Mace, Jonathan L.; Seitz, Gerald J.; Bronisz, Lawrence E.
2016-10-25
Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.
Geologic fracturing method and resulting fractured geologic structure
Mace, Jonathan L.; Bradley, Christopher R.; Greening, Doran R.; Steedman, David W.
2016-11-08
Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.
The Neural Circuits that Generate Tics in Gilles de la Tourette Syndrome
Wang, Zhishun; Maia, Tiago V.; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S.
2014-01-01
Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits. PMID:21955933
Solid state remote circuit selector switch
NASA Technical Reports Server (NTRS)
Peterson, V. S.
1970-01-01
Remote switching circuit utilizes voltage logic to switch on desired circuit. Circuit controls rotating multi-range pressure transducers in jet engine testing and can be used in coded remote circuit activator where sequence of switching has to occur in defined length of time to prevent false or undesired circuit activation.
Active parallel redundancy for electronic integrator-type control circuits
NASA Technical Reports Server (NTRS)
Peterson, R. A.
1971-01-01
Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.
Gratton, Gabriele
2018-03-01
Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-01-01
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
Cooled, temperature controlled electrometer
Morgan, John P.
1992-08-04
A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.
The neural circuits that generate tics in Tourette's syndrome.
Wang, Zhishun; Maia, Tiago V; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S
2011-12-01
The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits.
Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano
2017-02-22
The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.
Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits
NASA Astrophysics Data System (ADS)
Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.
2017-12-01
We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.
Cortical activity in the null space: permitting preparation without movement
Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.
2014-01-01
Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex (PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex (M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control communication to the muscles and between these brain areas. PMID:24487233
A Resonant Damping Study Using Piezoelectric Materials
NASA Technical Reports Server (NTRS)
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
A new kind of universal smart home security safety monitoring system
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2018-04-01
With the current level of social development, improved quality of life, existence and security issues of law and order has become an important issue. This graduation project adopts the form of wireless transmission, to STC89C52 microcontroller as the host control human infrared induction anti-theft monitoring system. The system mainly consists of main control circuit, power supply circuit, activities of the human body detection module, sound and light alarm circuit, record and display circuit. The main function is to achieve exploration activities on the human body, then the information is transmitted to the control panel, according to the system microcontroller program control sound and light alarm circuit, while recording the alarm location and time, and always check the record as required, and ultimately achieve the purpose of monitoring. The advantage of using pyroelectric infrared sensor can be installed in a hidden place, not easy to find, and low cost, good detection results, and has broad prospects for development.
Collins, Kevin M; Bode, Addys; Fernandez, Robert W; Tanis, Jessica E; Brewer, Jacob C; Creamer, Matthew S; Koelle, Michael R
2016-01-01
Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI: http://dx.doi.org/10.7554/eLife.21126.001 PMID:27849154
Distinct neural circuits for control of movement vs. holding still
2017-01-01
In generating a point-to-point movement, the brain does more than produce the transient commands needed to move the body part; it also produces the sustained commands that are needed to hold the body part at its destination. In the oculomotor system, these functions are mapped onto two distinct circuits: a premotor circuit that specializes in generating the transient activity that displaces the eyes and a “neural integrator” that transforms that transient input into sustained activity that holds the eyes. Different parts of the cerebellum adaptively control the motor commands during these two phases: the oculomotor vermis participates in fine tuning the transient neural signals that move the eyes, monitoring the activity of the premotor circuit via efference copy, whereas the flocculus participates in controlling the sustained neural signals that hold the eyes, monitoring the activity of the neural integrator. Here, I review the oculomotor literature and then ask whether this separation of control between moving and holding is a design principle that may be shared with other modalities of movement. To answer this question, I consider neurophysiological and psychophysical data in various species during control of head movements, arm movements, and locomotion, focusing on the brain stem, motor cortex, and hippocampus, respectively. The review of the data raises the possibility that across modalities of motor control, circuits that are responsible for producing commands that change the sensory state of a body part are distinct from those that produce commands that maintain that sensory state. PMID:28053244
Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang
2017-10-31
The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.
VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.
Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R
2014-11-21
The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl
2017-01-01
Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976
Laminar circuit organization and response modulation in mouse visual cortex
Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin
2012-01-01
The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751
Deng, Shijie; Morrison, Alan P
2012-09-15
This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.
Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang
2017-03-21
Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Adaptive sequential controller
El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso
1994-01-01
An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.
Isolated thermocouple amplifier system for stirred fixed-bed gasifier
Fasching, George E.
1992-01-01
A sensing system is provided for determining the bed temperature profile of the bed of a stirred, fixed-bed gasifier including a plurality of temperature sensors for sensing the bed temperature at different levels, a transmitter for transmitting data based on the outputs of the sensors to a remote operator's station, and a battery-based power supply. The system includes an isolation amplifier system comprising a plurality of isolation amplifier circuits for amplifying the outputs of the individual sensors. The isolation amplifier circuits each comprise an isolation operational amplifier connected to a sensor; a first "flying capacitor" circuit for, in operation, controlling the application of power from the power supply to the isolation amplifier; an output sample and hold circuit connected to the transmitter; a second "flying capacitor" circuit for, in operation, controlling the transfer of the output of the isolation amplifier to the sample and hold circuit; and a timing and control circuit for activating the first and second capacitor circuits in a predetermined timed sequence.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT)
Huang, Ting-hao; Niesman, Peter; Arasu, Deepshika; Lee, Donghyung; De La Cruz, Aubrie L; Callejas, Antuca; Hong, Elizabeth J
2017-01-01
Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. PMID:29231171
Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat
Ferrari, Luiz F.; Gear, Robert W.; Levine, Jon D.
2010-01-01
Analgesic efficacy varies depending on the pain syndrome being treated. One reason for this may be a differential effect of individual pain syndromes on the function of endogenous pain control circuits at which these drugs act to produce analgesia. To test this hypothesis we examined the effects of diverse (i.e., ongoing inflammatory, neuropathic, or chronic widespread) pain syndromes on analgesia induced by activation of an opioid-mediated noxious stimulus-induced endogenous pain control circuit. This circuit was activated by subdermal capsaicin injection at a site remote from the site of nociceptive testing. Analgesia was not affected by carrageenan-induced inflammatory pain nor the early-phase of oxaliplatin neuropathy (a complication of cancer chemotherapy). However, the duration of analgesia was markedly shorter in the late-phase of oxaliplatin neuropathy and in alcoholic neuropathy. A model of fibromyalgia syndrome produced by chronic unpredictable stress and proinflammatory cytokines also shortened analgesia duration, but so did the same stress alone. Therefore, since chronic pain can activate neuroendocrine stress axes, we tested whether they are involved in the attenuation of analgesic duration induced by these pain syndromes. Rats in which the sympathoadrenal axis was ablated by adrenal medullectomy showed normal duration pain-induced analgesia in groups with either late-phase oxaliplatin neuropathy, alcoholic neuropathy, or exposure to sound stress. These results support the suggestion that pain syndromes can modulate activity in endogenous pain control circuits, and this effect is sympathoadrenal dependent. PMID:20943910
A plausible neural circuit for decision making and its formation based on reinforcement learning.
Wei, Hui; Dai, Dawei; Bu, Yijie
2017-06-01
A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.
Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila.
Clowney, E Josephine; Iguchi, Shinya; Bussell, Jennifer J; Scheer, Elias; Ruta, Vanessa
2015-09-02
Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. Copyright © 2015 Elsevier Inc. All rights reserved.
Multimodal chemosensory circuits controlling male courtship in Drosophila
Clowney, E. Josephine; Iguchi, Shinya; Bussell, Jennifer J.; Scheer, Elias; Ruta, Vanessa
2015-01-01
Summary Throughout the animal kingdom, internal states generate long-lasting and self-perpetuating chains of behavior. In Drosophila, males instinctively pursue females with a lengthy and elaborate courtship ritual triggered by activation of sexually dimorphic P1 interneurons. Gustatory pheromones are thought to activate P1 neurons but the circuit mechanisms that dictate their sensory responses to gate entry into courtship remain unknown. Here, we use circuit mapping and in vivo functional imaging techniques to trace gustatory and olfactory pheromone circuits to their point of convergence onto P1 neurons and reveal how their combined input underlies selective tuning to appropriate sexual partners. We identify inhibition, even in response to courtship-promoting pheromones, as a key circuit element that tunes and tempers P1 neuron activity. Our results suggest a circuit mechanism in which balanced excitation and inhibition underlie discrimination of prospective mates and stringently regulate the transition to courtship in Drosophila. PMID:26279475
PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit.
Parisky, Katherine M; Agosto, Jose; Pulver, Stefan R; Shang, Yuhua; Kuklin, Elena; Hodge, James J L; Kang, Kyeongjin; Kang, Keongjin; Liu, Xu; Garrity, Paul A; Rosbash, Michael; Griffith, Leslie C
2008-11-26
Daily sleep cycles in humans are driven by a complex circuit within which GABAergic sleep-promoting neurons oppose arousal. Drosophila sleep has recently been shown to be controlled by GABA, which acts on unknown cells expressing the Rdl GABAA receptor. We identify here the relevant Rdl-containing cells as PDF-expressing small and large ventral lateral neurons (LNvs) of the circadian clock. LNv activity regulates total sleep as well as the rate of sleep onset; both large and small LNvs are part of the sleep circuit. Flies mutant for pdf or its receptor are hypersomnolent, and PDF acts on the LNvs themselves to control sleep. These features of the Drosophila sleep circuit, GABAergic control of onset and maintenance as well as peptidergic control of arousal, support the idea that features of sleep-circuit architecture as well as the mechanisms governing the behavioral transitions between sleep and wake are conserved between mammals and insects.
Gritzo, R.E.
1985-09-12
A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.
Gritzo, Russell E.
1987-01-01
A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.
Adaptive piezoelectric sensoriactuators for active structural acoustic control
NASA Astrophysics Data System (ADS)
Vipperman, Jeffrey Stuart
1997-09-01
A new transducer technology with application to active control systems, modal analysis, and autonomous system health monitoring, is brought to fruition in this work. It has the advantages of being lightweight, potentially cost-effective, self-tuning, has negligible dynamics, and most importantly (from a robustness perspective), it provides a colocated sensor/actuator pair. The transducer consists of a piezoceramic element which serves as both an actuator and a sensor and will be referred to in this work as a sensoriactuator. Simple, adaptive signal processing in conjunction with a voltage controlled amplifier, reference capacitor, and a common-mode rejection circuit extract the mechanical response from the total response of the piezoelectric sensoriactuator for sensing. The digital portion of the adaptive piezoelectric sensoriactuator merely serves to tune the circuit, avoiding the potentially destabilizing effects of introducing a digital delay in the signal path, when used for feedback control applications. Adaptive compensation of the sensoriactuator is necessary since the signal to noise ratio is typically greater than 40 dB, making it prohibitive to tune the circuit manually. In addition, the constitutive properties of piezoceramics vary with time and environment, necessitating that the circuit be periodically re-tuned. The analog portion of the hardware is based upon op-amp circuits and an AD632 analog multiplier chip, which serves as both a voltage controlled amplifier (VCA) and a common mode rejection (CMR) circuit. A single coefficient least-mean square (LMS) adaptive filter continuously adjusts the gain of the VCA circuit as necessary. Nonideal behavior of piezoceramics is discussed along with methods to counter the consequential deterioration in circuit performance. A multiple input multiple output (MIMO) implementation of the adaptive piezoelectric sensoriactuator is developed using orthogonal white noise training signals for each sensoriactuator. Two piezostructures were used to demonstrate and verify the adaptive piezoelectric sensoriactuator, a cantilevered beam and a simply-supported plate. The experimental open- loop results compare well with theory. A preliminary closed-loop rate controller applied to the cantilevered beam demonstrates simultaneous control and adaptation of the piezoelectric sensoriactuator. Lastly, [/cal H]2 optimal feedback Active Structural Acoustic Control (ASAC) is demonstrated using the adaptive piezoelectric sensoriactuators and the simply- supported plate test bed. A cost function is formulated based upon control effort and predicted radiated acoustic power. Radiation filters are created to predict acoustic power based on the self and mutual radiation efficiencies of the plate modes to be controlled. Both static output feedback and state-feedback compensation as well as dynamic (Linear Quadratic Gaussian) compensation are investigated and compared analytically. The importance of choosing an appropriate spatial aperture for the piezoceramic transducer for static compensation is discussed. Finally, multivariable Active Vibration Control (AVC) and ASAC are implemented experimentally on a simply-supported plate test bed using an array of four Adaptive Piezoelectric Sensoriactuators as the control sensors and actuators. Unfavorable high-frequency response from the given piezoceramic transducers required that dynamic, Linear Quadratic Gaussian (LQG) compensation be used to achieve good control performance.
Magnetic switch for reactor control rod. [LMFBR
Germer, J.H.
1982-09-30
A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
Magnetic switch for reactor control rod
Germer, John H.
1986-01-01
A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
From the motor cortex to the movement and back again.
Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I
2017-01-01
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Programming mRNA decay to modulate synthetic circuit resource allocation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan
Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less
Programming mRNA decay to modulate synthetic circuit resource allocation
Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan; ...
2017-04-26
Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less
Easy-to-Implement Project Integrates Basic Electronics and Computer Programming
ERIC Educational Resources Information Center
Johnson, Richard; Shackelford, Ray
2008-01-01
The activities described in this article give students excellent experience with both computer programming and basic electronics. During the activities, students will work in small groups, using a BASIC Stamp development board to fabricate digital circuits and PBASIC to write program code that will control the circuits they have built. The…
1951-02-01
the pressure switch (16) is activated. This causes the-electrical circuit to open valve (11) and start the igniter (17). The nitrogen pressure...activates the pressure switch (11) at approximately 7 psi before it flows through the Injector (9) into the chamber. ATI-85«’ - -A 11...precluded. Accordingly, pressure switch (11) is inserted in the system in parallel (electrically) with the flow indicator (17), and the circuit may
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
Synaptic Regulation of a Thalamocortical Circuit Controls Depression-Related Behavior.
Miller, Oliver H; Bruns, Andreas; Ben Ammar, Imen; Mueggler, Thomas; Hall, Benjamin J
2017-08-22
The NMDA receptor (NMDAR) antagonist ketamine elicits a long-lasting antidepressant response in patients with treatment-resistant depression. Understanding how antagonism of NMDARs alters synapse and circuit function is pivotal to developing circuit-based therapies for depression. Using virally induced gene deletion, ex vivo optogenetic-assisted circuit analysis, and in vivo chemogenetics and fMRI, we assessed the role of NMDARs in the medial prefrontal cortex (mPFC) in controlling depression-related behavior in mice. We demonstrate that post-developmental genetic deletion of the NMDAR subunit GluN2B from pyramidal neurons in the mPFC enhances connectivity between the mPFC and limbic thalamus, but not the ventral hippocampus, and reduces depression-like behavior. Using intersectional chemogenetics, we show that activation of this thalamocortical circuit is sufficient to elicit a decrease in despair-like behavior. Our findings reveal that GluN2B exerts input-specific control of pyramidal neuron innervation and identify a medial dorsal thalamus (MDT)→mPFC circuit that controls depression-like behavior. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Magnetophoretic circuits for digital control of single particles and cells
NASA Astrophysics Data System (ADS)
Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi
2014-05-01
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy
2009-04-14
DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.
BK channels are required for multisensory plasticity in the oculomotor system
Nelson, Alexandra; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha
2017-01-01
SUMMARY Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually-evoked eye movements rapidly restore oculomotor function in wildtype mice but are profoundly impaired in BK channel null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. PMID:27989457
Two Processes in Early Bimanual Motor Skill Learning
Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves
2017-01-01
Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573
Reprogrammable read only variable threshold transistor memory with isolated addressing buffer
Lodi, Robert J.
1976-01-01
A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.
Three Pillars for the Neural Control of Appetite.
Sternson, Scott M; Eiselt, Anne-Kathrin
2017-02-10
The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.
Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors
Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.
2014-01-01
The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. PMID:23142759
NASA Technical Reports Server (NTRS)
Beck, Benjamin; Schiller, Noah
2013-01-01
This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.
Hybrid Direct-Current Circuit Breaker
NASA Technical Reports Server (NTRS)
Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)
2017-01-01
A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.
Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur
2014-01-07
Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains.
Learning multiple variable-speed sequences in striatum via cortical tutoring.
Murray, James M; Escola, G Sean
2017-05-08
Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.
Romanova, Elena V; McKay, Natasha; Weiss, Klaudiusz R; Sweedler, Jonathan V; Koester, John
2007-01-01
Splice-variant products of the R15 neuropeptide gene are differentially expressed within the CNS of Aplysia. The goal of this study was to test whether the neurons in the abdominal ganglion that express the peptides encoded by this gene are part of a common circuit. Expression of R15 peptides had been demonstrated previously in neuron R15. Using a combination of immunocytochemical and analytical methods, this study demonstrated that R15 peptides are also expressed in heart exciter neuron RB(HE), the two L9(G) gill motoneurons, and L40--a newly identified interneuron. Mass spectrometric profiling of individual neurons that exhibit R15 peptide-like immunoreactivity confirmed the mutually exclusive expression of two splice-variant forms of R15 peptides in different neurons. The L9(G) cells were found to co-express pedal peptide in addition to the R15 peptides. The R15 peptide-expressing neurons examined here were shown to be part of an autonomic control circuit that is active during fictive locomotion. Activity in this circuit contributes to implementing a central command that may help to coordinate autonomic activity with escape locomotion. Chronic extracellular nerve recording was used to determine the activity patterns of a subset of neurons of this circuit in vivo. These results demonstrate the potential utility of using shared patterns of neuropeptide expression as a guide for neural circuit identification.
Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni
2018-01-01
In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178
Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni
2018-01-01
In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.
Haam, Juhee; Halmos, Katalin C.; Di, Shi
2014-01-01
Behavioral and physiological coupling between energy balance and fluid homeostasis is critical for survival. The orexigenic hormone ghrelin has been shown to stimulate the secretion of the osmoregulatory hormone vasopressin (VP), linking nutritional status to the control of blood osmolality, although the mechanism of this systemic crosstalk is unknown. Here, we show using electrophysiological recordings and calcium imaging in rat brain slices that ghrelin stimulates VP neurons in the hypothalamic paraventricular nucleus (PVN) in a nutritional state-dependent manner by activating an excitatory GABAergic synaptic input via a retrograde neuronal–glial circuit. In slices from fasted rats, ghrelin activation of a postsynaptic ghrelin receptor, the growth hormone secretagogue receptor type 1a (GHS-R1a), in VP neurons caused the dendritic release of VP, which stimulated astrocytes to release the gliotransmitter adenosine triphosphate (ATP). ATP activation of P2X receptors excited presynaptic GABA neurons to increase GABA release, which was excitatory to the VP neurons. This trans-neuronal–glial retrograde circuit activated by ghrelin provides an alternative means of stimulation of VP release and represents a novel mechanism of neuronal control by local neuronal–glial circuits. It also provides a potential cellular mechanism for the physiological integration of energy and fluid homeostasis. PMID:24790191
Lo, Shun Qiang; Koh, Dawn X. P.; Sng, Judy C. G.; Augustine, George J.
2015-01-01
Abstract. We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain. PMID:26158003
Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour
Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie
2016-01-01
Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period. PMID:27008987
Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour.
Zhu, Xiao-Na; Liu, Xian-Dong; Sun, Suya; Zhuang, Hanyi; Yang, Jing-Yu; Henkemeyer, Mark; Xu, Nan-Jie
2016-03-24
Innate emotion response to environmental stimuli is a fundamental brain function that is controlled by specific neural circuits. Dysfunction of early emotional circuits may lead to neurodevelopmental disorders such as autism and schizophrenia. However, how the functional circuits are formed to prime initial emotional behaviours remain elusive. We reveal here using gene-targeted mutations an essential role for ephrin-B3 ligand-like activity in the development of innate fear in the neonatal brain. We further demonstrate that ephrin-B3 controls axon targeting and coordinates spinogenesis and neuronal activity within the amygdala. The morphological and behavioural abnormalities in ephrin-B3 mutant mice are rescued by conditional knock-in of wild-type ephrin-B3 during the critical period when axon targeting and fear responses are initiated. Our results thus define a key axonal molecule that participates in the wiring of amygdala circuits and helps bring about fear emotion during the important adolescence period.
BK Channels Are Required for Multisensory Plasticity in the Oculomotor System.
Nelson, Alexandra B; Faulstich, Michael; Moghadam, Setareh; Onori, Kimberly; Meredith, Andrea; du Lac, Sascha
2017-01-04
Neural circuits are endowed with several forms of intrinsic and synaptic plasticity that could contribute to adaptive changes in behavior, but circuit complexities have hindered linking specific cellular mechanisms with their behavioral consequences. Eye movements generated by simple brainstem circuits provide a means for relating cellular plasticity to behavioral gain control. Here we show that firing rate potentiation, a form of intrinsic plasticity mediated by reductions in BK-type calcium-activated potassium currents in spontaneously firing neurons, is engaged during optokinetic reflex compensation for inner ear dysfunction. Vestibular loss triggers transient increases in postsynaptic excitability, occlusion of firing rate potentiation, and reductions in BK currents in vestibular nucleus neurons. Concurrently, adaptive increases in visually evoked eye movements rapidly restore oculomotor function in wild-type mice but are profoundly impaired in BK channel-null mice. Activity-dependent regulation of intrinsic excitability may be a general mechanism for adaptive control of behavioral output in multisensory circuits. Copyright © 2017 Elsevier Inc. All rights reserved.
Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa
Marsh, Rachel; Steinglass, Joanna E.; Gerber, Andrew J.; O’Leary, Kara Graziano; Wang, Zhishun; Murphy, David; Walsh, B. Timothy; Peterson, Bradley S.
