Apparatus for and method of testing an electrical ground fault circuit interrupt device
Andrews, L.B.
1998-08-18
An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.
Apparatus for and method of testing an electrical ground fault circuit interrupt device
Andrews, Lowell B.
1998-01-01
An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.
30 CFR 18.54 - High-voltage continuous mining machines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... removed. (c) Circuit-interrupting devices. Circuit-interrupting devices must be designed and installed to... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...
30 CFR 18.54 - High-voltage continuous mining machines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... removed. (c) Circuit-interrupting devices. Circuit-interrupting devices must be designed and installed to... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...
30 CFR 18.54 - High-voltage continuous mining machines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... removed. (c) Circuit-interrupting devices. Circuit-interrupting devices must be designed and installed to... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...
30 CFR 18.54 - High-voltage continuous mining machines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... removed. (c) Circuit-interrupting devices. Circuit-interrupting devices must be designed and installed to... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...
30 CFR 18.54 - High-voltage continuous mining machines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Design Requirements § 18.54 High-voltage continuous mining machines. (a) Separation of high... removed. (c) Circuit-interrupting devices. Circuit-interrupting devices must be designed and installed to... ground. (e) Onboard ungrounded, three-phase power circuit. A continuous mining machine designed with an...
Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system
NASA Astrophysics Data System (ADS)
Orama, Lionel R.
In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.
Hybrid high direct current circuit interrupter
Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.
1998-01-01
A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.
Hybrid high direct current circuit interrupter
Rockot, J.H.; Mikesell, H.E.; Jha, K.N.
1998-08-11
A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.
MOSFET analog memory circuit achieves long duration signal storage
NASA Technical Reports Server (NTRS)
1966-01-01
Memory circuit maintains the signal voltage at the output of an analog signal amplifier when the input signal is interrupted or removed. The circuit uses MOSFET /Metal Oxide Semiconductor Field Effect Transistor/ devices as voltage-controlled switches, triggered by an external voltage-sensing device.
30 CFR 75.815 - Disconnect devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... phase-to-phase voltage of the circuit in which they are installed, and for the full-load current of the... explosion-proof enclosures, must be capable of interrupting the full-load current of the circuit or designed and installed to cause the current to be interrupted automatically prior to the opening of the...
30 CFR 75.815 - Disconnect devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... phase-to-phase voltage of the circuit in which they are installed, and for the full-load current of the... explosion-proof enclosures, must be capable of interrupting the full-load current of the circuit or designed and installed to cause the current to be interrupted automatically prior to the opening of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... on electrical devices, including those on relays, interrupters, switches, contactors, terminal blocks and circuit breakers, and other circuit protection devices. (4) Connectors, including feed-through... connections. (7) Electrical splices. (8) Materials used to provide additional protection for wires, including...
Code of Federal Regulations, 2011 CFR
2011-01-01
... on electrical devices, including those on relays, interrupters, switches, contactors, terminal blocks and circuit breakers, and other circuit protection devices. (4) Connectors, including feed-through... connections. (7) Electrical splices. (8) Materials used to provide additional protection for wires, including...
30 CFR 18.51 - Electrical protection of circuits and equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the junction with the main circuit when the branch-circuit conductor(s) has a current carrying... same duty. (1) If the overcurrent-protective device in a direct-current circuit does not open both... preventing the possibility of reversing connections which would result in changing the circuit interrupter to...
30 CFR 18.51 - Electrical protection of circuits and equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the junction with the main circuit when the branch-circuit conductor(s) has a current carrying... same duty. (1) If the overcurrent-protective device in a direct-current circuit does not open both... preventing the possibility of reversing connections which would result in changing the circuit interrupter to...
Barkan, Philip; Imam, Imdad
1980-01-01
This circuit breaker comprises a plurality of a vacuum-type circuit interrupters, each having a movable contact rod. A common operating device for the interrupters comprises a linearly-movable operating member. The interrupters are mounted at one side of the operating member with their movable contact rods extending in a direction generally toward the operating member. Means is provided for mechanically coupling the operating member to the contact rods, and this means comprises a plurality of insulating operating rods, each connected at one end to the operating member and at its opposite end to one of the movable contact rods. The operating rods are of substantially equal length and have longitudinal axes that converge and intersect at substantially a common point.
30 CFR 75.825 - Power centers.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and be designed and installed as follows: (1) Rated for the maximum phase-to-phase voltage of the circuit; (2) Rated for the full-load current of the circuit that is supplied power through the device. (3... current of the circuit or causes the current to be interrupted automatically before the disconnecting...
Switch contact device for interrupting high current, high voltage, AC and DC circuits
Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.
2005-01-04
A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.
Simple circuit monitors "third wire" in ac lines
NASA Technical Reports Server (NTRS)
Kojima, T. T.; Stuck, D. E.
1980-01-01
Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.
NASA Astrophysics Data System (ADS)
Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao
2006-11-01
The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.
Metal vapor arc switch electromagnetic accelerator technology
NASA Technical Reports Server (NTRS)
Mongeau, P. P.
1984-01-01
A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.
Vinothraj, R.
2012-01-01
The aim of the present study is to fabricate indigenously ultrasonic‐based automatic patient's movement monitoring device (UPMMD) that immediately halts teletherapy treatment if a patient moves, claiming accurate field treatment. The device consists of circuit board, magnetic attachment device, LED indicator, speaker, and ultrasonic emitter and receiver, which are placed on either side of the treatment table. The ultrasonic emitter produces the ultrasound waves and the receiver accepts the signal from the patient. When the patient moves, the receiver activates the circuit, an audible warning sound will be produced in the treatment console room alerting the technologist to stop treatment. Simultaneously, the electrical circuit to the teletherapy machine will be interrupted and radiation will be halted. The device and alarm system can detect patient movements with a sensitivity of about 1 mm. Our results indicate that, in spite of its low‐cost, low‐power, high‐precision, nonintrusive, light weight, reusable and simplicity features, UPMMD is highly sensitive and offers accurate measurements. Furthermore, UPMMD is patient‐friendly and requires minimal user training. This study revealed that the device can prevent the patient's normal tissues from unnecessary radiation exposure, and also it is helpful to deliver the radiation to the correct tumor location. Using this alarming system the patient can be repositioned after interrupting the treatment machine manually. It also enables the technologists to do their work more efficiently. PACS number: 87.53.Dq PMID:23149769
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... of cease and desist orders. See Certain Digital Photo Frames and Image Display Devices and Components... articles in question during the period of Presidential review (19 U.S.C. 1337(j)). The Commission's orders...
High Speed Solid State Circuit Breaker
NASA Technical Reports Server (NTRS)
Podlesak, Thomas F.
1993-01-01
The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] Certain Ground Fault Circuit... importation of certain ground fault circuit interrupters and products containing the same by reason of... entry of ground fault circuit interrupters and products containing the same that infringe one or more of...
30 CFR 18.41 - Plug and receptacle-type connectors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...
30 CFR 18.41 - Plug and receptacle-type connectors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...
30 CFR 18.41 - Plug and receptacle-type connectors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...
30 CFR 18.41 - Plug and receptacle-type connectors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...
30 CFR 18.41 - Plug and receptacle-type connectors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...
Direct current hybrid breakers: A design and its realization
NASA Astrophysics Data System (ADS)
Atmadji, Ali Mahfudz Surya
2000-12-01
The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2013 CFR
2013-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2012 CFR
2012-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2014 CFR
2014-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is... motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors...
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Matsuzaki, Jun; Yokokura, Kunio
The high-speed vacuum circuit breaker, which forced the fault current to zero was investigated. The test circuit breaker consisted of a vacuum interrupter and a high frequency current source. The vacuum interrupter, which had the axial magnetic field electrode and the disk shape electrode, was tested. The arcing period of the high-speed vacuum circuit breaker is much shorter than that of conventional circuit breaker. The arc behavior of the test electrodes immediately after the contact separation was observed by a high-speed video camcorder. The relation between the current waveform just before the current zero and the interruption ability by varying the high frequency current source was investigated experimentally. The results demonstrate the interruption ability and the arc behavior of the high-speed vacuum circuit breaker. The high current interruption was made possible by the low current period just before the current zero, although the arcing time is short and the arc is concentrated.
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy
Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...
2016-10-19
Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] Certain Ground Fault Circuit Interrupters and Products Containing Same, Investigations: Terminations, Modifications and Rulings AGENCY: U.S... importation, and the sale within the United States after importation of certain ground fault circuit...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... importation, and the sale within the United States after importation of certain ground fault circuit...
Radiation Effects of Commercial Resistive Random Access Memories
NASA Technical Reports Server (NTRS)
Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas
2014-01-01
We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http... importation, and the sale within the United States after importation of certain ground fault circuit...
NASA Astrophysics Data System (ADS)
Cheng, Xian; Duan, Xiongying; Liao, Minfu; Huang, Zhihui; Luo, Yan; Zou, Jiyan
2013-08-01
Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... entitled In Re Certain Ground Fault Circuit Interrupters and Products Containing Same DN 2754; the... within the United States after importation of certain ground fault circuit interrupters and products...
DC Interruption Characteristic on Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Odaka, Hiromi; Yamada, Masataka; Sakuma, Ryohei; Ding, Cuie; Kaneko, Eiji; Yanabu, Satoru
A high speed vacuum circuit breaker (HSVCB) has been investigated. HSVCB makes high frequency current superimposed on a fault current so that the current is forced to be zero and is interrupted. Its interruption performance is considered to be dependent on a rate of change of the current (di/dt). As a fundamental research, we investigated the di/dt-dv/dt characteristics and the insulation recovery characteristic after interrupting the counter-pulse current for various contact materials of AgWC, CuW, and CuCr. The results revealed that the case where gap length is larger is better in a current interruption performance. Moreover, it was found that di/dt is not dependent on the insulation recovery characteristics, but the magnitude of interruption current influences greatly.
78 FR 47749 - Certain Ground Fault Circuit Interrupters and Products Containing Same
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739 (Enforcement Proceeding)] Certain Ground Fault Circuit Interrupters and Products Containing Same AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission...
77 FR 66080 - Certain Ground Fault Circuit Interrupters and Products Containing Same
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-01
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] Certain Ground Fault Circuit Interrupters and Products Containing Same AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has instituted a formal enforcement...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-615] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination To Rescind... for importation, and the sale within the United States after importation of certain ground fault...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To Review an Initial..., the sale for importation, and the sale within the United States after importation of certain ground...
A Solid-State Fault Current Limiting Device for VSC-HVDC Systems
NASA Astrophysics Data System (ADS)
Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz
2013-08-01
Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.
Electrical safety for high voltage arrays
NASA Technical Reports Server (NTRS)
Marshall, N. A.
1983-01-01
A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-739] In the Matter of: Certain Ground Fault..., the sale for importation, and the sale within the United States after importation of certain ground... certain ground fault circuit interrupters and products containing same that infringe one or more of claims...
White, David B.
1991-01-01
An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.
NASA Astrophysics Data System (ADS)
Niwa, Yoshimitsu; Kaneko, Eiji
Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-09
GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurred—such as a downed power line or a transformer explosion—from the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics’ high-voltagemore » DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.« less
Tonnelier, Alexandre; Lellouche, François; Bouchard, Pierre Alexandre; L'Her, Erwan
2013-08-01
Different filtering devices are used during mechanical ventilation to avoid dysfunction of flow and pressure transducers or for airborne microorganisms containment. Water condensates, resulting from the use of humidifiers, but also residual nebulization particles may have a major influence on expiratory limb resistance. To evaluate the influence of nebulization and active humidification on the resistance of expiratory filters. A respiratory system analog was constructed using a test lung, an ICU ventilator, heated humidifiers, and a piezoelectric nebulizer. Humidifiers were connected to different types of circuits (unheated, mono-heated, new-generation and old-generation bi-heated). Five filter types were evaluated: electrostatic, heat-and-moisture exchanger, standard, specific, and internal heated high-efficiency particulate air [HEPA] filter. Baseline characteristics were obtained from each dry filter. Differential pressure measurements were carried out after 24 hours of continuous in vitro use for each condition, and after 24 hours of use with an old-generation bi-heated circuit without nebulization. While using unheated circuits, measurements had to be interrupted before 24 hours for all the filtering devices except the internal heated HEPA filter. The heat-and-moisture exchangers occluded before 24 hours with the unheated and mono-heated circuits. The circuit type, nebulization practice, and duration of use did not influence the internal heated HEPA filter resistance. Expiratory limb filtration is likely to induce several major adverse events. Expiratory filter resistance increase is due mainly to the humidification circuit type, rather than to nebulization. If filtration is mandatory while using an unheated circuit, a dedicated filter should be used for ≤ 24 hours, or a heated HEPA for a longer duration.
The Generating Mechanism of Non-Sustained Disruptive Discharges in Vacuum Interrupters
NASA Astrophysics Data System (ADS)
Hara, Daisuke; Taki, Masayuki; Tanaka, Hitoshi; Okawa, Mikio; Yanabu, Satoru
To develop vacuum circuit breaker (VCB) for higher voltage application, it may be important to understand generating mechanism and its influence of non-sustained disruptive discharges (NSDD) to the systems. So, we carried out the tests using equivalent testing circuit and observed the contacts after testing, For the test, by using commercial vacuum circuit interrupters, AC voltages of 50Hz was applied between contacts for 4 seconds after current interruption, and measured generating frequencies of NSDD vs. the voltages and vs. currents. Typical contact material used in the commercial switching equipment, such as AgWC, CuW, CuCr were tested and compared. Then CuCr's of different composition and manufacturing process are investigated. And CuCr-50 (manufactured by melting process) showed the best performance in all tests. We point out that surface condition may affect the generation of NSDD and also conditioning effect is very important.
Low latency counter event indication
Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY
2008-09-16
A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.
Low latency counter event indication
Gara, Alan G.; Salapura, Valentina
2010-08-24
A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.
IP Network Design and Implementation for the Caltech-USGS Element of TriNet
NASA Astrophysics Data System (ADS)
Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.
2001-12-01
The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are sometimes referred to as group "12". LANs with IP addresses of 10.23.0.0/24 have T1-2 as the primary circuit, and T1-3 as the alternate circuit. Static routes on the acquisition system are used to direct traffic through the primary T1. The network can operate in one of three modes. The most common and desirable mode is "normal", where all three T1's are operational and Caltech has both a primary and secondary central acquisition system running. The second mode is a "failover", where the primary acquisition system is down (due to maintenance or failure) and the secondary acquisition system assumes the primary role. This includes sending acknowledgments to dataloggers and multicasts to the rest of the network. The third mode is a circuit detour. The port numbers on the central acquisition system for the dataloggers on the failed T1 are changed to match the auxiliary ports on the dataloggers. This allows for the auxiliary ports on the dataloggers to receive acknowledgements from the acquiring system through the detoured circuit. The static routes on the system are changed to go through the detoured circuit as specified by the group's IP numbers. At this point the two working T1's will be running at full capacity but the data acquisition will continue with minimal interruption while the third T1 is being restored. The primary acquisition computer continues to listen for data on the failed T1 should things improve spontaneously.
Cathode surface effects and H.F.-behaviour of vacuum arcs
NASA Astrophysics Data System (ADS)
Fu, Yan Hong
To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.
Present Status of Power Circuit Breaker and its Future
NASA Astrophysics Data System (ADS)
Yoshioka, Yoshio
Gas circuit breaker and vacuum circuit breaker are the 2 main types of circuit breaker used in extra high voltage and medium voltage networks. After reviewing the history of these circuit breakers, their present status and technologies are described. As for future technology, computation of interrupting phenomena, SF6 gas less apparatus and expectation of the high voltage vacuum circuit breaker are discussed.
A No-Arc DC Circuit Breaker Based on Zero-Current Interruption
NASA Astrophysics Data System (ADS)
Xiang, Xuewei; Chai, Jianyun; Sun, Xudong
2017-05-01
A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS FUSES FOR USE WITH DIRECT CURRENT IN PROVIDING SHORT-CIRCUIT PROTECTION FOR TRAILING... provides short-circuit protection for trailing cables in coal mines by interrupting an excessive current in...
Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries
NASA Astrophysics Data System (ADS)
Venugopal, Ganesh
Lithium-ion (Li-ion) cells that are subjected to electrical abuse, overcharge and external short-circuit in particular, exhibit a rapid increase in cell temperature that could potentially lead to catastrophic disassembly of the cell. For this reason these cells are integrated or combined with one or more safety components that are designed to restrict or even prevent current flow through the cell under abusive conditions. In this work, the characteristics of these components in several prismatic Li-ion cells are studied by monitoring the impedance ( Z) at 1 kHz and the open circuit voltage (OCV) of the discharged cells as a function of temperature. All the cells studied were found to use polyethylene-based shutdown (SD) separators that were irreversibly activated within a narrow temperature range between 130 and 135°C. In some cells irreversible cut-off was also provided by a current interrupt device (CID) or a thermal fuse. Both these devices had a circuit-breaker effect, causing the impedance of the cell to rise infinitely and the OCV to drop to zero. In addition to these irreversible cut-off mechanisms, some cells also contained internal or external positive-temperature-coefficient (PTC) devices that could provide current-limiting capability over a very wide temperature range. The interdependence of the thermal behavior of these components on each other and on other thermally dependant processes like cell venting, separator meltdown and weld joint failure are also discussed.
The new technological solution for the JT-60SA quench protection circuits
NASA Astrophysics Data System (ADS)
Gaio, E.; Maistrello, A.; Novello, L.; Matsukawa, M.; Perna, M.; Ferro, A.; Yamauchi, K.; Piovan, R.
2018-07-01
An advanced technology has been developed and employed for the main circuit breakers (CB) of the quench protection circuits (QPC) of the superconducting coils of JT-60SA: it consists in a Hybrid mechanical-static CB (HCB) composed of a mechanical Bypass switch (BPS) for conducting the continuous current, in parallel to a static circuit breaker (SCB) based on integrated gate commutated thyristor (IGCT) for current interruption. It was the result of a R&D program carried out since 2006 to identify innovative solutions for the interruption of high dc current, able to improve the maintainability and availability of the CB. The HCB developed for the JT-60SA QPC is the first realization of a dc circuit breaker based on this design approach for interrupting current of some tens of kA with reapplied voltage of some kV. It also represents the first application of hybrid technology with IGCT for protection of superconducting magnets in fusion experiments. The paper aims at giving a comprehensive overview of the main R&D activities devoted to the development of this new technological approach; then, the key aspects of the design, manufacturing and testing of the QPCs for JT-60SA, successfully completed in Naka Site in summer 2015 are presented. Finally, the significance of this research is discussed and the possible future developments, in particular in view of DEMO fusion reactor, are outlined.
Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system
NASA Astrophysics Data System (ADS)
Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.
2004-10-01
Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.
1992-07-01
layer at 600°C without growth interruptions. The As and Ga Incorporation In the upper InP layers is apparent. Figure 6 shows X-ray rocking curves (XRCs...vs (cl) with time as the running variable) for two separate layers o AIx Gal -x As on GaAs. The dolled curve shows the trajectory when the control...valve is set to a norminal value and not adjusted. The solid curve shows the trajectory when the control voltage to the TEA valve is set to 15 half the
NASCOM network: Ground communications reliability report
NASA Technical Reports Server (NTRS)
1973-01-01
A reliability performance analysis of the NASCOM Network circuits is reported. Network performance narrative summary is presented to include significant changes in circuit configurations, current figures, and trends in each trouble category with notable circuit totals specified. Lost time and interruption tables listing circuits which were affected by outages showing their totals category are submitted. A special analysis of circuits with low reliabilities is developed with tables depicting the performance and graphs for individual reliabilities.
Interruption of a dry-type transformer in no-load by a vacuum circuit-breaker
NASA Astrophysics Data System (ADS)
Vandenheuvel, W. M. C.; Daalder, J. E.; Boone, M. J. M.; Wilmes, L. A. H.
1983-08-01
Overvoltages generated during interruption of a dry type delta-star connected transformer in no load by a vacuum breaker were studied. During interruption of inrush current 37% of the phase-to-ground overvoltages were 5 pu, and 6% 7 pu. Comparison of experimental and theoretical results using Boyle's model shows no discrepancy for inrush currents and clean overvoltages from the steady-state interruption. Overvoltages due to repetitive reignitions (not covered by Boyle's model) are higher than the calculated values during steady-state switching.
Solvoll, Terje; Scholl, Jeremiah; Hartvigsen, Gunnar
2013-03-07
A common denominator of modern hospitals is a variety of communication problems. In particular, interruptions from mobile communication devices are a cause of great concern for many physicians. To characterize how interruptions from mobile devices disturb physicians in their daily work. The gathered knowledge will be subsequently used as input for the design and development of a context-sensitive communication system for mobile communications suitable for hospitals. This study adheres to an ethnographic and interpretive field research approach. The data gathering consisted of participant observations, non-structured and mostly ad hoc interviews, and open-ended discussions with a selected group of physicians. Eleven physicians were observed for a total of 135 hours during May and June 2009. The study demonstrates to what degree physicians are interrupted by mobile devices in their daily work and in which situations they are interrupted, such as surgery, examinations, and during patients/relatives high-importance level conversations. The participants in the study expected, and also indicated, that wireless phones probably led to more interruptions immediately after their introduction in a clinic, when compared to a pager, but this changed after a short while. The unpleasant feeling experienced by the caller when interrupting someone by calling them differs compared to sending a page message, which leaves it up to the receiver when to return the call. Mobile devices, which frequently interrupt physicians in hospitals, are a problem for both physicians and patients. The results from this study contribute to knowledge being used as input for designing and developing a prototype for a context-sensitive communication system for mobile communication suitable for hospitals. We combined these findings with results from earlier studies and also involved actual users to develop the prototype, CallMeSmart. This system intends to reduce such interruptions and at the same time minimize the number of communication devices needed per user.
Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts
NASA Astrophysics Data System (ADS)
Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.
2007-04-01
In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.
Commutation circuit for an HVDC circuit breaker
Premerlani, William J.
1981-01-01
A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.
Commutation circuit for an HVDC circuit breaker
Premerlani, W.J.
1981-11-10
A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.
Microelectromechanical safe arm device
Roesler, Alexander W [Tijeras, NM
2012-06-05
Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.
NASA Technical Reports Server (NTRS)
Dwinell, W. S.
1979-01-01
In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.
Giofrè, Fabrizio; Ferrari, Paola; Leidi, Cristina; Foschi, Maria Laura; Senni, Michele; De Filippo, Paolo
2017-08-15
In the first 24h after pacemaker or implantable cardioverter/defibrillator (ICD) implantation or replacement, the occurrence of hematoma and pain in the surgically treated region is not infrequent and may result in re-intervention and/or more severe complications, such as infections. Currently, the post-implant phase management is very empiric. The aim of this study was to test the clinical applicability and usefulness of an external close-circuit cooling system for the management of the early post-implant period in patients with high risk of hematoma due to anticoagulant and/or antiplatelet therapy. We studied 135 patients (78M; 71±11years) with high risk of hematoma occurrence after pace-maker (63 patients) or ICD (72 patients) implantation or replacement. Immediately after the intervention, a closed-circuit cooling system (CAREPACE™ system, Zamar, Italy) was externally applied on the pre-pectoral region to each patient and maintained for 24h. The system has a compressive pad and a refrigerating circuit in which non-toxic glycolic fluid is pumped. The fluid temperature was set and kept at 5°C for the whole period. The compressive and cooling effect of the system was well tolerated by all the patients at the temperature set. Four patients complained of noise due to machine operation, but in none the treatment was interrupted. The average length of hospital stay was 2.8±0.4days. No clinically significant hematoma was observed at discharge and after one month follow-up visit. This new system can be used for the management of the early phase after device implantation or replacement and appears clinically useful and well tolerated. Further studies on a larger scale are needed to test the potential reduction of post-intervention complications and the cost-effectiveness of this device. Copyright © 2017 Elsevier B.V. All rights reserved.
1984-06-01
UNSOLINTERRUPT: ; Dismiss unsolicited Interrupt. POPR M<RI,RI,R2,R3,R4,R5> ; Restore RZ-R5 REI ; Return from interrupt. .SBTTL AVCANCEL. Cancel I/O routine...Dismiss unsolicited Interrupt. POPR M<R8,RI.R2,R3,R4,R5> ; Restore RN-R5 REI ; Return from interrupt. .SBTTL ODCANCEL, Cancel I/0 routine ++ I ODCANCEL...output buffer. ODREGDU4P: i Dump device registers MOVZBL ODNUMREGS,(Rg)+ i Store device register count. NOVZWL UCBSWODBYTCNT(RS),- aStore BYTE count
Radiation-Tolerant Intelligent Memory Stack - RTIMS
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2011-01-01
This innovation provides reconfigurable circuitry and 2-Gb of error-corrected or 1-Gb of triple-redundant digital memory in a small package. RTIMS uses circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field-programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuits are stacked into a module of 42.7 42.7 13 mm. Triple module redundancy, current limiting, configuration scrubbing, and single- event function interrupt detection are employed to mitigate radiation effects. The novel self-scrubbing and single event functional interrupt (SEFI) detection allows a relatively soft FPGA to become radiation tolerant without external scrubbing and monitoring hardware
Series and parallel arc-fault circuit interrupter tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob
2013-07-01
While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by openingmore » the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.« less
33 CFR 159.89 - Power interruption: Type I and II devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Power interruption: Type I and II devices. 159.89 Section 159.89 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.89 Power...
Four-junction superconducting circuit
Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.
2016-01-01
We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619
Safety and Fire Prevention Guide for Hospital Safety Managers.
1987-04-01
fault circuit interrupter (GFCI) protection is required for each circuit supplying receptacles in hydrotherapy rooms. GFCIs are usually installed in...the hydrotherapy unit instantaneously before a person could receive a fatal shock. [NFPA 70, Sec 680-62(a)] " . 4- 4-I TG No. 152 Apr il 1987 4-6
NASA Astrophysics Data System (ADS)
Naito, Yuji; Shimizu, Iwao; Yamaguchi, Iwao; Kaiho, Katsuyuki; Yanabu, Satoru
Using high temperature superconductor, a Superconducting Fault Current Limiter (SFCL) was made and tested. Superconductor and vacuum interrupter as commutation switch are connected in parallel with bypass coil. When a fault occurs and the excessive current flows, superconductor is first quenched and the current is transferred to bypass coil because on voltage drop of superconductor. At the same time, since magnetic field is generated by current which flows in bypass coil, commutation switch is immediately driven by electromagnetic repulsion plate connected to driving rod of vacuum interrupter, and superconductor is separated from this circuit. Using the testing model, we could separate the superconductor from a circuit due to movement of vacuum interrupter within half-cycle current and transfer all current to bypass coil. Since operation of a commutation switch is included in current limiting operation of this testing model, it is one of helpful circuit of development of SFCL in the future. Moreover, since it can make the consumed energy of superconductor small during fault state due to realization of high-speed switch with simple composition, the burden of superconductor is reduced compared with conventional resistive type SFCL and it is considered that the flexibility of a SFCL design increases. Cooperation with a circuit breaker was also considered, the trial calculation of a parameter and energy of operation is conducted and discussion in the case of installing the SFCL to electric power system is made.
NASA Technical Reports Server (NTRS)
Chen, Dakai; Phan, Anthony; Kim, Hak; Swonger, James; Musil, Paul; LaBel, Kenneth
2013-01-01
We show examples of single event functional interrupt and destructive failure in modern POL devices. The increasing complexity and diversity of the design and process introduce hard SEE modes that are triggered by various mechanisms.
Some Improvements in Utilization of Flash Memory Devices
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James; Ott, William E.
2009-01-01
Two developments improve the utilization of flash memory devices in the face of the following limitations: (1) a flash write element (page) differs in size from a flash erase element (block), (2) a block must be erased before its is rewritten, (3) lifetime of a flash memory is typically limited to about 1,000,000 erases, (4) as many as 2 percent of the blocks of a given device may fail before the expected end of its life, and (5) to ensure reliability of reading and writing, power must not be interrupted during minimum specified reading and writing times. The first development comprises interrelated software components that regulate reading, writing, and erasure operations to minimize migration of data and unevenness in wear; perform erasures during idle times; quickly make erased blocks available for writing; detect and report failed blocks; maintain the overall state of a flash memory to satisfy real-time performance requirements; and detect and initialize a new flash memory device. The second development is a combination of hardware and software that senses the failure of a main power supply and draws power from a capacitive storage circuit designed to hold enough energy to sustain operation until reading or writing is completed.
NSC 800, 8-bit CMOS microprocessor
NASA Technical Reports Server (NTRS)
Suszko, S. F.
1984-01-01
The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.
NASA Astrophysics Data System (ADS)
Shioiri, Tetsu; Asari, Naoki; Sato, Junichi; Sasage, Kosuke; Yokokura, Kunio; Homma, Mitsutaka; Suzuki, Katsumi
To investigate the reliability of equipment of vacuum insulation, a study was carried out to clarify breakdown probability distributions in vacuum gap. Further, a double-break vacuum circuit breaker was investigated for breakdown probability distribution. The test results show that the breakdown probability distribution of the vacuum gap can be represented by a Weibull distribution using a location parameter, which shows the voltage that permits a zero breakdown probability. The location parameter obtained from Weibull plot depends on electrode area. The shape parameter obtained from Weibull plot of vacuum gap was 10∼14, and is constant irrespective non-uniform field factor. The breakdown probability distribution after no-load switching can be represented by Weibull distribution using a location parameter. The shape parameter after no-load switching was 6∼8.5, and is constant, irrespective of gap length. This indicates that the scatter of breakdown voltage was increased by no-load switching. If the vacuum circuit breaker uses a double break, breakdown probability at low voltage becomes lower than single-break probability. Although potential distribution is a concern in the double-break vacuum cuicuit breaker, its insulation reliability is better than that of the single-break vacuum interrupter even if the bias of the vacuum interrupter's sharing voltage is taken into account.
Single Event Transients in Voltage Regulators for FPGA Power Supply Applications
NASA Technical Reports Server (NTRS)
Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard
2006-01-01
As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.
ERIC Educational Resources Information Center
Neeley, Richard A.; Pulliam, Mary Hannah; Catt, Merrill; McDaniel, D. Mike
2015-01-01
This case study examined the initial and renewed impact of speech generating devices on the expressive communication behaviors of a child with autism spectrum disorder. The study spanned six years of interrupted use of two speech generating devices. The child's communication behaviors were analyzed from video recordings and included communication…
High performance protection circuit for power electronics applications
NASA Astrophysics Data System (ADS)
Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan
2015-12-01
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.
Stoffels, M; Simon, S; Nikolic, P G; Stoller, P; Carstensen, J
2017-03-01
High-voltage gas circuit breakers, which play an important role in the operation and protection of the power grid, function by drawing an arc between two contacts and then extinguishing it by cooling it using a transonic gas flow. Improving the design of circuit breakers requires an understanding of the physical processes in the interruption of the arc, particularly during the zero crossing of the alternating current (the point in time when the arc can be interrupted). Most diagnostic techniques currently available focus on measurement of current, voltage, and gas pressure at defined locations. However, these integral properties do not give sufficient insight into the arc physics. To understand the current interruption process, spatially resolved information about the density, temperature, and conductivity of the arc and surrounding gas flow is needed. Owing to the three-dimensional, unstable nature of the arc in a circuit breaker, especially near current zero, a spatially resolved, tomographic diagnostic technique is required that is capable of freezing the rapid, transient behavior and that is insensitive to the vibrations and electromagnetic interference inherent in the interruption of short-circuit current arcs. Here a new measurement system, based on background-oriented schlieren (BOS) imaging, is presented and assessed. BOS imaging using four beams consisting of white light sources, a background pattern, imaging optics, and a camera permits measurement of the line-of-sight integrated refractive index. Tomographic reconstruction is used to determine the three-dimensional, spatially resolved index of refraction distribution that in turn is used to calculate the density. The quantitative accuracy of a single beam of the BOS setup is verified by using a calibration lens with a known focal length. The ability of the tomographic reconstruction to detect asymmetric features of the arc and surrounding gas flow is assessed semiquantitatively using a nozzle that generates two gas jets, as described in [Exp. Fluids43, 241 (2007)EXFLDU0723-486410.1007/s00348-007-0331-1]. Experiments using a simple model of a circuit breaker, which provides optical access to an ∼1 kA arc that burns between two contacts and is blown through a nozzle system by synthetic air from a high pressure reservoir, are also described. The density in the decaying arc and surrounding gas flow is reconstructed, and the limitations of the technique, which are related to the temporal and spatial resolution, are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, M.
1979-08-28
The invention discloses an emission control apparatus for internal combustion engine includes an exhaust composition sensor to sense the mixture ratio, a circuit for clamping the mixture ratio to a predetermined constant value to prevent the mixture from becoming too rich or too lean when a failure should occur in the control loop, for example, in the exhaust composition sensor failure and a circuit for interrupting the clamping circuit when the engine operating condition is such that the sensor is caused to produce low voltage signals although the sensor is functioning properly.
Rangel-Abundis, Alberto
2006-01-01
Shunt and short circuit are antonyms. In French, the term shunt has been adopted to denote the alternative pathway of blood flow. However, in French, as well as in Spanish, the word short circuit (court-circuit and cortocircuito) is synonymous with shunt, giving rise to a linguistic and scientific inconsistency. Scientific because shunt and short circuit made reference to a phenomenon that occurs in the field of the physics. Because shunt and short circuit are antonyms, it is necessary to clarify that shunt is an alternative pathway of flow from a net of high resistance to a net of low resistance, maintaining the stream. Short circuit is the interruption of the flow, because a high resistance impeaches the flood. This concept is applied to electrical and cardiovascular physiology, as well as to the metabolic pathways.
High performance protection circuit for power electronics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta
2015-12-23
In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less
Using a Commercial Ethernet PHY Device in a Radiation Environment
NASA Technical Reports Server (NTRS)
Parks, Jeremy; Arani, Michael; Arroyo, Roberto
2014-01-01
This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.
Electrical safety Q&A. A reference guide for the clinical engineer.
2005-02-01
This guide, which ECRI developed to answer the electrical safety questions most frequently asked by member hospitals, features practical advice for addressing electrical safety concerns in the healthcare environment. Questions addressed include: STANDARDS AND APPROVALS: What electrical safety standards apply? How do NFPA 99 and IEC 60601-1 differ? What organizations approve medical devices? LEAKAGE CURRENT LIMITS AND TESTING: How are leakage current limits established? What limits apply to equipment used in the hospital? And how should the limits be applied in special cases, such as the use of PCs in the patient care area or equipment used in the clinical laboratory? ISOLATED POWER: What are its advantages and disadvantages, and is isolated power needed in the operating room? Other topics addressed include double insulation, ground-fault circuit interrupters (GFCIs), and requirements for medical devices used in the home. Supplementary articles discuss acceptable alternatives to UL listing, the use of Hospital Grade plugs, the limitations of leakage current testing of devices connected to isolated power systems, and the debate about whether to designate ORs as wet locations. Experienced clinical engineers should find this guide to be a handy reference, while those new to the field should find it to be a helpful educational resource.
Arc lamp power supply using a voltage multiplier
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.
1988-01-01
A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.
NASA Astrophysics Data System (ADS)
Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook
2015-11-01
Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.
Two color interferometric electron density measurement in an axially blown arc
NASA Astrophysics Data System (ADS)
Stoller, Patrick; Carstensen, Jan; Galletti, Bernardo; Doiron, Charles; Sokolov, Alexey; Salzmann, René; Simon, Sandor; Jabs, Philipp
2016-09-01
High voltage circuit breakers protect the power grid by interrupting the current in case of a short circuit. To do so an arc is ignited between two contacts as they separate; transonic gas flow is used to cool and ultimately extinguish the arc at a current-zero crossing of the alternating current. A detailed understanding of the arc interruption process is needed to improve circuit breaker design. The conductivity of the partially ionized gas remaining after the current-zero crossing, a key parameter in determining whether the arc will be interrupted or not, is a function of the electron density. The electron density, in turn, is a function of the detailed dynamics of the arc cooling process, which does not necessarily occur under local thermodynamic equilibrium (LTE) conditions. In this work, we measure the spatially resolved line-integrated index of refraction in a near-current-zero arc stabilized in an axial flow of synthetic air with two nanosecond pulsed lasers at wavelengths of 532 nm and 671 nm. Generating a stable, cylindrically symmetric arc enables us to determine the three-dimensional index of refraction distribution using Abel inversion. Due to the wavelength dependence of the component of the index of refraction related to the free electrons, the information at two different wavelengths can be used to determine the electron density. This information allows us to determine how important it is to take into account non-equilibrium effects for accurate modeling of the physics of decaying arcs.
Tunable circuit for tunable capacitor devices
Rivkina, Tatiana; Ginley, David S.
2006-09-19
A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
Technical Trend of Environment-friendly High Voltage Vacuum Circuit Breaker (VCB)
NASA Astrophysics Data System (ADS)
Okubo, Hitoshi
Vacuum Circuit Breakers (VCBs) have widely been used for low and medium voltage level, because of their high current interruption performance, maintenance free operations and environment-friendly characteristics. The VCB is now going to be applied to higher voltage systems for transmission and substation use. In this paper, the recent technical trend and future perspectives of high voltage VCBs are described, as well as their technical background.
62. VIEW LOOKING NORTHWEST AT THE OIL FILLED CIRCUIT BREAKER ...
62. VIEW LOOKING NORTHWEST AT THE OIL FILLED CIRCUIT BREAKER FOR GENERATOR NUMBER 1. CIRCUIT BREAKERS ARE AUTOMATED SWITCHES WHICH DISCONNECT THE GENERATORS FROM THE LINE WHEN SHORT CIRCUITS OCCUR. WHEN CIRCUITS INVOLVING HIGH CURRENTS AND VOLTAGES ARE BROKEN, THE AIR SURROUNDING MECHANICAL PARTS OF THE SWITCH BECOMES IONIZED AND CONTINUES TO CONDUCT ELECTRIC POWER ACROSS ANY GAP IN THE SWITCH CONTACTS. TO PREVENT THIS AND INSURE A POSITIVE INTERRUPTION OF CURRENT, THE SWITCH CONTACTS ARE IMMERSED IN A CONTAINER OF OIL. THE OIL DOES NOT SUPPORT THE FORMATION OF AN ARC AND EFFECTIVELY CUTS OFF THE CURRENT WHEN THE SWITCH CONTACTS ARE OPENED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT
21 CFR 868.5240 - Anesthesia breathing circuit.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...
21 CFR 868.5240 - Anesthesia breathing circuit.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...
21 CFR 868.5240 - Anesthesia breathing circuit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthesia breathing circuit. 868.5240 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a) Identification. An anesthesia breathing circuit is a device that is intended to administer medical gases to a...
NASA Technical Reports Server (NTRS)
Hayhurst, Arthur Ray (Inventor)
1993-01-01
A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield, and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.
Integrated neuron circuit for implementing neuromorphic system with synaptic device
NASA Astrophysics Data System (ADS)
Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook
2018-02-01
In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).
NASA Technical Reports Server (NTRS)
1978-01-01
The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.
NASA Technical Reports Server (NTRS)
Brush, A. S.; Phillips, R. L.
1991-01-01
NASA Lewis Research Center and associated contractors have conducted a program to assess the potential requirements for a high-current switch to conceptually design a switch using the best existing technology, and to build and demonstrate a breadboard which meets the requirements. The result is the high current remote bus isolator (HRBI). The HRBI is rated at 180 V dc, 335 A continuous with a 1200 A interrupt rating. It also incorporates remote-control and protective features called for by the Space Station Freedom PMAD dc test bed design. Two breadboard 335 A circuit breakers were built and tested that demonstrate a promising concept of paralleled current-limiting modules. The units incorporated all control and protective features required by advanced aerospace power systems. Component stresses in each unit were determined by design, and are consistent with a life of many thousands of fault operations.
NASCOM network ground communications availability report
NASA Technical Reports Server (NTRS)
1983-01-01
A performance analysis of NASCOM Network circuits is presented. An objective of 99.80 percent availability has been established for all network circuits and an acceptable level of 99.50. A network narrative summary for the current month includes changes in network configurations, current month's totals for modes of service and trouble category losses, a discussion of trends, and significant losses that affected the performance indexes of individual or groups of circuits. A table and narrative summary of those circuits that failed to meet the objective of 99.80% availability for all network circuits and an acceptable level of 99.50. Lost time and interruption tables showing all circuits affected by outages, by trouble category, with their total time and events, scheduled operating hours, and individual availability indexes also are included. Selected circuits whose availabilities have or continue to affect the overall network availability are also analyzed.
Device for monitoring cell voltage
Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE
2012-08-21
A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.
Learning the Art of Electronics
NASA Astrophysics Data System (ADS)
Hayes, Thomas C.; Horowitz, Paul
2016-03-01
1. DC circuits; 2. RC circuits; 3. Diode circuits; 4. Transistors I; 5. Transistors II; 6. Operational amplifiers I; 7. Operational amplifiers II: nice positive feedback; 8. Operational amplifiers III; 9. Operational amplifiers IV: nasty positive feedback; 10. Operational amplifiers V: PID motor control loop; 11. Voltage regulators; 12. MOSFET switches; 13. Group audio project; 14. Logic gates; 15. Logic compilers, sequential circuits, flip-flops; 16. Counters; 17. Memory: state machines; 18. Analog to digital: phase-locked loop; 19. Microcontrollers and microprocessors I: processor/controller; 20. I/O, first assembly language; 21. Bit operations; 22. Interrupt: ADC and DAC; 23. Moving pointers, serial buses; 24. Dallas Standalone Micro, SiLabs SPI RAM; 25. Toys in the attic; Appendices; Index.
Reduction of a linear complex model for respiratory system during Airflow Interruption.
Jablonski, Ireneusz; Mroczka, Janusz
2010-01-01
The paper presents methodology of a complex model reduction to its simpler version - an identifiable inverse model. Its main tool is a numerical procedure of sensitivity analysis (structural and parametric) applied to the forward linear equivalent designed for the conditions of interrupter experiment. Final result - the reduced analog for the interrupter technique is especially worth of notice as it fills a major gap in occlusional measurements, which typically use simple, one- or two-element physical representations. Proposed electrical reduced circuit, being structural combination of resistive, inertial and elastic properties, can be perceived as a candidate for reliable reconstruction and quantification (in the time and frequency domain) of dynamical behavior of the respiratory system in response to a quasi-step excitation by valve closure.
Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L
2013-01-07
Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.
