Printed circuit board impedance matching step for microwave (millimeter wave) devices
Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul
2013-10-01
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Hybrid stretchable circuits on silicone substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk; Liu, Q.
When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.
Front-Side Microstrip Line Feeding a Raised Antenna Patch
NASA Technical Reports Server (NTRS)
Hodges, Richard; Hoppe, Daniel
2005-01-01
An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)
1995-01-01
A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.
Assembling surface mounted components on ink-jet printed double sided paper circuit board.
Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik
2014-03-07
Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.
NASA Astrophysics Data System (ADS)
Troeger, K.; Darka, R. Khanpour; Neumeyer, T.; Altstaedt, V.
2014-05-01
This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de
2014-05-15
This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on datamore » from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.« less
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Method of forming electronically conducting polymers on conducting and nonconducting substrates
NASA Technical Reports Server (NTRS)
Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Parker, Donald L. (Inventor)
2001-01-01
The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.
Flame Retardancy of Chemically Modified Lignin as Functional Additive to Epoxy Nanocomposites
John A. Howarter; Gamini P. Mendis; Alex N. Bruce; Jeffrey P. Youngblood; Mark A. Dietenberger; Laura Hasburgh
2015-01-01
Epoxy printed circuit boards are used in a variety of electronics applications as rigid, thermally stable substrates. Due to the propensity of components on the boards, such as batteries and interconnects, to fail and ignite the epoxy, flame retardant additives are required to minimize fire risk. Currently, industry uses brominated flame retardants, such as TBBPA, to...
Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander
2016-08-02
A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
3-D Packaging: A Technology Review
NASA Technical Reports Server (NTRS)
Strickland, Mark; Johnson, R. Wayne; Gerke, David
2005-01-01
Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.
Method of defining features on materials with a femtosecond laser
Roos, Edward Victor [Los Altos, CA; Roeske, Franklin [Livermore, CA; Lee, Ronald S [Livermore, CA; Benterou, Jerry J [Livermore, CA
2006-05-23
The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.
Stretchable electronics based on Ag-PDMS composites
Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos
2014-01-01
Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator. PMID:25434843
Soft-Matter Printed Circuit Board with UV Laser Micropatterning.
Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel
2017-07-05
When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.
Packaging Technologies for High Temperature Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.
2013-01-01
This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.
Packaging Technologies for High Temperature Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.
2013-01-01
This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
NASA Astrophysics Data System (ADS)
Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.
2017-01-01
Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.
Integrated Printed Circuit Board (PCB) Active Cooling With Piezoelectric Actuator
2012-09-01
The cooler substrate is a laminated multilayer FR-4 substrate. Individual layers are patterned to support the active element, form a resonant...prepreg epoxy. Individual FR-4 lamina were mechanically machined to pattern each layer. The layers were aligned, stacked, and laminated to form the... laminated with 70/30 copper-nickel alloy or 80/20 nickel-chrome alloy and patterned by means of photolithographic techniques and wet etching in a ferric
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Electronically conducting polymers with silver grains
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)
1999-01-01
The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.
Development of a flexible circuit board for low-background experiments
NASA Astrophysics Data System (ADS)
Poon, Alan; Barton, Paul; Dhar, Ankur; Larsen, Joern; Loach, James
2017-01-01
Future underground rare-event search experiments, such as neutrinoless double-beta decay searches, have stringent requirements for the radiopurity of materials placed near the active detector medium. Parylene is a polymer that has a high chemical purity and the vapor deposition process by which it is laid down tends to purify it further. In this talk the technique to fabricate a low-mass, flexible circuit board, with conductive traces photoligthographically patterned on a parylene substrate, is discussed. The performance of a proof-of-principle temperature sensor is presented. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231 and by the Shanghai Key Lab for Particle Physics and Cosmology (SKLPPC), Grant No. 15DZ2272100.
Inexpensive Implementation of Many Strain Gauges
NASA Technical Reports Server (NTRS)
Berkun, Andrew C.
2010-01-01
It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of such readout circuitry, it would be possible to read the resistances of as many as 100 fixed resistors in a time interval of 1 second at a resolution much greater than 16 bits. The readout data would be processed, along with temperature calibration data, to deduce the strain on the printed-circuit board or other substrate in the areas around the resistors. It should also be possible to also deduce the temperature from the readings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coteus, Paul W.; Ferencz, Andrew; Hall, Shawn A.
An apparatus includes a first circuit board including first components including a load, and a second circuit board including second components including switching power devices and an output inductor. Ground and output voltage contacts between the circuit boards are made through soldered or connectorized interfaces. Certain components on the first circuit board and certain components, including the output inductor, on the second circuit board act as a DC-DC voltage converter for the load. An output capacitance for the conversion is on the first circuit board with no board-to-board interface between the output capacitance and the load. The inductance of themore » board-to-board interface functions as part of the output inductor's inductance and not as a parasitic inductance. Sense components for sensing current through the output inductor are located on the first circuit board. Parasitic inductance of the board-to-board interface has less effect on a sense signal provided to a controller.« less
Yamane, Luciana Harue; de Moraes, Viviane Tavares; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares
2011-12-01
This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br; Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com; Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br
Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineralmore » processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.« less
MEMS Technology for Space Applications
NASA Technical Reports Server (NTRS)
vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.
1995-01-01
Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).
High density printed electrical circuit board card connection system
Baumbaugh, Alan E.
1997-01-01
A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Brij N.; Schmit, Christopher J.
A first driver portion comprises a set of first components mounted on or associated with a first circuit board. A second circuit board is spaced apart from the first circuit board. A second driver portion comprises a set of second components mounted on or associated with the second circuit board, where the first driver portion and the second driver portion collectively are adapted to provide input signals to the control terminal of each semiconductor switch of an inverter. A first edge connector is mounted on the first circuit board. A second edge connector is mounted on the second circuit board.more » An interface board has mating edges that mate with the first edge connector and the second edge connector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Po; Shaddock, David; Sandvik, Peter
2012-11-30
A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200°C to 300°C and beyond. The SiC integrated circuits and packaging methods can bemore » used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.« less
Physically separating printed circuit boards with a resilient, conductive contact
NASA Technical Reports Server (NTRS)
Baker, John D. (Inventor); Montalvo, Alberto (Inventor)
1999-01-01
A multi-board module provides high density electronic packaging in which multiple printed circuit boards are stacked. Electrical power, or signals, are conducted between the boards through a resilient contact. One end of the contact is located at a via in the lower circuit board and soldered to a pad near the via. The top surface of the contact rests against a via of the facing printed circuit board.
Improving Heat Transfer Performance of Printed Circuit Boards
NASA Technical Reports Server (NTRS)
Schatzel, Donald V.
2009-01-01
This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.
Printed wiring board system programmer's manual
NASA Technical Reports Server (NTRS)
Brinkerhoff, C. D.
1973-01-01
The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.
Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device
Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.
2005-03-15
This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.
29 CFR 1915.181 - Electrical circuits and distribution boards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Electrical circuits and distribution boards. 1915.181... Electrical Machinery § 1915.181 Electrical circuits and distribution boards. (a) The provisions of this... employee is permitted to work on an electrical circuit, except when the circuit must remain energized for...
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
Device serves as hinge and electrical connector for circuit boards
NASA Technical Reports Server (NTRS)
Bethel, P. G.; Harris, G. G.
1966-01-01
Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.
A Study on the Thermomechanical Reliability Risks of Through-Silicon-Vias in Sensor Applications
Shao, Shuai; Liu, Dapeng; Niu, Yuling; O’Donnell, Kathy; Sengupta, Dipak; Park, Seungbae
2017-01-01
Reliability risks for two different types of through-silicon-vias (TSVs) are discussed in this paper. The first is a partially-filled copper TSV, if which the copper layer covers the side walls and bottom. A polymer is used to fill the rest of the cavity. Stresses in risk sites are studied and ranked for this TSV structure by FEA modeling. Parametric studies for material properties (modulus and thermal expansion) of TSV polymer are performed. The second type is a high aspect ratio TSV filled by polycrystalline silicon (poly Si). Potential risks of the voids in the poly Si due to filling defects are studied. Fracture mechanics methods are utilized to evaluate the risk for two different assembly conditions: package assembled to printed circuit board (PCB) and package assembled to flexible substrate. The effect of board/substrate/die thickness and the size and location of the void are discussed. PMID:28208758
Nanowire surface fastener fabrication on flexible substrate.
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-27
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm -2 ) and low contact resistivity (2.2 × 10 -4 Ω cm 2 ).
Nanowire surface fastener fabrication on flexible substrate
NASA Astrophysics Data System (ADS)
Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang
2018-07-01
The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).
High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2015-01-01
Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.
PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.
Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun
2010-12-01
The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact. Copyright © 2010 Elsevier Ltd. All rights reserved.
Localized radio frequency communication using asynchronous transfer mode protocol
Witzke, Edward L [Edgewood, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM
2007-08-14
A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.
Packaging Of Control Circuits In A Robot Arm
NASA Technical Reports Server (NTRS)
Kast, William
1994-01-01
Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.
High density electrical card connector system
Haggard, J. Eric; Trotter, Garrett R.
2000-01-01
An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.
Sampling and Control Circuit Board for an Inertial Measurement Unit
NASA Technical Reports Server (NTRS)
Chelmins, David T (Inventor); Sands, Obed (Inventor); Powis, Richard T., Jr. (Inventor)
2016-01-01
A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.
Cho, Hyun Min; Kim, Min-Sun
2014-08-01
In this study, we developed AlN thick film on metal substrate for hybrid type LED package such as chip on board (COB) using metal printed circuit board (PCB). Conventional metal PCB uses ceramic-polymer composite as electrical insulating layer. Thermal conductivities of such type dielectric film are typically in the range of 1~4 W/m · K depending on the ceramic filler. Also, Al or Cu alloy are mainly used for metal base for high thermal conduction to dissipate heat from thermal source mounted on metal PCB. Here we used Cu-W alloy with low thermal expansion coefficient as metal substrate to reduce thermal stress between insulating layer and base metal. AlN with polyimide (PI) powder were used as starting materials for deposition. We could obtain very high thermal conductivity of 28.3 W/m · K from deposited AlN-PI thin film by AlN-3 wt% PI powder. We made hybrid type high power LED package using AlN-PI thin film. We tested thermal performance of this film by thermal transient measurement and compared with conventional metal PCB substrate.
Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials
NASA Astrophysics Data System (ADS)
Li, Yue; Zhang, Zhijun
2018-04-01
Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.
Mechanically-reattachable liquid-cooled cooling apparatus
Arney, Susanne; Cheng, Jen-Hau; Kolodner, Paul R; Kota-Venkata, Krishna-Murty; Scofield, William; Salamon, Todd R; Simon, Maria E
2013-09-24
An apparatus comprising a rack having a row of shelves, each shelf supporting an electronics circuit board, each one of the circuit boards being manually removable from the shelve supporting the one of the circuit boards and having a local heat source thereon. The apparatus also comprises a cooler attached to the rack and being able to circulate a cooling fluid around a channel forming a closed loop. The apparatus further comprises a plurality of heat conduits, each heat conduit being located over a corresponding one of the circuit boards and forming a path to transport heat from the local heat source of the corresponding one of the circuit boards to the cooler. Each heat conduit is configured to be manually detachable from the cooler or the circuit board, without breaking a circulation pathway of the fluid through the cooler.
Optical connections on flexible substrates
NASA Astrophysics Data System (ADS)
Bosman, Erwin; Geerinck, Peter; Christiaens, Wim; Van Steenberge, Geert; Vanfleteren, Jan; Van Daele, Peter
2006-04-01
Optical interconnections integrated on a flexible substrate combine the advantages of optical data transmissions (high bandwidth, no electromagnetic disturbance and low power consumption) and those of flexible substrates (compact, ease of assembly...). Especially the flexible character of the substrates can significantly lower the assembly cost and leads to more compact modules. Especially in automotive-, avionic-, biomedical and sensing applications there is a great potential for these flexible optical interconnections because of the increasing data-rates, increasing use of optical sensors and requirement for smaller size and weight. The research concentrates on the integration of commercially available polymer optical layers (Truemode Backplane TM Polymer, Ormocer®) on a flexible Polyimide film, the fabrication of waveguides and out-of plane deflecting 45° mirrors, the characterization of the optical losses due to the bending of the substrate, and the fabrication of a proof-of-principal demonstrator. The resulting optical structures should be compatible with the standard fabrication of flexible printed circuit boards.
Metallization of electronic insulators
Gottesfeld, Shimshon; Uribe, Francisco A.
1994-01-01
An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.
Developing 300°C Ceramic Circuit Boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Normann, Randy A
2015-02-15
This paper covers the development of a geothermal ceramic circuit board technology using 3D traces in a machinable ceramic. Test results showing the circuit board to be operational to at least 550°C. Discussion on producing this type of board is outlined along with areas needing improvement.
47 CFR 15.32 - Test procedures for CPU boards and computer power supplies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... result in a complete personal computer system. If the oscillator and the microprocessor circuits are... microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that...
47 CFR 15.32 - Test procedures for CPU boards and computer power supplies.
Code of Federal Regulations, 2013 CFR
2013-10-01
... result in a complete personal computer system. If the oscillator and the microprocessor circuits are... microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that...
47 CFR 15.32 - Test procedures for CPU boards and computer power supplies.
Code of Federal Regulations, 2014 CFR
2014-10-01
... result in a complete personal computer system. If the oscillator and the microprocessor circuits are... microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that...
47 CFR 15.32 - Test procedures for CPU boards and computer power supplies.
Code of Federal Regulations, 2012 CFR
2012-10-01
... result in a complete personal computer system. If the oscillator and the microprocessor circuits are... microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that...
47 CFR 15.32 - Test procedures for CPU boards and computer power supplies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... result in a complete personal computer system. If the oscillator and the microprocessor circuits are... microprocessor circuits are contained on separate circuit boards, both boards, typical of the combination that...
Microchannel cooling of face down bonded chips
Bernhardt, Anthony F.
1993-01-01
Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.
Microchannel cooling of face down bonded chips
Bernhardt, A.F.
1993-06-08
Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.
NASA Astrophysics Data System (ADS)
Zheng, Xuezhe; Marchand, Philippe J.; Huang, Dawei; Kibar, Osman; Ozkan, Nur S. E.; Esener, Sadik C.
1999-09-01
We present a proof of concept and a feasibility demonstration of a practical packaging approach in which free-space optical interconnects (FSOI s) can be integrated simply on electronic multichip modules (MCM s) for intra-MCM board interconnects. Our system-level packaging architecture is based on a modified folded 4 f imaging system that has been implemented with only off-the-shelf optics, conventional electronic packaging, and passive-assembly techniques to yield a potentially low-cost and manufacturable packaging solution. The prototypical system as built supports 48 independent FSOI channels with 8 separate laser and detector chips, for which each chip consists of a one-dimensional array of 12 devices. All the chips are assembled on a single substrate that consists of a printed circuit board or a ceramic MCM. Optical link channel efficiencies of greater than 90% and interchannel cross talk of less than 20 dB at low frequency have been measured. The system is compact at only 10 in. 3 (25.4 cm 3 ) and is scalable, as it can easily accommodate additional chips as well as two-dimensional optoelectronic device arrays for increased interconnection density.
Characterization of CNRS Fizeau wedge laser tuner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less
Characterization of CNRS Fizeau wedge laser tuner
NASA Technical Reports Server (NTRS)
1984-01-01
A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.
NASA Astrophysics Data System (ADS)
Schröder, H.; Neitz, M.; Schneider-Ramelow, M.
2018-02-01
Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.
2015-01-01
This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.
Protective Socket For Integrated Circuits
NASA Technical Reports Server (NTRS)
Wilkinson, Chris; Henegar, Greg
1988-01-01
Socket for intergrated circuits (IC's) protects from excessive voltages and currents or from application of voltages and currents in wrong sequence during insertion or removal. Contains built-in switch that opens as IC removed, disconnecting leads from signals and power. Also protects other components on circuit board from transients produced by insertion and removal of IC. Makes unnecessary to turn off power to entire circuit board so other circuits on board continue to function.
Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
Awasthi, Abhishek Kumar; Zlamparet, Gabriel Ionut; Zeng, Xianlai; Li, Jinhui
2017-04-01
Rapid generation of waste printed circuit boards has become a very serious issue worldwide. Numerous techniques have been developed in the last decade to resolve the pollution from waste printed circuit boards, and also recover valuable metals from the waste printed circuit boards stream on a large-scale. However, these techniques have their own certain specific drawbacks that need to be rectified properly. In this review article, these recycling technologies are evaluated based on a strength, weaknesses, opportunities and threats analysis. Furthermore, it is warranted that, the substantial research is required to improve the current technologies for waste printed circuit boards recycling in the outlook of large-scale applications.
Board Saver for Use with Developmental FPGAs
NASA Technical Reports Server (NTRS)
Berkun, Andrew
2009-01-01
A device denoted a board saver has been developed as a means of reducing wear and tear of a printed-circuit board onto which an antifuse field programmable gate array (FPGA) is to be eventually soldered permanently after a number of design iterations. The need for the board saver or a similar device arises because (1) antifuse-FPGA design iterations are common and (2) repeated soldering and unsoldering of FPGAs on the printed-circuit board to accommodate design iterations can wear out the printed-circuit board. The board saver is basically a solderable/unsolderable FPGA receptacle that is installed temporarily on the printed-circuit board. The board saver is, more specifically, a smaller, square-ring-shaped, printed-circuit board (see figure) that contains half via holes one for each contact pad along its periphery. As initially fabricated, the board saver is a wider ring containing full via holes, but then it is milled along its outer edges, cutting the via holes in half and laterally exposing their interiors. The board saver is positioned in registration with the designated FPGA footprint and each via hole is soldered to the outer portion of the corresponding FPGA contact pad on the first-mentioned printed-circuit board. The via-hole/contact joints can be inspected visually and can be easily unsoldered later. The square hole in the middle of the board saver is sized to accommodate the FPGA, and the thickness of the board saver is the same as that of the FPGA. Hence, when a non-final FPGA is placed in the square hole, the combination of the non-final FPGA and the board saver occupy no more area and thickness than would a final FPGA soldered directly into its designated position on the first-mentioned circuit board. The contact leads of a non-final FPGA are not bent and are soldered, at the top of the board saver, to the corresponding via holes. A non-final FPGA can readily be unsoldered from the board saver and replaced by another one. Once the final FPGA design has been determined, the board saver can be unsoldered from the contact pads on the first-mentioned printed-circuit board and replaced by the final FPGA.
Vibration analysis of printed circuit boards: Effect of boundary condition
NASA Astrophysics Data System (ADS)
Prashanth, M. D.
2018-04-01
A spacecraft consists of a number of electronic packages to meet the functional requirements. An electronic package is generally an assembly of printed circuit boards placed in a mechanical housing. A number of electronic components are mounted on the printed circuit board (PCB). A spacecraft experiences various types of loads during its launch such as vibration, acoustic and shock loads. Prediction of response for printed circuit boards due to vibration loads is important for mechanical design and reliability of electronic packages. The modeling and analysis of printed circuit boards is required for accurate prediction of response due to vibration loads. The response of PCB is highly dependent on the mounting configuration of PCB. In addition, anti-vibration mounts or stiffeners are used to reduce the PCB response. Vibration analysis of printed circuit boards is carried out using finite element method. The objective of this paper is to determine the dynamic characteristics of a printed circuit board. Modeling and analysis of PCB shall be carried out to study the effect of boundary conditions on the vibration response. The modeling of stiffeners or ribs shall also be considered in detail. The analysis results shall be validated using vibration tests of PCB.
Taylor, Steven C.
2006-09-12
Ultrasonic pulser-receiver circuitry, for use with an ultrasonic transducer, the circuitry comprising a circuit board; ultrasonic pulser circuitry supported by the circuit board and configured to be coupled to an ultrasonic transducer and to cause the ultrasonic transducer to emit an ultrasonic output pulse; receiver circuitry supported by the circuit board, coupled to the pulser circuitry, including protection circuitry configured to protect against the ultrasonic pulse and including amplifier circuitry configured to amplify an echo, received back by the transducer, of the output pulse; and a connector configured to couple the ultrasonic transducer directly to the circuit board, to the pulser circuitry and receiver circuitry, wherein impedance mismatches that would result if the transducer was coupled to the circuit board via a cable can be avoided.
Fixture aids soldering of electronic components on circuit board
NASA Technical Reports Server (NTRS)
Ross, M. H.
1966-01-01
Spring clamp fixture holds small electronic components in a desired position while they are being soldered on a circuit board. The spring clamp is clipped on the edge of the circuit board and an adjustable spring-steel boom holds components against the board. The felt pad at the end of the boom is replaced with different attachments for other holding tasks.
Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing
2016-06-01
The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. © The Author(s) 2016.
Three dimensional, multi-chip module
Bernhardt, A.F.; Petersen, R.W.
1993-08-31
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow dummy chips'' are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned on the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Three dimensional, multi-chip module
Bernhardt, Anthony F.; Petersen, Robert W.
1993-01-01
A plurality of multi-chip modules are stacked and bonded around the perimeter by sold-bump bonds to adjacent modules on, for instance, three sides of the perimeter. The fourth side can be used for coolant distribution, for more interconnect structures, or other features, depending on particular design considerations of the chip set. The multi-chip modules comprise a circuit board, having a planarized interconnect structure formed on a first major surface, and integrated circuit chips bonded to the planarized interconnect surface. Around the periphery of each circuit board, long, narrow "dummy chips" are bonded to the finished circuit board to form a perimeter wall. The wall is higher than any of the chips on the circuit board, so that the flat back surface of the board above will only touch the perimeter wall. Module-to-module interconnect is laser-patterned o the sides of the boards and over the perimeter wall in the same way and at the same time that chip to board interconnect may be laser-patterned.
Single-mode glass waveguide technology for optical interchip communication on board level
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning
2012-01-01
The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.
The report gives results of a screening evaluation of volatile organic emissions from printed circuit board laminates and potential pollution prevention alternatives. In the evaluation, printed circuit board laminates, without circuitry, commonly found in personal computer (PC) m...
Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board
NASA Technical Reports Server (NTRS)
Seaward, R. C.
1967-01-01
Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, Edward; Lanning, Rodney K.; Telford, Steven
A device includes a u-channel shaped member and a printed circuit board including a plurality of capacitors. Each of the plurality of capacitors has a mounting surface mounted to the printed circuit board and an opposing heat transfer surface thermally coupled to the u-channel shaped member. The device also includes an output cable coupled to the printed circuit board and a return cable coupled to the printed circuit board. The device further includes a control transistor disposed inside the u-channel shaped member and a current sensing resistor disposed inside the u-channel shaped member.
Okandan, Murat; Nielson, Gregory N
2014-12-09
Accessing a workpiece object in semiconductor processing is disclosed. The workpiece object includes a mechanical support substrate, a release layer over the mechanical support substrate, and an integrated circuit substrate coupled over the release layer. The integrated circuit substrate includes a device layer having semiconductor devices. The method also includes etching through-substrate via (TSV) openings through the integrated circuit substrate that have buried ends at or within the release layer including using the release layer as an etch stop. TSVs are formed by introducing one or more conductive materials into the TSV openings. A die singulation trench is etched at least substantially through the integrated circuit substrate around a perimeter of an integrated circuit die. The integrated circuit die is at least substantially released from the mechanical support substrate.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
Park, Rowoon; Kim, Hyesu; Lone, Saifullah; Jeon, Sangheon; Kwon, Young Woo; Shin, Bosung; Hong, Suck Won
2018-06-06
The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sections assembled in a common enclosure, on a common chassis or circuit board, and with common frequency controlling circuits. Devices to which a single FCC Identifier has been assigned shall be identified pursuant... circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
NASA Astrophysics Data System (ADS)
Hendrickx, Nina; Van Erps, Jürgen; Suyal, Himanshu; Taghizadeh, Mohammad; Thienpont, Hugo; Van Daele, Peter
2006-04-01
In this paper, laser ablation (at UGent), deep proton writing (at VUB) and laser direct writing (at HWU) are presented as versatile technologies that can be used for the fabrication of coupling structures for optical interconnections integrated on a printed circuit board (PCB). The optical layer, a highly cross-linked acrylate based polymer, is applied on an FR4 substrate. Both laser ablation and laser direct writing are used for the definition of arrays of multimode optical waveguides, which guide the light in the plane of the optical layer. In order to couple light vertically in/out of the plane of the optical waveguides, coupling structures have to be integrated into the optical layer. Out-of-plane turning mirrors, that deflect the light beam over 90°, are used for this purpose. The surface roughness and angle of three mirror configurations are evaluated: a laser ablated one that is integrated into the optical waveguide, a laser direct written one that is also directly written onto the waveguide and a DPW insert that is plugged into a cavity into the waveguiding layer.