2009-01-01
Context Disturbances in neural systems that mediate voluntary self-regulatory processes may contribute to bulimia nervosa (BN) by releasing feeding behaviors from regulatory control. Objective To study the functional activity in neural circuits that subserve self-regulatory control in women with BN. Design We compared functional magnetic resonance imaging blood oxygenation level–dependent responses in patients with BN with healthy controls during performance of the Simon Spatial Incompatibility task. Setting University research institute. Participants Forty women: 20 patients with BN and 20 healthy control participants. Main Outcome Measure We used general linear modeling of Simon Spatial Incompatibility task–related activations to compare groups on their patterns of brain activation associated with the successful or unsuccessful engagement of self-regulatory control. Results Patients with BN responded more impulsively and made more errors on the task than did healthy controls; patients with the most severe symptoms made the most errors. During correct responding on incongruent trials, patients failed to activate frontostriatal circuits to the same degree as healthy controls in the left inferolateral prefrontal cortex (Brodmann area [BA] 45), bilateral inferior frontal gyrus (BA 44), lenticular and caudate nuclei, and anterior cingulate cortex (BA 24/32). Patients activated the dorsal anterior cingulate cortex (BA 32) more when making errors than when responding correctly. In contrast, healthy participants activated the anterior cingulate cortex more during correct than incorrect responses, and they activated the striatum more when responding incorrectly, likely reflecting an automatic response tendency that, in the absence of concomitant anterior cingulate cortex activity, produced incorrect responses. Conclusions Self-regulatory processes are impaired in women with BN, likely because of their failure to engage frontostriatal circuits appropriately. These findings enhance our understanding of the pathogenesis of BN by pointing to functional abnormalities within a neural system that subserves self-regulatory control, which may contribute to binge eating and other impulsive behaviors in women with BN. PMID:19124688
Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device
Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren
2011-01-01
Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813
Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
Hanakawa, Takashi; Goldfine, Andrew M; Hallett, Mark
2017-01-01
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy ( A base ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved A base for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
2017-01-01
Abstract Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson’s disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase) and “agility” (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine. PMID:29379873
Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.
Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia
2017-09-20
Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control the actual rhythmic pattern of movements. We have investigated whether motoneurons are limited to function as output units. Analysis of the network that controls crawling behavior in the leech has clearly indicated that motoneurons, in addition to controlling muscle activity, send signals to the pattern generator. Physiological and modeling studies on the role of specific motoneurons suggest that these feedback signals modulate the phase relationship of the rhythmic activity. Copyright © 2017 the authors 0270-6474/17/379149-11$15.00/0.
Origin of bistability underlying mammalian cell cycle entry
Yao, Guang; Tan, Cheemeng; West, Mike; Nevins, Joseph R; You, Lingchong
2011-01-01
Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb–E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb–E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb–E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb–E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point. PMID:21525871
Temporal Interactions between Cortical Rhythms
Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.
2008-01-01
Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency – suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales. PMID:19225587
Neural circuitry coordinating male copulation
Pavlou, Hania J; Lin, Andrew C; Neville, Megan C; Nojima, Tetsuya; Diao, Fengqiu; Chen, Brian E; White, Benjamin H; Goodwin, Stephen F
2016-01-01
Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes – motor neurons, interneurons and mechanosensory neurons – controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior. DOI: http://dx.doi.org/10.7554/eLife.20713.001 PMID:27855059
NASA Astrophysics Data System (ADS)
Litts, Breanne K.; Kafai, Yasmin B.; Lui, Debora A.; Walker, Justice T.; Widman, Sari A.
2017-10-01
Learning about circuitry by connecting a battery, light bulb, and wires is a common activity in many science classrooms. In this paper, we expand students' learning about circuitry with electronic textiles, which use conductive thread instead of wires and sewable LEDs instead of lightbulbs, by integrating programming sensor inputs and light outputs and examining how the two domains interact. We implemented an electronic textiles unit with 23 high school students ages 16-17 years who learned how to craft and code circuits with the LilyPad Arduino, an electronic textile construction kit. Our analyses not only confirm significant increases in students' understanding of functional circuits but also showcase students' ability in designing and remixing program code for controlling circuits. In our discussion, we address opportunities and challenges of introducing codeable circuit design for integrating maker activities that include engineering and computing into classrooms.
An in vitro method for comparing biocompatibility of materials for extracorporeal circulation.
Peek, Giles J; Scott, Richard; Killer, Hilliary M; Firmin, Richard K
2002-03-01
We measured the response of fresh heparinized human blood to recirculation through circuits made of LVA (Portex Industries, Hythe, Kent, UK), SRT (Rehau UK, Langley, Slough, UK) and Tygon S-65-HL (Norton Performance Plastics, Corby, Northants, UK), as control. Circuit construction: 1/2 in. tubing, heat exchanger (Dideco D-720P), Stockert roller pump, just underoccluded, Cincinnati Sub Zero heater, circuit volume of 500 ml. Flow 3.45 l/min, 37 degrees C. at 10 min, 1, 2, 4 and 6 h. n=5 in each group; 2/5 SRT experiments were stopped at 45 and 60 min due to overpressurization. Baseline activated clotting time (ACT) of 300 s, increasing in all groups as fibrinogen fell to zero with SRT and LVA. Minimum fibrinogen was 1 g/l for Tygon. Absolute thrombocytopenia occurred (SRT and LVA 60 min and Tygon 240 min). International normalized ratio (INR) in both the SRT and LVA circuits increased, but mean increase for Tygon (0.56) was smaller than the other two materials. Plasma free haemoglobin increased in all three materials; the increase was greater in the LVA circuits compared to the control. C5b9 levels increased equally in all groups. Lactoferrin levels rose equally in all groups to a maximum at 150 min. The neutrophil counts fell, mirroring the lactoferrin. The total white cell counts also fell in all groups; in the LVA circuits, the fall was significantly lower than in the control. Rapid disappearance of platelets and fibrinogen from the blood in the SRT and LVA circuits excludes them both from extracorporeal use. Paradoxically, SRT caused the least complement activation of the three materials. This method can be used to compare biocompatibility.
NASA Astrophysics Data System (ADS)
He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi
2018-06-01
The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.
Navailles, Sylvia; Guillem, Karine; Vouillac-Mendoza, Caroline; Ahmed, Serge H
2015-09-01
People with cocaine addiction retain some degree of prefrontal cortex (PFC) inhibitory control of cocaine craving, a brain capacity that may underlie the efficacy of cognitive behavioral therapy for addiction. Similar findings were recently found in rats after extended access to and escalation of cocaine self-administration. Rats' inhibitory control of cocaine seeking was flexible, sufficiently strong to suppress cocaine-primed reinstatement and depended, at least in part, on neuronal activity within the prelimbic (PL) PFC. Here, we used a large-scale and high-resolution Fos mapping approach to identify, beyond the PL PFC, how top-down and/or bottom-up PFC-subcortical circuits are recruited during inhibition of cocaine seeking. Overall, we found that effective inhibitory control of cocaine seeking is associated with the coordinated recruitment of different top-down cortical-striatal circuits originating from different PFC territories, and of different bottom-up dopamine (DA) and serotonin (5-HT) midbrain subsystems that normally modulate activity in these circuits. This integrated brain response suggests that rats concomitantly engage and experience intricate cognitive and affective processes when they have to inhibit intense cocaine seeking. Thus, even after extended drug use, rats can be successfully trained to engage whole-brain inhibitory control mechanisms to suppress cocaine seeking. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A novel grounded to floating admittance converter with electronic control
NASA Astrophysics Data System (ADS)
Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank
2018-01-01
This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.
Closed-Loop and Activity-Guided Optogenetic Control
Grosenick, Logan; Marshel, James H.; Deisseroth, Karl
2016-01-01
Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490
NASA Astrophysics Data System (ADS)
Ma, J.; Liu, Q.
2018-02-01
This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.
JEN-1 Reactor Control System; SISTEMA DE CONTROL DEL REACTOR JEN-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantillo, M.F.; Nuno, C.M.; Andreu, J.L.M.
1963-01-01
ABS>The JEN-1 3Mw power swimming pool reactor electrical control circuits are described. Start-up, power generation in the core, and shutdown are controlled by the reactor control system. This control system guarantees in each moment the safety conditions during reactor operation. Each circuit was represented by a scheme, complemented with a description of its function, components, and operation theory. Components described include: scram circuit; fission counter control circuit; servo control circuit; control circuit of safety sheets; control circuits of primary, secondary, and clean-up pump motors and tower fan motor; primary valve motor circuit; center cubicle alarm circuit; and process alarm circuit.more » (auth)« less
Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei
2015-07-01
This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption.
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
Pulse width modulated push-pull driven parallel resonant converter with active free-wheel
Reass, William A.; Schrank, Louis
2004-06-22
An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.
Results and Insights on the Impact of Smoke on Digital Instrumentation and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T. J.; Nowlen, S. P.
2001-01-31
Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and tomore » cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.« less
Perego, M
1997-08-05
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.
Perego, Marta
1997-01-01
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction. PMID:9238025
Compensated gain control circuit for buck regulator command charge circuit
Barrett, David M.
1996-01-01
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit.
Compensated gain control circuit for buck regulator command charge circuit
Barrett, D.M.
1996-11-05
A buck regulator command charge circuit includes a compensated-gain control signal for compensating for changes in the component values in order to achieve optimal voltage regulation. The compensated-gain control circuit includes an automatic-gain control circuit for generating a variable-gain control signal. The automatic-gain control circuit is formed of a precision rectifier circuit, a filter network, an error amplifier, and an integrator circuit. 5 figs.
A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.
Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook
2016-08-01
We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
Chaos in the fractional order logistic delay system: Circuit realization and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskonus, Haci Mehmet; Hammouch, Zakia; Mekkaoui, Toufik
2016-06-08
In this paper, we present a numerical study and a circuit design to prove existence of chaos in the fractional order Logistic delay system. In addition, we investigate an active control synchronization scheme in this system. Numerical and cicruit simulations show the effectiveness and feasibility of this method.
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
Reconfigurable visible nanophotonic switch for optogenetic applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mohanty, Aseema; Li, Qian; Tadayon, Mohammad Amin; Bhatt, Gaurang R.; Cardenas, Jaime; Miller, Steven A.; Kepecs, Adam; Lipson, Michal
2017-02-01
High spatiotemporal resolution deep-brain optical excitation for optogenetics would enable activation of specific neural populations and in-depth study of neural circuits. Conventionally, a single fiber is used to flood light into a large area of the brain with limited resolution. The scalability of silicon photonics could enable neural excitation over large areas with single-cell resolution similar to electrical probes. However, active control of these optical circuits has yet to be demonstrated for optogenetics. Here we demonstrate the first active integrated optical switch for neural excitation at 473 nm, enabling control of multiple beams for deep-brain neural stimulation. Using a silicon nitride waveguide platform, we develop a cascaded Mach-Zehnder interferometer (MZI) network located outside the brain to direct light to 8 different grating emitters located at the tip of the neural probe. We use integrated platinum microheaters to induce a local thermo-optic phase shift in the MZI to control the switch output. We measure an ON/OFF extinction ratio of >8dB for a single switch and a switching speed of 20 microseconds. We characterize the optical output of the switch by imaging its excitation of fluorescent dye. Finally, we demonstrate in vivo single-neuron optical activation from different grating emitters using a fully packaged device inserted into a mouse brain. Directly activated neurons showed robust spike firing activities with low first-spike latency and small jitter. Active switching on a nanophotonic platform is necessary for eventually controlling highly-multiplexed reconfigurable optical circuits, enabling high-resolution optical stimulation in deep-brain regions.
The basal ganglia is necessary for learning spectral, but not temporal features of birdsong
Ali, Farhan; Fantana, Antoniu L.; Burak, Yoram; Ölveczky, Bence P.
2013-01-01
Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control - motor implementation and timing - are acquired, and whether the learning processes underlying them differ, is not well understood. To address this we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analogue nucleus reflected changes to temporal, but not spectral structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill. PMID:24075977
Code of Federal Regulations, 2010 CFR
2010-10-01
... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...
Code of Federal Regulations, 2012 CFR
2012-10-01
... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...
Code of Federal Regulations, 2013 CFR
2013-10-01
... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...
Code of Federal Regulations, 2014 CFR
2014-10-01
... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...
Code of Federal Regulations, 2011 CFR
2011-10-01
... circuit controller operated by switch points or by switch locking mechanism. 236.303 Section 236.303... § 236.303 Control circuits for signals, selection through circuit controller operated by switch points or by switch locking mechanism. The control circuit for each aspect with indication more favorable...
Electron tunneling infrared sensor module with integrated control circuitry
NASA Technical Reports Server (NTRS)
Boyadzhyan-Sevak, Vardkes V. (Inventor)
2001-01-01
In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.
A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.
Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M
2017-11-17
The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.
Gustatory and reward brain circuits in the control of food intake
Oliveira-Maia, Albino J.; Roberts, Craig D.; Simon, Sidney A.; Nicolelis, Miguel A.L.
2012-01-01
Gustation is a multisensory process allowing for the selection of nutrients and the rejection of irritating and/or toxic compounds. Since obesity is a highly prevalent condition that is critically dependent on food intake and energy expenditure, a deeper understanding of gustatory processing is an important objective in biomedical research. Recent findings have provided evidence that central gustatory processes are distributed across several cortical and sub-cortical brain areas. Furthermore, these gustatory sensory circuits are closely related to the circuits that process reward. Here, we present an overview of the activation and connectivity between central gustatory and reward areas. Moreover, and given the limitations in number and effectiveness of treatments currently available for overweight patients, we discuss the possibility of modulating neuronal activity in these circuits as an alternative in the treatment of obesity. PMID:21197607
Genetic programs constructed from layered logic gates in single cells
Moon, Tae Seok; Lou, Chunbo; Tamsir, Alvin; Stanton, Brynne C.; Voigt, Christopher A.
2014-01-01
Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics1. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits2–6, and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits1,7. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells. PMID:23041931
Solid state light source driver establishing buck or boost operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Fred
A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boostmore » converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.« less
Beyond the bolus: transgenic tools for investigating the neurophysiology of learning and memory.
Lykken, Christine; Kentros, Clifford G
2014-10-01
Understanding the neural mechanisms underlying learning and memory in the entorhinal-hippocampal circuit is a central challenge of systems neuroscience. For more than 40 years, electrophysiological recordings in awake, behaving animals have been used to relate the receptive fields of neurons in this circuit to learning and memory. However, the vast majority of such studies are purely observational, as electrical, surgical, and pharmacological circuit manipulations are both challenging and relatively coarse, being unable to distinguish between specific classes of neurons. Recent advances in molecular genetic tools can overcome many of these limitations, enabling unprecedented control over neural activity in behaving animals. Expression of pharmaco- or optogenetic transgenes in cell-type-specific "driver" lines provides unparalleled anatomical and cell-type specificity, especially when delivered by viral complementation. Pharmacogenetic transgenes are specially designed neurotransmitter receptors exclusively activated by otherwise inactive synthetic ligands and have kinetics similar to traditional pharmacology. Optogenetic transgenes use light to control the membrane potential, and thereby operate at the millisecond timescale. Thus, activation of pharmacogenetic transgenes in specific neuronal cell types while recording from other parts of the circuit allows investigation of the role of those neurons in the steady state, whereas optogenetic transgenes allow one to determine the immediate network response. © 2014 Lykken and Kentros; Published by Cold Spring Harbor Laboratory Press.
Accumbal Cholinergic Interneurons Differentially Influence Motivation Related to Satiety Signaling.
Aitta-Aho, Teemu; Phillips, Benjamin U; Pappa, Elpiniki; Hay, Y Audrey; Harnischfeger, Fiona; Heath, Christopher J; Saksida, Lisa M; Bussey, Tim J; Apergis-Schoute, John
2017-01-01
Satiety, rather than all or none, can instead be viewed as a cumulative decrease in the drive to eat that develops over the course of a meal. The nucleus accumbens (NAc) is known to play a critical role in this type of value reappraisal, but the underlying circuits that influence such processes are unclear. Although NAc cholinergic interneurons (CINs) comprise only a small proportion of NAc neurons, their local impact on reward-based processes provides a candidate cell population for investigating the neural underpinnings of satiety. The present research therefore aimed to determine the role of NAc-CINs in motivation for food reinforcers in relation to satiety signaling. Through bidirectional control of CIN activity in mice, we show that when motivated by food restriction, increasing CIN activity led to a reduction in palatable food consumption while reducing CIN excitability enhanced food intake. These activity-dependent changes developed only late in the session and were unlikely to be driven by the innate reinforcer strength, suggesting that CIN modulation was instead impacting the cumulative change in motivation underlying satiety signaling. We propose that on a circuit level, an overall increase in inhibitory tone onto NAc output neurons played a role in the behavioral results, as activating NAc-CINs led to an inhibition of medium spiny neurons that was dependent on nicotinic receptor activation. Our results reveal an important role for NAc-CINs in controlling motivation for food intake and additionally provide a circuit-level framework for investigating the endogenous cholinergic circuits that signal satiety.
Levodopa response differs in Parkinson's motor subtypes: A task-based effective connectivity study.
Mohl, Brianne; Berman, Brian D; Shelton, Erika; Tanabe, Jody
2017-06-15
Parkinson's disease (PD) is a circuit-level disorder with clinically-determined motor subtypes. Despite evidence suggesting each subtype may have different pathophysiology, few neuroimaging studies have examined levodopa-induced differences in neural activation between tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtype patients during a motor task. The goal of this functional MRI (fMRI) study was to examine task-induced activation and connectivity in the cortico-striatal-thalamo-cortical motor circuit in healthy controls, TD patients, and PIGD patients before and after levodopa administration. Fourteen TD and 12 PIGD cognitively-intact patients and 21 age- and sex-matched healthy controls completed a right-hand, paced tapping fMRI paradigm. Collectively, PD patients off medication (OFF) showed hypoactivation of the motor cortex relative to healthy controls, even when controlling for performance. After levodopa intake, the PIGD patients had significantly increased activation in the left putamen compared with TD patients and healthy controls. Psychophysiological interaction analysis revealed that levodopa increased effective connectivity between the posterior putamen and other areas of the motor circuit during tapping in TD patients, but not in PIGD patients. This novel, levodopa-induced difference in the neural responses between PD motor subtypes may have significant implications for elucidating the mechanisms underlying the distinct phenotypic manifestations and enabling the classification of motor subtypes objectively using fMRI. © 2017 Wiley Periodicals, Inc.
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures
Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl
2015-01-01
Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying
2017-11-08
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.
Method and apparatus for actively controlling a micro-scale flexural plate wave device
Dohner, Jeffrey L.
2001-01-01
An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.
Hunger and Satiety Signaling: Modeling Two Hypothalamomedullary Pathways for Energy Homeostasis.
Nakamura, Kazuhiro; Nakamura, Yoshiko
2018-06-04
The recent discovery of the medullary circuit driving "hunger responses" - reduced thermogenesis and promoted feeding - has greatly expanded our knowledge on the central neural networks for energy homeostasis. However, how hypothalamic hunger and satiety signals generated under fasted and fed conditions, respectively, control the medullary autonomic and somatic motor mechanisms remains unknown. Here, in reviewing this field, we propose two hypothalamomedullary neural pathways for hunger and satiety signaling. To trigger hunger signaling, neuropeptide Y activates a group of neurons in the paraventricular hypothalamic nucleus (PVH), which then stimulate an excitatory pathway to the medullary circuit to drive the hunger responses. In contrast, melanocortin-mediated satiety signaling activates a distinct group of PVH neurons, which then stimulate a putatively inhibitory pathway to the medullary circuit to counteract the hunger signaling. The medullary circuit likely contains inhibitory and excitatory premotor neurons whose alternate phasic activation generates the coordinated masticatory motor rhythms to promote feeding. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals
Koos, Tibor; Buzsáki, György
2012-01-01
Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions. PMID:22496529
1987-09-17
T. J. Watson Research Center, Yorktown Heights, N.Y. 10598 Processing, design , and characterization issues are discussed for advanced field-effect...Graded-gate FET (GFET) Jan. 1969. designed to overcome these problems, was presented. The differential gate bias allows control [3] D. Misra, T.R...structure, the degree of freedom in zation [7) of the partially restricted active circuit or system design circuit layout, and area is to control the
English, Coralie; Bernhardt, Julie; Hillier, Susan
2014-10-01
The optimum model of physiotherapy service delivery for maximizing active task practice during rehabilitation after stroke is unknown. The purpose of the study was to examine the relative effectiveness of 2 alternative models of physiotherapy service delivery against a usual care control with regard to increasing patient activity. Substudy within a large 3-armed randomized controlled trial, which compared 3 different models of physiotherapy service delivery, was provided for 4 weeks during subacute, inpatient rehabilitation (n=283). The duration of all physiotherapy sessions was recorded. In addition, 32 participants were observed at 10-minute intervals for 1 weekday and 1 weekend day between 8:00 am and 4:30 pm. At each observation, we recorded physical activity, location, and people present. Participants receiving 7-day-week and circuit class therapy received an additional 3 hours and 22 hours of physiotherapy time, respectively, when compared with usual care. Participants were standing or walking for a median of 8.2% of observations. On weekdays, circuit class therapy participants spent more time in therapy-related activity (10.2% of observations) when compared with usual care participants (6.1% of observations). On weekends, 7-day therapy participants spent more time in therapy-related activity (4.2% of observations) when compared with both usual care and circuit class therapy participants (0% of observations for both groups). Activity levels outside of therapy sessions did not differ between groups. A greater dosage of physiotherapy time did not translate into meaningful increases in physical activity across the day. http://www.anzctr.org.au/. Unique identifier: ACTRN12610000096055. © 2014 American Heart Association, Inc.
Wei, Wei; Wang, Xiao-Jing
2016-12-07
We developed a circuit model of spiking neurons that includes multiple pathways in the basal ganglia (BG) and is endowed with feedback mechanisms at three levels: cortical microcircuit, corticothalamic loop, and cortico-BG-thalamocortical system. We focused on executive control in a stop signal task, which is known to depend on BG across species. The model reproduces a range of experimental observations and shows that the newly discovered feedback projection from external globus pallidus to striatum is crucial for inhibitory control. Moreover, stopping process is enhanced by the cortico-subcortical reverberatory dynamics underlying persistent activity, establishing interdependence between working memory and inhibitory control. Surprisingly, the stop signal reaction time (SSRT) can be adjusted by weights of certain connections but is insensitive to other connections in this complex circuit, suggesting novel circuit-based intervention for inhibitory control deficits associated with mental illness. Our model provides a unified framework for inhibitory control, decision making, and working memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications
NASA Technical Reports Server (NTRS)
Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.;
1994-01-01
This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.
Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao
2017-02-22
In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B 2 ( shakB 2 ) or ogre 2 , gap-junction mutations in Drosophila , or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system. SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the central pattern-generating circuits in larval Drosophila , providing novel insights into motor circuit control. The experimental system introduced in this study also presents a new approach for studying intersegmentally coordinated locomotion. Unlike traditional electrophysiology methods, this system enables the simultaneous recording and manipulation of populations of neurons that are genetically specified and span multiple segments. Copyright © 2017 the authors 0270-6474/17/372045-16$15.00/0.
Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R
2015-02-13
The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.
Corticostriatal Regulation of Acute Pain
Martinez, Erik; Lin, Harvey H.; Zhou, Haocheng; Dale, Jahrane; Liu, Kevin; Wang, Jing
2017-01-01
The mechanisms for acute pain regulation in the brain are not well understood. The prefrontal cortex (PFC) provides top-down control of emotional processes, and it projects to the nucleus accumbens (NAc). This corticostriatal projection forms an important regulatory pathway within the brain’s reward system. Recently, this projection has been suggested to control both sensory and affective phenotypes specifically associated with chronic pain. As this projection is also known to play a role in the transition from acute to chronic pain, we hypothesized that this corticostriatal circuit can also exert a modulatory function in the acute pain state. Here, we used optogenetics to specifically target the projection from the PFC to the NAc. We tested sensory pain behaviors with Hargreaves’ test and mechanical allodynia, and aversive pain behaviors with conditioned place preference (CPP) test. We found that the activation of this corticostriatal circuit gave rise to bilateral relief from peripheral nociceptive inputs. Activation of this circuit also provided important control for the aversive response to transient noxious stimulations. Hence, our results support a novel role for corticostriatal circuitry in acute pain regulation. PMID:28603489
Central control of body temperature
Morrison, Shaun F.
2016-01-01
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis. PMID:27239289
Central control of body temperature.
Morrison, Shaun F
2016-01-01
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi
2017-05-01
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.
Xie, Chunming; Ma, Lisha; Jiang, Nan; Huang, Ruyan; Li, Li; Gong, Liang; He, Cancan; Xiao, Chaoyong; Liu, Wen; Xu, Shu; Zhang, Zhijun
2017-08-01
Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.
Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl
2014-01-01
Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785
Magnetically Controlled Variable Transformer
NASA Technical Reports Server (NTRS)
Kleiner, Charles T.
1994-01-01
Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, Gianluigi
Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.
Simple BiCMOS CCCTA design and resistorless analog function realization.
Tangsrirat, Worapong
2014-01-01
The simple realization of the current-controlled conveyor transconductance amplifier (CCCTA) in BiCMOS technology is introduced. The proposed BiCMOS CCCTA realization is based on the use of differential pair and basic current mirror, which results in simple structure. Its characteristics, that is, parasitic resistance (R x) and current transfer (i o/i z), are also tunable electronically by external bias currents. The realized circuit is suitable for fabrication using standard 0.35 μm BiCMOS technology. Some simple and compact resistorless applications employing the proposed CCCTA as active elements are also suggested, which show that their circuit characteristics with electronic controllability are obtained. PSPICE simulation results demonstrating the circuit behaviors and confirming the theoretical analysis are performed.
A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage
2017-01-01
The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway. PMID:28826208
Three phase AC motor controller
Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.
1984-03-20
A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.
Neuroengineering control and regulation of behavior
NASA Astrophysics Data System (ADS)
Wróbel, A.; Radzewicz, C.; Mankiewicz, L.; Hottowy, P.; Knapska, E.; Konopka, W.; Kublik, E.; Radwańska, K.; Waleszczyk, W. J.; Wójcik, D. K.
2014-11-01
To monitor neuronal circuits involved in emotional modulation of sensory processing we proposed a plan to establish novel research techniques combining recent biological, technical and analytical discoveries. The project was granted by National Science Center and we started to build a new experimental model for studying the selected circuits of genetically marked and behaviorally activated neurons. To achieve this goal we will combine the pioneering, interdisciplinary expertise of four Polish institutions: (i) the Nencki Institute of Experimental Biology (Polish Academy of Sciences) will deliver the expertise on genetically modified mice and rats, mapping of the neuronal circuits activated by behavior, monitoring complex behaviors measured in the IntelliCage system, electrophysiological brain activity recordings by multielectrodes in behaving animals, analysis and modeling of behavioral and electrophysiological data; (ii) the AGH University of Science and Technology (Faculty of Physics and Applied Computer Sciences) will use its experience in high-throughput electronics to build multichannel systems for recording the brain activity of behaving animals; (iii) the University of Warsaw (Faculty of Physics) and (iv) the Center for Theoretical Physics (Polish Academy of Sciences) will construct optoelectronic device for remote control of opto-animals produced in the Nencki Institute based on the unique experience in laser sources, studies of light propagation and its interaction with condensed media, wireless medical robotic systems, fast readout opto-electronics with control software and micromechanics.
Limbic control of aggression in the cat.
Adamec, R E; Stark-Adamec, C I
1983-01-01
Over a decade of work by Flynn and colleagues has delineated a network of limbic circuits which function to modulate the expression of predatory aggression and defence in the cat, and aspects of this work are reviewed. In particular, Flynn's work revealed a circuit involving the basomedial amygdala which functions to suppress attack, and at the same time facilitates defence. A second circuit, involving the ventral hippocampus, is involved in attack facilitation. Studies relating stable differences in excitability in these two circuits to developmentally determined behavioural dispositions toward aggression or defence are summarized. Finally, the impact of experimentally induced limbic seizures on interictally maintained expression of aggression and defence behaviourally, and on limbic excitability are reviewed. Taken together, the data indicate that the behavioural balance of attack and defence is under the tonic control of opponent limbic circuits, which are themselves biased in a measureable manner. Developmental studies indicate that adult defensiveness is determined early in life, so early as to suggest some pre-programmed neuro-developmental process. Experimentally induced seizures alter behaviour lastingly, producing an increase in defensive disposition. At the same time there is an equally lasting potentiation of interictal transmission of neural activity from the amygdala to the hypothalamus. Moreover, seizures may reduce interictal transmission of activity through the ventral hippocampus by potentiating recurrent inhibition. These effects of seizures are of interest since seizures reproduce naturally occurring differences in limbic excitability seen in naturally defensive cats.
Ciumas, Carolina; Lindström, Per; Aoun, Bernard; Savic, Ivanka
2008-01-15
Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.
Anomalous neural circuit function in schizophrenia during a virtual Morris water task.
Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D
2010-02-15
Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional neuroanatomy, and behavior, patients activated different task-related neural circuits, not associated with appropriate regional neuroanatomy. GLM analysis elucidated several comparable regions, with the exception of the hippocampus. Inefficient allocentric learning and memory in patients may be related to an inability to recruit appropriate task-dependent neural circuits. Copyright 2009 Elsevier Inc. All rights reserved.
Berglund, Ken; Clissold, Kara; Li, Haofang E.; Wen, Lei; Park, Sung Young; Gleixner, Jan; Klein, Marguerita E.; Lu, Dongye; Barter, Joseph W.; Rossi, Mark A.; Augustine, George J.; Yin, Henry H.; Hochgeschwender, Ute
2016-01-01
Luminopsins are fusion proteins of luciferase and opsin that allow interrogation of neuronal circuits at different temporal and spatial resolutions by choosing either extrinsic physical or intrinsic biological light for its activation. Building on previous development of fusions of wild-type Gaussia luciferase with channelrhodopsin, here we expanded the utility of luminopsins by fusing bright Gaussia luciferase variants with either channelrhodopsin to excite neurons (luminescent opsin, LMO) or a proton pump to inhibit neurons (inhibitory LMO, iLMO). These improved LMOs could reliably activate or silence neurons in vitro and in vivo. Expression of the improved LMO in hippocampal circuits not only enabled mapping of synaptic activation of CA1 neurons with fine spatiotemporal resolution but also could drive rhythmic circuit excitation over a large spatiotemporal scale. Furthermore, virus-mediated expression of either LMO or iLMO in the substantia nigra in vivo produced not only the expected bidirectional control of single unit activity but also opposing effects on circling behavior in response to systemic injection of a luciferase substrate. Thus, although preserving the ability to be activated by external light sources, LMOs expand the use of optogenetics by making the same opsins accessible to noninvasive, chemogenetic control, thereby allowing the same probe to manipulate neuronal activity over a range of spatial and temporal scales. PMID:26733686
Ripple gate drive circuit for fast operation of series connected IGBTs
Rockot, Joseph H.; Murray, Thomas W.; Bass, Kevin C.
2005-09-20
A ripple gate drive circuit includes a plurality of transistors having their power terminals connected in series across an electrical potential. A plurality of control circuits, each associated with one of the transistors, is provided. Each control circuit is responsive to a control signal and an optical signal received from at least one other control circuit for controlling the conduction of electrical current through the power terminals of the associated transistor. The control circuits are responsive to a first state of the control circuit for causing each transistor in series to turn on sequentially and responsive to a second state of the control signal for causing each transistor in series to turn off sequentially.
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
Optogenetic mapping of brain circuitry
NASA Astrophysics Data System (ADS)
Augustine, George J.; Berglund, Ken; Gill, Harin; Hoffmann, Carolin; Katarya, Malvika; Kim, Jinsook; Kudolo, John; Lee, Li M.; Lee, Molly; Lo, Daniel; Nakajima, Ryuichi; Park, Min Yoon; Tan, Gregory; Tang, Yanxia; Teo, Peggy; Tsuda, Sachiko; Wen, Lei; Yoon, Su-In
2012-10-01
Studies of the brain promise to be revolutionized by new experimental strategies that harness the combined power of optical techniques and genetics. We have mapped the circuitry of the mouse brain by using both optogenetic actuators that control neuronal activity and optogenetic sensors that detect neuronal activity. Using the light-activated cation channel, channelrhodopsin-2, to locally photostimulate neurons allows high-speed mapping of local and long-range circuitry. For example, with this approach we have mapped local circuits in the cerebral cortex, cerebellum and many other brain regions. Using the fluorescent sensor for chloride ions, Clomeleon, allows imaging of the spatial and temporal dimensions of inhibitory circuits in the brain. This approach allows imaging of both conventional "phasic" synaptic inhibition as well as unconventional "tonic" inhibition. The combined use of light to both control and monitor neural activity creates unprecedented opportunities to explore brain function, screen pharmaceutical agents, and potentially to use light to ameliorate psychiatric and neurological disorders.
Bidirectional control system for energy flow in solar powered flywheel
NASA Technical Reports Server (NTRS)
Nola, Frank J. (Inventor)
1987-01-01
An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.
NASA Astrophysics Data System (ADS)
Tateo, F.; Collet, M.; Ouisse, M.; Ichchou, M. N.; Cunefare, K. A.
2013-04-01
A recent technological revolution in the fields of integrated MEMS has finally rendered possible the mechanical integration of active smart materials, electronics and power supply systems for the next generation of smart composite structures. Using a bi-dimensional array of electromechanical transducers, composed by piezo-patches connected to a synthetic negative capacitance, it is possible to modify the dynamics of the underlying structure. In this study, we present an application of the Floquet-Bloch theorem for vibroacoustic power flow optimization, by means of distributed shunted piezoelectric material. In the context of periodically distributed damped 2D mechanical systems, this numerical approach allows one to compute the multi-modal waves dispersion curves into the entire first Brillouin zone. This approach also permits optimization of the piezoelectric shunting electrical impedance, which controls energy diffusion into the proposed semi-active distributed set of cells. Furthermore, we present experimental evidence that proves the effectiveness of the proposed control method. The experiment requires a rectangular metallic plate equipped with seventy-five piezo-patches, controlled independently by electronic circuits. More specifically, the out-of-plane displacements and the averaged kinetic energy of the controlled plate are compared in two different cases (open-circuit and controlled circuit). The resulting data clearly show how this proposed technique is able to damp and selectively reflect the incident waves.
Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A
2017-09-01
Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Engineering a Cell-surface Aptamer Circuit for Targeted and Amplified Photodynamic Cancer Therapy
Han, Da; Zhu, Guizhi; Wu, Cuichen; Zhu, Zhi; Chen, Tao; Zhang, Xiaobing
2013-01-01
Photodynamic therapy (PDT) is one of the most promising and noninvasive methods for clinical treatment of different malignant diseases. Here, we present a novel strategy of designing an aptamer-based DNA nanocircuit capable of the selective recognition of cancer cells, controllable activation of photosensitizer and amplification of photodynamic therapeutic effect. The aptamers can selectively recognize target cancer cells and bind to the specific proteins on cell membranes. Then the overhanging catalyst sequence on aptamer can trigger a toehold-mediated catalytic strand displacement to activate photosensitizer and achieve amplified therapeutic effect. The specific binding-induced activation allows the DNA circuit to distinguish diseased cells from healthy cells, reducing damage to nearby healthy cells. Moreover, the catalytic amplification reaction will only take place close to the target cancer cells, resulting in a high local concentration of singlet oxygen to selectively kill the target cells. The principle employed in this study demonstrated the feasibility of assembling a DNA circuit on cell membranes and could further broaden the utility of DNA circuits for applications in biology, biotechnology, and biomedicine. PMID:23397942
REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology
Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.
2015-01-01
Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874
A receptor and neuron that activate a circuit limiting sucrose consumption.
Joseph, Ryan M; Sun, Jennifer S; Tam, Edric; Carlson, John R
2017-03-23
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila . Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca 2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption.
Optically triggered high voltage switch network and method for switching a high voltage
El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.
1993-01-19
An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).
49 CFR 236.103 - Switch circuit controller or point detector.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...
49 CFR 236.103 - Switch circuit controller or point detector.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...
49 CFR 236.103 - Switch circuit controller or point detector.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...
49 CFR 236.103 - Switch circuit controller or point detector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...
49 CFR 236.103 - Switch circuit controller or point detector.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller or point detector. 236.103 Section 236.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... controller or point detector. Switch circuit controller, circuit controller, or point detector operated by...
Dynamic frequency tuning of electric and magnetic metamaterial response
O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong
2014-09-16
A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.
Single-stage three-phase boost power factor correction circuit for AC-DC converter
NASA Astrophysics Data System (ADS)
Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.
2018-01-01
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.
Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M
2015-01-01
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.
Wang, Chunhua; Liu, Xiaoming; Xia, Hu
2017-03-01
In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.
[Development and test of a wheat chlorophyll, nitrogen and water content meter].
Yu, Bo; Sun, Ming; Han, Shu-Qing; Xia, Jin-Wen
2011-08-01
A portable meter was developed which can detect chlorophyll, nitrogen and moisture content of wheat leaf simultaneously, and can supply enough data for guiding fertilization and irrigation. This meter is composed of light path and electronic circuit. And this meter uses 660, 940 and 1450 nm LED together with narrow band filters as the active light source. The hardware circuit consists of micro-controller, LED drive circuit, detector, communication circuit, keyboard and LCD circuit. The meter was tested in the field and performed well with good repeatability and accuracy. The relative errors of chlorophyll and nitrogen test were about 10%, relative error for water content was 4%. The coefficients of variation of the three indices were all below 1.5%. All of these prove that the meter can be applied under the field condition to guide the wheat production.
Educational-research laboratory "electric circuits" on the base of digital technologies
NASA Astrophysics Data System (ADS)
Koroteyev, V. I.; Florentsev, V. V.; Florentseva, N. I.
2017-01-01
The problem of research activity of trainees' activation in the educational-research laboratory "Electric Circuits" using innovative methodological solutions and digital technologies is considered. The main task is in creation of the unified experimental research information-educational environment "Electrical Engineering". The problems arising during the developing and application of the modern software and hardware, experimental and research stands and digital control and measuring systems are presented. This paper presents the main stages of development and creation of educational-research laboratory "Electrical Circuits" at the Department of Electrical Engineering of NRNU MEPhI. The authors also consider the analogues of the described research complex offered by various educational institutions and companies. The analysis of their strengths and weaknesses, on which the advantages of the proposed solution are based, is held.
Prefrontal-limbic connectivity during worry in older adults with generalized anxiety disorder.
Mohlman, Jan; Eldreth, Dana A; Price, Rebecca B; Staples, Alison M; Hanson, Catherine
2017-04-01
Although generalized anxiety disorder (GAD) is one of the most prevalent anxiety disorders in older adults, very little is known about the neurobiology of worry, the hallmark symptom of GAD in adults over the age of 60. This study investigated the neurobiology and neural circuitry of worry in older GAD patients and controls. Twenty older GAD patients and 16 age-matched controls (mean age = 67.88) were compared on clinical measures and neural activity during worry using functional magnetic resonance imaging. As expected, worry elicited activation in frontal regions, amygdala, and insula within the GAD group, with a similar but less prominent frontal pattern was observed in controls. Effective connectivity analyses revealed a positive directional circuit in the GAD group extending from ventromedial through dorsolateral prefrontal cortices, converging on the amygdala. A less complex circuit was observed in controls with only dorsolateral prefrontal regions converging on the amygdala; however, a separate circuit passing through the orbitofrontal cortex converged on the insula. Results elucidate a different neurobiology of pathological versus normal worry in later life. A limited resource model is implicated wherein worry in GAD competes for the same neural resources (e.g. prefrontal cortical areas) that are involved in the adaptive regulation of emotion through cognitive and behavioral strategies.
49 CFR 234.203 - Control circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect...
49 CFR 234.203 - Control circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Control circuits. 234.203 Section 234.203 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect...
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
Chase, R.L.
1962-01-23
A transistorized amplitude discriminator circuit is described in which the initial triggering sensitivity and the recovery threshold are separately adjustable in a convenient manner. The discriminator is provided with two independent bias components, one of which is for circuit hysteresis (recovery) and one of which is for trigger threshold level. A switching circuit is provided to remove the second bias component upon activation of the trigger so that the recovery threshold is always at the point where the trailing edge of the input signal pulse goes through zero or other desired value. (AEC)
Tribotronic Tuning Diode for Active Analog Signal Modulation.
Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin
2017-01-24
Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.
Design structure for in-system redundant array repair in integrated circuits
Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.
2008-11-25
A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
49 CFR 236.201 - Track-circuit control of signals.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2011-10-01 2011-10-01 false Track-circuit control of signals. 236.201 Section...
49 CFR 236.201 - Track-circuit control of signals.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2010-10-01 2010-10-01 false Track-circuit control of signals. 236.201 Section...
Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators
NASA Technical Reports Server (NTRS)
Dick, G. John; Wang, Rabi
2006-01-01
Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.
Daily rhythms in locomotor circuits in Drosophila involve PDF
Pírez, Nicolás; Christmann, Bethany L.
2013-01-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016
Daily rhythms in locomotor circuits in Drosophila involve PDF.
Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C
2013-08-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
English, Coralie; Hillier, Susan; Kaur, Gurpreet; Hundertmark, Laura
2014-03-01
Do people with stroke spend more time in active task practice during circuit class therapy sessions versus individual physiotherapy sessions? Do people with stroke practise different tasks during circuit class therapy sessions versus individual physiotherapy sessions? Prospective, observational study. Twenty-nine people with stroke in inpatient rehabilitation settings. Individual therapy sessions and circuit class therapy sessions provided within a larger randomised controlled trial. Seventy-nine therapy sessions were video-recorded and the footage was analysed for time spent engaged in various categories of activity. In a subsample of 28 videos, the number of steps taken by people with stroke per therapy session was counted. Circuit class therapy sessions were of a longer duration (mean difference 38.0minutes, 95% CI 29.9 to 46.1), and participants spent more time engaged in active task practice (mean difference 23.8minutes, 95% CI 16.1 to 31.4) compared with individual sessions. A greater percentage of time in circuit class therapy sessions was spent practising tasks in sitting (mean difference 5.3%, 95% CI 2.4 to 8.2) and in sit-to-stand practice (mean difference 2.7%, 95% CI 1.4 to 4.1), and a lower percentage of time in walking practice (mean difference 19.1%, 95% CI 10.0 to 28.1) compared with individual sessions. PARTICIPANTS took an average of 371 steps (SD 418) during therapy sessions and this did not differ significantly between group and individual sessions. People with stroke spent more time in active task practice, but a similar amount of time in walking practice when physiotherapy was offered in circuit class therapy sessions versus individual therapy sessions. There is a need for effective strategies to increase the amount of walking practice during physiotherapy sessions for people after stroke. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
2011-01-01
Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation. PMID:21270352
Topology and Dynamics of the Zebrafish Segmentation Clock Core Circuit
Schröter, Christian; Isakova, Alina; Hens, Korneel; Soroldoni, Daniele; Gajewski, Martin; Jülicher, Frank; Maerkl, Sebastian J.; Deplancke, Bart; Oates, Andrew C.
2012-01-01
During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a “dimer cloud” that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks. PMID:22911291
Jiang, Li; Kundu, Srikanya; Lederman, James D.; López-Hernández, Gretchen Y.; Ballinger, Elizabeth C.; Wang, Shaohua; Talmage, David A.; Role, Lorna W.
2016-01-01
Summary We examined the contribution of endogenous cholinergic signaling to the acquisition and extinction of fear- related memory by optogenetic regulation of cholinergic input to the basal lateral amygdala (BLA). Stimulation of cholinergic terminal fields within the BLA in awake-behaving mice during training in a cued fear-conditioning paradigm slowed the extinction of learned fear as assayed by multi-day retention of extinction learning. Inhibition of cholinergic activity during training reduced the acquisition of learned fear behaviors. Circuit mechanisms underlying the behavioral effects of cholinergic signaling in the BLA were assessed by in vivo and ex vivo electrophysiological recording. Photo-stimulation of endogenous cholinergic input: (1) enhances firing of putative BLA principal neurons through activation of acetylcholine receptors (AChRs); (2) enhances glutamatergic synaptic transmission in the BLA and (3) induces LTP of cortical-amygdala circuits. These studies support an essential role of cholinergic modulation of BLA circuits in the inscription and retention of fear memories. PMID:27161525
NASA Astrophysics Data System (ADS)
Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.
2010-11-01
We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.
49 CFR 234.203 - Control circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Control circuits. 234.203 Section 234.203... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect the safe operation of a highway-rail grade crossing warning...
49 CFR 234.203 - Control circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Control circuits. 234.203 Section 234.203... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Maintenance Standards § 234.203 Control circuits. All control circuits that affect the safe operation of a highway-rail grade crossing warning...
49 CFR 236.731 - Controller, circuit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...
Single Active Switch PV Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, V. R.; Pan, Zhiguo
This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less
Research of vibration control based on current mode piezoelectric shunt damping circuit
NASA Astrophysics Data System (ADS)
Liu, Weiwei; Mao, Qibo
2017-12-01
The piezoelectric shunt damping circuit using current mode approach is imposed to control the vibration of a cantilever beam. Firstly, the simulated inductance with large values are designed for the corresponding RL series shunt circuits. Moreover, with an example of cantilever beam, the second natural frequency of the beam is targeted to control for experiment. By adjusting the values of the equivalent inductance and equivalent resistance of the shunt circuit, the optimal damping of the shunt circuit is obtained. Meanwhile, the designed piezoelectric shunt damping circuit stability is experimental verified. Experimental results show that the proposed piezoelectric shunt damping circuit based on current mode circuit has good vibration control performance. However, the control performance will be reduced if equivalent inductance and equivalent resistance values deviate from optimal values.