Walsh, Kristin E; Chui, Michelle Anne; Kieser, Mara A; Williams, Staci M; Sutter, Susan L; Sutter, John G
2011-01-01
To explore community pharmacy technician workflow change after implementation of an automated robotic prescription-filling device. At an independent community pharmacy in rural Mayville, WI, pharmacy technicians were observed before and 3 months after installation of an automated robotic prescription-filling device. The main outcome measures were sequences and timing of technician workflow steps, workflow interruptions, automation surprises, and workarounds. Of the 77 and 80 observations made before and 3 months after robot installation, respectively, 17 different workflow sequences were observed before installation and 38 after installation. Average prescription filling time was reduced by 40 seconds per prescription with use of the robot. Workflow interruptions per observation increased from 1.49 to 1.79 (P = 0.11), and workarounds increased from 10% to 36% after robot use. Although automated prescription-filling devices can increase efficiency, workflow interruptions and workarounds may negate that efficiency. Assessing changes in workflow and sequencing of tasks that may result from the use of automation can help uncover opportunities for workflow policy and procedure redesign.
NASA Astrophysics Data System (ADS)
Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea
2015-09-01
The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.
Device for testing continuity and/or short circuits in a cable
NASA Technical Reports Server (NTRS)
Hayhurst, Arthur R. (Inventor)
1995-01-01
A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.
Current limiter circuit system
Witcher, Joseph Brandon; Bredemann, Michael V.
2017-09-05
An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
NASA Astrophysics Data System (ADS)
Takeda, Kotaro; Honda, Kentaro; Takeya, Tsutomu; Okazaki, Kota; Hiraki, Tatsurou; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Fukuda, Hiroshi; Usui, Mitsuo; Nosaka, Hideyuki; Yamamoto, Tsuyoshi; Yamada, Koji
2015-01-01
We developed a design technique for a photonics-electronics convergence system by using an equivalent circuit of optical devices in an electrical circuit simulator. We used the transfer matrix method to calculate the response of an optical device. This method used physical parameters and dimensions of optical devices as calculation parameters to design a device in the electrical circuit simulator. It also used an intermediate frequency to express the wavelength dependence of optical devices. By using both techniques, we simulated bit error rates and eye diagrams of optical and electrical integrated circuits and calculated influences of device structure change and wavelength shift penalty.
Repetitive Series Interrupter II.
1977-07-01
nated by other authorized documents. The citation of trade names and names of manufacturers is this report is not to be construed as official... intergrating inductor Magnet circuit load resistance Pulse-forming network load resistance Fault network load resistance Time delay between TUT fire and
Similarity between the response of memristive and memcapacitive circuits subjected to ramped voltage
NASA Astrophysics Data System (ADS)
Kanygin, Mikhail A.; Katkov, Mikhail V.; Pershin, Yuriy V.
2017-07-01
We report a similar feature in the response of resistor-memristor and capacitor-memcapacitor circuits with threshold-type memory devices driven by triangular waveform voltage. In both cases, the voltage across the memory device is stabilized during the switching of the memory device state. While in the memristive circuit this feature is observed when the applied voltage changes in one direction, the memcapacitive circuit with a ferroelectric memcapacitor demonstrates the voltage stabilization effect at both sweep directions. The discovered behavior of capacitor-memcapacitor circuit is also demonstrated experimentally. We anticipate that our observation can be used in the design of electronic circuits with emergent memory devices as well as in the identification and characterization of memory effects in threshold-type memory devices.
49 CFR 570.58 - Electric brake system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... manufacturer's maximum current rating. In progressing from zero to maximum, the ammeter indication shall show no fluctuation evidencing a short circuit or other interruption of current. (1) Inspection procedure... missing. Terminal connections shall be clean. Conductor wire gauge shall not be below the brake...
Failed DBS for palliation of visual problems in a case of oculopalatal tremor.
Wang, David; Sanchez, Justin; Foote, Kelly D; Sudhyadhom, Atchar; Bhatti, M Tariq; Lewis, Steven; Okun, Michael S
2009-01-01
To report the results of attempted bilateral red nucleus (RN) deep brain stimulation (DBS) for the palliative treatment of visual problems associated with oculopalatal tremor (OPT). It is hypothesized that OPT results from a defect in the Guillain-Mollaret triangle, a circuit that includes connections with the dentate nucleus, the contralateral red nucleus, and the inferior olive. We present a high functioning patient (an accountant) who underwent a palliative trial of RN region DBS in an approach targeted through the subthalamic nucleus region. The aim was to reduce eye tremor and improve vision through interruption of the pathologically oscillating circuit in the Guillain-Mollaret triangle. Following informed consent, a patient with OPT (and failure of multiple classes of medication and botulinum toxin therapy) underwent placement of bilateral DBS electrodes within the region of the RN. He underwent preoperative testing and testing after 12 months of continuous stimulation with the device in monopolar, bipolar, low frequency, and high frequency settings. The patient did not demonstrate significant changes in the neurological examination following the procedure and postoperative programming sessions. Eye tremor was monitored pre- and postoperatively by ocular EMG and did not change in frequency. Following the one-year trial, stimulation was discontinued as there were no improvements in vision. DBS for OPT was not clinically effective. There were many potential reasons for failed efficacy including a failure to implant the electrodes deep and medial enough into the target region because of stimulation induced side effects. Other targets within the Guillain-Mollaret circuit (and outside of the circuit) may be more useful, though they may prove to be less safe and even more difficult to access. Better custom designed DBS leads may be needed for such small targets in critical brain regions.
1993-02-10
new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low
Simulation of 100-300 GHz solid-state harmonic sources
NASA Technical Reports Server (NTRS)
Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.
1995-01-01
Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.
Wireless power transfer electric vehicle supply equipment installation and validation tool
Jones, Perry T.; Miller, John M.
2015-05-19
A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.
Biasing and fast degaussing circuit for magnetic materials
Dress, Jr., William B.; McNeilly, David R.
1984-01-01
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Biasing and fast degaussing circuit for magnetic materials
Dress, W.B. Jr.; McNeilly, D.R.
1983-10-04
A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.
Walsh, Kristin E.; Chui, Michelle Anne; Kieser, Mara A.; Williams, Staci M.; Sutter, Susan L.; Sutter, John G.
2012-01-01
Objective To explore community pharmacy technician workflow change after implementation of an automated robotic prescription-filling device. Methods At an independent community pharmacy in rural Mayville, WI, pharmacy technicians were observed before and 3 months after installation of an automated robotic prescription-filling device. The main outcome measures were sequences and timing of technician workflow steps, workflow interruptions, automation surprises, and workarounds. Results Of the 77 and 80 observations made before and 3 months after robot installation, respectively, 17 different workflow sequences were observed before installation and 38 after installation. Average prescription filling time was reduced by 40 seconds per prescription with use of the robot. Workflow interruptions per observation increased from 1.49 to 1.79 (P = 0.11), and workarounds increased from 10% to 36% after robot use. Conclusion Although automated prescription-filling devices can increase efficiency, workflow interruptions and workarounds may negate that efficiency. Assessing changes in workflow and sequencing of tasks that may result from the use of automation can help uncover opportunities for workflow policy and procedure redesign. PMID:21896459
30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection; disconnecting devices. Short-circuit protection for trailing cables shall be provided by an automatic circuit...
VLSI (Very Large Scale Integrated Circuits) Device Reliability Models.
1984-12-01
CIRCUIT COMPLEXITY FAILURE RATES FOR... A- 40 MOS SSI/MSI DEVICES IN FAILURE PER 106 HOURS TABLE 5.1.2.5-19: C1 AND C2 CIRCUIT COMPLEXITY FAILURE RATES FOR...A- 40 MOS SSI/MSI DEVICES IN FAILURE PER 106 HOURS TABLE 5.1.2.5-19: Cl AND C2 CIRCUIT COMPLEXITY FAILURE RATES FOR... A-41 LINEAR DEVICES IN...19 National Semiconductor 20 Nitron 21 Raytheon 22 Sprague 23 Synertek 24 Teledyne Crystalonics 25 TRW Semiconductor 26 Zilog The following companies
Over-voltage protection system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Song; Dong, Dong; Lai, Rixin
An over-voltage protection system includes an electronic valve connected across two terminals of a circuit and an over-voltage detection circuit connected across one of the plurality of semiconductor devices for detecting an over-voltage across the circuit. The electronic valve includes a plurality of semiconductor devices connected in series. The over-voltage detection circuit includes a voltage divider circuit connected to a break-over diode in a way to provide a representative low voltage to the break-over diode and an optocoupler configured to receive a current from the break-over diode when the representative low voltage exceeds a threshold voltage of the break-over diodemore » indicating an over-voltage condition. The representative low voltage provided to the break-over diode represents a voltage across the one semiconductor device. A plurality of self-powered gate drive circuits are connected to the plurality of semiconductor devices, wherein the plurality of self-powered gate drive circuits receive over-voltage triggering pulses from the optocoupler during the over-voltage condition and switch on the plurality of semiconductor devices to bypass the circuit.« less
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
NASA Astrophysics Data System (ADS)
Kundu, Sumit; Fowler, Michael W.; Simon, Leonardo C.; Abouatallah, Rami; Beydokhti, Natasha
Fuel cell material durability is an area of extensive research today. Chemical degradation of the ionomer membrane is one important degradation mechanism leading to overall failure of fuel cells. This study examined the effects of relative humidity on the chemical degradation of the membrane during open circuit voltage testing. Five Gore™ PRIMEA ® series 5510 catalyst coated membranes were degraded at 100%, 75%, 50%, and 20% RH. Open circuit potential and cumulative fluoride release were monitored over time. Additionally scanning electron microscopy images were taken at end of the test. The results showed that with decreasing RH fluoride release rate increased as did performance degradation. This was attributed to an increase in gas crossover with a decrease in RH. Further, it is also shown that interruptions in testing may heavily influence cumulative fluoride release measurements where frequent stoppages in testing will cause fluoride release to be underestimated. SEM analysis shows that degradation occurred in the ionomer layer close to the cathode catalyst. A chemical degradation model of the ionomer membrane was used to model the results. The model was able to predict fluoride release trends, including the effects of interruptions, showing that changes in gas crossover with RH could explain the experimental results.
2016-02-12
The Food and Drug Administration (FDA) is issuing a final order to redesignate membrane lung devices for long-term pulmonary support, a preamendments class III device, as extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure, and to reclassify the device to class II (special controls) in patients with acute respiratory failure or acute cardiopulmonary failure where other available treatment options have failed, and continued clinical deterioration is expected or the risk of death is imminent. A membrane lung device for long-term pulmonary support (>6 hours) refers to the oxygenator in an extracorporeal circuit used during long-term procedures, commonly referred to as extracorporeal membrane oxygenation (ECMO). Because a number of other devices and accessories are used with the oxygenator in the circuit, the title and identification of the regulation are revised to include extracorporeal circuit and accessories for long-term respiratory/cardiopulmonary failure. Although an individual device or accessory used in an ECMO circuit may already have its own classification regulation when the device or accessory is intended for short-term use (<=6 hours), such device or accessory will be subject to the same regulatory controls applied to the oxygenator (i.e., class II, special controls) when evaluated as part of the ECMO circuit for long-term use (>6 hours). On its own initiative, based on new information, FDA is revising the classification of the membrane lung device for long-term pulmonary support.
77 FR 60331 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... (NLG) retraction. This proposed AD would require installing a power interruption protection circuit for... unlocking and/or retraction of the NLG, which, while on the ground, could result in injury to ground... A320 aeroplane was preparing to initiate taxi, when an uncommanded nose landing gear (NLG) retraction...
Resonant tunneling device with two-dimensional quantum well emitter and base layers
Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.
1998-10-20
A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.
Resonant tunneling device with two-dimensional quantum well emitter and base layers
Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.
1998-01-01
A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.
30 CFR 77.800-1 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., examination, and maintenance of circuit breakers; procedures. (a) Circuit breakers and their auxiliary devices protecting high-voltage circuits to portable or mobile equipment shall be tested and examined at least once... circuit breaker and its auxiliary devices, and such repairs or adjustments as are indicated by such tests...
Review of 72.5kV double-break vacuum circuit breaker based on rapid repulsion actuator
NASA Astrophysics Data System (ADS)
Zhuofan, Tang; Lijun, Qin
2017-07-01
72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator remain blank in China. Based on the theoretical analysis and experimental results from researchers, the design of 72.5kV double-break vacuum circuit breakers based on rapid repulsion actuator was presented. It takes the form of double-break, using two standard 40.5kV vacuum interrupter in series at the bottom, which adopt a permanent magnetic repulsion actuator. The permanent magnetic repulsion actuator consists of rapid repulsion actuator and magnetic retentivity actuator. On the basis above, we produced the prototype, and the superiority of the design was verified through the experiments.
21 CFR 868.5240 - Anesthesia breathing circuit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...
21 CFR 868.5250 - Breathing circuit circulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...
21 CFR 868.5250 - Breathing circuit circulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing circuit circulator. 868.5250 Section 868.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5250 Breathing circuit circulator. (a...
21 CFR 868.5240 - Anesthesia breathing circuit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthesia breathing circuit. 868.5240 Section 868.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5240 Anesthesia breathing circuit. (a...
Hornick, Matthew A; Davey, Marcus G; Partridge, Emily A; Mejaddam, Ali Y; McGovern, Patrick E; Olive, Aliza M; Hwang, Grace; Kim, Jenny; Castillo, Orlando; Young, Kathleen; Han, Jiancheng; Zhao, Sheng; Connelly, James T; Dysart, Kevin C; Rychik, Jack; Peranteau, William H; Flake, Alan W
2018-05-01
Bronchopulmonary dysplasia is a disease of extreme prematurity that occurs when the immature lung is exposed to gas ventilation. We designed a novel 'artificial womb' system for supporting extreme premature lambs (called EXTEND) that obviates gas ventilation by providing oxygen via a pumpless arteriovenous circuit with the lamb submerged in sterile artificial amniotic fluid. In the present study, we compare different arteriovenous cannulation strategies on EXTEND, including carotid artery/jugular vein (CA/JV), carotid artery/umbilical vein (CA/UV) and umbilical artery/umbilical vein (UA/UV). Compared to CA/JV and CA/UV cannulation, UA/UV cannulation provided significantly higher, physiological blood flows to the oxygenator, minimized flow interruptions and supported significantly longer circuit runs (up to 4 weeks). Physiological circuit blood flow in UA/UV lambs made possible normal levels of oxygen delivery, which is a critical step toward the clinical application of artificial womb technology. EXTEND (EXTra-uterine Environment for Neonatal Development) is a novel system that promotes physiological development by maintaining the premature lamb in a sterile fluid environment and providing gas exchange via a pumpless arteriovenous oxygenator circuit. During the development of EXTEND, different cannulation strategies evolved with the aim of improving circuit flow. The present study examines how different cannulation strategies affect EXTEND circuit haemodynamics in extreme premature lambs. Seventeen premature lambs were cannulated at gestational ages 105-117 days (term 145-150 days) and supported on EXTEND for up to 4 weeks. Experimental groups were distinguished by cannulation strategy: carotid artery outflow and jugular vein inflow (CA/JV; n = 4), carotid artery outflow and umbilical vein inflow (CA/UV; n = 5) and double umbilical artery outflow and umbilical vein inflow (UA/UV; n = 8). Circuit flows and pressures were measured continuously. As we transitioned from CA/JV to CA/UV to UA/UV cannulation, mean duration of circuit run and weight-adjusted circuit flows increased (P < 0.001) and the frequency of flow interruptions declined (P < 0.05). Umbilical vessels generally accommodated larger-bore cannulas, and cannula calibre was directly correlated with circuit pressures and indirectly correlated with flow:pressure ratio (a measure of post-membrane resistance). We conclude that UA/UV cannulation in fetal lambs on EXTEND optimizes circuit flow dynamics and flow stability and also supports circuit flows that closely approximate normal placental flow. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Fundamental Insulation Characteristics of Air, N2, CO2, N2/O2 and SF6/N2 Mixed Gases
NASA Astrophysics Data System (ADS)
Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Oomori, Takashi
SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. Presently, development of a gas circuit breaker (GCB) using CO2 gas and development of a high voltage vacuum circuit breaker (VCB) are being pursued. GIS consists of disconnectors (DS), earthing switches (ES) and buses in addition to GCB. Since the interruption performance is not an important requirement for DS, ES and BUS, use of a gas with high dielectric strength is better than use of a gas with good interruption performance. Air and N2 are not greenhouse gases, and their dielectric strengths are higher than those of other SF6 alternative gases, but only about one-third of the dielectric strength of SF6 gas. This paper deals with a suitable insulation gas which has no greenhouse effect as an SF6 alternative gas. The N2/O2 mixed gas was investigated by changing the ratio of O2. Moreover, the effect of an insulation coating was investigated and compared with the dielectric strength of SF6/N2 mixed gas. The dielectric strength of air under the coating condition was equal to that of 10%SF6/N2 mixed gas.
46 CFR 111.77-1 - Overcurrent protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-GENERAL REQUIREMENTS Appliances and Appliance Circuits § 111.77-1 Overcurrent protection. If a circuit supplies only one appliance or device, the rating or setting of the branch circuit overcurrent device must not be more than 150 percent of the rating of the appliance or device, or 15 amperes, whichever is...
Reliability Prediction Models for Discrete Semiconductor Devices
1988-07-01
influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application., a plication...found to influence failure rate were device construction, semiconductor material, junction temperature, electrical stress, circuit application...MFA Airbreathlng 14issile, Flight MFF Missile, Free Flight ML Missile, Launch MMIC Monolithic Microwave Integrated Circuits MOS Metal-Oxide
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... Circuit Devices and Products Containing Same; Notice of Commission Determination Not To Review an Initial... public record for this investigation may be viewed on the Commission's electronic docket (EDIS) at http... certain semiconductor integrated circuit devices and products containing same by reason of infringement of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... INTERNATIONAL TRADE COMMISSION [DN 2888] Certain Semiconductor Integrated Circuit Devices and... Integrated Circuit Devices and Products Containing Same, DN 2888; the Commission is soliciting comments on... Commission's electronic docket (EDIS) at http://edis.usitc.gov , and will be available for inspection during...
Microwave GaAs Integrated Circuits On Quartz Substrates
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara
1994-01-01
Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.
Study on the neuronal circuits implicated in postural tremor and hypokinesia
NASA Technical Reports Server (NTRS)
Poirier, L. J.; Bouvier, G.; Bedard, P.; Boucher, R.; Larochelle, L.; Oliver, A.; Singh, P.
1980-01-01
The effect of various tegmentary lesions at the level of the pontomesenchphalon in monkeys on motor function was observed. The importance of the monoaminergic mechanisms of the brainstem is discussed. The results also show the importance of the descending tegmentary rubral system and the rubroolivocerebellar circuit in controlling peripheral motor activity. The destruction of the sensory motor cortex proves to be a more effective way of eliminating spontaneous or harmaline induced tremor than the complete interruption of the pyramidal system on the level of the cerebral peduncle.
The Working of Circuit Breakers Within Percolation Models for Financial Markets
NASA Astrophysics Data System (ADS)
Ehrenstein, Gudrun; Westerhoff, Frank
We use a modified Cont-Bouchaud model to explore the effectiveness of trading breaks. The modifications include that the trading activity of the market participants depends positively on historical volatility and that the orders of the agents are conditioned on the observed mispricing. Trading breaks, also called circuit breakers, interrupt the trading process when prices are about to exceed a pre-specified limit. We find that trading breaks are a useful instrument to stabilize financial markets. In particular, trading breaks may reduce price volatility and deviations from fundamentals.
2015-02-25
required. For example, RF transmitting equipment is tested for Hazards of Electromagnetic Radiation to Personnel ( HERP ) at EPG’s Electromagnetic...Environmental Effects EPG U.S. Army Electronic Proving Ground GFCI ground fault circuit interrupter GOTS Government off-the-shelf HERP
21 CFR 886.5820 - Closed-circuit television reading system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...
21 CFR 886.5820 - Closed-circuit television reading system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...
21 CFR 886.5820 - Closed-circuit television reading system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Closed-circuit television reading system. 886.5820 Section 886.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5820 Closed-circuit television reading system. (a) Identification. A...
System and method for interfacing large-area electronics with integrated circuit devices
Verma, Naveen; Glisic, Branko; Sturm, James; Wagner, Sigurd
2016-07-12
A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.
Evacuated FM08 Fuses Carry a Sustained Arc in a Bus over 75 VDC
NASA Technical Reports Server (NTRS)
Leidecker, Henning; Slonaker, J.
1999-01-01
The FM08 style fuse is specified to interrupt an overcurrent of up to 300 A in a bus of up to 125 VDC, but this applies only when its barrel is filled with air. When placed into a space-grade vacuum, the FM08 style fuse exhausts its air within a year. Then, the probability of an enduring arc is high for all ratings when the bus is above 75 VDC, and the overcurrent is large. The arc endures until something else interrupts the current. The fuse can violently eject metal vapor or other material during the sustained arcing. The evacuated FM08 does not develop a sustained arc when interrupted in a bus of 38 VDC or less, at least when there is little inductance in the circuit. This is consistent with its successful use in many spacecraft having buses in the range 24 to 36 volts.
The Numerical Simulation of the Nanosecond Switching of a p-SOS Diode
NASA Astrophysics Data System (ADS)
Podolska, N. I.; Lyublinskiy, A. G.; Grekhov, I. V.
2017-12-01
Abrupt high-density reverse current interruption has been numerically simulated for switching from forward to reverse bias in a silicon p + P 0 n + structure ( p-SOS diode). It has been shown that the current interruption in this structure occurs as a result of the formation of two dynamic domains of a strong electric field in regions in which the free carrier concentration substantially exceeds the concentration of the doping impurity. The first domain is formed in the n + region at the n + P 0 junction, while the second domain is formed in the P 0 region at the interface with the p + layer. The second domain expands much faster, and this domain mainly determines the current interruption rate. Good agreement is achieved between the simulation results and the experimental data when the actual electric circuit determining the electron-hole plasma pumping in and out is accurately taken into account.
Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage
NASA Astrophysics Data System (ADS)
Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru
Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
49 CFR 236.721 - Circuit, control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates. ...
Electronic circuit for measuring series connected electrochemical cell voltages
Ashtiani, Cyrus N.; Stuart, Thomas A.
2000-01-01
An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.
Plug-and-Play Multicellular Circuits with Time-Dependent Dynamic Responses.
Urrios, Arturo; Gonzalez-Flo, Eva; Canadell, David; de Nadal, Eulàlia; Macia, Javier; Posas, Francesc
2018-04-20
Synthetic biology studies aim to develop cellular devices for biomedical applications. These devices, based on living instead of electronic or electromechanic technology, might provide alternative treatments for a wide range of diseases. However, the feasibility of these devices depends, in many cases, on complex genetic circuits that must fulfill physiological requirements. In this work, we explored the potential of multicellular architectures to act as an alternative to complex circuits for implementation of new devices. As a proof of concept, we developed specific circuits for insulin or glucagon production in response to different glucose levels. Here, we show that fundamental features, such as circuit's affinity or sensitivity, are dependent on the specific configuration of the multicellular consortia, providing a method for tuning these properties without genetic engineering. As an example, we have designed and built circuits with an incoherent feed-forward loop architecture (FFL) that can be easily adjusted to generate single pulse responses. Our results might serve as a blueprint for future development of cellular devices for glycemia regulation in diabetic patients.
Low pressure EGR system having full range capability
Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir
2009-09-22
An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.
Elements configuration of the open lead test circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp; Ono, Akira
In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a testmore » circuit in the past. This paper propose elements configuration of the test circuit.« less
2017 Year in Review | Transportation Research | NREL
Internal Short Circuit Device Sweeps Awards Around the Globe NREL's patented Battery Internal Short Circuit (ISC) Device allows researchers to simulate true internal short circuits, study the causes of thermal
Computer-aided engineering of semiconductor integrated circuits
NASA Astrophysics Data System (ADS)
Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.
1980-07-01
Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.
Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit
NASA Astrophysics Data System (ADS)
Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.
Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.
Toy Modification Note: Build It Yourself Battery Interrupter. Revised.
ERIC Educational Resources Information Center
Vanderheiden, Gregg C.; Brandenburg, S.
This toy modification note presents illustrated instructions on how to build a battery interrupter that permits on/off control of battery-operated toys without modification of the toys themselves. The device allows for a separate control switch which can be custom designed to fit a handicapped user's needs. Information on the construction and use…
Collinge, Cory; Reddix, Robert
2011-02-01
Negative pressure wound therapy (NPWT) using the Vacuum Assisted Closure system is an invaluable tool for use on patients with complex limb and soft tissue problems. Recently, the manufacturer (Kinetic Concepts, Inc, San Antonio, TX) made significant modifications to the NPWT platform, including computer software, battery, alarming systems, electric cord and plug apparatus, and others. Since these modifications, we have seen several cases in which the NPWT device has powered off resulting in an unrecognized interruption of therapy. We sought to evaluate the conditions and clinical effects, if any, to orthopaedic trauma patients who experienced an interruption of NPWT therapy when the device powers off. Retrospective study of consecutive patients. Two neighboring regional trauma centers. One hundred twenty-three consecutive orthopaedic trauma patients treated with NPWT by two orthopaedic trauma surgeons between May and November 2008. Patient/injury, treatment, and perioperative clinical outcomes data (with emphasis on wound complications such as infection, graft loss, and unscheduled surgery) were collected from medical records and wound care databases. Twelve patients (10%) had problems with the NPWT device powering off causing an unrecognized interruption of therapy. Eleven patients underwent early (less than 6 hours) wound débridement and reapplication of NPWT after detection, of which nine required unplanned surgery. Seven of the 12 patients recognized as having failed NPWT of this type ultimately experienced wound complications, including five deep infections and both patients being treated with an Integra graft (loss of graft). We have seen substantial problems in orthopaedic trauma patients treated with the NPWT, in which the device has powered off resulting in an unrecognized interruption of therapy. This has resulted in atypically unhealthy-appearing wounds, unplanned surgeries for débridement, and most importantly, an increased incidence of wound complications, including infection and graft loss (P < 0.05).
Disrupting Improvised Explosive Device Terror Campaigns: Basic Research Opportunities
2008-01-01
2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Disrupting Improvised Explosive Device Terror Campaigns... Explosive Device Terror Campaigns: Basic Research Opportunities A WORKSHOP REPORT Committee on Defeating Improvised Explosive Devices...iv v COMMITTEE ON DEFEATING IMPROVISED EXPLOSIVE DEVICES: BASIC RESEARCH TO INTERRUPT THE IED DELIVERY CHAIN Chairperson
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Tams, Stefan; Thatcher, Jason; Grover, Varun; Pak, Richard
2015-01-01
The ubiquity of instant messages and email notifications in contemporary work environments has opened a Pandora's Box. This box is filled with countless interruptions coming from laptops, smartphones, and other devices, all of which constantly call for employees' attention. In this interruption era, workplace stress is a pervasive problem. To examine this problem, the present study hypothesizes that the three-way interaction among the frequency with which interrupting stimuli appear, their salience, and employees' deficits in inhibiting attentional responses to them impacts mental workload perceptions, ultimately leading to stress. The study, further, probes a related form of self-efficacy as a potential suppressor of interruption-based stress. The study used a 2 (low vs. high frequency) × 2 (low vs. high salience) mixed model design. The 128 subjects completed a test of their inhibitory deficits and rated their mental workload perceptions and experiences of stress following a computer-based task. Inhibitory deficits and increased interruption salience can alter the perception of mental workload in contemporary work environments for the worse, but interruption self-efficacy can help offset any resulting interruption-based stress. This study extends the literatures on work interruptions as well as on stress and coping in the workplace.
CMOS-based optical energy harvesting circuit for biomedical and Internet of Things devices
NASA Astrophysics Data System (ADS)
Nattakarn, Wuthibenjaphonchai; Ishizu, Takaaki; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Sawan, Mohamad; Ohta, Jun
2018-04-01
In this work, we present a novel CMOS-based optical energy harvesting technology for implantable and Internet of Things (IoT) devices. In the proposed system, a CMOS energy-harvesting circuit accumulates a small amount of photoelectrically converted energy in an external capacitor, and intermittently supplies this power to a target device. Two optical energy-harvesting circuit types were implemented and evaluated. Furthermore, we developed a photoelectrically powered optical identification (ID) circuit that is suitable for IoT technology applications.
Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang
2017-10-31
The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.
Noise-margin limitations on gallium-arsenide VLSI
NASA Technical Reports Server (NTRS)
Long, Stephen I.; Sundaram, Mani
1988-01-01
Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.
75 FR 69453 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... Reinvestment Act of 2009 (Pub. L. 111-05, approved February 17, 2009) (Recovery Act), and implementing guidance... conditioning units and Ground Fault Circuit Interrupter (GFCI) outlets for the Riverdale Senior Apartments... implementing guidance published on April 23, 2009 (74 FR 18449), this notice advises the public that, on...
A programmable positioning stepper-motor controller with a multibus/IEEE 796 compatible interface.
Papoff, P; Ricci, D
1984-02-01
A programmable positioning stepper-motor controller, based on the Multibus/IEEE 796 standard interface, has been assembled by use of some intelligent and programmable integrated circuits. This controller, organized as a bus-slave unit, has been planned for local management of up to four stepper motors working simultaneously. The number of steps, the direction of rotation and the step-rate for the positioning of each motor are issued by the bus master microcomputer to the controller which handles all the required operations. Once each positioning has been performed, the controller informs the master by generating a proper bus-vectored interrupt. Displacements in up to 64,000 steps may be programmed with step-rates ranging from 0.1 to 6550 steps/sec. This device, for which only low-cost, high-performance components are required, can be successfully used in a wide range of applications and can be easily extended to control more than four stepper motors.
Improved Short-Circuit Protection for Power Cells in Series
NASA Technical Reports Server (NTRS)
Davies, Francis
2008-01-01
A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.
A differential memristive synapse circuit for on-line learning in neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo
2017-12-01
Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.
Protective carrier for microcircuit devices
Robinson, Lyle A.
1976-10-26
An improved protective carrier for microcircuit devices having beam leads wherein a compressible member is disposed on the carrier base beneath and overlapping the periphery of an aperture in a flexible circuit element, the element being adapted to receive and make electrical contact with microcircuit device beam leads, the compressible member disposed or arranged to achieve flexing of the circuit element against the microcircuit device beam leads to conform to variations in thicknesses of the device beam leads or circuit element electrical paths and thereby insure electrical connection between the beam leads and the electrical paths.
Heat sinking for printed circuitry
Wilson, S.K.; Richardson, G.; Pinkerton, A.L.
1984-09-11
A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.
CONTROL AND FAULT DETECTOR CIRCUIT
Winningstad, C.N.
1958-04-01
A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.
Advanced capability RFID system
Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.
2007-09-25
A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.
Stretchable polymer-based electronic device
Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Davidson, James Courtney [Livermore, CA; Wilson, Thomas S [Castro Valley, CA; Hamilton, Julie K [Tracy, CA; Benett, William J [Livermore, CA; Tovar, Armando R [San Antonio, TX
2008-02-26
A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.
Method for deposition of a conductor in integrated circuits
Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.
1997-01-01
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.
Heap/stack guard pages using a wakeup unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard
A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less
77 FR 22384 - Petition To Modify an Exemption of a Previously Approved Antitheft Device; Porsche
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... passive, microprocessor-based device which includes a starter interrupt function, transponder key and a.... Porsche stated that the antitheft system consists of two major subsystems: a microprocessor-based...
30 CFR 77.903 - Disconnecting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Disconnecting devices. 77.903 Section 77.903... Medium-Voltage Alternating Current Circuits § 77.903 Disconnecting devices. Disconnecting devices shall be installed in circuits supplying power to portable or mobile equipment and shall provide visual...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulkerson, Edward; Lanning, Rodney K.; Telford, Steven
A device includes a u-channel shaped member and a printed circuit board including a plurality of capacitors. Each of the plurality of capacitors has a mounting surface mounted to the printed circuit board and an opposing heat transfer surface thermally coupled to the u-channel shaped member. The device also includes an output cable coupled to the printed circuit board and a return cable coupled to the printed circuit board. The device further includes a control transistor disposed inside the u-channel shaped member and a current sensing resistor disposed inside the u-channel shaped member.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
NASA Technical Reports Server (NTRS)
Mcclenahan, J. O. (Inventor)
1974-01-01
A simple, reliable and inexpensive control circuit is described for rapidly reducing the bias voltage across one or more of the dynode stages of a photomultiplier, to substantially decrease its sensitivity to incoming light at those times where excess light intensity might damage the tube. The control circuit comprises a switching device, such as a silicon controlled rectifier (SCR), coupled between a pair of the electrodes in the tube, preferably the cathode and first dynode, or the first and second dynodes, the switching device operating in response to a trigger pulse applied to its gate to short circuit the two electrodes. To insure the desired reduction in sensitivity, two switching stages, the devices be employed between two of the electrode stages, the devices being operated simultaneously to short circuit both stages.
Configuration of dishwasher to improve energy efficiency of water heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.
A washing machine includes a sealed tub for accepting articles to be washed. A liquid circulation circuit sprays a pressurized liquid (e.g. water, detergent, solvent) around the articles to clean them. The liquid circulation circuit is in thermal contact with a hot side of a thermoelectric device. A heat sink is in thermal contact with both a cold side of the thermoelectric device and a heat sink charging circuit. A liquid is successively directed one or more times through the liquid circulation circuit with the thermoelectric device powered on, and then directed one or more times through the heat sinkmore » charging circuit with the thermoelectric device powered off. Finally, the liquid is discharged from the tub after having its temperature lowered by heat exchange to the heat sink.« less
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Analysis of the Measurement and Modeling of a Digital Inverter Based on a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Sayyah, Rana; Ho, Fat D.
2009-01-01
The use of ferroelectric materials for digital memory devices is widely researched and implemented, but ferroelectric devices also possess unique characteristics that make them have interesting and useful properties in digital circuits. Because ferroelectric transistors possess the properties of hysteresis and nonlinearity, a digital inverter containing a FeFET has very different characteristics than one with a traditional FET. This paper characterizes the properties of the measurement and modeling of a FeFET based digital inverter. The circuit was set up using discrete FeFETs. The purpose of this circuit was not to produce a practical integrated circuit that could be inserted directly into existing digital circuits, but to explore the properties and characteristics of such a device and to look at possible future uses. Input and output characteristics are presented, as well as timing measurements. Comparisons are made between the ferroelectric device and the properties of a standard digital inverter. Potential benefits and possible uses of such a device are presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... installation and maintenance of universal fault interrupters (UFIs) using a certain supplemental type... series airplanes), as an example of an AD issued against the fuel pump motor- impeller assembly to ensure... circuit to burn through the motor-impeller assembly and through the housing. AirTran asserts that an arc...
Energy Resiliency for Marine Corps Logistics Base Production Plant Barstow
2014-12-01
13 1. Biomass, Landfill Gas, and Biogas ...value in dollar per kilowatts ($/kW) peak of an outage cost obtained from the CDF curve for a specified duration of the interruption” (Giraldez, Booth...length of outages for inclusion in the VEES calculation, we needed to obtain power interruption and circuit reliability data from PPB’s utility
Nanophotonic integrated circuits from nanoresonators grown on silicon.
Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie
2014-07-07
Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.
14 CFR 29.1357 - Circuit protective devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their associated buses with sufficient rapidity to provide protection... be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of...
14 CFR 29.1357 - Circuit protective devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their associated buses with sufficient rapidity to provide protection... be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of...
14 CFR 29.1357 - Circuit protective devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their associated buses with sufficient rapidity to provide protection... be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of...
14 CFR 29.1357 - Circuit protective devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... devices in the generating system must be designed to de-energize and disconnect faulty power sources and power transmission equipment from their associated buses with sufficient rapidity to provide protection... be designed so that, when an overload or circuit fault exists, it will open the circuit regardless of...
Mamykina, Lena; Carter, Eileen J; Sheehan, Barbara; Stanley Hum, R; Twohig, Bridget C; Kaufman, David R
2017-05-01
To examine the apparent purpose of interruptions in a Pediatric Intensive Care Unit and opportunities to reduce their burden with informatics solutions. In this prospective observational study, researchers shadowed clinicians in the unit for one hour at a time, recording all interruptions participating clinicians experienced or initiated, their starting time, duration, and a short description that could help to infer their apparent purpose. All captured interruptions were classified inductively on their source and apparent purpose and on the optimal representational media for fulfilling their apparent purpose. The researchers observed thirty-four one-hour sessions with clinicians in the unit, including 21 nurses and 13 residents and house physicians. The physicians were interrupted on average 11.9 times per hour and interrupted others 8.8 times per hour. Nurses were interrupted 8.6 times per hour and interrupted others 5.1 times per hour. The apparent purpose of interruptions included Information Seeking and Sharing (n=259, 46.3%), Directives and Requests (n=70, 12%), Shared Decision-Making (n=49, 8.8%), Direct Patient Care (n=36, 6.4%), Social (n=71, 12.7%), Device Alarms (n=28, 5%), and Non-Clinical (n=10, 1.8%); 6.6% were not classified due to insufficient description. Of all captured interruptions, 29.5% were classified as being better served with informational displays or computer-mediated communication. Deeper understanding of the purpose of interruptions in critical care can help to distinguish between interruptions that require face-to-face conversation and those that can be eliminated with informatics solutions. The proposed taxonomy of interruptions and representational analysis can be used to further advance the science of interruptions in clinical care. Copyright © 2017 Elsevier Inc. All rights reserved.
Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V
2016-01-01
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.
Fundamentals of Digital Engineering: Designing for Reliability
NASA Technical Reports Server (NTRS)
Katz, R.; Day, John H. (Technical Monitor)
2001-01-01
The concept of designing for reliability will be introduced along with a brief overview of reliability, redundancy and traditional methods of fault tolerance is presented, as applied to current logic devices. The fundamentals of advanced circuit design and analysis techniques will be the primary focus. The introduction will cover the definitions of key device parameters and how analysis is used to prove circuit correctness. Basic design techniques such as synchronous vs asynchronous design, metastable state resolution time/arbiter design, and finite state machine structure/implementation will be reviewed. Advanced topics will be explored such as skew-tolerant circuit design, the use of triple-modular redundancy and circuit hazards, device transients and preventative circuit design, lock-up states in finite state machines generated by logic synthesizers, device transient characteristics, radiation mitigation techniques. worst-case analysis, the use of timing analyzer and simulators, and others. Case studies and lessons learned from spaceflight designs will be given as examples
Energy Storage Awards | Transportation Research | NREL
storage team has been recognized with three of these top honors. Battery Internal Short-Circuit Device NREL's patented Battery Internal Short-Circuit (ISC) Device is the only diagnostic tool that makes it affect reactions to internal short circuits and pinpoint related safety issues before batteries are in
30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...
30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...
30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...
30 CFR 77.600 - Trailing cables; short-circuit protection; disconnecting devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... capacity in each ungrounded conductor. Disconnecting devices used to disconnect power from trailing cables... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables; short-circuit protection... AREAS OF UNDERGROUND COAL MINES Trailing Cables § 77.600 Trailing cables; short-circuit protection...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-840] Certain Semiconductor Integrated Circuit... States after importation of certain semiconductor integrated circuit devices and products containing same... No. 6,847,904 (``the '904 patent''). The complaint further alleges that an industry in the United...
14 CFR 25.1357 - Circuit protective devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...
14 CFR 25.1357 - Circuit protective devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...
14 CFR 25.1357 - Circuit protective devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...
14 CFR 25.1357 - Circuit protective devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... designed to de-energize and disconnect faulty power sources and power transmission equipment from their... malfunctioning. (c) Each resettable circuit protective device must be designed so that, when an overload or... must be designed so that circuit breakers are not the primary means to remove or reset system power...
Thermally-isolated silicon-based integrated circuits and related methods
Wojciechowski, Kenneth; Olsson, Roy H.; Clews, Peggy J.; Bauer, Todd
2017-05-09
Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
Bartynski, Andrew N; Gruber, Mark; Das, Saptaparna; Rangan, Sylvie; Mollinger, Sonya; Trinh, Cong; Bradforth, Stephen E; Vandewal, Koen; Salleo, Alberto; Bartynski, Robert A; Bruetting, Wolfgang; Thompson, Mark E
2015-04-29
Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between E(CT) and qV(OC) of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.
14 CFR 25.1717 - Circuit protective devices: EWIS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1717 Circuit protective devices: EWIS. Electrical wires and cables must be designed and...
Implementation of interconnect simulation tools in spice
NASA Technical Reports Server (NTRS)
Satsangi, H.; Schutt-Aine, J. E.
1993-01-01
Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.
Method for deposition of a conductor in integrated circuits
Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.
1997-09-02
A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Geronimo, Gianluigi
Embodiments of comparator circuits are disclosed. A comparator circuit may include a differential input circuit, an output circuit, a positive feedback circuit operably coupled between the differential input circuit and the output circuit, and a hysteresis control circuit operably coupled with the positive feedback circuit. The hysteresis control circuit includes a switching device and a transistor. The comparator circuit provides sub-hysteresis discrimination and high speed discrimination.
A 10-GHz amplifier using an epitaxial lift-off pseudomorphic HEMT device
NASA Technical Reports Server (NTRS)
Young, Paul G.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Mena, Rafael A.; Smith, Edwyn D.
1993-01-01
A process to integrate epitaxial lift-off devices and microstrip circuits has been demonstrated using a pseudomorphic HEMT on an alumina substrate. The circuit was a 10 GHz amplifier with the interconnection between the device and the microstrip circuit being made with photolithographically patterned metal. The measured and modeled response correlated extremely well with a maximum gain of 6.8 dB and a return loss of -14 dB at 10.4 GHz.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Noh, H. S.; Kim, K. H.; Song, S. H.
2006-09-01
A collective overview and review is presented on the original work conducted on the theory, design, fabrication, and in-tegration of micro/nano-scale optical wires and photonic devices for applications in a newly-conceived photonic systems called "optical printed circuit board" (O-PCBs) and "VLSI photonic integrated circuits" (VLSI-PIC). These are aimed for compact, high-speed, multi-functional, intelligent, light-weight, low-energy and environmentally friendly, low-cost, and high-volume applications to complement or surpass the capabilities of electrical PCBs (E-PCBs) and/or VLSI electronic integrated circuit (VLSI-IC) systems. These consist of 2-dimensional or 3-dimensional planar arrays of micro/nano-optical wires and circuits to perform the functions of all-optical sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards or substrates. The integrated optical devices include micro/nano-scale waveguides, lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices, made of polymer, silicon and other semiconductor materials. For VLSI photonic integration, photonic crystals and plasmonic structures have been used. Scientific and technological issues concerning the processes of miniaturization, interconnection and integration of these systems as applicable to board-to-board, chip-to-chip, and intra-chip integration, are discussed along with applications for future computers, telecommunications, and sensor-systems. Visions and challenges toward these goals are also discussed.
Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti
2016-02-08
Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.
