicole M; Katchy, Chinenye A; Fu, Loning

    2014-06-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  12. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  13. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Nelson, Randy J

    2015-02-01

    In the hippocampus of Siberian hamsters, dendritic length and dendritic complexity increase in the CA1 region whereas dendritic spine density decreases in the dentate gyrus region at night. However, the underlying mechanism of the diurnal rhythmicity in hippocampal neuronal remodeling is unknown. In mammals, most daily rhythms in physiology and behaviors are regulated by a network of circadian clocks. The central clock, located in the hypothalamus, controls melatonin secretion at night and melatonin modifies peripheral clocks by altering expression of circadian clock genes. In this study, we examined the effects of acute melatonin treatment on the circadian clock system as well as on morphological changes of hippocampal neurons. Male Siberian hamsters were injected with melatonin in the afternoon; 4 h later, mRNA levels of hypothalamic and hippocampal circadian clock genes and hippocampal neuron dendritic morphology were assessed. In the hypothalamus, melatonin treatment did not alter Period1 and Bmal1 expression. However, melatonin treatment increased both Period1 and Bmal1 expression in the hippocampus, suggesting that melatonin affected molecular oscillations in the hippocampus. Melatonin treatment also induced rapid remodeling of hippocampal neurons; melatonin increased apical dendritic length and dendritic complexity in the CA1 region and reduced the dendritic spine density in the dentate gyrus region. These data suggest that structural changes in hippocampal neurons are regulated by a circadian clock and that melatonin functions as a nighttime signal to coordinate the diurnal rhythm in neuronal remodeling.

  14. Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide.

    PubMed

    Loh, D H; Kuljis, D A; Azuma, L; Wu, Y; Truong, D; Wang, H B; Colwell, C S

    2014-10-01

    The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP)-expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle, but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produce about half the offspring of their wild-type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle; that is, ovulation occurs less frequently and results in the release of fewer oocytes compared with controls. Circadian rhythms of wheel-running activity are disrupted in the female mutant mice, as is the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibits lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator, which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success.

  15. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    SciTech Connect

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.; Abitbol, A.A.; Margolis, S.C.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmias which may result from such damage.

  16. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  17. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  18. Daily variation in the electrophysiological activity of mouse medial habenula neurones

    PubMed Central

    Sakhi, Kanwal; Belle, Mino D C; Gossan, Nicole; Delagrange, Philippe; Piggins, Hugh D

    2014-01-01

    AbstractIntrinsic daily or circadian rhythms arise through the outputs of the master circadian clock in the brain's suprachiasmatic nuclei (SCN) as well as circadian oscillators in other brain sites and peripheral tissues. SCN neurones contain an intracellular molecular clock that drives these neurones to exhibit pronounced day–night differences in their electrical properties. The epithalamic medial habenula (MHb) expresses clock genes, but little is known about the bioelectric properties of mouse MHb neurones and their potential circadian characteristics. Therefore, in this study we used a brain slice preparation containing the MHb to determine the basic electrical properties of mouse MHb neurones with whole-cell patch clamp electrophysiology, and investigated whether these vary across the day–night cycle. MHb neurones (n = 230) showed heterogeneity in electrophysiological state, ranging from highly depolarised cells (∼ −25 to −30 mV) that are silent with no membrane activity or display depolarised low-amplitude membrane oscillations, to neurones that were moderately hyperpolarised (∼40 mV) and spontaneously discharging action potentials. These electrical states were largely intrinsically regulated and were influenced by the activation of small-conductance calcium-activated potassium channels. When considered as one population, MHb neurones showed significant circadian variation in their spontaneous firing rate and resting membrane potential. However, in recordings of MHb neurones from mice lacking the core molecular circadian clock, these temporal differences in MHb activity were absent, indicating that circadian clock signals actively regulate the timing of MHb neuronal states. These observations add to the extracellularly recorded rhythms seen in other brain areas and establish that circadian mechanisms can influence the membrane properties of neurones in extra-SCN sites. Collectively, the results of this study indicate that the MHb may

  19. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    SciTech Connect

    Wexler, D.B.; Moore-ede, M.C.

    1986-12-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function. 13 references.

  20. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    NASA Technical Reports Server (NTRS)

    Wexler, D. B.; Moore-Ede, M. C.

    1986-01-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.