Two stage kickdown control system for a motor vehicle automatic transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashi, H.; Waki, K.; Fukuiri, M.
This patent describes a vehicle automatic transmission including a hydraulic torque converter and a transmission gear mechanism connected with the torque converter and having at least three gear stages of different gear ratios for forward drive. A principal feature of this system as described is a friction means for selecting one of the gear stages as well as a kickdown control means consisting of the first shift down circuit means for control of the friction means so that the transmission gear mechanism is shifted downward. A solenoid kick down means within the modality of the first shift down circuit andmore » a kick down switch means actuated by an engine control member when it is moved to a full power position provides control of the kick down solenoid and the effecting of a down shift. The shift down control means is composed of a second shift down circuit means for controlling the friction means so shift down occurs. The shift down solenoid contained in the second shift down circuit means in conjunction with a shift down switch actuated by engine control member movement to a position spaced a predetermined distance from the full power position control the shift down solenoid to effect a shift down. Thus this mechanism is actuated earlier than the kickdown switch means when the engine control member is moved toward the full power position. A time delay means from the time of actuation of the shift down switch means and controlling kickdown switch activation is also described.« less
Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas
2016-01-01
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. PMID:27918273
Qiao, Jianping; Weng, Shenhong; Wang, Pengwei; Long, Jun; Wang, Zhishun
2015-05-01
The aim of this study was to investigate the normalization of the intrinsic functional activity and connectivity of TS adolescents before and after the cranial electrotherapy stimulation (CES) with alpha stim device. We performed resting-state functional magnetic resonance imaging on eight adolescents before and after CES with mean age of about nine-years old who had Tourette's syndrome with moderate to severe tics symptom. Independent component analysis (ICA) with hierarchical partner matching method was used to examine the functional connectivity between regions within cortico-striato-thalamo-cortical (CSTC) circuit. Granger causality was used to investigate effective connectivity among these regions detected by ICA. We then performed pattern classification on independent components with significant group differences that served as endophenotype markers to distinguish the adolescents between TS and the normalized ones after CES. Results showed that TS adolescents after CES treatment had stronger functional activity and connectivity in anterior cingulate cortex (ACC), caudate and posterior cingulate cortex while had weaker activity in supplementary motor area within the motor pathway compared with TS before CES. The results suggest that the functional activity and connectivity in motor pathway was suppressed while activities in the control portions within CSTC loop including ACC and caudate were increased in TS adolescents after CES compared with adolescents before CES. The normalization of the balance between motor and control portions of the CSTC circuit may result in the recovery of TS adolescents.
Design of high precision temperature control system for TO packaged LD
NASA Astrophysics Data System (ADS)
Liang, Enji; Luo, Baoke; Zhuang, Bin; He, Zhengquan
2017-10-01
Temperature is an important factor affecting the performance of TO package LD. In order to ensure the safe and stable operation of LD, a temperature control circuit for LD based on PID technology is designed. The MAX1978 and an external PID circuit are used to form a control circuit that drives the thermoelectric cooler (TEC) to achieve control of temperature and the external load can be changed. The system circuit has low power consumption, high integration and high precision,and the circuit can achieve precise control of the LD temperature. Experiment results show that the circuit can achieve effective and stable control of the laser temperature.
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
NASA Technical Reports Server (NTRS)
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Frequency control circuit for all-digital phase-lock loops
NASA Technical Reports Server (NTRS)
Anderson, T. O.
1973-01-01
Phase-lock loop references all its operations to fixed high-frequency service clock operating at highest speed which digital circuits permit. Wide-range control circuit provides linear control of frequency of reference signal. It requires only two counters in combination with control circuit consisting only of flip-flop and gate.
49 CFR 236.342 - Switch circuit controller.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...
49 CFR 236.342 - Switch circuit controller.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...
49 CFR 236.342 - Switch circuit controller.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...
49 CFR 236.342 - Switch circuit controller.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...
49 CFR 236.342 - Switch circuit controller.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Switch circuit controller. 236.342 Section 236.342... Instructions § 236.342 Switch circuit controller. Switch circuit controller connected at the point to switch... corresponding to switch point closure when switch point is open one-fourth inch or more. Inspection and Tests ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
Fate-Regulating Circuits in Viruses: From Discovery to New Therapy Targets
Pai, Anand; Weinberger, Leor S.
2018-01-01
Current antivirals effectively target diverse viruses at various stages of their viral lifecycles. Nevertheless, curative therapy has remained elusive for important pathogens (e.g., HIV-1 and herpesviruses), in large part due to viral latency and the evolution of resistance to existing therapies. Here, we review the discovery of viral ‘master’ circuits: virus-encoded auto-regulatory gene networks that can autonomously control viral expression programs (i.e., between active, latent, and abortive fates). These circuits offer a potential new class of antivirals that could lead to intrinsic combination-antiviral therapies within a single molecule—evolutionary escape from such circuit ‘disruptors’ would require simultaneous evolution of both the cis regulatory element (e.g., the DNA-binding site) and the trans element (e.g., the transcription factor) for the circuit’s function to be recapitulated. We review the architectures of these fate-regulating master circuits in HIV-1 and the human herpesvirus cytomegalovirus (CMV) along with potential circuit-disruption strategies that may ultimately enable escape-resistant antiviral therapies. PMID:28800289
Two- and three-input TALE-based AND logic computation in embryonic stem cells.
Lienert, Florian; Torella, Joseph P; Chen, Jan-Hung; Norsworthy, Michael; Richardson, Ryan R; Silver, Pamela A
2013-11-01
Biological computing circuits can enhance our ability to control cellular functions and have potential applications in tissue engineering and medical treatments. Transcriptional activator-like effectors (TALEs) represent attractive components of synthetic gene regulatory circuits, as they can be designed de novo to target a given DNA sequence. We here demonstrate that TALEs can perform Boolean logic computation in mammalian cells. Using a split-intein protein-splicing strategy, we show that a functional TALE can be reconstituted from two inactive parts, thus generating two-input AND logic computation. We further demonstrate three-piece intein splicing in mammalian cells and use it to perform three-input AND computation. Using methods for random as well as targeted insertion of these relatively large genetic circuits, we show that TALE-based logic circuits are functional when integrated into the genome of mouse embryonic stem cells. Comparing construct variants in the same genomic context, we modulated the strength of the TALE-responsive promoter to improve the output of these circuits. Our work establishes split TALEs as a tool for building logic computation with the potential of controlling expression of endogenous genes or transgenes in response to a combination of cellular signals.
NASA Astrophysics Data System (ADS)
Koike, Hiroki; Ohsawa, Takashi; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2015-04-01
A spintronic-based power-gated micro-processing unit (MPU) is proposed. It includes a power control circuit activated by the newly supported power-off instruction for the deep-sleep mode. These means enable the power-off procedure for the MPU to be executed appropriately. A test chip was designed and fabricated using 90 nm CMOS and an additional 100 nm MTJ process; it was successfully operated. The guideline of the energy reduction effects for this MPU was presented, using the estimation based on the measurement results of the test chip. The result shows that a large operation energy reduction of 1/28 can be achieved when the operation duty is 10%, under the condition of a sufficient number of idle clock cycles.
Longitudinal Growth Curves of Brain Function Underlying Inhibitory Control through Adolescence
Foran, William; Velanova, Katerina; Luna, Beatriz
2013-01-01
Neuroimaging studies suggest that developmental improvements in inhibitory control are primarily supported by changes in prefrontal executive function. However, studies are contradictory with respect to how activation in prefrontal regions changes with age, and they have yet to analyze longitudinal data using growth curve modeling, which allows characterization of dynamic processes of developmental change, individual differences in growth trajectories, and variables that predict any interindividual variability in trajectories. In this study, we present growth curves modeled from longitudinal fMRI data collected over 302 visits (across ages 9 to 26 years) from 123 human participants. Brain regions within circuits known to support motor response control, executive control, and error processing (i.e., aspects of inhibitory control) were investigated. Findings revealed distinct developmental trajectories for regions within each circuit and indicated that a hierarchical pattern of maturation of brain activation supports the gradual emergence of adult-like inhibitory control. Mean growth curves of activation in motor response control regions revealed no changes with age, although interindividual variability decreased with development, indicating equifinality with maturity. Activation in certain executive control regions decreased with age until adolescence, and variability was stable across development. Error-processing activation in the dorsal anterior cingulate cortex showed continued increases into adulthood and no significant interindividual variability across development, and was uniquely associated with task performance. These findings provide evidence that continued maturation of error-processing abilities supports the protracted development of inhibitory control over adolescence, while motor response control regions provide early-maturing foundational capacities and suggest that some executive control regions may buttress immature networks as error processing continues to mature. PMID:24227721
Solid state control system for oil well bailer pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senghaas, K. A.; Senghaas, P.
1985-05-14
A solid state switching controller for use with various types of oil well bailer pumps. Individually programmable steps with lockouts provide multiple mutual exclusivity between various circuit operations. A trickle charge battery system powers the control circuits. A tank overflow float protects against oil spillage. An automatic production rate adjustment circuit is provided which increases cycle time in proportion to the rate of production. The circuit includes a low power voltage detector for disabling the control circuits until the line voltage is acceptable. A three-phase power and control system with an isolation transformer for the controls avoids unreliable ground connections.more » The timers include a dividing circuit with an RC circuit. All power actuated apparatus are actuated by triac switches which are controlled by an opto driver. The bailer brake is pulse actuated for allowing the bailer to sink into crude oil without excess cable looseness.« less
Solid state circuit controls direction, speed, and braking of dc motor
NASA Technical Reports Server (NTRS)
Hanna, M. F.
1966-01-01
Full-wave bridge rectifier circuit controls the direction, speed, and braking of a dc motor. Gating in the circuit of Silicon Controlled Rectifiers /SCRS/ controls output polarity and braking is provided by an SCR that is gated to short circuit the reverse voltage generated by reversal of motor rotation.
Huang, Tianzhi; Alvarez, Angel A.; Pangeni, Rajendra P.; M. Horbinski, Craig; Lu, Songjian; Kim, Sung-Hak; James, C. David; J. Raizer, Jeffery; A. Kessler, John; Brenann, Cameron W.; Sulman, Erik P.; Finocchiaro, Gaetano; Tan, Ming; Nishikawa, Ryo; Lu, Xinghua; Nakano, Ichiro; Hu, Bo; Cheng, Shi-Yuan
2016-01-01
Molecularly defined subclassification is associated with phenotypic malignancy of glioblastoma (GBM). However, current understanding of the molecular basis of subclass conversion that is often involved in GBM recurrence remain rudimentary at best. Here we report that canonical Wnt signalling that is active in proneural (PN) but inactive in mesenchymal (MES) GBM, along with miR-125b and miR-20b that are expressed at high levels in PN compared with MES GBM, comprise a regulatory circuit involving TCF4-miR-125b/miR-20b-FZD6. FZD6 acts as a negative regulator of this circuit by activating CaMKII–TAK1–NLK signalling, which, in turn, attenuates Wnt pathway activity while promoting STAT3 and NF-κB signalling that are important regulators of the MES-associated phenotype. These findings are confirmed by targeting differentially enriched pathways in PN versus MES GBM that results in inhibition of distinct GBM subtypes. Correlative expressions of the components of this circuit are prognostic relevant for clinical GBM. Our findings provide insights for understanding GBM pathogenesis and for improving treatment of GBM. PMID:27698350
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.
Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W
2016-03-30
Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to sleep function. Copyright © 2016 the authors 0270-6474/16/363709-13$15.00/0.
Molecular substrates of action control in cortico-striatal circuits.
Shiflett, Michael W; Balleine, Bernard W
2011-09-15
The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. Copyright © 2011 Elsevier Ltd. All rights reserved.
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...
Intelligent Engine Systems: HPT Clearance Control
NASA Technical Reports Server (NTRS)
2008-01-01
The Advanced Thermally Actuated Clearance Control System underwent several studies. Improved flow path isolation quantified what can be gained by making the HPT case nearly adiabatic. The best method of heat transfer was established, and finally two different borrowed air cooling circuits were evaluated to be used for the HPT Active Clearance Control System.
Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun
2017-11-07
For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.
A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.
Walker, Amy K; Jacobs, René L; Watts, Jennifer L; Rottiers, Veerle; Jiang, Karen; Finnegan, Deirdre M; Shioda, Toshi; Hansen, Malene; Yang, Fajun; Niebergall, Lorissa J; Vance, Dennis E; Tzoneva, Monika; Hart, Anne C; Näär, Anders M
2011-11-11
Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Spin-1 models in the ultrastrong-coupling regime of circuit QED
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Lamata, L.; Solano, E.; Romero, G.; Retamal, J. C.
2018-02-01
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded superconducting quantum interference device (SQUID). The anharmonic spectrum of the qubit-resonator system and the selection rules imposed by the global parity symmetry allow us to activate well controlled two-body quantum gates via ac pulses applied to the SQUID. We show that our proposal has the same simulation time for any number of spin-1 interacting particles. This scheme may be implemented within the state-of-the-art circuit QED in the ultrastrong coupling regime.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
Universal power transistor base drive control unit
Gale, Allan R.; Gritter, David J.
1988-01-01
A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.
Universal power transistor base drive control unit
Gale, A.R.; Gritter, D.J.
1988-06-07
A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.
Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.
2015-01-01
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917
Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines
NASA Astrophysics Data System (ADS)
Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.
2017-11-01
The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.
Flow rate logging seepage meter
NASA Technical Reports Server (NTRS)
Reay, William G. (Inventor); Walthall, Harry G. (Inventor)
1996-01-01
An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.
Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina
2018-06-01
Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Silicon Controlled Switch for Detection of Ionizing Radiation
2015-12-01
sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...sensitivity of previous NPS silicon controlled rectifier (SCR) based circuits. Additionally, the circuit in this thesis was able to detect AM-241 and...Controlled Rectifier SCS Silicon-Controlled Switch SONAR SOund Navigation and Ranging VBIAS Applied Bias Voltage VH Holding Voltage VS Standalone SCS
Redundant electronic circuit provides fail-safe control
NASA Technical Reports Server (NTRS)
Archer, J. W.
1970-01-01
Circuit using dual control amplifiers and dual position demand potentiometers powered from separate sources is used for reliable hydraulic valve controller that prevents closure of valve when control circuits fail, and maintains valve control to close tolerance for more common modes of controller failure.
Circuit For Control Of Electromechanical Prosthetic Hand
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.
NASA Astrophysics Data System (ADS)
Wang, Gang; Cheng, Jianqing; Chen, Jingwei; He, Yunze
2017-02-01
Instead of analog electronic circuits and components, digital controllers that are capable of active multi-resonant piezoelectric shunting are applied to elastic metamaterials integrated with piezoelectric patches. Thanks to recently introduced digital control techniques, shunting strategies are possible now with transfer functions that can hardly be realized with analog circuits. As an example, the ‘pole-zero’ method is developed to design single- or multi-resonant bandgaps by adjusting poles and zeros in the transfer function of piezoelectric shunting directly. Large simultaneous attenuations in up to three frequency bands at deep subwavelength scale (with normalized frequency as low as 0.077) are achieved. The underlying physical mechanism is attributable to the negative group velocity of the flexural wave within bandgaps. As digital controllers can be readily adapted via wireless broadcasting, the bandgaps can be tuned easily unlike the electric components in analog shunting circuits, which must be tuned one by one manually. The theoretical results are verified experimentally with the measured vibration transmission properties, where large insulations of up to 20 dB in low-frequency ranges are observed.
Controlling Arc Length in Plasma Welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.
1986-01-01
Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.
49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...
49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...
49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...
49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...
49 CFR 236.6 - Hand-operated switch equipped with switch circuit controller.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Hand-operated switch equipped with switch circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.6 Hand-operated switch equipped with switch circuit controller. Hand-operated switch equipped with switch circuit controller connected to the...
Transferred substrate heterojunction bipolar transistors for submillimeter wave applications
NASA Technical Reports Server (NTRS)
Fung, A.; Samoska, L.; Siegel, P.; Rodwell, M.; Urteaga, M.; Paidi, V.
2003-01-01
We present ongoing work towards the development of submillimeter wave transistors with goals of realizing advanced high frequency amplifiers, voltage controlled oscillators, active multipliers, and traditional high-speed digital circuits.
Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; Keller, Samantha M; DePietro, Thomas
2016-12-01
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA. © 2016 Knox et al.; Published by Cold Spring Harbor Laboratory Press.
Neural Control of the Lower Urinary Tract
de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki
2015-01-01
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273
Electronic control circuits: A compilation
NASA Technical Reports Server (NTRS)
1973-01-01
A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2006-03-14
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
Low power, scalable multichannel high voltage controller
Stamps, James Frederick [Livermore, CA; Crocker, Robert Ward [Fremont, CA; Yee, Daniel Dadwa [Dublin, CA; Dils, David Wright [Fort Worth, TX
2008-03-25
A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.
High-temperature brushless DC motor controller
Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan
2017-05-16
A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.
Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian
2017-10-01
To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.
Packaging Of Control Circuits In A Robot Arm
NASA Technical Reports Server (NTRS)
Kast, William
1994-01-01
Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.
Heuristics for the Hodgkin-Huxley system.
Hoppensteadt, Frank
2013-09-01
Hodgkin and Huxley (HH) discovered that voltages control ionic currents in nerve membranes. This led them to describe electrical activity in a neuronal membrane patch in terms of an electronic circuit whose characteristics were determined using empirical data. Due to the complexity of this model, a variety of heuristics, including relaxation oscillator circuits and integrate-and-fire models, have been used to investigate activity in neurons, and these simpler models have been successful in suggesting experiments and explaining observations. Connections between most of the simpler models had not been made clear until recently. Shown here are connections between these heuristics and the full HH model. In particular, we study a new model (Type III circuit): It includes the van der Pol-based models; it can be approximated by a simple integrate-and-fire model; and it creates voltages and currents that correspond, respectively, to the h and V components of the HH system. Copyright © 2012 Elsevier Inc. All rights reserved.
Primate beta oscillations and rhythmic behaviors.
Merchant, Hugo; Bartolo, Ramón
2018-03-01
The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.
Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.
Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok
2018-03-16
Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.
Optically Controlled Signal Amplification for DNA Computation.
Prokup, Alexander; Hemphill, James; Liu, Qingyang; Deiters, Alexander
2015-10-16
The hybridization chain reaction (HCR) and fuel-catalyst cycles have been applied to address the problem of signal amplification in DNA-based computation circuits. While they function efficiently, these signal amplifiers cannot be switched ON or OFF quickly and noninvasively. To overcome these limitations, a light-activated initiator strand for the HCR, which enabled fast optical OFF → ON switching, was developed. Similarly, when a light-activated version of the catalyst strand or the inhibitor strand of a fuel-catalyst cycle was applied, the cycle could be optically switched from OFF → ON or ON → OFF, respectively. To move the capabilities of these devices beyond solution-based operations, the components were embedded in agarose gels. Irradiation with customizable light patterns and at different time points demonstrated both spatial and temporal control. The addition of a translator gate enabled a spatially activated signal to travel along a predefined path, akin to a chemical wire. Overall, the addition of small light-cleavable photocaging groups to DNA signal amplification circuits enabled conditional control as well as fast photocontrol of signal amplification.
DOT National Transportation Integrated Search
1977-12-01
Consideration is given to the properties of solid-state circuits, miniature relays and large gravity-operated relays when applied to control systems for grade crossings equipped with train-activated motorist warnings. Factors discussed include origin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow N. D.; Wang G.; Volkow, N.D.
The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated thatmore » this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.« less
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
Amygdala alterations during an emotional conflict task in women recovered from anorexia nervosa.
Bang, Lasse; Rø, Øyvind; Endestad, Tor
2016-02-28
The pathophysiology of anorexia nervosa (AN) is not completely understood, but research suggests that alterations in brain circuits related to cognitive control and emotion are central. The aim of this study was to explore neural responses to an emotional conflict task in women recovered from AN. Functional magnetic resonance imaging was used to measure neural responses to an emotional conflict task in 22 women recovered from AN and 21 age-matched healthy controls. The task involved categorizing affective faces while ignoring affective words. Face and word stimuli were either congruent (non-conflict) or incongruent (conflict). Brain responses to emotional conflict did not differ between groups. However, in response to emotional non-conflict, women recovered from AN relative to healthy controls showed significantly less activation in the bilateral amygdala. Specifically, while emotional non-conflict evoked significant activations of the amygdala in healthy controls, recovered AN women did not show such activations. Similar significant group differences were also observed in the hippocampus and basal ganglia. These results suggest that women recovered from AN are characterized by alterations within emotion-related brain circuits. Recovered women's absence of amygdala and hippocampus activation during non-conflict trials possibly reflects an impaired ability to process emotional significant stimuli. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.
1984-06-01
Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.
Control system for a wound-rotor motor
Ellis, James N.
1983-01-01
A load switching circuit for switching two or more transformer taps under load carrying conditions includes first and second parallel connected bridge rectifier circuits which control the selective connection of a direct current load to taps of a transformer. The first bridge circuit is normally conducting so that the load is connected to a first tap through the first bridge circuit. To transfer the load to the second tap, a switch is operable to connect the second bridge circuit to a second tap, and when the second bridge circuit begins to conduct, the first bridge circuit ceases conduction because the potential at the second tap is higher than the potential at the first tap, and the load is thus connected to the second tap through the second bridge circuit. The load switching circuit is applicable in a motor speed controller for a wound-rotor motor for effecting tap switching as a function of motor speed while providing a stepless motor speed control characteristic.
A programmable heater control circuit for spacecraft
NASA Technical Reports Server (NTRS)
Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.
1994-01-01
Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.
Grossberg, Stephen
2017-01-01
Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer’s disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer’s disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective. PMID:29163063
Kurup, Naina; Kono, Karina
2017-01-01
Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement. PMID:28636662
Garrity, Paul A.; Goodman, Miriam B.; Samuel, Aravinthan D.; Sengupta, Piali
2010-01-01
Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior. PMID:21041406
Active lamp pulse driver circuit. [optical pumping of laser media
NASA Technical Reports Server (NTRS)
Logan, K. E. (Inventor)
1983-01-01
A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.