Investigation of Impact Jets Flow in Heat Sink Device of Closed-Circuit Cooling Systems
NASA Astrophysics Data System (ADS)
Tokarev, D. A.; Yenivatov, V. V.; Sokolov, S. S.; Erofeev, V. L.
2018-03-01
The flow simulations of impact jets in the heat sink device of the closed-circuit cooling systems are presented. The analysis of the rate of fluid flow in the heat sink device with the jet supply coolant is given.
Silicon device performance measurements to support temperature range enhancement
NASA Technical Reports Server (NTRS)
Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray
1994-01-01
Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.
Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device
NASA Astrophysics Data System (ADS)
Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng
2011-11-01
A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.
Mechanically Flexible and High-Performance CMOS Logic Circuits.
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-10-13
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.
Mechanically Flexible and High-Performance CMOS Logic Circuits
Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2015-01-01
Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882
NASA Astrophysics Data System (ADS)
Claessens, M.; Möller, K.; Thiel, H. G.
1997-07-01
Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.
30 CFR 75.800 - High-voltage circuits; circuit breakers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall be equipped with devices to provide protection against under-voltage grounded phase, short circuit... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. [Statutory Provisions] High-voltage circuits entering...
Global interrupt and barrier networks
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.
2008-10-28
A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.
1987-11-01
developed that can be used by circuit engineers to extract the maximum performance from the devices on various board technologies including multilayer ceramic...Design guidelines have been developed that can be used by circuit engineers to extract the maxi- mum performance from the devices on various board...25 Attenuation and Dispersion Effects ......................................... 27 Skin Effect
Automatic recloser circuit breaker integrated with GSM technology for power system notification
NASA Astrophysics Data System (ADS)
Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.
2015-05-01
Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.
Recent trends in hardware security exploiting hybrid CMOS-resistive memory circuits
NASA Astrophysics Data System (ADS)
Sahay, Shubham; Suri, Manan
2017-12-01
This paper provides a comprehensive review and insight of recent trends in the field of random number generator (RNG) and physically unclonable function (PUF) circuits implemented using different types of emerging resistive non-volatile (NVM) memory devices. We present a detailed review of hybrid RNG/PUF implementations based on the use of (i) Spin-Transfer Torque (STT-MRAM), and (ii) metal-oxide based (OxRAM), NVM devices. Various approaches on Hybrid CMOS-NVM RNG/PUF circuits are considered, followed by a discussion on different nanoscale device phenomena. Certain nanoscale device phenomena (variability/stochasticity etc), which are otherwise undesirable for reliable memory and storage applications, form the basis for low power and highly scalable RNG/PUF circuits. Detailed qualitative comparison and benchmarking of all implementations is performed.
Device for limiting single phase ground fault of mining machines
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.
2017-10-01
The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojciechowski, Kenneth; Olsson, Roy; Clews, Peggy J.
Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
Photochromic molecules as building blocks for molecular electronics.
Peter, Belser
2010-01-01
Energy and electron transfer processes can be easily induced by a photonic excitation of a donor metal complex ([Ru(bpy)3]2), which is connected via a wire-type molecular fragment to an acceptor metal complex ([Os(bpy)3]2+). The rate constant for the transfer process can be determined by emission measurements of the two connected metal complexes. The system can be modified by incorporation of a switching unit or an interrupter into the wire, influencing the transfer process. Such a molecular device corresponds to an interrupter, mimic the same function applied in molecular electronics. We have used organic switches, which show photochromic properties. By irradiation with light of different wavelengths, the switch changes its functionality by a photochemical reaction from an OFF- to an ON-state and vice versa. The ON- respectively OFF-state is manifested by a color change but also in different conductivity properties for energy and electron transfer processes. Therefore, the mentioned molecular device can work as a simple interrupter, controlling the rate of the transfer processes.
Complementary Paired G4FETs as Voltage-Controlled NDR Device
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad; Chen, Suheng; Blalock, Ben; Britton, Chuck; Prothro, Ben; Vandersand, James; Schrimph, Ron; Cristoloveanu, Sorin; Akavardar, Kerem; Gentil, P.
2009-01-01
It is possible to synthesize a voltage-controlled negative-differential-resistance (NDR) device or circuit by use of a pair of complementary G4FETs (four-gate field-effect transistors). [For more information about G4FETs, please see the immediately preceding article]. As shown in Figure 1, the present voltage-controlled NDR device or circuit is an updated version of a prior NDR device or circuit, known as a lambda diode, that contains a pair of complementary junction field-effect transistors (JFETs). (The lambda diode is so named because its current-versus- voltage plot bears some resemblance to an upper-case lambda.) The present version can be derived from the prior version by substituting G4FETs for the JFETs and connecting both JFET gates of each G4FET together. The front gate terminals of the G4FETs constitute additional terminals (that is, terminals not available in the older JFET version) to which one can apply control voltages VN and VP. Circuits in which NDR devices have been used include (1) Schmitt triggers and (2) oscillators containing inductance/ capacitance (LC) resonant circuits. Figure 2 depicts such circuits containing G4FET NDR devices like that of Figure 1. In the Schmitt trigger shown here, the G4FET NDR is loaded with an ordinary inversion-mode, p-channel, metal oxide/semiconductor field-effect transistor (inversion-mode PMOSFET), the VN terminal of the G4FET NDR device is used as an input terminal, and the input terminals of the PMOSFET and the G4FET NDR device are connected. VP can be used as an extra control voltage (that is, a control voltage not available in a typical prior Schmitt trigger) for adjusting the pinch-off voltage of the p-channel G4FET and thereby adjusting the trigger-voltage window. In the oscillator, a G4FET NDR device is loaded with a conventional LC tank circuit. As in other LC NDR oscillators, oscillation occurs because the NDR counteracts the resistance in the tank circuit. The advantage of this G4FET-NDR LC oscillator over a conventional LC NDR oscillator is that one can apply a time-varying signal to one of the extra control input terminals (VN or VP) to modulate the conductance of the NDR device and thereby amplitude-modulate the output signal.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... Activity TTI, Inc.; Subzone 196A (Electromechanical and Circuit Protection Devices Production/ Kitting... electromechanical and circuit protection device production/kitting for a variety of commercial, aerospace and... for crimping, insertion/extraction, and terminal removal, and electromechanical devices (duty rates...
Non- contacting capacitive diagnostic device
Ellison, Timothy
2005-07-12
A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.
1989-05-12
USA Resonant tunneling transistors and New III-V memory devices for new circuit architectures with reduced complexity F. Capasso, Bell. Murray Hill...the evaporation, or by selective oxidation of As, leaving metallic Ga clusters and b) the interdiffusive deterioration of metal contacts on GaAs...VEB (My) Resonant Tunneling Transistors and New III-V Memory Devices for New Circuit Architectures with Reduced Complexity . Invited: F. Capasso
NASA Astrophysics Data System (ADS)
Teruya, Daisuke; Masukawa, Shigeo; Iida, Shoji
We propose a novel inverter that can be operated either as a Current Source Inverter (CSI) or as a Voltage Source Inverter (VSI) by changing only the control signals. It is proper to apply it to the interconnecting system with renewal energy, such as photovoltaic cells or wind generation systems, to a grid. This inverter is usually operated as the CSI connected to the grid. Even if the energy source has a lower voltage than the grid, the energy can be supplied to the grid through the proposed inverter. The power factor can be briefly maintained at almost unity. When power supply from the grid is interrupted, the proposed circuit should be operated as the VSI in the stand-alone operation mode. In this way, the circuit can maintain a constant output voltage to the loads. In this paper, the proposed circuit configuration and the control schemes for both the CSI and the VSI are described. Further, the circuit characteristics for both are discussed experimentally.
NASA Astrophysics Data System (ADS)
Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu
This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.
Measurement and Analysis of a Ferroelectric Field-Effect Transistor NAND Gate
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeond, Todd C.; Sayyah, Rana; Ho, Fat Duen
2009-01-01
Previous research investigated expanding the use of Ferroelectric Field-Effect Transistors (FFET) to other electronic devices beyond memory circuits. Ferroelectric based transistors possess unique characteris tics that give them interesting and useful properties in digital logic circuits. The NAND gate was chosen for investigation as it is one of the fundamental building blocks of digital electronic circuits. In t his paper, NAND gate circuits were constructed utilizing individual F FETs. N-channel FFETs with positive polarization were used for the standard CMOS NAND gate n-channel transistors and n-channel FFETs with n egative polarization were used for the standard CMOS NAND gate p-chan nel transistors. The voltage transfer curves were obtained for the NA ND gate. Comparisons were made between the actual device data and the previous modeled data. These results are compared to standard MOS logic circuits. The circuits analyzed are not intended to be fully opera tional circuits that would interface with existing logic circuits, bu t as a research tool to look into the possibility of using ferroelectric transistors in future logic circuits. Possible applications for th ese devices are presented, and their potential benefits and drawbacks are discussed.
Gate drive latching circuit for an auxiliary resonant commutation circuit
NASA Technical Reports Server (NTRS)
Delgado, Eladio Clemente (Inventor); Kheraluwala, Mustansir Hussainy (Inventor)
1999-01-01
A gate drive latching circuit for an auxiliary resonant commutation circuit for a power switching inverter includes a current monitor circuit providing a current signal to a pair of analog comparators to implement latching of one of a pair of auxiliary switching devices which are used to provide commutation current for commutating switching inverters in the circuit. Each of the pair of comparators feeds a latching circuit which responds to an active one of the comparators for latching the associated gate drive circuit for one of the pair of auxiliary commutating switches. An initial firing signal is applied to each of the commutating switches to gate each into conduction and the resulting current is monitored to determine current direction and therefore the one of the switches which is carrying current. The comparator provides a latching signal to the one of the auxiliary power switches which is actually conducting current and latches that particular power switch into an on state for the duration of current through the device. The latching circuit is so designed that the only time one of the auxiliary switching devices can be latched on is during the duration of an initial firing command signal.
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
Extended behavioural device modelling and circuit simulation with Qucs-S
NASA Astrophysics Data System (ADS)
Brinson, M. E.; Kuznetsov, V.
2018-03-01
Current trends in circuit simulation suggest a growing interest in open source software that allows access to more than one simulation engine while simultaneously supporting schematic drawing tools, behavioural Verilog-A and XSPICE component modelling, and output data post-processing. This article introduces a number of new features recently implemented in the 'Quite universal circuit simulator - SPICE variant' (Qucs-S), including structure and fundamental schematic capture algorithms, at the same time highlighting their use in behavioural semiconductor device modelling. Particular importance is placed on the interaction between Qucs-S schematics, equation-defined devices, SPICE B behavioural sources and hardware description language (HDL) scripts. The multi-simulator version of Qucs is a freely available tool that offers extended modelling and simulation features compared to those provided by legacy circuit simulators. The performance of a number of Qucs-S modelling extensions are demonstrated with a GaN HEMT compact device model and data obtained from tests using the Qucs-S/Ngspice/Xyce ©/SPICE OPUS multi-engine circuit simulator.
Multiplexer and time duration measuring circuit
Gray, Jr., James
1980-01-01
A multiplexer device is provided for multiplexing data in the form of randomly developed, variable width pulses from a plurality of pulse sources to a master storage. The device includes a first multiplexer unit which includes a plurality of input circuits each coupled to one of the pulse sources, with all input circuits being disabled when one input circuit receives an input pulse so that only one input pulse is multiplexed by the multiplexer unit at any one time.
New dynamic FET logic and serial memory circuits for VLSI GaAs technology
NASA Technical Reports Server (NTRS)
Eldin, A. G.
1991-01-01
The complexity of GaAs field effect transistor (FET) very large scale integration (VLSI) circuits is limited by the maximum power dissipation while the uniformity of the device parameters determines the functional yield. In this work, digital GaAs FET circuits are presented that eliminate the DC power dissipation and reduce the area to 50% of that of the conventional static circuits. Its larger tolerance to device parameter variations results in higher functional yield.
46 CFR 28.365 - Overcurrent protection and switched circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a steering circuit, each circuit must be protected against both overload and short circuit. Each overcurrent device in a steering system power and control circuit must provide short circuit protection only... 46 Shipping 1 2010-10-01 2010-10-01 false Overcurrent protection and switched circuits. 28.365...
30 CFR 77.800 - High-voltage circuits; circuit breakers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... devices to provide protection against under voltage, grounded phase, short circuit and overcurrent. High... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High...
NASA Astrophysics Data System (ADS)
Tazlauanu, Mihai
The research work reported in this thesis details a new fabrication technology for high speed integrated circuits in the broadest sense, including original contributions to device modeling, circuit simulation, integrated circuit design, wafer fabrication, micro-physical and electrical characterization, process flow and final device testing as part of an electrical system. The primary building block of this technology is the heterostructure insulated gate field effect transistor, HIGFET. We used an InP/InGaAs epitaxial heterostructure to ensure a high charge carrier mobility and hence obtain a higher operating frequency than that currently possible for silicon devices. We designed and built integrated circuits with two system architectures. The first architecture integrates the clock signal generator with the sample and hold circuitry on the InP die, while the second is a hybrid architecture of an InP sample and hold assembled with an external clock signal generator made with ECL circuits on GaAs. To generate the clock signals on the same die with the sample and hold circuits, we developed a digital circuit family based on an original inverter, appropriate for depletion mode NMOS technology. We used this circuit to design buffer amplifiers and ring oscillators. Four mask sets produced in a Cadence environment, have permitted the fabrication of test and working devices. Each new mask generation has reflected the previous achievements and has implemented new structures and circuit techniques. The fabrication technology has undergone successive modifications and refinements to optimize device manufacturing. Particular attention has been paid to the technological robustness. The plasma enhanced etching process (RIE) had been used for an exhaustive study for the statistical simulation of the technological steps. Electrical measurements, performed on the experimental samples, have permitted the modeling of the devices, technological processing to be adjusted and circuit design improved. Electrical measurements performed on dedicated test structures, during the fabrication cycle, allowed the identification and correction of some technological problems (ohmic contacts, current leakage, interconnection integrity, and thermal instabilities). Feedback corrections were validated by dedicated experiments with the experimental effort optimized by statistical techniques (factorial fractional design). (Abstract shortened by UMI.)
Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong
2017-08-16
In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10 5 ), excellent cyclic endurance (>10 3 ), and long retention time (>10 4 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.
Mechanical vibration to electrical energy converter
Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM
2009-03-03
Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.
She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di
2017-08-29
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
NASA Astrophysics Data System (ADS)
Cooley, Christopher G.
2017-09-01
This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.
Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices
NASA Technical Reports Server (NTRS)
Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael
2012-01-01
Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.
Modelling of optoelectronic circuits based on resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.
2017-08-01
Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.
Maximum Acceleration Recording Circuit
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Starting Circuit For Erasable Programmable Logic Device
NASA Technical Reports Server (NTRS)
Cole, Steven W.
1990-01-01
Voltage regulator bypassed to supply starting current. Starting or "pullup" circuit supplies large inrush of current required by erasable programmable logic device (EPLD) while being turned on. Operates only during such intervals of high demand for current and has little effect any other time. Performs needed bypass, acting as current-dependent shunt connecting battery or other source of power more nearly directly to EPLD. Input capacitor of regulator removed when starting circuit installed, reducing probability of damage to transistor in event of short circuit in or across load.
System and Method for Monitoring Piezoelectric Material Performance
NASA Technical Reports Server (NTRS)
Moses, Robert W. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Chattin, Richard L. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor)
2007-01-01
A system and method are provided for monitoring performance capacity of a piezoelectric material that may form part of an actuator or sensor device. A switch is used to selectively electrically couple an inductor to the piezoelectric material to form an inductor-capacitor circuit. Resonance is induced in the inductor-capacitor circuit when the switch is operated to create the circuit. The resonance of the inductor-capacitor circuit is monitored with the frequency of the resonance being indicative of performance capacity of the device's piezoelectric material.
Jeffery, A.; Elmquist, R. E.; Cage, M. E.
1995-01-01
Precision tests verify the dc equivalent circuit used by Ricketts and Kemeny to describe a quantum Hall effect device in terms of electrical circuit elements. The tests employ the use of cryogenic current comparators and the double-series and triple-series connection techniques of Delahaye. Verification of the dc equivalent circuit in double-series and triple-series connections is a necessary step in developing the ac quantum Hall effect as an intrinsic standard of resistance. PMID:29151768
Advanced 3-V semiconductor technology assessment
NASA Technical Reports Server (NTRS)
Nowogrodzki, M.
1983-01-01
Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.
Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls
Currivan-Incorvia, J. A.; Siddiqui, S.; Dutta, S.; Evarts, E. R.; Zhang, J.; Bono, D.; Ross, C. A.; Baldo, M. A.
2016-01-01
Spintronic computing promises superior energy efficiency and nonvolatility compared to conventional field-effect transistor logic. But, it has proven difficult to realize spintronic circuits with a versatile, scalable device design that is adaptable to emerging material physics. Here we present prototypes of a logic device that encode information in the position of a magnetic domain wall in a ferromagnetic wire. We show that a single three-terminal device can perform inverter and buffer operations. We demonstrate one device can drive two subsequent gates and logic propagation in a circuit of three inverters. This prototype demonstration shows that magnetic domain wall logic devices have the necessary characteristics for future computing, including nonlinearity, gain, cascadability, and room temperature operation. PMID:26754412
Luketich, J D; Fernando, H C; Buenaventura, P O; Christie, N A; Grondin, S C; Schauer, P R
2002-09-01
Speech recognition technology is a recent development in minimally invasive surgery. This study was designed to assess the impact of HERMES on operating room efficiency and user satisfaction. Patients undergoing laparoscopic antireflux operations by surgeons experienced in minimally invasive surgery were randomized to HERMES-assisted or standard laparoscopic operations. The variables of interest were circulating nurse's time spent adjusting devices that are voice-controlled by HERMES, number of adjustments to devices requested, and surgeon and nurse satisfaction measured on a scale from 1 (dissatisfied) to 10 (satisfied). A total of 30 cases were studied. In the non-HERMES cases, nurses were interrupted to make device adjustments an average of 15.3 times per case versus 0.33 times per case in the with-HERMES cases (p < 0.01). The interruptions during the non-HERMES cases averaged 4.35 min per case versus 0.16 min per case in the with-HERMES cases (p = 0.03). Average satisfaction scores for HERMES operations as opposed to non-HERMES operations were 9.2 versus 5.3 for nurses (p < 0.01) and 9.0 versus 5.1 for surgeons (p < 0.01). Physician and nurse acceptance of HERMES was very high because of the smoother interruption-free environment.
Active pixel sensor array with multiresolution readout
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.
Area efficient layout design of CMOS circuit for high-density ICs
NASA Astrophysics Data System (ADS)
Mishra, Vimal Kumar; Chauhan, R. K.
2018-01-01
Efficient layouts have been an active area of research to accommodate the greater number of devices fabricated on a given chip area. In this work a new layout of CMOS circuit is proposed, with an aim to improve its electrical performance and reduce the chip area consumed. The study shows that the design of CMOS circuit and SRAM cells comprising tapered body reduced source fully depleted silicon on insulator (TBRS FD-SOI)-based n- and p-type MOS devices. The proposed TBRS FD-SOI n- and p-MOSFET exhibits lower sub-threshold slope and higher Ion to Ioff ratio when compared with FD-SOI MOSFET and FinFET technology. Other parameters like power dissipation, delay time and signal-to-noise margin of CMOS inverter circuits show improvement when compared with available inverter designs. The above device design is used in 6-T SRAM cell so as to see the effect of proposed layout on high density integrated circuits (ICs). The SNM obtained from the proposed SRAM cell is 565 mV which is much better than any other SRAM cell designed at 50 nm gate length MOS device. The Sentaurus TCAD device simulator is used to design the proposed MOS structure.
30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the correct type and capacity shall be installed so as to protect all electric equipment and circuits against short...
Superconducting Magnetic Energy Storage (SMES) Program
NASA Astrophysics Data System (ADS)
Rogers, J. D.
1985-05-01
The 30 MJ, 10 MW superconducting magnetic energy storage (SMES) system was devised to interact in the Western US Power System as an alternate means to damp unstable oscillations at 0.35 Hz on the Pacific HVAC Interites. The operating limits of the 30 MJ SMES unit were established, and different means of controlling real and reactive power were tested. The unit can follow a sinusoidal power demand signal with an amplitude of up to 8.6 MW with the converter working in a 12 pulse mode. When the converter operates in the constant VAR mode, a time varying real power demand signal of up to 5 MW can be met. It was shown that the Pacific ac Interite has current and reactive power variations of the same frequency as the modulating frequency of the SMES device. The reliability of the SMES subsystems with a narrow band noise input was assessed. Parameters of the ac power system were determined. Converter short circuit tests, load tests under various control conditions, dc breaker tests for coil current interruption, and converter failure mode tests were conducted. The experimental operation of the SMES system is concluded.
Performance of Continuous Quantum Thermal Devices Indirectly Connected to Environments
NASA Astrophysics Data System (ADS)
González, J.; Alonso, Daniel; Palao, José
2016-04-01
A general quantum thermodynamics network is composed of thermal devices connected to the environments through quantum wires. The coupling between the devices and the wires may introduce additional decay channels which modify the system performance with respect to the directly-coupled device. We analyze this effect in a quantum three-level device connected to a heat bath or to a work source through a two-level wire. The steady state heat currents are decomposed into the contributions of the set of simple circuits in the graph representing the master equation. Each circuit is associated with a mechanism in the device operation and the system performance can be described by a small number of circuit representatives of those mechanisms. Although in the limit of weak coupling between the device and the wire the new irreversible contributions can become small, they prevent the system from reaching the Carnot efficiency.