Effects of Smoke on Functional Circuits
1997-10-01
functional boards consisted of four layers ; that is, there were two pieces of FR-4* insulated circuit board material that were laminated together, each with...traces on both sides (three layers of dielectric in all). The layers were electrically connected by drilling holes into the circuit board and...allowing solder to flow through the holes and form "vias." For many of the circuits, one of the middle layers served as a ground plane, while the other
Fate of bromine in pyrolysis of printed circuit board wastes.
Chien, Y C; Wang, H P; Lin, K S; Huang, Y J; Yang, Y W
2000-02-01
Behavior of Br in pyrolysis of the printed circuit board waste with valuable copper and oil recycling has been studied in the present work. Experimentally, pyrolysis of the printed circuit board waste generated approximately 40.6% of oils, 24.9% of noncondensible gases and 34.5% of solid residues that enriched in copper (90-95%). The cuts of the oils produced from pyrolysis of the printed circuit board waste into weighted boiling fraction were primarily light naphtha and heavy gas oil. Approximately 72.3% of total Br in the printed circuit board waste were found in product gas mainly as HBr and bromobenzene. However, by extended X-ray absorption fine structural (EXAFS) spectroscopy, Cu-O and Cu-(O)-Cu species with bond distance of 1.87 and 2.95 A, respectively, were observed in the solid residues. Essentially, no Cu-Br species was found.
Optical waveguide circuit board with a surface-mounted optical receiver array
NASA Astrophysics Data System (ADS)
Thomson, J. E.; Levesque, Harold; Savov, Emil; Horwitz, Fred; Booth, Bruce L.; Marchegiano, Joseph E.
1994-03-01
A photonic circuit board is fabricated for potential application to interchip and interboard parallel optical links. The board comprises photolithographically patterned polymer optical waveguides on a conventional glass-epoxy electrical circuit board and a surface-mounted integrated circuit (IC) package that optically and electrically couples to an optoelectronic IC. The waveguide circuits include eight-channel arrays of straights, cross-throughs, curves, self- aligning interconnects to multi-fiber ribbon, and out-of-plane turning mirrors. A coherent, fused bundle of optical fibers couples light between 45-deg waveguide mirrors and a GaAs receiver array in the IC package. The fiber bundle is easily aligned to the mirrors and the receivers and is amenable to surface mounting and hermetic sealing. The waveguide-receiver- array board achieved error-free data rates up to 1.25 Gbits/s per channel, and modal noise was shown to be negligible.
Thermally-isolated silicon-based integrated circuits and related methods
Wojciechowski, Kenneth; Olsson, Roy H.; Clews, Peggy J.; Bauer, Todd
2017-05-09
Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik
2011-12-27
Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.
NASA Astrophysics Data System (ADS)
Eko Prastyo, Wahyu; Maulana, F.; Nuryani, N.; Purnama, B.
2017-11-01
Magneto-impedance of multilayer [Ni80Fe20/Cu]4 on Cu PCB substrate has successfully studied. To enhance the magneto-impedance we modify the geometry the Cu PCB substrate. The multilayer is made by electro-deposition with Pt (Platinum) as elctrodes. Electro-deposition is made at room temperature. Magneto-impedance total is evaluated under the external magnetic field. The results shows that magneto-impedance curve is symmetry. The difference of line-length result in the difference of the magneto-impedance. The samples is with the longest line-length has the largest magneto-impedance ratio. The homogeneity of the samples is on account estimated the increase magneto-impedance ratio.
Packaging system with cleaning channel and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Lu
A packaging structure and method for surface mount integrated circuits reduces electrochemical migration (ECM) problems by including one or more cleaning channels to effectively and efficiently remove flux residue that may otherwise remain lodged in gaps between the surface mount package and the printed circuit board. A cleaning channel may be formed along a bottom surface of the surface mount package (i.e., the surface facing the printed circuit board), or along a portion of a top surface of the printed circuit board. In either case, the inclusion of a cleaning channel enlarges the gap between the bottom surface of themore » surface mount package and the printed circuit board and creates a path for contaminants to be flushed out during a cleaning process.« less
A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift
Li, Bo; Zhao, Yulong; Li, Cun; Cheng, Rongjun; Sun, Dengqiang; Wang, Songli
2017-01-01
Presented in this paper is a high-performance resonant accelerometer with low cross-interference, low temperature drift and digital output. The sensor consists of two quartz double-ended tuning forks (DETFs) and a silicon substrate. A new differential silicon substrate is proposed to reduce the temperature drift and cross-interference from the undesirable direction significantly. The natural frequency of the quartz DETF is theoretically calculated, and then the axial stress on the vibration beams is verified through finite element method (FEM) under a 100 g acceleration which is loaded on x-axis, y-axis and z-axis, respectively. Moreover, sensor chip is wire-bonded to a printed circuit board (PCB) which contains two identical oscillating circuits. In addition, a steel shell is selected to package the sensor for experiments. Benefiting from the distinctive configuration of the differential structure, the accelerometer characteristics such as temperature drift and cross-interface are improved. The experimental results demonstrate that the cross-interference is lower than 0.03% and the temperature drift is about 18.16 ppm/°C. PMID:28106798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojciechowski, Kenneth; Olsson, Roy; Clews, Peggy J.
Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
Image dissector control and data system electronics, part 1, part 2, and part 3
NASA Technical Reports Server (NTRS)
1975-01-01
The operating and calibration procedures, design details, and maintenance information for the control console and the associated electronics are presented. Detailed circuit connector information is included which describes the destination of each wire leaving each pin of each circuit board. The schematic diagrams of the circuit boards in the system and of the interconnection between boards and consoles are presented.
Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination
NASA Astrophysics Data System (ADS)
Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.
2015-02-01
The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.
Development of a highly reliable composite board for printed circuitry for use in space environment
NASA Technical Reports Server (NTRS)
Bradbury, E. J.; Markle, R. A.; Dunnavant, W. R.; Stickney, P. B.
1971-01-01
Materials, processes and fabrication techniques have been investigated for the development of a high-temperature circuit-board laminate. High quality, void-free copper-clad laminates have been made using 7628/HS-1 style fiberglas reinforcements with filled polyimide matrices. The fabricating characteristics of P13N resin appear suitable for use as a filled matrix in this circuit board development. High-fired, ball-milled alumina appears to be necessary to obtain the desired effects in the circuit board system. Nickel-clad copper foil bonding surfaces appear to be another requirement for retention of good bond strengths after art work and plating sequences. The fabrication cycle for this circuit board system is very dependent on the heating profile. Very rapid heating with quick loading is recommended. A stack approach to lamination was successfully used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Jeffrey Wayne
An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.
High-density interconnect substrates and device packaging using conductive composites
NASA Astrophysics Data System (ADS)
Gandhi, Pradeep; Gallagher, Catherine; Matijasevic, Goran
1998-02-01
High-end printed circuit board manufacturing technology is receiving increasing attention due to higher functionality in smaller form factors. This is evident from the industry efforts to produced reliable microvias and related trace features to pack as much circuit density as possible. Cost, density and performance requirements have prodded entry into a market that was mainly reserved for ceramic and molded packages for the last forty years. To successfully meet the demanding specifications of this market segment, a worldwide effort is underway for the development of new materials, processes and equipment. A novel base technology that is applicable to most of the major packaging and redistribution elements in an electronic module is presented.High density multilayer circuits with landless blind and buried vias can be fabricated by filling the conductor paste into photoimaged dielectrics and thermally processing it at a relatively lower temperature. Via layers are prepared directly on the inherently planarized circuit layer in an identical fashion. Because these composite materials are applied in an additive fabrication method, metal substrates can be employed for high thermal dissipation and excellent CTE control over a wide temperature range. The conductor material is based on interpenetrating polymer and metal networks that are formed in situ from metal particles and a thermosetting flux/binder. The metal network is formed when the alloy particles melt and react with adjacent high melting point metal particle. Interaction also occurs between the alloy particles and pad, lead or previous trace metallizations provided they are solderable by alloys of tin. The new alloy composition created by the interdiffusion process within the bulk material has a higher melting point than the original alloy and thus solidifies immediately upon formation. This metallurgical reaction, known as transient liquid phase sintering, is facilitated by the polymer mixture. INtegration of the polymer and metal networks is maintained by utilizing a thermosetting polymer system that cures simultaneously with the metallurgical reaction. Although similar in concept and performance to cermet inks, these compositions differ in that their process temperatures are compatible with conventional printed wiring board materials and that the polymeric binder remains to provide adhesion and fatigue resistance to the metallurgical network.
Portable Cytometry Using Microscale Electronic Sensing
Emaminejad, Sam; Paik, Kee-Hyun; Tabard-Cossa, Vincent; Javanmard, Mehdi
2015-01-01
In this manuscript, we present three different micro-impedance sensing architectures for electronic counting of cells and beads. The first method of sensing is based on using an open circuit sensing electrode integrated in a micro-pore, which measures the shift in potential as a micron-sized particle passes through. Our micro-pore, based on a funnel shaped microchannel, was fabricated in PDMS and was bound covalently to a glass substrate patterned with a gold open circuit electrode. The amplification circuitry was integrated onto a battery-powered custom printed circuit board. The second method is based on a three electrode differential measurement, which opens up the potential of using signal processing techniques to increase signal to noise ratio post measurement. The third architecture uses a contactless sensing approach, which significantly minimizes the cost of the consumable component of the impedance cytometer. We demonstrated proof of concept for the three sensing architectures by measuring the detected signal due to the passage of micron sized beads through the pore. PMID:27647950
Circuit-lead trimming template
NASA Technical Reports Server (NTRS)
Ofarrell, K.; Winn, E.
1979-01-01
Template for use in trimming leads on production wiring boards is low-cost means for eliminating rejections for short leads and improving lead-strength uniformity. Template is simply unclad piece of printed-circuit board material that is drilled using same drill control tape used in making original production board. Revisions in component layout of board can therefore be made simultaneously in template.
Microwave GaAs Integrated Circuits On Quartz Substrates
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara
1994-01-01
Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.
Reliability Assessment of Critical Electronic Components
1992-07-01
Failures FLHP - Full Horse Power FSN - Federal Stock Number I Current IC - Integrated Circuit IPB - Illustrated Parts Breakdown K - Boltzmans Constant L...Classified P - Power PC - Printed Circuit PCB - Printed Circuit Board PGA - Pin Grid Array PPM - Parts Per Million PWB - Printed Wiring Board 0...4-59 4.4.3.2.3 Circuit Brcakers ......................................................... 4-59 4.4.3.2.4 Thermal
Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.
ERIC Educational Resources Information Center
McKechnie, R. E.; Vickers, G. W.
1981-01-01
Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…
Reducing Printed Circuit Board Emissions with Low-Noise Design Practices
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.
2012-01-01
This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.
A Circuit Board Using a Sheet of Thick Paper and Aluminium Tape
ERIC Educational Resources Information Center
Kamata, Masahiro; Honda, Motoshi
2003-01-01
We have developed a circuit board using materials that are inexpensive and familiar to elementary school students. Most of the responses from students who made this board were relatively positive and we observed them enjoy making the boards at a Science Festival in Japan and in elementary school. As an application, we also developed a tiny torch…
Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.
Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong
2016-07-27
We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.
NASA Astrophysics Data System (ADS)
Chang, Yin-Jung
With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the ultra-short pulse response of these devices is modeled based on the guided-mode theory incorporated with Fourier transform technique. For example, for 50 fs Gaussian input pulses into a 1 x 16 splitter, the output pulses are severely degraded in coupling efficiency (48%) and completely broken up in time primarily due to inter-modal and intra-modal (waveguide) dispersion. Material dispersion is found to play only a minor role in the pulse response of MMI devices. However, for 1ps input pulses into the same 1 x 16 splitter, the output pulses are only moderately degraded in coupling efficiency (86%) and only slightly degraded in shape. With the understanding of the necessary condition of the distortionless high-speed signal transmission through MMI devices, high-speed data transmission at 40Gb/s per channel with a total bandwidth of 320Gb/s for 8 output ports is demonstrated for the first time on a 1 x 8 photo-definable polymer-based MMI power splitter. The device is designed with multimode input/output waveguides of 10mum in width and 7.6mum in height for a better input coupling efficiency for which the high-speed testing demands. The eye diagrams are all clear and fully open with an extinction ratio of 10.1dB and a jitter of 1.65 ps. The transmission validity is further confirmed by the bit-error-rate testing at the pseudoramdom binary sequence of 27--1. The fabrication process developed lays the cornerstone of the integration scheme and system design for the prototype of hybrid interconnects. An important problem regarding the guided-mode attenuation associated with optical-interconnect-polymer waveguides fabricated on FR-4 printed-circuit boards is also quantified for the first time. On-board optical waveguides are receiving more attention recently from Fujitsu American Laboratory, IBM Watson Research Center, and Packaging Research Center here at Georgia Tech. This branch of research work is part of the effort in investigating, scientifically, the attenuation mechanism and the effects of the buffer layer thickness on board-level in-plane optical interconnects. The rigorous transmission-line network approach is used and the FR-4 substrate is treated as a long-period substrate grating. A quantitative metric for an appropriate matrix truncation is presented. The peaks of attenuation are shown to occur near the Bragg conditions that characterize the leaky-wave stop bands. For a typical 400mum period FR-4 substrate with an 8mum corrugation depth, a buffer layer thickness of about 40mum is found to be needed to make the attenuation negligibly small. An experimental prototype for on-board optical-to-electrical signal broadcasting operating at 10Gb/s per channel over an interconnect distance of 10cm is demonstrated. An improved 1 x 4 multimode interference (MMI) splitter at 1550nm with linearly-tapered output facet is heterogeneously integrated with four p-i-n photodetectors (PDs) on a Silicon (Si) bench. The Si bench itself is hybrid integrated onto an FR-4 printed-circuit board with four receiver channels. A novel fabrication/integration approach demonstrates the simultaneous alignment between the four waveguides and the four PDs during the MMI fabrication process. The entire system is fully functional at 10Gb/s.
A Study of Direct Digital Manufactured RF/Microwave Packaging
NASA Astrophysics Data System (ADS)
Stratton, John W. I.
Various facets of direct digital manufactured (DDM) microwave packages are studied. The rippled surface inherent in fused deposition modeling (FDM) fabricated geometries is modeled in Ansoft HFSS, and its effect on the performance of microstrip transmission lines is assessed via simulation and measurement. The thermal response of DDM microstrip transmission lines is analyzed over a range of RF input powers, and linearity is confirmed over that range. Two IC packages are embedded into DDM printed circuit boards, and their performance is analyzed. The first is a low power RF switch, and the second is an RF front end device that includes a low noise amplifier (LNA) and a power amplifier (PA). The RF switch is shown to perform well, as compared to a layout designed for a Rogers 4003C microwave laminate substrate. The LNA performs within datasheet specifications. The power amplifier generates substantial heat, so a thermal management attempt is described. Finally, a capacitively loaded 6dB Wilkinson power divider is designed and fabricated using DDM techniques and materials. Its performance is analyzed and compared to simulation. The device is shown to compare favorably to a similar device fabricated on a Rogers 4003C microwave laminate using traditional printed circuit board techniques.
Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).
Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L
2016-11-01
An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptable Transponder for Multiple Telemetry Systems
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Varnavas, Kosta A. (Inventor)
2014-01-01
The present invention is a stackable telemetry circuit board for use in telemetry systems for satellites and other purposes. The present invention incorporates previously-qualified interchangeable circuit boards, or "decks," that perform functions such as power, signal receiving and transmission, and processing. Each deck is adapted to serve a range of telemetry applications. This provides flexibility in the construction of the stackable telemetry circuit board and significantly reduces the cost and time necessary to develop a telemetry system.
Heat sinking for printed circuitry
Wilson, S.K.; Richardson, G.; Pinkerton, A.L.
1984-09-11
A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.
Degradation of organic pollutants by Ag, Cu and Sn doped waste non-metallic printed circuit boards.
Ramaswamy, Kadari; Radha, Velchuri; Malathi, M; Vithal, Muga; Munirathnam, Nagegownivari R
2017-02-01
The disposal and reuse of waste printed circuit boards have been the major global concerns. Printed circuit boards, a form of Electronic waste (hereafter e-waste), have been chemically processed, doped with Ag + , Cu 2+ and Sn 2+ , and used as visible light photocatalysts against the degradation of methylene blue and methyl violet. The elemental analyses of pristine and metal doped printed circuit board were obtained using energy dispersive X-ray fluorescence (EDXRF) spectra and inductively coupled plasma optical emission spectroscopy (ICP-OES). The morphology of parent and doped printed circuit board was obtained from scanning electron microscopy (SEM) measurements. The photocatalytic activity of parent and metal doped samples was carried out for the decomposition of organic pollutants, methylene blue and methyl violet, under visible light irradiation. Metal doped waste printed circuit boards (WPCBs) have shown higher photocatalytic activity against the degradation of methyl violet and methylene blue under visible light irradiation. Scavenger experiments were performed to identify the reactive intermediates responsible for the degradation of methylene blue and methyl violet. The reactive species responsible for the degradation of MV and MB were found to be holes and hydroxyl radicals. A possible mechanism of degradation of methylene blue and methyl violet is given. The stability and reusability of the catalysts are also investigated. Copyright © 2016. Published by Elsevier Ltd.
Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping
2014-01-01
Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10−5Ω·cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript. PMID:25182052
A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools
NASA Astrophysics Data System (ADS)
Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan
2016-03-01
Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.
Evaluation of Cleanliness Test Methods for Spacecraft PCB Assemblies
NASA Astrophysics Data System (ADS)
Tegehall, P.-E.; Dunn, B. D.
2006-10-01
Ionic contamination on printed-circuit-board assemblies may cause current leakage and short-circuits. The present cleanliness requirement in ECSS-Q-70-08, "The manual soldering of high-reliability electrical connections", is that the ionic contamination shall be less than 1.56 fl-glcm2 NaCI equivalents. The relevance of the method used for measurement of the ionic contamination level, resistivity of solvent extract, has been questioned. Alternative methods are ion chromatography and measurement of surface insulation resistance, but these methods also have their drawbacks. These methods are first described and their advantages and drawbacks are discussed. This is followed by an experimental evaluation of the three methods. This was done by soldering test vehicles at four manufacturers of space electronics using their ordinary processes for soldering and cleaning printed board assemblies. The experimental evaluation showed that the ionic contamination added by the four assemblers was very small and well below the acceptance criterion in ECSS-Q-70-80. Ion-chromatography analysis showed that most of the ionic contamination on the cleaned assembled boards originated from the hot-oil fusing of the printed circuit boards. Also, the surface insulation resistance was higher on the assembled boards compared to the bare printed circuit boards. Since strongly activated fluxes are normally used when printed circuit boards are hot-oil fused, it is essential that they are thoroughly cleaned in order to achieve low contamination levels on the final printed-board assemblies.
Printed circuit boards: a review on the perspective of sustainability.
Canal Marques, André; Cabrera, José-María; Malfatti, Célia de Fraga
2013-12-15
Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modular chassis simplifies packaging and interconnecting of circuit boards
NASA Technical Reports Server (NTRS)
Arens, W. E.; Boline, K. G.
1964-01-01
A system of modular chassis structures has simplified the design for mounting a number of printed circuit boards. This design is structurally adaptable to computer and industrial control system applications.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadi, Pejman; Ning, Chao; Ouyang, Weiyi
Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economicmore » and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.« less
1987-11-01
developed that can be used by circuit engineers to extract the maximum performance from the devices on various board technologies including multilayer ceramic...Design guidelines have been developed that can be used by circuit engineers to extract the maxi- mum performance from the devices on various board...25 Attenuation and Dispersion Effects ......................................... 27 Skin Effect
Duan, Chenlong; Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui
2014-01-01
Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (-0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5-0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25-0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (-0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution.
NASA Astrophysics Data System (ADS)
Yamane, Luciana Harue; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares
Printed circuit boards are found in all electric and electronic equipment and are particularly problematic to recycle because of the heterogeneous mix of organic material, metals, and fiberglass. Additionally, printed circuit boards can be considered a secondary source of copper and bacterial leaching can be applied to copper recovery. This study investigated the influence of initial concentration of ferrous iron on bacterial leaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non magnetic material used in this study. A shake flask study was carried out on the non magnetic material using a rotary shaker at 30°C, 170 rpm and different initial concentrations of ferrous iron (gL-1): 6.75; 13.57 and 16.97. Abiotic controls were also run in parallel. The monitored parameters were pH, Eh, ferrous iron concentration and copper extraction (spectroscopy of atomic absorption). The results showed that using initial concentration of ferrous iron of 6.75gL-1 were extracted 99% of copper by bacterial leaching.
High stability buffered phase comparator
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1984-01-01
A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.
Silva de Almeida, Francylaine; Bussler, Larissa; Marcio Lima, Sandro; Fiorucci, Antonio Rogério; da Cunha Andrade, Luis Humberto
2016-07-01
In this work, low-cost substrates with rough silver surfaces were prepared from commercial copper foil-covered phenolic board (CPB) and an aqueous solution of AgNO3, and were used for surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) measurements. A maximum SERS amplification factor of 1.2 × 10(7) was obtained for Rhodamine 6G (R6G), and use of the CPB resulted in a detection limit for Thiram pesticide of 0.5 µmol L(-1) The minimum detection level was limited by residual traces of phenolic groups that originated from the substrate resin, which became solubilized in the aqueous Ag(+) solution. It was found that the bands corresponding to the impurities had less influence in the Thiram analysis, which could be explained by the high affinity of sulfur for Ag surfaces. The influence of impurities in the SERS analyses therefore depended on the linkage between the rough silver surface and the analyte. The findings demonstrated the ease and effectiveness of using CPB to prepare a nanostructured surface for SERS. © The Author(s) 2016.
Detection of circuit-board components with an adaptive multiclass correlation filter
NASA Astrophysics Data System (ADS)
Diaz-Ramirez, Victor H.; Kober, Vitaly
2008-08-01
A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.
Foldable graphene electronic circuits based on paper substrates.
Hyun, Woo Jin; Park, O Ok; Chin, Byung Doo
2013-09-14
Graphene electronic circuits are prepared on paper substrates by using graphene nanoplates and applied to foldable paper-based electronics. The graphene circuits show a small change in conductance under various folding angles and maintain an electronic path on paper substrates after repetition of folding and unfolding. Foldable paper-based applications with graphene circuits exhibit excellent folding stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TSCA Chemical Data Reporting Fact Sheet: Byproducts Reporting for the Printed Circuit Board Industry
This fact sheet provides information on existing Chemical Data Reporting (CDR) rule requirements related to byproducts reporting by persons who manufacture printed circuit boards and may be subject to CDR.
Secure RFID tag or sensor with self-destruction mechanism upon tampering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekoogar, Faranak; Dowla, Farid; Twogood, Richard
A circuit board anti-tamper mechanism comprises a circuit board having a frangible portion, a trigger having a trigger spring, a trigger arming mechanism actuated by the trigger wherein the trigger arming mechanism is initially non-actuated, a force producing mechanism, a latch providing mechanical communication between the trigger arming mechanism and the force producing mechanism, wherein the latch initially retains the force producing mechanism in a refracted position. Arming pressure applied to the trigger sufficient to overcome the trigger spring force will actuate the trigger arming mechanism, causing the anti-tamper mechanism to be armed. Subsequent tampering with the anti-tamper mechanism resultsmore » in a decrease of pressure on the trigger below the trigger spring force, thereby causing the trigger arming mechanism to actuate the latch, thereby releasing the force producing mechanism to apply force to the frangible portion of the circuit board, thereby breaking the circuit board.« less
Distributed Capacitive Sensor for Sample Mass Measurement
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey
2011-01-01
Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass substrate. The fabricated proof-of-concept devices have successfully demonstrated tens to hundreds of picofarads of capacitance change when a simulated sample (100 g to 500 g) is placed on the membrane.
Stripline/Microstrip Transition in Multilayer Circuit Board
NASA Technical Reports Server (NTRS)
Epp, Larry; Khan, Abdur
2005-01-01
A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.
Soldering Tool for Integrated Circuits
NASA Technical Reports Server (NTRS)
Takahashi, Ted H.
1987-01-01
Many connections soldered simultaneously in confined spaces. Improved soldering tool bonds integrated circuits onto printed-circuit boards. Intended especially for use with so-called "leadless-carrier" integrated circuits.
Alternatives Assessment: Partnership to Evaluate Flame Retardants in Printed Circuit Boards
The partnership project on flame retardants in printed circuit boards seeks to improve understanding of the environmental and human health impacts of new and current materials that can be used to meet fire safety standards
Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping
2017-05-23
With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.
Flexible composite film for printed circuit board
NASA Technical Reports Server (NTRS)
Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.
1982-01-01
A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.
Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui
2014-01-01
Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (−0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5–0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25–0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (−0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution. PMID:25379546
AIN-Based Packaging for SiC High-Temperature Electronics
NASA Technical Reports Server (NTRS)
Savrun, Ender
2004-01-01
Packaging made primarily of aluminum nitride has been developed to enclose silicon carbide-based integrated circuits (ICs), including circuits containing SiC-based power diodes, that are capable of operation under conditions more severe than can be withstood by silicon-based integrated circuits. A major objective of this development was to enable packaged SiC electronic circuits to operate continuously at temperatures up to 500 C. AlN-packaged SiC electronic circuits have commercial potential for incorporation into high-power electronic equipment and into sensors that must withstand high temperatures and/or high pressures in diverse applications that include exploration in outer space, well logging, and monitoring of nuclear power systems. This packaging embodies concepts drawn from flip-chip packaging of silicon-based integrated circuits. One or more SiC-based circuit chips are mounted on an aluminum nitride package substrate or sandwiched between two such substrates. Intimate electrical connections between metal conductors on the chip(s) and the metal conductors on external circuits are made by direct bonding to interconnections on the package substrate(s) and/or by use of holes through the package substrate(s). This approach eliminates the need for wire bonds, which have been the most vulnerable links in conventional electronic circuitry in hostile environments. Moreover, the elimination of wire bonds makes it possible to pack chips more densely than was previously possible.
Circuit design of an EMCCD camera
NASA Astrophysics Data System (ADS)
Li, Binhua; Song, Qian; Jin, Jianhui; He, Chun
2012-07-01
EMCCDs have been used in the astronomical observations in many ways. Recently we develop a camera using an EMCCD TX285. The CCD chip is cooled to -100°C in an LN2 dewar. The camera controller consists of a driving board, a control board and a temperature control board. Power supplies and driving clocks of the CCD are provided by the driving board, the timing generator is located in the control board. The timing generator and an embedded Nios II CPU are implemented in an FPGA. Moreover the ADC and the data transfer circuit are also in the control board, and controlled by the FPGA. The data transfer between the image workstation and the camera is done through a Camera Link frame grabber. The software of image acquisition is built using VC++ and Sapera LT. This paper describes the camera structure, the main components and circuit design for video signal processing channel, clock driver, FPGA and Camera Link interfaces, temperature metering and control system. Some testing results are presented.
Method of acquiring an image from an optical structure having pixels with dedicated readout circuits
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2006-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2016-01-01
A high temperature co-fired ceramic (HTCC) alumina material was previously electrically tested at temperatures up to 550 C, and demonstrated improved dielectric performance at high temperatures compared with the 96% alumina substrate that we used before, suggesting its potential use for high temperature packaging applications. This paper introduces a prototype 32-I/O (input/output) HTCC alumina package with platinum conductor for 500 C low-power silicon carbide (SiC) integrated circuits. The design and electrical performance of this package including parasitic capacitance and parallel conductance of neighboring I/Os from 100 Hz to 1 MHz in a temperature range from room temperature to 550 C are discussed in detail. The parasitic capacitance and parallel conductance of this package in the entire frequency and temperature ranges measured does not exceed 1.5 pF and 0.05 microsiemens, respectively. SiC integrated circuits using this package and compatible printed circuit board have been successfully tested at 500 C for over 3736 hours continuously, and at 700 C for over 140 hours. Some test examples of SiC integrated circuits with this packaging system are presented. This package is the key to prolonged T greater than or equal to 500 C operational testing of the new generation of SiC high temperature integrated circuits and other devices currently under development at NASA Glenn Research Center.
High density electronic circuit and process for making
Morgan, William P.
1999-01-01
High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2000-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
Thumbnail Sketches: The Chemistry of Printed Circuit Substrates: Some of the Latest Developments.
ERIC Educational Resources Information Center
Freeman, James H.
1984-01-01
Discusses some of the latest developments in the chemistry of printed circuit substrates. Topics considered include soldering, dicy (a catalyst), Kevlar (an aramid polymer fiber), maleimide copolymers, and flexible circuits. (JN)
40 CFR 413.80 - Applicability: Description of the printed circuit board subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability: Description of the printed circuit board subcategory. 413.80 Section 413.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Printed...
Self-shielding printed circuit boards for high frequency amplifiers and transmitters
NASA Technical Reports Server (NTRS)
Galvin, D.
1969-01-01
Printed circuit boards retaining as much copper as possible provide electromagnetic shielding between stages of the high frequency amplifiers and transmitters. Oscillation is prevented, spurious output signals are reduced, and multiple stages are kept isolated from each other, both thermally and electrically.
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1979-01-01
Sponge inserts compensate for potting-compound expansion and relieve thermal stresses on circuit boards. Technique quality of production runs on PC boards intended for applications in environments less severe than those for aerospace equipment. Pads reduce weight of modules because they weigh far less than potting compound they displace.
78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...
NASA Technical Reports Server (NTRS)
Cramer, P. W., Jr. (Inventor)
1985-01-01
The network, which is connected to a layer of 134 feed elements that transmit and receive microwaves, consists of a pair of circuit boards parallel to the feed element layer. One of the two boards has 87 dividers that each divide a signal to be transmitted into seven portions, and the other board has 134 combiners that each collect seven transmit signal portions and deliver the sum to one of the feed elements. A similar arrangement is used to handle received signals. The large number of interconnections are made by printed circuit conductors radiating from each of the numerous dividers and combiners, and by providing interconnection pins that interconnect the ends of pairs of conductors lying on the two boards. The printed circuit conductors extend in undulating paths that provide maximum separation of conductors to minimize crosstalk.
Electroless epitaxial etching for semiconductor applications
McCarthy, Anthony M.
2002-01-01
A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.
An advanced selective liquid-metal plating technique for stretchable biosensor applications.
Li, Guangyong; Lee, Dong-Weon
2017-10-11
This paper presents a novel stretchable pulse sensor fabricated by a selective liquid-metal plating process (SLMP), which can conveniently attach to the human skin and monitor the patient's heartbeat. The liquid metal-based stretchable pulse sensor consists of polydimethylsiloxane (PDMS) thin films and liquid metal functional circuits with electronic elements that are embedded into the PDMS substrate. In order to verify the utility of the fabrication process, various complex liquid-metal patterns are achieved by using the selective wetting behavior of the reduced liquid metal on the Cu patterns of the PDMS substrate. The smallest liquid-metal pattern is approximately 2 μm in width with a uniform surface. After verification, a transparent flowing LED light with programmed circuits is realized and exhibits stable mechanical and electrical properties under various deformations (bending, twisting and stretching). Finally, based on SLMP, a wireless pulse measurement system is developed which is composed of the liquid metal-based stretchable pulse sensor, a Bluetooth module, an Arduino development board, a laptop computer and a self-programmed visualized software program. The experimental results reveal that the portable non-invasive pulse sensor has the potential to reduce costs, simplify biomedical diagnostic procedures and help patients to improve their life in the future.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen
2014-03-01
The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.
Space shuttle main engine controller assembly, phase C-D. [with lagging system design and analysis
NASA Technical Reports Server (NTRS)
1973-01-01
System design and system analysis and simulation are slightly behind schedule, while design verification testing has improved. Input/output circuit design has improved, but digital computer unit (DCU) and mechanical design continue to lag. Part procurement was impacted by delays in printed circuit board, assembly drawing releases. These are the result of problems in generating suitable printed circuit artwork for the very complex and high density multilayer boards.
Testing of printed circuit board solder joints by optical correlation
NASA Technical Reports Server (NTRS)
Espy, P. N.
1975-01-01
An optical correlation technique for the nondestructive evaluation of printed circuit board solder joints was evaluated. Reliable indications of induced stress levels in solder joint lead wires are achievable. Definite relations between the inherent strength of a solder joint, with its associated ability to survive stress, are demonstrable.
High density electronic circuit and process for making
Morgan, W.P.
1999-06-29
High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.
Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon
2016-12-01
The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.
Maze solving automatons for self-healing of open interconnects: Modular add-on for circuit boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Aswathi; Raghunandan, Karthik; Yaswant, Vaddi
We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 μm/s with healed route havingmore » mean resistance of 8 kΩ across a 200 micron gap and depending on the materials and concentrations used.« less
Humidity Control in the U.S. Air Force Aircraft Service Shelter
1988-06-30
printed circuit board control module , terminal boards, and blowt.r, etc.) are off-the-shelf commercial components. Only the humidifier ho:;Ift, I...indication of the shelter RH. - Circuit Breaker: A 20 amp, three pole breaker is providud fur equipment protection. o Water Storage Tank. A stainless...tapped into the shelter’s existing electrical system at the panelboard, on the load side of the 100 Amp main AC circuit breaker. Power is then
Direct Digital Boiler Control Systems for the Navy Small Boiler Equipment.
1983-02-01
Hardware. Each full-size ACU a 6 caculation modules 30 arrme, modufes sation for dead time lag contains input/output circuit a 16 control mo uies a...along with lather modules of the DCS-1000 family. ’The complete instrument consists of plug-in circuit boards that allow easy Teplacement of a...Maintenance-Most systems indicate trouble areas with diagnostic routines or integral LED indicators so that circuit boards can be replaced to correct
Attachment method for stacked integrated circuit (IC) chips
Bernhardt, Anthony F.; Malba, Vincent
1999-01-01
An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.
PUZZLE - A program for computer-aided design of printed circuit artwork
NASA Technical Reports Server (NTRS)
Harrell, D. A. W.; Zane, R.
1971-01-01
Program assists in solving spacing problems encountered in printed circuit /PC/ design. It is intended to have maximum use for two-sided PC boards carrying integrated circuits, and also aids design of discrete component circuits.
Biodegradable materials for multilayer transient printed circuit boards.
Huang, Xian; Liu, Yuhao; Hwang, Suk-Won; Kang, Seung-Kyun; Patnaik, Dwipayan; Cortes, Jonathan Fajardo; Rogers, John A
2014-11-19
Biodegradable printed circuit boards based on water-soluble materials are demonstrated. These systems can dissolve in water within 10 mins to yield end-products that are environmentally safe. These and related approaches have the potential to reduce hazardous waste streams associated with electronics disposal. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors
ERIC Educational Resources Information Center
Weidenhammer, Jeffrey D.
2007-01-01
A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.
NASA Technical Reports Server (NTRS)
1993-01-01
Trace Laboratories is an independent testing laboratory specializing in testing printed circuit boards, automotive products and military hardware. Technical information from NASA Tech Briefs and two subsequent JPL Technical Support packages have assisted Trace in testing surface insulation resistance on printed circuit board materials. Testing time was reduced and customer service was improved because of Jet Propulsion Laboratory technical support packages.
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
78 FR 75360 - Notice of Issuance of Final Determination Concerning Certain Ethernet Switches
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... printed circuit board assembly (``PCBA''), chassis, top cover, power supply, and fans. The switches... printed circuit board is populated with various electronic components to make a PCBA. 2. The PCBA is... Singapore. You argue that without the EOS software, the units exported from Singapore lack the intelligence...
RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation
Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Lai, Chao-Sung; Ying, Shang-Ping
2018-01-01
The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts’ material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method. PMID:29494534
RGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation.
Li, Ying-Chang; Chang, Yuan-Hsiao; Singh, Preetpal; Chang, Liann-Be; Yeh, Der-Hwa; Chao, Ting-Yu; Jian, Si-Yun; Li, Yu-Chi; Tan, Cher Ming; Lai, Chao-Sung; Chow, Lee; Ying, Shang-Ping
2018-03-01
The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requirements of high light output and better color mixing, a three-dimensional (3-D) stacked flip-chip (FC) LED module is proposed and demonstrated. To realize light penetration and mixing, the mentioned 3-D vertically stacking RGB LEDs use transparent glass as FC package submounts called glass circuit boards (GCB). Light emitted from each GCB stacked LEDs passes through each other and thus exhibits good output efficiency and homogeneous light-mixing characteristics. In this work, the parasitic problem of heat accumulation, which caused by the poor thermal conductivity of GCB and leads to a serious decrease in output efficiency, is solved by a proposed transparent cooling oil encapsulation (OCP) method.
Zhang, Yanhong; Huang, Hong; Xia, Zhengbin; Chen, Huanqin
2008-07-01
Thermal degradation of pyrolysis of waste circuit boards was investigated by high-resolution pyrolysis gas chromatography-mass spectrometry (PyGC-MS) and thermogravimetry (TG). In helium atmosphere, the products of FR-4 waste printed circuit board were pyrolyzed at 350, 450, 550, 650, and 750 degrees degrees C, separately, and the pyrolysis products were identified by online MS. The results indicated that the pyrolysis products of the FR-4 waste circuit board were three kinds of substances, such as the low boiling point products, phenol, bisphenol and their related products. Moreover, under 300 degrees degrees C, only observed less pyrolysis products. As the increase of pyrolysis temperature, the relative content of the low boiling point products increased. In the range of 450-650 degrees degrees C, the qualitative analysis and character were similar, and the relative contents of phenol and bisphenol were higher. The influence of pyrolysis temperature on pyrolyzate yields was studied. On the basis of the pyrolyzate profile and the dependence of pyrolyzate yields on pyrolysis temperature, the thermal degradation mechanism of brominated epoxy resin was proposed.
NASA Astrophysics Data System (ADS)
Semenok, Dmitrii
2014-05-01
A method is described that is promising for application metal conductors on ceramic substrates during printed-circuit boards (PCBs) production without masking plate. The main idea of laser-induced metal deposition from solution (LCLD) consists of implementation of chemical micro reactor by using a focused laser beam. In this reactor the red/ox reaction would be initiated due to heating of a reaction medium. We used a 532 nm DPSS laser (power: 2100 mW) and water solutions of organic alcohols with low molecular weight, ethanol and isopropanol as reductants. The results of deposition were studied using the SEM, EDX methods and impedance spectroscopy. The equivalent resistance-capacitance circuit of copper tracks was constructed. The experiments showed that increasing the rate of deposition of nanostructured copper tracks up to 50 μm/s with electrical resistivity 5 Ohm/cm is possible by replacing the well-known reductants such as formaldehyde and D-sorbitol with iso-propanol.
Epoxy bond and stop etch fabrication method
Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.
2000-01-01
A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.
Transient digitizer with displacement current samplers
McEwan, T.E.
1996-05-21
A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board. 16 figs.
Transient digitizer with displacement current samplers
McEwan, Thomas E.
1996-01-01
A low component count, high speed sample gate, and digitizer architecture using the sample gates is based on use of a signal transmission line, a strobe transmission line and a plurality of sample gates connected to the sample transmission line at a plurality of positions. The sample gates include a strobe pickoff structure near the strobe transmission line which generates a charge displacement current in response to propagation of the strobe signal on the strobe transmission line sufficient to trigger the sample gate. The sample gate comprises a two-diode sampling bridge and is connected to a meandered signal transmission line at one end and to a charge-holding cap at the other. The common cathodes are reverse biased. A voltage step is propagated down the strobe transmission line. As the step propagates past a capacitive pickoff, displacement current i=c(dv/dT), flows into the cathodes, driving the bridge into conduction and thereby charging the charge-holding capacitor to a value related to the signal. A charge amplifier converts the charge on the charge-holding capacitor to an output voltage. The sampler is mounted on a printed circuit board, and the sample transmission line and strobe transmission line comprise coplanar microstrips formed on a surface of the substrate. Also, the strobe pickoff structure may comprise a planar pad adjacent the strobe transmission line on the printed circuit board.
ERIC Educational Resources Information Center
School Science Review, 1980
1980-01-01
Outlines a variety of laboratory procedures, discussions, and demonstrations including a no-solder circuit board, damped to maintained oscillations with L-C circuits, polaroid strobe photos, resistive putty, soldering and circuit checking exercise, electromagnetic radiation, square pulses in C-R circuits, and testing an oscillating system. (GS)
Sampling and Control Circuit Board for an Inertial Measurement Unit
NASA Technical Reports Server (NTRS)
Chelmins, David; Powis, Rick
2012-01-01
Spacesuit navigation is one component of NASA s efforts to return humans to the Moon. Studies performed at the NASA Glenn Research Center (GRC) considered various navigation technologies and filtering approaches to enable navigation on the lunar surface. As part of this effort, microelectromechanical systems (MEMS) inertial measurement units (IMUs) were studied to determine if they could supplement a radiometric infrastructure. MEMS IMUs were included in the Lunar Extra-Vehicular Activity Crewmember Location Determination System (LECLDS) testbed during NASA s annual Desert Research and Technology Studies (D-RATS) event in 2009 and 2010. The testbed included one IMU in 2009 and three IMUs in 2010, along with a custom circuit board interfacing between the navigation processor and each IMU. The board was revised for the 2010 test, and this paper documents the design details of this latest revision of the interface circuit board and firmware.
Pressure-Sensor Assembly Technique
NASA Technical Reports Server (NTRS)
Pruzan, Daniel A.
2003-01-01
Nielsen Engineering & Research (NEAR) recently developed an ultrathin data acquisition system for use in turbomachinery testing at NASA Glenn Research Center. This system integrates a microelectromechanical- systems- (MEMS-) based absolute pressure sensor [0 to 50 psia (0 to 345 kPa)], temperature sensor, signal-conditioning application-specific integrated circuit (ASIC), microprocessor, and digital memory into a package which is roughly 2.8 in. (7.1 cm) long by 0.75 in. (1.9 cm) wide. Each of these components is flip-chip attached to a thin, flexible circuit board and subsequently ground and polished to achieve a total system thickness of 0.006 in. (0.15 mm). Because this instrument is so thin, it can be quickly adhered to any surface of interest where data can be collected without disrupting the flow being investigated. One issue in the development of the ultrathin data acquisition system was how to attach the MEMS pressure sensor to the circuit board in a manner which allowed the sensor s diaphragm to communicate with the ambient fluid while providing enough support for the chip to survive the grinding and polishing operations. The technique, developed by NEAR and Jabil Technology Services Group (San Jose, CA), is described below. In the approach developed, the sensor is attached to the specially designed circuit board, see Figure 1, using a modified flip-chip technique. The circular diaphragm on the left side of the sensor is used to actively measure the ambient pressure, while the diaphragm on the right is used to compensate for changes in output due to temperature variations. The circuit board is fabricated with an access hole through it so that when the completed system is installed onto a wind tunnel model (chip side down), the active diaphragm is exposed to the environment. After the sensor is flip-chip attached to the circuit board, the die is underfilled to support the chip during the subsequent grinding and polishing operations. To prevent this underfill material from getting onto the sensor s diaphragms, the circuit board is fabricated with two 25- micrometer-tall polymer rings, sized so that the diaphragms fit inside the rings once the chip is attached.
Double sided circuit board and a method for its manufacture
Lindenmeyer, Carl W.
1989-01-01
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths.
Double sided circuit board and a method for its manufacture
Lindenmeyer, C.W.
1988-04-14
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths. 4 figs.
Double sided circuit board and a method for its manufacture
Lindenmeyer, Carl W.
1989-07-04
Conductance between the sides of a large double sided printed circuit board is provided using a method which eliminates the need for chemical immersion or photographic exposure of the entire large board. A plurality of through-holes are drilled or punched in a substratum according to the desired pattern, conductive laminae are made to adhere to both sides of the substratum covering the holes and the laminae are pressed together and permanently joined within the holes, providing conductive paths.
System on a Chip (SoC) Overview
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2010-01-01
System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.
Compact multiwavelength transmitter module for multimode fiber optic ribbon cable
Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.
2002-01-01
A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.
Thermal and optical aspects of glob-top design for phosphor converted white LED light sources
NASA Astrophysics Data System (ADS)
Sommer, Christian; Fulmek, Paul; Nicolics, Johann; Schweitzer, Susanne; Nemitz, Wolfgang; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Schrank, Franz; Langer, Gregor; Wenzl, Franz P.
2013-09-01
For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for correlated color temperature (CCT) reproducibility and maintenance under control. In this regard, it is of essential importance to understand how geometrical, optical and thermal properties of the color conversion elements (CCE), which typically consist of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired CCT value. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board by chip-on-board technology and a CCE with a glob-top configuration on the top of it as a model system and discuss the impact of the CCE shape and size on CCT constancy with respect to substrate reflectivity and thermal load of the CCEs. From these studies, some general conclusions for improved glob-top design can be drawn.
Wearable Inset-Fed FR4 Microstrip Patch Antenna Design
NASA Astrophysics Data System (ADS)
Zaini, S. R. Mohd; Rani, K. N. Abdul
2018-03-01
This project proposes the design of a wireless body area network (WBAN) microstrip patch antenna covered by the jeans fabric as the outer layer operating at the center frequency, fc of 2.40 GHz. Precisely, the microstrip patch antenna with the inset-fed edge technique is designed and simulated systematically by using the Keysight Advanced Design System (ADS) software where the FR4 board with the dielectric constant, ɛr of 4.70, dissipation factor or loss tangent, tan δ of 0.02 and height, h of 1.60 mm is the chosen dielectric substrate. The wearable microstrip patch antenna design is then fabricated using the FR4 printed circuit board (PCB) material, hidden inside the jeans fabric, and attached to clothing, such as a jacket accordingly. Simulation and fabrication measurement results show that the designed microstrip patch antenna characteristics can be applied significantly within the industrial, scientific, and medical (ISM) radio band, which is at fc = 2.40 GHz.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
1995-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2004-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Circuit board routing attachment for Fermilab Gerber plotter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindenmeyer, C.
1984-05-10
A new and potentially important method of producing large circuit boards has been developed at Fermilab. A Gerber Flat Bed Plotter with an active area of 5' x 16' has been fitted with a machining head to produce a circuit board without the use of photography or chemicals. The modifications of the Gerber Plotter do not impair its use as a photoplotter or pen plotter, the machining head is merely exchanged with the standard attachments. The modifications to the program are minimal; this will be described in another report. The machining head is fitted with an air bearing motorized spindlemore » driven at a speed of 40,000 rpm to 90,000 rpm. The spindle also is provided with air bearings on its outside diameter, offering frictionless vertical travel guidance. Vertical travel of the spindle is driven by a spring return single acting air cylinder. An adjustable hydraulic damper slows the spindle travel near the end of its downward stroke. Two programmable stops control spindle down stroke position, and limit switches are provided for position feedback to the control system. A vacuum system collects chips at the cutter head. No lubrication or regular maintenance is required. The circuit board to be fabricated is supported on a porous plastic mat which allows table vacuum to hold the board in place while allowing the cutters or drills to cut through the board without damaging the rubber platen of the plotter. The perimeter of the board must be covered to the limits of the table vacuum area used to prevent excessive leakage.« less
Glass Fibers for Printed Circuit Boards
NASA Astrophysics Data System (ADS)
Longobardo, Anthony V.
Fiberglass imparts numerous positive benefits to modern printed circuit boards. Reinforced laminate composites have an excellent cost-performance relationship that makes sense for most applications. At the leading edge of the technology, new glass fibers with improved properties, in combination with the best resin systems available, are able to meet very challenging performance, cost, and regulatory demands while remaining manufacturable.
Printed-Circuit-Board Soldering Training for Group IV Personnel.
ERIC Educational Resources Information Center
Hooprich, E. A.; Matlock, E. W.
As part of a larger program to determine which Navy skills can be learned by lower aptitude personnel, and which methods and techniques would be most effective, an experimental course in printed circuit board soldering was given to 186 Group IV students in 13 classes. Two different training approaches--one stressing instructor guidance and the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, B.K.; Chinn, V.K.
1981-01-01
The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)
Detection of Banned and Restricted Ozone-Depleting Chemicals in Printed Circuit Boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Richard N.; Wright, Bob W.
2008-12-01
A study directed toward the detection of halogenated solvents in the matrix of circuit boards has recently been completed. This work was undertaken to demonstrate the potential for reliable detection of solvents used during the fabrication of printed circuit boards (PCB). Since many of these solvents are now, or soon will be, restricted under the terms of legislation enacted in response to the Montreal Protocol and other international agreements, the work described here, conducted over a period of more that 4 years, has provided guidance for the development of chromatographic system and analytical protocol to assure compliance with regulations introducedmore » to control, or ban, industrial solvents associated with adverse environmental impact.« less
Advanced On-Board Processor (AOP). [for future spacecraft applications
NASA Technical Reports Server (NTRS)
1973-01-01
Advanced On-board Processor the (AOP) uses large scale integration throughout and is the most advanced space qualified computer of its class in existence today. It was designed to satisfy most spacecraft requirements which are anticipated over the next several years. The AOP design utilizes custom metallized multigate arrays (CMMA) which have been designed specifically for this computer. This approach provides the most efficient use of circuits, reduces volume, weight, assembly costs and provides for a significant increase in reliability by the significant reduction in conventional circuit interconnections. The required 69 CMMA packages are assembled on a single multilayer printed circuit board which together with associated connectors constitutes the complete AOP. This approach also reduces conventional interconnections thus further reducing weight, volume and assembly costs.