Williams, Leanne M
2016-01-01
Complex emotional, cognitive and self-reflective functions rely on the activation and connectivity of large-scale neural circuits. These circuits offer a relevant scale of focus for conceptualizing a taxonomy for depression and anxiety based on specific profiles (or biotypes) of neural circuit dysfunction. Here, the theoretical review first outlined the current consensus as to what constitutes the organization of large-scale circuits in the human brain identified using parcellation and meta-analysis. The focus is on neural circuits implicated in resting reflection (“default mode”), detection of “salience”, affective processing (“threat” and “reward”), “attention” and “cognitive control”. Next, the current evidence regarding which type of dysfunctions in these circuits characterize depression and anxiety disorders was reviewed, with an emphasis on published meta-analyses and reviews of circuit dysfunctions that have been identified in at least two well-powered case:control studies. Grounded in the review of these topics, a conceptual framework is proposed for considering neural circuit-defined “biotypes”. In this framework, biotypes are defined by profiles of extent of dysfunction on each large-scale circuit. The clinical implications of a biotype approach for guiding classification and treatment of depression and anxiety is considered. Future research directions will develop the validity and clinical utility of a neural circuit biotype model that spans diagnostic categories and helps to translate neuroscience into clinical practice in the real world. PMID:27653321
Ito, Tomotaka; Tsubahara, Akio; Shinkoda, Koichi; Yoshimura, Yosuke; Kobara, Kenichi; Osaka, Hiroshi
2015-01-01
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke. PMID:25688972
Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi
2016-04-07
Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sun, Chengsan
2017-01-01
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. PMID:28676575
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
..., AC motors, power supplies, heater tubs, LED light assemblies, triple level and push button switches, control panels, printed circuit boards, power cords, wire harnesses, EMI filters, pressure sensors...
Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo
NASA Astrophysics Data System (ADS)
Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.
2018-04-01
Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.
Cognitive-motor interactions of the basal ganglia in development
Leisman, Gerry; Braun-Benjamin, Orit; Melillo, Robert
2014-01-01
Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human reasoning and adaptive function. The basal ganglia are key elements in the control of reward-based learning, sequencing, discrete elements that constitute a complete motor act, and cognitive function. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. We know that the relation between the basal ganglia and the cerebral cortical region allows for connections organized into discrete circuits. Rather than serving as a means for widespread cortical areas to gain access to the motor system, these loops reciprocally interconnect a large and diverse set of cerebral cortical areas with the basal ganglia. Neuronal activity within the basal ganglia associated with motor areas of the cerebral cortex is highly correlated with parameters of movement. Neuronal activity within the basal ganglia and cerebellar loops associated with the prefrontal cortex is related to the aspects of cognitive function. Thus, individual loops appear to be involved in distinct behavioral functions. Damage to the basal ganglia of circuits with motor areas of the cortex leads to motor symptoms, whereas damage to the subcortical components of circuits with non-motor areas of the cortex causes higher-order deficits. In this report, we review some of the anatomic, physiologic, and behavioral findings that have contributed to a reappraisal of function concerning the basal ganglia and cerebellar loops with the cerebral cortex and apply it in clinical applications to attention deficit/hyperactivity disorder (ADHD) with biomechanics and a discussion of retention of primitive reflexes being highly associated with the condition. PMID:24592214
Schmidt, Marc F.; McLean, Judith; Goller, Franz
2011-01-01
The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these ponto-medullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems likely interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres. PMID:21984733
47 CFR 78.51 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... necessary to insure proper operation. (4) The control circuits shall be so designed and installed that short circuits, open circuits, other line faults, or any other cause which would result in loss of control of the...
Statistical modeling implicates neuroanatomical circuit mediating stress relief by ‘comfort’ food
Ulrich-Lai, Yvonne M.; Christiansen, Anne M.; Wang, Xia; Song, Seongho; Herman, James P.
2015-01-01
A history of eating highly-palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30% sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such ‘comfort’ foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala - medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological data sets. PMID:26246177
Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food.
Ulrich-Lai, Yvonne M; Christiansen, Anne M; Wang, Xia; Song, Seongho; Herman, James P
2016-07-01
A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.
Childhood physical abuse predicts stressor-evoked activity within central visceral control regions
Sheu, Lei K.; Midei, Aimee J.; Gianaros, Peter J.
2015-01-01
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity. PMID:24847113
Spontaneous network activity and synaptic development
Kerschensteiner, Daniel
2014-01-01
Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071
Fedder, Karlie N; Sabo, Shasta L
2015-12-14
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
Sex differences in olfactory-induced neural activation of the amygdala.
Kikusui, Takefumi; Kajita, Mayu; Otsuka, Natsumi; Hattori, Tatsuya; Kumazawa, Kanako; Watarai, Akiyuki; Nagasawa, Miho; Inutsuka, Ayumu; Yamanaka, Akihiro; Matsuo, Naoki; Covington, Herbert E; Mogi, Kazutaka
2018-07-02
Olfactory signals, including the scent of urine, are thought to be processed by specific brain regions, such as the medial amygdala (Me), and regulate sexual behavior in a sex-dependent manner. We aimed to reveal the sex-specific neural circuit from the accessory olfactory bulb (AOB) to Me by using a transgenic mouse. We quantified the long-lasting green fluorescent protein (GFP) expression profile, which was controlled by the c-fos promotor in a sex-dependent manner by the scent of urine. Female urine predominantly activated neurons of the posterodorsal medial amygdala (MePD) in male mice and the posteroventral medial amygdala (MePV) in female mice. Male urine, in contrast, generated the opposite pattern of activation in the Me. Secondary, the selective artificial activation of these circuits was used to examine their specific behavioral function, by using a dual Cre-loxP viral infection. AAV-hSyn-FLEX-hM3Dq-EGFP-the designer receptor exclusively activated by a designer drug-was infused into the AOB after infection with trans-synaptic AAV(DJ)-CMV-mCherry-2A-Cre-TTC into either the MePD or the MePV. Double virus-transfected mice were injected with hM 3 Dq activator and their sexual behavior was monitored. However, selective activation of sex-dependent circuits, i.e., the AOB-MePD or AOB-MePV, did not significantly alter mounting or attack behavior in male mice. There were clear sex differences in the pheromone conveying circuits in the AOB-Me of mice. The sex-dependent functional activation of the Me, however, no effect on behavior. This suggests that a diverse number of nuclei and brain areas are likely to function in concert to successfully facilitate sexual and aggressive behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... subject firm. The workers are engaged in activities related to the production of hydraulic magnetic... shift in production of hydraulic magnetic circuit breakers to Aguascalientes, Mexico. The amended notice...
Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L
2017-01-01
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI: http://dx.doi.org/10.7554/eLife.21540.001 PMID:28195039
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sections assembled in a common enclosure, on a common chassis or circuit board, and with common frequency controlling circuits. Devices to which a single FCC Identifier has been assigned shall be identified pursuant... circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
Motor control in a Drosophila taste circuit
Gordon, Michael D.; Scott, Kristin
2009-01-01
Tastes elicit innate behaviors critical for directing animals to ingest nutritious substances and reject toxic compounds, but the neural basis of these behaviors is not understood. Here, we use a neural silencing screen to identify neurons required for a simple Drosophila taste behavior, and characterize a neural population that controls a specific subprogram of this behavior. By silencing and activating subsets of the defined cell population, we identify the neurons involved in the taste behavior as a pair of motor neurons located in the subesophageal ganglion (SOG). The motor neurons are activated by sugar stimulation of gustatory neurons and inhibited by bitter compounds; however, experiments utilizing split-GFP detect no direct connections between the motor neurons and primary sensory neurons, indicating that further study will be necessary to elucidate the circuitry bridging these populations. Combined, these results provide a general strategy and a valuable starting point for future taste circuit analysis. PMID:19217375
Xiong, Xiaorui R; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A; Tao, Huizhong W; Zhang, Li I
2015-06-11
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities.
The control of tonic pain by active relief learning
Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W
2018-01-01
Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-II. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Hybrid Damping System for an Electronic Equipment Mounting Shelf
NASA Technical Reports Server (NTRS)
Voracek, David; Kolkailah, Faysal A.; Cavalli, J. R.; Elghandour, Eltahry
1997-01-01
The objective of this study was to design and construct a vibration control system for an electronic equipment shelf to be evaluated in the NASA Dryden FTF-11. The vibration control system was a hybrid system which included passive and active damping techniques. Passive damping was fabricated into the equipment shelf using ScothDamp(trademark) damping film and aluminum constraining layers. Active damping was achieved using a two channel active control circuit employing QuickPack(trademark) sensors and actuators. Preliminary Chirp test results indicated passive damping smoothed the frequency response while active damping reduced amplitudes of the frequency response for most frequencies below 500Hz.
Calcium transport in turtle bladder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabatini, S.; Kurtzman, N.A.
1987-12-01
Unidirectional {sup 45}Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J{sup net}{sub Ca}) was secretory (serosa to mucosa). Ouabain reversed J{sup net}{sub Ca} to an absorptive flux. Amiloride reduced both fluxes such that J{sup net}{sub Ca} was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J{sup net}{sub Ca} decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J{sup net}{sub Ca} was similar inmore » magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue {sup 45}Ca content was {approx equal}30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca{sup 2+}-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na{sup +}-K{sup +}-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.« less
An Active Damping at Blade Resonances Using Piezoelectric Transducers
NASA Technical Reports Server (NTRS)
Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten
2008-01-01
The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-01-01
Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv
2013-04-01
Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display
NASA Astrophysics Data System (ADS)
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing
2015-06-01
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V-1s-1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display.
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B; Zhang, Qing
2015-06-29
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm(2)V(-1)s(-1) and the high channel current on/off ratio of ~10(5) of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.
A cortical circuit for voluntary laryngeal control: Implications for the evolution language.
Hickok, Gregory
2017-02-01
The development of voluntary laryngeal control has been argued to be a key innovation in the evolution of language. Part of the evidence for this hypothesis comes from neuroscience. For example, comparative research has shown that humans have direct cortical innervation of motor neurons controlling the larynx, whereas nonhuman primates do not. Research on cortical motor control circuits has shown that the frontal lobe cortical motor system does not work alone; it is dependent on sensory feedback control circuits. Thus, the human brain must have evolved not only the required efferent motor pathway but also the cortical circuit for controlling those efferent signals. To fill this gap, I propose a link between the evolution of laryngeal control and neuroscience research on the human dorsal auditory-motor speech stream. Specifically, I argue that the dorsal stream Spt (Sylvian parietal-temporal) circuit evolved in step with the direct cortico-laryngeal control pathway and together represented a key advance in the evolution of speech. I suggest that a cortical laryngeal control circuit may play an important role in language by providing a prosodic frame for speech planning.
49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...
49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...
49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...
49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...
49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...
Wang, Chia-Fang; Hsing, Hsiang-Wei; Zhuang, Zi-Hui; Wen, Meng-Hsuan; Chang, Wei-Jen; Briz, Carlos G; Nieto, Marta; Shyu, Bai Chuang; Chou, Shen-Ju
2017-01-24
Cortical neurons must be specified and make the correct connections during development. Here, we examine a mechanism initiating neuronal circuit formation in the barrel cortex, a circuit comprising thalamocortical axons (TCAs) and layer 4 (L4) neurons. When Lhx2 is selectively deleted in postmitotic cortical neurons using conditional knockout (cKO) mice, L4 neurons in the barrel cortex are initially specified but fail to form cellular barrels or develop polarized dendrites. In Lhx2 cKO mice, TCAs from the thalamic ventral posterior nucleus reach the barrel cortex but fail to further arborize to form barrels. Several activity-regulated genes and genes involved in regulating barrel formation are downregulated in the Lhx2 cKO somatosensory cortex. Among them, Btbd3, an activity-regulated gene controlling dendritic development, is a direct downstream target of Lhx2. We find that Lhx2 confers neuronal competency for activity-dependent dendritic development in L4 neurons by inducing the expression of Btbd3. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
High voltage power supply with modular series resonant inverters
Dreifuerst, Gary R.; Merritt, Bernard T.
1995-01-01
A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.
High voltage power supply with modular series resonant inverters
Dreifuerst, G.R.; Merritt, B.T.
1995-07-18
A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.
Fabrication and In vivo Thrombogenicity Testing of Nitric Oxide Generating Artificial Lungs
Amoako, Kagya A; Montoya, Patrick J; Major, Terry C; Suhaib, Ahmed B; Handa, Hitesh; Brant, David O; Meyerhoff, Mark E; Bartlett, Robert H; Cook, Keith E
2013-01-01
Hollow fiber artificial lungs are increasingly being used for long-term applications. However, clot formation limits their use to 1-2 weeks. This study investigated the effect of nitric oxide generating (NOgen) hollow fibers on artificial lung thrombogenicity. Silicone hollow fibers were fabricated to incorporate 50 nm copper particles as a catalyst for NO generation from the blood. Fibers with and without (control) these particles were incorporated into artificial lungs with a 0.1 m2 surface area and inserted in circuits coated tip-to-tip with the NOgen material. Circuits (N=5/each) were attached to rabbits in a pumpless, arterio-venous configuration and run for 4 hrs at an activated clotting time of 350-400s. Three control circuits clotted completely, while none of the NOgen circuits failed. Accordingly, blood flows were significantly higher in the NOgen group (95.9 ± 11.7, p < 0.01) compared to the controls (35.2 ± 19.7) (ml/min), and resistance was significantly higher in the control group after 4 hours (15.38 ± 9.65, p<0.001) than in NOgen (0.09 ± 0.03) (mmHg/mL/min). On the other hand, platelet counts and plasma fibrinogen concentration expressed as percent of baseline in control group (63.7 ± 5.7%, 77.2 ± 5.6% [p<0.05]) were greater than those in the NOgen group (60.4 ± 5.1%, 63.2 ± 3.7%). Plasma copper levels in the NOgen group were 2.8 times baseline at 4 hours (132.8 ± 4.5 μg/dl) and unchanged in the controls. This work demonstrates that NO generating gas exchange fibers could be a potentially effective way to control coagulation inside artificial lungs. PMID:23613156
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.
2014-01-01
SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916
Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.
Tepper, James M; Wilson, Charles J; Koós, Tibor
2008-08-01
There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of activity of the spiny neuron.
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.; Yu, Y.
1973-01-01
Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.
Bioconverter for upper extremity rehabilitation.
Brown, D M; Basmajian, J V
1978-10-01
The bioconverter is a simple instrument which uses the output of the Basmajian-Emory myotrainer to activate electrical devices, such as radios, television, etc. It can be used to assist in training by providing an acceptable and/or pleasurable stimulus (such as a radio) as muscle activation improves. The myotrainer contains adjustable sensitivity circuits, and the bioconverter has a pre-set holding circuit of 2, 4, or 6 seconds duration. A case of a deaf and blind patient is presented where the bioconverter is used to activate other sensory (skin) stimuli rather than audio-visual ones. The bioconverter can also be used in relaxation training. In this mode of operation the controlled equipment is on when no EMG is present and is turned off when too high an EMG level exists.
GATA Factor-G-Protein-Coupled Receptor Circuit Suppresses Hematopoiesis
Gao, Xin; Wu, Tongyu; Johnson, Kirby D.; Lahvic, Jamie L.; Ranheim, Erik A.; Zon, Leonard I.; Bresnick, Emery H.
2016-01-01
Summary Hematopoietic stem cells (HSCs) originate from hemogenic endothelium within the aorta-gonad-mesonephros (AGM) region of the mammalian embryo. The relationship between genetic circuits controlling stem cell genesis and multi-potency is not understood. A Gata2 cis element (+9.5) enhances Gata2 expression in the AGM and induces the endothelial to HSC transition. We demonstrated that GATA-2 rescued hematopoiesis in +9.5−/− AGMs. As G-protein-coupled receptors (GPCRs) are the most common targets for FDA-approved drugs, we analyzed the GPCR gene ensemble to identify GATA-2-regulated GPCRs. Of the 20 GATA-2-activated GPCR genes, four were GATA-1-activated, and only Gpr65 expression resembled Gata2. Contrasting with the paradigm in which GATA-2-activated genes promote hematopoietic stem and progenitor cell genesis/function, our mouse and zebrafish studies indicated that GPR65 suppressed hematopoiesis. GPR65 established repressive chromatin at the +9.5 site, restricted occupancy by the activator Scl/TAL1, and repressed Gata2 transcription. Thus, a Gata2 cis element creates a GATA-2-GPCR circuit that limits positive regulators that promote hematopoiesis. PMID:26905203
Two integrator loop quadrature oscillators: A review.
Soliman, Ahmed M
2013-01-01
A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.
Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J.
2007-01-01
An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.
Characteristic and intermingled neocortical circuits encode different visual object discriminations.
Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I
2017-07-28
Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and implementation of a simple acousto optic dual control circuit
NASA Astrophysics Data System (ADS)
Li, Biqing; Li, Zhao
2017-04-01
This page proposed a simple light control circuit which designed by using power supply circuit, sonic circuits, electric circuit and delay circuit four parts. The main chip for CD4011, have inside of the four and to complete the sonic or circuit, electric, delay logic circuit. During the day, no matter how much a pedestrian voice, is ever shine light bulb. Dark night, circuit in a body to make the microphone as long as testing noise, and will automatically be bright for pedestrians lighting, several minutes after the automatic and put out, effective energy saving. Applicable scope and the working principle of the circuit principle diagram and given device parameters selection, power saving effect is obvious, at the same time greatly reduce the maintenance quantity, saving money, use effect is good.
NASA Astrophysics Data System (ADS)
Baviere, Ph.
Tests which have proven effective for evaluating VLSI circuits for space applications are described. It is recommended that circuits be examined after each manfacturing step to gain fast feedback on inadequacies in the production system. Data from failure modes which occur during operational lifetimes of circuits also permit redefinition of the manufacturing and quality control process to eliminate the defects identified. Other tests include determination of the operational envelope of the circuits, examination of the circuit response to controlled inputs, and the performance and functional speeds of ROM and RAM memories. Finally, it is desirable that all new circuits be designed with testing in mind.
Wired for behaviors: from development to function of innate limbic system circuitry
Sokolowski, Katie; Corbin, Joshua G.
2012-01-01
The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946
NASA Technical Reports Server (NTRS)
Burns, Bradley M. (Inventor); Blalock, Norman N. (Inventor)
2011-01-01
A short circuit protection system includes an inductor, a switch, a voltage sensing circuit, and a controller. The switch and inductor are electrically coupled to be in series with one another. A voltage sensing circuit is coupled across the switch and the inductor. A controller, coupled to the voltage sensing circuit and the switch, opens the switch when a voltage at the output terminal of the inductor transitions from above a threshold voltage to below the threshold voltage. The controller closes the switch when the voltage at the output terminal of the inductor transitions from below the threshold voltage to above the threshold voltage.
The effect of high-intensity circuit training on physical fitness.
Schmidt, Dan; Anderson, Kaz; Graff, Marissa; Strutz, Victoria
2016-05-01
The purpose of this study was to examine the effect of a high-intensity circuit training regimen, using only body weight as resistance, on physical fitness. Ninety-six recreationally active college aged subjects (53 female, 43 male) completed the study. Following baseline testing for height and weight, body composition, aerobic fitness, muscle strength and muscle endurance, subjects were randomly assigned to one of three groups: 7-minute circuit training (CT-7), 14-minute circuit training (CT-14), and a non-training control group (C). Subjects in the CT-7 group (females, N.=17; males, N.=15) were asked to complete a seven minute circuit training workout for eight weeks (three workouts per week). The CT-14 group (females, N.=15; males, N.=13) followed the same protocol as CT-7 through the first four weeks. For the second four weeks they increased exercise time to 14 minutes with the same 7 minute circuit performed twice consecutively. Subjects in group C (females, N.=21; males, N.=15) maintained their normal activity levels throughout the course of the study. There were no significant differences between the groups for any variables tested prior to the exercise intervention. A repeated measures analysis of variance revealed statistically significant improvements in muscular endurance (push-ups) for both male and female subjects in the CT-7 and CT-14 groups. Males in the two exercising groups also showed improvement in muscular strength while aerobic capacity increased for females in the CT-14 group. These results suggest that short duration, high intensity circuit training may improve muscle endurance in moderately fit populations. Slight improvements that are gender specific may also be observed in muscle strength as well as aerobic fitness.
Ardid, Salva; Wang, Xiao-Jing
2013-12-11
A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.
The wiring diagram of a glomerular olfactory system
Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert
2016-01-01
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418
Jo, Youn Yi; Kim, Hong Soon; Chang, Young Jin; Yun, Soon Young; Kwak, Hyun Jeong
2013-07-01
Perioperative hypothermia can develop easily during shoulder arthroscopy, because cold irrigation can directly influence core body temperature. The authors investigated whether active warming and humidification of inspired gases reduces falls in core body temperature and allows redistribution of body heat in patients undergoing arthroscopic shoulder surgery under general anesthesia. Patients scheduled for arthroscopic shoulder surgery were randomly assigned to receive either room temperature inspired gases using a conventional respiratory circuit (the control group, n = 20) or inspired gases humidified and heated using a humidified and electrically heated circuit (HHC) (the heated group, n = 20). Core temperatures were significantly lower in both groups from 30 min after anesthesia induction, but were significantly higher in the heated group than in the control group from 75 to 120 min after anesthesia induction. In this study the use of a humidified and electrically heated circuit did not prevent core temperature falling during arthroscopic shoulder surgery, but it was found to decrease reductions in core temperature from 75 min after anesthesia induction.
Interrogator system for identifying electrical circuits
Jatko, W.B.; McNeilly, D.R.
1988-04-12
A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.
Interrogator system for identifying electrical circuits
Jatko, William B.; McNeilly, David R.
1988-01-01
A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.
Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H
2012-01-01
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.
Study on the neuronal circuits implicated in postural tremor and hypokinesia
NASA Technical Reports Server (NTRS)
Poirier, L. J.; Bouvier, G.; Bedard, P.; Boucher, R.; Larochelle, L.; Oliver, A.; Singh, P.
1980-01-01
The effect of various tegmentary lesions at the level of the pontomesenchphalon in monkeys on motor function was observed. The importance of the monoaminergic mechanisms of the brainstem is discussed. The results also show the importance of the descending tegmentary rubral system and the rubroolivocerebellar circuit in controlling peripheral motor activity. The destruction of the sensory motor cortex proves to be a more effective way of eliminating spontaneous or harmaline induced tremor than the complete interruption of the pyramidal system on the level of the cerebral peduncle.