Mitigation of PID in commercial PV modules using current interruption method
NASA Astrophysics Data System (ADS)
Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy
2017-08-01
Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.
Digital mobile telephones and interference of ophthalmic equipment.
Ang, G S; Lian, P; Ng, W S; Whyte, I; Ong, J M
2007-01-01
To assess the effect of mobile telephone electromagnetic interference on electronic ophthalmic equipment. Prospective audit with mobile telephones placed at distances of 3 m, 1 m, and 30 cm from, and in contact with, electronic ophthalmic equipment. Any interruption or cessation of the function of the ophthalmic device was assessed with the mobile telephones in standby, and in dialling or receiving modes. Any alterations of displayed digital figures or numbers were also assessed. A total of 23 electronic ophthalmic devices in two hospital ophthalmology outpatient departments were evaluated. All six mobile telephones used, and 22 (95.7%) of the 23 ophthalmic equipment evaluated had the Conformité Européene (CE) mark. No device showed any interruption or cessation of function. There were no alterations of displayed digital figures or numbers. The only effect of any kind was found with four instruments (1 non-CE marked), where there was temporary flickering on the screen, and only occurred when the mobile telephones were dialling or receiving at a distance of 30 cm or less from the instruments. This study shows that among the electronic ophthalmic devices tested, none suffered failure or interruption of function, from mobile telephone interference. Although not comprehensive for all ophthalmic equipment, the results question the need for a complete ban of mobile telephones in ophthalmic departments. It highlights the need for a controlled, objectively measured study of the clinically relevant effects of mobile telephones in the ophthalmology outpatient setting.
Predicting the behavior of microfluidic circuits made from discrete elements
Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah
2015-01-01
Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059
30 CFR 75.800-3 - Testing, examination and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... High-Voltage Distribution § 75.800-3 Testing, examination and maintenance of circuit breakers; procedures. (a) Circuit breakers and their auxiliary devices protecting underground high-voltage circuits...
30 CFR 75.900-2 - Approved circuit schemes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may...
30 CFR 75.900-2 - Approved circuit schemes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may...
30 CFR 75.900-2 - Approved circuit schemes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may...
30 CFR 75.900-2 - Approved circuit schemes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may...
30 CFR 75.900-2 - Approved circuit schemes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device installed in the main secondary circuit at the source transformer may be used to provide undervoltage protection for each circuit that receives power from that transformer. (c) One circuit breaker may...
Battery self-warming mechanism using the inverter and the battery main disconnect circuitry
Ashtiani, Cyrus N.; Stuart, Thomas A.
2005-04-19
An apparatus connected to an energy storage device for powering an electric motor and optionally providing a warming function for the energy storage device is disclosed. The apparatus includes a circuit connected to the electric motor and the energy storage device for generating a current. The apparatus also includes a switching device operably associated with the circuit for selectively directing the current to one of the electric motor and the energy storage device.
Code of Federal Regulations, 2010 CFR
2010-07-01
... short circuit protection; minimum requirements. 77.506-1 Section 77.506-1 Mineral Resources MINE SAFETY...-1 Electric equipment and circuits; overload and short circuit protection; minimum requirements. Devices providing either short circuit protection or protection against overload shall conform to the...
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-05-09
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.
Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo
2016-01-01
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Dasgupta, A.; Das, R.; Kar, M.; Kundu, A.; Sarkar, C. K.
2017-12-01
In this paper, we explore the possibility of mapping devices designed in TCAD environment to its modeled version developed in cadence virtuoso environment using a look-up table (LUT) approach. Circuit simulation of newly designed devices in TCAD environment is a very slow and tedious process involving complex scripting. Hence, the LUT based modeling approach has been proposed as a faster and easier alternative in cadence environment. The LUTs are prepared by extracting data from the device characteristics obtained from device simulation in TCAD. A comparative study is shown between the TCAD simulation and the LUT-based alternative to showcase the accuracy of modeled devices. Finally the look-up table approach is used to evaluate the performance of circuits implemented using 14 nm nMOSFET.
Overvoltage protection system for wireless power transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Jones, Perry T.; Miller, John M.
A wireless power transfer overvoltage protection system is provided. The system includes a resonant receiving circuit. The resonant receiving circuit includes an inductor, a resonant capacitor and a first switching device. The first switching device is connected the ends of the inductor. The first switching device has a first state in which the ends of the inductor are electrically coupled to each other through the first switching device, and a second state in which the inductor and resonant capacitor are capable of resonating. The system further includes a control module configured to control the first switching device to switching betweenmore » the first state and the second state when the resonant receiving circuit is charging a load and a preset condition is satisfied and otherwise, the first switching device is maintained in the first state.« less
Multimode quantum interference of photons in multiport integrated devices
Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.
2011-01-01
Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563
Kolin, Alexander; Steele, James R.; Imai, James S.; Macalpin, Rex N.
1974-01-01
A combination of deformable flow probes of negligible lateral dimensions with an electronic circuit capable of providing a prolonged plateau of dB/dt = 0 and of sampling the flow signal at the end of this interval permits electromagnetic measurement of blood flow with a reliable zero base line secured by switching off the magnet. An extracorporeal magnet provides the magnetic field. The flow transducer is introduced into the vascular system percutaneously through a standard angiographic catheter by conventional technique. The idea of the current generator can be described as “principle of interrupted resonance.” The current wave form can be described as a sequence of disconnected bisected sine waves joined at the apices by horizontal current plateaus where di/dt is strictly zero. Images PMID:4275395
A New Method for Raising Opening Velocity of Electromagnetic Actuated Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu
Recently an electromagnetic actuator has been widely used as an operating mechanism for the vacuum circuit breaker (VCB). The opening velocity of the contact is supposed to be strongly related with current interruption performance. This paper presents a simple and new technique that raises opening velocity of the electromagnetic actuated VCB. In order to investigate this reason, we built a numerical simulator that predicts the dynamic characteristics of the VCB contact. It takes into account of the magnetic behavior in the actuator and is also coupled with the external control circuit. According to this simulation, it is shown that it is originated from the sharp rise in the electromagnetic thrust force due to the selective saturation of the magnetic yoke. As the result of our experiments, by this technique the opening velocity was verified to be 1.5 times faster than by the conventional way.
Mass-spectroscopic study of the influence of nozzle material on high-pressure SF6 arcs
NASA Astrophysics Data System (ADS)
Meier, R.; Kneubühl, F. K.; Schötzau, H. J.
1989-03-01
The interrupting capability of a gas-blast high-voltage circuit breaker (CB) is mainly determined by the self-induced pressure rise caused by the thermal arc energy, the composition of the arc plasma and the chemical reactions occuring during and after current interruption. We have studied the nozzle materials boron nitride (BN), quartz (SiO2), polytetrafluoroethylene (PTFE), ethylene-tetrafluoroethylene (ETFE), polyethylene (PE) and epoxy resin (ER) with respect to their influence on these processes with the aid of a model circuit breaker (MCB). Direct measurements of the arc-induced pressure rise reveal that the portion of the arc energy available for the pressure rise varies greatly (˜20% 65%) with the properties of the nozzle material. Nozzle erosion is significantly higher for materials with high values (e.g. polymers). Therefore, the lifetime of polymer nozzles is considerably shorter than that of ceramic nozzles. We have investigated the influence of the nozzle material on the decomposition products formed in the arc discharge of our MCB by studying the composition and time dependence of these products. The MCB was directly attached to the time-of-flight mass spectrometer (TOFMS) with the aid of a molecular-beam sampling system, which allowed real-time measurements of the arced gas during and after current interruption, thus providing information on the ablation mechanism and on the reaction kinetics of vaporised nozzle material with dissociated SF6. The most abundant long-lived reaction products are SF4, SOF2, C2H2, CO, and CS2. Their formation rates have been determined as functions of the nozzle material. With respect to quantities and properties of decomposition products, ceramics are superior to polymers since they form only small concentrations of corrosive and toxic products.
Fan, Xu; Wang, Yunguang; Cheng, Haiping; Chong, Xiaochen
2016-02-01
The present circuit was designed to apply to human tissue impedance tuning and matching device in ultra-short wave treatment equipment. In order to judge if the optimum status of circuit parameter between energy emitter circuit and accepter circuit is in well syntony, we designed a high frequency envelope detect circuit to coordinate with automatic adjust device of accepter circuit, which would achieve the function of human tissue impedance matching and tuning. Using the sampling coil to receive the signal of amplitude-modulated wave, we compared the voltage signal of envelope detect circuit with electric current of energy emitter circuit. The result of experimental study was that the signal, which was transformed by the envelope detect circuit, was stable and could be recognized by low speed Analog to Digital Converter (ADC) and was proportional to the electric current signal of energy emitter circuit. It could be concluded that the voltage, transformed by envelope detect circuit can mirror the real circuit state of syntony and realize the function of human tissue impedance collecting.
Hazard-Free Pyrotechnic Simulator
NASA Technical Reports Server (NTRS)
Mcalister, William B., Jr.
1988-01-01
Simulator evaluates performance of firing circuits for electroexplosive devices (EED's) safely and inexpensively. Tests circuits realistically when pyrotechnic squibs not connected and eliminates risks of explosions. Used to test such devices as batteries where test conditions might otherwise degrade them.
Exchange circuits for FASTBUS slaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bratskii, A.A.; Matseev, M.Y.; Rybakov, V.G.
1985-09-01
This paper describes general-purpose circuits for FASTBUS interfacing of the functional part of a slave device. The circuits contain buffered receivers and transmitters, addressrecognition and data-transfer logic, and the required control/status registers. The described circuits are implemented with series-K500 integrated circuits.
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.
1985-01-01
The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.
Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R
2016-08-16
Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.
49 CFR 236.731 - Controller, circuit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits. ...
30 CFR 18.53 - High-voltage longwall mining systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage motor...-interrupting devices must be designed and installed to prevent automatic reclosure. (d) Transformers with high... “open” position; (iv) When located in an explosion-proof enclosure, the device must be designed and...
30 CFR 18.53 - High-voltage longwall mining systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage motor...-interrupting devices must be designed and installed to prevent automatic reclosure. (d) Transformers with high... “open” position; (iv) When located in an explosion-proof enclosure, the device must be designed and...
30 CFR 18.53 - High-voltage longwall mining systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage motor...-interrupting devices must be designed and installed to prevent automatic reclosure. (d) Transformers with high... “open” position; (iv) When located in an explosion-proof enclosure, the device must be designed and...
30 CFR 18.53 - High-voltage longwall mining systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage motor...-interrupting devices must be designed and installed to prevent automatic reclosure. (d) Transformers with high... “open” position; (iv) When located in an explosion-proof enclosure, the device must be designed and...
30 CFR 18.53 - High-voltage longwall mining systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Design Requirements § 18.53 High-voltage longwall mining systems. (a) In each high-voltage motor...-interrupting devices must be designed and installed to prevent automatic reclosure. (d) Transformers with high... “open” position; (iv) When located in an explosion-proof enclosure, the device must be designed and...
Method of acquiring an image from an optical structure having pixels with dedicated readout circuits
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2006-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
NASA Astrophysics Data System (ADS)
Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong
2018-03-01
The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.
LEC GaAs for integrated circuit applications
NASA Technical Reports Server (NTRS)
Kirkpatrick, C. G.; Chen, R. T.; Homes, D. E.; Asbeck, P. M.; Elliott, K. R.; Fairman, R. D.; Oliver, J. D.
1984-01-01
Recent developments in liquid encapsulated Czochralski techniques for the growth of semiinsulating GaAs for integrated circuit applications have resulted in significant improvements in the quality and quantity of GaAs material suitable for device processing. The emergence of high performance GaAs integrated circuit technologies has accelerated the demand for high quality, large diameter semiinsulating GaAs substrates. The new device technologies, including digital integrated circuits, monolithic microwave integrated circuits and charge coupled devices have largely adopted direct ion implantation for the formation of doped layers. Ion implantation lends itself to good uniformity and reproducibility, high yield and low cost; however, this technique also places stringent demands on the quality of the semiinsulating GaAs substrates. Although significant progress was made in developing a viable planar ion implantation technology, the variability and poor quality of GaAs substrates have hindered progress in process development.
Automatic cross-sectioning and monitoring system locates defects in electronic devices
NASA Technical Reports Server (NTRS)
Jacobs, G.; Slaughter, B.
1971-01-01
System consists of motorized grinding and lapping apparatus, sample holder, and electronic control circuit. Low power microscope examines device to pinpoint location of circuit defect, and monitor displays output signal when defect is located exactly.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short circuit protection; minimum requirements. 75.518-1 Section 75.518-1 Mineral Resources MINE SAFETY... short circuit protection; minimum requirements. A device to provide either short circuit protection or...
NASA Astrophysics Data System (ADS)
Wiersma, R. D.; Riaz, N.; Dieterich, Sonja; Suh, Yelin; Xing, L.
2009-01-01
The integration of onboard kV imaging together with a MV electronic portal imaging device (EPID) on linear accelerators (LINAC) can provide an easy to implement real-time 3D organ position monitoring solution for treatment delivery. Currently, real-time MV-kV tracking has only been demonstrated by simultaneous imagining by both MV and kV imaging devices. However, modalities such as step-and-shoot IMRT (SS-IMRT), which inherently contain MV beam interruptions, can lead to loss of target information necessary for 3D localization. Additionally, continuous kV imaging throughout the treatment delivery can lead to high levels of imaging dose to the patient. This work demonstrates for the first time how full 3D target tracking can be maintained even in the presence of such beam interruption, or MV/kV beam interleave, by use of a relatively simple correlation model together with MV-kV tracking. A moving correlation model was constructed using both present and prior positions of the marker in the available MV or kV image to compute the position of the marker on the interrupted imager. A commercially available radiotherapy system, equipped with both MV and kV imaging devices, was used to deliver typical SS-IMRT lung treatment plans to a 4D phantom containing internally embedded metallic markers. To simulate actual lung tumor motion, previous recorded 4D lung patient motion data were used. Lung tumor motion data of five separate patients were inputted into the 4D phantom, and typical SS-IMRT lung plans were delivered to simulate actual clinical deliveries. Application of the correlation model to SS-IMRT lung treatment deliveries was found to be an effective solution for maintaining continuous 3D tracking during 'step' beam interruptions. For deliveries involving five or more gantry angles with 50 or more fields per plan, the positional errors were found to have <=1 mm root mean squared error (RMSE) in all three spatial directions. In addition to increasing the robustness of MV-kV tracking against beam interruption, it was also found that use of correlation can be an effective way of lowering kV dose to the patient and for increasing kV image quality by reduction of MV scatter interference.
On-chip photonic-phononic emitter-receiver apparatus
Cox, Jonathan Albert; Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Wang, Zheng; Shin, Heedeuk; Siddiqui, Aleem; Starbuck, Andrew Lea
2017-07-04
A radio-frequency photonic devices employs photon-phonon coupling for information transfer. The device includes a membrane in which a two-dimensionally periodic phononic crystal (PnC) structure is patterned. The device also includes at least a first optical waveguide embedded in the membrane. At least a first line-defect region interrupts the PnC structure. The first optical waveguide is embedded within the line-defect region.
Testing of Diode-Clamping in an Inductive Pulsed Plasma Thruster Circuit
NASA Technical Reports Server (NTRS)
Toftul, Alexandra; Polzin, Kurt A.; Martin, Adam K.; Hudgins, Jerry L.
2014-01-01
Testing of a 5.5 kV silicon (Si) diode and 5.8 kV prototype silicon carbide (SiC) diode in an inductive pulsed plasma thruster (IPPT) circuit was performed to obtain a comparison of the resulting circuit recapture efficiency,eta(sub r), defined as the percentage of the initial charge energy remaining on the capacitor bank after the diode interrupts the current. The diode was placed in a pulsed circuit in series with a silicon controlled rectifier (SCR) switch, and the voltages across different components and current waveforms were collected over a range of capacitor charge voltages. Reverse recovery parameters, including turn-off time and peak reverse recovery current, were measured and capacitor voltage waveforms were used to determine the recapture efficiency for each case. The Si fast recovery diode in the circuit was shown to yield a recapture efficiency of up to 20% for the conditions tested, while the SiC diode further increased recapture efficiency to nearly 30%. The data presented show that fast recovery diodes operate on a timescale that permits them to clamp the discharge quickly after the first half cycle, supporting the idea that diode-clamping in IPPT circuit reduces energy dissipation that occurs after the first half cycle
Development of 72/84kV Dry Air Insulated Dead Tank Type VCB
NASA Astrophysics Data System (ADS)
Saito, Hitoshi; Nagatake, Kazuhiro; Komatsu, Hideki; Takeshita, Yukihiro; Matsui, Yoshihiko; Katsumata, Kiyohito; Sakaki, Masayuki
As a circuit breaker for over 84kV, SF6 gas circuit breaker (GCB) has been used for a long time, in virtue of its excellent characteristics as arc extinction and insulating medium. Although, SF6 gas has very high global warming potential (GWP) of 23,900, and it was designated to regulation object in COP3 in Kyoto in 1997. A lot of efforts have been done to reduce the amount of SF6 gas usage and emission from conventional equipments. On the other hand, SF6 gas free equipment has been researching and one strong candidate is air-insulated type switchgears with vacuum interrupters. In last few years, air-insulated switchgears, which include GIS, Cubicle type GIS (C-GIS) and dead tank type VCB, have been developed in succession. So far, we have already more than three years operation record for the air-insulated dead tank type VCB, and over 100 units is in-service in power systems. Recently, VCB technology, that is essential for SF6 gas-free equipments, has been advanced in the field of high-voltage, large current interruption and environment-conscious design. In this paper, the advanced dead tank type VCB and its technology is descried.
Bridging ultrahigh-Q devices and photonic circuits
NASA Astrophysics Data System (ADS)
Yang, Ki Youl; Oh, Dong Yoon; Lee, Seung Hoon; Yang, Qi-Fan; Yi, Xu; Shen, Boqiang; Wang, Heming; Vahala, Kerry
2018-05-01
Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.
The practical operational-amplifier gyrator circuit for inductorless filter synthesis
NASA Technical Reports Server (NTRS)
Sutherland, W. C.
1976-01-01
A literature is reported for gyrator circuits utilizing operational amplifiers as the active device. A gyrator is a two port nonreciprocal device with the property that the input impedance is proportional to the reciprocal of the load impedance. Following an experimental study, the gyrator circuit with optimum properties was selected for additional testing. A theoretical analysis was performed and compared to the experimental results for excellent agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
49 CFR 236.5 - Design of control circuits on closed circuit principle.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Design of control circuits on closed circuit... THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on...
NASA Technical Reports Server (NTRS)
Lucifredi, A. L.
1970-01-01
The theory, applications, and possible structural designs of capacitive transducers are presented. Emphasis is placed on the circuits used in connection with the sensors, such as AM, FM, resonant circuits, mode circuits, direct current circuits, and special circuits. Some criteria for selection of a design or the purchase of a commercial device are given.
Triple voltage dc-to-dc converter and method
Su, Gui-Jia
2008-08-05
A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
Black-Maier, Eric; Kim, Sunghee; Steinberg, Benjamin A; Fonarow, Gregg C; Freeman, James V; Kowey, Peter R; Ansell, Jack; Gersh, Bernard J; Mahaffey, Kenneth W; Naccarelli, Gerald; Hylek, Elaine M; Go, Alan S; Peterson, Eric D; Piccini, Jonathan P
2017-09-01
Oral anticoagulation (OAC) therapy is associated with increased periprocedural risks after cardiac implantable electronic device (CIED) implantation. Patterns of anticoagulation management involving non-vitamin K antagonist oral anticoagulants (NOACs) have not been characterized. Anticoagulation strategies and outcomes differ by anticoagulant type in patients undergoing CIED implantation. Using the nationwide Outcomes Registry for Better Informed Treatment of Atrial Fibrillation, we assessed how atrial fibrillation (AF) patients undergoing CIED implantation were cared for and their subsequent outcomes. Outcomes were compared by oral anticoagulant therapy (none, warfarin, or NOAC) as well as by anticoagulation interruption status. Among 9129 AF patients, 416 (5%) underwent CIED implantation during a median follow-up of 30 months (interquartile range, 24-36). Of these, 60 (14%) had implantation on a NOAC. Relative to warfarin therapy, those on a NOAC were younger (70.5 years [range, 65-77.5 years] vs 77 years [range, 70-82 years]), had less valvular heart disease (15.0% vs 31.3%), higher creatinine clearance (67.3 [range, 59.7-99.0] vs 65.8 [range, 50.0-91.6]), were more likely to have persistent AF (26.7% vs 22.9%), and use concomitant aspirin (51.7% vs 35.2%). OAC therapy was commonly interrupted for CIED in 64% (n = 183 of 284) of warfarin patients and 65% (n = 39 of 60) of NOAC patients. Many interrupted patients received intravenous bridging anticoagulation: 33/183 (18%) interrupted warfarin and 4/39 (10%) interrupted NOAC patients. Thirty-day periprocedure bleeding and stroke adverse events were infrequent. Management of anticoagulation among AF patients undergoing CIED implantation is highly variable, with OAC being interrupted in more than half of both warfarin- and NOAC-treated patients. Bleeding and stroke events were infrequent in both warfarin and NOAC-treated patients. © 2017 The Authors. Clinical Cardiology published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.
1991-11-01
High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1987-01-01
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.