A Formal Algorithm for Routing Traces on a Printed Circuit Board
NASA Technical Reports Server (NTRS)
Hedgley, David R., Jr.
1996-01-01
This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.
Attachment method for stacked integrated circuit (IC) chips
Bernhardt, A.F.; Malba, V.
1999-08-03
An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.
Interface Circuit Board For Space-Shuttle Communications
NASA Technical Reports Server (NTRS)
Parrish, Brett T.
1995-01-01
Report describes interface electronic circuit developed to enable ground controllers to send commands and data via Ku-band radio uplink to multiple circuits connected to standard IEEE-488 general-purpose interface bus in space shuttle. Design of circuit extends data-throughput capability of communication system.
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1983-01-01
An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.
All-semiconductor metamaterial-based optical circuit board at the microscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn
2015-07-07
The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less
A filter circuit board for the Earthworm Seismic Data Acquisition System
Jensen, Edward Gray
2000-01-01
The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.
Direct write fabrication of waveguides and interconnects for optical printed wiring boards
NASA Astrophysics Data System (ADS)
Dingeldein, Joseph C.
Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.
Microfabricated field calibration assembly for analytical instruments
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM; Rodacy, Philip J [Albuquerque, NM; Simonson, Robert J [Cedar Crest, NM
2011-03-29
A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…
Projects made with the Berkeley Lab Circuit Board
dependence of cosmic rays. Greg Poe, a student at Travis High School in Richmond, Texas, received an the journal Physics Education. He used the Berkeley Lab circuit board together with spare parts from New York Schools Cosmic Particle Telescope workshop. Ken Cecire has created a web page which describes
Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei
2010-12-01
A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.
Coaxial connector for use with printed circuit board edge connector
Howard, Donald R.; MacGill, Robert A.
1989-01-01
A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.
Polymer substrate temperature sensor array for brain interfaces.
Kim, Insoo; Fok, Ho Him R; Li, Yuanyuan; Jackson, Thomas N; Gluckman, Bruce J
2011-01-01
We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS.
Polymer Substrate Temperature Sensor Array for Brain Interfaces
Kim, Insoo; Fok, Ho Him R.; Li, Yuanyuan; Jackson, Thomas N.; Gluckman, Bruce J.
2012-01-01
We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25~100 μm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 20~40 °C using a surface mounted thermocouple and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041
NASA Astrophysics Data System (ADS)
Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Bennett, Linsey; Li, Ailin; De la Cruz, Abraham; Andrews, Derek; Lammert, Stephen A.; Hawkins, Aaron R.; Austin, Daniel E.
2018-02-01
We present a new two-plate linear ion trap mass spectrometer that overcomes both performance-based and miniaturization-related issues with prior designs. Borosilicate glass substrates are patterned with aluminum electrodes on one side and wire-bonded to printed circuit boards. Ions are trapped in the space between two such plates. Tapered ejection slits in each glass plate eliminate issues with charge build-up within the ejection slit and with blocking of ions that are ejected at off-nominal angles. The tapered slit allows miniaturization of the trap features (electrode size, slit width) needed for further reduction of trap size while allowing the use of substrates that are still thick enough to provide ruggedness during handling, assembly, and in-field applications. Plate spacing was optimized during operation using a motorized translation stage. A scan rate of 2300 Th/s with a sample mixture of toluene and deuterated toluene (D8) and xylenes (a mixture of o-, m-, p-) showed narrowest peak widths of 0.33 Th (FWHM).
Highly efficient TiO2-based microreactor for photocatalytic applications.
Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran
2013-09-25
A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.
Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS
NASA Astrophysics Data System (ADS)
Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.
2003-06-01
We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.
78 FR 57648 - Notice of Issuance of Final Determination Concerning Video Teleconferencing Server
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... the Chinese- origin Video Board and the Filter Board, impart the essential character to the video... includes the codec; a network filter electronic circuit board (``Filter Board''); a housing case; a power... (``Linux software''). The Linux software allows the Filter Board to inspect each Ethernet packet of...
NASA Astrophysics Data System (ADS)
Brown, Delilah A.; Morgan, Sean; Peldzinski, Vera; Brüning, Ralf
2017-11-01
Copper films for printed circuit board applications have to be fine-grained to achieve even filling of vias. Electroplated Cu films on roll annealed Cu substrates may have unacceptably large epitaxial crystals. Here galvanic films were plated on oriented single-crystal Cu substrates from an additive-free electrolyte, as well as DC plating and pulse reverse (PR) plating with additives. The distribution of crystallite orientations was mapped with XRD and compared with the microstructure determined by SEM. For the additive-free bath on [1 1 1] and [1 0 0] oriented surfaces a gradual transition from epitaxial to polycrystalline is seen, while films on [1 1 0] substrates are persistently epitaxial. Without bath additives, twinning is the main mechanism for the transition to polycrystalline texture. For DC plating, additives (carriers, accelerators and levelers) promote fine-grained films with isotropic grain orientations, with films on [1 1 0] substrates being partially isotropic. Plating with carriers and accelerators (no leveler) yields films with many distinct crystallite orientations. These orientations result from up to five steps of recursive twinning. PR plating produces isotropic films with no or very few twins (〈1 1 1〉 and 〈1 0 0〉 substrates, respectively), while on 〈1 1 0〉 oriented surfaces the deposits are about 20% epitaxial.
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
Active pixel sensor array with multiresolution readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.
NASA Astrophysics Data System (ADS)
Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atsushi; Okazaki, Yuji; Asai, Hideki
In this paper, we studied the use of common-mode noise reduction technique for in-vehicle electronic equipment in an actual instrument design. We have improved the circuit model of the common-mode noise that flows to the wire harness to add the effect of a bypass capacitor located near the LSI. We analyzed the improved circuit model using a circuit simulator and verified the effectiveness of the noise reduction condition derived from the circuit model. It was also confirmed that offsetting the impedance mismatch in the PCB section requires to make a circuit constant larger than that necessary for doing the impedance mismatch in the LSI section. An evaluation circuit board comprising an automotive microcomputer was prototyped to experiment on the common-mode noise reduction effect of the board. The experimental results showed the noise reduction effect of the board. The experimental results also revealed that the degree of impedance mismatch in the LSI section can be estimated by using a PCB having a known impedance. We further inquired into the optimization of impedance parameters, which is difficult for actual products at present. To satisfy the noise reduction condition composed of numerous parameters, we proposed a design method using an optimization algorithm and an electromagnetic field simulator, and confirmed its effectiveness.
System and method for interfacing large-area electronics with integrated circuit devices
Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd
2016-07-12
A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.
Single Circuit Board Implementation of a Digitally Compensated SAW Oscillator (DCSO).
1983-12-01
Through this project a design for a Digitally Compensated SAW Oscillator (DCSO) was developed and implemented on a single circuit board. The AFIT IC, which...is the heart of the design , did not function properly. Therefore, my work was halted after testing several of the subcircuits and assembling the...o.... -7 Standards ........ o..o....... -8 Approach-9 Sequence of Presentation .................. -10 II, Design
ERIC Educational Resources Information Center
Cady, Susan G.
2014-01-01
The circuit board found in a commercial musical greeting card is used to supply music for electrochemical cell demonstrations. Similar to a voltmeter, the "modified" musical device is connected to a chemical reaction that produces electricity. The commercial 1 V battery inside the greeting card circuit board can be replaced with an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levermore, Levermore; Pang, Huiqing; Rajan, Kamala
2014-09-16
Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at leastmore » one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.« less
An expert-based model for selecting the most suitable substrate material type for antenna circuits
NASA Astrophysics Data System (ADS)
AL-Oqla, Faris M.; Omar, Amjad A.
2015-06-01
Quality and properties of microwave circuits depend on all the circuit components. One of these components is the substrate. The process of substrate material selection is a decision-making problem that involves multicriteria with objectives that are diverse and conflicting. The aim of this work was to select the most suitable substrate material type to be used in antennas in the microwave frequency range that gives best performance and reliability of the substrate. For this purpose, a model was built to ease the decision-making that includes hierarchical alternatives and criteria. The substrate material type options considered were limited to fiberglass-reinforced epoxy laminates (FR4 εr = 4.8), aluminium (III) oxide (alumina εr = 9.6), gallium arsenide III-V compound (GaAs εr = 12.8) and PTFE composites reinforced with glass microfibers (Duroid εr = 2.2-2.3). To assist in building the model and making decisions, the analytical hierarchy process (AHP) was used. The decision-making process revealed that alumina substrate material type was the most suitable choice for the antennas in the microwave frequency range that yields best performance and reliability. In addition, both the size of the circuit and the loss tangent of the substrates were found to be the most contributing subfactors in the antenna circuit specifications criterion. Experimental assessments were conducted utilising The Expert Choice™ software. The judgments were tested and found to be precise, consistent and justifiable, and the marginal inconsistency values were found to be very narrow. A sensitivity analysis was also presented to demonstrate the confidence in the drawn conclusions.
Cooling/grounding mount for hybrid circuits
NASA Technical Reports Server (NTRS)
Bagstad, B.; Estrada, R.; Mandel, H.
1981-01-01
Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.
Experimental industrial signal acquisition board in a large scientific device
NASA Astrophysics Data System (ADS)
Zeng, Xiangzhen; Ren, Bin
2018-02-01
In order to measure the industrial signal of neutrino experiment, a set of general-purpose industrial data acquisition board has been designed. It includes the function of switch signal input and output, and the function of analog signal input. The main components are signal isolation amplifier and filter circuit, ADC circuit, microcomputer systems and isolated communication interface circuit. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, J.M.; Pergantis, C.G.
Organic and organo-metallic coatings are presently being applied over bare copper as an approach to improve the co-planarity of circuit boards. Conformal organic solderability preservative coatings (OSP) are environmentally and economically advantageous over the more commonly used lead based coatings. Problems arise in assessing the solderability of the bare copper and the integrity of the organic coating. Specular reflectance Fourier transform infrared spectroscopy (FT-IR) was utilized to monitor and evaluate the formation of Cu oxides occurring on copper substrates used in the manufacturing of electronic circuit boards. Previous studies reported the utility of this technique. By measuring the oxide andmore » protective coating characteristics of these surfaces, their solderability performance can rapidly be evaluated in a manufacturing environment. OSP coated test specimens were subjected to hot-dry and hot-wet environmental conditions using MIL-STD-202F and MIL-STD-883E as guides. The resultant FT-IR spectra provided clear evidence for the formation of various Cu oxides at the Cu/OSP interface over exposure time, for the samples subjected to the hot-dry environment. IR spectral bands consistent with O-Cu-O and Cu{sub 2}O{sub 2} formation appear, while very minimal deterioration to the OSP coating was observed. The appearance of the Cu oxide layers grew steadily with increased environmental exposure. Specimens subjected to the hot-wet conditions showed no significant signs of deterioration. The IR data can be directly correlated to solderability performance as evaluated by wet balance testing.« less
Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok
2018-01-01
The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144
ERIC Educational Resources Information Center
Sistrunk, Walter E.; Guin, Mary Linda
This paper offers administrators, teachers, and school boards an introduction to legal issues surrounding teacher dismissal and school desegregation and summarizes a study of all teacher dismissal cases heard from 1970 through 1981 in the Fifth Circuit Court of Appeals. Most of the report is devoted to an overview of the historical development of…
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
Method for producing a hybridization of detector array and integrated circuit for readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)
1993-01-01
A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.
2006-01-01
The figure depicts a unit that contains a rotary-position or a rotary-speed sensor, plus electronic circuitry necessary for its operation, all enclosed in a single housing with a shaft for coupling to an external rotary machine. This rotation sensor unit is complete: when its shaft is mechanically connected to that of the rotary machine and it is supplied with electric power, it generates an output signal directly indicative of the rotary position or speed, without need for additional processing by other circuitry. The incorporation of all of the necessary excitatory and readout circuitry into the housing (in contradistinction to using externally located excitatory and/or readout circuitry) in a compact arrangement is the major difference between this unit and prior rotation-sensor units. The sensor assembly inside the housing includes excitatory and readout integrated circuits mounted on a circular printed-circuit board. In a typical case in which the angle or speed transducer(s) utilize electromagnetic induction, the assembly also includes another circular printed-circuit board on which the transducer windings are mounted. A sheet of high-magnetic permeability metal ("mu metal") is placed between the winding board and the electronic-circuit board to prevent spurious coupling of excitatory signals from the transducer windings to the readout circuits. The housing and most of the other mechanical hardware can be common to a variety of different sensor designs. Hence, the unit can be configured to generate any of variety of outputs by changing the interior sensor assembly. For example, the sensor assembly could contain an analog tachometer circuit that generates an output proportional (in both magnitude and sign or in magnitude only) to the speed of rotation.
Effect of Ground Layer Patterns with Slits on Conducted Noise Currents from Printed Circuit Board
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Unou, Takanori; Ichikawa, Kouji; Fujiwara, Osamu
Electromagnetic disturbances for vehicle-mounted radios can be caused by conducted noise currents that flows out from electronic equipment for vehicles to wire-harnesses. In this paper, for reducing the conducted noise currents from electronic equipment for vehicles, we made a simulation and experiment on how ground patterns affect the noise currents from three-layer printed circuit boards (PCBs) with slit-types and plane-type ground patterns. As a result, we could confirm that slits on a ground pattern allow conducted noise currents to flow out from PCBs to wire-harnesses. For the PCBs with plane-type ground and one of three slit-type patterns, on the other hand, both the simulation and examination showed that resonance phenomena occur at unexpected low-frequencies. A circuit analysis revealed that the above phenomena can be caused by the imbalance of a bridge circuit consisting of the trace circuits on the PCB.
Copper circuit patterning on polymer using selective surface modification and electroless plating
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2017-02-01
We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.
Solar cell circuit and method for manufacturing solar cells
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor)
2010-01-01
The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.
Szałatkiewicz, Jakub
2016-01-01
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804
Szałatkiewicz, Jakub
2016-08-10
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.
Cleaning of printed circuit assemblies with surface-mounted components
NASA Astrophysics Data System (ADS)
Arzigian, J. S.
The need for ever-increasing miniaturization of airborne instrumentation through the use of surface mounted components closely placed on printed circuit boards highlights problems with traditional board cleaning methods. The reliability of assemblies which have been cleaned with vapor degreasing and spray cleaning can be seriously compromised by residual contaminants leading to solder joint failure, board corrosion, and even electrical failure of the mounted parts. In addition, recent government actions to eliminate fully halogenated chlorofluorocarbons (CFC) and chlorinated hydrocarbons from the industrial environment require the development of new cleaning materials and techniques. This paper discusses alternative cleaning materials and techniques and results that can be expected with them. Particular emphasis is placed on problems related to surface-mounted parts. These new techniques may lead to improved circuit reliability and, at the same time, be less expensive and less environmentally hazardous than the traditional systems.
Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.
1979-11-23
An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.
A CMOS ASIC Design for SiPM Arrays
Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.
2012-01-01
Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923
Testing interconnected VLSI circuits in the Big Viterbi Decoder
NASA Technical Reports Server (NTRS)
Onyszchuk, I. M.
1991-01-01
The Big Viterbi Decoder (BVD) is a powerful error-correcting hardware device for the Deep Space Network (DSN), in support of the Galileo and Comet Rendezvous Asteroid Flyby (CRAF)/Cassini Missions. Recently, a prototype was completed and run successfully at 400,000 or more decoded bits per second. This prototype is a complex digital system whose core arithmetic unit consists of 256 identical very large scale integration (VLSI) gate-array chips, 16 on each of 16 identical boards which are connected through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques were developed for debugging, testing, and locating faults inside individual chips, on boards, and within the entire decoder. The methods are based upon hierarchical structure in the decoder, and require that chips or boards be wired themselves as Viterbi decoders. The basic procedure consists of sending a small set of known, very noisy channel symbols through a decoder, and matching observables against values computed by a software simulation. Also, tests were devised for finding open and short-circuited wires which connect VLSI chips on the boards and through the backplane.
Evaluation of test equipment for the detection of contamination on electronic circuits
NASA Astrophysics Data System (ADS)
Bergendahl, C. G.; Dunn, B. D.
1984-08-01
The reproducibility, sensitivity and ease of operation of test equipment for the detection of ionizable contaminants on the surface of printed circuit assemblies were assessed. The characteristics of the test equipment are described. Soldering fluxes were chosen as contaminants and were applied in controlled amounts to printed-circuit board assemblies possessing two different component populations. Results show that the relationship between equipment readings varies with flux type. Each kind of test equipment gives a good measure of board cleanliness, although reservations exist concerning the interpretation of such results. A test method for the analysis of total (organic and inorganic) halides in solder fluxes is presented.
Gallium Arsenide Monolithic Optoelectronic Circuits
NASA Astrophysics Data System (ADS)
Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.
1981-07-01
The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.
Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon
2016-06-22
We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals.
Optical interconnect technologies for high-bandwidth ICT systems
NASA Astrophysics Data System (ADS)
Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki
2016-03-01
The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.
In-line rotating torque sensor with on-board amplifier
Kronberg, James W.
1990-01-01
A rotating torque sensor apparatus and method for measuring small torques comprising a shaft, a platform having a circuit board and a first moment arm attached to the shaft, a rotatable wheel coaxial with the shaft and having a second moment arm spaced apart from the first moment arm with a load cell therebetween for generating an electric signal as the torque is applied to the shaft and transferred through the moment arms to the load cell. The electrical signal is conducted from the load cell to the circuit board for filtering and amplification before being extracted from the torque assembly through a slip ring.
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-03-22
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.
An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses
Yuan, Tao; Li, Chaodong; Fan, Pingqing
2018-01-01
Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses—elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason’s model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably. PMID:29565825
Vacuum die attach for integrated circuits
Schmitt, E.H.; Tuckerman, D.B.
1991-09-10
A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.
Vacuum die attach for integrated circuits
Schmitt, Edward H.; Tuckerman, David B.
1991-01-01
A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required.
Bright Ideas for Measuring Light.
ERIC Educational Resources Information Center
Amend, John R.; Schuler, John A.
1983-01-01
Describes an inexpensive device (around $8.00) for measuring light. The circuit used includes five resistors, three small capacitors, a cadmium sulfide light sensor, two integrated circuits, and two light-emitting diodes. The unit is constructed on a small perforated circuit board and powered by a 9-V transistor radio battery. (JN)
Shock absorbing mount for electrical components
NASA Technical Reports Server (NTRS)
Dillon, R. F., Jr.; Mayne, R. C. (Inventor)
1975-01-01
A shock mount for installing electrical components on circuit boards is described. The shock absorber is made of viscoelastic material which interconnects the electrical components. With this system, shocks imposed on one component of the circuit are not transmitted to other components. A diagram of a typical circuit is provided.
Application of industrial robots in automatic disassembly line of waste LCD displays
NASA Astrophysics Data System (ADS)
Wang, Sujuan
2017-11-01
In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.
Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish
2018-09-01
In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.
Learning high-quality soldering
NASA Technical Reports Server (NTRS)
Read, W. S.
1981-01-01
Soldering techniques for high-reliability electronic equipment are taught in 5 day course at NASA's Jet Propulsion Laboratory. Topic covered include new circuit assembly, printed-wiring board reworking, circuit changes, wire routing, and component installation.
Sensing circuits for multiwire proportional chambers
NASA Technical Reports Server (NTRS)
Peterson, H. T.; Worley, E. R.
1977-01-01
Integrated sensing circuits were designed, fabricated, and packaged for use in determining the direction and fluence of ionizing radiation passing through a multiwire proportional chamber. CMOS on sapphire was selected because of its high speed and low power capabilities. The design of the proposed circuits is described and the results of computer simulations are presented. The fabrication processes for the CMOS on sapphire sensing circuits and hybrid substrates are outlined. Several design options are described and the cost implications of each discussed. To be most effective, each chip should handle not more than 32 inputs, and should be mounted on its own hybrid substrate.
Integrated circuit with dissipative layer for photogenerated carriers
Myers, D.R.
1988-04-20
The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.
Method of forming crystalline silicon devices on glass
McCarthy, Anthony M.
1995-01-01
A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.
Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R
2014-11-01
E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.
A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques
NASA Astrophysics Data System (ADS)
Zou, Zhi-Qing; Chen, Xiang; Jin, Qing-Hui; Yang, Meng-Su; Zhao, Jian-Long
2005-08-01
This paper describes a novel miniaturized multi-chamber array capable of high throughput polymerase chain reaction (PCR). The structure of the proposed device is verified by using finite element analysis (FEA) to optimize the thermal performance, and then implemented on a glass-silicon substrate using a standard MEMS process and post-processing. Thermal analysis simulation and verification of each reactor cell is equipped with integrated Pt temperature sensors and heaters at the bottom of the reaction chamber for real-time accurate temperature sensing and control. The micro-chambers are thermally separated from each other, and can be controlled independently. The multi-chip array was packaged on a printed circuit board (PCB) substrate using a conductive polymer flip-chip bonding technique, which enables effective heat dissipation and suppresses thermal crosstalk between the chambers. The designed system has successfully demonstrated a temperature fluctuation of ±0.5 °C during thermal multiplexing of up to 2 × 2 chambers, a full speed of 30 min for 30 cycle PCR, as well as the capability of controlling each chamber digitally and independently.
NASA Technical Reports Server (NTRS)
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
46 CFR 28.370 - Wiring methods and materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... that affects one cable does not affect the other. (d) Cable and wire for power and lighting circuits... Operate With More Than 16 Individuals on Board § 28.370 Wiring methods and materials. (a) All cable and... circuit. (b) Each conductor must be No. 22 AWG or larger. Conductors in power and lighting circuits must...
Silicon Carbide Integrated Circuit Chip
2015-02-17
A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.
Flexible programmable logic module
Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.
2001-01-01
The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.
NASA Astrophysics Data System (ADS)
Kleinert, M.; Reinke, P.; Bach, H.-G.; Brinker, W.; Zawadzki, C.; Dietrich, A.; de Felipe, D.; Keil, N.; Schell, M.
2017-02-01
Graphene with its high carrier mobility as well as its tunable light absorption is an attractive active material for highspeed electro-absorption modulators (EAMs). Large-area CVD-grown graphene monolayers can be transferred onto arbitrary substrates to add active optoelectronic properties to intrinsically passive photonic integration platforms. In this work, we present graphene-based EAMs integrated in passive polymer waveguides. To facilitate modulation frequencies in the GHz range, a 50 Ω termination resistor as well as a DC blocking capacitor are integrated with graphene EAMs for the first time. Large signal data transmission experiments were carried out across the O, C and L optical communications bands. The fastest devices exhibit a 3-dB bandwidth of more than 4 GHz. Our analytical model of the modulation response for the graphene-based EAMs is in good agreement with the measurement results. It predicts that bandwidths greater than 50 GHz are possible with future device iterations. Owing to the absorption properties of the graphene layers, the devices are expected to be functional at smaller wavelengths of interest for optical interconnects and data-communications as well, offering a novel flexibility for the integration of high-speed functionalities in optoelectronic integrated circuits. Our work is the first step towards an Active Optical Printed Circuit Board, hiding the optics completely inside the board and thus removing entry barriers in manufacturing. We believe this will lead to the same success as observed in Active Optical Cables for short range optically wired connections.
NASA Astrophysics Data System (ADS)
Matthews, Scott T.
1991-12-01
The natural convection heat transfer characteristics of a 3 x 3 array of vertically oriented heated protrusions, immersed in a dielectric liquid, were investigated. Aluminum blocks, 24 x 8 x 6 mm, were used to simulate 20 pin dual in-line packages. Surface temperature measurements of the components were made by imbedding copper-constantan thermocouples below the surface of each component face. A constant heat flux was provided to each component using an Inconel foil heating element. Power supplied to each component varied from 0.115 to 2.90 W. The aluminum blocks were mounted on a plexiglass substrate to form a 3 x 3 array of simulated electronic components. The circuit board containing the components was placed in a rectangular, plexiglass enclosure with inner dimensions: L = 203.2 mm H = 152.0 mm W = 82.6 mm, and a wall thickness of 25.4 mm. The upper boundary was maintained at 10 C, while all other exterior surfaces were insulated. The chamber width, measured from the surface of the circuit board to the opposite, inner wall of the enclosure, was varied from 42 to 7 mm by inserting plexiglass spacers into the enclosure. Two dielectric liquids, FC-75 and FC-43, were used as working fluids. Nondimensional data from this study was combined with the data obtained for a horizontal component orientation, to develop an empirical correlation which predicts the Nusselt number as a function of Rayleigh number, Prandtl number, component orientation, and chamber width.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Inukai, Thomas
1995-01-01
In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.
Test Bench for Coupling and Shielding Magnetic Fields
NASA Astrophysics Data System (ADS)
Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.
2016-05-01
This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.