Ultra-Low-Dropout Linear Regulator
NASA Technical Reports Server (NTRS)
Thornton, Trevor; Lepkowski, William; Wilk, Seth
2011-01-01
A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.
46 CFR 111.51-3 - Protection of vital equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plant configurations. (b)Overcurrent protective devices must be installed so that: (1) A short-circuit on a circuit that is not vital to the propulsion, control, or safety of the vessel does not trip equipment that is vital; and (2) A short-circuit on a circuit that is vital to the propulsion, control, or...
Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum.
Lew, V L
1970-03-01
1. The unidirectional fluxes of (22)Na, (36)Cl and [(14)C]bicarbonate ions were measured in paired portions of the isolated and short-circuited colonic mucosa of Bufo arenarum, separated from its muscular layer. Pharmacological effects as well as effects of changes in the composition of the nutrient solutions on the electrical parameters of membrane activity (potential difference, short-circuit current and total membrane resistance) are described.2. The net fluxes of both Cl and bicarbonate ions were not significantly different from zero in the absence of electrochemical gradients across the membrane.3. The net Na flux from mucosa to serosa represented a variable proportion of the short-circuit current ranging from 62 to 100%.4. The proportion of membranes with high discrepancies between net Na flux and short-circuit current decreased with the duration of captivity of the toads.5. When Na was entirely replaced by choline in the mucosal bathing solution, the short-circuit current dropped by a variable amount within the range of 64 to 98% of its control values in different membranes. This effect was completely reversible. Similar changes in the serosal solution had no effect.6. The short-circuit current and potential difference were very sensitive to the serosal concentration of bicarbonate ions. In different membranes, 60-100% of the short-circuit current was reversibly abolished by bathing the serosal surface with a bicarbonate-free solution. The mucosal bicarbonate level had no effect on either the potential difference or the short-circuit current. 5 mM bicarbonate in the serosal solution restored at least 50% of the short-circuit control value and full recovery was attained by concentrations near 30 mM bicarbonate.7. Anoxia brought the potential difference and short-circuit current reversibly down to zero in about 50 min.8. Ouabain reduced the short-circuit current up to 80% in about 40 min when present in the serosal solution at a concentration of 10(-4)M. At this or lower concentrations the ouabain effect was reversible. Above this level ouabain produced 100% inhibition in 3-4 hr, but this was no longer reversible. Ouabain had no effect on the short-circuit current either when applied to the mucosal surface or in the absence of Na from the mucosal solution.9. Diamox produced a variable inhibition of the short-circuit current of up to 30% only at concentrations above 10 mM.10. Possible mechanisms are discussed for the appearance of the non-Na component of the short-circuit current. A theory concerning its nature is proposed.
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
46 CFR 111.91-1 - Power, control, and interlock circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 111.91-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Elevators and Dumbwaiters § 111.91-1 Power, control, and interlock circuits. Each electric power, control, and interlock circuit of an elevator or dumbwaiter must meet ASME...
Identification of preoptic sleep neurons using retrograde labelling and gene profiling.
Chung, Shinjae; Weber, Franz; Zhong, Peng; Tan, Chan Lek; Nguyen, Thuc Nghi; Beier, Kevin T; Hörmann, Nikolai; Chang, Wei-Cheng; Zhang, Zhe; Do, Johnny Phong; Yao, Shenqin; Krashes, Michael J; Tasic, Bosiljka; Cetin, Ali; Zeng, Hongkui; Knight, Zachary A; Luo, Liqun; Dan, Yang
2017-05-25
In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
Aronov, Dmitriy; Tank, David W
2014-10-22
Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.
A hypothalamic circuit for the circadian control of aggression.
Todd, William D; Fenselau, Henning; Wang, Joshua L; Zhang, Rong; Machado, Natalia L; Venner, Anne; Broadhurst, Rebecca Y; Kaur, Satvinder; Lynagh, Timothy; Olson, David P; Lowell, Bradford B; Fuller, Patrick M; Saper, Clifford B
2018-05-01
'Sundowning' in dementia and Alzheimer's disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZ GABA ) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZ GABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZ GABA transmission phase-dependently increases aggression. Finally, SPZ GABA -recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.
A Wireless Self-Powered Urinary Incontinence Sensor System
NASA Astrophysics Data System (ADS)
Tanaka, Ami; Utsunomiya, Fumiyasu; Douseki, Takakuni
A self-powered urinary incontinence sensor system consisting of a urine-activated coin battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The urine-activated battery makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit and a 1-V surface acoustic wave (SAW) oscillator reduce the power dissipation of a wireless transmitter. The SAW oscillator quickly responds to the on-off control of the power supply, which is suitable for intermittent operation. To verify the effectiveness of the circuit scheme, the authors fabricated a prototype sensor system. When the volume of urine is 0.2 ml, the battery outputs a voltage of over 1.3 V; and the sensor system can transmit signals over a distance of 5 m.
NASA Astrophysics Data System (ADS)
Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.
2014-11-01
This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.
A cerebellar thalamic cortical circuit for error-related cognitive control.
Ide, Jaime S; Li, Chiang-shan R
2011-01-01
Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the "flow of information" across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit. Copyright © 2010 Elsevier Inc. All rights reserved.
Quantum Theory and the Silicon Revolution. Resources in Technology.
ERIC Educational Resources Information Center
Deal, Walter F., III
1995-01-01
This learning activity describes silicon as one of the most plentiful materials on earth, demonstrating how it supplies the building blocks for electronic devices such as transistors, integrated circuits, and microprocessors. It includes a design brief on control technology. (JOW)
Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin
2017-01-01
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959
Natural neural projection dynamics underlying social behavior
Gunaydin, Lisa A.; Grosenick, Logan; Finkelstein, Joel C.; Kauvar, Isaac V.; Fenno, Lief E.; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J.; Airan, Raag D.; Zalocusky, Kelly A.; Tye, Kay M.; Anikeeva, Polina; Malenka, Robert C.; Deisseroth, Karl
2014-01-01
Social interaction is a complex behavior essential for many species, and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically- and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social but not novel-object interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type-1 dopamine receptor signaling downstream in the NAc. Direct observation of projection-specific activity in this way captures a fundamental and previously inaccessible dimension of circuit dynamics. PMID:24949967
46 CFR 28.365 - Overcurrent protection and switched circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2010-10-01 2010-10-01 false Overcurrent protection and switched circuits. 28.365...
Built-in-test by signature inspection (bitsi)
Bergeson, Gary C.; Morneau, Richard A.
1991-01-01
A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.
Representing Sex in the Brain, One Module at a Time
Yang, Cindy F.; Shah, Nirao M.
2014-01-01
Summary Sexually dimorphic behaviors, qualitative or quantitative differences in behaviors between the sexes, result from the activity of a sexually differentiated nervous system. Sensory cues and sex hormones control the entire repertoire of sexually dimorphic behaviors, including those commonly thought to be charged with emotion such as courtship and aggression. Recent studies show that these over-arching control mechanisms regulate distinct genes and neurons that in turn specify the display of such behaviors in a modular manner. How such modular control is transformed into cohesive internal states that correspond to sexually dimorphic behavior is poorly understood. We summarize current understanding of the neural circuit control of sexually dimorphic behaviors from several perspectives, including how neural circuits in general, and sexually dimorphic neurons in particular, can generate sex differences in behavior, and how molecular mechanisms and evolutionary constraints shape these behaviors. We propose that emergent themes such as the modular genetic and neural control of dimorphic behavior are broadly applicable to the neural control of other behaviors. PMID:24742456
Skyberg, Rolf; Sun, Chengsan; Hill, David L
2017-08-09
Neural activity plays a critical role in the development of central circuits in sensory systems. However, the maintenance of these circuits at adulthood is usually not dependent on sensory-elicited neural activity. Recent work in the mouse gustatory system showed that selectively deleting the primary transduction channel for sodium taste, the epithelial sodium channel (ENaC), throughout development dramatically impacted the organization of the central terminal fields of three nerves that carry taste information to the nucleus of the solitary tract. More specifically, deleting ENaCs during development prevented the normal maturation of the fields. The present study was designed to extend these findings by testing the hypothesis that the loss of sodium taste activity impacts the maintenance of the normal adult terminal field organization in male and female mice. To do this, we used an inducible Cre-dependent genetic recombination strategy to delete ENaC function after terminal field maturation occurred. We found that removal of sodium taste neural activity at adulthood resulted in significant reorganization of mature gustatory afferent terminal fields in the nucleus of the solitary tract. Specifically, the chorda tympani and greater superficial petrosal nerve terminal fields were 1.4× and 1.6× larger than age-matched controls, respectively. By contrast, the glossopharyngeal nerve, which is not highly sensitive to sodium taste stimulation, did not undergo terminal field reorganization. These surprising results suggest that gustatory nerve terminal fields remain plastic well into adulthood, which likely impacts central coding of taste information and taste-related behaviors with altered taste experience. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. However, the importance of sensory-driven activity in maintaining these circuits at adulthood, especially in subcortical structures, appears to be much less. Here, we tested whether the loss of sodium taste activity in adult mice impacts the maintenance of how taste nerves project to the first central relay. We found that specific loss of sodium-elicited taste activity at adulthood produced dramatic and selective reorganization of terminal fields in the brainstem. This demonstrates, for the first time, that taste-elicited activity is necessary for the normal maintenance of central gustatory circuits at adulthood and highlights a level of plasticity not seen in other sensory system subcortical circuits. Copyright © 2017 the authors 0270-6474/17/377619-12$15.00/0.
Faster Evolution of More Multifunctional Logic Circuits
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo
2005-01-01
A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.
Hit and go CAS9 delivered through a lentiviral based self-limiting circuit.
Petris, Gianluca; Casini, Antonio; Montagna, Claudia; Lorenzin, Francesca; Prandi, Davide; Romanel, Alessandro; Zasso, Jacopo; Conti, Luciano; Demichelis, Francesca; Cereseto, Anna
2017-05-22
In vivo application of the CRISPR-Cas9 technology is still limited by unwanted Cas9 genomic cleavages. Long-term expression of Cas9 increases the number of genomic loci non-specifically cleaved by the nuclease. Here we develop a Self-Limiting Cas9 circuit for Enhanced Safety and specificity (SLiCES) which consists of an expression unit for Streptococcus pyogenes Cas9 (SpCas9), a self-targeting sgRNA and a second sgRNA targeting a chosen genomic locus. The self-limiting circuit results in increased genome editing specificity by controlling Cas9 levels. For its in vivo utilization, we next integrate SLiCES into a lentiviral delivery system (lentiSLiCES) via circuit inhibition to achieve viral particle production. Upon delivery into target cells, the lentiSLiCES circuit switches on to edit the intended genomic locus while simultaneously stepping up its own neutralization through SpCas9 inactivation. By preserving target cells from residual nuclease activity, our hit and go system increases safety margins for genome editing.
Cerebro-cerebellar circuits in autism spectrum disorder.
D'Mello, Anila M; Stoodley, Catherine J
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.
Cerebro-cerebellar circuits in autism spectrum disorder
D'Mello, Anila M.; Stoodley, Catherine J.
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD. PMID:26594140
Active Damping of a Piezoelectric Tube Scanner using Self-Sensing Piezo Actuation
Kuiper, S.; Schitter, G.
2010-01-01
In most Atomic Force Microscopes (AFM), a piezoelectric tube scanner is used to position the sample underneath the measurement probe. Oscillations stemming from the weakly damped resonances of the tube scanner are a major source of image distortion, putting a limitation on the achievable imaging speed. This paper demonstrates active damping of these oscillations in multiple scanning axes without the need for additional position sensors. By connecting the tube scanner in a capacitive bridge circuit the scanner oscillations can be measured in both scanning axes, using the same piezo material as an actuator and sensor simultaneously. In order to compensate for circuit imbalance caused by hysteresis in the piezo element, an adaptive balancing circuit is used. The obtained measurement signal is used for feedback control, reducing the resonance peaks in both scanning axes by 18 dB and the cross-coupling at those frequencies by 30 dB. Experimental results demonstrate a significant reduction in scanner oscillations when applying the typical triangular scanning signals, as well as a strong reduction in coupling induced oscillations. Recorded AFM images show a considerable reduction in image distortion due to the proposed control method, enabling artifact free AFM imaging at a speed of 122 lines per second with a standard piezoelectric tube scanner. PMID:26412944
Design Considerations for Gun Propellant Climatic Storage Chambers.
1982-11-01
Schematic diagram of thermal element 5 4. Prototype Lhermal element 6 5. Power control circuit diagram 7 6. Power control module 7 7. Temperature...plates. Each plate is powered through a triac and temperature control circuit as shown in figure 5. Figure 6 is a photograph of an assembled power control...SHEATER PLATES Figure 5. Power control circuit diagram 4 f Figure 6. Power control module WSR.L-0295-TR -8- Figure 7. Temperature control module 9 -WSRL
Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet
Praeg, W.F.
1982-03-09
Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.
Method and apparatus for in-system redundant array repair on integrated circuits
Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN
2008-07-29
Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
Method and apparatus for in-system redundant array repair on integrated circuits
Bright, Arthur A [Croton-on-Hudson, NY; Crumley, Paul G [Yorktown Heights, NY; Dombrowa, Marc B [Bronx, NY; Douskey, Steven M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Oakland, Steven F [Colchester, VT; Ouellette, Michael R [Westford, VT; Strissel, Scott A [Byron, MN
2008-07-08
Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
Method and apparatus for in-system redundant array repair on integrated circuits
Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc B.; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Ouellette, Michael R.; Strissel, Scott A.
2007-12-18
Disclosed is a method of repairing an integrated circuit of the type comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The method comprises the steps of providing the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The method comprises the further step of, at a given time, passing the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
Optogenetic Control of Cells and Circuits
Miesenböck, Gero
2013-01-01
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology. PMID:21819234
49 CFR Appendix A to Part 236 - Civil Penalties 1
Code of Federal Regulations, 2014 CFR
2014-10-01
... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...
49 CFR Appendix A to Part 236 - Civil Penalties 1
Code of Federal Regulations, 2013 CFR
2013-10-01
... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...
Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.
Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C
2017-03-01
Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role in Parkinson's tremor.aww331media15307619934001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo
2014-03-21
Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.
Ion bipolar junction transistors
Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus
2010-01-01
Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274
Adapting Aquatic Circuit Training for Special Populations.
ERIC Educational Resources Information Center
Thome, Kathleen
1980-01-01
The author discusses how land activities can be adapted to water so that individuals with handicapping conditions can participate in circuit training activities. An initial section lists such organizational procedures as providing vocal and/or visual cues for activities, having assistants accompany the performers throughout the circuit, and…
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
Abrams, Daniel A.; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M.; Baker, Amanda E.; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod
2016-01-01
The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired. PMID:27185915
Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod
2016-05-31
The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother's voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.
Variable-pulse switching circuit accurately controls solenoid-valve actuations
NASA Technical Reports Server (NTRS)
Gillett, J. D.
1967-01-01
Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.
In-line Microwave Warmer for Blood and Intravenous Fluids.
1989-12-14
circuit was designed and tested. This circuit uses a digitally controlled optically coupled Triac , a thyristor device, which acts as a switch to allow...three sites of the circuit : Inlet Port of Heating Chamber Interior Path of Heating Chamber Outlet Port of Heating Chamber 4) Feedback Control Mechanism...accomplished through use of a closed loop test circuit depicted in Figure 1-2. This test circuit can be used to heat iv fluids or blood on a continuous
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Takahiro, E-mail: t-nishimura@ist.osaka-u.ac.jp; Fujii, Ryo; Ogura, Yusuke
Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on themore » DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.« less
Spikes alone do not behavior make: Why neuroscience needs biomechanics
Tytell, E.D.; Holmes, P.; Cohen, A.H.
2011-01-01
Neural circuits do not function in isolation; they interact with the physical world, accepting sensory inputs and producing outputs via muscles. Since both these pathways are constrained by physics, the activity of neural circuits can only be understood by considering biomechanics of muscles, bodies, and the exterior world. We discuss how animal bodies have natural stable motions that require relatively little activation or control from the nervous system. The nervous system can substantially alter these motions, by subtly changing mechanical properties such as leg sti ness. Mechanics can also provide robustness to perturbations without sensory reflexes. By considering a complete neuromechanical system, neuroscientists and biomechanicians together can provide a more integrated view of neural circuitry and behavior. PMID:21683575
Simple evaporation controller for thin-film deposition from a resistively heated boat
NASA Technical Reports Server (NTRS)
Scofield, John H.; Bajuk, Lou; Mohler, William
1990-01-01
A simple, inexpensive circuit is described for switching the current through a resistively heated evaporation boat during thin-film deposition. The circuit uses a silicon-controlled rectifier (SCR) to switch the 0-15-A current in the primary of a 2-kV A step-down transformer that supplies the 0-200-A current to an evaporation boat. The circuit is controlled by a 0-10 V-dc signal similar to that furnished by an Inficon XTC deposition-rate controller. This circuit may be assembled from a handful of parts for a cost of about $400, nearly one-tenth the cost of similar commercial units. Minimum construction is required, since the circuit is built around an off-the-shelf, self-contained SCR unit.
Sensing of glucose in the brain.
Thorens, Bernard
2012-01-01
The brain, and in particular the hypothalamus and brainstem, have been recognized for decades as important centers for the homeostatic control of feeding, energy expenditure, and glucose homeostasis. These structures contain neurons and neuronal circuits that may be directly or indirectly activated or inhibited by glucose, lipids, or amino acids. The detection by neurons of these nutrient cues may become deregulated, and possibly cause metabolic diseases such as obesity and diabetes. Thus, there is a major interest in identifying these neurons, how they respond to nutrients, the neuronal circuits they form, and the physiological function they control. Here I will review some aspects of glucose sensing by the brain. The brain is responsive to both hyperglycemia and hypoglycemia, and the glucose sensing cells involved are distributed in several anatomical sites that are connected to each other. These eventually control the activity of the sympathetic or parasympathetic nervous system, which regulates the function of peripheral organs such as liver, white and brown fat, muscle, and pancreatic islets alpha and beta cells. There is now evidence for an extreme diversity in the sensing mechanisms used, and these will be reviewed.
Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.
Cyr, Marilyn; Yang, Xiao; Horga, Guillermo; Marsh, Rachel
2018-04-01
This study aimed to determine whether functional disturbances in fronto-striatal control circuits characterize adolescents with Bulimia Nervosa (BN) spectrum eating disorders regardless of clinical severity. FMRI was used to assess conflict-related brain activations during performance of a Simon task in two samples of adolescents with BN symptoms compared with healthy adolescents. The BN samples differed in the severity of their clinical presentation, illness duration and age. Multi-voxel pattern analyses (MVPAs) based on machine learning were used to determine whether patterns of fronto-striatal activation characterized adolescents with BN spectrum disorders regardless of clinical severity, and whether accurate classification of less symptomatic adolescents (subthreshold BN; SBN) could be achieved based on patterns of activation in adolescents who met DSM5 criteria for BN. MVPA classification analyses revealed that both BN and SBN adolescents could be accurately discriminated from healthy adolescents based on fronto-striatal activation. Notably, the patterns detected in more severely ill BN compared with healthy adolescents accurately discriminated less symptomatic SBN from healthy adolescents. Deficient activation of fronto-striatal circuits can characterize BN early in its course, when clinical presentations are less severe, perhaps pointing to circuit-based disturbances as useful biomarker or risk factor for the disorder, and a tool for understanding its developmental trajectory, as well as the development of early interventions. © 2018 Wiley Periodicals, Inc.
Code of Federal Regulations, 2010 CFR
2010-10-01
... automatic interlocking. (a) The control circuits for aspects with indications more favorable than “proceed... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits, selection through track... automatic interlocking. 236.311 Section 236.311 Transportation Other Regulations Relating to Transportation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadowski, Greg
In one form, a logic circuit includes an asynchronous logic circuit, a synchronous logic circuit, and an interface circuit coupled between the asynchronous logic circuit and the synchronous logic circuit. The asynchronous logic circuit has a plurality of asynchronous outputs for providing a corresponding plurality of asynchronous signals. The synchronous logic circuit has a plurality of synchronous inputs corresponding to the plurality of asynchronous outputs, a stretch input for receiving a stretch signal, and a clock output for providing a clock signal. The synchronous logic circuit provides the clock signal as a periodic signal but prolongs a predetermined state ofmore » the clock signal while the stretch signal is active. The asynchronous interface detects whether metastability could occur when latching any of the plurality of the asynchronous outputs of the asynchronous logic circuit using said clock signal, and activates the stretch signal while the metastability could occur.« less
Fear and Reward Circuit Alterations in Pediatric CRPS.
Simons, Laura E; Erpelding, Nathalie; Hernandez, Jessica M; Serrano, Paul; Zhang, Kunyu; Lebel, Alyssa A; Sethna, Navil F; Berde, Charles B; Prabhu, Sanjay P; Becerra, Lino; Borsook, David
2015-01-01
In chronic pain, a number of brain regions involved in emotion (e.g., amygdala, hippocampus, nucleus accumbens, insula, anterior cingulate, and prefrontal cortex) show significant functional and morphometric changes. One phenotypic manifestation of these changes is pain-related fear (PRF). PRF is associated with profoundly altered behavioral adaptations to chronic pain. For example, patients with a neuropathic pain condition known as complex regional pain syndrome (CRPS) often avoid use of and may even neglect the affected body area(s), thus maintaining and likely enhancing PRF. These changes form part of an overall maladaptation to chronic pain. To examine fear-related brain circuit alterations in humans, 20 pediatric patients with CRPS and 20 sex- and age-matched healthy controls underwent functional magnetic resonance imaging (fMRI) in response to a well-established fearful faces paradigm. Despite no significant differences on self-reported emotional valence and arousal between the two groups, CRPS patients displayed a diminished response to fearful faces in regions associated with emotional processing compared to healthy controls. Additionally, increased PRF levels were associated with decreased activity in a number of brain regions including the right amygdala, insula, putamen, and caudate. Blunted activation in patients suggests that (a) individuals with chronic pain may have deficits in cognitive-affective brain circuits that may represent an underlying vulnerability or consequence to the chronic pain state; and (b) fear of pain may contribute and/or maintain these brain alterations. Our results shed new light on altered affective circuits in patients with chronic pain and identify PRF as a potentially important treatment target.