77 FR 16435 - Transmission Relay Loadability Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... are designed to read electrical measurements, such as current, voltage, and frequency, and can be set... an element of the system under its protection, it sends a signal to an interrupting device(s) (such... their relays according to one of thirteen specific settings (sub-parts R1.1 through R1.13) designed to...
HBCU/MI: 3D Formable RF Materials and Devices
2016-08-01
SECURITY CLASSIFICATION OF: The aim of this project was to explore 3D printing for RF/microwave circuits and devices. The research produced several... 3D printed microwave filters, a 3D wifi radio circuit, and new materials for 3D printed electromagnetic devices. The research demonstrates that 3D ...journals: Final Report: HBCU/MI: 3D Formable RF Materials and Devices Report Title The aim of this project was to explore 3D printing for RF/microwave
Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device
Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.
2005-03-15
This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Fogerty, Daniel
2011-01-01
Listeners often only have fragments of speech available to understand the intended message due to competing background noise. In order to maximize successful speech recognition, listeners must allocate their perceptual resources to the most informative acoustic properties. The speech signal contains temporally-varying acoustics in the envelope and fine structure that are present across the frequency spectrum. Understanding how listeners perceptually weigh these acoustic properties in different frequency regions during interrupted speech is essential for the design of assistive listening devices. This study measured the perceptual weighting of young normal-hearing listeners for the envelope and fine structure in each of three frequency bands for interrupted sentence materials. Perceptual weights were obtained during interruption at the syllabic rate (i.e., 4 Hz) and the periodic rate (i.e., 128 Hz) of speech. Potential interruption interactions with fundamental frequency information were investigated by shifting the natural pitch contour higher relative to the interruption rate. The availability of each acoustic property was varied independently by adding noise at different levels. Perceptual weights were determined by correlating a listener’s performance with the availability of each acoustic property on a trial-by-trial basis. Results demonstrated similar relative weights across the interruption conditions, with emphasis on the envelope in high-frequencies. PMID:21786914
Comparing the Tolerability of a Novel Wound Closure Device Using a Porcine Wound Model
Townsend, Katy L.; Akeroyd, Jen; Russell, Duncan S.; Kruzic, Jamie J.; Robertson, Bria L.; Lear, William
2018-01-01
Objective: To compare the tolerability and mechanical tensile strength of acute skin wounds closed with nylon suture plus a novel suture bridge device (SBD) with acute skin wounds closed with nylon suture in a porcine model. Approach: Four Yucatan pigs each received 12 4.5 cm full-thickness incisions that were closed with 1 of 4 options: Suture bridge with nylon, suture bridge with nylon and subdermal polyglactin, nylon simple interrupted, and nylon simple interrupted with subdermal polyglactin. Epithelial reaction, inflammation, and scarring were examined histologically at days 10 and 42. Wound strength was examined mechanically at days 10 and 42 on ex vivo wounds from euthanized pigs. Results: Histopathology in the suture entry/exit planes showed greater dermal inflammation with a simple interrupted nylon suture retained for 42 days compared with the SBD retained for 42 days (p < 0.03). While tensile wound strength in the device and suture groups were similar at day 10, wounds closed with the devices were nearly 8 times stronger at day 42 compared with day 10 (p < 0.001). Innovation: A novel SBD optimized for cutaneous wound closure that protects the skin surface from suture strands, forms a protective bridge over the healing wound edges, and knotlessly clamps sutures. Conclusion: This study suggests that the use of a SBD increases the tolerability of nylon sutures in porcine acute skin wound closures allowing for prolonged mechanical support of the wound. For slow healing wounds, this may prevent skin wound disruption, such as edge necrosis and dehiscence. PMID:29892494
Power control system and method
Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY
2008-02-19
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Power control system and method
Steigerwald, Robert Louis; Anderson, Todd Alan
2006-11-07
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; ...
2016-04-24
Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less
Pulsed interrupter and method of operation
Drake, Joel Lawton; Kratz, Robert
2015-06-09
Some embodiments provide interrupter systems comprising: a first electrode; a second electrode; a piston movably located at a first position and electrically coupled with the first and second electrodes establishing a closed state, the piston comprises an electrical conductor that couples with the first and second electrodes providing a conductive path; an electromagnetic launcher configured to, when activated, induce a magnetic field pulse causing the piston to move away from the electrical coupling with the first and second electrodes establishing an open circuit between the first and second electrodes; and a piston control system comprising a piston arresting system configured to control a deceleration of the piston following the movement of the piston induced by the electromagnetic launcher such that the piston is not in electrical contact with at least one of the first electrode and the second electrode when in the open state.
Transformer coupling for transmitting direct current through a barrier
Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.
1988-01-01
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.
Transformer coupling for transmitting direct current through a barrier
Brown, R.L.; Guilford, R.P.; Stichman, J.H.
1987-06-29
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.
Printed circuit board impedance matching step for microwave (millimeter wave) devices
Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul
2013-10-01
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Layout-aware simulation of soft errors in sub-100 nm integrated circuits
NASA Astrophysics Data System (ADS)
Balbekov, A.; Gorbunov, M.; Bobkov, S.
2016-12-01
Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Shurupov, M. A.; Kozlov, A. A.; Kotov, A. V.
2016-11-01
This paper considers the possibility of creating on new physical principles a highspeed current-limiting device (CLD) for the networks with voltage of 110 kV, namely, on the basis of the explosive switching elements. The device is designed to limit the steady short-circuit current to acceptable values for the time does not exceed 3 ms at electric power facilities. The paper presents an analysis of the electrical circuit of CLD. The main features of the scheme are: a new high-speed switching element with high regenerating voltage; fusible switching element that enables to limit the overvoltage after sudden breakage of network of the explosive switch; non-inductive resistor with a high heat capacity and a special reactor with operating time less than 1 s. We analyzed the work of the CLD with help of special software PSPICE, which is based on the equivalent circuit of single-phase short circuit to ground in 110 kV network. Analysis of the equivalent circuit operation CLD shows its efficiency and determines the CLD as a perspective direction of the current-limiting devices of new generation.
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.60 - Switch shunting circuit; use restricted.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Rules and... circuit shall not be hereafter installed, except where tract or control circuit is opened by the circuit controller. [49 FR 3384, Jan. 26, 1984] Wires and Cables ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Controller, circuit; switch. 236.732 Section 236... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a rod connected to a switch, derail or movable-point frog. ...
49 CFR 236.732 - Controller, circuit; switch.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit; switch. 236.732 Section 236.732 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.732 Controller, circuit; switch. A device for opening and closing electric circuits, operated by a...
Electronic test and calibration circuits, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.
Gratton, Gabriele
2018-03-01
Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.
System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.
Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae
2017-11-18
Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.
NASA Technical Reports Server (NTRS)
Athale, R. A.; Lee, S. H.
1978-01-01
The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.
General Electronics Technician: Semiconductor Devices and Circuits.
ERIC Educational Resources Information Center
Hilley, Robert
These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics focusing on semiconductor devices and circuits and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional…
Vazquez-Leal, H.; Jimenez-Fernandez, V. M.; Benhammouda, B.; Filobello-Nino, U.; Sarmiento-Reyes, A.; Ramirez-Pinero, A.; Marin-Hernandez, A.; Huerta-Chua, J.
2014-01-01
We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation. PMID:25184157
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)
2000-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.
Clean carbon nanotubes coupled to superconducting impedance-matching circuits.
Ranjan, V; Puebla-Hellmann, G; Jung, M; Hasler, T; Nunnenkamp, A; Muoth, M; Hierold, C; Wallraff, A; Schönenberger, C
2015-05-15
Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth (BW) and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum information processing, shot noise and correlation measurements. However, creation of a device that unites a low-disorder nanotube with a low-loss microwave resonator has so far remained a challenge, due to fabrication incompatibility of one with the other. Employing a mechanical transfer method, we successfully couple a nanotube to a gigahertz superconducting matching circuit and thereby retain pristine transport characteristics such as the control over formation of, and coupling strengths between, the quantum dots. Resonance response to changes in conductance and susceptance further enables quantitative parameter extraction. The achieved near matching is a step forward promising high-BW noise correlation measurements on high impedance devices such as quantum dot circuits.
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sections assembled in a common enclosure, on a common chassis or circuit board, and with common frequency controlling circuits. Devices to which a single FCC Identifier has been assigned shall be identified pursuant... circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
47 CFR 2.925 - Identification of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... common chassis or circuit board, and with common frequency controlling circuits. Devices to which a... common enclosure, but constructed on separate sub-units or circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any transmitter section shall be preceded by the term TX...
Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo
2015-01-01
Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Overload protection circuit utilizes one circuit for suspending inverter action when load abnormality is detected and second circuit to monitor clearance of abnormality. Device wastes no power during normal operating conditions and responds instantaneously when abnormality is cleared.
Okandan, Murat; Nielson, Gregory N
2014-12-09
Accessing a workpiece object in semiconductor processing is disclosed. The workpiece object includes a mechanical support substrate, a release layer over the mechanical support substrate, and an integrated circuit substrate coupled over the release layer. The integrated circuit substrate includes a device layer having semiconductor devices. The method also includes etching through-substrate via (TSV) openings through the integrated circuit substrate that have buried ends at or within the release layer including using the release layer as an etch stop. TSVs are formed by introducing one or more conductive materials into the TSV openings. A die singulation trench is etched at least substantially through the integrated circuit substrate around a perimeter of an integrated circuit die. The integrated circuit die is at least substantially released from the mechanical support substrate.
NASA Astrophysics Data System (ADS)
Jacobs, J. L.
1993-04-01
Erasable programmable logic devices (EPLD's) were investigated to determine their advantages and/or disadvantages in Test Equipment Engineering applications. It was found that EPLD's performed as well as or better than identical circuits using standard transistor transistor logic (TTL). The chip count in these circuits was reduced, saving printed circuit board space and shortening fabrication and prove-in time. Troubleshooting circuits of EPLD's was also easier with 10 to 100 times fewer wires needed. The reduced number of integrated circuits (IC's) contributed to faster system speeds and an overall lower power consumption. In some cases changes to the circuit became software changes using EPLD's instead of hardware changes for standard logic. Using EPLD's was fairly easy; however, as with any new technology, a learning curve must be overcome before EPLD's can be used efficiently. The many benefits of EPLD's outweighed this initial inconvenience.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.
Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.
Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses
Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo
2016-01-01
The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828
Resonance Frequency Readout Circuit for a 900 MHz SAW Device
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-01-01
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799
Resonance Frequency Readout Circuit for a 900 MHz SAW Device.
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-09-15
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.
Bioluminescent bioreporter integrated circuit devices and methods for detecting ammonia
Simpson, Michael L [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Sayler, Gary S [Blaine, TN; Applegate, Bruce M [West Lafayette, IN; Ripp, Steven A [Knoxville, TN
2007-04-24
Monolithic bioelectronic devices for the detection of ammonia includes a microorganism that metabolizes ammonia and which harbors a lux gene fused with a heterologous promoter gene stably incorporated into the chromosome of the microorganism and an Optical Application Specific Integrated Circuit (OASIC). The microorganism is generally a bacterium.
Rudenko, I A; Kil'dyushov, E M; Koludarova, E M; Morozov, V Yu; Fetisov, V A
2015-01-01
The authors report a case of the fatal injury by technical electricity from a mobile device (cell phone) attached to the circuit in a moist environment as a result of the unsafe handling of the gadget (when taking the bath).
LC Circuits for Diagnosing Embedded Piezoelectric Devices
NASA Technical Reports Server (NTRS)
Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.
2005-01-01
A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.
Irradiation of MOS-FET devices to provide desired logic functions
NASA Technical Reports Server (NTRS)
Danchenko, V.; Schaefer, D. H.
1972-01-01
Gamma, X-ray, electron, or other radiation is used to shift threshold potentials of MOS devices on logic circuits. Before irradiation MOS gates to be shifted are biased positive and other gates are grounded to substrate. Threshold lasts 10 years. Thermal annealing brings circuit back to original configuration.
Integrated circuit with dissipative layer for photogenerated carriers
Myers, D.R.
1988-04-20
The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
49 CFR 236.205 - Signal control circuits; requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Signal control circuits; requirements. 236.205..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.205 Signal control circuits; requirements. The circuits shall be so...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
14 CFR 33.28 - Engine control systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Applicability. These requirements are applicable to any system or device that is part of engine type design...) Aircraft-supplied data. Single failures leading to loss, interruption or corruption of aircraft-supplied...
Koo, Hyung-Jun; Velev, Orlin D
2013-05-09
We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.
Twin lead ballistic conductor based on nanoribbon edge transport
NASA Astrophysics Data System (ADS)
Konôpka, Martin; Dieška, Peter
2018-03-01
If a device like a graphene nanoribbon (GNR) has all its four corners attached to electric current leads, the device becomes a quantum junction through which two electrical circuits can interact. We study such system theoretically for stationary currents. The 4-point energy-dependent conductance matrix of the nanostructure and the classical resistors in the circuits are parameters of the model. The two bias voltages in the circuits are the control variables of the studied system while the electrochemical potentials at the device's terminals are non-trivially dependent on the voltages. For the special case of the linear-response regime analytical formulae for the operation of the coupled quantum-classical device are derived and applied. For higher bias voltages numerical solutions are obtained. The effects of non-equilibrium Fermi levels are captured using a recursive algorithm in which self-consistency between the electrochemical potentials and the currents is reached within few iterations. The developed approach allows to study scenarios ranging from independent circuits to strongly coupled ones. For the chosen model of the GNR with highly conductive zigzag edges we determine the regime in which the single device carries two almost independent currents.
Assessment of SOI Devices and Circuits at Extreme Temperatures
NASA Technical Reports Server (NTRS)
Elbuluk, Malik; Hammoud, Ahmad; Patterson, Richard L.
2007-01-01
Electronics designed for use in future NASA space exploration missions are expected to encounter extreme temperatures and wide thermal swings. Such missions include planetary surface exploration, bases, rovers, landers, orbiters, and satellites. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of mission. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical devices, circuits, and systems suitable for applications in deep space exploration missions and aerospace environment. Silicon-On-Insulator (SOI) technology has been under active consideration in the electronics industry for many years due to the advantages that it can provide in integrated circuit (IC) chips and computer processors. Faster switching, less power, radiationtolerance, reduced leakage, and high temp-erature capability are some of the benefits that are offered by using SOI-based devices. A few SOI circuits are available commercially. However, there is a noticeable interest in SOI technology for different applications. Very little data, however, exist on the performance of such circuits under cryogenic temperatures. In this work, the performance of SOI integrated circuits, evaluated under low temperature and thermal cycling, are reported. In particular, three examples of SOI circuits that have been tested for operation at low at temperatures are given. These circuits are SOI operational amplifiers, timers and power MOSFET drivers. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these circuits for use in space exploration missions at cryogenic temperatures. The findings are useful to mission planners and circuit designers so that proper selection of electronic parts can be made, and risk assessment can be established for such circuits for use in space missions.
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros; Christou, Andreas
2015-03-01
Equivalent circuit models of a transistor laser are used to investigate the suitability of this relatively new device for analog microwave photonic links. The three-terminal nature of the device enables transistor-based circuit design techniques to be applied to optoelectronic transmitter design. To this end, we investigate the application of balanced microwave amplifier topologies in order to enable low-noise links to be realized with reduced intermodulation distortion and improved RF impedance matching compared to conventional microwave photonic links.
Love, Frank
2006-04-18
An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.
Wright, James T.
1986-01-01
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
Zero energy-storage ballast for compact fluorescent lamps
Schultz, W.N.; Thomas, R.J.
1999-08-31
A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast. 4 figs.
Zero energy-storage ballast for compact fluorescent lamps
Schultz, William Newell; Thomas, Robert James
1999-01-01
A CFL ballast includes complementary-type switching devices connected in series with their gates connected together at a control node. The switching devices supply a resonant tank circuit which is tuned to a frequency near, but slightly lower than, the resonant frequency of a resonant control circuit. As a result, the tank circuit restarts oscillations immediately following each zero crossing of the bus voltage. Such rapid restarts avoid undesirable flickering while maintaining the operational advantages and high efficacy of the CFL ballast.
Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.
Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R
2015-10-14
We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.
Wright, J.T.
1984-02-02
A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.
30 CFR 75.900-3 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current circuits serving three-phase alternating current equipment and their auxiliary devices shall be... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-3 Testing, examination, and...
30 CFR 75.900-3 - Testing, examination, and maintenance of circuit breakers; procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... current circuits serving three-phase alternating current equipment and their auxiliary devices shall be... Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900-3 Testing, examination, and...
Guan, Binbin; Scott, Ryan P; Qin, Chuan; Fontaine, Nicolas K; Su, Tiehui; Ferrari, Carlo; Cappuzzo, Mark; Klemens, Fred; Keller, Bob; Earnshaw, Mark; Yoo, S J B
2014-01-13
We demonstrate free-space space-division-multiplexing (SDM) with 15 orbital angular momentum (OAM) states using a three-dimensional (3D) photonic integrated circuit (PIC). The hybrid device consists of a silica planar lightwave circuit (PLC) coupled to a 3D waveguide circuit to multiplex/demultiplex OAM states. The low excess loss hybrid device is used in individual and two simultaneous OAM states multiplexing and demultiplexing link experiments with a 20 Gb/s, 1.67 b/s/Hz quadrature phase shift keyed (QPSK) signal, which shows error-free performance for 379,960 tested bits for all OAM states.
DC isolation and protection system and circuit
NASA Technical Reports Server (NTRS)
Wagner, Charles A. (Inventor); Kellogg, Gary V. (Inventor)
1991-01-01
A precision analog electronic circuit that is capable of sending accurate signals to an external device that has hostile electric characteristics, including the presence of very large common mode voltages. The circuit is also capable of surviving applications of normal mode overvoltages of up to 120 VAC/VDC for unlimited periods of time without damage or degradation. First, the circuit isolates the DC signal output from the computer. Means are then provided for amplifying the isolated DC signal. Further means are provided for stabilizing and protecting the isolating and amplifying means, and the isolated and amplified DC signal which is output to the external device, against overvoltages and overcurrents.
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-01-01
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies. PMID:26552584
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-11-10
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.
NASA Astrophysics Data System (ADS)
Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-06-01
Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.
Nanogap Electrodes towards Solid State Single-Molecule Transistors.
Cui, Ajuan; Dong, Huanli; Hu, Wenping
2015-12-01
With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.
2014-10-01
Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.
D’Ostilio, Kevin; Rothwell, John C; Murphy, David L
2014-01-01
Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286
49 CFR 236.201 - Track-circuit control of signals.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2011-10-01 2011-10-01 false Track-circuit control of signals. 236.201 Section...
49 CFR 236.201 - Track-circuit control of signals.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Block Signal Systems Standards § 236.201 Track-circuit control of signals. The control circuits for home... 49 Transportation 4 2010-10-01 2010-10-01 false Track-circuit control of signals. 236.201 Section...
Results and Insights on the Impact of Smoke on Digital Instrumentation and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, T. J.; Nowlen, S. P.
2001-01-31
Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The major effect of smoke has been to increase leakage currents (through circuit bridging across contacts and leads) and tomore » cause momentary upsets and failures in digital systems. This report summarizes two previous reports and presents new results from conformal coating, memory chip, and hard drive tests. The report describes practices for mitigation of smoke damage through digital system design, fire barriers, ventilation, fire suppressants, and post fire procedures.« less
NASA Astrophysics Data System (ADS)
Jizhi, Liu; Xingbi, Chen
2009-12-01
A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.
Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc
2016-01-01
Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588
Apparatus for Controlling Low Power Voltages in Space Based Processing Systems
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor)
2017-01-01
A low power voltage control circuit for use in space missions includes a switching device coupled between an input voltage and an output voltage. The switching device includes a control input coupled to an enable signal, wherein the control input is configured to selectively turn the output voltage on or off based at least in part on the enable signal. A current monitoring circuit is coupled to the output voltage and configured to produce a trip signal, wherein the trip signal is active when a load current flowing through the switching device is determined to exceed a predetermined threshold and is inactive otherwise. The power voltage control circuit is constructed of space qualified components.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
1995-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2004-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
An electronic implementation of amoeba anticipation
NASA Astrophysics Data System (ADS)
Ziegler, Martin; Ochs, Karlheinz; Hansen, Mirko; Kohlstedt, Hermann
2014-02-01
In nature, the capability of memorizing environmental changes and recalling past events can be observed in unicellular organisms like amoebas. Pershin and Di Ventra have shown that such learning behavior can be mimicked in a simple memristive circuit model consisting of an LC (inductance capacitance) contour and a memristive device. Here, we implement this model experimentally by using an Ag/TiO2- x /Al memristive device. A theoretical analysis of the circuit is used to gain insight into the functionality of this model and to give advice for the circuit implementation. In this respect, the transfer function, resonant frequency, and damping behavior for a varying resistance of the memristive device are discussed in detail.
Suppressing recombination in polymer photovoltaic devices via energy-level cascades.
Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H
2013-08-14
An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun
2017-11-07
For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2015-12-15
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2016-05-17
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Pacemaker or defibrillator surgery without interruption of anticoagulation.