Nanogranular soft magnetic material and on-package integrated inductors
NASA Astrophysics Data System (ADS)
Li, Liangliang
2007-12-01
Integrated inductors used in electronic circuits are mainly spiral-shaped aluminum devices fabricated on Si chip. They have several disadvantages---large silicon area consumption, high DC resistance and high cost. An attractive approach to address these issues is directly integrating inductors into package substrates, which provide plenty of usage area, low resistance and low cost. The goals of this dissertation are designing and fabricating magnetic and air-core inductors with characteristic low resistance and high quality factor on package substrates. The research work includes three parts which are summarized below. First, the CoFeHfO nanogranular magnetic material developed on Si wafers and package substrates by pulsed DC reactive sputtering were investigated. On Si wafers, the optimized CoFeHfO film has soft magnetic properties. On printed circuit board (PCB) substrates, these magnetic properties degrade due to the rough surface. Surface planarization such as chemical-mechanical polishing can be applied on PCB substrates to reduce the surface roughness and hence improve these properties. Second, on-package inductors with small resistances and high quality factors were designed, fabricated, measured and analyzed. Air-core and magnetic inductors (20 design variations) were built on 8-inch PCB substrates. The DC resistances of these inductors are less than 12 mO, one of the lowest values ever reported. The maximum quality factors can be as large as ˜80 at around 1 GHz for the air-core inductors and ˜25 at 200 MHz for the magnetic inductors. Third, inductor simulation was carried out to study the effects of magnetic materials on the properties of inductors using the Ansoft HFSS software package. The measurement data for the permeability spectra of the CoFeHfO film and the tensor nature of the permeability were taken into account in the simulation. The simulation results matched the experimental data for the inductances, resistances and quality factors. This established an accurate method for modeling high-frequency magnetic devices. Using this method, an inductor with a closed magnetic core was studied by varying the geometry of the core and copper coil. It has been found that the inductance of this inductor depends strongly on whether the permeability of the magnetic core is isotropic or anisotropic.
AIN-Coated Al(2)O(3) Substrates For Electronic Circuits
NASA Technical Reports Server (NTRS)
Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen
1996-01-01
Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.
Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique
NASA Astrophysics Data System (ADS)
Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.
2017-08-01
In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.
Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments
NASA Astrophysics Data System (ADS)
Holt, Christopher Michael Bjustrom
This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of the released platform was shown to be better than the performance seen in the anchored sensors while both platforms were significantly better than a simply fabricated wrapped wire sensor. The anchored platform was also used to demonstrate a traditional capacitance based fluid dielectric sensor which was found to work similarly to conventional commercial capacitance probes while being significantly smaller in size.
Lee, Kyu Byung; Kim, Jong Rok; Park, Goon Cherl; Cho, Hyoung Kyu
2016-01-01
Liquid film thickness measurements under temperature-varying conditions in a two-phase flow are of great importance to refining our understanding of two-phase flows. In order to overcome the limitations of the conventional electrical means of measuring the thickness of a liquid film, this study proposes a three-electrode conductance method, with the device fabricated on a flexible printed circuit board (FPCB). The three-electrode conductance method offers the advantage of applicability under conditions with varying temperatures in principle, while the FPCB has the advantage of usability on curved surfaces and in relatively high-temperature conditions in comparison with sensors based on a printed circuit board (PCB). Two types of prototype sensors were fabricated on an FPCB and the feasibility of both was confirmed in a calibration test conducted at different temperatures. With the calibrated sensor, liquid film thickness measurements were conducted via a falling liquid film flow experiment, and the working performance was tested. PMID:28036000
Zhu, P; Chen, Y; Wang, L Y; Zhou, M; Zhou, J
2013-02-01
Separation of waste printed circuit boards (WPCBs) has been a bottleneck in WPCBs resource processing. In this study, the separation of WPCBs was performed using dimethyl sulfoxide (DMSO) as a solvent. Various parameters, which included solid to liquid ratio, temperature, WPCB sizes, and time, were studied to understand the separation of WPCBs by dissolving bromine epoxy resin using DMSO. Experimental results showed that the concentration of dissolving the bromine epoxy resin increased with increasing various parameters. The optimum condition of complete separation of WPCBs was solid to liquid ratio of 1:7 and WPCB sizes of 16 mm(2) at 145°C for 60 min. The used DMSO was vapored under the decompression, which obtained the regenerated DMSO and dissolved bromine epoxy resin. This clean and non-polluting technology offers a new way to separate valuable materials from WPCBs and prevent the environmental pollution of waste printed circuit boards effectively. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here, the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
Reprogrammable read only variable threshold transistor memory with isolated addressing buffer
Lodi, Robert J.
1976-01-01
A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.
Method of forming crystalline silicon devices on glass
McCarthy, A.M.
1995-03-21
A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.
78 FR 69927 - SJI Board of Directors Meeting, Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... STATE JUSTICE INSTITUTE SJI Board of Directors Meeting, Notice AGENCY: State Justice Institute. ACTION: Notice of meeting. SUMMARY: The SJI Board of Directors will be meeting on Monday, December 9, 2013 at 1:00 p.m. The meeting will be held at the 9th Judicial Circuit of Florida in Orlando, Florida...
Method for deposition of a conductor in integrated circuits
Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.
1997-01-01
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)
2005-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.
Single chip camera device having double sampling operation
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)
2002-01-01
A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.
NASA Astrophysics Data System (ADS)
Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue
2017-10-01
The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.
Performance of epitaxial back surface field cells
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.; Baraona, C. R.; Swartz, C. K.
1973-01-01
Epitaxial back surface field structures were formed by depositing a 10 micron thick 10 Omega-cm epitaxial silicon layer onto substrates with resistivities of 0.01, 0.1, 1.0 and 10 Omega-cm. A correlation between cell open-circuit voltage and substrate resistivity was observed and was compared to theory. The cells were also irradiated with 1 MeV electrons to a fluence of 5 X 10 to the 15th power e/cm2. The decrease of cell open-circuit voltage was in excellent agreement with theoretical predictions and the measured short circuit currents were within 2% of the prediction. Calculations are presented of optimum cell performance as functions of epitaxial layer thickness, radiation fluence and substrate diffusion length.
Integrated digital printing of flexible circuits for wireless sensing (Conference Presentation)
NASA Astrophysics Data System (ADS)
Mei, Ping; Whiting, Gregory L.; Schwartz, David E.; Ng, Tse Nga; Krusor, Brent S.; Ready, Steve E.; Daniel, George; Veres, Janos; Street, Bob
2016-09-01
Wireless sensing has broad applications in a wide variety of fields such as infrastructure monitoring, chemistry, environmental engineering and cold supply chain management. Further development of sensing systems will focus on achieving light weight, flexibility, low power consumption and low cost. Fully printed electronics provide excellent flexibility and customizability, as well as the potential for low cost and large area applications, but lack solutions for high-density, high-performance circuitry. Conventional electronics mounted on flexible printed circuit boards provide high performance but are not digitally fabricated or readily customizable. Incorporation of small silicon dies or packaged chips into a printed platform enables high performance without compromising flexibility or cost. At PARC, we combine high functionality c-Si CMOS and digitally printed components and interconnects to create an integrated platform that can read and process multiple discrete sensors. Our approach facilitates customization to a wide variety of sensors and user interfaces suitable for a broad range of applications including remote monitoring of health, structures and environment. This talk will describe several examples of printed wireless sensing systems. The technologies required for these sensor systems are a mix of novel sensors, printing processes, conventional microchips, flexible substrates and energy harvesting power solutions.
Recovery of gold from computer circuit board scrap using aqua regia.
Sheng, Peter P; Etsell, Thomas H
2007-08-01
Computer circuit board scrap was first treated with one part concentrated nitric acid and two parts water at 70 degrees C for 1 h. This step dissolved the base metals, thereby liberating the chips from the boards. After solid-liquid separation, the chips, intermixed with some metallic flakes and tin oxide precipitate, were mechanically crushed to liberate the base and precious metals contained within the protective plastic or ceramic chip cases. The base metals in this crushed product were dissolved by leaching again with the same type of nitric acid-water solution. The remaining solid constituents, crushed chips and resin, plus solid particles of gold, were leached with aqua regia at various times and temperatures. Gold was precipitated from the leachate with ferrous sulphate.
Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock
NASA Astrophysics Data System (ADS)
Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun
2014-02-01
In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.
NASA Astrophysics Data System (ADS)
Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey
The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.
Kettlgruber, Gerald; Siket, Christian M.; Drack, Michael; Graz, Ingrid M.; Cakmak, Umut; Major, Zoltan; Kaltenbrunner, Martin; Bauer, Siegfried
2016-01-01
Toy bricks are an ideal platform for the cost‐effective rapid prototyping of a tabletop tensile tester with measurement accuracy on par with expensive, commercially available laboratory equipment. Here, a tester is presented that is not only a versatile demonstration device in mechanics, electronics, and physics education and an eye‐catcher on exhibitions, but also a powerful tool for stretchable electronics research. Following the “open‐source movement” the build‐up of the tester is described and all the details for easy reproduction are disclosed. A a new design of highly conformable all‐elastomer based graded rigid island printed circuit boards is developed. Tough bonded to this elastomer substrate are imperceptible electronic foils bearing conductors and off‐the‐shelf microelectronics, paving the way for next generation smart electronic appliances. PMID:27588259
Development of Sample Verification System for Sample Return Missions
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Trebi-Ollennu, Ashitey; Manohara, Harish
2011-01-01
This paper describes the development of a proof of-concept sample verification system (SVS) for in-situ mass measurement of planetary rock and soil sample in future robotic sample return missions. Our proof-of-concept SVS device contains a 10 cm diameter pressure sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in proximity to an opposing substrate with a narrow gap. The deformation of the membrane makes the gap to be narrower, resulting in increased capacitance between the two nearly parallel plates. Capacitance readout circuitry on a nearby printed circuit board (PCB) transmits data via a low-voltage differential signaling (LVDS) interface. The fabricated SVS proof-of-concept device has successfully demonstrated approximately 1pF/gram capacitance change
77 FR 7562 - Electronic On-Board Recorders and Hours of Service Supporting Documents
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
..., and 395 [Docket No. FMCSA-2010-0167] RIN 2126-AB20 Electronic On-Board Recorders and Hours of Service... intent. SUMMARY: FMCSA announces its intent to move forward with the Electronic On-Board Recorders and... Appeals for the Seventh Circuit. OOIDA raised several concerns relating to EOBRs and their potential use...
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Huang, Zhan; Wang, Chaoxia
2018-05-01
Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.
Hazardous Waste Cleanup: Marlborough Press LTD in Plainview, New York
This parcel is located in an industrial park in Plainview, Nassau County, New York. It was operated as Three Dimensional Circuits from 1970 to 1984, manufacturing electronic circuit boards. During its operation, the site discharged metal plating solutions
Chip-on-Board Technology 1996 Year-end Report (Design, Manufacturing, and Reliability Study)
NASA Technical Reports Server (NTRS)
Le, Binh Q.; Nhan, Elbert; Maurer, Richard H.; Lew, Ark L.; Lander, Juan R.
1996-01-01
The major impetus for flight qualifying Chip-On-Board (COB) packaging technology is the shift in emphasis for space missions to smaller, better, and cheaper spacecraft and satellites resulting from the NASA New Millenium initiative and similar requirements in DoD-sponsored programs. The most important benefit that can potentially be derived from miniaturizing spacecraft and satellites is the significant cost saving realizable if a smaller launch vehicle may be employed. Besides the program cost saving, there are several other advantages to building COB-based space hardware. First, once a well-controlled process is established, COB can be low cost compared to standard Multi-Chip Module (MCM) technology. This cost competitiveness is regarded as a result of the generally greater availability and lower cost of Known Good Die (KGD). Coupled with the elimination of the first level of packaging (chip package), compact, high-density circuit boards can be realized with Printed Wiring Boards (PWB) that can now be made with ever-decreasing feature size in line width and via hole. Since the COB packaging technique in this study is based mainly on populating bare dice on a suitable multi-layer laminate substrate which is not hermetically sealed, die coating for protection from the environment is required. In recent years, significant improvements have been made in die coating materials which further enhance the appeal of COB. Hysol epoxies, silicone, parylene and silicon nitride are desirable because of their compatible Thermal Coefficient of Expansion (TCE) and good moisture resistant capability. These die coating materials have all been used in the space and other industries with varying degrees of success. COB technology, specifically siliconnitride coated hardware, has been flown by Lockheed on the Polar satellite. In addition, DARPA has invested a substantial amount of resources on MCM and COB-related activities recently. With COB on the verge of becoming a dominant player in DoD programs, DARPA is increasing its support of the availability of KGDs which will help decrease their cost. Aside from the various major developments and trends in the space and defense industries that are favorable to the acceptance and widespread use of'COB packaging technology, implementing COB can be appealing in other aspects. Since the interconnection interface is usually the weak link in a system, the overall circuit or system reliability may actually be improved because of the elimination of a level of interconnect/packaging at the chip. With COB, mixing packaging technologies is possible. Because some devices are only available in commercial plastic packages, populating a multi-layer laminate substrate with both bare dice and plastic-package parts is inevitable. Another attractive feature of COB is that re-workability is possible if die coating is applied only on the die top. This method allows local replacement of individual dice that were found to be defective instead of replacing an entire board. In terms of thermal management, unpackaged devices offer a shorter thermal resistance path than their packaged counterparts thereby improving thermal sinking and heat removal from the parts.
SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.
Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin
2015-07-08
Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies of silicon p-n junction solar cells. [open circuit photovoltage
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1976-01-01
Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.
Development of a high-sensitivity strain measurement system based on a SH SAW sensor
NASA Astrophysics Data System (ADS)
Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik
2012-02-01
A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.
Method for deposition of a conductor in integrated circuits
Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.
1997-09-02
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.
Gao, Pingqi; Zhang, Qing
2014-02-14
Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.
NASA Astrophysics Data System (ADS)
Fukuda, M.; Ota, M.; Sumimura, A.; Okahisa, S.; Ito, M.; Ishii, Y.; Ishiyama, T.
2017-05-01
A plasmonic integrated circuit configuration comprising plasmonic and electronic components is presented and the feasibility for high-speed signal processing applications is discussed. In integrated circuits, plasmonic signals transmit data at high transfer rates with light velocity. Plasmonic and electronic components such as wavelength-divisionmultiplexing (WDM) networks comprising metal wires, plasmonic multiplexers/demultiplexers, and crossing metal wires are connected via plasmonic waveguides on the nanometer or micrometer scales. To merge plasmonic and electronic components, several types of plasmonic components were developed. To ensure that the plasmonic components could be easily fabricated and monolithically integrated onto a silicon substrate using silicon complementary metal-oxide-semiconductor (CMOS)-compatible processes, the components were fabricated on a Si substrate and made from silicon, silicon oxides, and metal; no other materials were used in the fabrication. The plasmonic components operated in the 1300- and 1550-nm-wavelength bands, which are typically employed in optical fiber communication systems. The plasmonic logic circuits were formed by patterning a silicon oxide film on a metal film, and the operation as a half adder was confirmed. The computed plasmonic signals can propagate through the plasmonic WDM networks and be connected to electronic integrated circuits at high data-transfer rates.
Spacecube V2.0 Micro Single Board Computer
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor); Geist, Alessandro (Inventor); Lin, Michael R. (Inventor); Crum, Gary R. (Inventor)
2017-01-01
A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm.times.7 cm.
Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines
Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX
2012-06-19
A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures.
Chiang, Hung-Lung; Lin, Kuo-Hsiung; Lai, Mei-Hsiu; Chen, Ting-Chien; Ma, Sen-Yi
2007-10-01
A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 degrees C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards.
Yi, Pan; Xiao, Kui; Dong, Chaofang; Zou, Shiwen; Li, Xiaogang
2018-02-01
The role played by mould in the electrochemical migration (ECM) behaviour of an immersion silver finished printed circuit board (PCB-ImAg) under a direct current (DC) bias was investigated. An interesting phenomenon is found whereby mould, especially Aspergillus niger, can preferentially grow well on PCB-ImAg under electrical bias and then bridge integrated circuits and form a migration path. The cooperation of the mould and DC bias aggravates the ECM process occurring on PCB-ImAg. When the bias voltage is below 15V, ECM almost does not occur for Ag coating. Mechanisms that explain the ECM processes of PCB-ImAg in the presence of mould and DC bias are proposed. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie
The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.
46 CFR 97.55-1 - Master's responsibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OPERATIONS De-Energizing of Cargo Hold Lighting Circuits When Grain or Other Combustible Bulk Cargo Is... be loaded de-energized at the distribution panel or panel board. He shall thereafter have periodic... circuits remain de-energized while this bulk cargo remains within the vessel. ...
Design and construction of a high frame rate imaging system
NASA Astrophysics Data System (ADS)
Wang, Jing; Waugaman, John L.; Liu, Anjun; Lu, Jian-Yu
2002-05-01
A new high frame rate imaging method has been developed recently [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 839-856 (1997)]. This method may have a clinical application for imaging of fast moving objects such as human hearts, velocity vector imaging, and low-speckle imaging. To implement the method, an imaging system has been designed. The system consists of one main printed circuit board (PCB) and 16 channel boards (each channel board contains 8 channels), in addition to a set-top box for connections to a personal computer (PC), a front panel board for user control and message display, and a power control and distribution board. The main board contains a field programmable gate array (FPGA) and controls all channels (each channel has also an FPGA). We will report the analog and digital circuit design and simulations, multiplayer PCB designs with commercial software (Protel 99), PCB signal integrity testing and system RFI/EMI shielding, and the assembly and construction of the entire system. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Design of a signal conditioner for the Fermilab Magnet Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannelli, Pietro
2012-01-01
This thesis describes the design of a remotely-programmable signal conditioner for the harmonic measurement of accelerator magnets. A 10-channel signal conditioning circuit featuring bucking capabilities was designed from scratch and implemented to the level of the printed circuit board layout. Other system components were chosen from those available on the market. Software design was started with the definition of routine procedures. This thesis is part of an upgrade project for replacing obsolescent automated test equipment belonging to the Fermilab Magnet Test Facility. The design started with a given set of requirements. Using a top-down approach, all the circuits were designedmore » and their expected performances were theoretically predicted and simulated. A limited prototyping phase followed. The printed circuit boards were laid out and routed using a CAD software and focusing the design on maximum electromagnetic interference immunity. An embedded board was selected for controlling and interfacing the signal conditioning circuitry with the instrumentation network. Basic low level routines for hardware access were defined. This work covered the entire design process of the signal conditioner, resulting in a project ready for manufacturing. The expected performances are in line with the requirements and, in the cases where this was not possible, approval of trade-offs was sought and received from the end users. Part I deals with the global structure of the signal conditioner and the subdivision in functional macro-blocks. Part II treats the hardware design phase in detail, covering the analog and digital circuits, the printed circuit layouts, the embedded controller and the power supply selection. Part III deals with the basic hardware-related routines to be implemented in the final software.« less
Inaba, Kazuho; Murata, Tomoyoshi; Yamamura, Shigeki; Nagano, Masaaki; Iwasaki, Kazuhiro; Nakajima, Daisuke; Takigami, Hidetaka
2018-01-01
The contents and elution behavior of metals in consumer electronics parts were determined so as to understand their maximum environmental risk. Elements contained most in printed-circuit boards were Cu, Si, Br, Ca, Al, Sn, Pb, Sb, Ba, Fe, Ni, Ti, and Zn; in cathode-ray tube glass were Si, Pb, Ba, Sr, Zn, Zr, Ca, and Sb; in arsenic contained liquid-crystal displays were Si, Ca, Sr, Ba, As, and Fe; and in antimony contained liquid-crystal displays were Si, Ba, Ca, Sb, Sr, Fe, and Sn. The elements eluted most from printed-circuit boards were Zn, Pb, and Cu; from cathode-ray tube glass were Pb, Zn, B, Ba, and Si; and from liquid-crystal displays were B and Si, and the toxic As and Sb. The amount eluted was greatest at acidic pH. It was revealed that officially recommended 6-h-shaking with a pure water test was insufficient to understand the real environmental risk of waste electronics.
Duan, Huabo; Hou, Kun; Li, Jinhui; Zhu, Xiaodong
2011-03-01
The dismantling of printed circuit board assemblies (PCBAs) and the recovery of their useful materials can lead to serious environmental impacts mainly due to their complicated physical structure and the variety of toxic elements contained in their material composition. So far, less attention has been paid to their responsible recycling compared to that of bare printed circuit boards. Combined with other materials recovery process, proper dismantling of PCBAs is beneficial to conserve scarce resources, reuse the components, and eliminate or safely dispose of hazardous materials. In analyzing the generation, resources potential and hazardous risk of scrap PCBAs, technologies used for the dismantling of waste PCBAs have been widely investigated and reviewed from the aspects of both industrial application and laboratory-scale studies. In addition, the feasibility of PCBA dismantling has been discussed, the determinants of which, including the heating conditions and mechanical properties have been identified. Moreover, this paper evaluates the environmental consequences caused by the dismantling of PCBAs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao
2015-10-01
The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.
Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang
2017-01-01
The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497
Modular cryogenic interconnects for multi-qubit devices.
Colless, J I; Reilly, D J
2014-11-01
We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.
3D Printing of Ball Grid Arrays
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha
Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented
Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Sensor Authentication: Embedded Processor Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, John
2012-09-25
Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking
RF Device for Acquiring Images of the Human Body
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; McGrath, William R.
2010-01-01
A safe, non-invasive method for forming images through clothing of large groups of people, in order to search for concealed weapons either made of metal or not, has been developed. A millimeter wavelength scanner designed in a unique, ring-shaped configuration can obtain a full 360 image of the body with a resolution of less than a millimeter in only a few seconds. Millimeter waves readily penetrate normal clothing, but are highly reflected by the human body and concealed objects. Millimeter wave signals are nonionizing and are harmless to human tissues when used at low power levels. The imager (see figure) consists of a thin base that supports a small-diameter vertical post about 7 ft (=2.13 m) tall. Attached to the post is a square-shaped ring 2 in. (=5 cm) wide and 3 ft (=91 cm) on a side. The ring is oriented horizontally, and is supported halfway along one side by a connection to a linear bearing on the vertical post. A planar RF circuit board is mounted to the inside of each side of the ring. Each circuit board contains an array of 30 receivers, one transmitter, and digitization electronics. Each array element has a printed-circuit patch antenna coupled to a pair of mixers by a 90 coupler. The mixers receive a reference local oscillator signal to a subharmonic of the transmitter frequency. A single local oscillator line feeds all 30 receivers on the board. The resulting MHz IF signals are amplified and carried to the edge of the board where they are demodulated and digitized. The transmitted signal is derived from the local oscillator at a frequency offset determined by a crystal oscillator. One antenna centrally located on each side of the square ring provides the source illumination power. The total transmitted power is less than 100 mW, resulting in an exposure level that is completely safe to humans. The output signals from all four circuit boards are fed via serial connection to a data processing computer. The computer processes the approximately 1-MB data set into a three-dimensional image in a matter of seconds. The innovation is to configure the receiver array in a ring topology surrounding the scanned object. The ring is then scanned vertically to cover the necessary two-dimensional surface. This fabrication of the ring is made possible by using planar antenna and circuit technology. A planar circuit board serves as a medium for both antennas and signal processing components. Using this technique, parts counts are kept low, and the cost per element is a small fraction of a waveguide-based system.
Biwavelength transceiver module for parallel simultaneous bidirectional optical interconnections
NASA Astrophysics Data System (ADS)
Nguyen, Nga T. H.; Ukaegbu, Ikechi A.; Sangirov, Jamshid; Cho, Mu-Hee; Lee, Tae-Woo; Park, Hyo-Hoon
2013-12-01
The design of a biwavelength transceiver (TRx) module for parallel simultaneous bidirectional optical interconnects is described. The TRx module has been implemented using two different wavelengths, 850 and 1060 nm, to send and receive signals simultaneously through a common optical interface while optimizing cost and performance. Filtering mirrors are formed in the optical fibers which are embedded on a V-grooved silicon substrate for reflecting and filtering optical signals from/to vertical-cavity surface-emitting laser (VCSEL)/photodiode (PD). The VCSEL and PD are flip-chip bonded on individual silicon optical benches, which are attached on the silicon substrate for optical signal coupling from the VCSEL to fiber and from fiber to the PD. A high-speed and low-loss ceramic printed circuit board, which has a compact size of 0.033 cc, has been designed to carry transmitter and receiver chips for easy packaging of the TRx module. Applied for quad small form-factor pluggable applications at 40-Gbps operation, the four-channel biwavelength TRx module showed clear eye diagrams with a bit error rate (BER) of 10-12 at input powers of -5 and -5.8 dBm for 1060 and 850 nm operation modes, respectively.
Electroless Cu Plating on Anodized Al Substrate for High Power LED.