Basal forebrain projections to the lateral habenula modulate aggression reward.
Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J
2016-06-30
Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.
Automatic method of measuring silicon-controlled-rectifier holding current
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1972-01-01
Development of automated silicon controlled rectifier circuit for measuring minimum anode current required to maintain rectifiers in conducting state is discussed. Components of circuit are described and principles of operation are explained. Illustration of circuit is provided.
ERIC Educational Resources Information Center
Takemura, Atsushi
2015-01-01
This paper proposes a novel e-Learning system for learning electronic circuit making and programming a microcontroller to control a robot. The proposed e-Learning system comprises a virtual-circuit-making function for the construction of circuits with a versatile, Arduino microcontroller and an educational system that can simulate behaviors of…
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.
1979-08-28
The invention discloses an emission control apparatus for internal combustion engine includes an exhaust composition sensor to sense the mixture ratio, a circuit for clamping the mixture ratio to a predetermined constant value to prevent the mixture from becoming too rich or too lean when a failure should occur in the control loop, for example, in the exhaust composition sensor failure and a circuit for interrupting the clamping circuit when the engine operating condition is such that the sensor is caused to produce low voltage signals although the sensor is functioning properly.
Integrating perspectives on vocal performance and consistency
Sakata, Jon T.; Vehrencamp, Sandra L.
2012-01-01
SUMMARY Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection. PMID:22189763
Sun, Shan C.; Chaprnka, Anthony G.
1977-01-11
An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.
Design and implementation of Gm-APD array readout integrated circuit for infrared 3D imaging
NASA Astrophysics Data System (ADS)
Zheng, Li-xia; Yang, Jun-hao; Liu, Zhao; Dong, Huai-peng; Wu, Jin; Sun, Wei-feng
2013-09-01
A single-photon detecting array of readout integrated circuit (ROIC) capable of infrared 3D imaging by photon detection and time-of-flight measurement is presented in this paper. The InGaAs avalanche photon diodes (APD) dynamic biased under Geiger operation mode by gate controlled active quenching circuit (AQC) are used here. The time-of-flight is accurately measured by a high accurate time-to-digital converter (TDC) integrated in the ROIC. For 3D imaging, frame rate controlling technique is utilized to the pixel's detection, so that the APD related to each pixel should be controlled by individual AQC to sense and quench the avalanche current, providing a digital CMOS-compatible voltage pulse. After each first sense, the detector is reset to wait for next frame operation. We employ counters of a two-segmental coarse-fine architecture, where the coarse conversion is achieved by a 10-bit pseudo-random linear feedback shift register (LFSR) in each pixel and a 3-bit fine conversion is realized by a ring delay line shared by all pixels. The reference clock driving the LFSR counter can be generated within the ring delay line Oscillator or provided by an external clock source. The circuit is designed and implemented by CSMC 0.5μm standard CMOS technology and the total chip area is around 2mm×2mm for 8×8 format ROIC with 150μm pixel pitch. The simulation results indicate that the relative time resolution of the proposed ROIC can achieve less than 1ns, and the preliminary test results show that the circuit function is correct.
Abnormal activity in reward brain circuits in human narcolepsy with cataplexy.
Ponz, Aurélie; Khatami, Ramin; Poryazova, Rositsa; Werth, Esther; Boesiger, Peter; Bassetti, Claudio L; Schwartz, Sophie
2010-02-01
Hypothalamic hypocretins (or orexins) regulate energy metabolism and arousal maintenance. Recent animal research suggests that hypocretins may also influence reward-related behaviors. In humans, the loss of hypocretin-containing neurons results in a major sleep-wake disorder called narcolepsy-cataplexy, which is associated with emotional disturbances. Here, we aim to test whether narcoleptic patients show an abnormal pattern of brain activity during reward processing. We used functional magnetic resonance imaging in 12 unmedicated patients with narcolepsy-cataplexy to measure the neural responses to expectancy and experience of monetary gains and losses. We statistically compared the patients' data with those obtained in a group of 12 healthy matched controls. Our results reveal that activity in the dopaminergic ventral midbrain (ventral tegmental area) was not modulated in narcolepsy-cataplexy patients during high reward expectancy (unlike controls), and that ventral striatum activity was reduced during winning. By contrast, the patients showed abnormal activity increases in the amygdala and in dorsal striatum for positive outcomes. In addition, we found that activity in the nucleus accumbens and the ventral-medial prefrontal cortex correlated with disease duration, suggesting that an alternate neural circuit could be privileged over the years to control affective responses to emotional challenges and compensate for the lack of influence from ventral midbrain regions. Our study offers a detailed picture of the distributed brain network involved during distinct stages of reward processing and shows for the first time, to our knowledge, how this network is affected in hypocretin-deficient narcoleptic patients.
Development, Integration and Testing of Automated Triggering Circuit for Hybrid DC Circuit Breaker
NASA Astrophysics Data System (ADS)
Kanabar, Deven; Roy, Swati; Dodiya, Chiragkumar; Pradhan, Subrata
2017-04-01
A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed.
Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array
NASA Technical Reports Server (NTRS)
Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.
2000-01-01
Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing
2015-01-01
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays. PMID:26119218
NASA Astrophysics Data System (ADS)
Tsuji, Masatoshi
A compact feed circuit with a λ/4 transmission line matrix circuit for use in array antennas to control beams in three directions, including boresight, is presented. The feed circuit antenna is composed of five switches and λ/4 transmission lines, and the feeding matrix circuit yields phase differences of ±90° and 0°. The feed circuit can obtain a reliable output signal, as there is only a small degree of deviation of output signal with variations in the line width. The feed circuit is simulated, fabricated, and evaluated for ISM band, and the measured characteristics agree well with the results of the simulation. The size of feed circuit is 45 (H) × 48 (W) × 3 (T) mm.
An Activity for Demonstrating the Concept of a Neural Circuit
ERIC Educational Resources Information Center
Kreiner, David S.
2012-01-01
College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…
Purgianto, Anthony; Weinfeld, Michael E; Wolf, Marina E
2017-11-01
Withdrawal from extended-access cocaine self-administration leads to progressive intensification ('incubation') of cocaine craving. After prolonged withdrawal (1-2 months), when craving is high, expression of incubation depends on strengthening of excitatory inputs to medium spiny neurons (MSN) of the nucleus accumbens (NAc). These excitatory inputs interact with the intra-NAc GABAergic 'microcircuit', composed of MSN axon collaterals and GABAergic interneurons. Here, we investigated whether the increased glutamatergic neurotransmission observed after prolonged withdrawal is accompanied by altered GABAergic neurotransmission, focusing on NAc core. Rats self-administered cocaine or saline (6 hours/day) and then underwent >40 days of withdrawal. First, we investigated parvalbumin positive (PV+) interneurons, GABAergic fast-spiking interneurons that regulate MSN activity. Immunohistochemical studies revealed no significant change in PV signal intensity or the number of PV+ cells in cocaine rats versus saline controls. We then screened PV and other interneuron markers using immunoblotting. We detected no changes in levels of PV, calretinin, calbindin or neuronal nitric oxide synthase. Because expression of these markers is activity dependent, our results suggest no marked changes in interneuron activity. Finally, we utilized local field potential recording, which can detect GABA-mediated alterations at the circuit level, to investigate potential changes in two circuits implicated in cocaine craving: prelimbic prefrontal cortex to NAc core and basolateral amygdala to NAc core. We detected differential adaptations in these circuits, some of which may involve GABA. Overall, our results suggest that alterations in GABA transmission may accompany incubation of cocaine craving, but they are circuit specific and less pronounced than alterations in glutamate transmission. © 2016 Society for the Study of Addiction.
Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello
2018-01-01
Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342
Gumieniak, Robert J; Gledhill, Norman; Jamnik, Veronica K
2018-05-04
To assess the impact of repeat performances (familiarisation) plus exercise training on completion time for the Ontario Wildland Firefighter (WFF) Fitness Test circuit (WFX-FIT), normally active general population participants (n = 145) were familiarised to the protocol then randomised into (i) exercise training, (ii) circuit only weekly performances or (iii) controls. At Baseline, the WFX-FIT pass rate for all groups combined was 11% for females and 73% for males, indicating that the Ontario WFX-FIT standard had a possible adverse impact on females. Following test familiarisation, mean circuit completion times improved by 11.9% and 10.2% for females and males, respectively. There were significant improvements in completion time for females (19.8%) and males (16.9%) who trained, plus females (12.2%) and males (9.8%) who performed the circuit only, while control participants were unchanged. Post training, the pass rate of the training group was 80% for females and 100% for males. Practitioner Summary: This paper details the impact of familiarisation plus exercise training as accommodation to mitigate potential adverse impact on initial attack wildland firefighter test performance. The results underscore the importance of test familiarisation opportunities and physical fitness training programmes that are specific to the demands of the job.
Taped Random Spectra for Reliability Demonstration Testing
1981-04-01
circuit , barrier strip terminals 9A and 9B. Closure of the normally-open contacts provides the gate current necessary to trigger the control TRIAC ... Circuit contains a TRIAC , DIAC, Reed Relay (R3) and the Tape Running Relay Driver. The Cam on/off switching is accomplished through the barrier strip...2-25 2I; Input Power Circuit .. .. .... ...... ...... ...... ........... 2-26 2-13 Typical Control Circuit
Dynamics of Permanent-Magnet Biased Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Fukata, Satoru; Yutani, Kazuyuki
1996-01-01
Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.
Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F
2015-01-01
Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
Suen, Jonathan Y; Navlakha, Saket
2017-05-01
Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.
Xiong, Xiaorui R.; Liang, Feixue; Zingg, Brian; Ji, Xu-ying; Ibrahim, Leena A.; Tao, Huizhong W.; Zhang, Li I.
2015-01-01
Defense against environmental threats is essential for animal survival. However, the neural circuits responsible for transforming unconditioned sensory stimuli and generating defensive behaviours remain largely unclear. Here, we show that corticofugal neurons in the auditory cortex (ACx) targeting the inferior colliculus (IC) mediate an innate, sound-induced flight behaviour. Optogenetic activation of these neurons, or their projection terminals in the IC, is sufficient for initiating flight responses, while the inhibition of these projections reduces sound-induced flight responses. Corticocollicular axons monosynaptically innervate neurons in the cortex of the IC (ICx), and optogenetic activation of the projections from the ICx to the dorsal periaqueductal gray is sufficient for provoking flight behaviours. Our results suggest that ACx can both amplify innate acoustic-motor responses and directly drive flight behaviours in the absence of sound input through corticocollicular projections to ICx. Such corticofugal control may be a general feature of innate defense circuits across sensory modalities. PMID:26068082
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Human spinal locomotor control is based on flexibly organized burst generators.
Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen
2015-03-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Human spinal locomotor control is based on flexibly organized burst generators
Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank
2015-01-01
Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the samples of rhythmic patterns. The basic activation patterns can be interpreted as central drives implemented by spinal burst generators that impose specific spatiotemporally organized activation on the lumbosacral motor neuron pools. Our data thus imply that the human lumbar spinal cord circuits can form burst-generating elements that flexibly combine to obtain a wide range of locomotor outputs from a constant, repetitive input. It may be possible to use this flexibility to incorporate specific adaptations to gait and stance to improve locomotor control, even after severe central nervous system damage. PMID:25582580
Automatic Control of Silicon Melt Level
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Stickel, W. B.
1982-01-01
A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.
Design of rapid prototype of UAV line-of-sight stabilized control system
NASA Astrophysics Data System (ADS)
Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe
2018-01-01
The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.
Versatile current-mode universal biquadratic filter using DO-CCIIs
NASA Astrophysics Data System (ADS)
Chen, Hua-Pin
2013-07-01
In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.
Molecular controls of arterial morphogenesis
Simons, Michael; Eichmann, Anne
2015-01-01
Formation of arterial vasculature, here termed arteriogenesis, is a central process in embryonic vascular development as well as in adult tissues. While the process of capillary formation, angiogenesis, is relatively well understood, much remains to be learned about arteriogenesis. Recent discoveries point to the key role played by vascular endothelial growth factor receptor 2 (VEGFR2) in control of this process and to newly identified control circuits that dramatically influence its activity. The latter can present particularly attractive targets for a new class of therapeutic agents capable of activation of this signaling cascade in a ligand-independent manner, thereby promoting arteriogenesis in diseased tissues. PMID:25953926
Fail-safe bidirectional valve driver
NASA Technical Reports Server (NTRS)
Fujimoto, H.
1974-01-01
Cross-coupled diodes are added to commonly used bidirectional valve driver circuit to protect circuit and power supply. Circuit may be used in systems requiring fail-safe bidirectional valve operation, particularly in chemical- and petroleum-processing control systems and computer-controlled hydraulic or pneumatic systems.
Overload protection system for power inverter
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1977-01-01
An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.
Project Circuits in a Basic Electric Circuits Course
ERIC Educational Resources Information Center
Becker, James P.; Plumb, Carolyn; Revia, Richard A.
2014-01-01
The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…
Pulse Detecting Genetic Circuit – A New Design Approach
Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C.
2016-01-01
A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse–analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event. PMID:27907045
Pulse Detecting Genetic Circuit - A New Design Approach.
Noman, Nasimul; Inniss, Mara; Iba, Hitoshi; Way, Jeffrey C
2016-01-01
A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.
Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum
Lew, V. L.
1970-01-01
1. The unidirectional fluxes of 22Na, 36Cl and [14C]bicarbonate ions were measured in paired portions of the isolated and short-circuited colonic mucosa of Bufo arenarum, separated from its muscular layer. Pharmacological effects as well as effects of changes in the composition of the nutrient solutions on the electrical parameters of membrane activity (potential difference, short-circuit current and total membrane resistance) are described. 2. The net fluxes of both Cl and bicarbonate ions were not significantly different from zero in the absence of electrochemical gradients across the membrane. 3. The net Na flux from mucosa to serosa represented a variable proportion of the short-circuit current ranging from 62 to 100%. 4. The proportion of membranes with high discrepancies between net Na flux and short-circuit current decreased with the duration of captivity of the toads. 5. When Na was entirely replaced by choline in the mucosal bathing solution, the short-circuit current dropped by a variable amount within the range of 64 to 98% of its control values in different membranes. This effect was completely reversible. Similar changes in the serosal solution had no effect. 6. The short-circuit current and potential difference were very sensitive to the serosal concentration of bicarbonate ions. In different membranes, 60-100% of the short-circuit current was reversibly abolished by bathing the serosal surface with a bicarbonate-free solution. The mucosal bicarbonate level had no effect on either the potential difference or the short-circuit current. 5 mM bicarbonate in the serosal solution restored at least 50% of the short-circuit control value and full recovery was attained by concentrations near 30 mM bicarbonate. 7. Anoxia brought the potential difference and short-circuit current reversibly down to zero in about 50 min. 8. Ouabain reduced the short-circuit current up to 80% in about 40 min when present in the serosal solution at a concentration of 10-4 M. At this or lower concentrations the ouabain effect was reversible. Above this level ouabain produced 100% inhibition in 3-4 hr, but this was no longer reversible. Ouabain had no effect on the short-circuit current either when applied to the mucosal surface or in the absence of Na from the mucosal solution. 9. Diamox produced a variable inhibition of the short-circuit current of up to 30% only at concentrations above 10 mM. 10. Possible mechanisms are discussed for the appearance of the non-Na component of the short-circuit current. A theory concerning its nature is proposed. PMID:5498503
Thermocouple-Signal-Conditioning Circuit
NASA Technical Reports Server (NTRS)
Simon, Richard A.
1991-01-01
Thermocouple-signal-conditioning circuit acting in conjunction with thermocouple, exhibits electrical behavior of voltage in series with resistance. Combination part of input bridge circuit of controller. Circuit configured for either of two specific applications by selection of alternative resistances and supply voltages. Includes alarm circuit detecting open circuit in thermocouple and provides off-scale output to signal malfunctions.
Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit
NASA Astrophysics Data System (ADS)
Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen
This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.
Exchange circuits for FASTBUS slaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratskii, A.A.; Matseev, M.Y.; Rybakov, V.G.
1985-09-01
This paper describes general-purpose circuits for FASTBUS interfacing of the functional part of a slave device. The circuits contain buffered receivers and transmitters, addressrecognition and data-transfer logic, and the required control/status registers. The described circuits are implemented with series-K500 integrated circuits.
Proton mediated control of biochemical reactions with bioelectronic pH modulation
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Miyake, Takeo; Keene, Scott; Josberger, Erik E.; Rolandi, Marco
2016-04-01
In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.
Habits, rituals, and the evaluative brain.
Graybiel, Ann M
2008-01-01
Scientists in many different fields have been attracted to the study of habits because of the power habits have over behavior and because they invoke a dichotomy between the conscious, voluntary control over behavior, considered the essence of higher-order deliberative behavioral control, and lower-order behavioral control that is scarcely available to consciousness. A broad spectrum of behavioral routines and rituals can become habitual and stereotyped through learning. Others have a strong innate basis. Repetitive behaviors can also appear as cardinal symptoms in a broad range of neurological and neuropsychiatric illness and in addictive states. This review suggests that many of these behaviors could emerge as a result of experience-dependent plasticity in basal ganglia-based circuits that can influence not only overt behaviors but also cognitive activity. Culturally based rituals may reflect privileged interactions between the basal ganglia and cortically based circuits that influence social, emotional, and action functions of the brain.
Tupone, Domenico; Madden, Christopher J.; Morrison, Shaun F.
2014-01-01
From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis. PMID:24570653
Tupone, Domenico; Madden, Christopher J; Morrison, Shaun F
2014-01-01
From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis.
Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism
Stanley, Sarah A.; Kelly, Leah; Latcha, Kaamashri N.; Schmidt, Sarah F.; Yu, Xiaofei; Nectow, Alexander R.; Sauer, Jeremy; Dyke, Jonathan P.; Dordick, Jonathan S.; Friedman, Jeffrey M.
2016-01-01
Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP–TRPV1)1. Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase–Cre mice, which express Cre in glucose-sensing neurons2. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types. PMID:27007848
Oliva, Carolina A; Inestrosa, Nibaldo C
2015-07-01
During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated circuital activity has dominated. In summary, the amount of Wnt that is being released can exert a fine tuning of the physiological output, modulating firing activity, improving reliability of communication between neurons, and maintaining a continuous self-regulatory cycle of synaptic structure-function that can be present during all postnatal life. Copyright © 2015 Elsevier Inc. All rights reserved.
Feng, Dan; Yuan, Kai; Li, Yangding; Cai, Chenxi; Yin, Junsen; Bi, Yanzhi; Cheng, Jiadong; Guan, Yanyan; Shi, Sha; Yu, Dahua; Jin, Chenwang; Lu, Xiaoqi; Qin, Wei; Tian, Jie
2016-06-01
Tobacco use during later adolescence and young adulthood may cause serious neurophysiological changes; rationally, it is extremely important to study the relationship between brain dysfunction and behavioral performances in young adult smokers. Previous resting state studies investigated the neural mechanisms in smokers. Unfortunately, few studies focused on spontaneous activity differences between young adult smokers and nonsmokers from both intra-regional and inter-regional levels, less is known about the association between resting state abnormalities and behavioral deficits. Therefore, we used fractional amplitude of low frequency fluctuation (fALFF) and resting state functional connectivity (RSFC) to investigate the resting state spontaneous activity differences between young adult smokers and nonsmokers. A correlation analysis was carried out to assess the relationship between neuroimaging findings and clinical information (pack-years, cigarette dependence, age of onset and craving score) as well as cognitive control deficits measured by the Stroop task. Consistent with previous addiction findings, our results revealed the resting state abnormalities within frontostriatal circuits, i.e., enhanced spontaneous activity of the caudate and reduced functional strength between the caudate and anterior cingulate cortex (ACC) in young adult smokers. Moreover, the fALFF values of the caudate were correlated with craving and RSFC strength between the caudate and ACC was associated with the cognitive control impairments in young adult smokers. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in young smokers by providing regional and brain circuit spontaneous neuronal activity properties as well as their association with cognitive control impairments.
Horowitz-Kraus, Tzipi; Eaton, Kenneth; Farah, Rola; Hajinazarian, Ardag; Vannest, Jennifer; Holland, Scott K
2015-12-10
To investigate whether high performance on college preparedness tests at 18 years of age can be predicted from brain activation patterns during narrative comprehension at 5-7 years of age. In this longitudinal study, functional MRI data during an auditory narrative-comprehension task were acquired from 15 children (5-7 years of age) who also provided their American College Testing (ACT) scores at the age of 18 years. Active voxels during the narrative-comprehension task were correlated with both composite ACT scores and the reading-comprehension component of the exam. Higher composite ACT scores and behavioral scores for reading comprehension were positively correlated with greater activation in frontal and anterior brain regions during the narrative-comprehension task. Our results suggest that neural circuits supporting higher ACT performance are predictable from a narrative-comprehension task at the age of 5-7 years. This supports a critical role for the anterior cingulate cortex, which is a part of the cingulo-opercular cognitive-control network early in development, as a facilitator for better ACT scores. This study highlights that shared neural circuits that support overall ACT performance and neural circuits that support reading comprehension both rely on neural circuits related to narrative comprehension in childhood, suggesting that interventions involving narrative comprehension should be considered for individuals with reading and other academic difficulties. Copyright © 2015 Elsevier B.V. All rights reserved.
Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit.
Taghizadeh, Mostafa; Ghaffari, Ali; Najafi, Farid
2009-10-01
In this paper, the effect of pneumatic circuit design on the input-output behavior of PWM-driven servo-pneumatic systems is investigated and their control performances are improved using linear controllers instead of complex and costly nonlinear ones. Generally, servo-pneumatic systems are well known for their nonlinear behavior. However, PWM-driven servo-pneumatic systems have the advantage of flexibility in the design of pneumatic circuits which affects the input-output linearity of the whole system. A simple pneumatic circuit with only one fast switching valve is designed which leads to a quasi-linear input-output relation. The quasi-linear behavior of the proposed circuit is verified both experimentally and by simulations. Closed loop position control experiments are then carried out using linear P- and PD-controllers. Since the output position is noisy and cannot be directly differentiated, a Kalman filter is designed to estimate the velocity of the cylinder. Highly improved tracking performances are obtained using these linear controllers, compared to previous works with nonlinear controllers.
NASA Technical Reports Server (NTRS)
Gibbs, R. S.