Birnie, David H; Healey, Jeff S; Wells, George A; Verma, Atul; Tang, Anthony S; Krahn, Andrew D; Simpson, Christopher S; Ayala-Paredes, Felix; Coutu, Benoit; Leiria, Tiago L L; Essebag, Vidal
2013-05-30
Many patients requiring pacemaker or implantable cardioverter-defibrillator (ICD) surgery are taking warfarin. For patients at high risk for thromboembolic events, guidelines recommend bridging therapy with heparin; however, case series suggest that it may be safe to perform surgery without interrupting warfarin treatment. There have been few results from clinical trials to support the safety and efficacy of this approach. We randomly assigned patients with an annual risk of thromboembolic events of 5% or more to continued warfarin treatment or to bridging therapy with heparin. The primary outcome was clinically significant device-pocket hematoma, which was defined as device-pocket hematoma that necessitated prolonged hospitalization, interruption of anticoagulation therapy, or further surgery (e.g., hematoma evacuation). The data and safety monitoring board recommended termination of the trial after the second prespecified interim analysis. Clinically significant device-pocket hematoma occurred in 12 of 343 patients (3.5%) in the continued-warfarin group, as compared with 54 of 338 (16.0%) in the heparin-bridging group (relative risk, 0.19; 95% confidence interval, 0.10 to 0.36; P<0.001). Major surgical and thromboembolic complications were rare and did not differ significantly between the study groups. They included one episode of cardiac tamponade and one myocardial infarction in the heparin-bridging group and one stroke and one transient ischemic attack in the continued-warfarin group. As compared with bridging therapy with heparin, a strategy of continued warfarin treatment at the time of pacemaker or ICD surgery markedly reduced the incidence of clinically significant device-pocket hematoma. (Funded by the Canadian Institutes of Health Research and the Ministry of Health and Long-Term Care of Ontario; BRUISE CONTROL ClinicalTrials.gov number, NCT00800137.).
Flexible Peripheral Component Interconnect Input/Output Card
NASA Technical Reports Server (NTRS)
Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.
2010-01-01
The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.
Inverted organic photovoltaic device with a new electron transport layer
NASA Astrophysics Data System (ADS)
Kim, Hyeong Pil; Yusoff, Abd Rashid bin Mohd; Kim, Hyo Min; Lee, Hee Jae; Seo, Gi Jun; Jang, Jin
2014-03-01
We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of -9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air.
Bidirectional Neural Interfaces
Masters, Matthew R.; Thakor, Nitish V.
2016-01-01
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very-large-scale integration (VLSI) has advanced the design of complex integrated circuits. System-on-chip (SoC) devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems. PMID:26753776
Electronic Device of Didactic and Electrometric Interest for the Study of RLC Circuits.
ERIC Educational Resources Information Center
Rodriguez, Angel L. Perez; And Others
1979-01-01
Presents a method of studying RLC circuits with the help of the oscilloscope in the XYZ mode, complemented by an electronic device which generates a marker-trace on the screen and which is used to measure frequencies without the need of a reference point on the screen. (Author/GA)
Circuit For Current-vs.-Voltage Tests Of Semiconductors
NASA Technical Reports Server (NTRS)
Huston, Steven W.
1991-01-01
Circuit designed for measurement of dc current-versus-voltage characteristics of semiconductor devices. Operates in conjunction with x-y pen plotter or digital storage oscilloscope, which records data. Includes large feedback resistors to prevent high currents damaging device under test. Principal virtues: low cost, simplicity, and compactness. Also used to evaluate diodes and transistors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-15
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-873] Certain Integrated Circuit Devices.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on February 8, 2013, under section 337 of the Tariff Act of...
10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...
10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...
10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... main functions. Ballast means a device used with an electric discharge lamp to obtain necessary circuit... mode. Electronic ballast means a device that uses semiconductors as the primary means to control lamp..., and does not generally contain an igniter but instead starts lamps with high ballast open circuit...
Design of pressure-driven microfluidic networks using electric circuit analogy.
Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P
2012-02-07
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
A Simple Memristor Model for Circuit Simulations
NASA Astrophysics Data System (ADS)
Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team
This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.
Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo
2015-01-01
Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778
NASA Astrophysics Data System (ADS)
Wilkins, Matthew M.; Gupta, James; Jaouad, Abdelatif; Bouzazi, Boussairi; Fafard, Simon; Boucherif, Abderraouf; Valdivia, Christopher E.; Arès, Richard; Aimez, Vincent; Schriemer, Henry P.; Hinzer, Karin
2017-04-01
Four-junction solar cells for space and terrestrial applications require a junction with a band gap of ˜1 eV for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the 14 mA/cm2 short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (VOC) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An n-i-p device with 0.65-μm absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a 1-μm absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of 12.5 mA/cm2, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (1 sun=100 mW/cm2), diode ideality factor of 1.4, and sufficient light transmission to allow >12.5 mA/cm2 in all four subcells.
NASA Astrophysics Data System (ADS)
Zand, Ramtin; DeMara, Ronald F.
2017-12-01
In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
Frequency dividers constitute essential elements in designing phase-locked loop circuits and microwave systems. In addition, they are used in providing required clocking signals to microprocessors and can be utilized as digital counters. In some applications, particularly space missions, electronics are often exposed to extreme temperature conditions. Therefore, it is required that circuits designed for such applications incorporate electronic parts and devices that can tolerate and operate efficiently in harsh temperature environments. While present electronic circuits employ COTS (commercial-off- the-shelf) parts that necessitate and are supported with some form of thermal control systems to maintain adequate temperature for proper operation, it is highly desirable and beneficial if the thermal conditioning elements are eliminated. Amongst these benefits are: simpler system design, reduced weight and size, improved reliability, simpler maintenance, and reduced cost. Devices based on silicon-on-insulator (SOI) technology, which utilizes the addition of an insulation layer in the device structure to reduce leakage currents and to minimize parasitic junctions, are well suited for high temperatures due to reduced internal heating as compared to the conventional silicon devices, and less power consumption. In addition, SOI electronic integrated circuits display good tolerance to radiation by virtue of introducing barriers or lengthening the path for penetrating particles and/or providing a region for trapping incident ionization. The benefits of these parts make them suitable for use in deep space and planetary exploration missions where extreme temperatures and radiation are encountered. Although designed for high temperatures, very little data exist on the operation of SOI devices and circuits at cryogenic temperatures. In this work, the performance of a divide-by-two frequency divider circuit built using COTS SOI logic gates was evaluated over a wide temperature range and thermal cycling to determine suitability for use in space exploration missions and terrestrial fields under extreme temperature conditions.
Displacement Damage in Bipolar Linear Integrated Circuits
NASA Technical Reports Server (NTRS)
Rax, B. G.; Johnston, A. H.; Miyahira, T.
2000-01-01
Although many different processes can be used to manufacture linear integrated circuits, the process that is used for most circuits is optimized for high voltage -- a total power supply voltage of about 40 V -- and low cost. This process, which has changed little during the last twenty years, uses lateral and substrate p-n-p transistors. These p-n-p transistors have very wide base regions, increasing their sensitivity to displacement damage from electrons and protons. Although displacement damage effects can be easily treated for individual transistors, the net effect on linear circuits can be far more complex because circuit operation often depends on the interaction of several internal transistors. Note also that some circuits are made with more advanced processes with much narrower base widths. Devices fabricated with these newer processes are not expected to be significantly affected by displacement damage for proton fluences below 1 x 10(exp 12) p/sq cm. This paper discusses displacement damage in linear integrated circuits with more complex failure modes than those exhibited by simpler devices, such as the LM111 comparator, where the dominant response mode is gain degradation of the input transistor. Some circuits fail catastrophically at much lower equivalent total dose levels compared to tests with gamma rays. The device works satisfactorily up to nearly 1 Mrad(Si) when it is irradiated with gamma rays, but fails catastrophically between 50 and 70 krad(Si) when it is irradiated with protons.
Molecular interfaces for plasmonic hot electron photovoltaics
NASA Astrophysics Data System (ADS)
Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos
2015-01-01
The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b
46 CFR 111.30-17 - Protection of instrument circuits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an...
46 CFR 111.30-17 - Protection of instrument circuits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an...
46 CFR 111.30-17 - Protection of instrument circuits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an...
46 CFR 111.30-17 - Protection of instrument circuits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an...
46 CFR 111.30-17 - Protection of instrument circuits.
Code of Federal Regulations, 2013 CFR
2013-10-01
... circuit of a current transformer must not be fused, and the circuit from a current transformer to a device that is not in the switchboard must have a high voltage protector to short the transformer during an...
Device serves as hinge and electrical connector for circuit boards
NASA Technical Reports Server (NTRS)
Bethel, P. G.; Harris, G. G.
1966-01-01
Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
....usitc.gov . The public record for this investigation may be viewed on the Commission's electronic docket... Circuit (``Federal Circuit''). On April 12, 2010, the Federal Circuit affirmed the Commission's Final...
46 CFR 111.51-3 - Protection of vital equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plant configurations. (b)Overcurrent protective devices must be installed so that: (1) A short-circuit on a circuit that is not vital to the propulsion, control, or safety of the vessel does not trip equipment that is vital; and (2) A short-circuit on a circuit that is vital to the propulsion, control, or...
Towards Evolving Electronic Circuits for Autonomous Space Applications
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Haith, Gary L.; Colombano, Silvano P.; Stassinopoulos, Dimitris
2000-01-01
The relatively new field of Evolvable Hardware studies how simulated evolution can reconfigure, adapt, and design hardware structures in an automated manner. Space applications, especially those requiring autonomy, are potential beneficiaries of evolvable hardware. For example, robotic drilling from a mobile platform requires high-bandwidth controller circuits that are difficult to design. In this paper, we present automated design techniques based on evolutionary search that could potentially be used in such applications. First, we present a method of automatically generating analog circuit designs using evolutionary search and a circuit construction language. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm, we present experimental results for five design tasks. Second, we investigate the use of coevolution in automated circuit design. We examine fitness evaluation by comparing the effectiveness of four fitness schedules. The results indicate that solution quality is highest with static and co-evolving fitness schedules as compared to the other two dynamic schedules. We discuss these results and offer two possible explanations for the observed behavior: retention of useful information, and alignment of problem difficulty with circuit proficiency.
Multilevel Resistance Programming in Conductive Bridge Resistive Memory
NASA Astrophysics Data System (ADS)
Mahalanabis, Debayan
This work focuses on the existence of multiple resistance states in a type of emerging non-volatile resistive memory device known commonly as Programmable Metallization Cell (PMC) or Conductive Bridge Random Access Memory (CBRAM), which can be important for applications such as multi-bit memory as well as non-volatile logic and neuromorphic computing. First, experimental data from small signal, quasi-static and pulsed mode electrical characterization of such devices are presented which clearly demonstrate the inherent multi-level resistance programmability property in CBRAM devices. A physics based analytical CBRAM compact model is then presented which simulates the ion-transport dynamics and filamentary growth mechanism that causes resistance change in such devices. Simulation results from the model are fitted to experimental dynamic resistance switching characteristics. The model designed using Verilog-a language is computation-efficient and can be integrated with industry standard circuit simulation tools for design and analysis of hybrid circuits involving both CMOS and CBRAM devices. Three main circuit applications for CBRAM devices are explored in this work. Firstly, the susceptibility of CBRAM memory arrays to single event induced upsets is analyzed via compact model simulation and experimental heavy ion testing data that show possibility of both high resistance to low resistance and low resistance to high resistance transitions due to ion strikes. Next, a non-volatile sense amplifier based flip-flop architecture is proposed which can help make leakage power consumption negligible by allowing complete shutdown of power supply while retaining its output data in CBRAM devices. Reliability and energy consumption of the flip-flop circuit for different CBRAM low resistance levels and supply voltage values are analyzed and compared to CMOS designs. Possible extension of this architecture for threshold logic function computation using the CBRAM devices as re-configurable resistive weights is also discussed. Lastly, Spike timing dependent plasticity (STDP) based gradual resistance change behavior in CBRAM device fabricated in back-end-of-line on a CMOS die containing integrate and fire CMOS neuron circuits is demonstrated for the first time which indicates the feasibility of using CBRAM devices as electronic synapses in spiking neural network hardware implementations for non-Boolean neuromorphic computing.
Biocompatible circuit-breaker chip for thermal management of biomedical microsystems
NASA Astrophysics Data System (ADS)
Luo, Yi; Dahmardeh, Masoud; Takahata, Kenichi
2015-05-01
This paper presents a thermoresponsive micro circuit breaker for biomedical applications specifically targeted at electronic intelligent implants. The circuit breaker is micromachined to have a shape-memory-alloy cantilever actuator as a normally closed temperature-sensitive switch to protect the device of interest from overheating, a critical safety feature for smart implants including those that are electrothermally driven with wireless micro heaters. The device is fabricated in a size of 1.5 × 2.0 × 0.46 mm3 using biocompatible materials and a chip-based titanium package, exhibiting a nominal cold-state resistance of 14 Ω. The breaker rapidly enters the full open condition when the chip temperature exceeds 63 °C, temporarily breaking the circuit of interest to lower its temperature until chip temperature drops to 51 °C, at which the breaker closes the circuit to allow current to flow through it again, physically limiting the maximum temperature of the circuit. This functionality is tested in combination with a wireless resonant heater powered by radio-frequency electromagnetic radiation, demonstrating self-regulation of heater temperature. The developed circuit-breaker chip operates in a fully passive manner that removes the need for active sensor and circuitry to achieve temperature regulation in a target device, contributing to the miniaturization of biomedical microsystems including electronic smart implants where thermal management is essential.
NASA Technical Reports Server (NTRS)
1972-01-01
Here, the 7400 line of transistor to transistor logic (TTL) devices is emphasized almost exclusively where hardware is concerned. However, it should be pointed out that the logic theory contained herein applies to all hardware. Binary numbers, simplification of logic circuits, code conversion circuits, basic flip-flop theory, details about series 54/7400, and asynchronous circuits are discussed.
Reversing-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1987-02-10
A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
System and method for controlling remote devices
Carrender, Curtis Lee [Richland, WA; Gilbert, Ronald W [Benton City, WA; Scott, Jeff W [Pasco, WA; Clark, David A [Kennewick, WA
2006-02-07
A system and method for controlling remote devices utilizing a radio frequency identification (RFID) tag device having a control circuit adapted to render the tag device, and associated objects, permanently inoperable in response to radio-frequency control signals. The control circuit is configured to receive the control signals that can include an enable signal, and in response thereto enable an associated object, such as a weapon; and in response to a disable signal, to disable the tag itself, or, if desired, to disable the associated weapon or both the device and the weapon. Permanent disabling of the tag can be accomplished by several methods, including, but not limited to, fusing a fusable link, breaking an electrically conductive path, permanently altering the modulation or backscattering characteristics of the antenna circuit, and permanently erasing an associated memory. In this manner, tags in the possession of unauthorized employees can be remotely disabled, and weapons lost on a battlefield can be easily tracked and enabled or disabled automatically or at will.
Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki
2013-01-01
Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
University of Illinois
2009-04-21
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A [Champaign, IL; Khang, Dahl-Young [Seoul, KR; Sun, Yugang [Naperville, IL; Menard, Etienne [Durham, NC
2012-06-12
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2014-06-17
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl-Young; Sun, Yugang; Menard, Etienne
2016-12-06
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Stretchable form of single crystal silicon for high performance electronics on rubber substrates
Rogers, John A.; Khang, Dahl -Young; Sun, Yugang; Menard, Etienne
2015-08-11
The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Relay Protection and Automation Systems Based on Programmable Logic Integrated Circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashin, A. V., E-mail: LashinAV@lhp.ru; Kozyrev, A. V.
One of the most promising forms of developing the apparatus part of relay protection and automation devices is considered. The advantages of choosing programmable logic integrated circuits to obtain adaptive technological algorithms in power system protection and control systems are pointed out. The technical difficulties in the problems which today stand in the way of using relay protection and automation systems are indicated and a new technology for solving these problems is presented. Particular attention is devoted to the possibility of reconfiguring the logic of these devices, using programmable logic integrated circuits.
Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Christou, Aris; Pecht, Michael G.
1992-01-01
Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.
Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.
Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer
2012-01-01
Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Kalyan Yoti, E-mail: kalyan-yoti.mitra@mb.tu-chemnitz.de, E-mail: enrico.sowade@mb.tu-chemnitz.de; Sowade, Enrico, E-mail: kalyan-yoti.mitra@mb.tu-chemnitz.de, E-mail: enrico.sowade@mb.tu-chemnitz.de; Martínez-Domingo, Carme
Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (frommore » Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as 'Bridging Platform'. This transfer to 'Bridging Platform' from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit.« less
Integrated biocircuits: engineering functional multicellular circuits and devices.
Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang
2018-04-01
Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.
Integrated biocircuits: engineering functional multicellular circuits and devices
NASA Astrophysics Data System (ADS)
Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang
2018-04-01
Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.
Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha
2015-10-01
Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.
Single chip camera device having double sampling operation
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)
2002-01-01
A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.
Laser Scanner Tests For Single-Event Upsets
NASA Technical Reports Server (NTRS)
Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.
1992-01-01
Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.
Multilevel metallization method for fabricating a metal oxide semiconductor device
NASA Technical Reports Server (NTRS)
Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)
1978-01-01
An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.
System for Multiplexing Acoustic Emission (AE) Instrumentation
NASA Technical Reports Server (NTRS)
Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)
2003-01-01
An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.
Heavy-ion induced single-event upset in integrated circuits
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1991-01-01
The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.
46 CFR 111.05-37 - Overcurrent devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... devices. (a) A permanently grounded conductor must not have an overcurrent device unless the overcurrent device simultaneously opens each ungrounded conductor of the circuit. (b) The neutral conductor of the...
46 CFR 111.05-37 - Overcurrent devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... devices. (a) A permanently grounded conductor must not have an overcurrent device unless the overcurrent device simultaneously opens each ungrounded conductor of the circuit. (b) The neutral conductor of the...
[Design of warm-acupuncture technique training evaluation device].
Gao, Ming; Xu, Gang; Yang, Huayuan; Liu, Tangyi; Tang, Wenchao
2017-01-12
To design a warm-acupuncture teaching instrument to train and evaluate its manipulation. We refer to the principle and technical operation characteristics of traditional warm-acupuncture, as well as the mechanical design and single-chip microcomputer technology. The device is consisted of device noumenon, universal acupoints simulator, vibration reset system and circuit control system, including frame, platform framework, the swing framework, universal acupoints simulator, vibration reset outfit, operation time circuit, acupuncture sensation display, and vibration control circuit, etc. It can be used to train needle inserting with different angles and moxa rubbing and loading. It displays whether a needle point meets the location required. We determine whether the moxa group on a needle handle is easy to fall off through vibration test, and operation time is showed. The device can objectively help warm-acupuncture training and evaluation so as to promote its clinical standardization manipulation.
Gallium Arsenide Monolithic Optoelectronic Circuits
NASA Astrophysics Data System (ADS)
Bar-Chaim, N.; Katz, J.; Margalit, S.; Ury, I.; Wilt, D.; Yariv, A.
1981-07-01
The optical properties of GaAs make it a very useful material for the fabrication of optical emitters and detectors. GaAs also possesses electronic properties which allow the fabrication of high speed electronic devices which are superior to conventional silicon devices. Monolithic optoelectronic circuits are formed by the integration of optical and electronic devices on a single GaAs substrate. Integration of many devices is most easily accomplished on a semi-insulating (SI) sub-strate. Several laser structures have been fabricated on SI GaAs substrates. Some of these lasers have been integrated with Gunn diodes and with metal semiconductor field effect transistors (MESFETs). An integrated optical repeater has been demonstrated in which MESFETs are used for optical detection and electronic amplification, and a laser is used to regenerate the optical signal. Monolithic optoelectronic circuits have also been constructed on conducting substrates. A heterojunction bipolar transistor driver has been integrated with a laser on an n-type GaAs substrate.
Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang
2014-08-13
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm². The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips.
Liu, Dongsheng; Wang, Rencai; Yao, Ke; Zou, Xuecheng; Guo, Liang
2014-01-01
A RF powering circuit used in radio-frequency identification (RFID) tags and other batteryless embedded devices is presented in this paper. The RF powering circuit harvests energy from electromagnetic waves and converts the RF energy to a stable voltage source. Analysis of a NMOS gate-cross connected bridge rectifier is conducted to demonstrate relationship between device sizes and power conversion efficiency (PCE) of the rectifier. A rectifier with 38.54% PCE under normal working conditions is designed. Moreover, a stable voltage regulator with a temperature and voltage optimizing strategy including adoption of a combination resistor is developed, which is able to accommodate a large input range of 4 V to 12 V and be immune to temperature variations. Latch-up prevention and noise isolation methods in layout design are also presented. Designed with the HJTC 0.25 μm process, this regulator achieves 0.04 mV/°C temperature rejection ratio (TRR) and 2.5 mV/V voltage rejection ratio (VRR). The RF powering circuit is also fabricated in the HJTC 0.25 μm process. The area of the RF powering circuit is 0.23 × 0.24 mm2. The RF powering circuit is successfully integrated with ISO/IEC 15693-compatible and ISO/IEC 14443-compatible RFID tag chips. PMID:25123466
Process development of beam-lead silicon-gate COS/MOS integrated circuits
NASA Technical Reports Server (NTRS)
Baptiste, B.; Boesenberg, W.
1974-01-01
Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.
NASA Astrophysics Data System (ADS)
Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay
2018-02-01
We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.
Generator powered electrically heated diesel particulate filter
Gonze, Eugene V; Paratore, Jr., Michael J
2014-03-18
A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.
Automatic visual inspection system for microelectronics
NASA Technical Reports Server (NTRS)
Micka, E. Z. (Inventor)
1975-01-01
A system for automatically inspecting an integrated circuit was developed. A device for shining a scanning narrow light beam at an integrated circuit to be inspected and another light beam at an accepted integrated circuit was included. A pair of photodetectors that receive light reflected from these integrated circuits, and a comparing system compares the outputs of the photodetectors.