Rha, Sa-Kyun; Lee, Youn-Seoung
2015-03-01
Area-selective copper deposition on screen printed Ag pattern/anodized Al/Al substrate was attempted using a neutral electroless plating processes for printed circuit boards (PCBs), according to a range of variation of pH 6.5-pH 8 at 70 °C. The utilized basic electroless solution consisted of copper(II) sulfate pentahydrate, sodium phosphinate monohydrate, sodium citrate tribasic dihydrate, ammonium chloride, and nickel(II) sulfate hexahydrate. The pH of the copper plating solutions was adjusted from pH 6.5 to pH 8 using NH4OH. Using electroless plating in pH 6.5 and pH 7 baths, surface damage to the anodized Al layer hardly occurred; the structure of the plated Cu-rich films was a typical fcc-Cu, but a small Ni component was co-deposited. In electroless plating at pH 8, the surface of the anodized Al layer was damaged and the Cu film was composed of a lot of Ni and P which were co-deposited with Cu. Finally, in a pH 7 bath, we can make a selectively electroless plated Cu film on a PCB without any lithography and without surface damage to the anodized Al layer.
GaN-based micro-LED arrays on flexible substrates for optical cochlear implants
NASA Astrophysics Data System (ADS)
Goßler, Christian; Bierbrauer, Colin; Moser, Rüdiger; Kunzer, Michael; Holc, Katarzyna; Pletschen, Wilfried; Köhler, Klaus; Wagner, Joachim; Schwaerzle, Michael; Ruther, Patrick; Paul, Oliver; Neef, Jakob; Keppeler, Daniel; Hoch, Gerhard; Moser, Tobias; Schwarz, Ulrich T.
2014-05-01
Currently available cochlear implants are based on electrical stimulation of the spiral ganglion neurons. Optical stimulation with arrays of micro-sized light-emitting diodes (µLEDs) promises to increase the number of distinguishable frequencies. Here, the development of a flexible GaN-based micro-LED array as an optical cochlear implant is reported for application in a mouse model. The fabrication of 15 µm thin and highly flexible devices is enabled by a laser-based layer transfer process of the GaN-LEDs from sapphire to a polyimide-on-silicon carrier wafer. The fabricated 50 × 50 µm2 LEDs are contacted via conducting paths on both p- and n-sides of the LEDs. Up to three separate channels could be addressed. The probes, composed of a linear array of the said µLEDs bonded to the flexible polyimide substrate, are peeled off the carrier wafer and attached to flexible printed circuit boards. Probes with four µLEDs and a width of 230 µm are successfully implanted in the mouse cochlea both in vitro and in vivo. The LEDs emit 60 µW at 1 mA after peel-off, corresponding to a radiant emittance of 6 mW mm-2.
2015-01-01
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591
Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian
2014-12-16
In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.
Method of preforming and assembling superconducting circuit elements
NASA Astrophysics Data System (ADS)
Haertling, Gene H.; Buckley, John D.
1991-03-01
The invention is a method of preforming and pretesting rigid and discrete superconductor circuit elements to optimize the superconductivity development of the preformed circuit element prior to its assembly, and encapsulation on a substrate and final environmental testing of the assembled ceramic superconductive elements.
Flexible organic transistors and circuits with extreme bending stability
NASA Astrophysics Data System (ADS)
Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao
2010-12-01
Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.
46 CFR 78.70-1 - Master's responsibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS De... shall have the lighting circuits to cargo compartments in which the bulk cargo is to be loaded de... the panel or panel board as frequently as necessary to ascertain that the affected circuits remain de...
46 CFR 78.70-1 - Master's responsibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS De... shall have the lighting circuits to cargo compartments in which the bulk cargo is to be loaded de... the panel or panel board as frequently as necessary to ascertain that the affected circuits remain de...
Modular control subsystems for use in solar heating systems for multi-family dwellings
NASA Technical Reports Server (NTRS)
1977-01-01
Progress in the development of solar heating modular control subsystems is reported. Circuit design, circuit drawings, and printed circuit board layout are discussed along with maintenance manuals, installation instructions, and verification and acceptance tests. Calculations made to determine the predicted performance of the differential thermostat are given including details and results of tests for the offset temperature, and boil and freeze protect points.
1975-06-01
proportioning circuit , Triac , and heater blankets. The significant features of the temperature controllers are small size, less than one half per...interferometer. The only change to the Firebird system needed to ac- commodate the new sensor is the replacement of several circuit boards. No hard wiring or...temperature at altitude (220oK). In addition to the sensor head, the Phoe- nix system also includes a set of plug-in printed circuit cards which
Effect of Bypass Capacitor in Common-mode Noise Reduction Technique for Automobile PCB
NASA Astrophysics Data System (ADS)
Uno, Takanori; Ichikawa, Kouji; Mabuchi, Yuichi; Nakamura, Atushi
In this letter, we studied the use of common mode noise reduction technique for in-vehicle electronic equipment, each comprising large-scale integrated circuit (LSI), printed circuit board (PCB), wiring harnesses, and ground plane. We have improved the model circuit of the common mode noise that flows to the wire harness to add the effect of by-pass capacitors located near an LSI.
Ultra high speed image processing techniques. [electronic packaging techniques
NASA Technical Reports Server (NTRS)
Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.
1981-01-01
Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.
2012-02-07
circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
NASA Astrophysics Data System (ADS)
Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.
2017-05-01
Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Maksudul M.; Sampathkumaran, Uma
The present invention relates to a modular chemiresistive sensor. In particular, a modular chemiresistive sensor for hypergolic fuel and oxidizer leak detection, carbon dioxide monitoring and detection of disease biomarkers. The sensor preferably has two gold or platinum electrodes mounted on a silicon substrate where the electrodes are connected to a power source and are separated by a gap of 0.5 to 4.0 .mu.M. A polymer nanowire or carbon nanotube spans the gap between the electrodes and connects the electrodes electrically. The electrodes are further connected to a circuit board having a processor and data storage, where the processor canmore » measure current and voltage values between the electrodes and compare the current and voltage values with current and voltage values stored in the data storage and assigned to particular concentrations of a pre-determined substance such as those listed above or a variety of other substances.« less
A low-noise low-power EEG acquisition node for scalable brain-machine interfaces
NASA Astrophysics Data System (ADS)
Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping
2007-05-01
Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.
Spatial part-set cuing facilitation.
Kelley, Matthew R; Parasiuk, Yuri; Salgado-Benz, Jennifer; Crocco, Megan
2016-07-01
Cole, Reysen, and Kelley [2013. Part-set cuing facilitation for spatial information. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 1615-1620] reported robust part-set cuing facilitation for spatial information using snap circuits (a colour-coded electronics kit designed for children to create rudimentary circuit boards). In contrast, Drinkwater, Dagnall, and Parker [2006. Effects of part-set cuing on experienced and novice chess players' reconstruction of a typical chess midgame position. Perceptual and Motor Skills, 102(3), 645-653] and Watkins, Schwartz, and Lane [1984. Does part-set cuing test for memory organization? Evidence from reconstructions of chess positions. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 38(3), 498-503] showed no influence of part-set cuing for spatial information when using chess boards. One key difference between the two procedures was that the snap circuit stimuli were explicitly connected to one another, whereas chess pieces were not. Two experiments examined the effects of connection type (connected vs. unconnected) and cue type (cued vs. uncued) on memory for spatial information. Using chess boards (Experiment 1) and snap circuits (Experiment 2), part-set cuing facilitation only occurred when the stimuli were explicitly connected; there was no influence of cuing with unconnected stimuli. These results are potentially consistent with the retrieval strategy disruption hypothesis, as well as the two- and three-mechanism accounts of part-set cuing.
Smart substrates: Making multi-chip modules smarter
NASA Astrophysics Data System (ADS)
Wunsch, T. F.; Treece, R. K.
1995-05-01
A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.
Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert
2015-01-01
Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it
Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using thesemore » items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.« less
PCBA depaneling stress minimization study
NASA Astrophysics Data System (ADS)
Darus, M. H. B. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Retnasamy, V.
2017-09-01
Printed circuit board (PCB) is board that used to connect the electricity using the conductive pathways. The PCB that consists with electronic components was called as printed circuit board assembly (PCBA). Bending process has been used as one of the depaneling techniques may contribute to mechanical stress and the failure of capacitors and other components to function. As a result, the idea to create holes in particular location was implemented in order to absorb the stress. In this study, finite element analysis is demonstrated by using ANSYS software. Two PCBA design models are considered in order to investigate the effect of the hole and the stress response. The simulation results show that the hole on the PCBA has reduced the stress. For Design model 2, the stress response of the holes located vertically to the PCBA is lower than the holes located horizontally to the PCBA.
NASA Astrophysics Data System (ADS)
Benetti, Bob; Langeveld, Willem G. J.
2013-09-01
Noise Spectroscopy, a.k.a. Z-determination by Statistical Count-rate ANalysis (Z-SCAN), is a statistical technique to determine a quantity called the "noise figure" from digitized waveforms of pulses of transmitted x-rays in cargo inspection systems. Depending only on quantities related to the x-ray energies, it measures a characteristic of the transmitted x-ray spectrum, which depends on the atomic number, Z, of the material penetrated. The noise figure can thus be used for material separation. In an 80-detector prototype, scintillators are used with large-area photodiodes biased at 80V and digitized using 50-MSPS 12-bit ADC boards. We present an ultra-compact low-noise preamplifier design, with one high-gain and one low-gain channel per detector for improved dynamic range. To achieve adequate detection sensitivity and spatial resolution each dual-gain preamplifier channel must fit within a 12.7 mm wide circuit board footprint and maintain adequate noise immunity to conducted and radiated interference from adjacent channels. The novel design included iterative SPICE analysis of transient response, dynamic range, frequency response, and noise analysis to optimize the selection and configuration of amplifiers and filter response. We discuss low-noise active and passive components and low-noise techniques for circuit board layout that are essential to achieving the design goals, and how the completed circuit board performed in comparison to the predicted responses.
Zero Tolerance versus Privacy.
ERIC Educational Resources Information Center
Dowling-Sendor, Benjamin
2000-01-01
In a case involving questionable canine search-and-seizure practices, a circuit court upheld a school board's decision to terminate a teacher's contract. While touting zero tolerance, the board fired an honored teacher 3 years from retirement who may not have known about the marijuana cigarette in her car. (MLH)
Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig
2013-05-01
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.
Athermalization of resonant optical devices via thermo-mechanical feedback
Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.
2016-01-19
A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.
NASA Astrophysics Data System (ADS)
Sheraw, Christopher Duncan
2003-10-01
Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-20-2013] Authorization of Production Activity; Subzone 196A; TTI, Inc. (Electromechanical and Circuit Protection Devices Production/Kitting); Fort Worth, Texas On February 13, 2013, TTI, Inc. submitted a notification of proposed production activity to the...
Capacitance discharge system for ignition of Single Bridge Apollo Standard Initiators (SBASI)
NASA Technical Reports Server (NTRS)
Ward, R. D.
1974-01-01
The design support data developed during the single bridge Apollo standard initiator (SBASI) program are presented. A circuit was designed and bread-board tested to verify operational capabilities of the circuit. Test data, design criteria, weight, and reliability trade-off considerations, and final design recommendations are reported.
Stable Polyurethane Coatings for Electronic Circuits
NASA Technical Reports Server (NTRS)
Morris, D. E.
1983-01-01
Alkane-based polyurethanes resist deterioration while maintaining good dielectric properties. Weight loss after prolonged immersion in hot water far less for alkane-based polyurethanes than for more common ether based polyurethanes, at any given oxygen content. Major uses of polyurethanes are as connector potting materials and conformal coatings for printed circuit boards.
Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
Cao, Qing; Kim, Hoon-sik; Pimparkar, Ninad; Kulkarni, Jaydeep P; Wang, Congjun; Shim, Moonsub; Roy, Kaushik; Alam, Muhammad A; Rogers, John A
2008-07-24
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2) V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (approximately 100-microm) device geometries, and good mechanical flexibility-all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
Integrated testing system FiTest for diagnosis of PCBA
NASA Astrophysics Data System (ADS)
Bogdan, Arkadiusz; Lesniak, Adam
2016-12-01
This article presents the innovative integrated testing system FiTest for automatic, quick inspection of printed circuit board assemblies (PCBA) manufactured in Surface Mount Technology (SMT). Integration of Automatic Optical Inspection (AOI), In-Circuit Tests (ICT) and Functional Circuit Tests (FCT) resulted in universal hardware platform for testing variety of electronic circuits. The platform provides increased test coverage, decreased level of false calls and optimization of test duration. The platform is equipped with powerful algorithms performing tests in a stable and repetitive way and providing effective management of diagnosis.
Reusable vibration resistant integrated circuit mounting socket
Evans, Craig N.
1995-01-01
This invention discloses a novel form of socket for integrated circuits to be mounted on printed circuit boards. The socket uses a novel contact which is fabricated out of a bimetallic strip with a shape which makes the end of the strip move laterally as temperature changes. The end of the strip forms a barb which digs into an integrated circuit lead at normal temperatures and holds it firmly in the contact, preventing loosening and open circuits from vibration. By cooling the contact containing the bimetallic strip the barb end can be made to release so that the integrated circuit lead can be removed from the socket without damage either to the lead or to the socket components.
Radome Positioner for the RFSS (Radio Frequency Simulation System).
1978-02-27
its associated circuits contained on the Motorola M68MM01A-I micro- module (See Drawing 64). This board contains the 6800 microprocessor. Ik bytes of...D 00 1~ 0 41 + C.) ) -44 208 g. Small encoder diameter achieved by using integrated circuit modules . h. Stainless steel case. U...to the 30 integrated circuits which actually comprise the heart of the-microcomputer. This dramatic reduction in parts count re- sults in a similar
Photo-Spectrometer Realized In A Standard Cmos Ic Process
Simpson, Michael L.; Ericson, M. Nance; Dress, William B.; Jellison, Gerald E.; Sitter, Jr., David N.; Wintenberg, Alan L.
1999-10-12
A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.
Low thermal resistance power module assembly
Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan
2007-03-13
A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.
NASA Astrophysics Data System (ADS)
Roslan, M. F.; Shaffiar, N. M.; Khairusshima, M. K. N.; Sharifah, I. S. S.
2018-01-01
Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.
NASA Astrophysics Data System (ADS)
Zhang, Xi
One of the major challenges for single chip radio frequency integrated circuits (RFIC's) built on Si is the RE crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si substrate and degrades the performance of analog circuit elements. A highly conductive moat or Faraday cage type structure of through-the-wafer thickness in the Si substrate was demonstrated to be effective in shielding electromagnetic interference thereby reducing RE cross-talk in high performance mixed signal integrated circuits. Such a structure incorporated into the p- Si substrate was realized by electroless Ni metallization over selected regions with ultra-high-aspect-ratio macropores that was etched electrochemically in p- Si substrates. The metallization process was conducted by immersing the macroporous Si sample in an alkaline aqueous solution containing Ni2+ without a reducing agent. It was found that working at slightly elevated temperature, Ni 2+ was rapidly reduced and deposited in the macropores. During the wet chemical process, conformal metallization on the pore wall was achieved. The entire porous Si skeleton was gradually replaced by Ni along the extended duration of immersion. In a p-/p+ epi Si substrate used for high performance digital CMOS, the suppression of crosstalk by the arrayed metallic Ni via structure fabricated from the front p side was significant that the crosstalk went down to the noise floor of the conventional measurement instruments. The process and mechanism of forming such a Ni structure over the original Si were studied. Theoretical computation relevant to the process was carried out to show a good consistency with the experiments.
NASA Astrophysics Data System (ADS)
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-04-01
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-04-04
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.
Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing
2014-01-01
Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375
Arrays of Miniature Microphones for Aeroacoustic Testing
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Humphreys, William M.; Sealey, Bradley S.; Bartram, Scott M.; Zuckewar, Allan J.; Comeaux, Toby; Adams, James K.
2007-01-01
A phased-array system comprised of custom-made and commercially available microelectromechanical system (MEMS) silicon microphones and custom ancillary hardware has been developed for use in aeroacoustic testing in hard-walled and acoustically treated wind tunnels. Recent advances in the areas of multi-channel signal processing and beam forming have driven the construction of phased arrays containing ever-greater numbers of microphones. Traditional obstacles to this trend have been posed by (1) the high costs of conventional condenser microphones, associated cabling, and support electronics and (2) the difficulty of mounting conventional microphones in the precise locations required for high-density arrays. The present development overcomes these obstacles. One of the hallmarks of the new system is a series of fabricated platforms on which multiple microphones can be mounted. These mounting platforms, consisting of flexible polyimide circuit-board material (see left side of figure), include all the necessary microphone power and signal interconnects. A single bus line connects all microphones to a common power supply, while the signal lines terminate in one or more data buses on the sides of the circuit board. To minimize cross talk between array channels, ground lines are interposed as shields between all the data bus signal lines. The MEMS microphones are electrically connected to the boards via solder pads that are built into the printed wiring. These flexible circuit boards share many characteristics with their traditional rigid counterparts, but can be manufactured much thinner, as small as 0.1 millimeter, and much lighter with boards weighing as much as 75 percent less than traditional rigid ones. For a typical hard-walled wind-tunnel installation, the flexible printed-circuit board is bonded to the tunnel wall and covered with a face sheet that contains precise cutouts for the microphones. Once the face sheet is mounted, a smooth surface is established over the entire array due to the flush mounting of all microphones (see right side of figure). The face sheet is made from a continuous glass-woven-fabric base impregnated with an epoxy resin binder. This material offers a combination of high mechanical strength and low dielectric loss, making it suitable for withstanding the harsh test section environment present in many wind tunnels, while at the same time protecting the underlying polyimide board. Customized signal-conditioning hardware consisting of line drivers and antialiasing filters are coupled with the array. The line drivers are constructed using low-supply-current, high-gain-bandwidth operational amplifiers designed to transmit the microphone signals several dozen feet from the array to external acquisition hardware. The anti-alias filters consist of individual Chebyshev low-pass filters (one for each microphone channel) housed on small printed-circuit boards mounted on one or more motherboards. The mother/daughter board design results in a modular system, which is easy to debug and service and which enables the filter characteristics to be changed by swapping daughter boards with ones containing different filter parameters. The filter outputs are passed to commercially- available acquisition hardware to digitize and store the conditioned microphone signals. Wind-tunnel testing of the new MEMS microphone polyimide mounting system shows that the array performance is comparable to that of traditional arrays, but with significantly less cost of construction.
The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer
Li, Lei; Tibiche, Chabane; Fu, Cong; Kaneko, Tomonori; Moran, Michael F.; Schiller, Martin R.; Li, Shawn Shun-Cheng; Wang, Edwin
2012-01-01
Phosphotyrosine (pTyr) signaling, which plays a central role in cell–cell and cell–environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 representative eukaryotic species and assigned their evolutionary origins. We found that human TK circuits for intracellular pTyr signaling originated largely from primitive organisms, whereas the inter- or extracellular signaling circuits experienced significant expansion in the bilaterian lineage through the “back-wiring” of newly evolved kinases to primitive substrates and SH2/PTB domains. Conversely, the TK circuits that are involved in tissue-specific signaling evolved mainly in vertebrates by the back-wiring of vertebrate substrates to primitive kinases and SH2/PTB domains. Importantly, we found that cancer signaling preferentially employs the pTyr sites, which are linked to more TK circuits. Our work provides insights into the evolutionary paths of the human pTyr signaling circuits and suggests the use of a network approach for cancer intervention through the targeting of key pTyr sites and their associated signaling hubs in the network. PMID:22194470
Microfluidic networks embedded in a printed circuit board
NASA Astrophysics Data System (ADS)
Dong, Liangwei; Hu, Yueli
2017-07-01
In order to improve the robustness of microfluidic networks in printed circuit board (PCB)-based microfluidic platforms, a new method was presented. A pattern in a PCB was formed using hollowed-out technology. Polydimethylsiloxane was partly filled in the hollowed-out fields after mounting an adhesive tape on the bottom of the PCB, and solidified in an oven. Then, microfluidic networks were built using soft lithography technology. Microfluidic transportation and dilution operations were demonstrated using the fabricated microfluidic platform. Results show that this method can embed microfluidic networks into a PCB, and microfluidic operations can be implemented in the microfluidic networks embedded into the PCB.
Housing And Mounting Structure
Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R.F.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Miller, Gregory V.; Peterson, David W.; Smith, Terrance T.
2005-03-08
This invention relates to an optical transmitter, receiver or transceiver module, and more particularly, to an apparatus for connecting a first optical connector to a second optical connector. The apparatus comprises: (1) a housing having at least a first end and at least a second end, the first end of the housing capable of receiving the first optical connector, and the second end of the housing capable of receiving the second optical connector; (2) a longitudinal cavity extending from the first end of the housing to the second end of the housing; and (3) an electromagnetic shield comprising at least a portion of the housing. This invention also relates to an apparatus for housing a flexible printed circuit board, and this apparatus comprises: (1) a mounting structure having at least a first surface and a second surface; (2) alignment ridges along the first and second surfaces of the mounting structure, the alignment ridges functioning to align and secure a flexible printed circuit board that is wrapped around and attached to the first and second surfaces of the mounting structure; and (3) a series of heat sink ridges adapted to the mounting structure, the heat sink ridges functioning to dissipate heat that is generated from the flexible printed circuit board.
Characterization of shredded television scrap and implications for materials recovery.
Cui, Jirang; Forssberg, Eric
2007-01-01
Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.
Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon
2015-01-01
Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.
Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia
2014-11-01
This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further "sustainable" recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both "traditional" (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, R. E.
1987-10-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
Ion chromatography in the manufacture of multilayer circuit boards
NASA Astrophysics Data System (ADS)
Smith, Robert E.
1990-01-01
Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.
A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.
Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook
2016-08-01
We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich
2017-11-01
Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.
Packaging printed circuit boards: A production application of interactive graphics
NASA Technical Reports Server (NTRS)
Perrill, W. A.
1975-01-01
The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
... securities suddenly declining by significant amounts in a very short time period before suddenly reversing to... circuit breaker pilot program, which was implemented through a series of rule filings by the equity exchanges and by FINRA.\\8\\ The single-stock circuit breaker was designed to reduce extraordinary market...
Easy-to-Implement Project Integrates Basic Electronics and Computer Programming
ERIC Educational Resources Information Center
Johnson, Richard; Shackelford, Ray
2008-01-01
The activities described in this article give students excellent experience with both computer programming and basic electronics. During the activities, students will work in small groups, using a BASIC Stamp development board to fabricate digital circuits and PBASIC to write program code that will control the circuits they have built. The…
Monolithic integrated high-T.sub.c superconductor-semiconductor structure
NASA Technical Reports Server (NTRS)
Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)
2000-01-01
A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
NASA Technical Reports Server (NTRS)
Zoutendyk, John A. (Inventor)
1991-01-01
Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
Optimization of Cvd Diamond Coating Type on Micro Drills in Pcb Machining
NASA Astrophysics Data System (ADS)
Lei, X. L.; He, Y.; Sun, F. H.
2016-12-01
The demand for better tools for machining printed circuit boards (PCBs) is increasing due to the extensive usage of these boards in digital electronic products. This paper is aimed at optimizing coating type on micro drills in order to extend their lifetime in PCB machining. First, the tribotests involving micro crystalline diamond (MCD), nano crystalline diamond (NCD) and bare tungsten carbide (WC-Co) against PCBs show that NCD-PCB tribopair exhibits the lowest friction coefficient (0.35) due to the unique nano structure and low surface roughness of NCD films. Thereafter, the dry machining performance of the MCD- and NCD-coated micro drills on PCBs is systematically studied, using diamond-like coating (DLC) and TiAlN-coated micro drills as comparison. The experiments show that the working lives of these micro drills can be ranked as: NCD>TiAlN>DLC>MCD>bare WC-Co. The superior cutting performance of NCD-coated micro drills in terms of the lowest flank wear growth rate, no tool degradation (e.g. chipping, tool tipping) appearance, the best hole quality as well as the lowest feed force may come from the excellent wear resistance, lower friction coefficient against PCB as well as the high adhesive strength on the underneath substrate of NCD films.
System architecture of a gallium arsenide one-gigahertz digital IC tester
NASA Technical Reports Server (NTRS)
Fouts, Douglas J.; Johnson, John M.; Butner, Steven E.; Long, Stephen I.
1987-01-01
The design for a 1-GHz digital integrated circuit tester for the evaluation of custom GaAs chips and subsystems is discussed. Technology-related problems affecting the design of a GaAs computer are discussed, with emphasis on the problems introduced by long printed-circuit-board interconnect. High-speed interface modules provide a link between the low-speed microprocessor and the chip under test. Memory-multiplexer and memory-shift register architectures for the storage of test vectors are described in addition to an architecture for local data storage consisting of a long chain of GaAs shift registers. The tester is constructed around a VME system card cage and backplane, and very little high-speed interconnect exists between boards. The tester has a three part self-test consisting of a CPU board confidence test, a main memory confidence test, and a high-speed interface module functional test.
Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun
2014-08-07
Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.
Design, Construction and Testing of a Prototype Holonomic Autonomous Vehicle
2007-12-01
Circuit A simple 100 kHz crystal oscillator tank circuit using an LM741 opamp was fed to a LM393N comparator . The circuit’s schematic is provided...research in areas that support development of unmanned ground and air battlefield vehicles. Little attention has been paid to applying robotics to...motion control using a single board computer, a pulse width modulation (PWM) and optical isolation circuit, and a low-cost inertial measurement unit
General technique for the integration of MIC/MMIC'S with waveguides
NASA Technical Reports Server (NTRS)
Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)
1987-01-01
A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.
NASA Astrophysics Data System (ADS)
Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang
2011-10-01
This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.
Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S
1998-05-10
We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.
PC board mount corrosion sensitive sensor
Robinson, Alex L.; Casias, Adrian L.; Pfeifer, Kent B.; Laguna, George R.
2016-03-22
The present invention relates to surface mount structures including a capacitive element or a resistive element, where the element has a property that is responsive to an environmental condition. In particular examples, the structure can be optionally coupled to a printed circuit board. Other apparatuses, surface mountable structures, and methods of use are described herein.
Improved charge injection device and a focal plane interface electronics board for stellar tracking
NASA Technical Reports Server (NTRS)
Michon, G. J.; Burke, H. K.
1984-01-01
An improved Charge Injection Device (CID) stellar tracking sensor and an operating sensor in a control/readout electronics board were developed. The sensor consists of a shift register scanned, 256x256 CID array organized for readout of 4x4 subarrays. The 4x4 subarrays can be positioned anywhere within the 256x256 array with a 2 pixel resolution. This allows continuous tracking of a number of stars simultaneously since nine pixels (3x3) centered on any star can always be read out. Organization and operation of this sensor and the improvements in design and semiconductor processing are described. A hermetic package incorporating an internal thermoelectric cooler assembled using low temperature solders was developed. The electronics board, which contains the sensor drivers, amplifiers, sample hold circuits, multiplexer, analog to digital converter, and the sensor temperature control circuits, is also described. Packaged sensors were evaluated for readout efficiency, spectral quantum efficiency, temporal noise, fixed pattern noise, and dark current. Eight sensors along with two tracker electronics boards were completed, evaluated, and delivered.
Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.
1999-01-05
Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.
Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil
1999-01-01
Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.
Compact fluid cooled power converter supporting multiple circuit boards
Radosevich, Lawrence D.; Meyer, Andreas A.; Beihoff, Bruce C.; Kannenberg, Daniel G.
2005-03-08
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Ceramic ball grid array package stress analysis
NASA Astrophysics Data System (ADS)
Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.
2017-09-01
The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.
Multi-level Simulation of a Real Time Vibration Monitoring System Component
NASA Technical Reports Server (NTRS)
Robertson, Bryan A.; Wilkerson, Delisa
2005-01-01
This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P
Multi-level Simulation of a Real Time Vibration Monitoring System Component
NASA Technical Reports Server (NTRS)
Roberston, Bryan; Wilkerson, DeLisa
2004-01-01
This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by MSFC Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data from two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMCIRA design has completed all engineering unit testing and the deliverable unit is currently under development.
NASA Astrophysics Data System (ADS)
Wu, Haoran; Dong, Zhenzhen; Wang, Tanglin; Zhao, Heng; Feng, Junbo; Cui, Naidi; Teng, Jie; Guo, Jin
2015-04-01
Modeling and characteristic of the SMT Board Plug connector, which is used to connect micro optical transceiver to the main board, are proposed and analyzed in this paper. When the high speed signal transfers from the PCB of transceiver to main board through SMT Board Plug connector, the structure and material discontinuity of the connector causes insertion losses and impedance mismatches. This makes the performance of high speed digital system exacerbated. So it is essential to analyze the signal transfer characteristics of the connector and find out what factors affected the signal quality at the design stage of the digital system. To solve this problem, Ansoft's High Frequency Structure Simulator (HFSS), based on the finite element method, was employed to build accurate 3D models, analyze the effects of various structure parameters, and obtain the full-wave characteristics of the SMT Board Plug connectors in this paper. Then an equivalent circuit model was developed. The circuit parameters were extracted precisely in the frequency range of interests by using the curve fitting method in ADS software, and the result was in good agreement with HFSS simulations up to 8GHz with different structure parameters. At last, the measurement results of S-parameter and eye diagram were given and the S-parameters showed good coincidence between the measurement and HFSS simulation up to 4GHz.
Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J
2016-07-05
The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Pin-deposition of conductive inks for microelectrodes and contact via filling
Davidson, J. Courtney; Krulevitch, Peter A.; Maghribi, Mariam N.; Hamilton, Julie K.; Benett, William J.; Tovar, Armando R.
2006-05-02
A method of metalization of an integrated microsystem. The method comprises providing a substrate and applying a conductive material to the substrate by taking up small aliquots of conductive material and releasing the conductive material onto the substrate to produce a circuit component.
Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure
NASA Technical Reports Server (NTRS)
Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Russell, Stephen D. (Inventor); Garcia, Graham A. (Inventor); Barfknecht, Andrew T. (Inventor); Clayton, Stanley R. (Inventor)
2000-01-01
A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.
Development of Flexible Multilayer Circuits and Cables
NASA Technical Reports Server (NTRS)
Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred
2005-01-01
A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.
Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses
Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo
2016-01-01
The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828
Low thermal resistance power module assembly
Hassani, Vahab; Vlahinos, Andreas; Bharathan, Desikan
2010-12-28
A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.
NASA Astrophysics Data System (ADS)
Hassan, S.; Yusof, M. S.; Embong, Z.; Ding, S.; Maksud, M. I.
2018-01-01
Micro-flexographic printing is a combination of flexography and micro-contact printing technique. It is a new printing method for fine solid lines printing purpose. Graphene material has been used as depositing agent or printing ink in other printing technique like inkjet printing. This graphene ink is printed on biaxially oriented polypropylene (BOPP) by using Micro-flexographic printing technique. The choose of graphene as a printing ink is due to its wide application in producing electronic and micro-electronic devices such as Radio-frequency identification (RFID) and printed circuit board. The graphene printed on the surface of BOPP substrate was analyzed using X-Ray Photoelectron Spectroscopy (XPS). The positions for each synthetic component in the narrow scan are referred to the electron binding energy (eV). This research is focused on two narrow scan regions which are C 1s and O 1s. Further discussion of the narrow scan spectrum will be explained in detail. From the narrow scan analysis, it is proposed that from the surface adhesive properties of graphene, it is suitable as an alternative printing ink medium for Micro-flexographic printing technique in printing multiple fine solid lines at micro to nano scale feature.
Cselyuszka, Norbert; Sakotic, Zarko; Kitic, Goran; Crnojevic-Bengin, Vesna; Jankovic, Nikolina
2018-05-29
In this paper, we present two novel dual-band bandpass filters based on surface plasmon polariton-like (SPP-like) propagation induced by structural dispersion of substrate integrated waveguide (SIW). Both filters are realized as a three-layer SIW where each layer represents a sub-SIW structure with intrinsic effective permittivity that depends on its width and filling dielectric material. The layers are designed to have effective permittivities of opposite signs in certain frequency ranges, which enables SPP-like propagation to occur at their interfaces. Since three layers can provide two distinct SPP-like propagations, the filters exhibit dual-band behaviour. A detailed theoretical and numerical analysis and numerical optimization have been used to design the filters, which were afterwards fabricated using standard printed circuit board technology. The independent choice of geometrical parameters of sub-SIWs and/or the corresponding dielectric materials provide a great freedom to arbitrarily position the passbands in the spectrum, which is a significant advantage of the proposed filters. At the same time, they meet the requirements for low-cost low-profile configuration since they are realized as SIW structures, as well as for excellent in-band characteristics and selectivity which is confirmed by the measurement results.
Li, Qiao; Tao, Xiao Ming
2014-11-08
This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are three-dimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance change up to 300% strain in unidirectional tensile test or 150% membrane strain in three-dimensional ball punch test, extraordinary fatigue life of more than 1 000 000 loading cycles at 20% maximum strain, and satisfactory washing capability up to 30 times. To the best of our knowledge, the performance of new FCBs has far exceeded those of previously reported metal-coated elastomeric films or other organic materials in terms of changes in electrical resistance, stretchability, fatigue life and washing capability as well as permeability. Theoretical analysis and numerical simulation illustrate that the structural conversion of knitted fabrics is attributed to the effective mitigation of strain in the conductive metal fibres, hence the outstanding mechanical and electrical properties. Those distinctive features make the FCBs particularly suitable for next-to-skin electronic devices. This paper has further demonstrated the application potential of the knitted FCBs in smart protective apparel for in situ measurement during ballistic impact.
Li, Xingang; Gao, Yujie; Ding, Hui
2013-10-01
The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Qiao; Tao, Xiao Ming
2014-01-01
This paper reports fabric circuit boards (FCBs), a new type of circuit boards, that are three-dimensionally deformable, highly stretchable, durable and washable ideally for wearable electronic applications. Fabricated by using computerized knitting technologies at ambient dry conditions, the resultant knitted FCBs exhibit outstanding electrical stability with less than 1% relative resistance change up to 300% strain in unidirectional tensile test or 150% membrane strain in three-dimensional ball punch test, extraordinary fatigue life of more than 1 000 000 loading cycles at 20% maximum strain, and satisfactory washing capability up to 30 times. To the best of our knowledge, the performance of new FCBs has far exceeded those of previously reported metal-coated elastomeric films or other organic materials in terms of changes in electrical resistance, stretchability, fatigue life and washing capability as well as permeability. Theoretical analysis and numerical simulation illustrate that the structural conversion of knitted fabrics is attributed to the effective mitigation of strain in the conductive metal fibres, hence the outstanding mechanical and electrical properties. Those distinctive features make the FCBs particularly suitable for next-to-skin electronic devices. This paper has further demonstrated the application potential of the knitted FCBs in smart protective apparel for in situ measurement during ballistic impact. PMID:25383032
NASA Astrophysics Data System (ADS)
Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan
2015-04-01
This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ˜99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.
Ultra-low current biosensor output detection using portable electronic reader
NASA Astrophysics Data System (ADS)
Yahaya, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. Afnan; Hashim, U.
2017-09-01
Generally, the electrical biosensor usually shows extremely low current signal output around pico ampere to microampere range. In this research, electronic reader with amplifier has been demonstrated to detect ultra low current via the biosensor. The operational amplifier Burr-Brown OPA 128 and Arduino Uno board were used to construct the portable electronic reader. There are two cascaded inverting amplifier were used to detect ultra low current through the biosensor from pico amperes (pA) to nano amperes ranges (nA). A small known input current was form by applying variable voltage between 0.1V to 5.0V across a 5GΩ high resistor to check the amplifier circuit. The amplifier operation was measured with the high impedance current source and has been compared with the theoretical measurement. The Arduino Uno was used to convert the analog signal to digital signal and process the data to display on reader screen. In this project, Proteus software was used to design and test the circuit. Then it was implemented together with Arduino Uno board. Arduino board was programmed using C programming language to make whole circuit communicate each order. The current was measured then it shows a small difference values compared to theoretical values, which is approximately 14pA.
Power Electronics Design Laboratory Exercise for Final-Year M.Sc. Students
ERIC Educational Resources Information Center
Max, L.; Thiringer, T.; Undeland, T.; Karlsson, R.
2009-01-01
This paper presents experiences and results from a project task in power electronics for students at Chalmers University of Technology, Goteborg, Sweden, based on a flyback test board. The board is used in the course Power Electronic Devices and Applications. In the project task, the students design snubber circuits, improve the control of the…
Radiation tolerant back biased CMOS VLSI
NASA Technical Reports Server (NTRS)
Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)
2003-01-01
A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.
Integrated-circuit balanced parametric amplifier
NASA Technical Reports Server (NTRS)
Dickens, L. E.
1975-01-01
Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.
Millimeter-wave and terahertz integrated circuit antennas
NASA Technical Reports Server (NTRS)
Rebeiz, Gabriel M.
1992-01-01
This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.
ERIC Educational Resources Information Center
School Science Review, 1987
1987-01-01
Contains 31 activities and experiments from the biological and physical sciences. Addresses such areas as reproduction, biotechnology, ecology, proteins, nitrates, aerosols, metal crystallinity, circuit boards, and photoswitching. (ML)
An interactive wire-wrap board layout program
NASA Technical Reports Server (NTRS)
Schlutsmeyer, A.
1987-01-01
An interactive computer-graphics-based tool for specifying the placement of electronic parts on a wire-wrap circuit board is presented. Input is a data file (currently produced by a commercial logic design system) which describes the parts used and their interconnections. Output includes printed reports describing the parts and wire paths, parts counts, placement lists, board drawing, and a tape to send to the wire-wrap vendor. The program should reduce the engineer's layout time by a factor of 3 to 5 as compared to manual methods.
At grade optical crossover for monolithic optial circuits
NASA Technical Reports Server (NTRS)
Jamieson, Robert S. (Inventor)
1983-01-01
Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T.J.; Nowlen, S.P.; Anderson, D.J.
Smoke can adversely affect digital electronics; in the short term, it can lead to circuit bridging and in the long term to corrosion of metal parts. This report is a summary of the work to date and component-level tests by Sandia National Laboratories for the Nuclear Regulatory Commission to determine the impact of smoke on digital instrumentation and control equipment. The component tests focused on short-term effects such as circuit bridging in typical components and the factors that can influence how much the smoke will affect them. These factors include the component technology and packaging, physical board protection, and environmentalmore » conditions such as the amount of smoke, temperature of burn, and humidity level. The likelihood of circuit bridging was tested by measuring leakage currents and converting those currents to resistance in ohms. Hermetically sealed ceramic packages were more resistant to smoke than plastic packages. Coating the boards with an acrylic spray provided some protection against circuit bridging. The smoke generation factors that affect the resistance the most are humidity, fuel level, and burn temperature. The use of CO{sub 2} as a fire suppressant, the presence of galvanic metal, and the presence of PVC did not significantly affect the outcome of these results.« less
Wang, Xing; Chaudhry, Sharjeel A; Hou, Wensheng; Jia, Xiaofeng
2017-02-05
Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats' unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation.
ERIC Educational Resources Information Center
Ward, Vesta
1972-01-01
Brightly banded resisters, condensers, diodes and transistors as well as printed circuit boards were used with the objective of discovering their potential in creating objects for personal adornment. (RB)
Cryogenic applications of commercial electronic components
NASA Astrophysics Data System (ADS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.
2012-10-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
Cryogenic Applications of Commercial Electronic Components
NASA Technical Reports Server (NTRS)
Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.
2012-01-01
We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.
NASA Astrophysics Data System (ADS)
Bowen, David; Krafft, Charles; Mayergoyz, Isaak D.
2017-05-01
There is strong commercial interest in the ability to fabricate the windings of traditional miniature wire-wound inductive circuit components, such as Ethernet transformers, lithographically. For greater inductance devices, thick cores are required, making the process of embedding the ferrite material within circuit board one of few options for lithographic winding fabrication. In this paper, a non-traditional core shape, suitable for embedding in circuit board, is examined analytically and experimentally; the racetrack shape is two halves of a toroid connected by straight legs. With regard to the high inductance requirements for Ethernet applications (350μH), the racetrack transformer inductance is analytically optimized, determining the optimal physical dimensions. Two sizes of racetrack-core transformers were fabricated and measured. The measured inductance was in reasonable agreement with the analytical prediction, though large variations in material permeability are expected from the mechanical processing of the ferrite. Some of the experimental transformers were observed to satisfy the Ethernet inductance requirement.
Design principles and realization of electro-optical circuit boards
NASA Astrophysics Data System (ADS)
Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry
2013-02-01
The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.
The present triumphs and future problems with wave soldering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.
1993-10-01
Nearly 40 years of experience with wave soldering have resulted in processes that routinely produce several thousand, defect-free solder joints per minute. However, the climate of electronics manufacturing has changed significantly over the past 10 to 15 years. Environmental restrictions as well as the high quality of products made offshore has placed new demands and challenges on the electronics industry, right down to the assembly process. The impact on wave soldering by environmental regulations and a need for more cost-competitive manufacturing processes has become a serious issue in terms of the economical well-being of the industry. In order to obtainmore » a clearer understanding of the situation, however, it is first most appropriate and necessary to examine the technology of wave soldering. Historically, wave soldering was developed as a refinement of the dip and drag soldering processes with the objective of reducing or eliminating many of the associated defects often present in these earlier processes. Wave soldering reduces the area of contact between the circuit board and the solder. This characteristic, coupled with the agitation generated in the solder, allows flux and its volatile by-products to readily escape from under the board, decreasing the number of skips, unfilled holes, and solder joint voids. The reduced contact area also lessens the potential for thermal damage to the circuit board laminate. Control of the wave profile at the exit point of the circuit board lessens the likelihood of icicles and bridges forming on the solder joints; this latitude is not available in the dip soldering process.« less
Elements configuration of the open lead test circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp; Ono, Akira
In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a testmore » circuit in the past. This paper propose elements configuration of the test circuit.« less
Reusable vibration resistant integrated circuit mounting socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, C.N.
1993-12-31
This invention discloses a novel form of socket for integrated circuits to be mounted on printed circuit boards. The socket uses a novel contact which is fabricated out of a bimetallic strip with a shape which makes the end of the strip move laterally as temperature changes. The end of the strip forms a barb which digs into an integrated circuit lead at normal temperatures and hold it firmly in the contact, preventing loosening and open circuits from vibration. By cooling the contact containing the bimetallic strip the barb end can be made to release so that the integrated circuitmore » lead can be removed from the socket without damage either to the lead or to the socket components.« less
Reusable vibration resistant integrated circuit mounting socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, C.N.
1995-08-29
This invention discloses a novel form of socket for integrated circuits to be mounted on printed circuit boards. The socket uses a novel contact which is fabricated out of a bimetallic strip with a shape which makes the end of the strip move laterally as temperature changes. The end of the strip forms a barb which digs into an integrated circuit lead at normal temperatures and holds it firmly in the contact, preventing loosening and open circuits from vibration. By cooling the contact containing the bimetallic strip the barb end can be made to release so that the integrated circuitmore » lead can be removed from the socket without damage either to the lead or to the socket components. 11 figs.« less
Resistence seam welding thin copper foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollar, D.L. Jr.
1991-02-01
Use of flat flexible circuits in the electronics industry is expanding. The term flexible circuits'' is defined here as copper foil which has been bonded to an insulating film such as Kapton film. The foil is photo processed to produce individual circuit paths similar to printed circuit boards. Another insulating film is laminated over the conductors to complete the flexible circuit. Flexible circuits, like multiwire cables, are susceptible to electromagnetic radiation (EMR) interference. On multiwire cables the interference problem is mitigated by adding a woven wire braid shielding over the conductors. Shielding on flexible circuits is accomplished by enclosing themore » circuits in a copper foil envelope. However, the copper foil must be electrically sealed around the flexcircuit to be effective. Ultimately, a resistance seam welding process and appropriate equipment were developed which would provide the required electrical seal between two layers of 2-oz (0.0028-inch thick) copper foil on a 1.1-inch wide, 30-inch long, 0.040-inch thick flexible circuit. 4 refs., 19 figs.« less
Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors
NASA Astrophysics Data System (ADS)
Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth
2017-02-01
Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.
Substrate With Low Secondary Emissions
NASA Technical Reports Server (NTRS)
Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)
2000-01-01
The present invention is directed to a method and apparatus for producing a highly -textured surface on a copper substrate -with only extremely small amounts of texture-inducing seeding or masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.
Evaluation of Electrochemical Migration on Printed Circuit Boards with Lead-Free and Tin-Lead Solder
NASA Astrophysics Data System (ADS)
He, Xiaofei; Azarian, Michael H.; Pecht, Michael G.
2011-09-01
To evaluate the current leakage and electrochemical migration behavior on printed circuit boards with eutectic tin-lead and lead-free solder, IPC B-24 comb structures were exposed to 65°C and 88% relative humidity conditions under direct-current (DC) bias for over 1500 h. These boards were processed with either Sn-3.0Ag-0.5Cu solder or Sn-37Pb solder. In addition to solder alloy, board finish (organic solderability preservative versus lead-free hot air solder leveling), spacing (25 mil versus 12.5 mil), and voltage (40 V versus 5 V bias) were also assessed by using in situ measurements of surface insulation resistance (SIR) and energy-dispersive spectroscopy after testing. It was shown that an initial increase of SIR was caused by consumption of electroactive species on the surface, intermittent drops of SIR were caused by dendritic growth, and a long-term SIR decline was caused by electrodeposition of a metallic layer. The prolonged SIR decline of Sn-3.0Ag-0.5Cu boards was simulated by three-dimensional (3D) progressive and instantaneous nucleation models, whose predictions were compared with experimental data. Sn-37Pb boards exhibited comigration of Sn, Pb, and Cu, while Sn-3.0Ag-0.5Cu boards incurred comigration of Sn, Ag, and Cu. Among the migrated species, Sn always dominated and was observed as either a layer or in polyhedral deposits, Pb was the most common element found in the dendrites, Cu was a minor constituent, and Ag migrated only occasionally. Compared with solder alloy, board finishes played a secondary role in affecting SIR due to their complexation with or dissolution into the solder. The competing effect between electric field and spacing was also investigated.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2003-04-15
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.
2002-01-01
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Loopback Tester: a synchronous communications circuit diagnostic device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maestas, J.H.
1986-07-01
The Loopback Tester is an Intel SBC 86/12A Single Board Computer and an Intel SBC 534 Communications Expansion Board configured and programmed to perform various basic or less. These tests include: (1) Data Communications Equipment (DCE) transmit timing detection (2) data rate measurement (3) instantaneous loopback indication and (4) bit error rate testing. It requires no initial setup after plug in, and can be used to locate the source of communications loss in a circuit. It can also be used to determine when crypto variable mismatch problems are the source of communications loss. This report discusses the functionality of themore » Loopback Tester as a diagnostic device. It also discusses the hardware and software which implements this simple yet reliable device.« less
NASA Technical Reports Server (NTRS)
Aanstoos, J. V.; Snyder, W. E.
1981-01-01
Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.
Integrating soft sensor systems using conductive thread
NASA Astrophysics Data System (ADS)
Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.
2018-05-01
We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable technologies like virtual reality, or in soft-medical devices such as exoskeletal rehabilitation robots.
Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.
Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P
2017-10-01
Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piezoelectric Response of Ferroelectric Ceramics Under Mechanical Stress
2015-09-17
dynamic response, and predict mechanical breakdown of electronic materials, numerous testing techniques such as very high-g machines , drop towers...James C. Hierholzer for building the custom test fixture, Michael D. Craft for his help with static capacitance measurements, Bryan J. Turner, Scott D...ISOLA 370HR Board Specimen Test Set-Up . . . . . . . . . . . . . . . . . . 59 3.3 Printed Circuit Board Electrical Layout
NASA Technical Reports Server (NTRS)
Vest, R. W.; Singaram, Saraswathi
1989-01-01
Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.
Measurement of luminescence decays: High performance at low cost
NASA Astrophysics Data System (ADS)
Sulkes, Mark; Sulkes, Zoe
2011-11-01
The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.
Optoelectronic Integrated Circuits For Neural Networks
NASA Technical Reports Server (NTRS)
Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.
1990-01-01
Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.
A study on Aerosol jet printing technology in LED module manufacturing
NASA Astrophysics Data System (ADS)
Rudorfer, Andreas; Tscherner, Martin; Palfinger, Christian; Reil, Frank; Hartmann, Paul; Seferis, Ioannis E.; Zych, Eugeniusz; Wenzl, Franz P.
2016-09-01
State of the art fabrication of LED modules based on chip-on-board (COB) technology comprises some shortcomings both with respect to the manufacturing process itself but also with regard to potential sources of failures and manufacturing impreciseness. One promising alternative is additive manufacturing, a technology which has gained a lot of attention during the last years due to its materials and cost saving capabilities. Especially direct-write technologies like Aerosol jet printing have demonstrated advantages compared to other technological approaches when printing high precision layers or high precision electronic circuits on substrates which, as an additional advantage, also can be flexible and 3D shaped. Based on test samples and test structures manufactured by Aerosol jet printing technology, in this context we discuss the potentials of additive manufacturing in various aspects of LED module fabrication, ranging from the deposition of the die-attach material, wire bond replacement by printed electrical connects as well as aspects of high-precision phosphor layer deposition for color conversion and white light generation.
AFM-based micro/nanoscale lithography of poly(dimethylsiloxane): stick-slip on a softpolymer
NASA Astrophysics Data System (ADS)
Watson, Jolanta A.; Myhra, Sverre; Brown, Christopher L.; Watson, Gregory S.