1974-01-01
Solid state power controllers (SSPC's) are to be considered for use as replacements of electromechanical relays and circuit breakers in future spacecraft and aircraft. They satisfy the combined function of both the relay and circuit breaker and can be remotely controlled by small signals, typically 10 mA, 5 to 28 v(dc). They have the advantage over conventional relay/circuit breaker systems in that they can be located near the utilization equipment and the primary ac or dc bus. The low level control, trip indication and status signals can be circuited by small gauge wire for control, computer interface, logic, electrical multiplexing, onboard testing, power management, and distribution purposes. This results in increased system versatility at appreciable weight saving and increased reliability. Conventional systems require the heavy gage load wiring and the control wiring to be routed from the bus to the load to other remote relay contacts, switches, sensors, etc. and to the circuit breaker located in the flight engineer's compartment for purposes of manual reset.
Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong
2016-01-01
Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.
Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong
2016-01-01
Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060
Development of cognitive and affective control networks and decision making.
Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi
2013-01-01
Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.
Wide-band polarization controller for Si photonic integrated circuits.
Velha, P; Sorianello, V; Preite, M V; De Angelis, G; Cassese, T; Bianchi, A; Testa, F; Romagnoli, M
2016-12-15
A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.
NASA Technical Reports Server (NTRS)
Simon, Richard A.
1987-01-01
Simulation circuit operates under remote, automatic, or manual control to produce electrical outputs similar to pressure transducer. Specific circuit designed for simulations of Space Shuttle main engine. General circuit concept adaptable to other simulation and control systems involving several operating modes. Switches and amplifiers respond to external control signals and panel control settings to vary differential excitation of resistive bridge. Output voltage or passive terminal resistance made to equal pressure transducer in any of four operating modes.
Switching-type regulator circuit has increased efficiency
NASA Technical Reports Server (NTRS)
Clapp, W. M.
1967-01-01
Switching series regulator circuit uses an inductive network to feed most of the current applied to the control circuit to the load. This circuit eliminates resistive losses and the need for heat sinks.
NASA Technical Reports Server (NTRS)
Mitchell, J.; Jones, K.
1986-01-01
High current and voltage controlled remotely. Remote Power Conroller includes two series-connected banks of parallel-connected MOSFET's to withstand high current and voltage. Voltage sharing between switch banks, low-impedance, gate-drive circuits used. Provided controlled range for turn on. Individually trimmable to insure simultaneous switching within few nanoseconds during both turn on and turn off. Control circuit for each switch bank and over-current trip circuit float independently and supplied power via transformer T1 from inverter. Control of floating stages by optocouplers.
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.
Fern, Joshua; Schulman, Rebecca
2017-09-15
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
Fern, Joshua; Schulman, Rebecca
2017-05-30
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fern, Joshua; Schulman, Rebecca
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
System Control for the Transitional DCS.
1978-12-01
hour. The equipment destroyed includes the TTC-39 switch, all RF and multiplex equipment, emergency power equipment, distribution frames, antennal and...switch executes loop test to Rhein Main ULS, activating a local alarm at Donnersberg. Since restoral activity has not already been completed, alarm is...ITEM COMMENTS (BYTES) Loop ID Switch number and physical loop number 6 (BCD). Loop circuit CCSD 8 Telephone number 3 Location Physical location of
Cas9 gRNA engineering for genome editing, activation and repression
Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle; ...
2015-09-07
Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.
Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.
ERIC Educational Resources Information Center
McKechnie, R. E.; Vickers, G. W.
1981-01-01
Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…
Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki
2013-01-01
Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.
Programmable resistive-switch nanowire transistor logic circuits.
Shim, Wooyoung; Yao, Jun; Lieber, Charles M
2014-09-10
Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.
Sherlekar, Amrita L; Janssen, Abbey; Siehr, Meagan S; Koo, Pamela K; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Sherlekar, Amrita L.; Janssen, Abbey; Siehr, Meagan S.; Koo, Pamela K.; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Background Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Methodology/Principal Findings Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male’s decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite’s surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Conclusion/Significance Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation. PMID:23577128
Tonic signaling from O2 sensors sets neural circuit activity and behavioral state
Busch, Karl Emanuel; Laurent, Patrick; Soltesz, Zoltan; Murphy, Robin Joseph; Faivre, Olivier; Hedwig, Berthold; Thomas, Martin; Smith, Heather L.; de Bono, Mario
2012-01-01
Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated, and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that C. elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal’s behavioral state. Sustained signalling relies on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the IP3 receptors. Tonic activity evokes continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signalling is propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoke similar locomotory states at particular [O2], regardless of previous d[O2]/dt. However, a phasic component of the URX receptors’ response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enable transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change. PMID:22388961
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
Sedlacek, Miloslav; Brenowitz, Stephan D
2014-01-01
Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.
Phased-Array Antenna With Optoelectronic Control Circuits
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.
1995-01-01
Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.
Dao, Toan Thanh; Sakai, Heisuke; Nguyen, Hai Thanh; Ohkubo, Kei; Fukuzumi, Shunichi; Murata, Hideyuki
2016-07-20
We present controllable and reliable complementary organic transistor circuits on a PET substrate using a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (Cytop). Cu was used for a source/drain electrode in both the p-channel and n-channel transistors. The threshold voltage of the transistors and the inverting voltage of the circuits were reversibly controlled over a wide range under a program voltage of less than 10 V and under UV light irradiation. At a program voltage of -2 V, the inverting voltage of the circuits was tuned to be at nearly half of the supply voltage of the circuit. Consequently, an excellent balance between the high and low noise margins (NM) was produced (64% of NMH and 68% of NML), resulting in maximum noise immunity. Furthermore, the programmed circuits showed high stability, such as a retention time of over 10(5) s for the inverter switching voltage. Our findings bring about a flexible, simple way to obtain robust, high-performance organic circuits using a controllable complementary transistor inverter.
Analog circuit for controlling acoustic transducer arrays
Drumheller, Douglas S.
1991-01-01
A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.
Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet
Praeg, Walter F.
1984-01-01
Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.
A Battery Charger and State of Charge Indicator
NASA Technical Reports Server (NTRS)
Latos, T. S.
1984-01-01
A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.
Amygdala-ventral striatum circuit activation decreases long-term fear
Correia, Susana S; McGrath, Anna G; Lee, Allison; Graybiel, Ann M; Goosens, Ki A
2016-01-01
In humans, activation of the ventral striatum, a region associated with reward processing, is associated with the extinction of fear, a goal in the treatment of fear-related disorders. This evidence suggests that extinction of aversive memories engages reward-related circuits, but a causal relationship between activity in a reward circuit and fear extinction has not been demonstrated. Here, we identify a basolateral amygdala (BLA)-ventral striatum (NAc) pathway that is activated by extinction training. Enhanced recruitment of this circuit during extinction learning, either by pairing reward with fear extinction training or by optogenetic stimulation of this circuit during fear extinction, reduces the return of fear that normally follows extinction training. Our findings thus identify a specific BLA-NAc reward circuit that can regulate the persistence of fear extinction and point toward a potential therapeutic target for disorders in which the return of fear following extinction therapy is an obstacle to treatment. DOI: http://dx.doi.org/10.7554/eLife.12669.001 PMID:27671733
Circuit compliance compensation in lung protective ventilation.
Masselli, Grazia Maria Pia; Silvestri, Sergio; Sciuto, Salvatore Andrea; Cappa, Paolo
2006-01-01
Lung protective ventilation utilizes low tidal volumes to ventilate patients with severe lung pathologies. The compensation of breathing circuit effects, i.e. those induced by compressible volume of the circuit, results particularly critical in the calculation of the actual tidal volume delivered to patient's respiratory system which in turns is responsible of the level of permissive hypercapnia. The present work analyzes the applicability of the equation for circuit compressible volume compensation in the case of pressure and volume controlled lung protective ventilation. Experimental tests conducted in-vitro show that the actual tidal volume can be reliably estimated if the compliance of the breathing circuit is measured with the same parameters and ventilation technique that will be utilized in lung protective ventilation. Differences between volume and pressure controlled ventilation are also quantitatively assessed showing that pressure controlled ventilation allows a more reliable compensation of breathing circuit compressible volume.
Nanou, Evanthia; Lee, Amy; Catterall, William A
2018-05-02
Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V ) channels. Regulation of Ca V 2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of Ca V 2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with Ca V 2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits. Copyright © 2018 the authors 0270-6474/18/384430-11$15.00/0.
Multi-channel detector readout method and integrated circuit
Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio
2006-12-12
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.
Multi-channel detector readout method and integrated circuit
Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio
2004-05-18
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.
Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat.
Hurteau, Marie-France; Thibaudier, Yann; Dambreville, Charline; Danner, Simon M; Rybak, Ilya A; Frigon, Alain
2018-04-25
When the foot contacts an obstacle during locomotion, cutaneous inputs activate spinal circuits to ensure dynamic balance and forward progression. In quadrupeds, this requires coordinated reflex responses between the four limbs. Here, we investigated the patterns and phasic modulation of cutaneous reflexes in forelimb and hindlimb muscles evoked by inputs from all four limbs. Five female cats were implanted to record muscle activity and to stimulate the superficial peroneal and superficial radial nerves during locomotion. Stimulating these nerves evoked short-, mid-, and longer-latency excitatory and/or inhibitory responses in all four limbs that were phase-dependent. The largest responses were generally observed during the peak activity of the muscle. Cutaneous reflexes during mid-swing were consistent with flexion of the homonymous limb and accompanied by modification of the stance phases of the other three limbs, by coactivating flexors and extensors and/or by delaying push-off. Cutaneous reflexes during mid-stance were consistent with stabilizing the homonymous limb by delaying and then facilitating its push-off and modifying the support phases of the homolateral and diagonal limbs, characterized by coactivating flexors and extensors, reinforcing extensor activity and/or delaying push-off. The shortest latencies of homolateral and diagonal responses were consistent with fast-conducting disynaptic or trisynaptic pathways. Descending homolateral and diagonal pathways from the forelimbs to the hindlimbs had a higher probability of eliciting responses compared with ascending pathways from the hindlimbs to the forelimbs. Thus, in quadrupeds, intralimb and interlimb reflexes activated by cutaneous inputs ensure dynamic coordination of the four limbs, producing a whole-body response. SIGNIFICANCE STATEMENT The skin contains receptors that, when activated, send inputs to spinal circuits, signaling a perturbation. Rapid responses, or reflexes, in muscles of the contacted limb and opposite homologous limb help maintain balance and forward progression. Here, we investigated reflexes during quadrupedal locomotion in the cat by electrically stimulating cutaneous nerves in each of the four limbs. Functionally, responses appear to modify the trajectory or stabilize the movement of the stimulated limb while modifying the support phase of the other limbs. Reflexes between limbs are mediated by fast-conducting pathways that involve excitatory and inhibitory circuits controlling each limb. The comparatively stronger descending pathways from cervical to lumbar circuits controlling the forelimbs and hindlimbs, respectively, could serve a protective function. Copyright © 2018 the authors 0270-6474/18/384104-19$15.00/0.
High stability buffered phase comparator
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1984-01-01
A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.
Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aeloiza, Eddy C.; Burgos, Rolando P.
A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured tomore » pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.« less
A neural command circuit for grooming movement control.
Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M
2015-09-07
Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.
Tschida, Katherine; Bhandawat, Vikas
2015-01-01
Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959
Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit
NASA Technical Reports Server (NTRS)
Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)
2008-01-01
A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.
Sampling and Control Circuit Board for an Inertial Measurement Unit
NASA Technical Reports Server (NTRS)
Chelmins, David T (Inventor); Sands, Obed (Inventor); Powis, Richard T., Jr. (Inventor)
2016-01-01
A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.
ELECTRICAL CIRCUITS USING COLD-CATHODE TRIODE VALVES
Goulding, F.S.
1957-11-26
An electrical circuit which may be utilized as a pulse generator or voltage stabilizer is presented. The circuit employs a cold-cathode triode valve arranged to oscillate between its on and off stages by the use of selected resistance-capacitance time constant components in the plate and trigger grid circuits. The magnitude of the d-c voltage applied to the trigger grid circuit effectively controls the repetition rate of the output pulses. In the voltage stabilizer arrangement the d-c control voltage is a portion of the supply voltage and the rectified output voltage is substantially constant.
Sun, Chengsan; Hummler, Edith; Hill, David L
2017-01-18
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. Copyright © 2017 the authors 0270-6474/17/370660-13$15.00/0.
Sun, Chengsan; Hummler, Edith
2017-01-01
Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role in the maturation of the terminal fields in the mouse brainstem. We found that the specific deletion of sodium salt taste during development produced terminal fields in adults that were dramatically larger than in control mice, demonstrating for the first time that sodium salt taste-elicited activity is necessary for the normal maturation of gustatory inputs into the brain. PMID:28100747
Genetic circuit design automation.
Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A
2016-04-01
Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. Copyright © 2016, American Association for the Advancement of Science.
Bangasser, Debra A; Lee, Catherine S; Cook, Philip A; Gee, James C; Bhatnagar, Seema; Valentino, Rita J
2013-10-02
Responses to acute stressors are determined in part by stress history. For example, a history of chronic stress results in facilitated responses to a novel stressor and this facilitation is considered to be adaptive. We previously demonstrated that repeated exposure of rats to the resident-intruder model of social stress results in the emergence of two subpopulations that are characterized by different coping responses to stress. The submissive subpopulation failed to show facilitation to a novel stressor and developed a passive strategy in the Porsolt forced swim test. Because a passive stress coping response has been implicated in the propensity to develop certain psychiatric disorders, understanding the unique circuitry engaged by exposure to a novel stressor in these subpopulations would advance our understanding of the etiology of stress-related pathology. An ex vivo functional imaging technique, manganese-enhanced magnetic resonance imaging (MEMRI), was used to identify and distinguish brain regions that are differentially activated by an acute swim stress (15 min) in rats with a history of social stress compared to controls. Specifically, Mn(2+) was administered intracerebroventricularly prior to swim stress and brains were later imaged ex vivo to reveal activated structures. When compared to controls, all rats with a history of social stress showed greater activation in specific striatal, hippocampal, hypothalamic, and midbrain regions. The submissive subpopulation of rats was further distinguished by significantly greater activation in amygdala, bed nucleus of the stria terminalis, and septum, suggesting that these regions may form a circuit mediating responses to novel stress in individuals that adopt passive coping strategies. The finding that different circuits are engaged by a novel stressor in the two subpopulations of rats exposed to social stress implicates a role for these circuits in determining individual strategies for responding to stressors. Finally, these data underscore the utility of ex vivo MEMRI to identify and distinguish circuits engaged in behavioral responses. Copyright © 2013 Elsevier Inc. All rights reserved.
Electrochemically controlled charging circuit for storage batteries
Onstott, E.I.
1980-06-24
An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.
Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszowiec, Piotr, E-mail: olpio@o2.pl
The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.
Multiple network interface core apparatus and method
Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM
2011-04-26
A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.
Toward wideband steerable acoustic metasurfaces with arrays of active electroacoustic resonators
NASA Astrophysics Data System (ADS)
Lissek, Hervé; Rivet, Etienne; Laurence, Thomas; Fleury, Romain
2018-03-01
We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.
Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan
2004-03-09
There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.
Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.
Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A
2017-02-22
In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish ( Danio rerio ) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response. SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit responses that drive escape and swim behaviors in fish. We show that socially subordinate animals favor escape over swimming, while socially dominants favor swimming over escape. We propose that these differences are mediated by shifts in relative circuit excitability. Copyright © 2017 the authors 0270-6474/17/372137-12$15.00/0.
Frank, G K W; Shott, M E; Riederer, J; Pryor, T L
2016-11-01
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive-emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.
A programmable controller based on CAN field bus embedded microprocessor and FPGA
NASA Astrophysics Data System (ADS)
Cai, Qizhong; Guo, Yifeng; Chen, Wenhei; Wang, Mingtao
2008-10-01
One kind of new programmable controller(PLC) is introduced in this paper. The advanced embedded microprocessor and Field-Programmable Gate Array (FPGA) device are applied in the PLC system. The PLC system structure was presented in this paper. It includes 32 bits Advanced RISC Machines (ARM) embedded microprocessor as control core, FPGA as control arithmetic coprocessor and CAN bus as data communication criteria protocol connected the host controller and its various extension modules. It is detailed given that the circuits and working principle, IiO interface circuit between ARM and FPGA and interface circuit between ARM and FPGA coprocessor. Furthermore the interface circuit diagrams between various modules are written. In addition, it is introduced that ladder chart program how to control the transfer info of control arithmetic part in FPGA coprocessor. The PLC, through nearly two months of operation to meet the design of the basic requirements.
Teaching Electricity and Engineering with LEDs
ERIC Educational Resources Information Center
Johnstone, Christopher
2014-01-01
When learning about electricity, students are typically asked to complete a simple circuit involving a battery, wire, and lightbulb. This activity can be enhanced by adding discussion and discourse and can take on a unique final form in the case of "The Friendship Detector." In such electrical circuit activities, the completed circuit is…
Pulse shaping circuit for active counting of superheated emulsion
NASA Astrophysics Data System (ADS)
Murai, Ikuo; Sawamura, Teruko
2005-08-01
A pulse shaping circuit for active counting of superheated emulsions is described. A piezoelectric transducer is used for sensing bubble formation acoustically and the acoustic signal is transformed to a shaping pulse for counting. The circuit has a short signal processing time in the order of 10 ms.
Integrated-Circuit Controller For Brushless dc Motor
NASA Technical Reports Server (NTRS)
Le, Dong Tuan
1994-01-01
Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.
NASA Astrophysics Data System (ADS)
Sun, Kai; Wu, Hongfei; Cai, Yan; Xing, Yan
2014-06-01
A thermoelectric generator (TEG) is a very important kind of power supply for spacecraft, especially for deep-space missions, due to its long lifetime and high reliability. To develop a practical TEG power supply for spacecraft, a power conditioning stage is indispensable, being employed to convert the varying output voltage of the TEG modules to a definite voltage for feeding batteries or loads. To enhance the system reliability, a power conditioning stage based on analog-circuit maximum-power-point tracking (MPPT) control and a superbuck converter is proposed in this paper. The input of this power conditioning stage is connected to the output of the TEG modules, and the output of this stage is connected to the battery and loads. The superbuck converter is employed as the main circuit, featuring low input current ripples and high conversion efficiency. Since for spacecraft power systems reliable operation is the key target for control circuits, a reset-set flip-flop-based analog circuit is used as the basic control circuit to implement MPPT, being much simpler than digital control circuits and offering higher reliability. Experiments have verified the feasibility and effectiveness of the proposed power conditioning stage. The results show the advantages of the proposed stage, such as maximum utilization of TEG power, small input ripples, and good stability.
An e-Learning System with MR for Experiments Involving Circuit Construction to Control a Robot
ERIC Educational Resources Information Center
Takemura, Atsushi
2016-01-01
This paper proposes a novel e-Learning system for technological experiments involving electronic circuit-construction and controlling robot motion that are necessary in the field of technology. The proposed system performs automated recognition of circuit images transmitted from individual learners and automatically supplies the learner with…
RF lockout circuit for electronic locking system
NASA Astrophysics Data System (ADS)
Becker, Earl M., Jr.; Miller, Allen
1991-02-01
An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.
Dynamic DNA Methylation Controls Glutamate Receptor Trafficking and Synaptic Scaling
Sweatt, J. David
2016-01-01
Hebbian plasticity, including LTP and LTD, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and de-methylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. PMID:26849493
Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V
2014-05-19
We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.
Hsu, Wei-Hsiu; Hsu, Wei-Bin; Shen, Wun-Jer; Lin, Zin-Rong; Chang, Shr-Hsin; Hsu, Robert Wen-Wei
2017-10-19
The number of patients receiving total knee arthroplasty (TKA) has been rising every year due to the aging population and the obesity epidemic. Post-operative rehabilitation is important for the outcome of TKA. A series of 34 patients who underwent primary unilateral TKA was retrospectively collected and divided into either exercise group (n = 16) and control group (n = 18). The exercise group underwent a 24-week course of circuit training beginning 3 months after total knee arthroplasty (TKA). The effect of circuit training on TKA patients in terms of motion analysis, muscle strength testing, Knee injury and Osteoarthritis Outcomes Score (KOOS) questionnaire and patient-reported outcome measurement Short-Form Health Survey (SF-36) at the pre-operation, pre-exercise, mid-exercise, and post-exercise. Motion analysis revealed the stride length, step velocity, and excursion of active knee range of motion significantly improved in the exercise group when compared to those in the control group. KOOS questionnaire showed a greater improvement in pain, ADL, and total scores in the exercise group. The SF-36 questionnaire revealed a significant improvement in general health, bodily pain, social function, and physical components score in the exercise group. The post-operative circuit training intervention can facilitate recovery of knee function and decrease the degree of pain in the TKA and might be considered a useful adjunct rehabilitative modality. The ultimate influence of circuit training on TKA needs further a prospective randomized clinical trial study and long-term investigation. NCT02928562.
Paget, J.A.
1963-05-14
A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
Proton mediated control of biochemical reactions with bioelectronic pH modulation
Deng, Yingxin; Miyake, Takeo; Keene, Scott; ...
2016-04-07
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
Proton mediated control of biochemical reactions with bioelectronic pH modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yingxin; Miyake, Takeo; Keene, Scott
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
NASA Astrophysics Data System (ADS)
Shi, Shuai; Guo, Dan; Luo, Jianbin
2017-10-01
Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.
Molecular controls of arterial morphogenesis.
Simons, Michael; Eichmann, Anne
2015-05-08
Formation of arterial vasculature, here termed arteriogenesis, is a central process in embryonic vascular development as well as in adult tissues. Although the process of capillary formation, angiogenesis, is relatively well understood, much remains to be learned about arteriogenesis. Recent discoveries point to the key role played by vascular endothelial growth factor receptor 2 in control of this process and to newly identified control circuits that dramatically influence its activity. The latter can present particularly attractive targets for a new class of therapeutic agents capable of activation of this signaling cascade in a ligand-independent manner, thereby promoting arteriogenesis in diseased tissues. © 2015 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Gu, Fei; Brouwer, Jack; Samuelsen, Scott
2013-09-01
Recent advances in inverter technology have enabled ancillary services such as volt/VAR regulation, SCADA communications, and active power filtering. Smart inverters can not only provide real power, but can be controlled to use excess capacity to provide reactive power compensation, power flow control, and active power filtering without supplementary inverter hardware. A transient level inverter model based on the Solectria 7700 inverter is developed and used to assess these control strategies using field data from an existing branch circuit containing two Amonix 68kW CPV-7700 systems installed at the University of California, Irvine.