2005-02-01
Silicone rubbers have steadily gained importance in industry since their introduction in the 1960"s. Poly(dimethylsiloxane) (PDMS) is a relatively soft and optically clear, two-part elastomer with interesting and, more importantly, useful physical and electrical properties. Some of its common applications include protective coatings (e.g., against moisture, environmental attack, mechanical and thermal shock and vibrations), and encapsulation (e.g., amplifiers, inductive coils, connectors and circuit boards). The polymer has attracted recent interest for applications in soft lithography. The polymer is now routinely used as a patterned micro-stamp for chemical modification of surfaces, in particular Au substrates. Prominent stick-slip effects, surface relaxation and elastic recovery were found to be associated with micro/nano manipulation of the polymer by an AFM-based contact mode methodology. Those effects provide the means to explore in detail the meso-scale tip-to-surface interactions between a tip and a soft surface. The dependence of scan speed, loading force, attack angle and number of scan lines have been investigated.
Miniaturized force/torque sensor for in vivo measurements of tissue characteristics.
Hessinger, M; Pilic, T; Werthschutzky, R; Pott, P P
2016-08-01
This paper presents the development of a surgical instrument to measure interaction forces/torques with organic tissue during operation. The focus is on the design progress of the sensor element, consisting of a spoke wheel deformation element with a diameter of 12 mm and eight inhomogeneous doped piezoresistive silicon strain gauges on an integrated full-bridge assembly with an edge length of 500 μm. The silicon chips are contacted to flex-circuits via flip chip and bonded on the substrate with a single component adhesive. A signal processing board with an 18 bit serial A/D converter is integrated into the sensor. The design concept of the handheld surgical sensor device consists of an instrument coupling, the six-axis sensor, a wireless communication interface and battery. The nominal force of the sensing element is 10 N and the nominal torque is 1 N-m in all spatial directions. A first characterization of the force sensor results in a maximal systematic error of 4.92 % and random error of 1.13 %.
Resistive hydrogen sensing element
Lauf, Robert J.
2000-01-01
Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.
NASA Astrophysics Data System (ADS)
Jacobs, J. L.
1993-04-01
Erasable programmable logic devices (EPLD's) were investigated to determine their advantages and/or disadvantages in Test Equipment Engineering applications. It was found that EPLD's performed as well as or better than identical circuits using standard transistor transistor logic (TTL). The chip count in these circuits was reduced, saving printed circuit board space and shortening fabrication and prove-in time. Troubleshooting circuits of EPLD's was also easier with 10 to 100 times fewer wires needed. The reduced number of integrated circuits (IC's) contributed to faster system speeds and an overall lower power consumption. In some cases changes to the circuit became software changes using EPLD's instead of hardware changes for standard logic. Using EPLD's was fairly easy; however, as with any new technology, a learning curve must be overcome before EPLD's can be used efficiently. The many benefits of EPLD's outweighed this initial inconvenience.
Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits.
Cai, Le; Zhang, Suoming; Miao, Jinshui; Yu, Zhibin; Wang, Chuan
2016-12-27
This paper reports intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits directly printed on elastomeric polydimethylsiloxane (PDMS) substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO 3 ) nanoparticles. The BaTiO 3 /PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. This work may offer an entry into more sophisticated stretchable electronic systems with monolithically integrated sensors, actuators, and displays, fabricated by scalable and low-cost methods for real life applications.
The LANL P14 temperature control electronics for the waveshaping filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahman, N.S.
1993-12-17
The Pulse Waveform Standard is designed to be operated in a laboratory environment in which the temperature is controlled and maintained at 22 C. The temperature controller of the Pulse Waveform Standard must be set to operate at 30 C. This report gives information for calibrating and maintaining the temperature control electronics. Temperature controller circuit diagrams and temperature controller circuit board layouts are included.
Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits
NASA Astrophysics Data System (ADS)
Stinner, F. Scott
As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with <10 micros stage delays, and NAND and NOR logic gates. In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm 2/vs when fabricated as part of photopatterned integrated circuits on Kapton substrates. In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators were developed. These methods allow for transistors to operate at higher voltages as well as provide a means for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of these transistors in this frequency range would open the door for development of CdSe integrated circuits for high-performance sensor, display, and audio applications. To develop further applications of electronics on flexible substrates, procedures are developed for the integration of polychromatic displays on polyethylene terephthalate (PET) substrates and a commercial near field communication (NFC) link. The device draws its power from the NFC transmitter common on smartphones and eliminates the need for a fixed battery. This allows for the mass deployment of flexible, interactive displays on product packaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.
There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Flood, Dennis J.
1990-01-01
Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.
Board-to-board optical interconnection using novel optical plug and slot
NASA Astrophysics Data System (ADS)
Cho, In K.; Yoon, Keun Byoung; Ahn, Seong H.; Kim, Jin Tae; Lee, Woo Jin; Shin, Kyoung Up; Heo, Young Un; Park, Hyo Hoon
2004-10-01
A novel optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by optical plug and slot. We report an 8Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of ETRI's optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB. 3) Optical slot and plug for high-density(channel pitch : 500um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data on transmitter/ receiver system boards and for backplane interconnections. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The optical PCB is characteristic of low coupling loss, easy insertion/extraction of the boards and, especially, reliable optical coupling unaffected from external environment after board insertion.
Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong
2017-11-01
Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method and Apparatus for Producing a Substrate with Low Secondary Electron Emissions
NASA Technical Reports Server (NTRS)
Jensen, Kenneth A. (Inventor); Curren, Arthur N. (Inventor); Roman, Robert F. (Inventor)
1998-01-01
The present invention is directed to a method and apparatus for producing a highly-textured surface on a copper substrate with only extremely small amounts of texture-inducing seeding of masking material. The texture-inducing seeding material is delivered to the copper substrate electrically switching the seeding material in and out of a circuit loop.
Leung, Anna O W; Duzgoren-Aydin, Nurdan S; Cheung, K C; Wong, Ming H
2008-04-01
The recycling of printed circuit boards in Guiyu, China, a village intensely involved in e-waste processing, may present a significant environmental and human health risk. To evaluate the extent of heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn) contamination from printed circuit board recycling, surface dust samples were collected from recycling workshops, adjacent roads, a schoolyard, and an outdoor food market. ICP-OES analyses revealed elevated mean concentrations in workshop dust (Pb 110,000, Cu 8360, Zn 4420, and Ni 1500 mg/kg) and in dust of adjacent roads (Pb 22,600, Cu 6170, Zn 2370, and Ni 304 mg/kg). Lead and Cu in road dust were 330 and 106, and 371 and 155 times higher, respectively, than non e-waste sites located 8 and 30 km away. Levels at the schoolyard and food market showed that public places were adversely impacted. Risk assessment predicted that Pb and Cu originating from circuit board recycling have the potential to pose serious health risks to workers and local residents of Guiyu, especially children, and warrants an urgent investigation into heavy metal related health impacts. The potential environmental and human health consequences due to uncontrolled e-waste recycling in Guiyu serves as a case study for other countries involved in similar crude recycling activities.
Wang, Fangfang; Zhao, Yuemin; Zhang, Tao; Duan, Chenlong; Wang, Lizhang
2015-09-01
As dust is one of the byproducts originating in the mechanical recycling process of waste printed circuit boards such as crushing and separating, from the viewpoints of resource reuse and environmental protection, an effective recycling method to recover valuable materials from this kind of dust is in urgent need. In this paper, detailed mineralogical analysis on the dust collected from a typical recycling line of waste printed circuit boards is investigated by coupling several analytical techniques. The results demonstrate that there are 73.1wt.% organic matters, 4.65wt.% Al, 4.55wt.% Fe, 2.67wt.% Cu and 1.06wt.% Pb in the dust, which reveals the dust is worthy of reuse and harmful to environment. The concentration ratios of Fe, Mn and Zn can reach 12.35, 12.33 and 6.67 respectively by magnetic separation. The yield of dust in each size fraction is nonuniform, while the yield of -0.75mm size fraction is up to 51.15wt.%; as the particle size decreases, the content of liberated metals and magnetic materials increase, and metals are mainly in elemental forms. The F, Cl and Br elements combing to C in the dust would make thermal treatment dangerous to the environment. Based on these results, a flowsheet to recycle the dust is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alumina Based 500 C Electronic Packaging Systems and Future Development
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2012-01-01
NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.
Microstrip Butler matrix design and realization for 7 T MRI.
Yazdanbakhsh, Pedram; Solbach, Klaus
2011-07-01
This article presents the design and realization of 8 × 8 and 16 × 16 Butler matrices for 7 T MRI systems. With the focus on low insertion loss and high amplitude/phase accuracy, the microstrip line integration technology (microwave-integrated circuit) was chosen for the realization. Laminate material of high permittivity (ε(r) = 11) and large thickness (h = 3.2 mm) is shown to allow the best trade-off of circuit board size versus insertion loss, saving circuit area by extensive folding of branch-line coupler topology and meandering phase shifter and connecting strip lines and reducing mutual coupling of neighboring strip lines by shield structures between strip lines. With this approach, 8 × 8 Butler matrices were produced in single boards of 310 mm × 530 mm, whereas the 16 × 16 Butler matrices combined two submatrices of 8 × 8 with two smaller boards. Insertion loss was found at 0.73 and 1.1 dB for an 8 × 8 matrix and 16 × 16 matrix, respectively. Measured amplitude and phase errors are shown to represent highly pure mode excitation with unwanted modes suppressed by 40 and 35 dB, respectively. Both types of matrices were implemented with a 7 T MRI system and 8- and 16-element coil arrays for RF mode shimming experiments and operated successfully with 8 kW of RF power. Copyright © 2011 Wiley-Liss, Inc.
Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors
Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth
2017-01-01
Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438
Pattern classification using charge transfer devices
NASA Technical Reports Server (NTRS)
1980-01-01
The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.
Universal test system for system embedded optical interconnect
NASA Astrophysics Data System (ADS)
Pitwon, R.; Wang, K.; Immonen, M.; Schröder, H.; Neitz, M.
2018-02-01
We introduce a universal test and measurement system allowing comparative characterisation of optical transceivers, board-to-board optical connectors and both embedded and passive optical circuit boards. The system comprises a test enclosure with interlocking and interchangeable test cards, allowing different technologies spanning different Technology Readiness Levels to be both characterised alone and in combination with other technologies. They form part of the open test design standards portfolio developed on the FP7 PhoxTroT and H2020 COSMICC projects and allow testing on a common test platform.
Phase-lock-loop application for fiber optic receiver
NASA Astrophysics Data System (ADS)
Ruggles, Stephen L.; Wills, Robert W.
1991-02-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
Phase-lock-loop application for fiber optic receiver
NASA Technical Reports Server (NTRS)
Ruggles, Stephen L.; Wills, Robert W.
1991-01-01
Phase-locked loop circuits are frequently employed in communication systems. In recent years, digital phase-locked loop circuits were utilized in optical communications systems. In an optical transceiver system, the digital phase-locked loop circuit is connected to the output of the receiver to extract a clock signal from the received coded data (NRZ, Bi-Phase, or Manchester). The clock signal is then used to reconstruct or recover the original data from the coded data. A theoretical approach to the design of a digital phase-locked loop circuit operation at 1 and 50 MHz is described. Hardware implementation of a breadboard design to function at 1 MHz and a printed-circuit board designed to function at 50 MHz were assembled using emitter coupled logic (ECL) to verify experimentally the theoretical design.
ERIC Educational Resources Information Center
Lee, Philip
2014-01-01
Background/Context: Legal scholars have cited the Fifth Circuit's ruling in Dixon v. Alabama State Board of Education (1961) as the beginning of a revolution for students' rights that ended the in loco parentis relationship between colleges and their students. But little has been written about the students' activism that led to this seminal case.…
Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics
NASA Astrophysics Data System (ADS)
Kang, Jin Sung
Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200°C in N 2 gas condition. The printed electrodes were made with various widths and thicknesses. Surface morphology of electrode was analyzed using scanning electron microscope (SEM) and atomic force microscope (AFM). Reliable dimensions for printed electronics were found from this study. Single-crystalline silicon solar cells were tested under four-point bending to find the feasibility of directly integrating them onto a carbon fiber/epoxy composite laminate. These solar cells were not able to withstand 0.2% strain. On the other hand, thin-film amorphous silicon solar cells were subjected to flexural fatigue loadings. The current density-voltage curves were analyzed at different cycles, and there was no noticeable degradation on its performance up to 100 cycles. A multifunctional composite laminate which can harvest and store solar energy was fabricated using printed electrodes. The integrated printed circuit board (PCB) was co-cured with a carbon/epoxy composite laminate by the vacuum bag molding process in an autoclave; an amorphous silicon solar cell and a thin-film solid state lithium-ion (Li-ion) battery were adhesively joined and electrically connected to a thin flexible PCB; and then the passive components such as resistors and diodes were electrically connected to the printed circuit board by silver pasting. Since a thin-film solid state Li-ion battery was not able to withstand tensile strain above 0.4%, thin Li-ion polymer batteries were tested under various mechanical loadings and environmental conditions to find the feasibility of using the polymer batteries for our multifunctional purpose. It was found that the Li-ion polymer batteries were stable under pressure and tensile loading without any noticeable degradation on its charge and discharge performances. Also, the active materials did not decompose at 80°C, and the battery was performing well under low temperature of -27°C. Lastly, the batteries were embedded inside a carbon fiber/epoxy composite laminate to characterize their performance under fatigue loading. Finally, an intense pulsed light (IPL) was used to sinter printed silver nanoink patterns. X-ray diffraction (XRD) was used to find grain size of printed silver nanoink patterns. From these analyses it was confirmed that IPL is able to adequately sinter silver nanoink patterns for printed electronics without degradation of the substrates in less than 30 ms.
Improved process for epitaxial deposition of silicon on prediffused substrates
NASA Technical Reports Server (NTRS)
Clarke, M. G.; Halsor, J. L.; Word, J. C.
1968-01-01
Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.
Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies
NASA Astrophysics Data System (ADS)
Tanake, Katsuaki
We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor-metal direct bonding have been fabricated. These metallic back structures could incouple the incident light into surface plasmon mode propagating at the semiconductor/metal interface to increase the optical path, as well as simply act as back reflector, and we have observed significantly increased short-circuit current relative to reference cells without these metal components. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)
1998-01-01
A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.
NASA Technical Reports Server (NTRS)
Wilson, William C.
1999-01-01
The NASA Langley Research Center's Wind Tunnel Reinvestment project plans to shrink the existing data acquisition electronics to fit inside a wind tunnel model. Space limitations within a model necessitate a distributed system of Application Specific Integrated Circuits (ASICs) rather than a centralized system based on PC boards. This thesis will focus on the design of the prototype of the communication Controller board. A portion of the communication Controller board is to be used as the basis of an ASIC design. The communication Controller board will communicate between the internal model modules and the external data acquisition computer. This board is based around an Field Programmable Gate Array (FPGA), to allow for reconfigurability. In addition to the FPGA, this board contains buffer Random Access Memory (RAM), configuration memory (EEPROM), drivers for the communications ports, and passive components.
Method Of Packaging And Assembling Electro-Microfluidic Devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2004-11-23
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Advanced Atmospheric Water Vapor DIAL Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)
2000-01-01
Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.
Multipurpose microcontroller design for PUGAS 2
NASA Technical Reports Server (NTRS)
Weber, David M.; Deckard, Todd W.
1987-01-01
This paper will report on the past year's work on the development of the microcontroller design for the second Purdue University small self-contained payload. A first report on this effort was given at last year's conference by Ritter (1985). At that time, the project was still at the conceptual stage. Now a specific design has been set, prototyping has begun, and layout of the two-sided circuit board using CAD-techniques is nearing completion. A redesign of the overall concept of the circuit board was done to take advantage of the facilities available to students. An additional controller has been added to take large quantities of data concerning the shuttle environment during takeoff. The importance of setting a design time-line is discussed along with the electrical design considerations given to the controllers.
Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing
2017-08-09
A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.
Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation
NASA Astrophysics Data System (ADS)
Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki
This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.
Design and implementation of a general and automatic test platform base on NI PXI system
NASA Astrophysics Data System (ADS)
Shi, Long
2018-05-01
Aiming at some difficulties of test equipment such as the short product life, poor generality and high development cost, a general and automatic test platform base on NI PXI system is designed in this paper, which is able to meet most test requirements of circuit boards. The test platform is devided into 5 layers, every layer is introduced in detail except for the "Equipment Under Test" layer. An output board of a track-side equipment, which is an important part of high speed train control system, is taken as an example to make the functional circuit test by the test platform. The results show that the test platform is easy to realize add-on functions development, automatic test, wide compatibility and strong generality.
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
Lithner, Delilah; Halling, Maja; Dave, Göran
2012-05-01
Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.
Spacelab, Spacehab, and Space Station Freedom payload interface projects
NASA Technical Reports Server (NTRS)
Smith, Dean Lance
1992-01-01
Contributions were made to several projects. Howard Nguyen was assisted in developing the Space Station RPS (Rack Power Supply). The RPS is a computer controlled power supply that helps test equipment used for experiments before the equipment is installed on Space Station Freedom. Ron Bennett of General Electric Government Services was assisted in the design and analysis of the Standard Interface Rack Controller hardware and software. An analysis was made of the GPIB (General Purpose Interface Bus), looking for any potential problems while transmitting data across the bus, such as the interaction of the bus controller with a data talker and its listeners. An analysis was made of GPIB bus communications in general, including any negative impact the bus may have on transmitting data back to Earth. A study was made of transmitting digital data back to Earth over a video channel. A report was written about the study and a revised version of the report will be submitted for publication. Work was started on the design of a PC/AT compatible circuit board that will combine digital data with a video signal. Another PC/AT compatible circuit board is being designed to recover the digital data from the video signal. A proposal was submitted to support the continued development of the interface boards after the author returns to Memphis State University in the fall. A study was also made of storing circuit board design software and data on the hard disk server of a LAN (Local Area Network) that connects several IBM style PCs. A report was written that makes several recommendations. A preliminary design review was started of the AIVS (Automatic Interface Verification System). The summer was over before any significant contribution could be made to this project.
Direct writing of flexible electronics through room temperature liquid metal ink.
Gao, Yunxia; Li, Haiyan; Liu, Jing
2012-01-01
Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn(10)-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. The electrical resistivity of the fluid like GaIn(10)-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn(10)-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life.
Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink
Gao, Yunxia; Li, Haiyan; Liu, Jing
2012-01-01
Background Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. Methods The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. Results The electrical resistivity of the fluid like GaIn10-based material was measured as 34.5 µΩ·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. Conclusions The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life. PMID:23029044
Microfabricated AC impedance sensor
Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo
2002-01-01
A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.
Yoshimoto, Shusuke; Uemura, Takafumi; Akiyama, Mihoko; Ihara, Yoshihiro; Otake, Satoshi; Fujii, Tomoharu; Araki, Teppei; Sekitani, Tsuyoshi
2017-07-01
This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate. This study also specifically examines heart pulse wave monitoring conducted using the proposed flexible amplifier circuit and a flexible piezoelectric film. We connected the amplifier to a bluetooth device for a wearable device demonstration.
3D Printed Fluidic Hardware for DNA Assembly
2015-04-10
A3909 stepper motor driver, were soldered onto the milled circuit board (Supplementary Figure 8). Custom Arduino - based firmware was written to take...initiatives such as the FabLab Foundation10. Access to digital fabrication tools and open electronics, such as Arduino and Raspberry Pi, enables access to...hardware for assembly of DNA- based genetic circuits. Solid-phase DNA synthesis has declined in price, enabling researchers to routinely design and
Analysis of Multilayered Printed Circuit Boards using Computed Tomography
2014-05-01
complex PCBs that present a challenge for any testing or fault analysis. Set-to- work testing and fault analysis of any electronic circuit require...Electronic Warfare and Radar Division in December 2010. He is currently in Electro- Optic Countermeasures Group. Samuel works on embedded system design...and software optimisation of complex electro-optical systems, including the set to work and characterisation of these systems. He has a Bachelor of
Vision Technology for Automated Inspection of Hybrid Microelectronics Assemblies
1988-06-01
circuits are a very efficient packaging technique, with the primary advantages of size, better resistance to environ - 0 ments, and the flexibility to...produced for the military are much more complex and have more stringent performance requirements, particularly in their resistance to environments and...boards, particularly because of the need to protect circuits from a hostile environment such as salt, heat, and moisture. Included among the major U.S
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033816 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Expedition 18 Station Development Test Objectives (STDO) Session 1
2009-02-19
ISS018-E-033818 (19 Feb. 2009) --- Astronaut Michael Fincke, Expedition 18 commander, removes, cleans and replaces electronic test components on a single test card using Component Repair Equipment (CRE-1) hardware in a portable glovebox facility in the Harmony node of the International Space Station. Fincke unsoldered 1 1/2 components from an integrated circuit board and re-soldered new components including an integrated circuit chip.
Nanoeletromechanical switch and logic circuits formed therefrom
Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM
2010-05-18
A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.
Irradiation of MOS-FET devices to provide desired logic functions
NASA Technical Reports Server (NTRS)
Danchenko, V.; Schaefer, D. H.
1972-01-01
Gamma, X-ray, electron, or other radiation is used to shift threshold potentials of MOS devices on logic circuits. Before irradiation MOS gates to be shifted are biased positive and other gates are grounded to substrate. Threshold lasts 10 years. Thermal annealing brings circuit back to original configuration.
Electronic circuits having NiAl and Ni.sub.3 Al substrates
Deevi, Seetharama C.; Sikka, Vinod K.
1999-01-01
An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.
Signal transfer within a cultured asymmetric cortical neuron circuit
NASA Astrophysics Data System (ADS)
Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko
2015-12-01
Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.
Signal transfer within a cultured asymmetric cortical neuron circuit.
Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko
2015-12-01
Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.
Capacitive charge generation apparatus and method for testing circuits
Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.
1998-07-14
An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.
Capacitive charge generation apparatus and method for testing circuits
Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.
1998-01-01
An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.
Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces
NASA Technical Reports Server (NTRS)
Navidi, Sal; Agdinaoay, Rodell; Walter, Keith
2013-01-01
High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).
Agent-based services for B2B electronic commerce
NASA Astrophysics Data System (ADS)
Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun
2000-12-01
The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Management of Microcircuit Obsolescence in a Pre-Production ACAT-ID Missile Program
2002-12-01
and Engineering Center ASIC Application Specific Integrated Circuit AVCOM Avionics Component Obsolescence Management BRU Battery Replaceable Unit...then just a paper qualification, e.g. Board or Battery Replaceable Unit ( BRU ) testing. 5 After-market Package The Die is Available and Can Be...Encapsulated Microcircuits (PEM), speed change, failure rate) 8 Emulation Manufacture or re-engineering of a FFF Replacement 9 CCA or BRU Redesign Board
77 FR 56989 - Airworthiness Directives; Bombardier Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... (TMU). Investigation has revealed that the failures were attributed to overstressed capacitors installed in the circuit board of the TMU ``Module 300'' power supply. The failure of the capacitors leads...
77 FR 16191 - Airworthiness Directives; Bombardier Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... (TMU). Investigation has revealed that the failures were attributed to overstressed capacitors installed in the circuit board of the TMU ``Module 300'' power supply. The failure of the capacitors leads...
2009-06-23
Environmental Portrait, Electrical Power Systems Employee, hardware for the High Power 300-Volt Power Processing Unit (PPU). The Printed Circuit Boards (PCBs) are the Discharge Module Inverter and the Pulse Width Modulation (PWM) Controller
Chip-to-chip optical link by using optical wiring method
NASA Astrophysics Data System (ADS)
Cho, In-Kui; Ahn, Seoung Ho; Jeong, Myung-Yung; Rho, Byung Sup; Park, Hyo Hoon
2008-01-01
A practical optical link system was prepared with a transmitter (Tx) and receiver (Rx). The optical TRx module consisted of a metal optical bench, a module printed circuit board (PCB), a driver/receiver IC, a VCSEL/PD array, and an optical link block composed of plastic optical fiber (POF). For the optical interconnection between the light-sources and detectors, an optical wiring method has been proposed to enable easy assembly. This paper provides a method for optical interconnection between an optical Tx and an optical Rx, comprising the following steps: (a) forming a light source device, an optical detection device, and an optical transmission unit on a substrate (metal optical bench (MOB)); (b) preparing a flexible optical transmission-connection medium (optical wiring link) to optically connect the light source device formed on the substrate with the optical detection device; and (c) directly connecting one end of the surface-finished optical transmission connection medium with the light source device and the other end with the optical detection device. A chip-to-chip optical link system constructed with TRx modules was fabricated and the optical characteristics were measured. The results clearly demonstrate that the use of an optical wiring method can provide robust and cost-effective assembly for vertical-cavity surface-emitting lasers (VCSELs) and photodiodes (PDs). We successfully achieved a 5 Gb/s data transmission rate with this optical link.